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Abstract

The Cellular Potts Model(CPM) has been extensively used to model cell
ordering processes such as vasculogenesis, morphogenesis and cancer de-
velopment. Implementations of the CPM generally discretise space into
lattice points and time into Monte Carlo steps, which is an indication of
the number of successful updates of the configuration with respect to the
lattice size. In this study, the goal is to obtain a rejection-free implemen-
tation of the CPM with continuous time, so that a more natural coupling
can be made between time of the model and of real world cell processes.
Additionally, if this rejection free model functions similar to the traditional
CPM, a link could possibly be established between Monte Carlo steps and
real time. In this thesis we achieve a rejection-free model. We find that this
rejection-free model differs in behaviour from the standard CPM, when
we allow propensities for updates to be larger than 1. If we instead limit
our propensities to a maximum of 1, we find that the behaviour of the
rejection-free model should match that of the standard CPM.
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Chapter 1
Introduction

1.1 Cell sorting

Cell sorting is a naturally occurring phenomenon where different types of
cells are seperated from eachother. This process happens based on prop-
erties of the cells in addition to the current condition of the cells. Some
examples of processes in which cell sorting plays a role are: vasculogene-
sis (the forming of new blood vessels from endothelial cells), angiogenesis
(the forming of new bloodvellels from already existing ones) and morpho-
genesis (the formation and conservation of the shape of tissue). For the
modelling of these processes, different types of underlying models exist.

One of these is the Cellular Potts model (CPM). The CPM is based on the
differential adhesion hypothesis(DAH), an hypothesis which explains cel-
lular movement with differences in adhesion strength. This hypothesis
originates from a study by P. Townes and J. Holtfreter from 1955 [1]. Later
studies have also confirmed the validity of the DAH [2]. The CPM was de-
veloped based on the DAH by Graner and Glazier in order to model cell
sorting [3, 4], but adaptations are now used for a wide range of other ap-
plications. For example a CPM model has been developed by basing is on
a multi-agent system [5]. This allowed it to also integrate energy exchange
between cells and improved the scalability of the model. Another existing
adaptation is to simulate the updating process in a parallel manner [6].
We will take a version similar to the original version of the Cellular Potts
model as our basis. In section 1.2, we will explain in depth how the CPM
functions exactly.
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1.2 The Cellular Potts Model 4

1.2 The Cellular Potts Model

The Cellular Potts Model (CPM) is a lattice based model, meaning that
living cells occupy one or more lattice points. The CPM was originally
developed by Graner and Glazier [3, 4] in order to model cell sorting as
a result of the differential adhesion hypothesis. The original model only
takes into account cell adhesion and cell area. These factors were sufficient
to model cell sorting. However the CPM can easily be adapted to take
other factors for cell movement into account. Examples of such factors
are: cell border length [7] and chemotaxis [8] (cell movement based on
a chemical gradient). Although CPM based models do also exist for 3
dimensions, such as the CompuCell3D modelling environment [9], in this
thesis only a 2 dimensional variant will be discussed. The basis that we
will be working form specifically, will be the Tissue Simulation Toolkit [10,
11].Therefore, living cells occupy one or more lattice points, (x, y) ∈ Z2.
To each cell, we ascribe a unique spin ∈ Z≥0, which we use to distinguish
cells from each other. The function σ((x, y)), returns the spin of the cell
that is currently occupying lattice point (x, y). We use σ(x, y) = 0 for the
case that lattice point (x, y) belongs to the medium. So two lattice points
(x, y) and (x′, y′) belonging to the same cell, means that:

σ(x, y) = σ(x′, y′). (1.1)

The subset of lattice points that make up a cell i, {(x, y) ∈ Z2|σ((x, y)) =
i}, is not necessarily connected. The occurrence of disconnectivity is usu-
ally penalised the reduce the number of occurrences, as is also the case in
the model we will work with. Alternatively, disconnectivity could be dis-
allowed altogether, by modifying the CPM.

Cells belong to a certain cell type, with each cell type having potentially
different characteristics. In order to keep track of these cell types, we as-
sign an integer value to each individual cell using the function tau, τ :
σ → Z≥0. We again use the value τ(σ(x, y)) = 0 to denote the lattice
point (x, y) being occupied by the medium. Two different lattice points
belonging to the same cell type, means that:

τ(σ(x, y)) = τ(σ(x′, y′)). (1.2)

In figure 1.1 is an illustration of how a configuration of the CPM could
look.

Lattice points have a certain defined neighbourhood, a surrounding area
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1.2 The Cellular Potts Model 5

Figure 1.1: An illustration of a possible part of a configuration in the Cellular
Potts model. In this case, there are 3 cells, σ = 1, σ = 2 and σ = 3. Where cells 1
and 3 have cell type A and cell 2 has cell type B. From: “Multi-Scale Modeling in
Morphogenesis: A Critical Analysis of the Cellular Potts Model”. [12]

of other points that impact the condition of the lattice point. We define the
ordered pair of a lattice point and one of its neighbouring lattice points as
an edge. Two commonly used neighbourhoods are the Moore neighbour-
hood and the Von Neumann neighbourhood. These can be seen in Figure
1.2.

Figure 1.2: a: The Moore neighbourhood, b: The Von Neumann neighbourhood
from: Spatio-Temporal Forest Fire Spread Modeling Using Cellular Automata [13]

Let L be the lattice of our simulation. Every copy attempt of the model,
a random lattice point (x, y) ∈ L is selected, using a uniform distribution
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1.2 The Cellular Potts Model 6

over all lattice points. Then a random neighbour of the point (x, y) is se-
lected: (x′, y′) ∈ L , again using a uniform distribution. This means that
we essentially select a random edge from the set of all edges using a uni-
form distribution

This edge is now considered for an update, i.e., we try to copy σ(x′, y′)
to (x, y). This considered update does not happen immediately. First two
conditions need to be checked. The first one being whether or not the up-
date would even change the state of the current configuration. Secondly,
the update will be carried out with a certain probability. If a randomly
generated number is smaller than this probability, the event will occur.

For the first condition, after an edge has been selected, we check whether
or not the lattice points belong to the same cell. If they do indeed belong
to the same cell, i.e. σ(x, y) = σ(x′, y′), the update would not change the
configuration. Hence, no further computation is carried out for this se-
lected update. If the considered edge is a pair of lattice points belonging
to different cells we continue with potentially carrying out this update.
The probability of the update taking place is dependent on the Hamilto-
nian function.

The Hamiltonian function describes the total energy of the configuration
of the model. It takes the current configuration as an input and computes
the total energy as a real number. Using the Hamiltonian function, cell
characteristics such as cell adhesion, cell length [7], cell area and chemo-
taxis [8] can be taken into account by including these aspects in the calcu-
lation of the Hamiltonian. In its most basic form, the Hamiltonian is given
by:

H = ∑
x⃗,⃗x′

Jτ(σ(x⃗)),τ(σ(x⃗′)) · (1 − δσ(x⃗),σ(x⃗′)) + λ ∑
τ

(ατ − Aτ)
2. (1.3)

The first summation is for the energy in the system generated by cell
adhesion. It sums over all pairs of neighbouring lattice points x⃗, x⃗′ =
(x, y), (x′, y′) ∈ L. The function δσ(x⃗),σ(x⃗′) simply indicates whether or not
the two lattice points belong to the same cell. It returns 1 if x⃗ and x⃗′ belong
to the same cell and return 0 if they do not. This means that the first sum-
mation effectively only sums over edges where σ(x, y) ̸= σ(x′, y′). The
expression Jτ(σ(x⃗)),τ(σ(x⃗′)) refers to a matrix J, that contains cell adhesion
energies, bases on cell types. It returns a value representing the energy of
adhesion between two cells, when given the cell types of two cells: τ(σ(x⃗))
and τ(σ(x⃗′)). An interpretation of how the values in matrix J will impact
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1.2 The Cellular Potts Model 7

cell movement is easier with the measure γ, which is described below.
The second summation in equation 1.3, sums together all the energy cor-
responding to cell areas. It sums over all cells and then calculates how
far the cell the cell currently is from its preferred size otherwise known as
target area. This is then multiplied by some constant λ.

