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Abstract

Background: COVID-19 was the first infectious disease to be declared as a pandemic in

history. With over 7 million death due to the consequences of COVID-19, and significant

impact on the economy, healthcare systems, and social life, the virus can be considered one

of the most serious of our time. It is likely that more pandemics will occur, due to global-

isation. Many factors exist that can influence the pandemic (e.g., pharmaceutical and social

interventions). One factor that can reduce the influence of a pandemic is implementing a

lockdown. More knowledge on the e↵ectivity of lockdowns during COVID-19 could increase

our knowledge on how to implement a lockdown during a second pandemic.

Objectives: Currently, there is still little data on whether a lockdown as a measure to re-

duce the spread of a virus is e↵ective. Therefore, the objective of this study was to determine

the e↵ectivity of the lockdown in the Netherlands during the period from 01-03-2020 to 01-

06-2020, to analyze whether there could have been a more optimal starting day or duration,

and to examine whether the lockdown was Pareto E�cient.

The E↵ectiveness of a Lockdown: The e↵ectiveness of the lockdown was determined by

simulating the spread of the infection of COVID-19 using the SIR- (Susceptible, Infectious,

Recovered) and SEIRS- (Susceptible, Exposed, Infectious, Recovered, Susceptible) models

with and without lockdown, and comparing the maximum infection value peak with each

other. The SIR-model showed, after parameter fitting, a fair simulation of the infection curve

in the Netherlands, and an lockdown e↵ectiveness of 40.5 %. The SEIRS-model showed, after

parameter fitting, a poor simulation of the infection curve in the Netherlands, and a lock-

down e↵ectiveness of 0.004%. Thus, in the SIR-model, the lockdown could be considered

e↵ective as a measure to decrease the spread of COVID-19 at that time, whereas, in the

SEIRS-model, it could not.

Optimal Starting Day and Duration: A more optimal starting day and duration than

the lockdown implemented, which was from 15-03-2020 until 15-05-2020, was determined by

plotting three-dimensional and contour plots using the SIR- and SEIRS-models of all pos-

sible starting days and durations. For the SIR-model, the plots showed that if the starting

day would have been four days later, but the duration would have stayed 57 days, it would

have yielded an e↵ectiveness of 79.1 %. Changing the duration from 57 days to 49 days

would have yielded an e↵ectiveness of 71.2 %. For the SEIRS-model, the plots showed that

the starting day and duration were already optimal and that changing one of either would

not increase the e↵ectivity of the lockdown, and only worsen it. Thus, a correct moment

of implementing a lockdown for a correct period of time was shown to have a determining

impact on the infection values.

Pareto E�ciency: Pareto e�ciency is defined as a situation in which it is not possible

to optimize the one situation without it being at the expense of another situation. In this

case, the two objectives being optimised are the duration of the lockdown multiplied by the

lockdown strength on the one hand, versus the maximum infection value on the other hand.

The Pareto Front, which is defined as the set of all Pareto e�cient solutions, were plotted

for both the SIR- and SEIRS-model. The lockdowns in both the SIR- as well as the SEIRS-

models were shown not to be Pareto e�cient.

Conclusion: Implementing a lockdown as a measure to limit the spread of an infectious dis-

ease is e↵ective in the SIR-model, but not e↵ective in the SEIRS-model when using COVID-

19 data obtained from the World Health Organization, for the parameter values used in

these models. However, e↵ectiveness of the lockdown is strongly dependent on correct para-

meter values, since simulations of the SIR- and SEIRS-model with arbitrary parameter values

showed that implementing a lockdown is very e↵ective. Therefore, more research should be



done on the parameter values that are specific for COVID-19. Then, a correct moment of

implementing a lockdown for a correct period of time has an important impact on infection

values, and, in the SIR-model, the lockdown could have been more e�cient. Lastly, the

lockdowns in the both the SIR- as well as the SEIRS-models were shown not to be Pareto

e�cient.
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1 Introduction

In 2019, 2.11 million people worldwide died from the consequences of lower respiratory tract

infections, which accounted for approximately 4% of all deaths of that year [25]. Lower respirat-

ory infections (LRTI) are one of many infectious diseases, which are illnesses caused by viruses,

parasites, bacteria, or fungi. LRTIs specifically refer to infections of the lower airways of the

lungs [22]. Even though incidence rates have been decreasing since 1990, the absolute number

of LRIs has been increasing ever since because of population growth and ageing [19]. Moreover,

diminishing the burden of LRTIs has been shown to be very di�cult since many di↵erent ap-

proaches can be taken to alleviate this burden, such as medical interventions (e.g., vaccinations

and medicines), behavioural changes (e.g., improving hygiene and ventilation), and government

regulations (e.g., mandatory minimum distance and implementing a lockdown) [17]. Therefore,

there is a clear necessity of researching the impact of such measures on the burden of LRTIs.

COVID-19, caused by the SARS-CoV-2 virus, is one of the most serious LRTIs of our time.

The virus has spread rapidly across the globe since it was first identified in Wuhan, China in

late 2019 [30]. Since December 2019, approximately 7 million people have died due to the con-

sequences of COVID-19 [3]. The virus has had a significant impact on the economy, healthcare

systems, and social life in a↵ected countries [13]. Firstly, the virus has had a severe impact on

the global economy. According to the Statista Research Department from Germany, the COVID

pandemic has caused the worst economic downturn in 2020 since the Great Depression, with a

3.4 % decline in global domestic product (GDP) in 2020 [1]. The COVID pandemic has also

been shown to have a severe and abrupt economic impact, since the projected GDP growth ini-

tially was 2.9 % growth in 2020 [1]. The pandemic has disrupted global supply chains, reduced

demand for goods and services, and caused widespread job losses, particularly in the tourism

and hospitality sectors [2].

Secondly, the healthcare systems of many countries have been overwhelmed by the rapid

spread of COVID-19. Hospitals have struggled to provide care for critically ill patients, and

shortages of personal protective equipment and other medical supplies have made it di�cult for

healthcare workers to do their jobs safely [12]. The pandemic has also disrupted the provision

of other essential health services, such as vaccinations, cancer screenings, and elective surgeries,

putting the health of many people at risk [10]).

Thirdly, the social impact of the pandemic has been significant, with people experiencing

high levels of stress, anxiety, and social isolation [14]. The pandemic has disrupted education

systems, with many schools and universities closing temporarily, and has made it di�cult for

people to socialize and participate in cultural and religious events [9]. The pandemic has also

highlighted existing inequalities in society, with vulnerable populations such as the elderly, the

socially deprived, and those with underlying health conditions at increased risk of severe illness

and death [28].

The above has shown that the impact of a pandemic can be immense. Additionally, due

to an increasing world population and increasing globalisation it is reasonable to expect that a

second pandemic may arise. An increase in world population leads to an increase in the number

of local populations living in more densely populated areas which in turn increases the chance

of viruses being able to spread among people [18]. Globalisation, which can be defined as a
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process in which economic structures, di↵erent cultures and political systems of countries come

to terms with each other and even become dependent on each other, has led to an increase

in international trade and travel, which has led to an increase in the number of people that

potentially carry a virus with them to another country [7, 26]. Additionally, globalisation has

induced a rise in urbanization which leads to more rapid spread of a virus among people [4].

Lastly, globalisation has led to a change in the production and consumption of di↵erent kinds

of food [11]. This has increased the chance of transmitting pathogens from animals to humans

[11]. Thus, globalisation can lead to a quicker spread of a virus across continents, countries, and

populations.

Because a pandemic has an immense impact on populations, and because there is a possib-

ility that a second pandemic will arise, research on minimizing the impact of a pandemic on

populations is clearly relevant. There are many factors that can play a role in reducing the

influence of a pandemic, both at the pharmaceutical level (e.g., vaccines) as on the societal level

(e.g., washing hands more often) [5]. One of the many ways that were used to reduce the spread

of COVID-19 is by introducing a lockdown. Lockdowns are a public health intervention that

involves restricting the movement of people and closing non-essential businesses and services

to reduce the spread of an infectious disease [14]. Due to mandatory social distancing in the

form of quarantines, closure of schools, churches, and public facilities, and banning of social

activities that include mass gatherings such as festivals and protests, the spread of the virus has

been significantly reduced [29]. However, the impact of lockdowns on society has been shown to

be immense, both in terms of mental health issues (e.g., anxiety disorders and loneliness), and

economic impact (e.g., job losses) [2, 14].

This raises the question of how e↵ective lockdowns are as a measure to reduce the spread

of a virus, and the related question of how long and how intense a lockdown needs to be to be

e↵ective. These questions van be addressed by analysing a lockdown implemented in the past in

which the Pareto Front (which will be defined below) and a more optimal starting day and dur-

ation of the lockdown at that time are determined. For this thesis, the period from March 2020

until June 2020 was chosen, since the first lockdown was from 15-03-2020 until 11-05-2020 in

the Netherlands [31]. In consideration of the above, it is worth examining the following research

questions:

• What was the e↵ectivity of the lockdown in the Netherlands during the period

from 01-03-2020 to 01-06-2020?

• Could the lockdown in the Netherlands during the period from 01-03-2020 to

01-06-2020 have had a more optimal starting day or duration?

• Could the lockdown in the Netherlands during the period from 01-03-2020 to

01-06-2020 be considered Pareto e�cient?

2 The Lockdown to be analyzed

To determine the e↵ectivity of the lockdown in the Netherlands from March 15 until May 11, it is

necessary to know the infection curve during that period. Therefore, it was necessary to collect
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data containing values of the number of infections from March 2020 until June 2020. The World

Health Organization (WHO) possesses open datasets with these infection values for almost all

countries in the world [3]. The data that was used for this thesis comes from a dataset called

owid � covid � data.csv which was last modified on 02-06-2023. This dataset contains among

others the number of new COVID-19 cases per country per day [3]. To model the infection curve

of the Netherlands, the columns containing the dates and the new cases of the Netherlands were

stored in a new table. To visualize the infection curve during the first lockdown from 15-03-2020

until 11-05-2020 the table was reduced to the period 01-03-2020 to 01-06-2020. Lastly, a new

column was created containing the values for the period prevalence, which refers to the number

of infected individuals within a certain period, which was ten days in this case, since literature

has shown that people are on average infectious for a period of ten days (see Appendix A) [27].

Figure 1 shows a plot of the period prevalence of COVID-19 in the Netherlands from 01-03-2020

until 01-06-2020 with the starting and ending day of the lockdown (15-03-2020 and 11-05-2020).

Figure 1: Period prevalence of COVID-19 in the Netherlands from 01-03-2020 to 01-06-2020

3 Theoretical models to determine the e↵ectivity of lockdown

3.1 The SIR-model

3.1.1 Theoretical background

The e↵ectivity of the lockdown can be determined by comparing the maximum infection value

without lockdown with the maximum infection value with lockdown. The maximum infection

value was specifically chosen, rather than for example the total number of infections over time,
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since the main concern during the pandemic was the capacity of available hospital beds and per-

sonnel and this is directly related to the maximum infection value. Then, to determine whether

the lockdown could have been more optimal, the Pareto Front was determined and a more op-

timal starting day and duration were determined. However, the period prevalence shown above

was not su�cient and the theoretical SIR-model (later SEIRS-model) was needed to determine

the Pareto Front and a more optimal starting day and duration of the lockdown. Compartmental

models are used to mathematically model an infectious disease and therefore these were used for

this thesis [21]. The most generic model is the SIR-model (Susceptible, Infectious, Recovered)

and was first used to create a model that visualizes the infections over time. The model divides

the relevant population into three di↵erent compartments: the susceptible compartment con-

sists of people who have not yet been exposed to the virus and when exposed transition into the

infectious compartment with rate �, which is the transmission rate; the infectious compartment

consists of people who have been exposed to the virus and can infect susceptible people; the

recovered compartment consists of people who have recovered from the virus and are considered

immune to the virus, which means that they can no longer be infected anymore. The model can

be expressed by the following system of ordinary di↵erential equations:

8
>>>>><

>>>>>:

dS

dt
= ��IS

N
,

dI

dt
=

�IS

N
� �I,

dR

dt
= �I.

(1)

Here, dS
dt ,

dI
dt , and

dR
dt represent the rate of change in the number of people that are in the S, I or

R category respectively with respect to time. The parameters � and � represent the transmission

and recovery rate respectively. N represents the population size. Thus, these equations model

the spread of an infectious disease within a population.

For the SIR-model, it is possible to add a cost function u(t) to the model depending on time

that represents the lockdown. Assuming that the rate in which the infection is transmitted can

be reduced by a factor

0  u(t)  1,

equation (1) changes into: 8
>>>>><

>>>>>:

dS

dt
= �(1� u)�IS

N
,

dI

dt
=

(1� u)�IS

N
� �I,

dR

dt
= �I.

(2)

Here, u(t) is in fact a variable that reduces the strength of the parameter �. To start a simulation,

the SIR-model, which is one of the simplest compartmental models, can be used to simulate the

lockdown that has been implemented in March 2020. It is for this reason that u(t) has also been

used first in its simplest form, namely as a constant function: u(t) = c for all c 2 [0, 1]. For the

simulation, u(t) is a stepfunction and is defined as follows (see also Figure 2 and Appendix B):
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u(t) =

8
>><

>>:

0, t 2 [0, t1)

c, t 2 [t1, t2)

0, t 2 [t2,1) ,

(3)

with t1 the starting day of the lockdown and t2 the day the lockdown is lifted.

Figure 2: Lockdown strength over time

Figure 3 shows a schematic overview of the SIR-model with the transmission rate �, recovery

rate �, and the cost function u(t).

Figure 3: Schematic overview of SIR-model

This model is based on some classical simplifying assumptions: recovery from disease is equal

to immunity of disease; the status of vaccinations remains constant over time; the population

size remains constant; there is no import of cases from other populations and the population is
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homogeneous; and there is no incubation period.

3.1.2 The SIR-model with arbritrary parameter values

Before applying the actual data, it was valuable to analyze the influence of implementing a

lockdown function into the SIR-model to obtain some notion on how a lockdown can influence

the infection values. This was done by running the SIR-model in MATLAB with parameters

values arbitrarily chosen. Table 1 shows an overview of the parameters used for the SIR-model.

The lockdown was set on u(t) = 0.75 for t1 = 20 and t2 = 40.

Table 1: List of arbitrary parameters used in numerical simulations for SIR-model

Parameter Value Meaning

N 10000000 Population size

tmax 100 Length of simulation

S(1) 9999000 Initial value of susceptible people

I(1) 1000 Initial value of infected people

R(1) 0 Initial value of recovered people

� 0.2 Recovery rate

� 0.6 Transmission rate

Figure 4 shows two infection curves visualising the number of infections over time with and

without lockdown (see Appendix C). The curves clearly show the impact of implementing a

lockdown, since the maximum infection value decreases when a lockdown is implemented in the

model. This makes sense, since the fraction �IS
N is multiplied by 1 � 0.75 which leads to a

decrease in the maximum value of this fraction and thus the maximum infection value. Also,

the initial value of infected people, I(1), influences the position of the infection curve. The lower

the value of I(1), the more the infection curve is positioned to the right, since more time is

needed for the infection values to increase. Additionally, multiple simulations of the SIR-model

with di↵erent arbitrary parameter values has shown that a ratio of 1
10000 of the initial value of

infected people relative to the population size is needed to see the impact of � (and u(t)) on

the infection curve. Lastly, multiple simulations of the SIR-model when changing arbitrarily

parameter values for � and �, seperately from each other show the following: an increase in �

decreases the maximum infection value and the infection curve to start to increase earlier; and

an increase in � decreases the maximum infection value.

Figure 5 shows infection curves for di↵erent starting days of a lockdown given a duration of

20 days (see Appendix D). The plots show that for di↵erent starting days the lockdown has a

di↵erent influence on the infection values. For a starting day around the increase in infection

values of the original infection curve (blue), there first will be a lower peak and then a higher

peak. This makes sense, since the lockdown is implemented during the increase in infection

values, which means that the lockdown had less influence during the peak of the lockdown. For

a starting day around the peak of the infection curve without lockdown (red and yellow), there

will be two peaks at approximately the same height. This also makes sense, since the lockdown

is implemented during the peak in infection values, which means that the lockdown had optimal
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influence on the maximum infection values. For a starting day around the decrease in infection

values of the infection curve without lockdown (purple), there first will be a higher peak and

then a lower peak. This again makes sense, since the lockdown is implemented after the peak in

infection values is reached, which means that the lockdown had less influence during the peak of

the lockdown. Thus, Figure 4 shows that implementing a lockdown can be valuable and Figure

5 shows that the starting day influences the impact a lockdown can have on the maximum

infection value.

Figure 4: Infection values over time for u(t) = 0 and u(t) = 0.75 between t1 = 20 and t2 = 40.
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Figure 5: Infection values over time for starting days 14 (blue), 18 (red), 20 (yellow) and 22
(purple)

It was also valuable to analyze the impact of the parameters � and � on the curves, since the

values of these parameters can also strongly influence the maximum infection value, since these

parameters are multiplied by the number of infections at a certain time (see equation 1). This

was done by running the maximum infection values for all possible values for � and �, using the

SIR-model with the parameter values as in Table 1 and without lockdown (see Appendix E).

First, four di↵erent pairs of figures were plotted in which the limit of the maximum infection

values were adjusted to see whether there exists fine structure (see Figure 6). Even though the

four pairs did not show a fine structure, the plots do show that for values of �  � the maximum

infection values are minimum. This means that when the transmission rate is equal or lower

than the recovery rate, the maximum infection values are suppressed. This makes sense, since

it is known that the reproduction number, which can be defined as the mean number of people

that will be infected by one person and in the SIR-model is equal to R0 = �
� , will be equal or

smaller than one, which means that for a lower transmission rate and higher recovery rate the

spread of the disease diminishes and the maximum infection values will be suppressed, which

indeed can be seen in the contour plot. For �  � the maximum infection values rapidly increase

when � and � increase. This makes sense as well, since the reproduction number will be equal

to or greater than one for �  �, which means that for a higher transmission rate and lower

recovery rate the spread of the disease and the maximum infection values increase, which indeed

can be seen in the contour plot. Additionally, the maximum infection values increase for an

increase in � 2 [0.1, 1] and � 2 [0, 0.5]. This also makes sense, since the reproduction number

will then increase in value, which is directly related with an increase in maximum infection

values. Thus, the three-dimensional and contour plots show that di↵erent values for � and �

can have an impact on the maximum infection values: small changes between � and � lead to
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great di↵erences in maximum infection values.

Next, three di↵erent three-dimensional and contour plots of the maximum infection values

for all values of � and � were plotted, using the SIR-model with the parameter values as in

Table 1 to analyze the impact of implementing a lockdown on the maximum infection values

and to see the di↵erences between variations of lockdown strengths (see Appendix F). Figure 7

show plots for u(t) = 0.35, u(t) = 0.55, and u(t) = 0.75. All plots show a line of local minima

at � ⇡ 0.5 and � 2 [0, 0.3] whereas there is no line of local minima in the contour plot of the

maximum infection values without lockdown (see first three-dimensional and contour plot in

Figure 6). This means that implementing a lockdown leads to a line of local minima of the

maximum infection values at � ⇡ 0.5 and � ⇡ 0.5 and � 2 [0, 0.2]. This means that suppressing

the maximum infection values is not so much due to the lockdown strength, but rather to the

fact that a lockdown is implemented. However, the plots also show that for a low value for the

lockdown strength, the local minimum for high values of the maximum infection values is lower

than for higher values of the lockdown strength. Thus, for an increase in the lockdown strength

the local minimum rises, showing higher values of the maximum infection value. Additionally,

an increase in the lockdown strength still leads to a minor change in an optimal value for the

transmission rate � (� ⇡ 0.4 for u(t) = 0.35 versus � ⇡ 054 for u(t) = 0.75), which means that

for higher given values of � the lockdown strength should also be higher, which makes sense

since it is the transmission rate that increases but needs to be suppressed by the lockdown.
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Figure 6: Three-dimensional (left) and contour (right) plots of maximum infection values for all
values of � and � for di↵erent limits of Imax
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Figure 7: Three-dimensional (left) and contour (right) plots of maximum infection values for all
values of � and � for di↵erent lockdown strengths

3.1.3 The SIR-model with parameter values from COVID-19 data

In Section 3.1.2, we have gathered some notion on the influence of implementing a lockdown

on the infection curve in the SIR-model and on the impact of di↵erent parameter values on the

infection curve in the SIR-model. Now, it is possible to analyze the SIR-model using actual
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COVID-19 data. Before running the SIR-model in MATLAB with the COVID-19 data, the

values of the variables need to be determined in a way that could describe the period from 01-

03-2020 until 01-06-2020 realistically. Therefore, it is necessary to choose the parameter values

as they were in the period March 2020 until June 2020. Table 2 shows an overview of the

parameter values used for the SIR-model; these values are based on research done on COVID-19

(see references in Table 2).

Table 2: List of parameters used in numerical simulations using the SIR-model

Parameter Value Meaning Reference

N 17395687 Population size [16]

tmax 92 Length of simulation (in days) [31]

S(1) 17395675 Initial value of susceptible people -

I(1) 12 Initial value of infected people [3]

R(1) 0 Initial value of recovered people [3]

� 1
7 Recovery rate (per day) [27]

The parameter value � varies per day and therefore, no fixed value of � for COVID-19 is

available. However, it is possible to estimate � by the reproduction number (R0), since R0 is for

the SIR-model defined as R0 =
�
� [8]. The same dataset as before (owid� covid�data.csv) also

contained reproduction numbers for each day from 01-03-2020 until 01-06-2020. To determine

a useful value for �, parametric fitting was used, which can be defined as the process in which a

coe�cient is found that can be fitted to the data. This was done with data of the reproduction

numbers of the countries Italy, Spain, and France (see Appendices H, I, and J). The values of

the reproduction numbers of the Netherlands were deliberately not used, since otherwise actual

data from the Netherlands is used to simulate the infections over time in the Netherlands with

the SIR-model to then compare this with the actual infections in the Netherlands. Thus, actual

Dutch values would be used to compare with actual Dutch data, which would be incorrect to

do. Figure 8 shows the reproduction numbers of these three countries over time together with

the mean reproduction numbers per day (See Appendix G). The curve representing the mean

reproduction numbers was determined by calculating the mean reproduction number of the

countries Italy, France, and Spain per day. Therefore, Figure 8 shows reproduction numbers

from 03-03-2020 until 01-06-2020, since this is a period in which all countries had data on

reproduction numbers available allowing the infection curve representing the mean of the three

countries to be calculated.
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Figure 8: Reproduction numbers of Italy (blue), France (red), Spain (yellow), and mean of three
countries (purple) over time

The estimated transmission rate � was determined by taking the mean of the estimated trans-

mission rates of Italy, France, and Spain, �IT , �FR, and �SP . The mean estimated transmission

rates of Italy, France, and Spain were determined by multiplying the mean reproduction number

of the respective country by the recovery rate, �. The reproduction numbers of Italy, France,

and Spain were determined by taking the mean of the daily reproduction numbers of each coun-

try respectively for the period before the respective country implemented its lockdown. The

mean was calculated by using all days during the respective period of the country, since Figure

8 does not show outliers and more values provide a more accurate estimation for the value of

the transmission rate of the respective country.

For Italy, there was data available on reproduction numbers from 24-02-2020; the lockdown

in Italy was from 09-03-2020 until 04-05-2020 [3]. Thus, reproduction numbers for the period

from 24-02-2020 until 09-03-2020 were used, i.e., before the lockdown was imposed. For France,

there was data available on reproduction numbers from 01-03-2020; the lockdown in France

was from 17-03-2020 until 11-05-2020 [3]. Thus, reproduction numbers for the period from 01-

03-2020 until 17-03-2020 were used, i.e., before the lockdown was imposed. For Spain, there

was data available on reproduction numbers from 03-03-2020; the lockdown in Spain was from

14-03-2020 until 21-06-2020 [3]. Thus, reproduction numbers for the period from 01-03-2020

until 17-03-2020 were used, i.e., before the lockdown was imposed. The mean reproduction

numbers are equal to R0IT = 2.9313, R0FR = 2.8856, and R0SP = 2.8700. The mean �

of each country was calculated by multiplying the mean reproduction number of each coun-

try by � = 1
7 . Therefore, the mean � values are equal to �IT = 2.9313 ⇤ 0.1428 = 0.4188,

�FR = 2.8856 ⇤ 0.1428 = 0.4122, and �SP = 2.8700 ⇤ 0.1428 = 0.4100 for Italy, France, and

Spain respectively. The estimated value for �, which was taken to be the mean of �IT , �FR,
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�SP , is equal to (0.4188 + 0.4122 + 0.4100)/3 = 0.4137. Therefore, we take � = 0.4137 as the

independent estimate for the transmission rate.

