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1 Introduction

"Banach spaces are very wild." - dr. M. Roelands

And yes, Banach spaces are indeed very wild. Even though we have many tools for
analysing properties of Banach spaces - such as the Hahn-Banach Theorem, Open-
mapping Theorem and the Uniform boundedness principle - they can lack a lot of
other properties present in spaces with more structure. For instance, Banach spaces
do not have to be reflexive in general; we have no general notion of orthogonality;
the closure of the space of finite rank operators does not have to be the compact
operators and so on. Many Banach spaces however admit more structure than is
encapsulated in the notion of a Banach space. On some, such as operator spaces, we
have a natural notion of a vector multiplication.

Banach spaces with a multiplication that behaves ‘nicely’ with the topology in-
ferred by the norm are called Banach algebras. Whenever there is a multiplicative
unit present in our Banach algebra we can also define the spectrum of an element
of said algebra, generalising the concept of spectra associated with linear operators.
This will prove to be invaluable in analysing Banach algebras. Namely its proper-
ties can allow us to discern which algebras can be made into Banach algebras, giving
us a better feel for the type of vector spaces involved. In this thesis the reader will
no doubt also see the general framework of Banach algebras allows the spectrum to
flourish in its applications to solving integral equations, such as the following exam-
ple

K : C ([0,1]) →C ([0,1]),

K (g )(t ) = c · g (t )+
∫ 1

0
k(x, g (t )) f (x)d x = 0.

Some problems we can not solve with this theory however such as proving if the
equation

W : L2(R+) → L2(R+),

W (φ)(t ) = cφ(t )+
∫ ∞

0
k(t − s)φ(s)d s = 0, t ≥ 0,

has solutions for functions g ∈ L2(R+). Luckily we have not exhausted the struc-
ture of operator algebras B(V ) as a source of inspiration: when we require the under-
lying space V to be Hilbert, we can also take adjoints of operators. Formalising this
in a more general framework will give us a special type of Banach algebra, known as
a C∗−algebra. Within C∗−algebras we can greatly strengthen some of the theorems
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known for Banach algebras and its unique structure makes way for new theorems
of great beauty and of use to the problem above. In doing so we will demonstrate a
deep connection between a certain operator algebra and the winding number which
we can associate with elements of this algebra. The theorem stating this connection
is called the Toeplitz index Theorem and will serve as the main theorem of this thesis.

The outline of this thesis is now as follows. In Section 2 we will define and dis-
play some of the properties of Banach algebras. We will do the same for C∗−algebras
in Section 3 whilst making the distinction between Banach and C∗−algebras all the
more clear, highlighting its special properties. In Section 4 we will formulate a com-
prehensive and clear definition of the winding number tailored to our needs. From
Section 5 onward we will delve into operator theory, displaying the Toeplitz Index
Theorem in Section 6 and applying it to integral equations in Section 7. The reader
well-acquainted with C∗−and Banach algebras may want to skip ahead to Section 4
or 5.
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2 Banach algebras

2.1 Introduction

Suppose K is a field. A K -algebra A is a K -vector space with a binary operation
(x, y) 7→ x y that is both bilinear and associative. In this thesis we shall assume K =C
and refer to C−algebras simply as algebras. The material in this section is mainly
based on [2] and lesser so on [8] and [10]. Often when dealing with vector spaces,
concepts like distance and convergence naturally arise and hence we like to define
a topology on the space. We do the same for algebras, where the multiplication is
connected with the norm as follows.

Definition 2.1.1. Suppose we have an algebra A which is also a normed vector space
A. We say A is a normed algebra if it satisfies∥∥x y

∥∥≤ ∥x∥ ·∥∥y
∥∥ , for all x, y ∈ A. (1)

Furthermore, if A is also complete under its norm, we say A is a Banach algebra.
If the algebra A has a multiplicative unit we call it unital.

Examples of elementary (finite dimensional) algebras include matrix algebras
Mat(n,C) over a fixed dimension n ∈Nwith the natural multiplication, or simplyCn .
Even though finite dimensional algebras are not the main topic of study in functional
analysis, they can serve as useful examples. The former is for example Banach under
its associated operator norm and the latter the supremum norm over its coordinates.

A very important example of an infinite dimensional normed algebra is space
of bounded operators B(V ) on some normed space V equipped with the standard
operator norm and with multiplication being composition. Another example is the
space of continuous functions C (X ) on some compact Hausdorff space X with point-
wise product and supremum norm. In this case C (X ) is a Banach algebra and should
V be a Banach space, then B(V ) is a Banach algebra also.

Sometimes multiple multiplications can be appropriate for vector spaces. For
example if we look at the sequence space ℓ1(Z) we can define a pointwise product
(an)n≥0 · (bn)n≥0 = (anbn)n≥0 to make it a Banach algebra, but also by way of convo-
lution

(ab)n =
∞∑

k=−∞
anbn−k (2)

In a similar fashion, we can also define a convolution product on L 1(R), with
f , g ∈ L (R) satisfying ( f ⋆ g )(x) := ∫ ∞

−∞ f (x)g (x − t )d t . It can be shown that both
ℓ1(Z) and L 1(R) satisfy property (1) using Young’s inequalityA.2.1. This product will
indeed make L 1(R) into a Banach algebra. The algebras ℓ1(Z) and L 1(R) are very
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different however as the former has a multiplicative identity while the latter does not.
We will use convolution products later on to define integral operators on L p spaces.

Remark 2.1.2. Multiplicative identities need not have norm 1 even though this is
intuitively a desired property. This problem can be resolved, however, as in[2] where
it is shown that any Banach algebra can be renormed to satisfy ∥1∥ = 1 under an
equivalent norm. This is achieved by showing that any unital Banach algebra A is
algebraically isomorphic to a subalgebra of the space B(A) of bounded operators,
which happens to induce a norm with the desired properties. For this reason we will
from now on assume that ∥1∥ = 1 holds.

2.2 The spectrum in Banach Algebras

A main topic of study within functional analysis are the spectra of (bounded) opera-
tors. Since we know B(V ) to be a Banach algebra if V is a Banach space, it is natural
to generalise this definition for general Banach algebras. We will phrase it a bit more
generally however.

Definition 2.2.1. Given a unital normed algebra A the spectrum σ(x) of an element
x ∈ A is given by

σ(x) = {λ ∈C : x −λ1 is not invertible }.

For the rest of this section we denote A to be a unital Banach algebra. Step-
ping away from operator algebras, the spectrum of an element in a general algebra is
purely an algebraic construct as there are no further requirements regarding the con-
tinuity of such an inverse. This is in a sense also true in Banach operator algebras as
bijective linear mappings are invertible by the Banach isomorphism theoremA.2.4.

On the other hand, we will see many properties of Banach algebras relating the
spectrum of an element and the topology of the Banach algebra, which will allow us
to exclude some important algebraic structures from being able to be made into a
Banach algebra.

Before we delve into the properties of the spectrum, we require some basic infor-
mation on the set of invertible elements.

Theorem 2.2.2. For all x ∈ A, ∥x∥ < 1 the series
∑∞

n=0 xn converges with limit (1−x)−1.
We also have the estimates∥∥(1−x)−1

∥∥≤ 1

1−∥x∥ and
∥∥1− (1−x)−1

∥∥≤ ∥x∥
1−∥x∥ .