The ‘goal’ of the Cellular Potts Model is to minimise the value of the
Hamiltonian over time. This can be envisioned as a number of forces
doing work on the cells that occupy the lattice, causing the value of the
Hamiltonian to decrease over time. Ideally, given some starting config-
uration and a set of parameters, we would like to find some resulting
configuration that gives us a global minimum of the Hamiltonian func-
tion. However, the Hamiltonian can get into a local minimum. We want
to avoid getting stuck in some local minima, preventing the system from
reaching the global minimum. Therefore, In order to try to prevent getting
stuck in a local minimum, we sometimes accept a change that increases the
value of the Hamiltonian. Random cell motility will be possible, so long as
it will not increase the Hamiltonian too much. Otherwise, the movement
will only occur with some small probability.

This process of trying to minimise the Hamiltonian, while allowing in-
crease according to a probability function, can be seen as a form of simu-
lated annealing. This is a technique to approximate a global optimum for
a given function.

For this purpose of preventing getting stuck in a local minimum, we ac-
cept updates according to a Boltzman distribution:

P(∆H) =

{
1, if ∆H ≤ 0
e−

∆H
T , if ∆H > 0

(1.4)

If a selected update decreases the value of the Hamiltonian, we always
accept it. If it increases the value of the Hamiltonian, we accept it based
on potential increase in the Hamiltonian ∆H and the cellular temperature
T. The higher the temperature, the more chaotic the system behaves. The
typical unit of time in which Monte Carlo simulations are measured, is
the Monte Carlo step (MCS). For one MCS, |L| update attempts are con-
sidered, where |L| is the number of nodes on the lattice. The reason for
this way of measuring time, is that the number of updates per time unit
will be scale free. A problem with this way of measuring time, however,
is that it is hard to make a connection with respect to time between cell
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1.3 Gillespie algorithm 8

simulations and real-world measurements. Because of this, an alternative
time measurement is desirable, with the ultimate objective of making a
connection between time in the simulation and passed time during cell
measurements.

Gamma variable
One measure that is regularly used in the CPM is γ, originally introduced
in the paper from Glazier and Graner from 1993 [4]. The measure γ indi-
cates the surface tension between two different cell types, τ and τ′. For
now, we assume there are two cell types yellow: τ = y and red: τ = r. The
surface tensions are defined in the following way:

γry = Jry −
Jrr + Jyy

2
, (1.5)

γrM = JrM − Jrr

2
, (1.6)

γyM = JyM −
Jyy

2
. (1.7)

These γ values represent the energy difference between a homotypic (same
cell type) and a heterotypic (different cell type) bond. A different set of
values J can still give the same resulting values for γ. It has been shown
that the values of gamma determine the outcome of cell sorting [4]. For
example, we could have Jrr − Jyy ≈ Jyy − Jry, which results in a negative
γry, which corresponds to a chequerboard pattern of the red and yellow
cells[14].

1.3 Gillespie algorithm

The Gillespie algorithm is a stochastic algorithm that determines the evo-
lution of a system where reaction rates are known, which had its original
application in the area of chemical reaction kinetics. It was popularised by
a paper from D. Gillespie from 1977 [15]. The paper also showed the Gille-
spie algorithm to be mathematically sound at calculating the evolution of
a system. It is closely related to the dynamic Monte Carlo method.

Suppose we want to model a particular chemical reaction. One option
would be to model this using a set of differential equations. This means
we only look at the quantities of all reactants and also assume that every-
thing is well mixed. Possibly more important, we assume that the entire
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1.3 Gillespie algorithm 9

process happens deterministically. These aspects come with a few draw-
backs. In practice, it is regularly the case that we can not make the as-
sumption that everything is well mixed. The fact that we only look at
the overall quantities means that we completely lack insight into any lo-
cal processes that might happen in the real world. The process might also
not happen deterministically. If the scale is very small for example, the
law of large numbers does not apply and therefore we can not expect the
system to behave as it should on average. An alternative approach is to
use a stochastic discrete-event model, where we include every individual
reactant in the model and its possibility to react with other reactants. In
order to do this, we make use of the ‘master equation’ which describes the
transition rates between states using a matrix A(t):

dP⃗
dt

= A(t)P⃗. (1.8)

Where P is a vector that represents the probability distribution of states.
In simple cases with few possible states and few reactions, this system can
be solved analytically. However, even in simple cases, we might not want
to solve the problem analytically, as it ignores the possible stochasticity of
the problem. In more complicated cases, it is better modeled as a Markov
process. The Gillespie algorithm is one way to model such a Markov pro-
cess. The Gillespie algorithm to stochastically simulate a system is given
in the following way:

1. Initialisation Initialise the number of reactants and reaction rates.

2. Monte Carlo Generate random numbers r1 and r2 to determine what
reaction occurs and what amount of time passes for this reaction to
happen.

3. Update Change the state of the system according to what was gen-
erated in step 2.

4. Iterate Repeat steps 2 and 3 until some ending condition is reached.

After an update has happened, τ amount of time has passed, with τ being:

τ =
1

∑j aj(x)
log
(

1
r1

)
, (1.9)

The event that happens is the event j, for which:

j

∑
i=1

ai(x) > r2 ∑
j

aj(x) >
j+1

∑
i=1

ai(x) (1.10)
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1.4 Alternative Implementations 10

Essentially, the probability of an event happening is equal to its propensity
divided by the sum of all propensities.

The Gillespie algorithm is interesting for us since it enables the usage of a
continuous time variable, which is our goal for the Cellular Potts model.
Therefore we could try to implement a similar algorithm for the CPM. But
before we do so, we first discuss a relevant implementation of the CPM in
section 1.4 that could aid us in constructing a rejection-free model.

1.4 Alternative Implementations

Edgelist Algorithm

An idea to help us find an efficient KMC implementation for the CPM is
to draw inspiration from the edgelist algorithm, discussed in “A combina-
tion of convergent extension and differential adhesion explains the shapes
of elongating gastruloids” from ‘de Jong et al.’ [Jong2023AGastruloids].
The edgelist algorith is a method to keep track of all the ‘useful’ edges in
an efficient manner. It uses two arrays: edgelist[ ] and orderedgelist[
], for tracking which edges would induce a change in the current config-
uration. Both arrays are size n, with n being equal to the total number of
edges of the entire lattice.

There are essentially two types of entries in edgelist[ ]. The first one of
these being the value −1. When the entry of edgelist[i] is −1, that means
the possible update on the edge corresponding to entry i would not induce
any change, i.e., the two lattice points belonging to this edge are already
part of the same cell. The other possible entry is some integer number
a ∈ {0, . . . , m}, where m is the number of useful edges. Every possible
value of a appears exactly once in edgelist[ ]. This way all eventful edges
are numbered from 0 to m.

The array orderedgelist[ ] is then connected to edgelist[ ] with a bi-
jection on the subset of eventful edges in the two arrays. This is done in
the following way:
If edgelist[ai]= a, with a ̸= −1 then orderedgelist[a]= ai. So in other
words, if an entry of edgelist[ ] is not −1, then the array orderedgelist

stores the position inside edgelist of this ‘useful’ edge. Having this bijec-
tion on the set of useful edges inside the two arrays enables us to do the
following:
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10



1.4 Alternative Implementations 11

• When we need to randomly select a useful edge, we can use the first
m entries of the array orderedgelist to find all useful edges. This
prevents sampling from all n entries of edgelist to find all useful
edges.

• When an update occurs in the CPM occurs, edges might go from
useful to useless or from useless to useful. Since every position of
the array edgelist corresponds to one particular edge, we can eas-
ily carry out the necessary changes on this array. Since we know to
which edge every entry in edgelist belongs, we can efficiently up-
date all relevant values in both edgelist and orderedgelist.