During the lockdown, the reproduction number for the SIR-model with lockdown is equal to

R0 = �(1�u)
� , and since R0, �, and now also � are known, it is possible to estimate the value c

for u(t) = c. As mentioned in Section 3.1.1, the lockdown strength was chosen in its simplest

form, namely as a constant function. The lockdown strength u(t) = c was determined by taking

the mean of the estimated lockdown strengths of Italy, France, and Spain of each day during

the lockdown in the respective country, since using more values provides a more accurate es-

timation for the value of the lockdown strength of the respective country. The mean estimated

lockdown strength per country was calculated as u(t)country = 1 � R0country(t)�
� , in which the

reproduction numbers for the periods 09-03-2020 until 04-05-2020, 17-03-2020 until 11-05-2020,

and 14-03-2020 until 21-06-2020 were used for Italy, France, and Spain respectively, since these

were the periods there was a lockdown in the respective country. It is for the same reason

as for calculating the independent estimate for the transmission rate that we deliberately did

not use reproduction numbers of the Netherlands, but those of Italy, France, and Spain again

(see Appendix H, I, and J. Figure 9 shows the values of the lockdown strength of the three

countries over time together with the mean curve for the lockdown strength (see Appendix G).

The latter was determined by taking the daily mean of the calculated daily lockdown strength

values of Italy, France, and Spain. The estimated lockdown strength values for each country

were uIT = 0.5958, uFR = 0.6185, uSP = 0.6211 for Italy, France, and Spain respectively.

The estimated value for u, which was taken to be the mean of uIT , uFR, uSP is then equal

to (0.5958 + 0.6185 + 0.6211)/3 = 0.6118. Therefore, we take u = 0.6118 as the independent

estimate for the lockdown strength.

Figure 9: Lockdown strength of Italy (blue), France (red), Spain (yellow), and mean of three
countries (purple) over time
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Now, as all values for the parameters are known, it is possible to plot the SIR-model that should

describe the infections as they were in the Netherlands for the period 01-03-2020 until 01-06-

2020. Figure 10 shows the infection curve with and without lockdown with the parameter values

as in Table 2, the transmission rate equal to � = 0.4137, and the lockdown strength equal to

u(t) = 0.6118 (see Appendix K).

Figure 10: SIR-model over time with and without lockdown according to COVID-19 data

As mentioned in Section 3.1.1, the e↵ectivity of the lockdown for this SIR-model can be de-

termined by comparing the maximum infection value without lockdown with the maximum

infection value with lockdown. However, before determining this e↵ectivity, it is crucial to

analyze whether the SIR-model with lockdown and parameter values as in Table 2 adequately

describes the period prevalence of COVID-19 in the Netherlands (see Figure 1). This can be

done by comparing the infection curves in the SIR-model with the period prevalence curve. We

can also apply our priorknowledge of the theoretical SIR-model to say something about the

current parameter fitting.

When comparing the infection curve with lockdown with the period prevalence curve, we

observe that they are not similar since the maximum infection peak in the SIR-model is much

higher, 4,998,200 in the SIR-model with lockdown versus 11,047 in the period prevalence curve

(see Figure 1). However, it is because of the population size N = 17, 395, 687 that the infection

peak can be equal to 4, 998, 200. This means that the population size chosen in the SIR-model

is too big, which could indeed be the case, since COVID-19 hardly occurred in people up to and

including 60 years of age and was mostly relevant for people older than 60 years [20].

Additionally, the infection peak in the SIR-model is much later, 17-06-2020 in the SIR-model

with lockdown versus 18-04-2020 in the period prevalence curve. As mentioned in Section 3.1.1,

I(1) is very small, and because of that, more time is needed for the infection curve to form the
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whole curve, which explains why both infection curves in Figure 4 are moved to the right and

have their infection peak at a much later moment than there was in real life. Thus, even though

the infection curve of the SIR-model does not necessarily look much like the period prevalence

curve, the major di↵erences were to be expected.

When considering the e↵ectivity of the lockdown in the SIR-model, the e↵ectivity of the

lockdown is determined by comparing the maximum infection value without lockdown with the

maximum infection value with lockdown. This is done for the period the infection curves with

and without lockdown is fully visible instead for the period 01-03-2020 until 01-06-2020, since

otherwise the maximum infection value for the infection curve with lockdown would be equal

to 0, which does not fairly represent the true e↵ect of the lockdown in the SIR-model. The

e↵ectivity of the lockdown is determined by the following quantity:

ESIR :=

✓
1�

Imax+u(t)

Imax

◆
⇤ 100%. (4)

For the SIR-model with lockdown and the parameter values as in Table 2, we have Imax =

4, 864, 200 infections, and Imax+u(t) = 4, 864, 200 infections (see Figure 10). This means that the

e↵ectivity of the lockdown was equal to

ESIR =

✓
1�

Imax+u(t)

Imax

◆
⇤ 100% =

✓
1� 4, 998, 200

5, 004, 100

◆
⇤ 100% = 0.12%. (5)

Thus, the e↵ect of the lockdown for the SIR-model with parameter values as in Table 2 is

negligible, since a change of 0.12% in maximum infection values will not have a clear impact on

pressure on healthcare systems due to this maximum infection value. However, this apparent

negligible e↵ect of the lockdown on the maximum infection value can be explained: as mentioned

in Section 3.1.1, the ratio between the initial value of infected people, I(1), and the population

size should be around 1
10000 for the value of � and u(t) to have an observable e↵ect. However,

the ratio for the SIR-model with lockdown and the parameters as in Table 2 is equal to I(1)
N =

12
17395687 = 6.898 ⇤ 10�7, which is too small. Nevertheless, this makes sense, since the population

size is in all likelihood too large. Also, the initial value of infected people is equal to 12, but

these were infections reported in hospital [3]. It could very well be that the true initial value of

infected people was much higher (and not reported at that time). Also, Figure 11 show a three-

dimensional and contour plot of maximum infection values for all values of � and � according to

COVID-19 data. From the figure and Section 3.1.2 we know that the estimated value for �, and

therefore also the estimated value for u(t), now is somewhat low and could have greater impact

on the maximum infection value when it would have been greater (� ⇡ 0.5) (see Appendix L).

Therefore, the infection curve with lockdown in Figure 10 can be considered a representation of

the impact of the ratio between the population size and initial infected people on the infection

curve, rather than the impact of implementing a lockdown on the infection curve.
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Figure 11: Three-dimensional (left) and contour (right) plots of maximum infection values for
all values of � and � according to COVID-19 data

In consideration of the above, it is valuable to apply some more parameter fitting, to see whether

we get a more adequate SIR-model and a more visible e↵ect of the lockdown. For the infection

curve in the SIR-model, the population size was adjusted to the population size of people aged

61 or older, which in March 2020 was equal to approximately 3.4 million people [15]. Also, the

value for I(1) was changed to I(1) = 1200 to obtain a proper ratio of I(1) and N and to make

sure the infection peak is during the period of the lockdown. Additionally, to obtain a more

realistic analysis of the e↵ect of the lockdown, instead of using the mean of u(t), which was

equal to u(t) = 0.6118, u(t) was used as a time-dependent function in which the values for u(t)

change per day and are according to the mean lockdown curve as in Figure 9.

To observe the impact of the change in parameter values separately, the population size and

initial infection value were first changed, since visualisation of the impact of implementing a

lockdown is dependent on a proper ratio between the population size and initial infection value.

Therefore, the population size and initial infection value were both changed at the same time.

Figure 12 shows the SIR-model over time with and without lockdown with new parameter values

for the population size and initial infection value. The figure shows that because of the decrease

in population size the maximum infection values for both the infection curve with and without

lockdown has decreased greatly. Also, both infection curves have moved to the left. The impact

of implementing a lockdown now is more evident (see Appendix M).

Figure 13 shows the SIR-model over time with and without lockdown with both new para-

meter values for population size and initial infection value as well as a time-dependent lockdown

strength. Changing the lockdown strength to a time-dependent function upon changing the

parameter values of the population size and intial infection value was done explicitly, since a fair

visualisation of the impact of implementing a lockdown is dependent on a proper ratio between

the population size and the initial infection value, which would not have been the case using the

population size and initial infection value as in Table 2. The figure shows clearly the impact of

implementing a time-dependent, and therefore more realistic, lockdown (see Appendix M).
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Figure 12: SIR-model over time with and without lockdown with new parameter values for the
population size and initial infection value

Figure 13: SIR-model over time with and without lockdown with new parameter values for
population size and initial infection value and a time-dependent lockdown strength

Applying the new parameters to the SIR-model has thus proven to provide a more realistic

infection curve with and without lockdown, since it showed more resemblance with the period

prevalence curve: the infection curve without lockdown is exactly between the lockdown period
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because of our new value for I(1); and implementing a lockdown shows clearly an e↵ect because

of applying u(t) as a time-dependent function. For the SIR-model with lockdown and the new

parameter values for I(1) and u(t) respectively as in Figure 13, we have Imax = 582, 480 and

Imax+u(t) = 978, 470 (see Figure 13). This means that the e↵ectivity of the lockdown was equal

to

ESIR =

✓
1�

Imax+u(t)

Imax

◆
⇤ 100% =

✓
1� 582, 480

978, 470

◆
⇤ 100% = 40.5%. (6)

Thus, the e↵ect of the lockdown for the SIR-model with new parameter values for I(1) and

u(t) can be considered substantial, since a change of 59.7% can be considered impactful with

respect to pressure on healthcare systems due to the maximum infection value. Assuming that

the infection curve with lockdown in this SIR-model simulates the period prevalence of COVID-

19 in the Netherlands su�ciently, it can be concluded that implementing the lockdown in the

Netherlands at that time was e↵ective enough to control the situation at that time.

3.2 The SEIRS-model

3.2.1 Theoretical background

The above demonstrates that the lockdown implemented in the Netherlands on 11-03-2020 could

presumably be considered as an e↵ective measure to control the spread of the virus across the

country. However, the theoretical model used in the previous section was the SIR-model. To

simulate reality even more adequately, it is desirable to apply a theoretical model that describes

reality more accurately, since it reduces the number of assumptions of the SIR-model relevant

for the period from March to June 2020. The relevant theoretical model is the so-called SEIRS-

model (susceptible, exposed, infected, recovered, and susceptible model), and takes away all

assumptions mentioned in Section 3.1.1, and takes away all assumptions mentioned in Section

3.1.1, except for the assumption that the number of vaccinations remains constant over time

[8]. However, this does not cause a problem, since there were no vaccinations yet at that period

of time. The SEIRS-model expands on the SIR-model by adding an incubation time and the

possibility to become susceptible again after recovery. Just as in the SIR-model, it is possible

to add the constant function u(t) to the model representing the lockdown. The SEIRS-model

with lockdown can be expressed by the following system of ordinary di↵erential equations:

8
>>>>>>>>><

>>>>>>>>>:

dS

dt
= µN � µS � (1� u)�IS

N
+ !R,

dE

dt
=

(1� u)�IS

N
� �E � µE,

dI

dt
= �E � �I � (µ+ ↵)I,

dR

dt
= �I � µR� !R,

(7)

with u(t) as in equation 3. Here, dS
dt ,

dE
dt ,

dI
dt , and

dR
dt represent the rate of change in the number

of people that are in the S, E, I or R category respectively with respect to time. The parameter µ

represents the birth and death rate, � the transmission rate, ! the rate of loss of immunity, � the

incubation period, ↵ the rate of death through disease, and � the recovery rate. N represents the

population size. Figure 14 shows a schematic overview of the SEIRS-model with all parameters
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mentioned above, as well as the cost function u(t).

Figure 14: Schematic overview of SEIRS-model

3.2.2 The SEIRS-model with arbitrary parameter values

Before applying the actual data, it is again valuable to analyze the influence of implementing a

lockdown function into the SEIRS-model to gather some notion on how a lockdown can influence

the infection curve. This was done by running the SEIRS-model in MATLAB with parameter

values arbitrarily chosen. Table 3 shows an overview of the parameters used for the SEIRS-

model. The lockdown was set on u(t) = 0.75 for t1 = 80 to t2 = 100 (see Appendix N).

Table 3: List of arbitrary parameters used in numerical simulations for SEIRS-model

Parameter Value Meaning

N 10000000 Population size

tmax 200 Length of simulation

S(1) 9999000 Initial value of susceptible people

E(1) 1000 Initial value of exposed people

I(1) 0 Initial value of infected people

R(1) 0 Initial value of recovered people

� 1
14 Recovery rate

� 0.6 Transmission rate

µ 1
76⇤365 Birth and death ratio

! 1
365 Rate of loss of immunity

� 1
7 Latency period

↵ 0.2 Infection-induced death ratio

Figure 15 shows two infection curves visualising the number of infections over time with and

without lockdown. The curves clearly show the impact of implementing a lockdown, since the

maximum infection value decreases when a lockdown is implemented in the model. This makes

sense, since the fraction �IS
N is multiplied by 1 � 0.75 and which leads to a decrease in the

maximum value of this fraction and thus the maximum infection value. Also, whereas the initial

value of infected people, I(1), influences the position of the infection curve in the SIR-model,

the initial value of exposed people, E(1) influences the position of the infection curve in the

SEIRS-model. The lower the value of E(1), the more the infection curve is positioned to the
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right, since more time is needed for the infection values to increase. Additionally, multiple

simulations of the SEIRS-model with di↵erent arbitrary parameter values for the population

size and the initial value of exposed people showed that a ratio of 1
10000 of the initial value of

exposed people relative to the population size is needed to see the impact of � (and u(t)) on

the infection curve. Lastly, multiple simulations of the SEIRS-model when changing arbitrarily

parameter values for �, �, µ, !, �, and ↵ separately from each other show the following: an

increase in � decreases the maximum infection value, whereas the infection curve to starts to

increase earlier; an increase in � decreases the maximum infection value; an increase in µ causes

the limit of the infection curve to move towards a constant value other than zero; an increase in

! causes the limit of the infection curve to also move towards a constant value other than zero;

an increase in ↵ causes the infection curve to be spread over a longer period of time and the

maximum infection value to increase in value; and an increase in � causes the infection curve to

be spread over a shorter period of time and the maximum infection value to decrease.

Figure 16 shows infection curves for di↵erent starting days of a lockdown given a duration

of 20 days (see Appendix O). The plots show that for di↵erent starting days the lockdown has a

di↵erent influence on the infection values. For an early starting day (blue), there first will be a

lower peak and then a higher peak. This makes sense, since the lockdown is implemented during

the increase in infection values, which means that the lockdown has less influence during the

peak of the lockdown; for a starting day around the peak of the infection curve without lockdown

(red), there will be two peaks at approximately the same height. This also makes sense, since the

lockdown is implemented during the peak in infection values, which means that the lockdown

has optimal influence on the maximum infection values. For a starting day around the decrease

in infection values of the infection curve without lockdown (yellow), there will be a higher peak

and then a lower peak. This again makes sense, since the lockdown is implemented after the

peak in infection values is reached, which means that the lockdown has less influence during the

peak of the lockdown. Thus, the same can be concluded as in Section 3.1.2 for the SIR-model:

Figure 15 shows that implementing a lockdown can be valuable and Figure 16 shows that the

starting day influences the impact a lockdown can have on the maximum infection value. A main

di↵erence between the SIR- and SEIRS-model is that the infection curve in the SEIRS-model

is spread over a longer period of time (200 days instead of 100) and starts to increase later,

which makes sense, since it now takes longer for a population to become infected, because a

person first becomes exposed. Since the infection curve start to increase later, it is easier for

the SEIRS-model to have a lockdown that is implemented too early (purple). In this case, the

lockdown has no e↵ect on the maximum infection value, and implementing a lockdown will only

cause the infection curve to increase even later than it already does. Another main di↵erence is

that the maximum infection value are considerably lower in the SEIRS-model.
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Figure 15: Infection values over time for u(t) = 0 and u(t) = 0.75 between t1 = 80 and t2 = 100

Figure 16: Infection values over time for starting days 70 (blue), 82 (red), 92 (yellow), and 30
(purple)

It was also valuable to analyze the influence the impact of � and � on the curves, since the

22



values of these parameters can also strongly influence the maximum infection value, since these

parameters are multiplied by the number of infections at a certain time (see equation 7). This

was done by running the maximum infection values for all possible values for � and �, using the

SEIRS-model with the parameters as in Table 3 and without lockdown.

Firstly, four di↵erent pairs of figures were plotted in which the limit of the maximum infection

values were adjusted to see whether there exists fine structure (see Appendix P). Even though the

four pairs did not show a fine structure, the plots do show that for values of �  � the maximum

infection values are minimum. This means that when the transmission rate is equal or lower

than the recpovery rate, the maximum infection values are suppressed. This makes sense, since

it is known that the reproduction number, which can be defined as the mean number of people

that will be infected by one person and in the SEIRS-model is equal to R0 = �
�+µ ⇤ �(1�u)

↵+�+µ ,

will be equal or smaller, which means that for a lower transmission rate and higher recovery

rate the spread of the disease diminishes and the maximum infection values will be suppressed,

which indeed can be seen in the contour plot. For �  � the maximum infection values rapidly

increase when � and � increase. This makes sense as well, since the reproduction number will

be equal to or greater than one for �  �, which means that for a higher transmission rate and

lower recovery rate the spread of the disease and the maximum infection values increase, which

indeed can be seen in the contour plot. Additionally, the maximum infection values increase

for an increase in � 2 [0.25, 1] and � 2 [0, 0.4]. This also makes sense, since the reproduction

number will then increase in value, which is directly related to an increase in maximum infection

values. Thus, the three-dimensional and contour plots show that di↵erent values for � and �

can have an impact on the maximum infection values: small changes between � and � lead to

substantial di↵erences in maximum infection values.

Next, three di↵erent three-dimensional and contour plots of the maximum infection values

for all values of � and � were plotted, using the SIR-model with the parameter values as in Table

3 to analyze the impact of implementing a lockdown on the maximum infection values and to

see the di↵erences beween variations of lockdown strengths (see Appendix Q). Figure 18 show

plots for for u(t) = 0.35, u(t) = 0.55, and u(t) = 0.75. All plots show that a line of local minima

arises for values from � ⇡ 0 to � ⇡ 0.3 and from � ⇡ 0.3 to � ⇡ 1 whereas there is no line of

local minima in the contour plot of the maximum infection values without lockdown (see first

three-dimensional and contour plot in Figure 17). This means that implementing a lockdown

leads to a line of local minima of the maximum infection values from � ⇡ 0 to � ⇡ 0.3 and from

� ⇡ 0.3 to � ⇡ 1. The plots also show that for a low value for the lockdown strength, the local

minimum for high values of � 2 [0.3, 1] and � 2 [0, 0.3] the maximum infection values are lower

than for higher values of the lockdown strength. Thus, for an increase in the lockdown strength

the maximum infection values decrease faster, which makes sense since the lockdown strength

has a direct impact on the maximum infection values.
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Figure 17: Three-dimensional (left) and contour (right) plots of maximum infection values for
all values of � and � for di↵erent limits of Imax
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Figure 18: Three-dimensional (left) and contour (right) plots of maximum infection values for
all values of � and � for di↵erent lockdown strengths

3.2.3 The SEIRS-model with parameter values from COVID-19 data

In Section 3.2.2, we have gathered some notion on the influence of implementing a lockdown on

the infection curve in the SEIRS-model and on the impact of di↵erent parameter values on the

infection curve in the SEIRS-model. Now, it is possible to analyze the SEIRS-model using actual
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COVID-19 data. Before running the SEIRS-model in MATLAB with the COVID-19 data, the

values of the variables need again to be determined in a way that could describe the period

from 01-03-2020 until 01-06-2020 realistically. Therefore, it is necessary to choose the parameter

values as they were in the period from March 2020 until June 2020. Table 4 shows an overview

of the parameter values used for the SEIRS-model; these values are based on research done on

COVID-19 (see references in Table 2).

Table 4: List of parameters used in numerical simulations for SEIRS-model

Parameter Value Meaning Reference

N 17395687 Population size [16]

tmax 92 Length of simulation (in days) [31]

S(1) 17395675 Initial value of susceptible people -

E(1) 12 Initial value of people in incubation period [3]

I(1) 0 Initial value of infected people [3]

R(1) 0 Initial value of recovered people [3]

� 1
7 Recovery rate (per day) [27]

µ 1
76⇤365 Birth \death rate (per day) [8]

! 1
365 Rate of loss of immunity (per day) [8]

� 1
7 Latency period (in days) [8]

↵ 0 Infection-induced death ratio (per day) [8]

The parameter value � varies per day and therefore, no fixed values of � for COVID-19 are

available. However, it is again possible to estimate � by the reproduction number (R0). For the

SEIRS-model we have that R0 = �
�+µ ⇤ �

↵+�+µ [8]. Parametric fitting was done again using the

dataset owid� covid�data.csv containing reproduction number of Italy, Spain, and France. As

for the same reason mentioned in Section 3.1.3, reproduction numbers of the Netherlands were

deliberately not used. Figure 8 shows the reproduction numbers of these three countries over

time and is the same as used in Section 3.1.3. Figure 8 shows the reproduction numbers of these

three countries over time (see Appendix G).

The mean values of � of each country were calculated in exactly the same manner as in Section

3.1.3 except for the fact that R0 was changed from R0 = �
� into R0 = �

�+µ ⇤ �
↵+�+µ . The mean

values of � of each country values are equal to �IT = 0.4190, �FR = 0.4124, and �SP = 0.4102

for Italy, France, and Spain respectively. The estimated value for �, which was again taken to

be the mean of �IT , �FR, and �SP , is equal to (0.4190+0.4124+0.4102)/3 = 0.4139. Therefore,

we take � = W as the independent estimate for the transmission rate (see Appendix R).

During the lockdown, the reproduction number for the SEIRS-model with lockdown is equal

to R0 = �
�+µ ⇤ �(1�u)

↵+�+µ , and since R0, �, µ, �, ↵ and now also � are known, it is possible to

estimate the value c for u(t) = c using the fact that u(t) = 1 � R0(�+µ)(↵+�+µ)
�� . The value for

u(t) was calculated in the same manner as in Section 3.1.3, using the reproduction numbers of

Italy, France, and Spain again. The estimated u(t) values for each country were uIT = 0.5959,

uFR = 0.6186, uSP = 0.6212 for Italy, France, and Spain respectively. The estimated value for

u(t), which was taken to be the mean of uIT , uFR, uSP , is equal to (0.5959+0.6186+0.6212)/3 =
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0.6119. Therefore, we take u = 0.6119 as the independent estimate for the lockdown strength

(see Appendix R).

Figure 19: Lockdown strength of Italy (blue), France (red), Spain (yellow), and mean of three
countries (purple) over time

Now, as all values for the parameters are known, it is possible to plot the theoretical model that

should describe the infections as they were in the Netherlands for the period 01-03-2020 until

01-06-2020. Figure 20 shows the infection curve with and without lockdown with the parameter

values as in Table 4, the transmission rate equal to � = 0.4139, and the lockdown strength equal

to u(t) = 0.6119 (see Appendix S).
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Figure 20: SEIRS-model over time with and without lockdown according to COVID-19 data.

To estimate the impact of the lockdown on the infection curve, the e↵ectivity of the lockdown was

determined in the same manner as done for the SIR-model (see Section 3.1.3). However, before

determining this e↵ectivity, it is crucial to also analyze whether the SEIRS-model with lockdown

and parameter values as in Table 4 adequately describes the period prevalence of COVID-19

in the Netherlands (see Figure 1). This can be done by comparing the infection curves in the

SEIRS-model with the period prevalence curve. We can also apply our priorknowledge on the

theoretical SEIRS-model to say something about the current parameter fitting.

When comparing the infection curve with lockdown with the period prevalence curve, they

are not similar since the maximum infection peak in the SEIRS-model is much higher, 2,487,700

in the SEIRS-model with lockdown versus 11,047 in the period prevalence curve (see Figure 1).

However, it is because of the population size N = 17, 395, 687 that the infection peak can be

equal to 2,487,700. This means that the population size chosen in the SEIRS-model is too great,

which could indeed be the case, since COVID-19 hardly occurred in people up to and including

60 years of age and was mostly relevant for people older than 60 [20].

Additionally, the infection peak in the SEIRS-model is much later, 07-10-2020 in the SEIRS-

model with lockdown versus 18-04-2020 in the period prevalence curve. As mentioned in Section

3.2.1, E(1) is very small, and because of that, more time is needed for the infection curve to form

the whole curve, which explains why both infection curves in Figure 20 are moved to the right

and have their infection peak at a much later moment than there was in real life. Additionally,

as mentioned in Section 3.2.1 as well, the lockdown was implemented at a time period in which

the infection curve without lockdown did not even start increasing, which therefore also leads

the infection curve to only move to the right instead of decreasing its maximum infection value.
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Thus, even though the infection curve of the SEIRS-model does not necessarily look much like

the period prevalence curve, the major di↵erences were to be expected.