The proof is similar to what is taught in elementary courses on linear functional
analysis and will not be included here. In the proof the completeness of A is used in
the sense that absolute convergence of series implies convergence of series. This is
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on the most fundamental level the property which will allow us to build our theory
for Banach algebras.

If we denote by A× the set of invertible elements of A, we can show with the theo-
rem above that the subset A× of A is open and that the operation x 7→ x−1 is continu-
ous as seen in [2, Theorem 1.5.3]. The proof uses the norm estimations of 2.2.2 and is
quite technical. The fact that A× is open allows us to prove our first property on the
spectrum which later on will be strengthened significantly.

Lemma 2.2.3. For all x ∈ A, σ(x) is closed and we have σ(x) ⊆ {z ∈C : |z| ≤ ∥x∥}.

Proof. Since A× is open and the mapping C→ A, λ 7→ x −λ1 is continuous, the set
C \σ(x) must be open and thus σ(x) closed. If we assume |λ| > ∥x∥ we can see that
x−λ1 =−λ(1−λ−1x) and since ∥x∥

|λ| < 1 we see that the latter should be invertible.

Corollary 2.2.4. There does not exist a norm ∥_∥ such that the algebra C[X ] together
with ∥_∥ is a Banach algebra.

Proof. We know polynomials f ∈C[X ] to be invertible if and only if deg( f ) = 0. Fix f ∈
C[X ], deg( f ) > 0. We can see that for λ ∈C, f −λ1 will not be invertible, thus σ( f ) =
C which is clearly unbounded making C[X ] unable to become a Banach algebra by
Lemma 2.2.3.

The following theorem by Gelfand is very useful in classifying a certain type of
Banach algebras. In proving this we ‘generalise’ complex functions to admit a Banach
algebra as codomain. We can then define the derivative analogously to the regular
complex case—should the limit exist. It also displays nicely why Banach algebras are
best discussed over a complex field.

Theorem 2.2.5. For all x ∈ A we have σ(x) ̸= ;.

Proof. Suppose x ∈ A and λ0 ∉ σ(x). By Lemma 2.2.3 σ(x) is closed and x −λ1 is
invertible with λ ∈C.

We can then see

(x −λ)−1 − (x −λ0)−1 = (λ−λ0)(x −λ)−1(x −λ0)−1.

Dividing by λ−λ0 and using (x −λ)−1 → (x −λ0)−1 as λ→λ0 yields

lim
λ→λ0

(x −λ)−1 − (x −λ0)−1

λ−λ0
= (x −λ0)−2.

If we now assumeσ(x) to be empty, we can see this equality holds for every λ ∈C.
Now if we take a bounded linear functional ρ on A we define f (λ) = ρ((x −λ)−1) and

f ′(λ) = ρ((x−λ)−1)−ρ(x−λ0)−1

λ−λ0
.
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Using the earlier assertions and the linearity and continuity of ρ we can see that
f ′(λ) = ρ((x −λ)−2) meaning that f is an entire function. We can use the previously
found estimates on geometric series to conclude f is bounded also and by Liouville’s
theorem A.2.6 then constant. By the same estimates we can also see f will tend to
zero as λ→∞, thus meaning f is constant zero.

Since ρ was chosen arbitrarily and by in [17, Corollary 5.22] we have that
(x −λ)−1 = 0, which is clearly a contradiction since the element is invertible.

Remark 2.2.6. Should the Banach algebra A now be a division algebra also we can
draw a remarkable conclusion. If we define θ :C→ A with θ(λ) = λ1, then θ(C) is a
subalgebra isometrically isomorphic to C. For every element x ∈ A there must be a
λ ∈C such that x−λ1 is not invertible. Since A is a division algebra this can only hap-
pen when x =λ1, thus A is isometrically isomorphic to the one-dimensional algebra
C.

This result excludes numerous algebras from being able to become Banach alge-
bras. For example the space of rational functions as every non constant element has
empty spectrum. The result itself is useful in building up our theory as we can see in
Section 2.4.

To give the reader an idea of possible ways to strengthen the relation between the
norm of an element and its spectrum, we state the following result without proof. An
excellent proof can be below [2, Theorem 1.7.3] using similar techniques as used in
proving Theorem 2.2.5.

Theorem 2.2.7. For all x ∈ A we have

lim
n→∞

∥∥xn
∥∥1/n = sup{∥λ∥ :λ ∈σ(x)}

We call this value the spectral radius and denote it by r (x).
Using Theorem 2.2.7 and Lemma 2.2.3 we can give bounds for the spectrum of

an element in a Banach algebra, but we have as of yet not seen any general way to
compute the spectrum. It is for instance not clear what the spectrum of a general
element x ∈ ℓ1(Z) under convolution product is. We shall soon see a powerful tool to
achieve this, but first we require some knowledge on quotients of Banach algebras.

2.3 Quotients of Banach algebras

As we will see there exist many examples of algebras with a topology where taking
quotients is not only useful but also natural to consider. For example, looking at the
normed algebra ℓ∞(N) under pointwise multiplication, we can define c0(N) to be the
space of sequences converging to zero. The space ℓ∞(N)/c0(N) contains classes of
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elements converging to the same element making it a suitable space for studying the
asymptotic behavior of sequences. We shall see more examples later on. For the rest
of this section A will once again denote a Banach algebra.

Remark 2.3.1. We do not know yet, however, how the topology will behave for quo-
tient structures of A/I . In this context there are two important remarks to make.
Firstly, it is easily seen the closure of an ideal is indeed an ideal. Furthermore given
unital A and I ⊊ A a proper ideal we can prove the norm closure I to be proper also.
Indeed, we know the intersection of I and A−1 to be empty. Since A \ A−1 is closed
2.2.3 and I ⊆ A \ A−1 ⊊ A we can simply take the closure of I yielding a proper subset
of A. From this, it also follows that any maximal ideal is closed.

Secondly, if we endow the quotient A/I of a normed algebra A with the norm

∥x + I∥ := inf
i∈I

∥x + i∥ ,

the quotient will again be a normed algebra. If we also assume A to be Banach and
I to be closed then A/I is a Banach algebra. This last statement follows from the fact
that for x ∈ I with I closed there exists j ∈ I for which infi∈I ∥x + i∥ = ∥∥x + j

∥∥ holds.
From this, we can see that any Cauchy sequence (xn + I ) ⊆ A/I can be associated
with a sequence (xn + in)n≥0 converging to (x + i ) for some x ∈ A, i ∈ I . We can then
show (xn + I )n≥0 → (x + I ). After verifying that

∥∥x y + I
∥∥ ≤ ∥x + I∥ ·∥∥y + I

∥∥ holds we
can conclude that A/I is indeed a Banach algebra.

Now that these elementary results have been stated we shall state that the univer-
sal property of quotients is also valid for Banach algebras

Theorem 2.3.2 (Isomorphism theorem for Banach algebras). Let f : A → B be a bounded
homomorphism between Banach algebras and I ⊂ ker( f ) a closed ideal in A. The nat-
ural mappings π : A → A/I , q : A/I → A/ker( f ) and f uniquely induce the dotted
arrows seen in the commutative diagram below.