The two arrays are initialised in the following way: First we fill both arrays
with the value ‘−1’ and set m = 0. Then We move over the entire lattice.
We link every edge on the lattice to its own position inside edgelist. If
we find a useful edge i, then we place the value m inside edgelist[i] and
increase m by 1. We then set orderedgelist[m] = i. If we encounter a
useless edge, we do nothing and move on to the next edge.

The edgelist algorithm does not take into account any different propen-
sities of the useful edges. It simply uniform randomly samples one of
the useful edges. For a KMC implementation, the differing propensities
will need to be added to the algorithm. Namely, the selection of an event
would need to take into account the propensities of all events. The propen-
sities would need to be stored in some way that allows us to: (1) efficiently
update them after a change and (2) efficiently select an update to occur
based on all these propensities.
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Chapter 2
Method

In Chapter 2 we will first discuss a naive implementation where we tried
to use an adaptation of the edgelist algorithm to achieve a Kinetic Monte
Carlo implementation for the CPM. This Implementation uses two extra
arrays to keep track of the propensities and also sums of propensities, in an
attempt to create a system where generating events and updating values
in the data structure can happen efficiently. We will then discuss how this
implementation has a problem with handling the case of an edge going
from useful to useless, i.e., its propensity becoming zero. Then we will
end this chapter with a well function implementation, where we use a
binary tree as data structure instead of a set of arrays.

2.1 First idea

The initial idea for a rejection free KMC implementation was to store these
propensities in a way similar to the edgelist algorithm we discussed in sec-
tion 1.4. Two arrays would be added to the edgelist structure, meaning we
would have a total of four arrays. One of these new array would be cou-
pled to edgelist and the other would be linked to the orderedgelist. The
array linked to the edgelist is called the energylist, with energylist[i]
storing the propensity of the copy attempt corresponding to edge i. The
array linked to orderedgelist is called sumenergylist. Values in
sumenergylist are stored in the following way:

sumenergylist[k] =
n

∑
i=0

{
energylist[i], if 0 ≤ edgelist[i] ≤ k
0, else

(2.1)

An example of the resulting storage structure is visible in table 2.1.
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2.1 First idea 13

Position 0 1 2 3 4 5 6
Edgelist -1 2 -1 0 1 -1 3

Energylist 0 0.1 0 0.7 1.1 0 0.2
Orderedgelist 3 4 1 6 -1 -1 -1
Sumenergylist 0.7 1.8 1.9 2.1 -1 -1 -1

Table 2.1: Four arrays store propensity data of all edges. The entries edgelist

[i] and energylist [i] correspond to the same edge, as do orderedgelist [j] and
sumenergylist [j].

As discussed in 1.4, the non-negative entries in the array edgelist are
not necessarily in ascending order, as is also the case in table 2.1.

The purpose of the energylist is to easily adjust propensities after an
event has occurred. When a lattice update happens, we can easily find
the propensities that change since a specific edge always corresponds to
a certain unchanging position in edgelist and energylist. So updating
values in the four arrays for a single edge after an update consists of:

1. Calculating the propensity (the value in energylist).

2. What we do next depends on the value inside edgelist[i]:

(a) if edgelist[i]=-1, we go to the first negative entry inside orderedgelist
and sumenergylist.

(b) else we take the value of edgelist[i], and go to that position
inside orderedgelist and sumenergylist.

3. Updating the corresponding value in sumenergylist and positive
values that come after it in the array.

4. In the case of (2a) we now change the value of edgelist[i]to the po-
sition of the previous first negative entry in orderedgelist.

The situation is somewhat different, however, if the propensity of edge i
changes from ai > 0 to ai = 0 however. The latter proved to be problem-
atic to implement. We will discuss this problem in depth in 2.2, where we
show how the situation of ai changing to 0 creates a problem for our im-
plementation of sumenergylist.
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2.1 First idea 14

The purpose of the sumenergylist is to easily select an update to occur.
We first generate a random number r2, with r2 ∈ (0, a0) uniformly dis-
tributed. Next, we start comparing the entries of the array sumenergylist

to r2, starting at position 0 in the array. If sumenergylist[a] < r1 then
the event corresponding to position a in the orderedgelist occurs, oth-
erwise we move to position a + 1 in the array sumenergylist and repeat
the comparison. Hence, at most m comparisons are needed, where m is
the number of useful edges. This could potentially be improved to order
log(m) using binary search.

Aside from keeping track of these two additional arrays, we also keep
track of an extra variable namely time t, which indicates the time that has
passed so far. So after an event occurs, we update with t = t + τ, with:

τ =
1
a0

ln
1
r1

, (2.2)

which is identical to the Gillespie algorithm as we discussed in section 1.3.

Before we can start running a simulation with our algorithm, we first
need to initialise the values inside the four arrays. The edgelist and
orderedgelist arrays are initialised exactly the same as discussed in 1.4.
The array energylist} is initialised with the propensities that belong to
the corresponding edges. The variable ‘Sum’ is used to keep track of the
sum of all added propensities so far. Whenever an edge is found to be
useful, its propensity is added to Sum and its current value is used as an
entry in the array sumenergylist.

So, in the stepprocess, we first calculate which event happens, given µ
which is calculated using the random number r1 ∈ [0, 1]. The search for
the event that will occur, can then be done using binary search, in order
work in time O(log(M)), instead of O(m). After we find the event that oc-
curs, we recalculate the propensities in the neighbourhood of the carried
out update. We then have to recalculate all the M non-negative entries of
sumenergylist. As a last step, we then update the time according to the
function described in equation 2.2 This initialisation and step process can
be seen as pseudocode in algorithm 1.
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Algorithm 1 First idea
Initialise edgelist, energylist, orderedgelist and ▷ beginning of
initialisation
sumenergylist as arrays of length k · N and fill them with −1
Set: m = 0, Sum= 0, a0 = 0, Time= 0, Event= −1
for sites s in lattice L do

for neighbours k of site s do
if neighbour k of s belongs to a different cell then

edgelist[s + ki] = m
energylist[s + ki] = P(∆H|k goes to the state of s)
orderedgelist[m] = s + ki
Sum=Sum +P(∆H|k goes to the state of s)
sumenergylist[m] = Sum

end if
end for

end for ▷ end of initialisation

Generate r1 and r2 on (0,1) ▷ Beginning of stepproces
Calculate τ according to r1
Set: i =Floor[1

2 m + 1]
Set: Right= m
while Event=-1 do

if sumenergylist[i] < µ then
i =Floor[1

2(i + 1+Right)]
else if sumenergylist[i − 1] > µ && i! = 0 then

i =Floor[1
2(i + 1)]

Right= i − 1
else

Event = i
end if

end while
Time=Time+τ
Update a lattice point according to event i
Recalculate edgelist for direct neighbours of lattice point i
for all neighbours j ∈ [0, k] of lattice point i do

Recalculate energylist values corresponding to point j
end for
Recalculate first m entries of sumenergylist ▷ Ending stepproces
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2.2 Problem of first idea 16

2.2 Problem of first idea

So far we have not discussed any issues of the idea for a KMC implementa-
tion that we showed in 2.1 for the CPM. However, as we briefly mentioned
earlier, a problem arises when a propensity changes to 0. One problem
with this implementation is the update of sumenergylist after such an
event. The sumenergylist needs to contain increasing values for the first
m positions. Otherwise the process of finding an event to occur does not
work properly. After an event occurs, useless edges(edgelist[i] = −1)
might become useful edges(edgelist[i] ̸= −1) or useful edges might be-
come useless edges. This means that non −1 entries will be added to
sumenerergy list or non −1 entries might be set to −1.

Adding entries to the sumenergylist is not a problem, we can simply put
them at the position of the first -1 entry and keep track of the value m, to
immediately find this position.