When considering the e↵ectivity of the lockdown in the SEIRS-model, the e↵ectivity of the

lockdown is determined by comparing the maximum infection value without lockdown with the

maximum infection value with lockdown. This is done for the period the infection curves with

and without lockdown is fully visible instead for the period 01-03-2020 until 01-06-2020, since

otherwise the maximum infection value for the infection curve with lockdown would be equal to

0, which does not accurately represent the true e↵ect of the lockdown in the SEIRS-model. The

e↵ectivity of the lockdown is determined by the following quantity:

ESEIRS :=

✓
1�

Imax+u(t)

Imax

◆
⇤ 100%. (8)

For the SEIRS-model with lockdown and the parameter values as in Table 4, we have Imax =

2, 487, 700 infections, and Imax+u(t) = 2, 487, 600 infections (see Figure 20). This means that the

e↵ectivity of the lockdown was equal to

ESEIRS =

✓
1�

Imax+u(t)

Imax

◆
⇤ 100% =

✓
1� 2, 487, 600

2, 487, 700

◆
⇤ 100% = 0.004%. (9)

Thus, the e↵ect of the lockdown for the SEIRS-model with parameter values as in Table 4 is

negligible. However, the negligible e↵ect of the lockdown on the maximum infection value is

explicable: as mentioned in Section 3.2.1, the ratio between the initial value of infected people,

E(1), and the population size should be around 1
10000 for the value of � and u(t) to have an

observable e↵ect. However, the ratio for the SEIRS-model with lockdown and the parameters as

in Table 4 is equal to E(1)
N = 12

17395687 = 6.898⇤10�7, which is too small. Nevertheless, this makes

sense, since the population size is in all likelihood too great. Also, the initial value of exposed

people is equal to 12, but these were 12 infections reported in hospital that were exposed first

[3]. It could very well be that the true initial value of exposed people was much higher due

to underreporting. Also, Figure 21 shows a three-dimensional and contour plot of maximum

infection values for all values of � and � according to COVID-19 data (see Appendix T). From

the figure and Section 3.2.2 we see that the contour plot looks like the contour plot without

lockdown as in Figure 17, which means that the current values for � and therefore also � have

little or no impact on the infection values, which is indeed true (see Figure 20). Furthermore,

from Section 3.2.1 we know that the values for µ, !, �, and ↵ have considerable e↵ect on the

infection curve. Since changing µ and ! only cause the limit of the infection curve to go to a

nonzero constant, it is not relevant to look at, since we only analyze the starting period of the

infection curve and we do not consider the limit. Since Figure 20 shows that the infection curve

with lockdown is moved too much to the right with respect to the period prevalence curve, and

since we know the influence of ↵ and � from our simulations in Section 3.2.2, we now know that

the value for ↵ and � were both too low. This makes sense, since we now know that people can

also die from COVID-19, so ↵ = 0 was an incorrect assumption [3]. Also, we now know that the

latency period instead of seven days could also have been shorter, namely five days [24]. In light

of the above, the infection curve with lockdown in Figure 10 can be considered a representation

of the impact of the ratio between the population size and initial infected people on the infection
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curve, a lockdown that is implemented too early, and incorrect assumptions for values of ↵ and

�, rather than the impact of implementing a lockdown on the infection curve.

Figure 21: Three-dimensional (left) and contour (right) plots of maximum infection values for
all values of � and � according to COVID-19 data.

In consideration of the above, it is valuable to apply some more parameter fitting, to see whether

we get a more adequate SEIRS-model and a more visible e↵ect of the lockdown. For the infection

curve in the SEIRS-model, the population size was adjusted to the population size of people

aged 61 or older, which in March 2020 was equal to approximately 3.4 million people [16].

Also, the value for E(1) was changed to E(1) = 1200 to obtain a proper ratio of E(1) and

N . Furthermore, the value of ↵ was changed to ↵ = 1
83⇤365 since people who died due to the

consequences of COVID-19 were on average 83 years old [23]. Likewise, the value of � was

changed to � = 1
5 , since literature has shown that the incubation time for COVID-19 could also

be five days. Lastly, to see a better e↵ect of the lockdown, instead of using the mean of u(t),

which was equal to u(t) = 0.6118, u(t) is used as a time-dependent function in which the values

for u(t) change per day and are according to the mean lockdown curve as in Figure 9.

To see the impact of the change in parameter values seperately, the population size, the

initial exposure value, and the values for ↵ and � were first and at the same time changed, since

visualisation of the impact of implementing a lockdown is dependent on a proper ratio between

the population size, the initial exposure value, and the values for ↵ and � as mentioned in Section

3.2.2. These parameter values were all changed at the same time, since there otherwise would

not be a proper ratio between the population size and the initial value of exposed people and

the impact of a proper ratio and the visibility of the impact of the ratio between population size

and initial value of exposed people is dependent on reasonable values for ↵ and � and vice versa.

Figure 22 shows the SEIRS-model over time with and without lockdown with new parameter

values for the population size and initial infection value. The figure shows that because of the

decrease in population size the maximum infection values for both the infection curve with and

without lockdown has decreased considerably. Also, both infection curves moved to the left

because of the proper ratio between the new values of the population size and initial infection

value. However, the impact of implementing a lockdown is still not very evident, since the
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infection curve is still not enough during the period 01-03-2020 to 01-06-2020, which means that

the lockdown period is too early and no e↵ect of the lockdown on the infection curve is visible,

as also explained in Section 3.2.1 (see Appendix M).

Figure 23 shows the SEIRS-model over time with and without lockdown with both new

parameter values for population size, initial exposure value, other values for ↵ and �, as well

as a time-dependent lockdown strength. Changing the lockdown strength to a time-dependent

function upon changing the parameter values of the population size and initial infection value

was done explicitly, since a decent visualisation of the impact of implementing a lockdown is

dependent on a proper ratio between the population size and the initial exposure value, which

would not have been the case using the population size and initial exposure value as in Table 4.

However, the figure does not show an improvement in terms of maximum infection value. On

the contrary, the maximum infection value has even increased compared to the infection curve

without lockdown. The reason for this remains unclear, except that it must have something to

do with the parameter fitting. On the other hand, the infection curve is moved more to the

left, and therefore, the impact of � becomes more clear as explained in Section 3.2.2, as a result

of which the maximum infection value could increase more easily and to a higher value. The

influence of the lockdown is probably not seen because it was implemented too early to see the

impact of the lockdown strength, despite its strength (see Appendix M).

Figure 22: SEIRS-model over time with and without lockdown with new parameter values for
N , E(1), ↵, and �
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Figure 23: SEIRS-model over time with and without lockdown according to COVID-19 data

Applying the new parameter values into the SEIRS-model has not proven to provide a more

adequate infection curve with and without lockdown, since it still did not show many resemb-

lance with the period prevalence curve. On the contrary, it provided a worse description of

reality. Therefore, the e↵ectivity of the lockdown as calculated earlier can be considered the

best e↵ectivity for the SEIRS-model, which is equal to ESEIRS = 0.004%. Thus, the e↵ect of the

lockdown for the SEIRS-model with parameter values as in Table 4 is negligible, since a change

of 0.004% in maximum infection values can be considered irrelevant. However, the theoretical

infection curves as in Section 3.2.2 have shown that implementing a lockdown in a SEIRS-model

certainly can be e↵ective. However, this is dependent on correct parameter fitting, which can

be concluded to not be possible for this SEIRS-model. However, it must be stated that the

SEIRS-model has more parameter values which all can have an impact on each other, as a result

of which small changes in parameter values can have a considerable impact on the infection

curve, which makes interpretation of the influence of the parameter values more di�cult.

4 Optimal starting day and duration

Until now, we tried to explore the e↵ectivity of the lockdown implemented in the Netherlands

from 15-03-2020 until 11-05-2020. To do this, we used the SIR- and SEIRS-models to simulate the

period prevalence curve. When the infection curve with lockdown in the SIR- and SEIRS- model

was considered adequate to describe the period prevalence curve, the e↵ectivity was determined.

It was concluded that implementing a lockdown indeed can be very e↵ective to reduce the spread
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of a virus. Now, given that implementing a lockdown is e↵ective, it is interesting to analyze the

influence of the starting day and duration of a lockdown, to see whether another starting day

and/or duration could yield an even more e↵ective lockdown. To see whether there potentially

was a more optimal starting day or duration, first the SIR-model was used and then the SEIRS-

model.

4.1 The SIR-model

A possibly better starting day and duration were determined with the SIR-model with the

parameter values that yielded the infection curve with lockdown as in Figure 12 (i.e., N =

3, 400, 000; I(1) = 1200; and u(t) = 0.6118. See also Section 3.1.3). Because of a lack of

su�ciently enough knowledge of MATLAB, u(t) was used as a constant instead of the time-

dependent function. However, the di↵erences in maximum infection value between u(t) = 0.6118

and u(t) was 609, 020� 582, 480 = 26, 540, which can be considered small.

Figure 24 shows a three-dimensional and contour plot of the maximum infection values for

all di↵erent starting days and durations, with a red circle representing the maximum infection

value for the lockdown as it was in the Netherlands according to the SIR-model, with starting

day 15-03-2020 (t1 = 15) and a duration of 57 days, which was equal to Imax = 609, 020 (see

Appendix V). Figure 25 shows a plot of the maximum infection values for di↵erent starting days

with constant duration of 57 days according to the COVID-19 data. According to Figure 24

and Figure 25, the maximum infection value with the current starting day and duration was

already in the area where the maximum infection values are decreasing, which means that the

current lockdown start and duration already was better than doing nothing (see Appendix W).

Nonetheless, the maximum infection value could have been lower by only changing the starting

day to t1 ⇡ 19. Then, the maximum infection value would have been equal to Imax = 204, 360.

This makes sense, since the lockdown start would have been implemented more during the

increase of the infection curve, and therefore, the lockdown has more impact on the maximum

infection value, as also explained in Section 3.2.2. The e↵ectivity of the lockdown in this case

would have been equal to:

ESIR =

✓
1�

Imax+u(t)

Imax

◆
⇤ 100% =

✓
1� 204, 360

978, 470

◆
⇤ 100% = 79.1%. (10)

Additionally, Figure 24 shows that changing only the duration of the lockdown to a shorter -

and thus more acceptable - one, 49 days instead of 57, would also have yielded a lower maximum

infection value, namely Imax = 282, 210. The e↵ectivity of the lockdown in this case would have

been equal to:

ESIR =

✓
1�

Imax+u(t)

Imax

◆
⇤ 100% =

✓
1� 282, 210

978, 470

◆
⇤ 100% = 71.2%. (11)

Thus, the above shows that despite the fact that the lockdown with starting day 15-03-2020 and

duration of 57 days yielded a decrease in maximum infection values and yielded an e↵ectivity
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of 37.8%:

ESIR =

✓
1�

Imax+u(t)

Imax

◆
⇤ 100% =

✓
1� 609, 020

978, 470

◆
⇤ 100% = 37.8%, (12)

when the lockdown would have been implemented a couple of days later or the duration would

have been a week shorter, the maximum infection values would have been even less and the

e↵ectivity of the lockdown would have increased with 41.3% or 33.4% for changing the starting

day and the duration respectively. It can be concluded that implementing a lockdown at the

right moment for the right time can have an immense impact on the maximum infection values.

Figure 24: Three-dimensional and contour plot of maximum infection values for all possible time
intervals according to COVID-19 data
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Figure 25: Plot of the maximum infection values for di↵erent starting days with constant dura-
tion of 57 days according to COVID-19 data

4.2 The SEIRS-model

A possibly better starting day and duration were determined with the SEIRS-model with the

parameter values that yielded the infection curve with lockdown as in Figure 22 (i.e., n =

3, 400, 000; E(1) = 1200; u(t) = 0.6118; ↵ = 1
83⇤365 ; and � = 1

5 . See also Section 3.2.3). Again,

because of a lack of su�cient knowledge on MATLAB u(t) was used as a constant instead of

the time-dependent function.

Figure 26 shows a three-dimensional and contour plot of the maximum infection values for

all di↵erent starting days and durations, with a red circle representing the maximum infection

value for the lockdown as it was in the Netherlands, with starting day 15-03-2020 (t1 = 15) and

a duration of 57 days, which was equal to Imax = 552, 630 (see Appendix X). Figure 27 shows

a plot of the maximum infection values for di↵erent starting days with constant duration of 57

days according to the COVID-19 data (see Appendix Y). According to Figure 26 and Figure 27,

the maximum infection value with the current starting day and duration was already in the area

where the maximum infection values are lowest, which means that the current lockdown start

and duration were already optimal, despite the fact that the e↵ectivity in this case is equal to:

ESEIRS =

✓
1�

Imax+u(t)

Imax

◆
⇤ 100% =

✓
1� 552, 630

566, 460

◆
⇤ 100% = 2.4%. (13)

This means that the maximum infection values are less influenced by the lockdown start and/or

duration.
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Figure 26: Three-dimensional and contour plot of maximum infection values for all possible time
intervals according to COVID-19 data

Figure 27: Plot of the maximum infection values for di↵erent starting days with constant dura-
tion of 57 days according to COVID-19 data

5 Pareto E�ciency

Now that we have also determined whether the lockdown in the Netherlands could have been

more optimal in starting day or duration, the only thing left to determine is whether the lockdown

at that time could be considered Pareto e�cient.
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5.1 Theoretical background

Pareto e�ciency can be defined as a situation in which it is not possible to optimise one situation

without it being at the expense of the other situation [6]. It is a concept from multi-objective

optimisation theory, in which the aim is to optimise a problem with more than one objective [6].

The trade-o↵ between the two objective functions is related to the level curves of the objective

functions and its gradients:

Definition 1. A solution is called Pareto e�cient if and only if the gradient of one objective

function is perpendicular to the level curve of the other objective function and both level curves

have opposite directions.

Definition 2. The Pareto Front is the set of all Pareto e�cient solutions.

Here, it is desirable to minimize the maximum value of the infection curve while at the same time

minimizing the duration and the strength of the lockdown. Therefore, the objective functions

chosen were Imax := max I(t) and u (t)tot :=
⇣R t2

t1
u(t) dt

⌘
, which represent the maximum value

of the infections and the surface of the duration and strength of the lockdown respectively. The

Pareto Front could be simulated using the gamultiobj function in Matlab with I (t)max and

u (t)tot as the objective functions (see Appendix 10 and 11).

5.2 Pareto e�ciency for SIR- and SEIRS-model with arbitrary parameter

values

Before applying actual data, it was valuable to analyze Pareto Fronts for di↵erent values of �

and �, since it can show us the impact of di↵erent values of the parameters. Figure 28 and

Figure 29 show Pareto Fronts with Imax and utot as the objective functions for four di↵erent

values of � (see Appendix Z and 7). The Pareto e�cient solutions for all di↵erent values for

� cause a vertical line for Imax = 0. This means that the Pareto e�cient solutions are less

dependent on utot, and therefore less dependent on the lockdown strength and duration, and

more on the value for Imax. The four and three curves also show a more or less linear descending

line, which means that as Imax increases in value, the values for utot decrease. This makes sense,

since aiming for a low value of Imax is dependent on the choice of the lockdown strength and

duration and the other way around.

Additionally, the Pareto Fronts show that when � increases in value, the number of Pareto

e�cient solutions for Imax = 0 decreases per value of �. However, the decrease is not linear,

since the gap between � = 0.3 and � = 0.5 is much bigger than the gap between � = 0.5 and

� = 0.7. Thus, for low values of �, aiming for a low Imax is longer independent of utot than for

higher values of �. Lastly, as � increases in value, the starting value of descending increases,

which makes sense since Imax is less dependent on the lockdown strength and duration for higher

values of �.
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Figure 28: Pareto Front for SIR-model with I (t)max and u (t)tot =
R t2
t1

u(t) dt as the objective
functions for di↵erent values of �

Figure 29: Pareto Front for SEIRS-model with I (t)max and u (t)tot =
R t2
t1

u(t) dt as the objective
functions for di↵erent values of �

Figure 30 and Figure 31 show Pareto Fronts with Imax and utot as the objective functions for four

di↵erent values of � (see Appendix 8 and 9). The four and three curves also show a descending

line, which means that as Imax increases in value, the values for utot decrease. This makes

sense, since aiming for a low value of Imax is dependent on the choice of the lockdown strength

and duration, and the other way around. Whereas the Pareto Fronts leave the y-axis earlier

for bigger values for �, the Pareto Fronts leave the y-axis earlier for smaller values for �. All

curves show a vertical descent at Imax = 0 and later again an increase in descending pace, which

38



means that for Imax = 0 and at a certain value for Imax bigger changes in utot - and therefore

in lockdown strength or duration - still imply Pareto e�cient solutions for the same number of

Imax.

The plots also show that for small changes in � the Pareto Fronts di↵er greatly and for

� � 0.5 all Pareto e�cient solutions are around (0,0) and could therefore not be plotted into

the figure. The Pareto Fronts also show di↵erent curves, which means that the same change in

size of � does not imply that the change in Pareto Front is similar. This means that � changes

in impact per value of � and impact increases when the value of � decreases.

Figure 30: Pareto Front with Imax and u (t)tot =
R t2
t1

u(t) dt as the objective functions for di↵erent
values of �
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Figure 31: Pareto Front with Imax and u (t)tot =
R t2
t1

u(t) dt as the objective functions for di↵erent
values of �

5.3 Pareto e�ciency for SIR- and SEIRS-model with parameter values from

COVID-19 data

5.3.1 The SIR-model

For the SIR-model, Figure 32 shows the Pareto Front with Imax on the x-axis and utot on the

y-axis. For the SIR-model, utot = 57 ⇤ 0.6118 = 34.9 and Imax = 609, 020. This means that

this combination of duration and lockdown strength was not optimal and could have been more

optimal by reducing the lockdown strength or the duration (see Appendix 10).
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Figure 32: Pareto Front for SIR-model with I (t)max and u (t)tot =
R t2
t1

u(t) dt as the objective
functions.

5.3.2 The SEIRS-model

For the SEIRS-model, Figure 33 shows the Pareto Front with Imax on the x-axis and utot on

the y-axis. For the SEIRS-model, utot = 57 ⇤ 0.6118 = 34.9 and Imax = 552630. This means

that this combination of duration and lockdown strength was not optimal and could have been

improved by reducing the lockdown strength or the duration (see Appendix 11).

41



Figure 33: Pareto Front for SEIRS-model with Imax and utot =
R t2
t1

u(t) dt as the objective
functions

6 Conclusion

Many ways to reduce the spread of an infectious disease such as COVID-19 have been identi-

fied, both at the societal level as well as the individual level. One at the societal level is the

introduction of lockdowns as a measure to reduce the spread of COVID-19. Lockdowns may

be e↵ective but have many drawbacks at the individual, societal and economic level. However,

not much research has yet been done on the e↵ectiveness of lockdowns as a measure to reduce

the spread of infections. Therefore, this bachelor thesis focused on exploring the e↵ectiveness

of the first lockdown implemented in the Netherlands from 15-03-2020 until 11-05-2020. It was

determined whether the lockdown at that time was Pareto e�cient and whether there could

have been a more optimal starting day and/or duration of the lockdown. A theoretical model

describing reality was needed to determine the above. An important finding was that it proved

quite di�cult to find a theoretical model describing reality adequately. Additionally, the results

implied that the lockdown in the Netherlands could have been imposed later and for a shorter

duration. However, more research should be done on the influence of the parameter values on

the theoretical models to form theoretical models that more realistically describe reality.

42



References 

Alirol, E., Getaz, L., Stoll, B., Chappuis, F., & Loutan, L. (2011). Urbanisation and infectious 

diseases in a globalised world. The Lancet Infectious Diseases, 11(2), 131–141. 

https://doi.org/10.1016/S1473-3099(10)70223-1 

Ayouni, I., Maatoug, J., Dhouib, W., Zammit, N., Fredj, S. B., Ghammam, R., & Ghannem, H. 

(2021). Effective public health measures to mitigate the spread of COVID-19: A systematic 

review. BMC Public Health, 21, 1015. https://doi.org/10.1186/s12889-021-11111-1 

Balasko, Y. (1979). Budget-constrained Pareto-efficient allocations. Journal of Economic Theory, 

21(3), 359–379. https://doi.org/10.1016/0022-0531(79)90046-2 

Bishop, T., Reinke, J., & Adams, T. (2011). Globalization: Trends and Perspectives. Journal of 

International Business Research. 

Bjørnstad, O. N., Shea, K., Krzywinski, M., & Altman, N. (2020). The SEIRS model for infectious 

disease dynamics. Nature Methods, 17(6), Article 6. https://doi.org/10.1038/s41592-020-

0856-2 

Bozkurt, A., Karakaya, K., Turk, M., Karakaya, Ö., & Castellanos-Reyes, D. (2022). The Impact 

of COVID-19 on Education: A Meta-Narrative Review. Techtrends, 66(5), 883–896. 

https://doi.org/10.1007/s11528-022-00759-0 

Britton, T., & Leskelä, L. (2023a). Optimal intervention strategies for minimizing total incidence 

during an epidemic. SIAM Journal on Applied Mathematics, 83(2), 354–373. 

https://doi.org/10.1137/22M1504433 

Britton, T., & Leskelä, L. (2023b). Optimal intervention strategies for minimizing total incidence 

during an epidemic. SIAM Journal on Applied Mathematics, 83(2), 354–373. 

https://doi.org/10.1137/22M1504433 

Burki, T. (2020). The indirect impact of COVID-19 on women. The Lancet. Infectious Diseases, 

20(8), 904–905. https://doi.org/10.1016/S1473-3099(20)30568-5 



Cleaveland, S., Haydon, D. T., & Taylor, L. (2007). Overviews of Pathogen Emergence: Which 

Pathogens Emerge, When and Why? Wildlife and Emerging Zoonotic Diseases: The Biology, 

Circumstances and Consequences of Cross-Species Transmission, 315, 85–111. 

https://doi.org/10.1007/978-3-540-70962-6_5 

Cohen, J., & Rodgers, Y. van der M. (2020). Contributing factors to personal protective equipment 

shortages during the COVID-19 pandemic. Preventive Medicine, 141, 106263. 

https://doi.org/10.1016/j.ypmed.2020.106263 

COVID-19 dataset. (n.d.). Retrieved 8 May 2023, from https://data.rivm.nl/covid-19/ 

Cucinotta, D., & Vanelli, M. (2020). WHO Declares COVID-19 a Pandemic. Acta Bio-Medica: 

Atenei Parmensis, 91(1), 157–160. https://doi.org/10.23750/abm.v91i1.9397 

cycles, T. text provides general information S. assumes no liability for the information given being 

complete or correct D. to varying update, & Text, S. C. D. M. up-to-D. D. T. R. in the. (n.d.). 

Topic: Coronavirus: impact on the global economy. Statista. Retrieved 30 June 2023, from 

https://www.statista.com/topics/6139/covid-19-impact-on-the-global-economy/ 

Deaths from lower respiratory infections, by age. (n.d.). Retrieved 5 December 2022, from 

https://ourworldindata.org/grapher/deaths-from-lower-respiratory-infections-by-age 

Di Domenico, L., Pullano, G., Sabbatini, C. E., Boëlle, P.-Y., & Colizza, V. (2020). Impact of 

lockdown on COVID-19 epidemic in Île-de-France and possible exit strategies. BMC 

Medicine, 18, 240. https://doi.org/10.1186/s12916-020-01698-4 

Forecasted global real GDP growth 2024. (n.d.-a). Statista. Retrieved 30 June 2023, from 

https://www.statista.com/statistics/1102889/covid-19-forecasted-global-real-gdp-growth/ 

Forecasted global real GDP growth 2024. (n.d.-b). Retrieved 20 June 2023, from 

https://www.statista.com/statistics/1102889/covid-19-forecasted-global-real-gdp-growth/ 

ILO: As job losses escalate, nearly half of global workforce at risk of losing livelihoods. (2020). 

http://www.ilo.org/global/about-the-ilo/newsroom/news/WCMS_743036/lang–en/index.htm 



Jefferson, T., Del Mar, C. B., Dooley, L., Ferroni, E., Al‐Ansary, L. A., Bawazeer, G. A., van 

Driel, M. L., Nair, N. S., Jones, M. A., Thorning, S., & Conly, J. M. (2011). Physical 

interventions to interrupt or reduce the spread of respiratory viruses. The Cochrane Database 

of Systematic Reviews, 2011(7), CD006207. 

https://doi.org/10.1002/14651858.CD006207.pub4 

Johnson, C. K., Hitchens, P. L., Pandit, P. S., Rushmore, J., Evans, T. S., Young, C. C. W., & 

Doyle, M. M. (2020). Global shifts in mammalian population trends reveal key predictors of 

virus spillover risk. Proceedings of the Royal Society B: Biological Sciences, 287(1924), 

20192736. https://doi.org/10.1098/rspb.2019.2736 

Li, Y., & Nair, H. (2022). Trends in the global burden of lower respiratory infections: The knowns 

and the unknowns. The Lancet Infectious Diseases, 22(11), 1523–1525. 

https://doi.org/10.1016/S1473-3099(22)00445-5 

Lu, G., Zhang, Y., Zhang, H., Ai, J., He, L., Yuan, X., Bao, S., Chen, X., Wang, H., Cai, J., Wang, 

S., Zhang, W., & Xu, J. (n.d.). Geriatric risk and protective factors for serious COVID-19 

outcomes among older adults in Shanghai Omicron wave. Emerging Microbes & Infections, 

11(1), 2045–2054. https://doi.org/10.1080/22221751.2022.2109517 

Melikechi, O., Young, A. L., Tang, T., Bowman, T., Dunson, D., & Johndrow, J. (2022). Limits of 

epidemic prediction using SIR models. Journal of Mathematical Biology, 85(4), 36. 

https://doi.org/10.1007/s00285-022-01804-5 

Michaud, C. M. (2009). Global Burden of Infectious Diseases. Encyclopedia of Microbiology, 

444–454. https://doi.org/10.1016/B978-012373944-5.00185-1 

Ministerie van Volksgezondheid, W. en S. (n.d.-a). Reproductiegetal | Coronadashboard | 

Rijksoverheid.nl. Retrieved 8 May 2023, from https://coronadashboard.rijksoverheid.nl 

Ministerie van Volksgezondheid, W. en S. (n.d.-b). Sterfte | Coronadashboard | Rijksoverheid.nl. 