A Im( f )

A/I A/ker( f )

q

f

ḟπ

Furthermore ḟ is invertible and
∥∥ ḟ

∥∥= ∥∥ f
∥∥.

Proof. The fact that the diagram commutes and the mappings are well-defined are
elementary results from algebra, see [14, Section 3.1]. For

∥∥ ḟ
∥∥= ∥∥ f

∥∥ note that
∥∥ f

∥∥=∥∥ ḟ ◦π∥∥≤ ∥π∥ ·∥∥ ḟ
∥∥≤ ∥∥ ḟ

∥∥. Also, we have f (x) = ḟ (x + I ) so
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∥∥ ḟ (x + I )
∥∥= ∥∥ f (x)

∥∥= ∥∥ f (x + z)
∥∥≤ ∥∥ f

∥∥ · ∥x + z∥ , for all z ∈ ker( f ).

Taking the infimum over z and dividing∥∥ ḟ (x + I )
∥∥≤ ∥∥ f

∥∥ · ∥x + z∥

by infz∈ker( f ) ∥x + z∥ = ∥ẋ∥ yields the statement.

2.4 The Gelfand spectrum of a Banach algebra

In this section we will discuss the Gelfand transform. This phenomenon will provide
us with a powerful tool for classifying certain types of commutative unital Banach
algebras as well as a way to compute spectra of elements of the spectrum. We write
Hom(A,C) for the not necessarily bounded algebraic homomorphisms between A
and C. Throughout this section A will denote a commutative Banach algebra. The
material is loosely based on [8, Section 7.8] and [2, Section 1.9].

Definition 2.4.1 (Gelfand spectrum). The Gelfand spectrum of A is defined as the set

sp(A) = {ω ∈ hom(A,C) :ω ̸= 0}

of algebraic homomorphisms.

Firstly — before delving into the structure of sp(A) itself — we can note that mul-
tiplicativity of ω ensures that ω(1) = 1. More so, we can note that all the ω ∈ sp(A)
are bounded. Indeed, if ω is nonzero then surely it is surjective. By Theorem 2.3.2 we
then have a mapping,

ω̃ : A/ker(ω)
∼−→C.

Since C is a field we know ker(ω) to be maximal and thus closed. From this we can
see that the quotient mapping A → A/ker(ω) must be bounded also, meaning that ω
is the composition of two linear mappings with norm 1, thus by (1) ∥ω∥ ≤ 1. Since
also ω(1) = 1, we see that ∥ω∥ = 1.

Having made these remarks we can also note that by Remark 2.2.6 any maximal
ideal M ∈ A will correspond with some homomorphismω ∈ hom(A,C). Indeed, A/M
will be a division algebra thus isometrically isomorphic to C. Writing A/M →C, λ+
M 7→ λ and taking the composition of this with the quotient mapping will yield our
homomorpshism. We can now conclude that there exists a bijection between the
space of maximal ideals of A and elements sp(A).

Having made these remarks we now define the Gelfand transform as follows.
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Definition 2.4.2 (Gelfand transform). Given an element x ∈ A the Gelfand transform
of x is given by

x̂ : sp(A) →C, x̂(ω) =ω(x).

The map A → sp(A), x 7→ x̂ is named the Gelfand map.

If we denote A′ to be the dual space of A, we know that sp(A) is a subset of the
unit ball B A′ of A′. By Alaoglu A.2.3 we know that if sp(A) were to be weak-* closed in
B A′ it would be weak-* compact. The following lemma asserts this is the case.

Lemma 2.4.3. The Gelfand spectrum sp(A) is a weak-* compact Hausdorff space.

Proof. The Hausdorff property follows from the fact that sp(A) is a topological sub-
space of B A′ . The Gelfand spectrum sp(A) is weak-* closed since if fn → f weak-*,
then for all x, y ∈ A we have

f (x y) = lim
n→∞ fn(x y)

= lim
n→∞ fn(x) fn(y)

= f (x) f (y).

Moreover f (1) = 1 so clearly f ∈ sp(A).

Before stating the main theorem of this section, we give a quick proof of a relation
between the Gelfand spectrum of a Banach algebra and the spectrum of an element.

Theorem 2.4.4. We have for a unital Banach algebra A that for all x ∈ A

σ(x) = {x̂(ω) :ω ∈ sp(A)}.

Proof. Suppose ω ∈ sp(A) and ω(x) = λ for some λ ∈ C. Then x −λ1 ∈ ker(ω), thus
x−λ is contained in a proper ideal and thus not invertible. From the definition of the
spectrum we conclude λ ∈σ(x).

Conversely for λ ∈ σ(x) we have x −λ1 not invertible meaning that (x −λ1) is a
proper ideal in A, contained within a maximal ideal M (AC). By earlier remarks we
know this maximal ideal to correspond with some ω ∈ sp(A) with (x −λ1) ⊆ ker(ω).
We then know ω(x)−λ=ω(x −λ1) = 0 to hold thus ω(x) =λ. In other words,

σ(x) ⊆ {x̂(ω) :ω ∈ sp(A)}

proving the statement.

The following theorem can be used to classifies certain types of Banach algebras.
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Theorem 2.4.5. Let A be a commutative Banach algebra with Gelfand spectrum sp(A)
and a ∈ A. The Gelfand map A →C (sp(A)), a 7→ â is a homomorphism of norm 1 and
its kernel is the intersection of all maximal ideals. Moreover for each a ∈ A we have
∥â∥∞ = r (a).

To show the reader an application of this material we will now present a worked
example.

Example 2.4.6. If we observe the unital Banach algebra ℓ1(Z) with the natural
1-norm and with the convolution product we know ℓ1(Z)′ ∼= ℓ∞(Z) as seen in [17,
Theorem 5.5]. Writing a := (an)n≥0 for an element a ∈ ℓ1(Z) we first show that every
φ ∈ ℓ1(Z)′ acts in the following manner

φ(a) =
∞∑

n=−∞
bn an , for some (bn)n≥0 ∈ ℓ∞(Z).

Let z ∈ S1 and (..., z−1,1, z, ...) ∈ ℓ∞ and write ω : ℓ1(Z) → C with ω(a) = ∑
n∈Z an zn .

For a,d ∈ ℓ1(Z) can we see that

ω(a)ω(d) = (
∑

n∈Z
an zn)(

∑
n∈Z

dn zn)

= ∑
n∈Z

∑
k∈Z

andk zn+k

= ∑
n∈Z

∑
k∈Z

dm−n an zm

=ω(a ·d)

holds, meaning this ω is indeed a homomorphism. We can also easily see that
∥∥φ∥∥=

|z| = 1, making ω bounded.
Now in proving that any nonzero homomorphism is of this form we take en ∈

ℓ1(Z) with en(i ) = δi n . We then note that for every n ∈ Z, zn := ω(en) = ω(e1)n , so
with ω we can associate a sequence (..., z−1,1, z, z2, ...). Since we know ω is bounded
it follows that z ∈ S1 should hold. We have thus described the Gelfand spectrum of
ℓ1(Z) completely. Using Theorem 2.4.5 we can now see that

σ(a) =
{ ∑

n∈Z
an zn : z ∈ S1

}
holds.
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3 C∗-algebras

The material in the sections 3.1-3.3 is mainly based on [2, Section 2], [8, Section 7].