An edge i becoming ‘useless’ (edgelist[i] ≥ 0 changing to edgelist[i] =
−1), raises a problem however. The entry in the sumenergylist corre-
sponding to this previously useful edge could be somewhere in the mid-
dle of the first m entries of sumenergylist. This means that removing it,
i.e. setting sumenergylist to −1 would create a gap. This creates a prob-
lem, since over time the number of gaps can become decently large and
we only want the m total of non −1 entries to be at the start. One of the
simplest (though not necessarily the fastest) fixes for this, is to move all
non −1 entries after the ’removed edge’ one position to the left. We would
also need to subtract the previous value of energylist[i] from all the en-
tries of sumenergylist. This will significantly slow down the programme,
as every edge that becomes useless will require up to m − 1 entries in the
sumenergylist to be moved, and subsequently in orderedgelist to be
moved.

A second problem in this implementation is the required updating of the
first M entries of sumenergylist after an event has occurred. This is nec-
essary because:

p

∑
j=0

aj changes for p ≥ i, if ai changes (2.3)

It does help that a big portion of the changes in the sumenergylist will
probably be repeatedly adding the same value to the current entry, some-
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2.3 Using Binary Tree 17

thing GPUs are very good at. Still, having to update up to M values in the
sumenergylist array is an additional load we would ideally avoid. This
begs the question of whether there is a more appropriate data structure
for our needs. In the next section we will discuss how using a binary tree
solves our problems.

2.3 Using Binary Tree

One way to fix the problems that we discussed in 2.2, is to use a different
data structure. We can view the problem of finding out what event occurs
in the following manner. We have an interval [0, a0], with a0 being the sum
of all propensities. We can divide this interval in m subintervals, which
each correspond to an event. Before we define these intervals, we first
introduce the following notation:

Sj :=
j

∑
i=1

aj. (2.4)

Using these terms Sj, we can define the m partitions of the interval (0, a0]as

Interval corresponding to event j :=


(0, S1], if j = 1
[Sj−1, Sj], if 1 < j < m
[Sm1 , S0], if j = m

(2.5)

We need a data structure that allows us to efficiently find what sub-interval,
corresponding to some event j, a randomly generated value belongs to.
Since finding the correct sub-interval could be done using binary search,
an obvious option as data structure is a binary tree. An intuitive way to
construct this binary tree would be to assign a propensity corresponding
to an edge to every leaf. The other nodes that make up the binary tree will
contain values as well. Namely, each parent node will store the sum of the
two values of its child nodes. The resulting structure of the binary tree is
visible in figure 2.1a.

When a random value r is generated on the interval [0, a0], we carry out
the following process to calculate which partition aj this generated value r
belongs to:

1. We start at the root node of the binary tree.
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2.3 Using Binary Tree 18

2. If r >[value of left child], then r = r−[value left child] and we go to
the right node, otherwise we go to the left node.

3. We repeat step 2 until we reach a leaf of the binary tree.

4. The leaf we have reached corresponds to some partition [Sj−1, Sj],
which consequently corresponds to event j.

A more in-depth version of the event-finding process, written in pseu-
docode, is given in algorithm 3.

After an event has occurred, the values stored in the binary tree have to be
changed appropriately. This happens in the following way:

1. We loop over all neighbours (xn, yn) of the lattice point (x, y) that
changed its state in the most recent update.

2. For each neighbour (xn, yn), we have to adjust the values of both
edge (x, y) → (xn, yn) and edge (xn, yn) → (x, n). Since every
edge corresponds to one static position in the binary tree, we can
easily traverse the tree to the correct leaf. There we change the value
stored at the leaf-node, by recalculating the value ∆H and the result-
ing propensity.

3. After we have changed a value at a leaf node for a certain edge, we
then recalculate all traversed parent nodes, starting at the one di-
rectly above the leaf node.

A more in-depth version updating process, written in pseudocode, is given
in algorithm 2.

We encountered a problem related to the updates of parent nodes. In an
earlier version, the change that occurred in a node would be calculated.
Then the value of the parent node would be increased by this value. A
problem then arises from the possibility of subtracting, almost equal, large
values from each other. When a value in the scope of 1025 is subtracted
from a different value of order 1025, the result is no longer accurate be-
cause of floating point precision. One attempt to solve this problem, was
to change relevant variables to long doubles, to try to improve the pre-
cision. This did not solve the problem however. When nodes no longer
contain values equal to the sum the values of their children there will be
errors. For example, in the process of calculating what event occurs, we
might end up at the incorrect leaf node. This leaf might not even corre-
spond to any edge, since the number of leaves is higher than the number
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2.3 Using Binary Tree 19

of edges in most cases.

Fortunately, there is an easy solution to just recalculate the value of a par-
ent node by summing the values of its two child nodes after one of the
child nodes changed in value. This small and easy adjustment avoids sub-
traction altogether.

(a)

13.1

6.8

1.3 5.5

5.5 0

6.3

(b)

R = 2.7 < 6.8

R = 2.7 > 1.3

R = 1.4 < 5.5

ai

Figure 2.1: An illustration of traversing a binary tree for the CPM, the red lines
indicate the path taken troughout the tree. (a): The values stored at the nodes
inside the tree. (b): All the comparisons made to traverse the tree and the value
of R over time, that is used to generate an event

Algorithm 2 Update process after event
Given an update occurred on lattice point (x, y)
Use v(l1, l2) to denote the value of the leaf corresponding to edge l1 →
l2
for neighbours (x′, y′) of (x, y) do

if σ(x, y) == σ(x′, y′) then
v(((x, y), (x′, y′))) = 0
v(((x′, y′), (x, y)) = 0

else
v(((x, y), (x′, y′)) = DeltaH((x, y), (x′, y′))
v(((x′, y′), (x, y)) = DeltaH((x′, y′), (x, y))

end if
set values of all nodes from the path of the leaf node
towards the root node equal to sum of their 2 children

end for
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Algorithm 3 Update finding an event
locator = 0, depth = 0
Node = root
Uniform randomly generate r1 ∈ [0, a0]
while Node→left ̸= NULL do

if remainder > Node →left→value then
remainder = remainder - Node→left→value
locator = locator +2depth

Node = Node→right
else

Node = Node→left
end if

end while
We are now at some leaf with propensity ai > 0
The corresponding event is ‘locator’ from which we can calculate a
unique edge of the lattice
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Now that we have an alternative CPM implementation with continuous
time, we want to compare the simulations of this new model, with simula-
tion done in the classic implementation. Specifically, we want to compare
the timescale of the two models, and see whether the timescales of the two
models can be linked by a conversion from one timescale to another. Re-
call that the timescale of the RJF- model is continuous while that of the
standard model is discrete. An example of such a possible conversion
would be that the two timescales have some linear ratio with respect to
each other. This means, roughly, that for some event µ that indicates a lat-
tice point copying a state, we have that t1(µ) ≈ C · t2(µ), for some constant
C ∈ R. Another example of this would be a logarithmic relationship. In
this case we would roughly get t1(µ) = C · log(t2(µ)), for some constant
C. Alternatively, there might be no function to link the two timescales.

3.1 Simulations

To get insight into differences or similarities between the standard CPM
and the rejection-free CPM, we ran simulations with two different matri-
ces J of cell adhesions. One of these is a matrix J such that cell sorting
would occur in the standard CPM, and the other is a matrix J such that
cell engulfment would occur.

The measure that we use to track the cell sorting over time is the border-
ratio, for each possible cell bond (red-red, red-yellow, and yellow-yellow).
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3.2 Stochastic Equilibrium 22

For example, the red-red border ratio is calculated in the following way:

red-red borderratio =
number of red-red edges
number of cel-cel edges

(3.1)

Using this data, we get an indication of how sorted the cells are for each
point in time. We will first run simulation in subsection 3.1.1 using param-
eters that should cause cell to sort to groups of their own cell type. Then
in subsection 3.1.2 we will run simulations, with parameters such that we
expect the yellow cells to engulf the red cells.

3.1.1 Sorting parameters

We first ran simulations using cell sorting parameters. In all these simula-
tions we used parameters: JrM = JyM = 20, Jrr = Jyy = 10 and Jry = 40.
Under these parameters we expect cells to eventually grouped together
with cells of their own cell type. Some images of these simulations are
visible in figure 3.2. One noteworthy thing in these images is that it ap-
pears that cells separating from other cells entirely seems more likely in
the rejection-free model. We also tracked the border ratio for these simu-
lations. The result is visible in figure 3.1, where we use logarithmic time
scales for both models. We can see that the same border lengths for the
two different models converge to different values.