Retrieved 30 June 2023, from https://coronadashboard.rijksoverheid.nl 



Quesada, J. A., López-Pineda, A., Gil-Guillén, V. F., Arriero-Marín, J. M., Gutiérrez, F., & 

Carratala-Munuera, C. (2021). Incubation period of COVID-19: A systematic review and 

meta-analysis. Revista Clinica Espanola, 221(2), 109–117. 

https://doi.org/10.1016/j.rceng.2020.08.002 

Safiri, S., Mahmoodpoor, A., Kolahi, A.-A., Nejadghaderi, S. A., Sullman, M. J. M., Mansournia, 

M. A., Ansarin, K., Collins, G. S., Kaufman, J. S., & Abdollahi, M. (2023). Global burden of 

lower respiratory infections during the last three decades. Frontiers in Public Health, 10, 

1028525. https://doi.org/10.3389/fpubh.2022.1028525 

Scholte, J. A. (2008). Defining Globalisation. The World Economy, 31(11), 1471–1502. 

https://doi.org/10.1111/j.1467-9701.2007.01019.x 

Skyrud, K., Telle, K., & Magnusson, K. (2021). Impacts of mild and severe COVID-19 on sick 

leave. International Journal of Epidemiology, 50(5), 1745–1747. 

https://doi.org/10.1093/ije/dyab182 

Statistiek, C. B. voor de. (n.d.-a). Bevolkingspiramide [Webpagina]. Centraal Bureau voor de 

Statistiek. Retrieved 30 June 2023, from https://www.cbs.nl/nl-nl/visualisaties/dashboard-

bevolking/bevolkingspiramide 

Statistiek, C. B. voor de. (n.d.-b). Bevolkingsteller [Webpagina]. Centraal Bureau voor de 

Statistiek. Retrieved 30 June 2023, from https://www.cbs.nl/nl-nl/visualisaties/dashboard-

bevolking/bevolkingsteller 

Stok, F. M., Bal, M., Yerkes, M. A., & de Wit, J. B. F. (2021). Social Inequality and Solidarity in 

Times of COVID-19. International Journal of Environmental Research and Public Health, 

18(12), 6339. https://doi.org/10.3390/ijerph18126339 

The impact of COVID-19 on mental, neurological and substance use services. (n.d.). Retrieved 1 

May 2023, from https://www.who.int/publications-detail-redirect/978924012455 



WHO Coronavirus (COVID-19) Dashboard. (n.d.). Retrieved 1 May 2023, from 

https://covid19.who.int 

Woc-Colburn, L., & Godinez, D. (2022). Lockdown as a public health measure. COVID-19 

Pandemic, 133–136. https://doi.org/10.1016/B978-0-323-82860-4.00013-6 

World Economic Outlook, October 2020: A Long and Difficult Ascent. (n.d.). Retrieved 1 May 

2023, from https://www.imf.org/en/Publications/WEO/Issues/2020/09/30/world-economic-

outlook-october-2020 

Wu, Y.-C., Chen, C.-S., & Chan, Y.-J. (2020). The outbreak of COVID-19: An overview. Journal 

of the Chinese Medical Association, 83(3), 217–220. 

https://doi.org/10.1097/JCMA.0000000000000270 

Zaken, M. van A. (2022, June 17). Coronavirus tijdlijn—Rijksoverheid.nl [Onderwerp]. Ministerie 

van Algemene Zaken. https://www.rijksoverheid.nl/onderwerpen/coronavirus-tijdlijn 

(N.d.). Retrieved 30 June 2023, from https://covid19.who.int/data 

 



Appendices

A Appendix A

clear;

close all

% Read reproductionnumbers data

data = readtable (" reproductiegetallen.csv");

% Select columns to use

land = data.location;

datum = data.date;

reproductiegetal = data.reproduction_rate;

infectiesnieuw = data.new_cases;

cumulatief = data.total_cases;

% Make table

tabel = table(land , datum , reproductiegetal , infectiesnieuw ,

cumulatief);

tabel.land = cellstr(tabel.land);

land = "Netherlands ";

index = tabel.land == land;

% Create column with specific country only

nederland = tabel.land(index);

datums = tabel.datum(index);

reproductiegetal_nl = tabel.reproductiegetal(index);

infectiesnieuw_nl = tabel.infectiesnieuw(index);

cumulatief_nl = tabel.cumulatief(index);

nederlandtabel = table(nederland , datums , reproductiegetal_nl ,

infectiesnieuw_nl , cumulatief_nl);

% Select data from 01 -03 -2020 until 01 -06 -2020

startdatum = datetime('2020 -03 -06 ');
einddatum4 = datetime('2020 -06 -01 ');
beginlockdown = datetime('2020 -03 -15 ');
eindlockdown = datetime('2020 -05 -11 ');
maartjuni_nederland = nederlandtabel(nederlandtabel.datums >=

startdatum & nederlandtabel.datums <= einddatum4 , :);

plot(maartjuni_nederland.datums , maartjuni_nederland.
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reproductiegetal_nl);

plot(maartjuni_nederland.datums , maartjuni_nederland.

cumulatief_nl);

% NEW CASES

% Calculate sum of current values and last 10 values

maartjuni_nederland.Goede = zeros(size(maartjuni_nederland.

infectiesnieuw_nl));

maartjuni_nederland.Goede (1:9) = maartjuni_nederland.

infectiesnieuw_nl (1:9);

for i = 10: numel(maartjuni_nederland.infectiesnieuw_nl)

maartjuni_nederland.Goede(i) = sum(maartjuni_nederland.

infectiesnieuw_nl(i-9:i));

end

% Plot of period prevalence curve

plot(maartjuni_nederland.datums , maartjuni_nederland.Goede)

xlim([ datetime('01 -03 -2020 ', 'InputFormat ', 'dd -MM -yyyy ')
datetime('01 -06 -2020 ', 'InputFormat ', 'dd -MM -yyyy ')]);

xlabel('Dates ')
ylabel ('Infected people (n)')
hold on;

text(beginlockdown , 0, '15-03', 'VerticalAlignment ', 'top', '
HorizontalAlignment ', 'center ');

text(eindlockdown , 0, '11-05', 'VerticalAlignment ', 'top', '
HorizontalAlignment ', 'center ');

hold off;

B Appendix B

clear;

close all;

% Length of simulation (in days)

tmax = 100;

% Time step (in days)

dt = 0.01;

% Time values (in days)

t=0:dt:tmax;

% Create stepfunction

u = zeros(size(t));

u(t>=0 & t<15) = 0;
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u(t>=15 & t<72) = 0.75;

u(t>=72 & t<=92) = 0;

% Plot of exponential lockdown

plot(t,u)

xlabel('Time (in days)')
ylabel('Lockdown strength ')

begindag = 0;

einddag = 92;

beginlockdown = 15;

eindlockdown = 72;

simulatieeinde = 92;

xticks ([]);

hold on;

text(begindag , 0, '01-03', 'VerticalAlignment ', 'bottom ', '
HorizontalAlignment ', 'center ');

text(einddag , 0, '01-06', 'VerticalAlignment ', 'bottom ', '
HorizontalAlignment ', 'center ');

text(beginlockdown , 0, '15-03', 'VerticalAlignment ', 'bottom ', '
HorizontalAlignment ', 'center ');

text(eindlockdown , 0, '11-05', 'VerticalAlignment ', 'bottom ', '
HorizontalAlignment ', 'center ');

hold off;

C Appendix C

clear;

close all;

% Set Parameters

Rt = 2; % Transmission rate

P = 10000000; % Population

I0 = 1000; % Initial infected population

tmax = 100; % Length of simulation (in days)

dt = 0.01; % Time step (in days)

% Initialize values

t=0:dt:tmax; % Time values (in days)

nt = length(t); % Number of timesteps

S = zeros(1, nt); % Susceptible values

I = zeros(1, nt); % Infected values
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R = zeros(1, nt); % Recovered values

S(1) = P - I0; % Initial value of S

I(1) = I0; % Initial value of I

R(1) = 0; % Initial value of R

% Calculations

beta = 0.6; % Transmission rate (per day)

gamma = 0.2; % Recovery rate (per day)

lockdown_values = [0, 0.75]; % Lockdown strength values

figure; % Create a new figure for the plot

hold on; % Enable holding the plot to add multiple lines

% Create SIR model for each lockdown value

for i = 1: length(lockdown_values)

lockdown = lockdown_values(i);

% Create step function for u

u = zeros(1, nt);

u(t >= 0 & t < 20) = 0;

u(t >= 20 & t < 40) = lockdown;

u(t >= 40) = 0;

% Reset initial values for each lockdown value

S(1) = P - I0;

I(1) = I0;

R(1) = 0;

% Create SIR model

for j = 2:nt

dS = (-beta*(1-u(j))*I(j-1)*S(j-1)/P)*dt; %

Change in S

S(j) = S(j-1) + dS; %

Current S value

if S(j) < 0; S(j) = 0; end

dI = (beta*(1-u(j))*I(j-1)*S(j-1)/P-gamma*I(j-1))*dt; %

Change in I

I(j) = I(j-1)+dI; %

Current S value

if I(j) < 0; I(j) = 0; end
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dR = (gamma*I(j-1))*dt; %

Change in R

R(j) = R(j-1) + dR; %

Current R value

end

grootste = max(I(:));

% Plot of SIR model

plot(t, I, 'DisplayName ', sprintf('Lockdown: %.2f', lockdown)

);

end

hold off; % Release the hold on the plot

% Add titles , xlabel , ylabel , legends

xlabel('Time (in days)')
ylabel ('Infected people (n)')
legenda1 = legend('u(t) = 0', 'u(t) = 0.75 ');
set(legenda1 , 'Position ', [0.75, 0.78, 0.15, 0.05])

legendatekst1 = 'Lockdown start: 20';
legendatekst2 = 'Lockdown end: 40';
legendapositie = [0.72, 0.85, 0.18, 0.06]; %x,y,breedte ,hoogte

legenda2 = annotation('textbox ', legendapositie , 'String ', {

legendatekst1 , legendatekst2}, 'FontSize ', 9);

D Appendix D

clear;

close all;

% Set Parameters

Rt = 2; % Transmission rate

P = 10000000; % Population

I0 = 1000; % Initial infected population

tmax = 100; % Length of simulation (in days)

dt = 0.01; % Time step (in days)

% Initialize values

t=0:dt:tmax; % Time values (in days)

nt = length(t); % Number of timesteps

S = zeros(1, nt); % Susceptible values

I_b = zeros(1, nt); % Infected values
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R = zeros(1, nt); % Recovered values

S(1) = P - I0; % Initial value of S

I_b(1) = I0; % Initial value of I

R(1) = 0; % Initial value of R

% Calculations

beta = 0.6; % Transmission rate (per day)

gamma = 0.2; % Recovery rate (per day)

lockdown = 0.75;

% Define lockdown start and end values

startdays = [14, 18, 20, 22];

enddays = [34, 38, 40, 42];

aantal_plots = length(startdays);

figure; % Create a new figure for the plot

hold on; % Enable holding the plot to add multiple lines

% Create SIR model for each starting day and ending day

for i = 1: aantal_plots

startday = startdays(i);

endday = enddays(i);

% Create step function for u

u = zeros(1, nt);

u(t >= 0 & t < startday) = 0;

u(t >= startday & t < endday) = lockdown;

u(t >= endday) = 0;

% Reset initial values for each plot

S(1) = P - I0;

I_b(1) = I0;

R(1) = 0;

% Create SIR model

for j = 2:nt

dS = (-beta*(1-u(j))*I_b(j-1)*S(j-1)/P)*dt; %

Change in S

S(j) = S(j-1) + dS; %

Current S value

if S(j) < 0; S(j) = 0; end
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dI = (beta*(1-u(j))*I_b(j-1)*S(j-1)/P-gamma*I_b(j-1))*dt;

% Change in I

I_b(j) = I_b(j-1)+dI;

% Current S value

if I_b(j) < 0; I_b(j) = 0; end

dR = (gamma*I_b(j-1))*dt; %

Change in R

R(j) = R(j-1) + dR; %

Current R value

end

% Plot of SIR model

plot(t, I_b , 'DisplayName ', sprintf('Starting day: %d; Ending

day: %d', startday , endday));

end

hold off; % Release the hold on the plot

% Add xlabel , ylabel , and legends to plot

xlabel('Time (in days)')
ylabel ('Infected people (n)')
legend('Lockdown start: 14; Lockdown end: 34', 'Lockdown start:

18; Lockdown end: 38', 'Lockdown start: 20; Lockdown end: 40',
'Lockdown start: 22; Lockdown end: 44')

legendatekst1 = 'u(t) = 0.75 ';
legendapositie = [0.79, 0.72, 0.1, 0.04]; %x,y,breedte ,hoogte

legenda2 = annotation('textbox ', legendapositie , 'String ', {

legendatekst1}, 'FontSize ', 9);

E Appendix E

clear;

close all;

% Set Parameters

Rt = 2; % Transmission rate

P = 10000000; % Population

I0 = 1000; % Initial infected population

tmax = 100; % Length of simulation (in days)

dt = 0.01; % Time step (in days)
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% Define beta en gamma values

beta_values = 0:dt:1;

gamma_values = 0:dt:1;

% Initialize arrays for maximum I values

max_I_values = zeros(length(gamma_values), length(beta_values));

% Loop over beta and gamma values

for i = 1: length(beta_values)

for j = 1: length(gamma_values)

% Initialize values

t=0:dt:tmax; % Time values (in days)

nt = length(t); % Number of timesteps

S = zeros(1, nt); % Susceptible values

I = zeros(1, nt); % Infected values

R = zeros(1, nt); % Recovered values

S(1) = P - I0; % Initial value of S

I(1) = I0; % Initial value of I

R(1) = 0; % Initial value of R

% Calculations

beta = beta_values(i); % Transmission rate (per day)

gamma = gamma_values(j); % Recovery rate (per day)

lockdown = 0; % Lockdown strength

% Create step function for u

u = zeros(1, nt);

u(t >= 0 & t < 20) = 0;

u(t >= 20 & t < 40) = lockdown;

u(t >= 40) = 0;

% Create SIR model

for k = 2:nt

dS = (-beta*(1-u(k))*I(k-1)*S(k-1)/P)*dt;

% Change in S

S(k) = S(k-1) + dS;

% Current S value

if S(k) < 0; S(k) = 0; end

dI = (beta*(1-u(k))*I(k-1)*S(k-1)/P-gamma*I(k-1))*dt;

% Change in I
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I(k) = I(k-1)+dI;

% Current S

value

if I(k) < 0; I(k) = 0; end

dR = (gamma*I(k-1))*dt;

% Change in R

R(k) = R(k-1) + dR;

% Current R value

end

% Find maximum I value and save it

max_I = max(I);

max_I_values(j,i) = max_I;

end

end

% Create meshgrid for beta and gamma values

[BETA , GAMMA] = meshgrid(beta_values , gamma_values);

% Create 8 figures: 4 contour , 4 surface

figure;

% Plot 3D surface 1

subplot (4,2,1);

surf(BETA , GAMMA , max_I_values);

shading flat;

colormap summer;

xlabel('\beta ');
ylabel('\gamma ');
zlabel('Maximum I');
title('u(t) = 0');

% Create contour plot 1

subplot (4,2,2);

contourf(BETA , GAMMA , max_I_values , 'LineColor ', 'None ');
colormap summer;

colorbar;

xlabel('Transmission Rate (\beta)');
ylabel('Recovery Rate (\gamma)');
cb= colorbar;

title(cb , 'I_{max}');
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title('u(t) = 0');

% Plot 3D surface 2

subplot (4,2,3);

surf(BETA , GAMMA , max_I_values);

shading flat;

colormap summer;

xlabel('\beta ');
ylabel('\gamma ');
zlabel('Maximum I');
zlim ([0,5e6]);

xlim([0, 1])

ylim([0, 1]);

clim([0, 5e6]);

title('u(t) = 0');

% Create contour plot 2

subplot (4,2,4);

contourf(BETA , GAMMA , max_I_values , 'LineColor ', 'None ');
colormap summer;

colorbar;

xlabel('Transmission Rate (\beta)');
ylabel('Recovery Rate (\gamma)');
zlim ([0,5e6]);

xlim ([0 ,1])

ylim([0, 1]);

clim([0, 5e6]);

colorbar('Ticks ', 0:1e6:5e6);

cb= colorbar;

title(cb , 'I_{max}');
title('u(t) = 0');

% Plot 3D surface 3

subplot (4,2,5);

surf(BETA , GAMMA , max_I_values);

shading flat;

colormap summer;

xlabel('\beta ');
ylabel('\gamma ');
zlabel('Maximum I');
zlim ([0 ,10e5]);

xlim([0, 1])
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ylim([0, 1]);

clim([0, 10e5]);

title('u(t) = 0');

% Create contour plot 3

subplot (4,2,6);

contourf(BETA , GAMMA , max_I_values , 'LineColor ', 'None ');
colormap summer;

colorbar;

xlabel('Transmission Rate (\beta)');
ylabel('Recovery Rate (\gamma)');
zlim ([0 ,10e5]);

xlim ([0 ,1])

ylim([0, 1]);

clim([0, 10e5]);

colorbar('Ticks ', 0:2e5:10e5);

cb= colorbar;

title(cb , 'I_{max}');
title('u(t) = 0');

% Plot 3D surface 4

subplot (4,2,7);

surf(BETA , GAMMA , max_I_values);

shading flat;

colormap summer;

xlabel('\beta ');
ylabel('\gamma ');
zlabel('Maximum I');
zlim ([0 ,20000]);

xlim([0, 1])

ylim([0, 1]);

clim([0, 20000]);

title('u(t) = 0');

% Create contour plot 4

subplot (4,2,8);

contourf(BETA , GAMMA , max_I_values , 'LineColor ', 'None ');
colormap summer;

colorbar;

xlabel('Transmission Rate (\beta)');
ylabel('Recovery Rate (\gamma)');
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zlim ([0 ,20000]);

xlim ([0 ,1])

ylim([0, 1]);

clim([0, 20000]);

colorbar('Ticks ', 0:5000:20000);

cb= colorbar;

title(cb , 'I_{max}');
title('u(t) = 0');
sgtitle('Lockdown btw t_1 = 20 and t_2 = 40', 'FontSize ', 11, '

FontWeight ', 'bold ')

F Appendix F

clear;

close all;

% Set Parameters

Rt = 2; % Transmission rate

P = 10000000; % Population

I0 = 1000; % Initial infected population

tmax = 100; % Length of simulation (in days)

dt = 0.01; % Time step (in days)

% Define beta and gamma values

beta_values = 0:dt:1;

gamma_values = 0:dt:1;

% Define lockdown values

lockdown_values = [0.35 , 0.55, 0.75];

% Create figure

figure;

for l = 1: length(lockdown_values)

% Initialize arrays for maximum I values

max_I_values = zeros(length(gamma_values), length(beta_values

));

% Loop over beta en gamma waarden

for i = 1: length(beta_values)

for j = 1: length(gamma_values)

% Initialize values
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t=0:dt:tmax; % Time values (in days)

nt = length(t); % Number of timesteps

S = zeros(1, nt); % Susceptible values

I = zeros(1, nt); % Infected values

R = zeros(1, nt); % Recovered values

S(1) = P - I0; % Initial value of S

I(1) = I0; % Initial value of I

R(1) = 0; % Initial value of R

% Calculations

beta = beta_values(i); % Transmission rate (

per day)

gamma = gamma_values(j); % Recovery rate (per

day)

lockdown = lockdown_values(l); % Lockdown strength

% Create step function for u

u = zeros(1, nt);

u(t >= 0 & t < 20) = 0;

u(t >= 20 & t < 40) = lockdown;

u(t >= 40) = 0;

% Create SIR model

for k = 2:nt

dS = (-beta*(1-u(k))*I(k-1)*S(k-1)/P)*dt;

% Change in S

S(k) = S(k-1) + dS;

% Current S

value

if S(k) < 0; S(k) = 0; end

dI = (beta*(1-u(k))*I(k-1)*S(k-1)/P-gamma*I(k-1))

*dt; % Change in I

I(k) = I(k-1)+dI;

% Current S

value

if I(k) < 0; I(k) = 0; end

dR = (gamma*I(k-1))*dt;

% Change in R

R(k) = R(k-1) + dR;

% Current R
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value

end

% Find maximum I value and save it

max_I = max(I);

max_I_values(j,i) = max_I;

end

end

% Create meshgrid for beta en gamma waarden

[BETA , GAMMA] = meshgrid(beta_values , gamma_values);

% Plot 3D surface

subplot (3,2,l*2-1);

surf(BETA , GAMMA , max_I_values);

shading flat;

colormap summer;

xlabel('\beta ');
ylabel('\gamma ');
zlabel('Maximum I');
title(['u(t) = ', num2str(lockdown_values(l))]);

% Create contour plot

subplot (3,2,l*2);

contourf(BETA , GAMMA , max_I_values , 'LineColor ', 'None ');
colormap summer;

cb= colorbar;

title(cb , 'I_{max}');
xlabel('Transmission Rate (\beta)');
ylabel('Recovery Rate (\gamma)');
title(['u(t) = ', num2str(lockdown_values(l))]);

sgtitle('Lockdown btw t_1 = 20 and t_2 = 40', 'FontSize ', 11,

'FontWeight ', 'bold ')
end

G Appendix G

clear;

close all;

% Set Parameters

Rt = 2; % Transmission rate

P = 3400000; % Population
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I0 = 1200; % Initial infected population

tmax = 91; % Length of simulation (in days)

dt = 0.01; % Time step (in days)

% Initialize values

t=0:dt:tmax; % Time values (in days)

nt = length(t); % Number of timesteps

S = zeros(1, nt); % Susceptible values

I_nieuw = zeros(1, nt); % Infected values

R = zeros(1, nt); % Recovered values

S(1) = P - I0; % Initial value of S

I_nieuw (1) = I0; % Initial value of I

R(1) = 0; % Initial value of R

% Calculations

beta = 1; % Transmission rate (per day)

gamma = 1/7; % Recovery rate (per day)

% REPRODUCTIONNUMBER SIR -model

% load tables from other file

load('tabelIT.mat', 'maartjuni_italie ');
load('tabelFR.mat', 'maartjuni_frankrijk ');
load('tabelSP.mat', 'maartjuni_spanje ');

reproductiegetallen = table(maartjuni_frankrijk.datums (3:93) ,

maartjuni_italie.reproductiegetal_it (9:99) , maartjuni_frankrijk

.reproductiegetal_fr (3:93) , maartjuni_spanje.reproductiegetal_s

(1:91));

reproductiegetallen.Properties.VariableNames{'Var1 '} = 'Datums ';
reproductiegetallen.Properties.VariableNames{'Var2 '} = 'Italie ';
reproductiegetallen.Properties.VariableNames{'Var3 '} = 'Frankrijk

';
reproductiegetallen.Properties.VariableNames{'Var4 '} = 'Spanje ';
gemiddelde = mean(reproductiegetallen {:, {'Italie ', 'Frankrijk ',

'Spanje '}}, 2);

reproductiegetallen.Gemiddelde = gemiddelde;

reproductiegetallen.Betagetal = reproductiegetallen.Gemiddelde*

gamma;

R0_IT = mean(maartjuni_italie.reproductiegetal_it (1:15));

R0_FR = mean(maartjuni_frankrijk.reproductiegetal_fr (1:16));

R0_SP = mean(maartjuni_spanje.reproductiegetal_s (1:11));
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beta0_IT = R0_IT*gamma;

beta0_FR = R0_FR*gamma;

beta0_SP = R0_SP*gamma;

beta0 = (beta0_IT + beta0_FR + beta0_SP)/3;