3.1 Introduction

As has been hinted on throughout this text some Banach algebras have more struc-
ture than is enveloped in definition of Banach algebras. For instance if we look at the
Banach algebra B(H ) of bounded operators on a Hilbert space H we can define an
involution operation _∗ : B(H ) →B(H ) mapping f ∈B(H ) to its adjoint f ∗ which
is the unique bounded linear map satisfying 〈 f (x), y〉 = 〈x, f ∗(y)〉 [17, Theorem 5.2].
We generalise this in the following definition.

Definition 3.1.1. Let A be a Banach algebra. If we equip A with a involution _∗ : A →
A with a 7→ a∗ satisfying that for all a,b ∈ A and scalars λ,µ ∈C

1. a∗∗ = a

2. (λa +µb)∗ = λ̄a∗+ µ̄b∗

3. (ab)∗ = b∗a∗

4. ∥a∗a∥ = ∥a∥2

we name A to be a C∗-algebra. Furthermore we call elements a ∈ A satisfying a∗a =
aa∗ normal and if a∗ = a holds we call them self-adjoint.

Note that all self-adjoint elements are normal. It can be shown that the adjoint
on B(H ) indeed satisfies these properties making B(H ) a C∗-algebra. The Banach
algebra C (X ) introduced in section 2.1 is also a C∗-algebra when equipped with com-
plex conjugation as involution. The reader might wonder if all Banach algebras can
be equipped with an involution to become a C∗-algebra. This is certainly not the
case. For instance, ℓ1(Z) is not a C∗-algebra and Hilbert spaces H can be made into
C∗-algebras iff H is finite dimensional. The latter will be proved in Section 3.4. First,
we will show the involution is isometric.

Lemma 3.1.2. Every a ∈ A satisfies ∥a∗∥ = ∥a∥.

Proof. Note that ∥a∥2 = ∥a∗a∥ ≤ ∥a∗∥∥a∥ which implies ∥a∥ ≤ ∥a∗∥. Doing the same
for a∗ and using a = (a∗)∗ yields ∥a∗∥ ≤ ∥a∥, concluding the proof.

The structure of C∗-algebras strengthens many of the principles we have proven
for Banach algebras. For example, we can show with induction on n that a self-

adjoint a ∈ A satisfies ∥an∥ 1
n = ∥a∥ for all n ∈ N. By Lemma 3.1.2 we can see that

r (a) = ∥a∥. From this we can prove the following.
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Lemma 3.1.3 (Continuity of *-homomorphisms). Let A,B be C∗-algebras and ρ : A →
B a *-homomorphism (i.e. ρ algebraic homomorphism with ρ(a∗) = ρ(a)∗ for all a ∈
A). Then

∥∥ρ(a)
∥∥≤ ∥a∥.

Proof. Firstly, if for some λ ∈C the element, a −λ1 is invertible then ρ(a −λ1)ρ((a −
λ1)−1) = ρ(1) = 1 thus ρ(a −λ1) is also invertible. From this follows C \σ(ρ(a)) ⊇
C\σ(a) which implies σ(ρ(a)) ⊆σ(a). We can then conclude r (ρ(a)) ≤ r (a).

Since a∗a is self-adjoint we have∥∥ρ(a)
∥∥2 = ∥∥ρ(a∗a)

∥∥= r (ρ(a∗a) ≤ r (a∗a) = ∥∥a∗a
∥∥= ∥a∥2 .

To contrast, it is not difficult to construct a discontinuous operator on a Banach
algebra. If we take an arbitrary Banach algebra A with product defined as (x, y) 7→ 0
the question boils down to finding an unbounded operator on the space A which we
can do in general if we assume the axiom of choice (which we gladly do).

The question whether this holds for ‘sensible’ Banach algebras is much more in-
tricate however. For example, as is said in the introduction of [20] if we want to con-
struct a discontinuous homomorphism between C (X ) → B for some infinite com-
pact Hausdorff space X and an arbitrary Banach algebra B we need more axioms
than ZFC. In [9, theorem 1.1] a construction of a discontinuous homomorphism us-
ing the continuum hypothesis was made.

Before moving on to deeper results on C∗-algebras we will give another example
displaying the special nature of the adjoint. From Section 6 onward, this example will
be of great importance.

Example 3.1.4. As is well-known, the Hilbert space ℓ2(N) admits a orthonormal basis
(e1,e2, ...) and on this we can define the unilateral shift σ(ek ) = ek+1. It is an easy
exercise to show that σ is bounded and the adjoint σ∗ of σ is uniquely defined by,

s(e1) = 0, σ(ek ) = ek−1.

Now if we would observe the Banach algebra generated by σ we would simply
get a structure having sums of powers of σ which is not terribly interesting in itself.
For example, the projections on the basis elements of l 2(N) are not present in this
algebra.

If we instead observe the C∗-algebra generated by σ, we can note that I −σσ∗

denotes the orthogonal projection on the first coordinate. Likewise we can write
sn(I −σσ∗) to obtain the mapping sending the first coefficient of the first coordi-
nate to nth position. More generally, writing sn(I −σσ∗)(s∗)k sends the coefficient
on the kth position to the nth position. From this we can readily deduce that C∗(σ),
the C∗-algebra generated by σ, contains all finite rank operators.
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3.2 The Gelfand spectrum of C∗-algebras

Now that we have developed some basic results on C∗-algebras we can wonder how
the Gelfand transform will behave on C∗-algebras. The proof is included in order to
display what properties set a C∗-algebra apart from general Banach algebras. For a
proof we refer to [2].

Theorem 3.2.1 (Gelfand Spectrum of commutative unital C∗-algebras). Let A be a
commutative unital C∗-algebra and let X = sp(A) be the Gelfand spectrum of A. The
Gelfand map is an isometric *-isomorphism of A onto C (X ).

This statement solidifies the importance of the space C (X ) and gives a complete
characterisation of unital commutative C∗-algebras. We should note however that
non-commutative C∗-algebras are very easily constructed. Banach matrix algebras
over finite dimensional spaces are, for instance, not commutative if there exists a
non-normal element or rather a non-diagonalisable matrix. Do note that if we ob-
serve the C∗-algebra generated by 1 and a normal (or self-adjoint) element the result-
ing algebra will be commutative. In most cases this is exactly the way this theorem is
applied.

This technique is used in proving the theorem below. It strengthens both the
spectral radius theorem and the spectral permanence theorem. The spectral perma-
nence theorem for Banach algebras states any unital subalgebra B of unital A satis-
fies ∂σB (x) ⊆σA(x). For a proof we refer to [2]. In C∗-algebras however the following
holds.

Theorem 3.2.2 (Spectral radius for C∗-algebras). Let A be a unital C∗-algebra and
B ⊆ A be a C∗-subalgebra of A that contains the unit of A. Then for every x ∈ B we
have σB (x) =σA(x). In particular, for every self-adjoint x ∈ A we have

r (x) = ∥x∥ .

From the last statement we see that for arbitrary elements x ∈ A,

∥x∥ =
√
∥x∗x∥ =

√
r (x∗x)

holds, meaning that the norm — directly linked with the topology — is completely
determined by the algebraic structure of the C∗-algebra. In particular, this means
that if there exist multiple norms that can make a unital algebra into a unital Banach
algebra A then no involution can be defined to make this algebra a C∗-algebra. This
is shown in the example below.