3.1.2 Engulf parameters

Then we ran simulations using cell engulfment parameters. In these sim-
ulations we used the parameters: JrM = 40, JyM = 10, Jrr = Jyy = 15 and
Jry = 20. Under these parameters we expect the yellow cells to engulf the
red cells. Some images of these simulations are visible in figure 3.4. The
graph of the borderlength ratios over time is visible in figure 3.3. Although
the two models still seem to converge to somewhat different values for the
border lengths, the differences are much smaller than in figure 3.1.

3.2 Stochastic Equilibrium

Definition 3.2.1 (Stochastic equilibrium) A stochastic equilibrium is a state
of the configuration, where the expected change in the Hamiltonian is equal to
zero, so E(∆H) = 0.
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Figure 3.1: The cell border ratios of the two models over time, plotted with a
logarithmic timescale for both models. We used parameters for cell sorting: JrM =
JyM = 20, Jrr = Jyy = 10 and Jry = 40.

Using this definition for a stochastic equilibrium, we obtain the following
condition for a configuration of the CPM to be a stochastic equilibrium.
We use Ω to denote the sample space, the set of possible changes in the
Hamiltonian.

E(∆H) = ∑
∆H∈Ω

p(∆H)∆H = ∑
∆H∈Ω,∆H>0

p(∆H)∆H + ∑
∆H∈Ω,∆H≤0

p(∆H)∆H = 0

(3.2)

We now work towards specific expressions for the two models. For the
rejection-free model, we then find:

E(∆H)rjf = ∑
∆H∈Ω,∆H>0

1
a0

e
−∆H

T ∆H + ∑
∆H∈Ω,∆H≤0

1
a0

e
−∆H

T ∆H = 0 (3.3)

1
a0

∑
∆H∈Ω,∆H>0

e
−∆H

T ∆H =
1
a0

∑
∆H∈Ω,∆H≤0

−e
−∆H

T ∆H (3.4)

∑
∆H∈Ω,∆H>0

e
−∆H

T ∆H = ∑
∆H∈Ω,∆H≤0

−e
−∆H

T ∆H (3.5)
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Figure 3.2: first row: 3 different simulations of the rejection-free model at t=10000,
second row: 3 different simulations of the standard model at t=30000 MCS. In all
simulations we have parameters: JrM = JyM = 20, Jrr = Jyy = 10 and Jry = 40

However, for the standard model we will find a different expression. This
is because, for the standard model, updates with ∆H ≤ 0 have the same
probability to occur, since the standard model has P(∆H) = 1, if ∆H ≤ 0.
We also need to take into account the fact that updates in the standard
model are calculated by first randomly selecting an edge with a uniform
distribution and then calculating whether the event corresponding to the
edge will happen. For the standard model consider this expectation for the
next useful event, so useless edges do not need to be accounted for. The
probability for considering any given update is 1

m , where m is the number
of useful edges.

Additionally, we need to take into account the fact that an update could
be selected, only to then be rejected.
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Figure 3.3: The cell border ratios of the two models over time, plotted with a
logarithmic timescale for both models. We used cell engulfment parameters:
JrM = 40, JyM = 10, Jrr = Jyy = 15 and Jry = 20.
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Figure 3.4: First row: 3 different simulations of the rejection-free model at
t=10000, second row: 3 different simulations of the standard model at t=59000
MCS. We ran these simulations longer for the standard model than we did in
figure 3.2, to see if cells might separate, similarly to in the rejection-free model,
if given some more time. In all simulations we have parameters: Jr M = 40,
JyM = 10, Jrr = Jyy = 15 and Jry = 20.
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3.2 Stochastic Equilibrium 27

E(∆H)std = 0

(3.6)

∑
∆H∈Ω,∆H>0

1
m

(
e
−∆H

T ∆H + (1 − e
−∆H

T )E(∆H)std

)
+ ∑

∆H∈Ω,∆H≤0

1
m

· 1 · ∆H = 0

(3.7)

= ∑
∆H∈Ω,∆H>0

1
m

e
−∆H

T ∆H + ∑
∆H∈Ω,∆H≤0

1
m

· ∆H = 0

(3.8)

=
1
m

(
∑

∆H∈Ω,∆H>0
e
−∆H

T ∆H + ∑
∆H∈Ω,∆H≤0

1 · ∆H

)
= 0

(3.9)

∑
∆H∈Ω,∆H>0

e
−∆H

T ∆H = ∑
∆H∈Ω,∆H≤0

−∆H

(3.10)

There is a remarkable difference between the right-hand sides of the ex-
pressions on lines 3.5 and 3.10. The left-hand sides, which contain all pos-
itive changes in ∆H, are exactly the same for a given configuration of the
lattice. The right-hand side of line 3.5 also contains the term e

−∆H
T for the

propensities. As we discussed before, there is a difference between the
right-hand sides of equations 3.5 and 3.10. Since the differing right-hand
sides are dependent on the temperature, it is to be expected that the dif-
fering convergent values for the border ratios are also dependent on the
temperature.

Why the two models are expected to have different stochastic equilibria
Now suppose we have a configuration of the lattice such that E(∆H) = 0,
for the standard model. This would mean, as per equation 3.10 that

∑
∆H∈Ω,∆H>0

e
−∆H

T ∆H = ∑
∆H∈Ω,∆H≤0

−∆H (3.11)

We know that ∆H for any specific update is the same for both models. If
we also assume that the value of the temperature parameter T is the same,
then we can substitute our expression for the standard model into equa-
tion 3.5 for the rejection-free model since both left-hand sides of equations
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3.5 and 3.10 would be exactly the same.

∑
∆H∈Ω,∆H≤0

e
−∆H

T ∆H = ∑
∆H∈Ω,∆H≤0

∆H, if both models are at stochastic equilibrium.

(3.12)

Since both summations have the condition that ∆H ≤ 0 and we also have

T ≥ 1 per standard, we obtain e
−∆H

T = e
|∆H|
|T| . Since we generally have that

|∆H| > T, it is the case that e
|∆H|
|T| > 1. Equality 3.12 does generally not

hold, but under the condition |∆H| > T, we even find the strict inequality
3.13, 3.14.

So under the assumptions |∆H| > T, and E(∆H)std = 0, the following
expression is obtained for the rejection-free model:

E(∆H)rjf = ∑
∆H∈Ω,∆H>0

e
−∆H

T ∆H + ∑
∆H∈Ω,∆H≤0

e
−∆H

T ∆H (3.13)

< ∑
∆H∈Ω,∆H>0

e
−∆H

T ∆H + ∑
∆H∈Ω,∆H≤0

∆H = E(∆H)std = 0 (3.14)

apart from very specific cases, depending on the parameter T, we expect
the two models to converge to different stochastic equilibria. But under
the condition |∆H| > T, we even expect the value of the Hamiltonian of
the rejection-free model to decrease, given a configuration for which the
standard model would be at a stochastic equilibrium.

Conversely, under the condition that |∆H| < T, we expect the value of
the Hamiltonian of the rejection-free model to increase, given a configura-
tion for which the standard model is at a stochastic equilibrium.

3.3 Hamiltonian in Simulations

It is interesting to check if the rejection-free model does converge to a cer-
tain value of the Hamiltonian dependent of the parameter T. This could
be verified by simulating a number of random seeds over temperatures
while keeping all the other parameters the same. Due to lack of time, this
verification falls outside of the scope of this thesis, however. We did track
the value of the Hamiltonian for the value T = 20 over time, this graph is
visible in figure 3.5. We used the same parameters as we used in section
3.1.2.
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Figure 3.5: The value of the Hamiltonian over time in the standard Cellular Potts
model and the rejection- free version of the Cellular Potts model. The first 30
MCS of the edgelist CPM and the first measurement of the rejection-free CPM
have been omitted, because their much higher values caused by initial cell size
would warp the graph too much.
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Figure 3.6: The rejection-free CPM, where propensities ai ∈ [0, 1]. Similar to
the earlier unbound rejection-free CPM simulations the disconnectivity parame-
ter has been disabled.