% PLOT OF REPRODUCTIONNUMBERS OF EACH COUNTRY AND MEAN

REPRODUCTION LINE

figure;

plot(reproductiegetallen.Datums , reproductiegetallen.Italie);

hold on;

plot(reproductiegetallen.Datums , reproductiegetallen.Frankrijk);

plot(reproductiegetallen.Datums , reproductiegetallen.Spanje);

plot(reproductiegetallen.Datums , reproductiegetallen.Gemiddelde ,

'LineWidth ', 2);

hold off;

xlim([ datetime('01 -03 -2020 ', 'InputFormat ', 'dd -MM -yyyy ')
datetime('01 -06 -2020 ', 'InputFormat ', 'dd -MM -yyyy ')]);

xlabel (" Dates");

ylabel (" Reproduction numbers ");

legend('Italy ', 'France ', 'Spain ', 'Mean ', 'location ', 'northeast
');

saveas(gcf , 'reproductiegetallenITFRSP.png');

% LOCKDOWNS

lockdown_IT = 1-(( reproductiegetallen.Italie (7:63) *0.1429)/beta0)

;

lockdown_FR = 1-(( reproductiegetallen.Frankrijk (15:70) *0.1429)/

beta0);

lockdown_SP = 1-(( reproductiegetallen.Spanje (12:91) *0.1429)/beta0

);

u_IT = mean(lockdown_IT);

u_FR = mean(lockdown_FR);

u_SP = mean(lockdown_SP);

u0 = (u_IT + u_FR + u_SP)/3;

lockdown_IT2 = 1-(( reproductiegetallen.Italie (13:70) *0.1429)/
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beta0);

lockdown_FR2 = 1-(( reproductiegetallen.Frankrijk (13:70) *0.1429)/

beta0);

lockdown_SP2 = 1-(( reproductiegetallen.Spanje (13:70) *0.1429)/

beta0);

gemiddeldelockdown = 1-(( reproductiegetallen.Gemiddelde (13:70)

*0.1429)/beta0);

% PLOT OF LOCKDOWNS

figure;

plot(reproductiegetallen.Datums (13:70) , lockdown_IT2);

hold on;

plot(reproductiegetallen.Datums (13:70) , lockdown_FR2);

plot(reproductiegetallen.Datums (13:70) , lockdown_SP2);

plot(reproductiegetallen.Datums (13:70) , gemiddeldelockdown , '
LineWidth ', 2);

hold off;

xlim([ datetime('01 -03 -2020 ', 'InputFormat ', 'dd -MM -yyyy ')
datetime('01 -06 -2020 ', 'InputFormat ', 'dd -MM -yyyy ')]);

xlabel (" Dates");

ylabel (" Lockdownstrength ");

legend('Italy ', 'France ', 'Spain ', 'Mean ', 'location ', 'east ');

saveas(gcf , 'lockdowngetallenITFRSP.png');

% Make column to use in SIR -model for beta and u(t)

goede = zeros (91,1);

goede (1:12) = beta0;

goede (13:70) = beta0*gemiddeldelockdown;

goede (71:91) = beta0;

reproductiegetallen.betametlockdown = goede;

% LOCKDOWNSTRENGTH SIR -model

load('lockdowntabelIT.mat', 'lockdowntabel_it ');
load('lockdowntabelFR.mat', 'lockdowntabel_fr ');
load('lockdowntabelSP.mat', 'lockdowntabel_s ');

herhaling = reshape(repmat(reproductiegetallen.betametlockdown ,

1,100) ', [], 1);
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beginlockdown = 15; % Start lockdown

eindlockdown = 72; % End lockdown

beginsimulatie = 1; % Beginday

eindsimulatie = 92; % Endday

u(1) = herhaling (1);

% Create SIR model

for i = 2:nt

u(i) = herhaling(i-1);

dS = (-beta*(u(i))*I_nieuw(i-1)*S(i-1)/P)*dt;

% Change in S

S(i) = S(i-1) + dS;

% Current S

value

if S(i) < 0; S(i) = 0; end

dI = (beta*(u(i))*I_nieuw(i-1)*S(i-1)/P-gamma*I_nieuw(i-1))*

dt; % Change in I

I_nieuw(i) = I_nieuw(i-1)+dI;

% Current I value

if I_nieuw(i) < 0; I_nieuw(i) = 0; end

dR = (gamma*I_nieuw(i-1))*dt;

% Change in R

R(i) = R(i-1) + dR;

% Current R

value

end

grootste = max(I_nieuw (:)); % Maximum value of I

disp(grootste)

oppervlakte = trapz(t, I_nieuw (:)); % Surface under I graph

disp(oppervlakte)

% Plot of I graph from other file

plot(t,I_nieuw)

save('coronanederland_verbeterde_parameters.mat', 't', 'I_nieuw ')
;

xlabel('Time (in days)')
ylabel ('Infected people (n)')
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H Appendix H

clear;

close all

% Read reproductionnumbers data

data = readtable (" reproductiegetallen.csv");

% Select columns to use

land = data.location;

datum = data.date;

reproductiegetal = data.reproduction_rate;

% Make table

tabel = table(land , datum , reproductiegetal);

tabel.land = cellstr(tabel.land);

land = "France ";

index = tabel.land == land;

% Create new column with specific country only

frankrijk = tabel.land(index);

datums = tabel.datum(index);

reproductiegetal_fr = tabel.reproductiegetal(index);

frankrijktabel = table(frankrijk , datums , reproductiegetal_fr);

% Select data from 01 -03 -2020 until 01 -06 -2020

startdatum = datetime('2020 -03 -01 ');
einddatum4 = datetime('2020 -06 -01 ');
beginlockdown = datetime('2020 -03 -17 ');
maartjuni_frankrijk = frankrijktabel(frankrijktabel.datums >=

startdatum & frankrijktabel.datums <= einddatum4 , :);

plot(maartjuni_frankrijk.datums , maartjuni_frankrijk.

reproductiegetal_fr);

% Calculate beta0 and u(t)

gamma = 1/7;

sigma = 1/7;

mu = 1/(76*365);

reproductie0 = mean(maartjuni_frankrijk.reproductiegetal_fr (1:18)

);

beta0 = reproductie0*gamma;
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maartjuni_frankrijk.lockdownbetagetal = maartjuni_frankrijk.

reproductiegetal_fr*gamma;

reproductieseirs0 = mean(maartjuni_frankrijk.reproductiegetal_fr

(1:18));

beteaseirs0 = (reproductieseirs0 *(sigma+mu)*(gamma+mu))/sigma;

% Plot of reproductionnumber

plot(maartjuni_frankrijk.datums , maartjuni_frankrijk.

reproductiegetal_fr);

xlim([ datetime('01 -03 -2020 ', 'InputFormat ', 'dd -MM -yyyy ')
datetime('01 -06 -2020 ', 'InputFormat ', 'dd -MM -yyyy ')]);

xlabel ("Data");

ylabel (" Reproductiegetal ");

hold on;

plot(beginlockdown , 0, 'ro', 'MarkerSize ', 6, 'LineWidth ', 2);

text(beginlockdown , 0, '17-03', 'VerticalAlignment ', 'top', '
HorizontalAlignment ', 'center ');

hold off;

save('tabelFR.mat', 'maartjuni_frankrijk '); % Save table to use

in other file

% Plot of lockdownstrength in SIR -model

lockdown = 1-(( maartjuni_frankrijk.reproductiegetal_fr (17:72)

*0.1429)/beta0);

lockdowntabel_fr = table(maartjuni_frankrijk.datums (17:72) ,

lockdown);

gemiddeldelockdown = mean(lockdown);

plot(lockdowntabel_fr.Var1 , lockdowntabel_fr.lockdown);

xlabel ("Data")

ylabel (" Lockdownstrength ")

% Plot of lockdown strength in SEIRS -model

lockdownseirs = 1-(( maartjuni_frankrijk.reproductiegetal_fr

(17:72) *( gamma+mu)*( sigma+mu))/( sigma*beta0));

lockdowntabel_fr = table(maartjuni_frankrijk.datums (17:72) ,

lockdown , lockdownseirs);

gemiddeldelockdownseirs = mean(lockdowntabel_fr.lockdownseirs);

plot(lockdowntabel_fr.Var1 , lockdowntabel_fr.lockdownseirs);

xlabel ("Data")

ylabel (" Lockdownstrength ")
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save('lockdowntabelFR.mat', 'lockdowntabel_fr '); % Save table to

use in other file

I Appendix I

clear;

close all

% Read reproductionnumbers data

data = readtable (" reproductiegetallen.csv");

% Select columns to use

land = data.location;

datum = data.date;

reproductiegetal = data.reproduction_rate;

% Make table

tabel = table(land , datum , reproductiegetal);

tabel.land = cellstr(tabel.land);

land = "Italy";

index = tabel.land == land;

% Create new column with specific country only

italie = tabel.land(index);

datums = tabel.datum(index);

reproductiegetal_it = tabel.reproductiegetal(index);

italietabel = table(italie , datums , reproductiegetal_it);

% Select data from 01 -03 -2020 until 01 -06 -2020

startdatum = datetime('2020 -02 -24 ');
einddatum4 = datetime('2020 -06 -01 ');
beginlockdown = datetime('2020 -03 -09 ');
maartjuni_italie = italietabel(italietabel.datums >= startdatum &

italietabel.datums <= einddatum4 , :);

plot(maartjuni_italie.datums , maartjuni_italie.

reproductiegetal_it);

% Calculate beta0 and u(t)

gamma = 1/7;

sigma = 1/7;

mu = 1/(76*365);
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reproductie0 = mean(maartjuni_italie.reproductiegetal_it (1:15));

beta0 = reproductie0*gamma;

maartjuni_italie.lockdownbetagetal = maartjuni_italie.

reproductiegetal_it*gamma;

reproductieseirs0 = mean(maartjuni_italie.reproductiegetal_it

(1:15));

beteaseirs0 = (reproductieseirs0 *(sigma+mu)*(gamma+mu))/sigma;

% Plot of reproductionnumber

plot(maartjuni_italie.datums , maartjuni_italie.

reproductiegetal_it);

xlim([ datetime('24 -02 -2020 ', 'InputFormat ', 'dd -MM -yyyy ')
datetime('01 -06 -2020 ', 'InputFormat ', 'dd -MM -yyyy ')]);

xlabel ("Data");

ylabel (" Reproductiegetal ");

hold on;

plot(beginlockdown , 0, 'ro', 'MarkerSize ', 6, 'LineWidth ', 2);

text(beginlockdown , 0, '09-03', 'VerticalAlignment ', 'top', '
HorizontalAlignment ', 'center ');

hold off;

save('tabelIT.mat', 'maartjuni_italie '); % Save table to use in

other file

% Plot of lockdown strength for SIR -model

lockdown = 1-(( maartjuni_italie.reproductiegetal_it (15:71)

*0.1429)/beta0);

lockdowntabel_it = table(maartjuni_italie.datums (15:71) , lockdown

);

gemiddeldelockdown = mean(lockdowntabel_it.lockdown);

plot(lockdowntabel_it.Var1 , lockdowntabel_it.lockdown);

xlabel ("Data")

ylabel (" Lockdownstrength ")

% Plot of lockdown strength for SEIRS -model

alpha = 0;

lockdownseirs = 1-(( maartjuni_italie.reproductiegetal_it (15:71) *(

alpha+gamma+mu)*(sigma+mu))/(sigma*beta0));

lockdowntabel_it = table(maartjuni_italie.datums (15:71) , lockdown

, lockdownseirs);

gemiddeldelockdownseirs = mean(lockdowntabel_it.lockdownseirs);
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plot(lockdowntabel_it.Var1 , lockdowntabel_it.lockdownseirs);

xlabel ("Data")

ylabel (" Lockdownstrength ")

save('lockdowntabelIT.mat', 'lockdowntabel_it '); % Save table to

use in other file

J Appendix J

clear;

close all

% Read reproductionnumbers data

data = readtable (" reproductiegetallen.csv");

% Select columns to use

land = data.location;

datum = data.date;

reproductiegetal = data.reproduction_rate;

% Make table

tabel = table(land , datum , reproductiegetal);

tabel.land = cellstr(tabel.land);

land = "Spain";

index = tabel.land == land;

% Create new column only with specific country

spanje = tabel.land(index);

datums = tabel.datum(index);

reproductiegetal_s = tabel.reproductiegetal(index);

spanjetabel = table(spanje , datums , reproductiegetal_s);

% Select data from 01 -03 -2020 until 01 -06 -2020

startdatum = datetime('2020 -03 -03 ');
einddatum4 = datetime('2020 -06 -21 ');
beginlockdown = datetime('2020 -03 -14 ');
maartjuni_spanje = spanjetabel(spanjetabel.datums >= startdatum &

spanjetabel.datums <= einddatum4 , :);

plot(maartjuni_spanje.datums , maartjuni_spanje.reproductiegetal_s

); % Curve of reproduction numbers of country

% Calculate beta0 and u(t)
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gamma = 1/7;

sigma = 1/7;

mu = 1/(76*365);

reproductie0 = mean(maartjuni_spanje.reproductiegetal_s (1:12));

beta0 = reproductie0*gamma;

maartjuni_spanje.lockdownbetagetal = maartjuni_spanje.

reproductiegetal_s*gamma;

%plot(maartjuni_italie.datums , maartjuni_italie.lockdownbetagetal

);

reproductieseirs0 = mean(maartjuni_spanje.reproductiegetal_s

(1:15));

beteaseirs0 = (reproductieseirs0 *(sigma+mu)*(gamma+mu))/sigma;

% Plot of reproductionnumbers

plot(maartjuni_spanje.datums , maartjuni_spanje.reproductiegetal_s

);

xlim([ datetime('01 -03 -2020 ', 'InputFormat ', 'dd -MM -yyyy ')
datetime('21 -06 -2020 ', 'InputFormat ', 'dd -MM -yyyy ')]);

xlabel ("Data");

ylabel (" Reproductiegetal ");

hold on;

plot(beginlockdown , 0, 'ro', 'MarkerSize ', 6, 'LineWidth ', 2);

text(beginlockdown , 0, '14-03', 'VerticalAlignment ', 'top', '
HorizontalAlignment ', 'center ');

hold off;

save('tabelSP.mat', 'maartjuni_spanje '); % Save table to use in

other file

% Plot of lockdown strength for SIR -model

lockdown = 1-(( maartjuni_spanje.reproductiegetal_s (12:111)

*0.1429)/beta0);

lockdowntabel_s = table(maartjuni_spanje.datums (12:111) , lockdown

);

gemiddeldelockdown = mean(lockdowntabel_s.lockdown);

plot(lockdowntabel_s.Var1 , lockdowntabel_s.lockdown);

xlabel ("Data")

ylabel (" Lockdownstrength ")

% Plot of lockdown strength for SEIRS -model

lockdownseirs = 1-(( maartjuni_spanje.reproductiegetal_s (12:111) *(
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gamma+mu)*(sigma+mu))/(sigma*beta0));

lockdowntabel_s = table(maartjuni_spanje.datums (12:111) , lockdown

, lockdownseirs);

gemiddeldelockdownseirs = mean(lockdowntabel_s.lockdownseirs);

plot(lockdowntabel_s.Var1 , lockdowntabel_s.lockdownseirs);

xlabel ("Data")

ylabel (" Lockdownstrength ")

save('lockdowntabelSP.mat', 'lockdowntabel_s '); % Save table to

use in other file

K Appendix K

clear;

close all;

load(" coronanederland_verbeterde_parameters.mat"); % Table from

other file

% Set Parameters

Rt = 2; % Transmission rate

P = 17395687; % Population

I0 = 12; % Initial infected population

tmax = 150; % Length of simulation (in days)

dt = 0.01; % Time step (in days)

% Initialize values

t=0:dt:tmax; % Time values (in days)

nt = length(t); % Number of timesteps

S = zeros(1, nt); % Susceptible values

I = zeros(1, nt); % Infected values

R = zeros(1, nt); % Recovered values

S(1) = P - I0; % Initial value of S

I(1) = I0; % Initial value of I

R(1) = 0; % Initial value of R

% Calculations

beta = 0.4137; % Transmission rate (per day)

gamma = 1/7; % Recovery rate (per day)

lockdown_values = [0, 0.6118]; % Lockdown strength

beginlockdown = 15; % Start lockdown

eindlockdown = 72; % End lockdown
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beginsimulatie = 1; % Start day

eindsimulatie = 92; % End day

figure;

hold on;

for k = 1: length(lockdown_values)

lockdown = lockdown_values(k);

% Step function

u = zeros(1, nt);

u(t >= 0 & t < 15) = 0;

u(t >= 15 & t < 72) = lockdown;

u(t >= 72) = 0;

% Reset initial values for each lockdown value

S(1) = P - I0;

I(1) = I0;

R(1) = 0;

% Create SIR model

for i = 2:nt

dS = (-beta*(1-u(i))*I(i-1)*S(i-1)/P)*dt; %

Change in S

S(i) = S(i-1) + dS; %

Current S value

if S(i) < 0; S(i) = 0; end

dI = (beta*(1-u(i))*I(i-1)*S(i-1)/P-gamma*I(i-1))*dt; %

Change in I

I(i) = I(i-1)+dI; %

Current I value

if I(i) < 0; I(i) = 0; end

dR = (gamma*I(i-1))*dt; %

Change in R

R(i) = R(i-1) + dR; %

Current R value

end

grootste1 = max(I(:));

disp(grootste1)

oppervlakte = trapz(t, I(:));
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begindag = 0;

einddag = 92;

beginlockdown = 15;

eindlockdown = 72;

simulatieeinde = einddag;

% Plot of I graph

plot(t, I, 'DisplayName ', sprintf('Lockdown: %.2f', lockdown)

);

end

% Add vertical lines

xline(12, '--');
xline(70, '--');
xline(91, 'LineWidth ', 1);

hold off;

% Add xlabel , ylabel , and legend

xas = xlabel('Time (in days)');
xaspositie = get(xas , 'Position ');
xasnieuwepositie = xaspositie - 0.1;

set(xas , 'Position ', xasnieuwepositie)

ylabel ('Infected people (n)')
xticks ([]);

hold on;

%text(begindag , 0, '01-03', 'VerticalAlignment ', 'bottom ', '
HorizontalAlignment ', 'center ');

text(beginlockdown , 0, '15-03: start lockdown ', '
VerticalAlignment ', 'top', 'HorizontalAlignment ', 'center ')
;

text(eindlockdown , 0, '11-05: end lockdown ', '
VerticalAlignment ', 'top', 'HorizontalAlignment ', 'center ')
;

text(simulatieeinde , 0, '01-06: period ending ', '
VerticalAlignment ', 'top', 'HorizontalAlignment ', 'left ');

hold off;

legend('u(t) = 0', 'u(t) = 0.61 ', 'Location ', 'Northeast ');
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L Appendix L

clear;

close all;

% Set Parameters

Rt = 2; % Transmission rate

P = 17395687; % Population

I0 = 12; % Initial infected population

tmax = 150; % Length of simulation (in days)

dt = 0.01; % Time step (in days)

% Define beta and gamma values

beta_values = 0:dt:1;

gamma_values = 0:dt:1;

% Define lockdown values

lockdown_values = 0.6118;

% Create figure

figure;

for l = 1: length(lockdown_values)

% Initialize arrays for maximum I values

max_I_values = zeros(length(gamma_values), length(beta_values

));

% Loop over beta en gamma waarden

for i = 1: length(beta_values)

for j = 1: length(gamma_values)

% Initialize values

t=0:dt:tmax; % Time values (in days)

nt = length(t); % Number of timesteps

S = zeros(1, nt); % Susceptible values

I = zeros(1, nt); % Infected values

R = zeros(1, nt); % Recovered values

S(1) = P - I0; % Initial value of S

I(1) = I0; % Initial value of I

R(1) = 0; % Initial value of R

% Calculations
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beta = beta_values(i); % Transmission rate (

per day)

gamma = gamma_values(j); % Recovery rate (per

day)

lockdown = lockdown_values(l); % Lockdown strength

% Create step function for u

u = zeros(1, nt);

u(t >= 0 & t < 15) = 0;

u(t >= 15 & t < 72) = lockdown;

u(t >= 72) = 0;

% Create SIR model

for k = 2:nt

dS = (-beta*(1-u(k))*I(k-1)*S(k-1)/P)*dt;

% Change in S

S(k) = S(k-1) + dS;

% Current S

value

if S(k) < 0; S(k) = 0; end

dI = (beta*(1-u(k))*I(k-1)*S(k-1)/P-gamma*I(k-1))

*dt; % Change in I

I(k) = I(k-1)+dI;

% Current S

value

if I(k) < 0; I(k) = 0; end

dR = (gamma*I(k-1))*dt;

% Change in R

R(k) = R(k-1) + dR;

% Current R

value

end

% Find maximum I value and save it

max_I = max(I);

max_I_values(j,i) = max_I;

end

end
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% Create meshgrid for beta en gamma waarden

[BETA , GAMMA] = meshgrid(beta_values , gamma_values);

% Plot 3D surface

subplot (1,2,l*2-1);

surf(BETA , GAMMA , max_I_values);

shading flat;

colormap summer;

xlabel('\beta ');
ylabel('\gamma ');
zlabel('Maximum I');
title(['u(t) = ', num2str(lockdown_values(l))]);

% Create contour plot

subplot (1,2,l*2);

contourf(BETA , GAMMA , max_I_values , 'LineColor ', 'None ');
hold on;

j = plot (0.4137 , 1/7, 'ro', 'MarkerSize ', 5, 'LineWidth ', 2);

colormap summer;

cb = colorbar;

title(cb , 'I_{max}');
xlabel('Transmission Rate (\beta)');
ylabel('Recovery Rate (\gamma)');
title(['u(t) = ', num2str(lockdown_values(l))]);

% Create legend for the red circle

legend(j, 'I_{max} = 4,998,200', 'Location ', 'northwest ');
% Find and print the value of I_max for beta = 0.4137 and

gamma = 1/7

[~, idx] = min(abs(beta_values - 0.4137));

[~, idy] = min(abs(gamma_values - 1/7));

I_max = max_I_values(idy , idx);

fprintf('I_max for beta = 0.4137 and gamma = 1/7: %.4f\n',
I_max);

end

sgtitle('Lockdown btw t_1 = 15 and t_2 = 72', 'FontSize ', 11, '
FontWeight ', 'bold ');

M Appendix M

clear;
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close all;

load(" coronanederland_verbeterde_parameters.mat"); % Use table

saved in other file

% Set Parameters

Rt = 2; % Transmission rate

P = 3400000; % Population

I0 = 1200; % Initial infected population

tmax = 91; % Length of simulation (in days)

dt = 0.01; % Time step (in days)

% Initialize values

t=0:dt:tmax; % Time values (in days)

nt = length(t); % Number of timesteps

S = zeros(1, nt); % Susceptible values

I = zeros(1, nt); % Infected values

R = zeros(1, nt); % Recovered values

S(1) = P - I0; % Initial value of S

I(1) = I0; % Initial value of I

R(1) = 0; % Initial value of R

% Calculations

beta = 0.4137; % Transmission rate (per day)

gamma = 1/7; % Recovery rate (per day)

lockdown_values = [0, 0.6118]; % Lockdown strength

beginlockdown = 15; % Start lockdown

eindlockdown = 72; % End lockdown

beginsimulatie = 1; % Begindag

eindsimulatie = 92; % Einddag

% Create figure

figure;

hold on;

for k = 1: length(lockdown_values)

lockdown = lockdown_values(k);

% Step function

u = zeros(1, nt);

u(t >= 0 & t < 15) = 0;
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u(t >= 15 & t < 72) = lockdown;

u(t >= 72) = 0;

% Reset initial values for each lockdown value

S(1) = P - I0;

I(1) = I0;

R(1) = 0;

% Create SIR model

for i = 2:nt

dS = (-beta*(1-u(i))*I(i-1)*S(i-1)/P)*dt; %

Change in S

S(i) = S(i-1) + dS; %

Current S value

if S(i) < 0; S(i) = 0; end

dI = (beta*(1-u(i))*I(i-1)*S(i-1)/P-gamma*I(i-1))*dt; %

Change in I

I(i) = I(i-1)+dI; %

Current I value

if I(i) < 0; I(i) = 0; end

dR = (gamma*I(i-1))*dt; %

Change in R

R(i) = R(i-1) + dR; %

Current R value

end

grootste1 = max(I(:));

disp(grootste1)

oppervlakte = trapz(t, I(:));

begindag = 0;

einddag = 92;

beginlockdown = 15;

eindlockdown = 72;

simulatieeinde = einddag;

% Plot of I graph

plot(t, I, 'DisplayName ', sprintf('Lockdown: %.2f', lockdown)

);

end
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% Plot infection curve from other table

plot(t, I_nieuw);

xline(12, '--');
xline(70, '--');
xline(91, 'LineWidth ', 1);

hold off;

% Add xlabel , ylabel , and legends

xas = xlabel('Time (in days)');
xaspositie = get(xas , 'Position ');
xasnieuwepositie = xaspositie - 0.1;

set(xas , 'Position ', xasnieuwepositie)

ylabel ('Infected people (n)')
xticks ([]);

hold on;

text(beginlockdown , 0, '15-03: start lockdown ', '
VerticalAlignment ', 'top', 'HorizontalAlignment ', 'center ')
;

text(eindlockdown , 0, '11-05: end lockdown ', '
VerticalAlignment ', 'top', 'HorizontalAlignment ', 'center ')
;

text(simulatieeinde , 0, '01-06: period ending ', '
VerticalAlignment ', 'top', 'HorizontalAlignment ', 'left ');

hold off;

legend('Without time dependent lockdown ', 'With time dependent

lockdown ', 'Location ', 'North ');