Example 3.2.3. Consider the algebra of differentiable functions on the circle C ′(S1).
Any norm associated with α ∈R>0,

∥∥ f
∥∥
α,C ′(S1) =

∥∥ f
∥∥∞+α∥∥ f ′∥∥ can make C ′(S1) into

a Banach algebra.
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In proving this, we need to check that
∥∥ f

∥∥
α,C ′(S1) is a norm and that it satisfies

the normed space property. The former is trivially satisfied and the latter is a simple
verification,

∥∥ f g
∥∥= ∥∥ f g

∥∥+α∥∥ f ′g + f g ′∥∥
≤ ∥∥ f

∥∥∥∥g
∥∥+α∥∥ f ′∥∥∥∥g

∥∥+α∥∥ f
∥∥∥∥g ′∥∥

≤ ∥∥ f
∥∥∥∥g

∥∥+α∥∥ f ′∥∥∥∥g
∥∥+α∥∥ f

∥∥∥∥g ′∥∥+α2
∥∥ f ′∥∥∥∥g ′∥∥

= ∥∥ f
∥∥∥∥g

∥∥ .

We can thus conclude C ′(S1) can not be made into a C∗-algebra.

The spectral theory on normal operators can be greatly expanded on as can be
seen in [2][Section 2.4] and [8][Chapter 7] wherein notions such as diagonalisability
for normal operators are displayed. This will be beyond the scope of this thesis how-
ever as we are primarily interested in the structure of C∗-algebras, and will develop
only the tools necessary to prove the Toeplitz index theorem (see Section 6.3 and GN
(see Section 3.4.2). The reader is however encouraged to delve into this theory.

3.3 Quotients on C∗-algebras

When dealing with C∗-algebras, it is natural to wonder whether the quotient struc-
tures associated with Banach algebras can be generalised to C∗-algebras. The key
insight in this matter is that any norm closed ideal of a C∗-algebra is closed under in-
volution. To prove this we require the following lemma, which we shall state without
proof.

Lemma 3.3.1. Let A be a unital C∗-algebra and let J ⊂ A be a norm-closed ideal. For
all x ∈ J there exists a sequence e1,e2, ... of self-adjoint elements of J such that σ(en) ⊂
[0,1] and limn→∞ ∥xen −x∥ = 0.

This sequence of self-adjoint elements with this special limiting behavior is of-
ten called a approximate identity. Having obtained such a sequence (en)n≥0 ⊂ J for
any norm-closed ideal J ⊆ A observe that if x ∈ J then ∥x∗−en x∗∥ = ∥(x −en x)∗∥ =
∥x −en x∥→ 0 meaning that the norm closure of a closed ideal is indeed closed under
involution also.

We can then define the involution on a coset ẋ := x + J to be (x + J )∗ = x∗+ J . We
can then use Theorem 2.3.2 simplifying the proof leaving only the C∗-properties as
seen in Definition 3.1.1 to be checked. The proof itself is quite technical and we shall
state the result without proof.

Theorem 3.3.2. Given a C∗-algebra A and a closed ideal J of A the involution defined
as above makes A/J into a C∗-algebra.
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3.4 C∗-Hilbert spaces

The examples of C∗-algebras we have seen thus far have been isometrically *-isomorphic
to some sub-* algebra of B(H ) for some Hilbert space H . For example we can show
the map

C (X ) →B(L 2(X )), f 7→ M f ,

where M f (g )(x) = f (x)g (x) to be an isometric *-isomorphism. It turns out this holds
in general as has been proven by Gelfand and Naimark in [13].

Theorem 3.4.1 (Gelfand-Naimark-Segal-theorem, representation of C∗-algebras). Ev-
ery unital C∗-algebra A is isometrically *-isomorphic to some subalgebra of B(H ) for
some Hilbert space H .

The Hilbert space H in the proof given in [13] is constructed by associating a
non-trivial Hilbert space Hx with every element x ∈ A and taking the direct sum,
meaning H = ⊕

x∈A Hx , which is likely to be much too large and too abstract to
help us understand A. The proof is hence not too useful for our application and we
will refer the reader to [2][Section 4.7-4.8] or [8][Section 8.5] for a full proof. It can
however be proven that each separable C∗-algebra A (i.e. each A having a countable
dense subset) are isometrically *-isomorphic to B(H ) for some separable Hilbert
space H and this is the instance of the GNS-Theorem 3.4.1 we shall use.

Looking at the above theorem a natural question to ask is whether C∗-algebras
can have a topology induced by an inner product, or in other words whether C∗-
algebras can also be Hilbert spaces. As a first step we can show the following for
B(H ). The proof is inspired by the blog post [15].

Theorem 3.4.2. Given a separable Hilbert space H . The C∗-algebra B(H ) does not
have a Hilbert space structure if H is infinite dimensional.

Proof. Let H be a separable Hilbert space and suppose (en)n≥0 is a orthonormal ba-
sis. Note that the Banach algebra c0(N) of sequences vanishing at infinity is non-
reflexive. We will proceed to show this space can be embedded in B(H ). For some
(si )i∈N ∈ c0(N) we write

Ts : H →H ,
∞∑

i=0
λi ei 7→

∞∑
i=0

λi si ei .

We can see this operator to be bounded since∥∥∥∥∥Ts(
∞∑

i=0
λei )

∥∥∥∥∥=
∥∥∥∥∥ ∞∑

i=0
λi si ei

∥∥∥∥∥≤ ∥s∥∞
∥∥∥∥∥ ∞∑

i=0
λi ei

∥∥∥∥∥ .

More so, since sn admits a maximum for some n ∈N, we can also see that ∥Ts(en)∥ =
|snen | = ∥s∥∞ meaning that the mapping s 7→ Ts will be an isometry (note that it is
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bilinear) meaning its image will be closed. This implies that B(H ) has a closed non-
reflexive subspace meaning B(H ) is not reflexive and not a Hilbert space.

Remark 3.4.3. To show that any unital infinite dimensional C∗-algebra does not have
a norm induced by an inner product requires a bit more theory than is developed thus
far and we will hence give a sketch.

Suppose we have an infinite dimensional unital C∗-algebra A. Since we know
Gelfand mapping on C∗-algebras to be injective, the remark below Theorem 5 in [18]
states there exists a normal element z ∈ A with infinite spectrum. The C∗-algebra B
generated by z and 1 is then commutative and by Theorem 3.2.1 we know it can be
represented as C (X ) with X the Gelfand spectrum of B .

More so we know X to be compact Hausdorff and by Proposition 2.3 in [8] we
know there exists a homeomorphism between X and σ(z). Knowing that the spec-
trum of z is infinite, we now know that X must be compact Hausdorff with infinitely
many points, meaning that C (X ) will be infinite dimensional. By Proposition 4.3.11
in [1] we now know there exists a closed subspace in C (X ) isometrically isomorphic
to c0. By the same argument as in 3.4.2 we know A to be non-reflexive and thus not a
Hilbert space.