3.4 Bound propensities

Since one difference between the rejection-free model and the standard
model is the fact that propensities can become larger than 1 in the rejection-
free model and not in the standard model, we now test a certain adapta-
tion for the rjf-model. Namely, we limit the propensities to [0, 1], to see
whether this causes the rejection-free model to be similar to the standard
model. The result of one such simulation is visible in 3.6. It is clear that
this simulation is extremely chaotic, as cells are dispersed over the entire
lattice in small fragments. Other simulations looked similar to this figure.
We do not know why this chaotic behaviour occurred, as we will discuss
in section 3.5 and in the discussion.

3.5 Probability comparison for bounded propen-
sities

In this section we will investigate how the adapted rejection-free model,
with bound propensities, as we described in 3.4, compares transition prob-
abilities to the standard CPM. In order to make this comparison we first
need to introduce some notation for the states and transitions of the up-
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A1 . . . An−m B1 . . . Bm

A∗
1

. . . A∗
n−m B∗

1
. . . B∗

m

1 1 p1 pm
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1
n

1
n 1

n

1
n

1−
p 1

1−
pm

Figure 3.7: An illustration of the resulting Markov chain from updating in the
standard CPM. In state C a random possible update has yet to be generated. We
use Ai and Bj to denote states where the specific update is considered, but not
yet carried out. We use the states A∗

i and B∗
j to denote the specific update having

been accepted.

dating process.

Let C denote the current state of the lattice where no possible update has
been selected yet. Let Ai, Bj denote the states in which the updates i or j
are considered, where Ai is used for all updates for which ∆Hi < 0, and
Bj for all updates which have ∆Hi > 0. As before, we use n to denote
the total number of possible updates and use m to denote the number of
updates that increase the value of the Hamiltonian. So for the indices of
Ai and Bj we have: 1 ≤ i ≤ n − m, and 1 ≤ j ≤ m. Now write A∗

i , B∗
j , for

the states in which the update i or j has successfully taken place.

The transition probability from Ai to A∗
i is 1, since ∆Hi < 0. The transition

probability from state Bj to B∗
j is pj < 1. The state Bj also has a transition

probability to C, which is the case where the selected update gets rejected.
This probability is (1 − pj). The resulting Markov process is depicted in
figure 3.7.
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We are now interested in the probability of ending up in state A∗
i or B∗

j ,
given that we start in C. In other words, we want to know the explicit
probability of a certain update taking place. We first consider the case of
ending up at state A∗

i , and afterwards the probability of ending in Bj. A
useful observation is the fact that in order to end up in A∗

j , all possible
paths go back and forth between states C and any of the Bj some amount
of times and then transition to state A∗

j . We know all of these transition

rates, namely p(C → Bj) =
1
n , p(Bj → C) = 1 − pj, p(C → Ai) =

1
n and

p(Ai → A∗
i ) = 1. We can now simply sum over all the possible times of

bouncing between states C and Bj, this amount we denote with k. This
gives us the following expression for the probability of ending up in A∗

i .

p(C → Ai∗) =
1
n
+

∞

∑
k=1

1
n

(
m

∑
j=0

1
n
(1 − pj)

)k

(3.15)

=
1
n
+

1
n

∞

∑
k=1

(Q)k , with Q =
m

∑
j=0

1
n
(1 − pj) (3.16)

We recognise the geometric series in the second summation, so we can
write this as:

p(C → A∗
i )std =

1
n
+

1
n
· Q

1 − Q
=

1
n
+

1
n
·

∑m
j=0

1
n (1 − pj)

1 − ∑m
j=0

1
n (1 − pj)

(3.17)

=
1
n
+

1
n
·

m
n − 1

n ∑m
j=0 pj

1 − m
n + 1

n ∑m
j=0

(3.18)

=
1
n
+

1
n
·

m − ∑m
j=0 pj

n − m + ∑m
j=0

(3.19)

=
1
n
+

m − a0 + n
n(n − m + a0 − n)

(3.20)

=
n − m + a0 − n + m − a0 + n

n(n − m + a0 − n)
=

n
n(n − n + a0)

(3.21)

=
1
a0

. (3.22)

For the rejection-free model it immediately follows that we have the prob-
ability:

p(C → A∗
i )rjf =

1
n + ∑m

j=0 pj
=

1
a0

. (3.23)
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So the transition probability towards a state where an update is accepted
which decreases the Hamiltonian is the same for the two cases. We also
find:

p(C → B∗
i )std =

1
n

pi +
1
n

pi ·
Q

1 − Q
(3.24)

= pi(
1
n
+

1
n
· Q

1 − Q
) =

pi

a0
, (3.25)

And

p(C → B∗
i )rjf =

pi

n + ∑m
j=0 pj

=
pi

a0
. (3.26)

So all transition probabilities are the same for the two models. Therefore
we expect the rejection-free model with bound propensities and the edge-
list version of the CPM that we use, to behave the same. This conclusion
is in conflict with the findings of our simulations however, as can be seen
in figure 3.6. We will discuss this conflict in section 4.1.
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Discussion

4.1 Discussion

We constructed a Kinetic Monte Carlo implementation for the Cellular
Potts Model, by drawing inspiration from the Gillespie algorithm. We then
ran simulations to compare this rejection-free model with the edge list al-
gorithm. First, we ran these simulations with unbound propensities. This
resulted in the two model types converging to different values for the bor-
der ratios, even though we used the same sets of parameters. It was then
proven in section 3.2 that under the condition |∆H| > T, we expect the
Hamiltonian of the rejection-free model to decrease, given a configuration
where the standard model has a stochastic equilibrium. The converse also
holds. We expect the Hamiltonian in the rejection-free model to increase
for a configuration of where the standard model is at stochastic equilib-
rium, if we generally have |∆H| < T.

This strict difference in stochastic equilibria was then verified by track-
ing the value of the Hamiltonian over time for the simulations. In figure
3.5, we see how the value of the Hamiltonian is significantly higher for the
standard model, compared to that of the rejection-free model. This is what
we expect under the condition |∆H| > T. This condition should hold for
our simulations since we used T = 20, whereas for ∆H values of up to
3500 are fairly common in our simulations. The question then arose if we
could mimic the behaviour of our simulations using the edgelist model,
by bounding our propensities to [0, 1]. Simulations we ran with bound
propensities behaved extremely chaotic, with cells dispersing into many
small fragments. When we compared the update probability functions of
the rjf-model with bound propensities to those of the standard model, we
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found that these were the same. This is in conflict with our simulations
with the bound propensities. Therefore, there is probably some error in
the code causing the strange behaviour in the simulations. We discuss this
more in-depth further on in the discussion.

However, the question arises as to whether we actually want to match
the probability function for events of the standard CPM. When we allow
ai ∈ [0, ∞), we possibly obtain a more natural difference in event probabil-
ities. This is because, in the standard CPM, two events that both decrease
the Hamiltonian have an equal probability of occurring at the next update.
Whereas in the rejection-free CPM, where we have unbound propensi-
ties, any difference between decrements of the Hamiltonian will impact
the probability these events will occur. In short, the more an event would
decrease the Hamiltonian, the more likely this event will happen next.

Now that we have a Kinetic Monte Carlo implementation for the CPM,
we are closer to being able to link the timescale of simulation using the
Cellular Potts model with real-time. Since we found that the behaviour of
the KMC implementation with bound propensities should be the same as
that of the standard model, it might even be possible to equate one MCS to
some amount of time in the continuous time model with bound propensi-
ties. So the question arises, when given a T1 for the standard model if it is
possible to find a T2 for the rejection-free model with bound propensities,
such that both models have stochastic equilibria for the same configura-
tions of the CPM? Preferably we would want to find some explicit func-
tion f (T) such that f (T1) = T2. If we could find such a function f (T), it
would most likely depend on parameters that affect the Hamiltonian. This
is because the difference between stochastic equilibria of the two models
is dependent on the relation between T and the overall values of ∆H that
occur.