N Appendix N

clear;

close all;

% Set Parameters

Rt = 2; % Transmission rate

P = 10000000; % Population

I0 = 1000; % Initial infected population

tmax = 200; % Length of simulation (in days)

dt = 0.01; % Time step (in days)

% Initialize values
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t=0:dt:tmax; % Time values (in days)

nt = length(t); % Number of timesteps

S = zeros(1, nt); % Susceptible values

E = zeros(1, nt); % Incuation values

I = zeros(1, nt); % Infected values

R = zeros(1, nt); % Recovered values

S(1) = P - I0; % Initial value of S

E(1) = 1000; % Initial value of E

I(1) = 0; % Initial value of I

R(1) = 0; % Initial value of R

% Calculations

beta = 0.6; % Transmission rate (per day)

gamma = 1/14; % Recovery rate (per day)

mu = 1/(76*365); % Death and birthrate (per day)

omega = 1/365; % Rate of loss of immunity (per day)

sigma = 1/3; % Latency period (in days)

alpha = 0.2; % Infection -induced death ratio (per day)

% Create lockdown strengths

lockdowns = [0, 0.75];

% Create SEIRS model for each lockdown strength

figure; hold on;

for k = 1: length(lockdowns)

% Reset initial values

S(1) = P - I0;

E(1) = 1000;

I(1) = 0;

R(1) = 0;

% Set lockdown strength

lockdown = lockdowns(k);

% Create step function for u

u = zeros(1, nt);

u(t >= 0 & t < 50) = 0;

u(t >= 50 & t < 70) = lockdown;

u(t >= 70) = 0;

% Create SEIRS model

for i = 2:nt
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dS = (mu*P - mu*S(i-1) - (beta*(1-u(i))*I(i-1)*S(i-1)/P)

+ omega*R(i-1))*dt; % Change in S

S(i) = S(i-1) + dS;

% Current S value

if S(i) < 0; S(i) = 0; end

dE = (beta*(1-u(i))*I(i-1)*S(i-1)/P - sigma*E(i-1) - mu*E

(i-1))*dt; % Change in E

E(i) = E(i-1) + dE;

% Current E value

if E(i) < 0; E(i) = 0; end

dI = (sigma*E(i-1) - gamma*I(i-1) - (mu + alpha)*I(i-1))*

dt; % Change in I

I(i) = I(i-1) + dI;

% Current I value

if I(i) < 0; I(i) = 0; end

dR = (gamma*I(i-1) - mu*R(i-1) - omega*R(i-1))*dt;

% Change in R

R(i) = R(i-1) + dR;

% Current R value

end

grootste = max(I(:)); % Maximum value of I

disp(grootste)

oppervlakte = trapz(t, I(:)); % Surface under I graph

disp(oppervlakte)

% Plot of SEIRS model

plot(t, I)

end

hold off;

% Add xlabel , ylabel , and legends

legend('Lockdown = 0', 'Lockdown = 0.75 ');
legenda1 = legend('u(t) = 0', 'u(t) = 0.75 ');
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set(legenda1 , 'Position ', [0.75, 0.78, 0.15, 0.05])

legendatekst1 = 'Lockdown start: 80';
legendatekst2 = 'Lockdown end: 100';
legendapositie = [0.72, 0.85, 0.18, 0.06]; %x,y,breedte ,hoogte

legenda2 = annotation('textbox ', legendapositie , 'String ', {

legendatekst1 , legendatekst2}, 'FontSize ', 9);

xlabel('Time (in days)');
ylabel ('Infected people (n)');

O Appendix O

clear;

close all;

% Set Parameters

Rt = 2; % Transmission rate

P = 10000000; % Population

I0 = 1000; % Initial infected population

tmax = 200; % Length of simulation (in days)

dt = 0.01; % Time step (in days)

% Initialize values

t=0:dt:tmax; % Time values (in days)

nt = length(t); % Number of timesteps

S = zeros(1, nt); % Susceptible values

E = zeros(1, nt); % Incuation values

I = zeros(1, nt); % Infected values

R = zeros(1, nt); % Recovered values

S(1) = P - I0; % Initial value of S

E(1) = 1000; % Initial value of E

I(1) = 0; % Initial value of I

R(1) = 0; % Initial value of R

% Calculations

beta = 0.6; % Transmission rate (per day)

gamma = 1/14; % Recovery rate (per day)

mu = 1/(76*365); % Death and birthrate (per day)

omega = 1/365; % Rate of loss of immunity (per day)

sigma = 1/7; % Latency period (in days)

alpha = 0.2; % Infection -induced death ratio (per day)

lockdown = 0.75; % Lockdown strength

startdagen = [70, 82, 92, 30]; % Starting days
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einddagen = [90, 102, 112 50]; % Ending days

% Create figure

figure;

hold on;

% Create SEIRS model for each starting day and ending day

for k = 1: length(startdagen)

startdag = startdagen(k);

einddag = einddagen(k);

% Reset initial values

S(1) = P - I0;

E(1) = 1000;

I(1) = 0;

R(1) = 0;

% Create step function for u

u = zeros(1, nt);

u(t >= 0 & t < startdag) = 0;

u(t >= startdag & t < einddag) = lockdown;

u(t >= einddag) = 0;

% Create SEIRS model

for i = 2:nt

dS = (mu*P - mu*S(i-1) - (beta*(1-u(i))*I(i-1)*S(i-1)/P)

+ omega*R(i-1))*dt; % Change in S

S(i) = S(i-1) + dS;

% Current S value

if S(i) < 0; S(i) = 0; end

dE = (beta*(1-u(i))*I(i-1)*S(i-1)/P - sigma*E(i-1) - mu*E

(i-1))*dt; % Change in E

E(i) = E(i-1) + dE;

% Current E value

if E(i) < 0; E(i) = 0; end

dI = (sigma*E(i-1) - gamma*I(i-1) - (mu + alpha)*I(i-1))*

dt; % Change in I

I(i) = I(i-1) + dI;
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% Current S value

if I(i) < 0; I(i) = 0; end

dR = (gamma*I(i-1) - mu*R(i-1) - omega*R(i-1))*dt;

% Change in R

R(i) = R(i-1) + dR;

% Current R value

end

% Create plot

plot(t, I, 'DisplayName ', sprintf('Lockdown start: %d,

Lockdown end: %d', startdag , einddag));

end

% Add xlabel , ylabel , legends

hold off;

legend('Location ', 'northwest ');
xlabel('Time (in days)');
ylabel('Infected people (n)');
legendatekst1 = 'u(t) = 0.75 ';
legendapositie = [0.145 , 0.73, 0.1, 0.04]; %x,y,breedte ,hoogte

legenda2 = annotation('textbox ', legendapositie , 'String ', {

legendatekst1}, 'FontSize ', 9);

P Appendix P

clear;

close all;

% Set Parameters

Rt = 2; % Transmission rate

P = 10000000; % Population

I0 = 1000; % Initial infected population

tmax = 200; % Length of simulation (in days)

dt = 0.01; % Time step (in days)

% Initialize values

t=0:dt:tmax; % Time values (in days)

nt = length(t); % Number of timesteps

S = zeros(1, nt); % Susceptible values

E = zeros(1, nt); % Incuation values

I = zeros(1, nt); % Infected values
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R = zeros(1, nt); % Recovered values

S(1) = P - I0; % Initial value of S

E(1) = 1000; % Initial value of E

I(1) = 0; % Initial value of I

R(1) = 0; % Initial value of R

% Define parameter values

beta_values = 0:dt:1;

gamma_values = 0:dt:1;

startdag = 80;

einddag = 100;

lockdown = 0;

mu = 1/(76*365); % Death and birthrate (per day)

omega = 1/365; % Rate of loss of immunity (per day)

sigma = 1/7; % Latency period (in days)

alpha = 0.2; % Infection -induced death ratio (per day)

max_I_values = zeros(length(gamma_values), length(beta_values));

% Store maximum I values

% Create SEIRS model for each combination of beta and gamma

for i = 1: length(beta_values)

for j = 1: length(gamma_values)

beta = beta_values(i);

gamma = gamma_values(j);

% Reset initial values

S(1) = P - I0;

E(1) = 1000;

I(1) = 0;

R(1) = 0;

% Create step function for u

u = zeros(1, nt);

u(t >= 0 & t < startdag) = 0;

u(t >= startdag & t < einddag) = lockdown;

u(t >= einddag) = 0;

% Create SEIRS model

for k = 2:nt

dS = (mu*P - mu*S(k-1) - (beta*(1-u(k))*I(k-1)*S(k-1)

/P) + omega*R(k-1))*dt; % Change in S
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S(k) = S(k-1) + dS;

% Current S value

if S(k) < 0; S(k) = 0; end

dE = (beta*(1-u(k))*I(k-1)*S(k-1)/P - sigma*E(k-1) -

mu*E(k-1))*dt; % Change in E

E(k) = E(k-1) + dE;

% Current E value

if E(k) < 0; E(k) = 0; end

dI = (sigma*E(k-1) - gamma*I(k-1) - (mu + alpha)*I(k

-1))*dt; % Change in I

I(k) = I(k-1) + dI;

% Current S value

if I(k) < 0; I(k) = 0; end

dR = (gamma*I(k-1) - mu*R(k-1) - omega*R(k-1))*dt;

% Change in R

R(k) = R(k-1) + dR;

% Current R value

end

% Store maximum I value

max_I_values(j,i) = max(I);

end

end

% Create meshgrid

[beta_mesh , gamma_mesh] = meshgrid(beta_values , gamma_values);

% Plot maximum I values with 4 surf plots and 4 contour plots

figure;

% Plot 3D surface 1

subplot (4,2,1);

surf(beta_mesh , gamma_mesh , max_I_values);

shading flat;

colormap summer;

xlabel('\beta ');
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ylabel('\gamma ');
zlabel('Maximum I');
title('u(t) = 0');

% Create contour 1

subplot (4,2,2);

contourf(beta_mesh , gamma_mesh , max_I_values , 'LineColor ', 'none '
);

colormap summer;

cb = colorbar;

xlabel('Transmission Rate (\beta)');
ylabel('Recovery Rate (\gamma)');
title(cb , 'I_{max}');
title('u(t) = 0');

% Plot 3D surface 2

subplot (4,2,3);

surf(beta_mesh , gamma_mesh , max_I_values);

shading flat;

colormap summer;

xlabel('\beta ');
ylabel('\gamma ');
zlabel('Maximum I');
zlim ([0,1e6]);

xlim([0, 1])

ylim([0, 1]);

clim([0, 1e6]);

title('u(t) = 0');

% Create contour plot 2

subplot (4,2,4);

contourf(beta_mesh , gamma_mesh , max_I_values , 'LineColor ', 'None '
);

colormap summer;

colorbar;

xlabel('Transmission Rate (\beta)');
ylabel('Recovery Rate (\gamma)');
zlim ([0,1e6]);

xlim ([0 ,1])

ylim([0, 1]);

clim([0, 1e6]);

cb = colorbar('Ticks ', 0:2e5:1e6);
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title(cb , 'I_{max}');
title('u(t) = 0');

% Plot 3D surface 3

subplot (4,2,5);

surf(beta_mesh , gamma_mesh , max_I_values);

shading flat;

colormap summer;

xlabel('\beta ');
ylabel('\gamma ');
zlabel('Maximum I');
zlim ([0,5e5]);

xlim([0, 1])

ylim([0, 1]);

clim([0, 5e5]);

title('u(t) = 0');

% Create contour plot 4

subplot (4,2,6);

contourf(beta_mesh , gamma_mesh , max_I_values , 'LineColor ', 'None '
);

colormap summer;

colorbar;

xlabel('Transmission Rate (\beta)');
ylabel('Recovery Rate (\gamma)');
zlim ([0,5e5]);

xlim ([0 ,1])

ylim([0, 1]);

clim([0, 5e5]);

cb = colorbar('Ticks ', 0:1e5:5e5);

title(cb , 'I_{max}');
title('u(t) = 0');

% Plot 3D surface 4

subplot (4,2,7);

surf(beta_mesh , gamma_mesh , max_I_values);

shading flat;

colormap summer;

xlabel('\beta ');
ylabel('\gamma ');
zlabel('Maximum I');
zlim ([0 ,20000]);
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xlim([0, 1])

ylim([0, 1]);

clim([0, 20000]);

title('u(t) = 0');

% Create contour plot 4

subplot (4,2,8);

contourf(beta_mesh , gamma_mesh , max_I_values , 'LineColor ', 'None '
);

colormap summer;

colorbar;

xlabel('Transmission Rate (\beta)');
ylabel('Recovery Rate (\gamma)');
zlim ([0 ,20000]);

xlim ([0 ,1])

ylim([0, 1]);

clim([0, 20000]);

cb = colorbar('Ticks ', 0:5000:20000);

title(cb , 'I_{max}');
title('u(t) = 0');
sgtitle('Lockdown btw t_1 = 80 and t_2 = 100', 'FontSize ', 11, '

FontWeight ', 'bold ')

Q Appendix Q

clear;

close all;

% Set Parameters

Rt = 2; % Transmission rate

P = 10000000; % Population

I0 = 1000; % Initial infected population

tmax = 200; % Length of simulation (in days)

dt = 0.01; % Time step (in days)

% Initialize values

t=0:dt:tmax; % Time values (in days)

nt = length(t); % Number of timesteps

S = zeros(1, nt); % Susceptible values

E = zeros(1, nt); % Incuation values

I = zeros(1, nt); % Infected values

R = zeros(1, nt); % Recovered values

S(1) = P - I0; % Initial value of S
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E(1) = 1000; % Initial value of E

I(1) = 0; % Initial value of I

R(1) = 0; % Initial value of R

% Define parameter values

beta_values = 0:dt:1;

gamma_values = 0:dt:1;

lockdown_values = [0.35 , 0.55, 0.75];

startdag = 80;

einddag = 100;

lockdown = 0.75;

mu = 1/(76*365); % Death and birthrate (per day)

omega = 1/365; % Rate of loss of immunity (per day)

sigma = 1/7; % Latency period (in days)

alpha = 0.2; % Infection -induced death ratio (per day)

% Create figure

figure;

for l = 1: length(lockdown_values)

max_I_values = zeros(length(gamma_values), length(beta_values

)); % Store maximum I values

% Create SEIRS model for each combination of beta and gamma

for i = 1: length(beta_values)

for j = 1: length(gamma_values)

beta = beta_values(i);

gamma = gamma_values(j);

lockdown = lockdown_values(l);

% Reset initial values

S(1) = P - I0;

E(1) = 1000;

I(1) = 0;

R(1) = 0;

% Create step function for u

u = zeros(1, nt);

u(t >= 0 & t < startdag) = 0;

u(t >= startdag & t < einddag) = lockdown;

u(t >= einddag) = 0;

% Create SEIRS model
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for k = 2:nt

dS = (mu*P - mu*S(k-1) - (beta*(1-u(k))*I(k-1)*S(

k-1)/P) + omega*R(k-1))*dt; % Change in S

S(k) = S(k-1) + dS;

% Current S value

if S(k) < 0; S(k) = 0; end

dE = (beta*(1-u(k))*I(k-1)*S(k-1)/P - sigma*E(k

-1) - mu*E(k-1))*dt; % Change in E

E(k) = E(k-1) + dE;

% Current E value

if E(k) < 0; E(k) = 0; end

dI = (sigma*E(k-1) - gamma*I(k-1) - (mu + alpha)*

I(k-1))*dt; % Change in I

I(k) = I(k-1) + dI;

% Current S value

if I(k) < 0; I(k) = 0; end

dR = (gamma*I(k-1) - mu*R(k-1) - omega*R(k-1))*dt

; % Change in R

R(k) = R(k-1) + dR;

% Current R value

end

% Store maximum I value

max_I_values(j,i) = max(I);

end

end

% Create meshgrid

[BETA , GAMMA] = meshgrid(beta_values , gamma_values);

% Plot 3D surface

subplot (3,2,l*2-1);

surf(BETA , GAMMA , max_I_values);

shading flat;

colormap summer;
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xlabel('\beta ');
ylabel('\gamma ');
zlabel('Maximum I');
title(['u(t) = ', num2str(lockdown_values(l))]);

% Create contour plot

subplot (3,2,l*2);

contourf(BETA , GAMMA , max_I_values , 'LineColor ', 'None ');
colormap summer;

cb= colorbar;

title(cb , 'I_{max}');
xlabel('Transmission Rate (\beta)');
ylabel('Recovery Rate (\gamma)');
title(['u(t) = ', num2str(lockdown_values(l))]);

sgtitle('Lockdown btw t_1 = 80 and t_2 = 100', 'FontSize ',
11, 'FontWeight ', 'bold ')

end

R Appendix R

clear;

close all;

% Set Parameters

Rt = 2; % Transmission rate

P = 3400000; % Population

I0 = 12; % Initial infected population

tmax = 91; % Length of simulation (in days)

dt = 0.01; % Time step (in days)

% Initialize values

t=0:dt:tmax; % Time values (in days)

nt = length(t); % Number of timesteps

S = zeros(1, nt); % Susceptible values

E = zeros(1, nt); % Incuation values

I_nieuw = zeros(1, nt); % Infected values

R = zeros(1, nt); % Recovered values

S(1) = P - I0; % Initial value of S

E(1) = 1200; % Initial value of E

I_nieuw (1) = 0; % Initial value of I

R(1) = 0; % Initial value of R

% Calculations
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beta = 1; % Transmission rate (per day)

gamma = 1/7; % Recovery rate (per day)

mu = 1/(76*365); % Death and birthrate (per day)

omega = 1/365; % Rate of loss of immunity (per day)

sigma = 1/5; % Latency period (in days)

alpha = 1/(83*365); % Infection -induced death ratio (per day)

startdag = 15;

einddag = 72;

% REPRODUCTIONNUMBER SIR -model

load('tabelIT.mat', 'maartjuni_italie ');
load('tabelFR.mat', 'maartjuni_frankrijk ');
load('tabelSP.mat', 'maartjuni_spanje ');

reproductiegetallen = table(maartjuni_frankrijk.datums (3:93) ,

maartjuni_italie.reproductiegetal_it (9:99) , maartjuni_frankrijk

.reproductiegetal_fr (3:93) , maartjuni_spanje.reproductiegetal_s

(1:91));

reproductiegetallen.Properties.VariableNames{'Var1 '} = 'Datums ';
reproductiegetallen.Properties.VariableNames{'Var2 '} = 'Italie ';
reproductiegetallen.Properties.VariableNames{'Var3 '} = 'Frankrijk

';
reproductiegetallen.Properties.VariableNames{'Var4 '} = 'Spanje ';
gemiddelde = mean(reproductiegetallen {:, {'Italie ', 'Frankrijk ',

'Spanje '}}, 2);

reproductiegetallen.Gemiddelde = gemiddelde;

reproductiegetallen.Betagetal = reproductiegetallen.Gemiddelde*

gamma;

R0_IT = mean(maartjuni_italie.reproductiegetal_it (1:15));

R0_FR = mean(maartjuni_frankrijk.reproductiegetal_fr (1:16));

R0_SP = mean(maartjuni_spanje.reproductiegetal_s (1:11));

beta0_IT = R0_IT *(sigma+mu)*(alpha+gamma+mu)/sigma;

beta0_FR = R0_FR *(sigma+mu)*(alpha+gamma+mu)/sigma;

beta0_SP = R0_SP *(sigma+mu)*(alpha+gamma+mu)/sigma;

beta0 = (beta0_IT + beta0_FR + beta0_SP)/3;

% PLOT OF REPRODUCTIONNUMBERS OF EACH COUNTRY AND MEAN

REPRODUCTION LINE
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figure;

plot(reproductiegetallen.Datums , reproductiegetallen.Italie);

hold on;

plot(reproductiegetallen.Datums , reproductiegetallen.Frankrijk);

plot(reproductiegetallen.Datums , reproductiegetallen.Spanje);

plot(reproductiegetallen.Datums , reproductiegetallen.Gemiddelde ,

'LineWidth ', 2);

hold off;

xlim([ datetime('01 -03 -2020 ', 'InputFormat ', 'dd -MM -yyyy ')
datetime('01 -06 -2020 ', 'InputFormat ', 'dd -MM -yyyy ')]);

xlabel (" Dates");

ylabel (" Reproduction numbers ");

legend('Italy ', 'France ', 'Spain ', 'Mean ', 'location ', 'northeast
');

saveas(gcf , 'reproductiegetallenITFRSP.png');

% LOCKDOWNS

lockdown_IT = 1-( reproductiegetallen.Italie (7:63) *(1/5 +

1/(365*76))*(1/(83*365) +1/(365*76) +1/5) /(beta0 *1/7));

lockdown_FR = 1-( reproductiegetallen.Frankrijk (15:70) *(1/5 +

1/(365*76))*(1/(83*365) +1/(365*76) +1/5) /(beta0 *1/7));

lockdown_SP = 1-( reproductiegetallen.Spanje (12:91) *(1/5 +

1/(365*76))*(0+1/(365*76) +1/7) /(beta0 *1/5));

u_IT = mean(lockdown_IT);

u_FR = mean(lockdown_FR);

u_SP = mean(lockdown_SP);

u0 = (u_IT + u_FR + u_SP)/3;

lockdown_IT2 = 1-( reproductiegetallen.Italie (13:70) *(1/5 +

1/(365*76))*(1/(83*365) +1/(365*76) +1/7) /(beta0 *1/5));

lockdown_FR2 = 1-( reproductiegetallen.Frankrijk (13:70) *(1/5 +

1/(365*76))*(1/(83*365) +1/(365*76) +1/7) /(beta0 *1/5));

lockdown_SP2 = 1-( reproductiegetallen.Spanje (13:70) *(1/5 +

1/(365*76))*(1/(83*365) +1/(365*76) +1/7) /(beta0 *1/5));

gemiddeldelockdown = 1-( reproductiegetallen.Gemiddelde (13:70)

*(1/5 + 1/(365*76))*(1/(83*365) +1/(365*76) +1/7) /(beta0 *1/5));

% PLOT OF LOCKDOWNS

figure;
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plot(reproductiegetallen.Datums (13:70) , lockdown_IT2);

hold on;

plot(reproductiegetallen.Datums (13:70) , lockdown_FR2);

plot(reproductiegetallen.Datums (13:70) , lockdown_SP2);

plot(reproductiegetallen.Datums (13:70) , gemiddeldelockdown , '
LineWidth ', 2);

hold off;

xlim([ datetime('01 -03 -2020 ', 'InputFormat ', 'dd -MM -yyyy ')
datetime('01 -06 -2020 ', 'InputFormat ', 'dd -MM -yyyy ')]);

xlabel (" Dates");

ylabel (" Lockdownstrength ");

legend('Italy ', 'France ', 'Spain ', 'Mean ', 'location ', 'east ');

saveas(gcf , 'lockdowngetallenITFRSP.png');

% Make column to use in SIR -model for beta and u(t)

goede = zeros (91,1);

goede (1:12) = beta0;

goede (13:70) = beta0*gemiddeldelockdown;

goede (71:91) = beta0;

reproductiegetallen.betametlockdown = goede;

% LOCKDOWNSTRENGTH SIR -model

load('lockdowntabelIT.mat', 'lockdowntabel_it ');
load('lockdowntabelFR.mat', 'lockdowntabel_fr ');
load('lockdowntabelSP.mat', 'lockdowntabel_s ');

herhaling = reshape(repmat(reproductiegetallen.betametlockdown ,

1,100) ', [], 1);

beginlockdown = 15; % Start lockdown

eindlockdown = 72; % End lockdown

beginsimulatie = 1; % Beginday

eindsimulatie = 92; % Endday

u(1) = herhaling (1);

% Create SEIRS model

for i = 2:nt

u(i) = herhaling(i-1);
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dS = (mu*P - mu*S(i-1) - (beta*(1-u(i))*I_nieuw(i-1)*S(i-1)/P

) + omega*R(i-1))*dt; % Change in S

S(i) = S(i-1) + dS;

% Current S value

if S(i) < 0; S(i) = 0; end

dE = (beta*(1-u(i))*I_nieuw(i-1)*S(i-1)/P - sigma*E(i-1) - mu

*E(i-1))*dt; % Change in E

E(i) = E(i-1) + dE;

% Current E value

if E(i) < 0; E(i) = 0; end

dI = (sigma*E(i-1) - gamma*I_nieuw(i-1) - (mu + alpha)*

I_nieuw(i-1))*dt; % Change in I

I_nieuw(i) = I_nieuw(i-1) + dI;

%

Current S value

if I_nieuw(i) < 0; I_nieuw(i) = 0; end

dR = (gamma*I_nieuw(i-1) - mu*R(i-1) - omega*R(i-1))*dt;

% Change in R

R(i) = R(i-1) + dR;