The reader in need of intuition for the fact that c0 is a closed subspace of C (X ) is
recommended to look into Urysohn’s Lemma [19] which most likely could be used to
construct a closed subspace c0 in C (X ) directly but the author of this thesis has not
worked this out explicitly.
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4 Winding number

Moving on to our main application of the presented theory, we discuss the winding
number shortly. The winding number is an integer associated with a point and a
closed continuous curve in a plane. Intuitively it is the amount of times the said
curve ‘winds around’ the point. The winding number is studied in different areas
of mathematics such as complex analysis, Riemannian geometry and topology and
often has its own definition in each field.

In this section we will state a topological definition and prove its equivalence to
the definition as given by complex analysis. Furthermore we give two important
properties of the winding number. Namely, it is in a certain sense invariant under
homotopy and it has an additive property.

Before defining the winding number we require some toplogical background. The
punctured plane, here C× := C \ {0} is homotopically equivalent with the circle S1

since the mappings

f :C× → S1 g : S1 →C\ {∗}

z 7→ z

|z| z 7→ z
(3)

denote homotopy equivalences. Indeed, we can see that f ◦ g = Id|S1 and g ◦ f = z
∥z∥

hold and clearly Ft (z) = t z
∥z∥ + (1− t )z is homotopic to the identity onC×.

In particular we can see that the fundamental group of C× and of the S1 are iso-
morphic under the mapping (g ◦ f )∗ :π1(C×)([γ]) →π1(S1), [γ] 7→ [g ◦ f (γ)]. Since we
know the fundamental group is generated by the mapping z 7→ z we now know that
there is exactly one n ∈Z such that z 7→ zn is homotopic with γ. We define this value
n to be the winding number Wn(γ).

Remark 4.0.1. There is one subtlety involved in taking a basis point of our funda-
mental group. Our above discussion strictly dealt with regular homotopies even though
the fundamental group requires path homotopy, in other words we do not require our
paths to have the same beginning- and endpoints. We deal with this issue as follows:

Say we have a curve γ : S1 → C \ {∗}. If we scale it as before we get the curve
γ/|γ| : S1 → S1, with beginning- and endpoint z := γ(0)/|γ(0)| = γ(1)/|γ(1). We now
write ρ : [0,1] → S1 for ρ(t ) = earg(z)t and note ρ is a nullhomotopic path. Similarly we
write ρ−1 for the path in the opposite direction. The curve ρ−1 ◦γ◦ρ : [0,1] → S1 will
now indeed be path homotopic to a z 7→ zn for a certain n ∈Z. Moreover, by taking
Wn(γ) := Wn(ρ−1 ◦γ ◦ρ) = n, we have defined the winding number independent of
the choice of the basis point for our fundamental group.
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4.1 Definition of the winding number in complex analysis

The material is this subsection is based on [7]. We now turn to the definition of a
winding number as given by complex analysis. We can define the winding number of
a closed piecewise smooth curve γ : [0,1] →C\ {0} as

Wn(γ) = 1

2πi

∫
γ

1

ζ
dζ. (4)

The winding number Wn(γ) defined this way will indeed give an integer, which
we can easily show for elementary curves of the form γ(t ) = e2πi tk , since

1

2πi

∫
γ

1

ζ
dζ= 1

2πi

∫ 1

0

1

e2πi tk
2πi ke2πi tk d t =

∫ 1

0
k d t = k (5)

holds.
In proving the equivalence of this definition with the topological one given above

we prove the fact that the integral is invariant under homotopic transformations of
the underlying curve, as seen below.

Lemma 4.1.1. For Q = [0,1]2. Define a continuous function H : Q → D with D ⊆ C
open and f : D →C analytic. Then∫

H |∂Q

f (ζ)dζ= 0

holds.

Proof. Let n ∈N≥1. We begin by partitioning Q is n2 small squares Qµν with

Qµν =
{

z ∈Q :
µ

n
x ≤ µ+1

ν
,
ν

n
≤ y ≤ ν+1

n

}
, (0 ≤µ,ν≤ n −1).

Since H(Q) ⊆ D is compact there exists for large n an open disk Uµν ⊆ C with
H(Qµν) ⊆Uµν⊆ D . The Cauchy integral formula now states

∫
H |∂Qµν

f (ζ)dζ= 0. From

this follows
∫

H |∂Q
=∑

0≤µ,ν≤n−1
∫

H |∂Qµν
= 0 proving the theorem.

If we now take f (z) = 1
z and H a homotopy between the elementary curve z 7→ zn

on the circle and an arbitrary curve γ ∈C (S1) with 0 ∉ Im(γ) for some n we can state
that by the above lemma
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0 =
∫

H |∂Q

f (ζ)dζ

=
∫

H(0,s)
f (ζ)dζ+

∫
−H(1,s)

f (ζ)dζ+
∫

H(t ,1)
f (ζ)dζ+

∫
−H(t ,1)

f (ζ)dζ

=
∫

H(0,s)
f (ζ)dζ−

∫
−H(1,s)

f (ζ)dζ

=
∫
γ

1

z
dζ−

∫
φn

1

z
dζ

(6)

holds. Thus, the integrals
∫
γ

1
z dζ and

∫
φn

1
z dζ agree and the two given definitions of

the winding number coincide.
A nice property that will be of great use later on is the following.

Lemma 4.1.2. Let f , g ∈ C (S1), 0 ∉ Im f ∪ Im g be two curves. If we write f g for the
pointwise product of f and g , then

Wn( f g ) = Wn( f )+Wn(g )

holds.

Proof. Suppose Wn( f ) = n,Wn(g ) = m. If Ft (z), Gt (z) are homotopies between f and
z 7→ zn , respectively, g and z 7→ zm , then we can see Ft (z)Gt (z) to be continuous and
F0(z)G0(z) = f (z)g (z) and F1(z)G1(z) = zn+m . In other words f (z)g (z) is homotopic
with zn+m and thus Wn( f g ) = Wn( f )+Wn(g ) holds.
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5 Some operator theory

We have seen that any C∗-algebra can be viewed as a subalgebra of the bounded op-
erators on some Hilbert space. In the following section we will classify some of these
operators and develop theory necessary for stating and proving our main theorem
in Section 6.3. The definitions will sometimes apply to general normed spaces as
well, but in light of our application we will state them for no more general spaces
than Banach spaces. Lastly, the reader unfamiliar with (co)kernels of linear opera-
tors is encouraged to visit the appendix A.1 for a compact outline. Throughout we fix
a Hilbert space H and a Banach space V unless otherwise explicitly stated. The unit
ball V is denoted by B1. The material in this section is mainly based on [17] and [2].

5.1 Compact operators

Definition 5.1.1. Let X and Y be Banach spaces. An operator T ∈ L(X ,Y ) is compact
if the set T B1 := {T x : ∥x∥ ≤ 1} admits compact closure. We denote the set of compact
operators from X to Y by K (X ,Y ) or simply K whenever the context is clear.

We can easily see that compact operators on general Banach spaces need to be
bounded, since if they were not, we could construct a sequence (T xn)n≥0 ⊂ T B1 of
unit vectors without a convergent sub-sequence contradicting compactness of T B1.

Intuitively compact operators can be viewed as small. This feeling is further strength-
ened by the lemma below. A proof can be found in [17, Theorem 7.12] and will be
omitted here.

Lemma 5.1.2. The space of compact operators K (H ) ⊆B(H ) on some Hilbert space
H is exactly the norm closure of the operators of finite rank.