However, the question is whether we want to use a model with bound
propensities, as we discussed earlier in the discussion. We do not expect
there to be some simple conversion of timescales between the standard
model and the rejection free model with unbound propensities, as the be-
haviour is not the same as we illustrated with the differing stochastic equi-
libria in section 3.2.

This rejection-free model should also be easily adaptable to 3-dimensional
variants of the CPM. For such variants, all propensities can be stored in a
binary tree, similar to how we do for our 2-dimensional model.
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As has been shown in 3.5, we facilitated the rejection-free CPM to match
the standard CPM by having our propensities bound to [0, 1]. However,
we were not able to obtain data from simulations to support this claim.
This is because the simulations we ran behaved extremely chaotic when
we bound the propensities to [0, 1], even though they should not accord-
ing to our calculations in 3.5. We currently lack insight as to where this
possible error in the code might be.

Unfortunately, after running all the simulations, an error was discovered
in the code of the rejection-free CPM. The code did not implement the
disconnectivity parameter correctly. This parameter essentially penalises
updates that cause two parts of a cell to become separated. The disconnec-
tivity parameter should be added to ∆H if separation would happen. This
did not happen in the simulations of the rejection-free model present here,
however. This resulted in higher propensities for updates that caused cell
splitting than what the propensities should have been. Because of this
mistake, the simulations of the rejection-free model should be redone with
the correct implementation of the disconnectivity parameter, in order to
match the implementation of the edgelist CPM. However, since cells of
the rejection-free CPM in figures 3.2 and 3.4 seem to mostly be connected,
we expect the results of the new simulations to not differ too much from
those presented in here.

This mistake in using the disconnectivity parameter was discovered while
trying to simulate the rejection-free model with propensities bound at 1.
The simulation for that implementation actually did have the correct dis-
connectivity parameter. Unfortunately, the simulations we ran with this
setup still do not seem to give expected results, both with and without the
usage of the disconnectivity parameter. To be more precise, as we have
shown in paragraph 3.5, the probability function for the next update of
the rejection- free CPM with bounded propensities matches the probabil-
ity function of the standard CPM. This means that we should also expect
very similar outcomes of simulations of the two implementations. How-
ever, as we can clearly see, image 3.6 looks wildly different from what is
shown in figures 3.2 and 3.4 for the edgelist model and the rejection-free
models with unbound propensities. This seems to indicate that some piece
of code does not quite function properly.

Although this potential error only becomes apparent in the model with
bound propensities. It is most probably also affecting the model with un-
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bound propensities in some capacity since the same code was used. This
means that the results of simulations of the rejection-free model presented
here are further put into question, as both the absence of the disconnec-
tivity parameter and the potential unknown error could impact the results
we found from the simulations.

Further research can be done into actually trying to link up the timescale
of the rejection-free model with bound propensities to real-world time in
experiments. With the establishment of such a link, the real-world time
equivalent of earlier studies of the CPM could also be provided. Alter-
natively, research could be done into whether models with bound or un-
bound propensities match better in behaviour with in vitro experiments.

Additionally, now that we are closer to equating time in the simulations
to real-time, an effort could be made to also link the parameters of the
model to empirical data. For example, parameters for cell adhesion en-
ergies can be measured in ways described in a publication from D. Zhou
and A. Garcia [16]. An example of such a method is to slowly increase the
force with which two cells are being pulled apart from each other. This
pulling is done using a micropipette (2-50 µm diameter depending on the
requirements). A similar setup in forces could then be generated in the
model. Since we would already have a matching time scale, we can esti-
mate the cell adhesion energy by running the simulation for entries in the
cell adhesion matrix, J.

4.2 Conclusion

Our goal was to obtain a KMC implementation for the Cellular Potts model.
We managed to achieve this in an efficient manner by utilising a binary
tree as a data structure. This implementation has the option of having ei-
ther unbound propensities or of propensities being bound to the interval
[0, 1]. We have shown how the latter should match in behaviour to the
standard version of the Cellular Potts model. This did not happen in the
simulations, however. Therefore, more work is needed in order to verify
this finding. When we instead do not limit the values that propensities can
take, we find that the behaviour of the rejection-free model and the stan-
dard model will differ for most normally used temperatures. We showed
this by using stochastic equilibria as a tool. With this research we are one
step closer to relating time in simulations of the Cellular Potts model to
time in real-world experiments. Consequently, we are also closer to being
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able to match parameters in the model to experimentally gathered data of
energies related to cell movement. Which in turn would further support
the potency of the Cellular Potts model as a research tool.
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Appendix A
Standard variable usage

x: width of the lattice
y: height of the lattice
n: the number of edges
m: number of useful edges
k: number of neighbours each lattice point has
σ: individual cell of a lattice point
τ: cell type of an individual cell
ai: propensity of the useful edge i
a0: the sum of all ai
H: The Hamiltonian function, energy of entire system
∆Hi: change in H corresponding to edge i
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Appendix B
Acronyms

CPM: Cellular Potts Model
KMC: Kinetic Monte Carlo
MCS: Monte Carlo Step
rjf: rejection-free
std: standard
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Appendix C
Code

[language=C++]

Node : : ˜ Node ( ) {
d e l e t e l e f t ;
d e l e t e r i g h t ;

}

void C e l l u l a r P o t t s : : addbranch ( i n t depthtogo , Node * p o s i t i o n ){ //+++
i f ( depthtogo == 0){ re turn ;}
pos i t ion −> l e f t = new Node ( 0 ) ;
pos i t ion −>r i g h t = new Node ( 0 ) ;
i n t newdepthtogo = depthtogo −1;
addbranch ( newdepthtogo , pos i t ion −> l e f t ) ;
addbranch ( newdepthtogo , pos i t ion −>r i g h t ) ;

}

void C e l l u l a r P o t t s : : b u i l d t r e e ( ) { //+++
i n t edges = ( par . s izex −2) * ( par . s izey −2)
* nbh leve l [ par . neighbours ] ; //<< s t o r e edges on a b e t t e r place ?
i n t depth = 0 ;
while (pow( 2 , depth ) < edges ){//2 to power depth

depth ++; //<<kan ook met log
}
addbranch ( depth , root ) ;

}

double C e l l u l a r P o t t s : : re turnt ime ( ) {
re turn continuoustime ;
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}

void C e l l u l a r P o t t s : : makechange ( i n t l o c a t o r , double newDH,
bool useful , Node * p o s i t i o n ){//+++

// This funct ion c a l c u l a t e s change in a
//propensi ty and makes changes upwards towards the root
long double change ; //return to add t h i s to a l l
parent nodes
long double newpropensity ;
i n t n e x t l o c a t o r = l o c a t o r / 2 ;
long double lef tsum ;
long double rightsum ;
long double data ;
long double temperature = par . T ;
long double helpvar ;
i f ( pos i t ion −> l e f t != n u l l p t r ){//we are not a t the
//leaves of the t r e e

i f ( l o c a t o r %2==0){// binary 0 −> go l e f t
makechange ( n e x t l o c a t o r , newDH, useful ,
pos i t ion −> l e f t ) ;

}
e l s e {//binary 1 −> go r i g h t

makechange ( n e x t l o c a t o r , newDH, useful ,
pos i t ion −>r i g h t ) ;

}
pos i t ion −>data = pos i t ion −> l e f t −>data +
pos i t ion −>r ight −>data ;

}
e l s e {

i f ( use fu l ){
newpropensity = exp( −newDH/temperature ) ;

}
e l s e {

newpropensity = 0 ;
}
// p r i n t t r e e ( root , 0 , 0 ) ;
pos i t ion −>data = newpropensity ;

}
}

void C e l l u l a r P o t t s : : i n i t i a l i z e H a m i l t o n i a n (){//+++
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Hamiltonian = 0 ;
i n t c e l l s i z e [ par . n i n i t c e l l s ] ;
i n t xp , yp ;
i n t sxy , n e i g h s i t e ;
double H;

f o r ( i n t x =1; x<s izex −1; x++){
f o r ( i n t y =1;y<sizey −1; y++){

i f ( sigma [ x ] [ y ] > 0){
c e l l s i z e [ sigma [ x ] [ y ] ] + + ;