% Current R value

end

grootste = max(I_nieuw (:)); % Maximum value of I

disp(grootste)

oppervlakte = trapz(t, I_nieuw (:)); % Surface under I graph

disp(oppervlakte)

% Plot of I graph

plot(t,I_nieuw) % plot from other file

save('coronanederland_SEIRS_verbeterde_parameters.mat', 't', '
I_nieuw ');

xlabel('Time (in days)')
ylabel ('Infected people (n)')

S Appendix S
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clear;

close all;

load(" coronanederland_SEIRS_verbeterde_parameters.mat"); % Use

table from other file

% Set Parameters

Rt = 2; % Transmission rate

P = 17395687; % Population

tmax = 250; % Length of simulation (in days)

dt = 0.01; % Time step (in days)

% Initialize values

t=0:dt:tmax; % Time values (in days)

nt = length(t); % Number of timesteps

S = zeros(1, nt); % Susceptible values

E = zeros(1, nt); % Incuation values

I = zeros(1, nt); % Infected values

R = zeros(1, nt); % Recovered values

S(1) = P - E(1); % Initial value of S

E(1) = 12; % Initial value of E

I(1) = 0; % Initial value of I

R(1) = 0; % Initial value of R

% Calculations

beta = 0.4137; % Transmission rate (per day)

gamma = 1/7; % Recovery rate (per day)

mu = 1/(76*365); % Death and birthrate (per day)

omega = 1/365; % Rate of loss of immunity (per

day)

sigma = 1/7; % Latency period (in days)

alpha = 0; % Infection -induced death ratio (

per day)

lockdown_values = [0, 0.6118]; % Lockdown strength = 0.6118

beginlockdown = 15; % Start lockdown

eindlockdown = 72; % End lockdown

beginsimulatie = 1; % Beginday

eindsimulatie = 92; % Endday

startdag = 15;

einddag = 72;
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figure;

hold on;

% Create SEIRS model

for k = 1: length(lockdown_values)

lockdown = lockdown_values(k);

u = zeros(1, nt);

u(t >= 0 & t < startdag) = 0;

u(t >= startdag & t < einddag) = lockdown;

u(t >= einddag) = 0;

% Reset initial values

S(1) = P - E(1); % Initial value of S

E(1) = 12; % Initial value of E

I(1) = 0; % Initial value of I

R(1) = 0;

for i = 2:nt

dS = (mu*P - mu*S(i-1) - (beta*(1-u(i))*I(i-1)*S(i-1)/P)

+ omega*R(i-1))*dt; % Change in S

S(i) = S(i-1) + dS;

% Current S value

if S(i) < 0; S(i) = 0; end

dE = (beta*(1-u(i))*I(i-1)*S(i-1)/P - sigma*E(i-1) - mu*E

(i-1))*dt; % Change in E

E(i) = E(i-1) + dE;

% Current E value

if E(i) < 0; E(i) = 0; end

dI = (sigma*E(i-1) - gamma*I(i-1) - (mu + alpha)*I(i-1))*

dt; % Change in I

I(i) = I(i-1) + dI;

% Current S value

if I(i) < 0; I(i) = 0; end

dR = (gamma*I(i-1) - mu*R(i-1) - omega*R(i-1))*dt;
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% Change in R

R(i) = R(i-1) + dR;

% Current R value

end

grootste = max(I(:)); % Maximum value of I

disp(grootste)

oppervlakte = trapz(t, I(:)); % Surface under I graph

disp(oppervlakte)

begindag = 0;

einddag = 92;

beginlockdown = 15;

eindlockdown = 72;

simulatieeinde = einddag;

% Plot of I graph

plot(t, I, 'DisplayName ', sprintf('Lockdown: %.2f', lockdown)

);

end

% Create vertical lines

xline(12, '--');
xline(70, '--');
xline(91, 'LineWidth ', 1);

hold off;

% Add xlabel , ylabel , and legends

xas = xlabel('Time (in days)');
xaspositie = get(xas , 'Position ');
xasnieuwepositie = xaspositie - 0.1;

set(xas , 'Position ', xasnieuwepositie)

ylabel ('Infected people (n)')
xticks ([]);

hold on;

text(beginlockdown , 0, '15-03: start lockdown ', '
VerticalAlignment ', 'top', 'HorizontalAlignment ', 'center ')
;

text(eindlockdown , 0, '11-05: end lockdown ', '
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VerticalAlignment ', 'top', 'HorizontalAlignment ', 'center ')
;

text(simulatieeinde , 0, '01-06: period ending ', '
VerticalAlignment ', 'top', 'HorizontalAlignment ', 'left ');

hold off;

legend('u(t)=0', 'u(t)=0.61 ', 'Location ', 'Northwest ');

T Appendix T

clear;

close all;

% Set Parameters

Rt = 2; % Transmission rate

P = 17395687; % Population

I0 = 12; % Initial infected population

tmax = 250; % Length of simulation (in days)

dt = 0.01; % Time step (in days)

% Initialize values

t=0:dt:tmax; % Time values (in days)

nt = length(t); % Number of timesteps

S = zeros(1, nt); % Susceptible values

E = zeros(1, nt); % Incuation values

I = zeros(1, nt); % Infected values

R = zeros(1, nt); % Recovered values

S(1) = P - I0; % Initial value of S

E(1) = 12; % Initial value of E

I(1) = 0; % Initial value of I

R(1) = 0; % Initial value of R

% Define parameter values

beta_values = 0:dt:1;

gamma_values = 0:dt:1;

lockdown_values = 0.6118;

startdag = 15;

einddag = 72;

mu = 1/(76*365); % Death and birthrate (per day)

omega = 1/365; % Rate of loss of immunity (per day)

sigma = 1/7; % Latency period (in days)

alpha = 0; % Infection -induced death ratio (per day)
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% Create figure

figure;

for l = 1: length(lockdown_values)

max_I_values = zeros(length(gamma_values), length(beta_values

)); % Store maximum I values

% Create SEIRS model for each combination of beta and gamma

for i = 1: length(beta_values)

for j = 1: length(gamma_values)

beta = beta_values(i);

gamma = gamma_values(j);

lockdown = lockdown_values(l);

% Reset initial values

S(1) = P - I0;

E(1) = 1000;

I(1) = 0;

R(1) = 0;

% Create step function for u

u = zeros(1, nt);

u(t >= 0 & t < startdag) = 0;

u(t >= startdag & t < einddag) = lockdown;

u(t >= einddag) = 0;

% Create SEIRS model

for k = 2:nt

dS = (mu*P - mu*S(k-1) - (beta*(1-u(k))*I(k-1)*S(

k-1)/P) + omega*R(k-1))*dt; % Change in S

S(k) = S(k-1) + dS;

% Current S value

if S(k) < 0; S(k) = 0; end

dE = (beta*(1-u(k))*I(k-1)*S(k-1)/P - sigma*E(k

-1) - mu*E(k-1))*dt; % Change in E

E(k) = E(k-1) + dE;

% Current E value

if E(k) < 0; E(k) = 0; end

dI = (sigma*E(k-1) - gamma*I(k-1) - (mu + alpha)*
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I(k-1))*dt; % Change in I

I(k) = I(k-1) + dI;

% Current S value

if I(k) < 0; I(k) = 0; end

dR = (gamma*I(k-1) - mu*R(k-1) - omega*R(k-1))*dt

; % Change in R

R(k) = R(k-1) + dR;

% Current R value

end

% Store maximum I value

max_I_values(j,i) = max(I);

end

end

% Create meshgrid

[BETA , GAMMA] = meshgrid(beta_values , gamma_values);

% Plot 3D surface

subplot (3,2,l*2-1);

surf(BETA , GAMMA , max_I_values);

shading flat;

colormap summer;

xlabel('\beta ');
ylabel('\gamma ');
zlabel('Maximum I');
title(['u(t) = ', num2str(lockdown_values(l))]);

% Create contour plot

subplot (3,2,l*2);

contourf(BETA , GAMMA , max_I_values , 'LineColor ', 'None ');
hold on;

j = plot (0.4137 , 1/7, 'ro', 'MarkerSize ', 5, 'LineWidth ', 2);

colormap summer;

cb= colorbar;

title(cb , 'I_{max}');
xlabel('Transmission Rate (\beta)');
ylabel('Recovery Rate (\gamma)');
title(['u(t) = ', num2str(lockdown_values(l))]);

sgtitle('Lockdown btw t_1 = 15 and t_2 = 72', 'FontSize ', 11,
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'FontWeight ', 'bold ')

% Create legend for the red circle

legend(j, 'I_{max} = 2,487 ,700', 'Location ', 'northwest ');
[~, idx] = min(abs(beta_values - 0.4137));

[~, idy] = min(abs(gamma_values - 1/7));

I_max = max_I_values(idy , idx);

fprintf('I_max for beta = 0.4137 and gamma = 1/7: %.4f\n',
I_max);

end

U Appendix U

clear;

close all;

load(" coronanederland_SEIRS_verbeterde_parameters.mat"); % Use

table from other file

% Set Parameters

Rt = 2; % Transmission rate

P = 3400000; % Population

tmax = 91; % Length of simulation (in days)

dt = 0.01; % Time step (in days)

% Initialize values

t=0:dt:tmax; % Time values (in days)

nt = length(t); % Number of timesteps

S = zeros(1, nt); % Susceptible values

E = zeros(1, nt); % Incuation values

I = zeros(1, nt); % Infected values

R = zeros(1, nt); % Recovered values

S(1) = P - E(1); % Initial value of S

E(1) = 1200; % Initial value of E

I(1) = 0; % Initial value of I

R(1) = 0; % Initial value of R

% Calculations

beta = 0.4137; % Transmission rate (per day)

gamma = 1/7; % Recovery rate (per day)

mu = 1/(76*365); % Death and birthrate (per day)

omega = 1/365; % Rate of loss of immunity (per

day)
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sigma = 1/5; % Latency period (in days)

alpha = 1/(83*365); % Infection -induced death ratio (

per day)

lockdown_values = [0, 0.6118]; % Lockdown strength = 0.6118

beginlockdown = 15; % Start lockdown

eindlockdown = 72; % End lockdown

beginsimulatie = 1; % Beginday

eindsimulatie = 92; % Endday

startdag = 15;

einddag = 72;

figure;

hold on;

% Create SEIRS model

for k = 1: length(lockdown_values)

lockdown = lockdown_values(k);

u = zeros(1, nt);

u(t >= 0 & t < startdag) = 0;

u(t >= startdag & t < einddag) = lockdown;

u(t >= einddag) = 0;

% Reset initial values

S(1) = P - E(1); % Initial value of S

E(1) = 1200; % Initial value of E

I(1) = 0; % Initial value of I

R(1) = 0;

for i = 2:nt

dS = (mu*P - mu*S(i-1) - (beta*(1-u(i))*I(i-1)*S(i-1)/P)

+ omega*R(i-1))*dt; % Change in S

S(i) = S(i-1) + dS;

% Current S value

if S(i) < 0; S(i) = 0; end

dE = (beta*(1-u(i))*I(i-1)*S(i-1)/P - sigma*E(i-1) - mu*E

(i-1))*dt; % Change in E

E(i) = E(i-1) + dE;
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% Current E value

if E(i) < 0; E(i) = 0; end

dI = (sigma*E(i-1) - gamma*I(i-1) - (mu + alpha)*I(i-1))*

dt; % Change in I

I(i) = I(i-1) + dI;

% Current S value

if I(i) < 0; I(i) = 0; end

dR = (gamma*I(i-1) - mu*R(i-1) - omega*R(i-1))*dt;

% Change in R

R(i) = R(i-1) + dR;

% Current R value

end

grootste = max(I(:)); % Maximum value of I

disp(grootste)

oppervlakte = trapz(t, I(:)); % Surface under I graph

disp(oppervlakte)

begindag = 0;

einddag = 92;

beginlockdown = 15;

eindlockdown = 72;

simulatieeinde = einddag;

% Plot of I graph

plot(t, I, 'DisplayName ', sprintf('Lockdown: %.2f', lockdown)

);

end

plot(t, I_nieuw); % Plot from other file

% Add vertical lines

xline(12, '--');
xline(70, '--');
xline(91, 'LineWidth ', 1);

hold off;
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% Add xlabel , ylabel , and legend

xas = xlabel('Time (in days)');
xaspositie = get(xas , 'Position ');
xasnieuwepositie = xaspositie - 0.1;

set(xas , 'Position ', xasnieuwepositie)

ylabel ('Infected people (n)')
xticks ([]);

hold on;

%text(begindag , 0, '01-03', 'VerticalAlignment ', 'bottom ', '
HorizontalAlignment ', 'center ');

text(beginlockdown , 0, '15-03: start lockdown ', '
VerticalAlignment ', 'top', 'HorizontalAlignment ', 'center ')
;

text(eindlockdown , 0, '11-05: end lockdown ', '
VerticalAlignment ', 'top', 'HorizontalAlignment ', 'center ')
;

text(simulatieeinde , 0, '01-06: period ending ', '
VerticalAlignment ', 'top', 'HorizontalAlignment ', 'left ');

hold off;

legend('Without time dependent lockdown ', 'u(t) = With time

dependent lockdown ', 'Location ', 'North ');

V Appendix V

clear;

close all;

% Set Parameters

Rt = 2; % Transmission rate

P = 3400000; % Population

I0 = 1200; % Initial infected population

tmax = 91; % Length of simulation (in days)

dt = 0.1; % Time step (in days)

% Initialize values

t = 0:dt:tmax; % Time values (in days)

nt = length(t); % Number of timesteps

S = zeros(1, nt); % Susceptible values

I = zeros(1, nt); % Infected values

R = zeros(1, nt); % Recovered values

S(1) = P - I0; % Initial value of S

I(1) = I0; % Initial value of I
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R(1) = 0; % Initial value of R

% Calculations

beta = 0.4137; % Transmission rate (per day)

gamma = 1/7; % Recovery rate (per day)

lockdown = 0.6118; % Lockdown strength

t1 = 0:dt:tmax; % Starting day of lockdown

t2 = 0:dt:tmax; % Ending day of lockdown

aantal = ((tmax/dt)*(( tmax/dt)+1))/2;

resultaten = zeros(aantal ,3);

Z = zeros(length(t1), length(t2));

% Create SIR model with given cost function

l=1;

for j = 1:nt

for k = 1:nt

if t1(j) < t2(k)

u(t >= 0 & t < t1(j)) = 0;

u(t >= t1(j) & t < t2(k)) = lockdown;

u(t >= t2(k)) = 0;

resultaten(l,1) = t1(j);

resultaten(l,2) = t2(k);

for i = 2:nt

dS = (-beta*(1-u(i))*I(i-1)*S(i-1)/P)*dt;

% Change in S

S(i) = S(i-1) + dS;

% Current S

value

if S(i) < 0; S(i) = 0; end

dI = (beta*(1-u(i))*I(i-1)*S(i-1)/P-gamma*I(i-1))

*dt; % Change in I

I(i) = I(i-1)+dI;

% Current

I value

if I(i) < 0; I(i) = 0; end
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dR = (gamma*I(i-1))*dt;

% Change in R

R(i) = R(i-1) + dR;

% Current R

value

%Z(j,k) = I(i);

end

grootste = max(I(:)); % Maximum value of

I

resultaten(l,3) = grootste;

Z(j,k) = resultaten(l,3);

oppervlakte = trapz(t, I(:)); % Surface under I

curve

resultaten(l,4) = oppervlakte;

l=l+1;

end

end

end

[X,Y] = meshgrid (0:dt:tmax);

% Limit X and Y to the part for which t1 <= t2

X = triu(X);

Y = triu(Y);

% Limit Z to the part for which t1 <= t2

Z = triu(Z);

% Create three -dimensional and contour plot

figure;

% Surf plot

subplot(1, 2, 1);

surf(X, Y, Z.*(X>Y));

shading flat;

colormap summer;

xlabel('t_2');
ylabel('t_1');
zlabel('Maximum I');
annotation('textbox ', [0.1, 0.8, 0.1, 0.1], 'String ', 'u(t)

=0.6118 ', 'FitBoxToText ', 'on');
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% Contour plot

subplot(1, 2, 2);

contourf(X, Y, Z.*(X>Y), 'LineColor ', 'None ');
hold on;

j = plot(72, 15, 'ro', 'MarkerSize ', 5, 'LineWidth ', 2);

k = plot(72, 21, 'bo', 'MarkerSize ', 5, 'LineWidth ', 2);

l = plot (76.5 , 19.5, 'go', 'MarkerSize ', 5, 'LineWidth ', 2);

colormap summer;

cb= colorbar;

title(cb , 'I_{max}');
xlabel('End lockdown (t_2)');
ylabel('Start lockdown (t_1)');

% Create a combined legend

combined_legend = legend ([j, k, l], {'I_{max} = 609020 ', 'I_{max}
= 282210 ', 'I_{max} = 204360 '}, 'Location ', 'northwest ');

% Adjust the position of the combined legend

legend_pos = get(combined_legend , 'Position ');
legend_pos (2) = legend_pos (2) - 0.05;

set(combined_legend , 'Position ', legend_pos);

W Appendix W

clear;

close all;

% Set Parameters

Rt = 2; % Transmission rate

P = 3400000; % Population

I0 = 1200; % Initial infected population

tmax = 91; % Length of simulation (in days)

dt = 0.01; % Time step (in days)

% Initialize values

t=0:dt:tmax; % Time values (in days)

nt = length(t); % Number of timesteps

S = zeros(1, nt); % Susceptible values

I = zeros(1, nt); % Infected values

R = zeros(1, nt); % Recovered values

S(1) = P - I0; % Initial value of S

I(1) = I0; % Initial value of I
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R(1) = 0; % Initial value of R

% Calculations

beta = 0.4137; % Transmission rate (per day)

gamma = 1/7; % Recovery rate (per day)

lockdown = 0.6118; % Lockdown strength

tijdsverschil = 57; % Duration

% Create SIR model

t1 = 0:dt:tmax;

t2 = t1 + tijdsverschil;

aantal = 1;

resultaten = zeros(aantal ,3);

Z = zeros(length(t1),length(t1));

l=1;

for j = 1:nt

if (t1(j) < t2(j))

% Create stepfunction

u(t >= 0 & t < t1(j)) = 0;

u(t >= t1(j) & t < t2(j)) = lockdown;

u(t >= t2(j)) = 0;

resultaten(l,1) = t1(j);

resultaten(l,2) = t2(j);

for i = 2:nt

dS = (-beta*(1-u(i))*I(i-1)*S(i-1)/P)*dt;

% Change in S

S(i) = S(i-1) + dS;

% Current S

value

if S(i) < 0; S(i) = 0; end

dI = (beta*(1-u(i))*I(i-1)*S(i-1)/P-gamma*I(i-1))*dt;

% Change in I

I(i) = I(i-1)+dI;

% Current I

value
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if I(i) < 0; I(i) = 0; end

dR = (gamma*I(i-1))*dt;

% Change in R

R(i) = R(i-1) + dR;

% Current R

value

Z(j,j) = I(i);

end

grootste = max(I(:));

resultaten(l,3) = grootste;

oppervlakte = trapz(t, I(:));

resultaten(l,4) = oppervlakte;

l=l+1;

end

end

% Plot of minimum I_max for different starting days

opp2 = trapz(resultaten (:,1), resultaten (:,4));

plot(resultaten (:,1), resultaten (:,3))

hold on;

j = plot(15, resultaten (15/dt+1,3), 'ro', 'MarkerSize ', 5, '
LineWidth ', 2);

k = plot (19.5 , resultaten (19.5/ dt+1,3), 'go', 'MarkerSize ', 5, '
LineWidth ', 2);

hold off;

xlim ([0 tmax])

xlabel('Time (in days)')
ylabel ('Maximum I')
annotation('textbox ', [0.6, 0.3, 0.1, 0.1], 'String ', 'u(t)

=0.6118; duration = 57 days ', 'FitBoxToText ', 'on');
combined_legend = legend ([j, k], {'I_{max} = 609020 ', 'I_{max} =

204360 '}, 'Location ', 'east ');
legend_pos = get(combined_legend , 'Position ');
legend_pos (2) = legend_pos (2) - 0.05; % Adjust the vertical

position as needed

set(combined_legend , 'Position ', legend_pos);

laagste = min(resultaten (:,3));

[X,Y] = find(Z == laagste);
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% Find row in which value of column 4 is equal to laagste

rij = find(resultaten (:,3) == laagste , 1);

% Time of day t1 that belongs to this row

startdag = resultaten(rij ,1);

X Appendix X

clear;

close all;

% Set Parameters

Rt = 2; % Transmission rate

P = 3400000; % Population

I0 = 1000; % Initial infected population

tmax = 91; % Length of simulation (in days)

dt = 0.1; % Time step (in days)

% Initialize values

t=0:dt:tmax; % Time values (in days)

nt = length(t); % Number of timesteps

S = zeros(1, nt); % Susceptible values

E = zeros(1, nt); % Incuation values

I = zeros(1, nt); % Infected values

R = zeros(1, nt); % Recovered values

S(1) = P - I0; % Initial value of S

E(1) = 1200; % Initial value of E

I(1) = 0; % Initial value of I

R(1) = 0; % Initial value of R

% Calculations

beta = 0.4137; % Transmission rate (per day)

gamma = 1/7; % Recovery rate (per day)

mu = 1/(76*365); % Death and birthrate (per day)

omega = 1/365; % Rate of loss of immunity (per day)

sigma = 1/5; % Latency period (in days)

alpha = 1/(83*365); % Infection -induced death ratio (per day)

lockdown = 0.6118; % Lockdown strength

t1 = 0:dt:tmax; % Starting day of lockdown

t2 = 0:dt:tmax; % Ending day of lockdown
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aantal = ((tmax/dt)*(( tmax/dt)+1))/2;

resultaten = zeros(aantal ,3);

Z = zeros(length(t1), length(t2));

% Create SEIRS model with given lockdownstrength

l=1;

for j = 1:nt

for k = 1:nt

if t1(j) < t2(k)

u(t >= 0 & t < t1(j)) = 0;

u(t >= t1(j) & t < t2(k)) = lockdown;

u(t >= t2(k)) = 0;

resultaten(l,1) = t1(j);

resultaten(l,2) = t2(k);

for i = 2:nt

dS = (mu*P - mu*S(i-1) - (beta*(1-u(i))*I(i-1)*S(

i-1)/P) + omega*R(i-1))*dt; % Change in S

S(i) = S(i-1) + dS;

% Current S value

if S(i) < 0; S(i) = 0; end

dE = (beta*(1-u(i))*I(i-1)*S(i-1)/P - sigma*E(i

-1) - mu*E(i-1))*dt; % Change in E

E(i) = E(i-1) + dE;

% Current E value

if E(i) < 0; E(i) = 0; end

dI = (sigma*E(i-1) - gamma*I(i-1) - (mu + alpha)*

I(i-1))*dt; % Change in I

I(i) = I(i-1) + dI;

% Current S value

if I(i) < 0; I(i) = 0; end

dR = (gamma*I(i-1) - mu*R(i-1) - omega*R(i-1))*dt

; % Change in R

R(i) = R(i-1) + dR;
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% Current R value

end

grootste = max(I(:)); % Maximum value of

I

Z(j,k) = grootste (:);

resultaten(l,3) = grootste;

oppervlakte = trapz(t, I(:)); % Surface under I

curve

resultaten(l,4) = oppervlakte;

l=l+1;

end

end

end

[X,Y] = meshgrid (0:dt:tmax);

% Limit X and Y to the part for which t1 <= t2

X = triu(X);

Y = triu(Y);

% Limit Z to the part for which t1 <= t2

Z = triu(Z);

% Create a new figure

figure;

% Surf plot

subplot(1, 2, 1);

surf(X, Y, Z.*(X>Y));

shading flat;

colormap summer;

xlabel('t_2');
ylabel('t_1');
zlabel('Maximum I');
annotation('textbox ', [0.1, 0.8, 0.1, 0.1], 'String ', 'u(t)

=0.6118 ', 'FitBoxToText ', 'on');

% Contour plot

subplot(1, 2, 2);

contourf(X, Y, Z.*(X>Y), 'LineColor ', 'None ');
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hold on;

j = plot(72, 15, 'ro', 'MarkerSize ', 5, 'LineWidth ', 2);

colormap summer;

cb= colorbar;

title(cb , 'I_{max}');
xlabel('End lockdown (t_2)');
ylabel('Start lockdown (t_1)');
combined_legend = legend(j, {'I_{max} = 552 ,630 '}, 'Location ', '

northwest ');
legend_pos = get(combined_legend , 'Position ');
legend_pos (2) = legend_pos (2) - 0.05;

set(combined_legend , 'Position ', legend_pos);

kleinste = min(resultaten (:,3));

[X,Y] = find(Z == kleinste);

Y Appendix Y

clear;

close all;

% Set Parameters

Rt = 2; % Transmission rate

P = 3400000; % Population

I0 = 1000; % Initial infected population

tmax = 91; % Length of simulation (in days)

dt = 0.1; % Time step (in days)