Example 5.1.3. If we take H = ℓ2(N) and Tn ∈B(H ) with

Tn(x1, x2, ...) = (x1,2−1x2, ...,2−n xn ,0, ...)

for n ∈Z≥1 we can easily see that the sequence (Tn)n≥0 converges to an operator T of
infinite rank. We will show without using Lemma 5.1.2 that T (B1) admits a compact
closure.

Indeed if we let ϵ ∈R>0 be given and pick an n ∈Z≥0 with ϵ> 2−n , we can define
Pn : ℓ2(N) → ℓ2(N) to be the natural orthogonal projection

Pn((xm)m≥0) =
{

0 m ≤ n

xm m > n
.

The subset Pn(T (B1)) can now be covered with one ball of size ϵ. The set
T (B1) \ Pn(T (B1)) is a subset of the unit disk of a finite dimensional vector space so

22



surely it can be covered by finitely many balls of size ϵ as well. Since ϵ was given
arbitrarily we can conclude that T (B1) is totally bounded. Since it also complete it
indeed admits compact closure.

As we can see above, proving that operators are compact without resorting to
Lemma 5.1.2 is often more difficult. Unfortunately as has been proven by P. Enflo
in 1972 [11] there exist Banach spaces where a result similar to Lemma 5.1.2 does
not hold. The example below displays an argument that can be used to determine
whether certain integral operators are compact. We will see more of these operators
in Section 7.

Example 5.1.4. Consider the operator, K : C ([0,1]) →C ([0,1]) given by

f 7→
∫ 1

0
k(x, _) f (x)d x

for some continuous k : [0,1]2 →C.
Note in particular that k is uniformly continuous. It can be seen easily that K is a

well-defined bounded linear operator with norm

∥K ∥ =
∥∥∥∥∫ 1

0
k(x, s)d s

∥∥∥∥∞

and that all g ∈ K B1 are bounded by ∥K ∥. Furthermore if the collection of functions
in K B1 can be proven to be equicontinuous (i.e. we can “work with the same δ(ϵ
for every f ∈ K B1”) we can conclude that any sequence in K B1 has a (uniformly)
convergent subsequence due to the Arzelà-Ascoli Theorem, see A.2.2. This will prove
K B1 to be compact.

So let ϵ ∈ R>0 be given and take δ ∈ R>0 such that |x − y | + |s − r | < δ implies∥∥k(x, s)−k(y,r )
∥∥< ϵ. This we can do since k is uniformly continuous. We then have

for any f ∈ B1, K ( f ) = ∫ 1
0 k(s, _) f (s)d s ∈ K B1 and we have

|K ( f )(x)−K ( f )(y)| =
∣∣∣∣∫ 1

0
(k(x, s)−k(y, s)) f (s)d s

∣∣∣∣≤ ∫ 1

0
|k(x, s)−k(y, s)|d s <

∫ 1

0
ϵd s = ϵ.

Thus all the g ∈ K B1 are equicontinuous and compactness follows.

Considering the algebraic properties of K (H ) we can note that finite linear com-
binations of compact operators are compact. More so, if we define (Tn)n≥0 ⊆ B(H )
to be sequences of finite rank operators converging to a compact T by 5.1.2, then for
any bounded operator G ∈B(H ) we have

GT = lim
n≥0

GTn , TG = lim
n≥0

TnG (7)
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from which we can conclude that the compacts form a two-sided ideal within the C∗-
algebra B(H ) thanks to Theorem 5.1.2. We shall refer to the C∗-algebra B(H )/K as
the Calkin algebra and use it extensively later on. We define the norm on B(H )/K
as we did in section 3.3 for general quotient algebras, we shall denote it however by
∥.∥e and call it the essential norm of B(H )/K to set it apart from the norm of ele-
ments in B(H ). The compacts in B(V ) also form an ideal in Banach algebra B(V ).
This is not difficult to prove—see [17, Chapter 7 ]—but it is not needed for our main
theorem and we will thus refrain from stating this.

Remark 5.1.5. Now that we have seen the set of compact operators within B(H ) to
be the closure of the finite rank operators, we can apply this result to Example 3.1.4
and conclude that the C∗(σ) contains even the compact operators on ℓ2(N).

We shall conclude our discussion on compact operators with a very deep result.
The proof can be found in [2, Section 3.2].

Theorem 5.1.6. (Fredholm alternative) Suppose K ∈K (V ) andλ ∈C. Then the kernel
of λI −K is finite dimensional, the image of λI −K is a closed subspace of V of finite
codimension, and we have

dimker(λI −T ) = dimcoker(λI −T ).

The theorem states in particular that injectivity of λI −T is equivalent with sur-
jectivity of λI −T . By the Banach Isomorphism Theorem A.2.4 we then have that the
spectrum of λI −T and its set of eigenvalues coincide. As an application, we can use
this to give insight in the existence of solutions for certain integral equations, as is
done in [2, Remark 3.2.4].

5.2 Fredholm operators

For this section we shall fix a Banach space V . Just like compact operators were con-
sidered small we can think of a corresponding way to define large operators. Intu-
itively operators λI − k with k ∈ K (V ) seem to be a right choice by Theorem 5.1.6
but it is a bit too restrictive. For example the unilateral shift 5.2.3 fails to satisfy this
definition but is still isometric and has a codimension of 1. Looking at the Fredholm
alternative there are two approaches. Essentially instead of requiring a bounded op-
erator F : V →V to be equal to the identity modulo compacts, we can require it to be
invertible modulo compacts, i.e. there exists G ∈B(H ) such that
FG =GF = I mod K (V ), where T is invertible.

On the other hand we can show a bounded operator T : V →V with finite dimen-
sional cokernel to have closed image, see [2, Page 95]. We can then consider relaxing
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dim(coker(F )) = dim(ker(F )) to merely requiring both the kernel and cokernel are fi-
nite dimensional. The main result of this section will state that these generalisations
are in fact equivalent and we will call the resulting operators Fredholm operators.

Definition 5.2.1. An operator T ∈B(V ) is Fredholm if the value ind(T ) := dim(kerT )−
dim(cokerT ) is an integer. We call this value the (Fredholm-)index associated with T .
The space of all Fredholm operators on V is denoted by F (V ).

As was hinted before the following theorem holds true.

Theorem 5.2.2 (Atkinson’s theorem). A bounded operator T is a Fredholm operator if
and only if its equivalence class T̄ is invertible in the Calkin algebra B(V )/K (V ).

Instead of proving this theorem, we display its power in the next section by stating
some corollaries.

Remark 5.2.3. We can see he unilateral shift σ : ℓ2(N) → ℓ2(N) associated with an
orthonormal basis (e1,e2, ...) defined by σ(ei ) = ei+1 is indeed Fredholm, and with
index -1. Composing this operator with the adjoint σ∗ which shifts in the opposite
direction shows that σ∗σ= I and σσ∗ = I −P where P denotes the natural (compact)
operator orthogonally projecting on the first coordinate.

The following theorem displays an analogy of the Fredholm index with the wind-
ing number. In Section 6 this will prove pivotal in the final steps of proving our main
theorem. It is usually proven as a corollary of Theorem 5.2.2, but using a bit of algebra
results in a much cleaner proof.

Theorem 5.2.4. For Fredholm operators F,G ∈B(V ) we have

ind(F )+ ind(G) = ind(FG).