}

sxy = sigma [ x ] [ y ] ;
f o r ( i n t i =1 ; i<=n nb ; i ++){ //Energy f o r c e l l a d h e s i o n

xp=x+nx [ i ] ; yp=y+ny [ i ] ;

i f ( par . per iodic boundar ies ) {
// s i n c e we are asynchronic , we cannot j u s t copy
//the borders once every MCS

i f ( xp<=0) xp=sizex −2+xp ;
i f ( yp<=0) yp=sizey −2+yp ;
i f ( xp>=sizex −1) xp=xp− s i z e x +2;
i f ( yp>=sizey −1) yp=yp−s izey +2;
n e i g h s i t e =sigma [ xp ] [ yp ] ;

} e l s e {
i f ( xp<=0 | | yp<=0 | | xp>=sizex −1 | | yp>=sizey −1)

n e i g h s i t e = −1;
e l s e n e i g h s i t e =sigma [ xp ] [ yp ] ;

}

i f ( n e i g h s i t e ==−1) { // border
Hamiltonian += ( sxy ==0?0: par . border energy ) ;

} e l s e {
Hamiltonian += ( * c e l l )
[ sxy ] . EnergyDifference ( ( * c e l l ) [ n e i g h s i t e ] ) ;

}
}

}
}
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//cout << ” Hamiltonian1 : ” << Hamiltonian << endl ;
i n t temp = Hamiltonian ;

f o r ( vector<Cell > : : i t e r a t o r c= c e l l −>begin ( ) ;
c != c e l l −>end ( ) ; c ++) { //Energy f o r c e l l s i z e

//cout << ”Area : ” << c−>Area ( ) << endl ;
Hamiltonian += par . lambda * pow ( ( c−>Area ( ) −
c−>TargetArea ( ) ) , 2 ) ;

}
//cout << ” Hamiltonian2 : ” << Hamiltonian −temp << endl ;
// e x i t ( 0 ) ;

}

void C e l l u l a r P o t t s : : f i l l t r e e (PDE * PDEfield ){//+++
i n t edges = ( par . s izex −2) * ( par . s izey −2) *
nbh leve l [ par . neighbours ] ;
i n t t a r g e t s i t e , targetneighbour ;
i n t x , y , c ;
i n t xp , yp , cp ;
double DH;
continuoustime = 0 ;
f o r ( i n t i =0 ; i<edges ; i ++){

t a r g e t s i t e = i /nbh leve l [ par . neighbours ] ;
x = t a r g e t s i t e %(par . s izex −2)+1 ;
y = t a r g e t s i t e /( par . s izex −2)+1 ;

targetneighbour = i%nbh leve l [ par . neighbours ] + 1 ;
xp = nx [ targetneighbour ]+ x ;
yp = ny [ targetneighbour ]+y ;

c = sigma [ x ] [ y ] ;

i f ( par . per iodic boundar ies ) {

// s i n c e we are asynchronic , we cannot j u s t copy the
borders once
// every MCS

i f ( xp<=0)
xp=sizex −2+xp ;

i f ( yp<=0)
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yp=sizey −2+yp ;
i f ( xp>=sizex −1)

xp=xp− s i z e x +2;
i f ( yp>=sizey −1)

yp=yp−s izey +2;

cp=sigma [ xp ] [ yp ] ; // c e l l of neighbour
}

e l s e i f ( xp<=0 | | yp<=0 | | xp>=sizex −1 | |
yp>=sizey −1)

cp= −1; // c e l l i s par t of boundary
e l s e

cp=sigma [ xp ] [ yp ] ;
i f ( cp != c && cp != −1){

double DH = DeltaH ( x , y , xp , yp , PDEfield ) ; //<<
makechange ( i , DH, true , root ) ;

}

}
}

void C e l l u l a r P o t t s : : p r i n t t r e e (Node* pos i t ion , i n t depth ,
i n t l o c a t i o n ){//debug funct ion to see the t r e e

i f ( pos i t ion −> l e f t != n u l l p t r ){
p r i n t t r e e ( pos i t ion −> l e f t , depth +1 , l o c a t i o n ) ;
p r i n t t r e e ( pos i t ion −>r ight , depth +1 ,
l o c a t i o n +pow( 2 , depth ) ) ;

}
// i f ( pos i t ion −> l e f t == n u l l p t r ){

//cout << ”[” << depth << ” , blad : ” << l o c a t i o n
<< ” ,” << pos i t ion −>data << ”]” << endl ;

//}
i f ( l o c a t i o n >= ( par . s izex − 2 ) * ( par . s izey −2)*8 &&
posi t ion −>data > 0){

cout << ”[” << depth << ” , blad : ” << l o c a t i o n
<< ” ,” << pos i t ion −>data << ”]” << endl ;
cout << ” crash because l o c a t i o n not on
l a t t i c e ” ;
e x i t ( 1 ) ;

}
i f ( pos i t ion −>data < −1){
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cout << ”[” << depth << ” , blad : ” << l o c a t i o n
<< ” ,” << pos i t ion −>data << ”]” << endl ;
cout << ” l e f t : ” << pos i t ion −> l e f t −>data <<
endl ;
cout << ” r i g h t ” << pos i t ion −>r ight −>data <<
endl ;
cout << ” path to edge : ” << endl ;
printedge ( l o c a t i o n ) ;
cout << ” crash because negat ive data value ” ;
e x i t ( 1 ) ;

}
}

void C e l l u l a r P o t t s : : pr intedge ( i n t l o c a t o r ){
Node* p o s i t i o n = root ;
i n t depth = 0 ;
while ( pos i t ion −> l e f t != n u l l p t r ){

cout << ”[” << depth << ” ,” <<
pos i t ion −> l e f t −>data << ” ,” << pos i t ion −>data <<
” ,” << pos i t ion −>r ight −>data << ”]” << endl ;
i f ( l o c a t o r%2 == 1){

p o s i t i o n = pos i t ion −>r i g h t ;
}
e l s e {

p o s i t i o n = pos i t ion −> l e f t ;
}
l o c a t o r = l o c a t o r / 2 ;
depth ++;

}
}

i n t C e l l u l a r P o t t s : : f indevent ( long double r2 ){//+++
Node * p o s i t i o n = root ;
i n t l o c a t o r = 0 ;
i n t depth = 0 ;
long double lef tsum ;
long double rightsum ;
long double remainderr2 = r2 ;
while ( pos i t ion −> l e f t != n u l l p t r ){

lef tsum = pos i t ion −> l e f t −>data ;
rightsum = posi t ion −>r ight −>data ;
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i f ( lef tsum > remainderr2 ){ //we go l e f t
p o s i t i o n = pos i t ion −> l e f t ;

}
e l s e { //we go r i g h t

l o c a t o r = l o c a t o r +pow( 2 , depth ) ;// going r i g h t
//equals binary 1
remainderr2 = remainderr2 − lef tsum ;
p o s i t i o n = pos i t ion −>r i g h t ;

}
depth ++;

}
//cout << ” propensi ty : ” << pos i t ion −>data << endl ;
re turn l o c a t o r ;

}

void C e l l u l a r P o t t s : : B a s e I n i t i a l i s a t i o n ( vector<Cell>
* c e l l s ) {

CopyProb ( par . T ) ;
c e l l = c e l l s ;
i f ( par . neighbours>=1 && par . neighbours <=4)

n nb=nbh leve l [ par . neighbours ] ;
e l s e

throw ” Panic in C e l l u l a r P o t t s : parameter neighbours
i n v a l i d ( choose [ 1 − 4 ] ) . ” ;

}

double C e l l u l a r P o t t s : : passedtime ( ) {
double r1 = RANDOM( ) ;
double timeincrement = (1/ root −>data ) * ( log (1/ r1 ) ) ;
re turn timeincrement ;

}
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