% Initialize values

t=0:dt:tmax; % Time values (in days)

nt = length(t); % Number of timesteps

S = zeros(1, nt); % Susceptible values

E = zeros(1, nt); % Incuation values

I = zeros(1, nt); % Infected values

R = zeros(1, nt); % Recovered values

S(1) = P - I0; % Initial value of S

E(1) = 1200; % Initial value of E

I(1) = 0; % Initial value of I

R(1) = 0; % Initial value of R

% Calculations

beta = 0.4137; % Transmission rate (per day)

gamma = 1/7; % Recovery rate (per day)
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mu = 1/(76*365); % Death and birthrate (per day)

omega = 1/365; % Rate of loss of immunity (per day)

sigma = 1/5; % Latency period (in days)

alpha = 1/(83*365); % Infection -induced death ratio (per day)

lockdown = 0.6118; % Lockdown strength

tijdsverschil = 57; % Duration

% Create SIR model

t1 = 0:dt:tmax;

t2 = t1 + tijdsverschil;

aantal = 1;

resultaten = zeros(aantal ,3);

Z = zeros(length(t1),length(t1));

l=1;

for j = 1:nt

if (t1(j) < t2(j))

% Create stepfunction

u(t >= 0 & t < t1(j)) = 0;

u(t >= t1(j) & t < t2(j)) = lockdown;

u(t >= t2(j)) = 0;

resultaten(l,1) = t1(j);

resultaten(l,2) = t2(j);

for i = 2:nt

dS = (mu*P - mu*S(i-1) - (beta*(1-u(i))*I(i-1)*S(

i-1)/P) + omega*R(i-1))*dt; % Change in S

S(i) = S(i-1) + dS;

% Current S value

if S(i) < 0; S(i) = 0; end

dE = (beta*(1-u(i))*I(i-1)*S(i-1)/P - sigma*E(i

-1) - mu*E(i-1))*dt; % Change in E

E(i) = E(i-1) + dE;

% Current E value

if E(i) < 0; E(i) = 0; end
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dI = (sigma*E(i-1) - gamma*I(i-1) - (mu + alpha)*

I(i-1))*dt; % Change in I

I(i) = I(i-1) + dI;

% Current S value

if I(i) < 0; I(i) = 0; end

dR = (gamma*I(i-1) - mu*R(i-1) - omega*R(i-1))*dt

; % Change in R

R(i) = R(i-1) + dR;

% Current R value

Z(j,j) = I(i);

end

grootste = max(I(:)); % Maximum value of I

resultaten(l,3) = grootste;

oppervlakte = trapz(t, I(:)); % Surface under I

graph

resultaten(l,4) = oppervlakte;

l=l+1;

end

end

% Plot of minimum I_max for different starting days

opp2 = trapz(resultaten (:,1), resultaten (:,4));

plot(resultaten (:,1), resultaten (:,3))

hold on;

j = plot(15, resultaten (15/dt+1,3), 'ro', 'MarkerSize ', 5, '
LineWidth ', 2);

hold off;

xlim ([0 tmax])

xlabel('Time (in days)')
ylabel ('Maximum I')
annotation('textbox ', [0.145 , 0.7, 0.1, 0.1], 'String ', 'u(t)

=0.6118; duration = 57 days ', 'FitBoxToText ', 'on');
combined_legend = legend(j, {'I_{max} = 552 ,630 '}, 'Location ', '

northwest ');
legend_pos = get(combined_legend , 'Position ');
legend_pos (2) = legend_pos (2) - 0.05;

set(combined_legend , 'Position ', legend_pos);
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laagste = min(resultaten (:,3));

[X,Y] = find(Z == laagste);

% Find row in which value of column 4 is equal to laagste

rij = find(resultaten (:,3) == laagste , 1);

% Time of day t1 that belongs to this row

startdag = resultaten(rij ,1);

Z Appendix Z

clear;

close all;

beta_values = [0.3, 0.5, 0.7, 0.9]; % Values for beta

% Create figure

figure;

hold on;

for beta = beta_values

x = [0.75 , 20]; %x(1) = lockdown , x(2) = duration

options = optimoptions('gamultiobj ','PopulationSize ',60,...
'ParetoFraction ' ,0.7);

lb = [0 0];

ub = [1 100];

[solution , ObjectiveValue] = gamultiobj (@(x) eindfunctie(x,

beta), 2,...

[],[],[],[],lb,ub,options);

plot(ObjectiveValue (:,1), ObjectiveValue (:,2), 'o');
end

% Add xlabel , ylabel , and legend

xlabel('I_{max}');
ylabel('u_{tot}');
legend(string(beta_values), 'Location ', 'northeast ');

hold off;
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% Create function

function laagste = mijnfunctie1(x, beta)

% Set Parameters

Rt = 2; % Transmission rate

P = 10000000; % Population

I0 = 1000; % Initial infected population

tmax = 100; % Length of simulation (in days)

dt = 2; % Time step (in days)

% Initialize values

t=0:dt:tmax; % Time values (in days)

nt = length(t); % Number of timesteps

S = zeros(1, nt); % Susceptible values

I = zeros(1, nt); % Infected values

R = zeros(1, nt); % Recovered values

S(1) = P - I0; % Initial value of S

I(1) = I0; % Initial value of I

R(1) = 0; % Initial value of R

% Calculations

gamma = 0.2; % Recovery rate (per day)

t1 = 0:dt:tmax;

t2 = t1 + x(2);

aantal = 1;

resultaten = zeros(aantal ,3);

Z = zeros(length(t1),length(t1));

l=1;

for j = 1:nt

if (t1(j) < t2(j))

u(t >= 0 & t < t1(j)) = 0;

u(t >= t1(j) & t < t2(j)) = x(1);

u(t >= t2(j)) = 0;

resultaten(l,1) = t1(j);

resultaten(l,2) = t2(j);

for i = 2:nt
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dS = (-beta*(1-u(i))*I(i-1)*S(i-1)/P)*dt;

% Change in S

S(i) = S(i-1) + dS;

% Current S

value

if S(i) < 0; S(i) = 0; end

dI = (beta*(1-u(i))*I(i-1)*S(i-1)/P-gamma*I(i-1))

*dt; % Change in I

I(i) = I(i-1)+dI;

% Current

I value

if I(i) < 0; I(i) = 0; end

dR = (gamma*I(i-1))*dt;

% Change in R

R(i) = R(i-1) + dR;

% Current R

value

Z(j,j) = I(i);

end

grootste = max(I(:));

resultaten(l,3) = grootste;

oppervlakte = trapz(t, I(:));

resultaten(l,4) = oppervlakte;

l=l+1;

end

end

% Find minimum value of I_max

laagste = min(resultaten (:,4));

[X,Y] = find(Z == laagste);

% Find row in which value of column 4 is equal to laagste

rij = find(resultaten (:,4) == laagste , 1);

% Starting day t1 that belongs to this row

startdag = resultaten(rij ,1);

end

% Create another function
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function w = eindfunctie(x, beta)

laagste = mijnfunctie1(x, beta);

w(1) = laagste;

w(2) = x(1)*x(2); %x(1) = lockdown , x(2) = duration

end

7 Appendix AA

clear;

close all;

beta_values = [0.4, 0.6, 0.8]; % Beta values

% Create figure

figure;

hold on;

for beta = beta_values

x = [0.75 , 20]; %x(1) = lockdown , x(2) = duration

options = optimoptions('gamultiobj ','PopulationSize ',60,...
'ParetoFraction ' ,0.7);

lb = [0 0];

ub = [1 150];

[solution , ObjectiveValue] = gamultiobj (@(x) eindfunctie(x,

beta), 2,...

[],[],[],[],lb,ub,options);

plot(ObjectiveValue (:,1), ObjectiveValue (:,2), 'o');
end

% Add xlabel , ylabel , and legend

xlabel('I_{max}');
ylabel('u_{tot}');
legend(string(beta_values), 'Location ', 'northeast ');

hold off;

% Create function

function laagste = mijnfunctie1(x, beta)

% Set Parameters
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Rt = 2; % Transmission rate

P = 10000000; % Population

I0 = 1000; % Initial infected population

tmax = 150; % Length of simulation (in days)

dt = 2; % Time step (in days)

% Initialize values

t=0:dt:tmax; % Time values (in days)

nt = length(t); % Number of timesteps

S = zeros(1, nt); % Susceptible values

E = zeros(1, nt); % Incuation values

I = zeros(1, nt); % Infected values

R = zeros(1, nt); % Recovered values

S(1) = P - I0; % Initial value of S

E(1) = 1000; % Initial value of E

I(1) = 0; % Initial value of I

R(1) = 0; % Initial value of R

% Calculations

gamma = 1/14; % Recovery rate (per day)

mu = 1/(76*365); % Death and birthrate (per day)

omega = 1/365; % Rate of loss of immunity (per day)

sigma = 1/7; % Latency period (in days)

alpha = 0.2; % Infection -induced death ratio (per day)

lockdown = 0.75; % Lockdown strength

t1 = 0:dt:tmax;

t2 = t1 + x(2);

aantal = 1;

resultaten = zeros(aantal ,3);

Z = zeros(length(t1),length(t1));

l=1;

for j = 1:nt

if (t1(j) < t2(j))

u(t >= 0 & t < t1(j)) = 0;

u(t >= t1(j) & t < t2(j)) = x(1);

u(t >= t2(j)) = 0;

resultaten(l,1) = t1(j);
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resultaten(l,2) = t2(j);

for i = 2:nt

dS = (mu*P - mu*S(i-1) - (beta*(1-u(i))*I(i-1)*S(

i-1)/P) + omega*R(i-1))*dt; % Change in S

S(i) = S(i-1) + dS;

% Current S value

if S(i) < 0; S(i) = 0; end

dE = (beta*(1-u(i))*I(i-1)*S(i-1)/P - sigma*E(i

-1) - mu*E(i-1))*dt; % Change in E

E(i) = E(i-1) + dE;

% Current E value

if E(i) < 0; E(i) = 0; end

dI = (sigma*E(i-1) - gamma*I(i-1) - (mu + alpha)*

I(i-1))*dt; % Change in I

I(i) = I(i-1) + dI;

% Current S value

if I(i) < 0; I(i) = 0; end

dR = (gamma*I(i-1) - mu*R(i-1) - omega*R(i-1))*dt

; % Change in R

R(i) = R(i-1) + dR;

% Current R value

Z(j,j) = I(i);

end

grootste = max(I(:));

resultaten(l,3) = grootste;

oppervlakte = trapz(t, I(:));

resultaten(l,4) = oppervlakte;

l=l+1;

end

end

% Find minimum value of I_max

laagste = min(resultaten (:,4));
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[X,Y] = find(Z == laagste);

% Find row in which value of column 4 is equal to laagste

rij = find(resultaten (:,4) == laagste , 1);

% Starting day t1 that belongs to this row

startdag = resultaten(rij ,1);

end

% Create another function

function w = eindfunctie(x, beta)

laagste = mijnfunctie1(x, beta);

w(1) = laagste;

w(2) = x(1)*x(2); %x(1) = lockdown , x(2) = duration

end

8 Appendix AB

clear;

close all;

gamma_values = [0.49, 0.5]; % Gamma values

% Create figure

figure;

hold on;

for gamma = gamma_values

x = [0.75 , 20]; %x(1) = lockdown , x(2) = duration

options = optimoptions('gamultiobj ','PopulationSize ',60,...
'ParetoFraction ' ,0.7);

lb = [0 0];

ub = [1 100];

[solution , ObjectiveValue] = gamultiobj (@(x) eindfunctie(x,

gamma), 2,...

[],[],[],[],lb,ub,options);

plot(ObjectiveValue (:,1), ObjectiveValue (:,2), 'o');
end

% Add xlabel , ylabel , and legend
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xlabel('I_{max}');
ylabel('u_{tot}');
legend(string(gamma_values), 'Location ', 'northeast ');

hold off;

% Create function

function laagste = mijnfunctie1(x, gamma)

% Set Parameters

Rt = 2; % Transmission rate

P = 10000000; % Population

I0 = 1000; % Initial infected population

tmax = 100; % Length of simulation (in days)

dt = 2; % Time step (in days)

% Initialize values

t=0:dt:tmax; % Time values (in days)

nt = length(t); % Number of timesteps

S = zeros(1, nt); % Susceptible values

I = zeros(1, nt); % Infected values

R = zeros(1, nt); % Recovered values

S(1) = P - I0; % Initial value of S

I(1) = I0; % Initial value of I

R(1) = 0; % Initial value of R

% Calculations

beta = 0.6; % Transmission rate (per day)

t1 = 0:dt:tmax;

t2 = t1 + x(2);

aantal = 1;

resultaten = zeros(aantal ,3);

Z = zeros(length(t1),length(t1));

l=1;

for j = 1:nt

if (t1(j) < t2(j))

u(t >= 0 & t < t1(j)) = 0;

u(t >= t1(j) & t < t2(j)) = x(1);
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u(t >= t2(j)) = 0;

resultaten(l,1) = t1(j);

resultaten(l,2) = t2(j);

for i = 2:nt

dS = (-beta*(1-u(i))*I(i-1)*S(i-1)/P)*dt;

% Change in S

S(i) = S(i-1) + dS;

% Current S

value

if S(i) < 0; S(i) = 0; end

dI = (beta*(1-u(i))*I(i-1)*S(i-1)/P-gamma*I(i-1))

*dt; % Change in I

I(i) = I(i-1)+dI;

% Current

S value

if I(i) < 0; I(i) = 0; end

dR = (gamma*I(i-1))*dt;

% Change in R

R(i) = R(i-1) + dR;

% Current R

value

Z(j,j) = I(i);

end

grootste = max(I(:));

resultaten(l,3) = grootste;

oppervlakte = trapz(t, I(:));

resultaten(l,4) = oppervlakte;

l=l+1;

end

end

% Find minimum value of I_max

laagste = min(resultaten (:,4));

[X,Y] = find(Z == laagste);

% Find row in which value of column 4 is equal to laagste

rij = find(resultaten (:,4) == laagste , 1);
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% Starting day t1 that belongs to this row

startdag = resultaten(rij ,1);

end

% Create another function

function w = eindfunctie(x, gamma)

laagste = mijnfunctie1(x, gamma);

w(1) = laagste;

w(2) = x(1)*x(2); %x(1) = lockdown , x(2) = duration

end

9 Appendix AC

clear;

close all;

gamma_values = [0.1, 0.14, 0.18]; % Values for gamma

% Create figure

figure;

hold on;

for gamma = gamma_values

x = [0.75 , 20]; %x(1) = lockdown , x(2) = duration

options = optimoptions('gamultiobj ','PopulationSize ',60,...
'ParetoFraction ' ,0.7);

lb = [0 0];

ub = [1 150];

[solution , ObjectiveValue] = gamultiobj (@(x) eindfunctie(x,

gamma), 2,...

[],[],[],[],lb,ub,options);

plot(ObjectiveValue (:,1), ObjectiveValue (:,2), 'o');
end

% Add xlabel , ylabel , and legend

xlabel('I_{max}');
ylabel('u_{tot}');
legend(string(gamma_values), 'Location ', 'northeast ');
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hold off;

% Create function

function laagste = mijnfunctie1(x, gamma)

% Set Parameters

Rt = 2; % Transmission rate

P = 10000000; % Population

I0 = 1000; % Initial infected population

tmax = 100; % Length of simulation (in days)

dt = 2; % Time step (in days)

% Initialize values

t=0:dt:tmax; % Time values (in days)

nt = length(t); % Number of timesteps

S = zeros(1, nt); % Susceptible values

I = zeros(1, nt); % Infected values

R = zeros(1, nt); % Recovered values

S(1) = P - I0; % Initial value of S

I(1) = I0; % Initial value of I

R(1) = 0; % Initial value of R

% Calculations

beta =0.6; % Transmission rate (per day)

t1 = 0:dt:tmax;

t2 = t1 + x(2);

aantal = 1;

resultaten = zeros(aantal ,3);

Z = zeros(length(t1),length(t1));

l=1;

for j = 1:nt

if (t1(j) < t2(j))

u(t >= 0 & t < t1(j)) = 0;

u(t >= t1(j) & t < t2(j)) = x(1);

u(t >= t2(j)) = 0;

resultaten(l,1) = t1(j);

resultaten(l,2) = t2(j);
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for i = 2:nt

dS = (-beta*(1-u(i))*I(i-1)*S(i-1)/P)*dt;

% Change in S

S(i) = S(i-1) + dS;

% Current S

value

if S(i) < 0; S(i) = 0; end

dI = (beta*(1-u(i))*I(i-1)*S(i-1)/P-gamma*I(i-1))

*dt; % Change in I

I(i) = I(i-1)+dI;

% Current E

value

if I(i) < 0; I(i) = 0; end

dR = (gamma*I(i-1))*dt;

% Change in R

R(i) = R(i-1) + dR;

% Current R

value

Z(j,j) = I(i);

end

grootste = max(I(:));

resultaten(l,3) = grootste;

oppervlakte = trapz(t, I(:));

resultaten(l,4) = oppervlakte;

l=l+1;

end

end

% Find minimum value of I_max

laagste = min(resultaten (:,4));

[X,Y] = find(Z == laagste);

% Find row in which value of column 4 is equal to laagste

rij = find(resultaten (:,4) == laagste , 1);

% Starting day t1 that belongs to this row

startdag = resultaten(rij ,1);

end
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% Create another function

function w = eindfunctie(x, gamma)

laagste = mijnfunctie1(x, gamma);

w(1) = laagste;

w(2) = x(1)*x(2); %x(1) = lockdown , x(2) = duration

end

10 Appendix AD

clear;

close all;

x = [0.6118 , 57]; %x(1) = lockdown , x(2) = duration

w = eindfunctie(x); %w(1) = minimum , w(2) = surface

options = optimoptions('gamultiobj ','PopulationSize ',60,...
'ParetoFraction ' ,0.7,'PlotFcn ',@gaplotpareto);

lb = [0 0];

ub = [1 91];

[solution ,ObjectiveValue] = gamultiobj (@ eindfunctie ,2,...

[],[],[],[],lb,ub,options);

% Create figure with extra plot of current I_max value

figure;

plot(ObjectiveValue (:,1), ObjectiveValue (:,2), 'o');
hold on;

x = 609020; %I_max

y = 57*0.6118; % u_tot

plot(x,y, 'ro', 'MarkerSize ', 5, 'LineWidth ', 2)

hold off;

xlabel('I_{max}')
ylabel('u_{tot}')
legend('Pareto efficient solutions ', 'Solution SIR -model ')

function laagste = mijnfunctie1(x)

% Set Parameters

Rt = 2; % Transmission rate

P = 3400000; % Population

I0 = 1200; % Initial infected population

tmax = 91; % Length of simulation (in days)

dt = 2; % Time step (in days)
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% Initialize values

t=0:dt:tmax; % Time values (in days)

nt = length(t); % Number of timesteps

S = zeros(1, nt); % Susceptible values

I = zeros(1, nt); % Infected values

R = zeros(1, nt); % Recovered values

S(1) = P - I0; % Initial value of S

I(1) = I0; % Initial value of I

R(1) = 0; % Initial value of R

% Calculations

beta = 0.4137; % Transmission rate (per day)

gamma = 1/7; % Recovery rate (per day)

t1 = 0:dt:tmax;

t2 = t1 + x(2);

aantal = 1;

resultaten = zeros(aantal ,3);

Z = zeros(length(t1),length(t1));

l=1;

for j = 1:nt

if (t1(j) < t2(j))

u(t >= 0 & t < t1(j)) = 0;

u(t >= t1(j) & t < t2(j)) = x(1);

u(t >= t2(j)) = 0;

resultaten(l,1) = t1(j);

resultaten(l,2) = t2(j);

for i = 2:nt

dS = (-beta*(1-u(i))*I(i-1)*S(i-1)/P)*dt;

% Change in S

S(i) = S(i-1) + dS;

%

Current S value

if S(i) < 0; S(i) = 0; end

dI = (beta*(1-u(i))*I(i-1)*S(i-1)/P-gamma*I(i
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-1))*dt; % Change in I

I(i) = I(i-1)+dI;

%

Current I value

if I(i) < 0; I(i) = 0; end

dR = (gamma*I(i-1))*dt;

% Change in

R

R(i) = R(i-1) + dR;

%

Current R value

Z(j,j) = I(i);

end

grootste = max(I(:));

resultaten(l,3) = grootste;

oppervlakte = trapz(t, I(:));

resultaten(l,4) = oppervlakte;

l=l+1;

end

end

% Find minimum value of I_max

laagste = min(resultaten (:,3));

[X,Y] = find(Z == laagste);

% Find row in which value of column 4 is equal to laagste

rij = find(resultaten (:,3) == laagste , 1);

% Starting day t1 that belongs to this row

startdag = resultaten(rij ,1);

end

% Create another function

function w = eindfunctie(x)

laagste = mijnfunctie1(x);

w(1) = laagste;

w(2) = x(1)*x(2); %x(1) = lockdown , x(2) = duration

end

11 Appendix AE
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clear;

close all;

x = [0.6118 , 57]; %x(1) = lockdown , x(2) = duration

w = eindfunctie(x); %w(1) = minimum , w(2) = surface

options = optimoptions('gamultiobj ','PopulationSize ',60,...
'ParetoFraction ' ,0.7,'PlotFcn ',@gaplotpareto);

lb = [0 0];

ub = [1 250];

[solution ,ObjectiveValue] = gamultiobj (@ eindfunctie ,2,...

[],[],[],[],lb,ub,options);

% Create figure

figure;

plot(ObjectiveValue (:,1), ObjectiveValue (:,2), 'o');
hold on;

x = 552630; %2487600; %I_max

y = 57*0.6118; % u_tot

plot(x,y, 'x', 'LineWidth ', 2)

hold off;

xlabel('I_{max}')
ylabel('u_{tot}')
legend('Pareto efficient solutions ', 'Solution SEIRS -model ')

% Create function

function laagste = mijnfunctie1(x)

% Set Parameters

Rt = 2; % Transmission rate

P = 3400000; % Population

tmax = 250; % Length of simulation (in days)

dt = 0.5; % Time step (in days)

I0 = 1200;

% Initialize values

t=0:dt:tmax; % Time values (in days)

nt = length(t); % Number of timesteps

S = zeros(1, nt); % Susceptible values

E = zeros(1, nt); % Incuation values

I = zeros(1, nt); % Infected values

R = zeros(1, nt); % Recovered values
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S(1) = P - I0; % Initial value of S

E(1) = 1200; % Initial value of E

I(1) = 0; % Initial value of I

R(1) = 0; % Initial value of R

% Calculations

beta = 0.4137; % Transmission rate (per day)

gamma = 1/7; % Recovery rate (per day)

mu = 1/(76*365); % Death and birthrate (per day)

omega = 1/365; % Rate of loss of immunity (per day)

sigma = 1/5; % Latency period (in days)

alpha = 1/(83*365); % Infection -induced death ratio (per

day)

t1 = 0:dt:tmax;

t2 = t1 + x(2);

aantal = 1;

resultaten = zeros(aantal ,3);

Z = zeros(length(t1),length(t1));

l=1;

for j = 1:nt

if (t1(j) < t2(j))

u(t >= 0 & t < t1(j)) = 0;

u(t >= t1(j) & t < t2(j)) = x(1);

u(t >= t2(j)) = 0;

resultaten(l,1) = t1(j);

resultaten(l,2) = t2(j);

for i = 2:nt

dS = (mu*P - mu*S(i-1) - (beta*(1-u(i))*I(i

-1)*S(i-1)/P) + omega*R(i-1))*dt; %

Change in S

S(i) = S(i-1) + dS;

% Current S value

if S(i) < 0; S(i) = 0; end

dE = (beta*(1-u(i))*I(i-1)*S(i-1)/P - sigma*E

132



(i-1) - mu*E(i-1))*dt; % Change

in E

E(i) = E(i-1) + dE;

% Current E value

if E(i) < 0; E(i) = 0; end

dI = (sigma*E(i-1) - gamma*I(i-1) - (mu +

alpha)*I(i-1))*dt; %

Change in I

I(i) = I(i-1) + dI;

% Current S value

if I(i) < 0; I(i) = 0; end

dR = (gamma*I(i-1) - mu*R(i-1) - omega*R(i-1)

)*dt; % Change

in R

R(i) = R(i-1) + dR;

% Current R value

end

grootste = max(I(:));

resultaten(l,3) = grootste;

oppervlakte = trapz(t, I(:));

resultaten(l,4) = oppervlakte;

l=l+1;

end

end

% Find minimum value of I_max

laagste = min(resultaten (:,3));

[X,Y] = find(Z == laagste);

% Find row in which value of column 4 is equal to laagste

rij = find(resultaten (:,3) == laagste , 1);

% Starting day t1 that belongs to this row

startdag = resultaten(rij ,1);

end

% Create function
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function w = eindfunctie(x)

laagste = mijnfunctie1(x);

w(1) = laagste;

w(2) = x(1)*x(2); %x(1) = lockdown , x(2) = duration

end
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