We proceed by using the snake lemma seen below and remind the reader that
vector spaces are indeed modules over their Fields. For a proof see [14, Lemma 9.1].

Lemma 5.2.5. Given modules A,B ,C and homomorphisms F : A → B, G : B →C then
the sequence

0 → ker f → ker g f → ker g → coker f → coker g f → coker g → 0 (8)

is exact.

Proof of Theorem 5.2.4. Using the notation in the lemma above, if we now take F,G to
be Fredholm operators on the Banach space V = A = B =C we can see that all objects
in the sequence are finite dimensional - even without using Atkinsons theorem.
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In general we have for exact sequences V0 →V1 → ... →Vn of finite dimensional space
that

∑n
i=1(−1)i dim(Vi ) = 0 holds, which shows

cokerF −kerGF +kerG −cokerF +cokerGF −cokerG = 0 (9)

and thus we see
indF + indG = indGF (10)

to hold.

5.2.1 Consequences of Atkinsons theorem

To conclude this chapter we will give three consequences of Atkinson’s Theorem 5.2.2.
One concerns the robustness of the Fredholm index, the other concerning the ‘conti-
nuity’ of the Fredholm index. Proofs can be found in [2, Section 3.3, 3.4]. We remind
the reader we fix a Banach space V .

Lemma 5.2.6. The set F (V ) is open in B(V )

Proof. By Atkinson’s theorem 5.2.2, we know F (V ) to be exactly the set of invertible
operators. By the text above Lemma 2.2.3 F (V ) then to be open.

Lemma 5.2.7 (Stability of the index). Given a Fredholm operator F ∈ F (V ) and a
compact operator K ∈ K (V ) we have ind A+K = ind A. In particular we can define
a Fredholm index on classes of Fredholm operators F mod K (V ) ∈B(V )/K .

Theorem 5.2.8 (Continuity of the index). Given a Fredholm operator A ∈ F (V ), let
A1, A2, ... be a sequence of bounded operators with limn→∞ ∥An − A∥ = 0. Then there is
a certain n0 such that An is Fredholm for n ≥ n0 and ind An = ind A.

Remark 5.2.9. Simply put, Theorem 5.2.8 states that the mapping A 7→ ind(A) is con-
tinuous on F (V ). If we now have a path γ : [0,1] →F (V ), then we know t 7→ indγ(t )
to be continuous. Since this mapping takes values in Z we know this mapping to be
constant. In other words, each element in the same path component ofF(V ) has the
same Fredholm index.

Remark 5.2.10. The reader may wonder given the nice properties of Fredholm oper-
ators whether there exists a ∗-subalgebra of B(H )/K which decomposes into path
components consisting of Fredholm operators of the same index. Since every Fred-
holm operator is invertible in B(H )/K however, we can see by Remark 2.2.6 this
can only happen when H is finite dimensional and thus B(H )/K ∼=C would need
to hold.
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6 Toeplitz Operators

Now — after some last few definitions and lemmas — we will move towards our main
theorem. The object of interest will be a so called Toeplitz operator T f on the space
L2(S1) associated with a certain curve f ∈C (S1) with 0 ∉ Im( f ). The bulk of our work
will be proving that T f is a Fredholm operator. From this we will receive the equality
Wn( f ) =− ind(T f ) in Section 6.3.

The result is in itself most remarkable. On the one hand we have the winding
number of a curve which we can calculate easily using (complex) analysis and on the
other hand an analytical property of an operator. We will apply this in Section 7 to
prove existence of solutions for certain indefinite integral equations.

6.1 Algebraic and analytic properties

First we will take a closer look at the space L2(S1). As is generally known, the Hilbert
space L2(S1) admits an orthonormal basis consisting of functions z 7→ zn with n ∈Z,
for a proof we refer [17, Section 3.5]. We then define the Hardy space H 2 := H 2(S1) as
the closed subspace of L2(S1) generated by the functions z 7→ zn with n ∈Z≥0. Note
that the Hardy space consists exactly of those functions holomorphic on the open
unit disk should their domains be extended. We denote the orthogonal projection
from L2(S1) on H 2(S1) by P .

We can now define Toeplitz operators.

Definition 6.1.1 (Toeplitz operator). Given a curve f ∈C (S1) we define

T f : H 2(S1) → H 2(S1)

g 7→ P ( f · g )

to be the Toeplitz operator associated with f . We denote the vector space of Toeplitz
operators by T (C (S1)).

We start our discussion of with a lemma.

Lemma 6.1.2. The set of invertible elements of C (S1) is given by

C (S1)× := {
f ∈C (S1) : 0 ∉ Im( f )

}
.

Proof. Suppose 0 ∈ Im( f ) then f (s) = 0 for some s ∈ S1 meaning that f (s)g (s) ̸= 1 for
all g ∈ C (S1). Furthermore if 0 ∉ Im( f ) we have an inverse of f given by z 7→ 1

f (z)
proving the statement.
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Our main result connecting the winding number of f ∈ C (S1)× and the index of
the associated Toeplitz operator T f will follow swiftly after proving T f is Fredholm.
Since the theory thus far has given us no tools for analysing the dimension of the ker-
nel or cokernel of T f we turn to Atkinson’s Theorem 5.2.2 to use the characterisation
of Fredholm operators as invertibile modulo compacts. Note, however, that in using
this theorem, we need the T f to be bounded whose proof is sketched below.

Lemma 6.1.3. For every f ∈ C (S1) and its associated Toeplitz operator T f we have∥∥T f
∥∥ = ∥∥T f

∥∥
e =

∥∥ f
∥∥∞, where, as before, ∥_∥e denotes the norm on the Calkin algebra

B(H 2)/K . Also we have T ∗
f = T f .

The inequality ∥∥T f
∥∥

e ≤
∥∥T f

∥∥≤ ∥∥M f
∥∥= ∥∥ f

∥∥∞
follows straight from the definition of ∥_∥e and the contracting nature of projections.
The inequality

∥∥ f
∥∥∞ ≤ ∥∥T f

∥∥
e makes use of a standard argument wherein it is used

that the Laurent polynomials z, z−1 are dense in L2(S1).
After having established the fact that Tg ∈ B(H 2) the statement T ∗

f = T f follows
the definition of the adjoint. For a full proof see [10, Section 4.1].

In particular we can see from this lemma that no nonzero Toeplitz operator T f is
compact, for if it were, 0 = ∥∥T f

∥∥
e = ∥∥ f

∥∥∞ would hold. Now having assured that our
operators T f are bounded and thus occur in the C∗-algebra B(H 2) we investigate the
multiplicative and involutive behavoir of Toeplitz operators.

Lemma 6.1.4. Given h ∈ H∞ := H 2 ∩L∞(S1) the space H 2 is invariant under Mh i.e.
Mh(H 2) ⊆ H 2. Thus we can see that Th = Mh |H 2 . Moreover for every g ∈ L∞ and h ∈
H∞ we have

Tg Th = Tg h and ThTg = Thg .

Proof. Note that since h ∈ H∞ is bounded we have h ·L2 ⊆ L2. We require h ·H 2 ⊆ H 2.
To prove this, note that h is analytic on the unit disk, i.e. h = ∑∞

n=0 an zn for some
an ∈C. We can then see for any (z 7→ zn) ∈ H 2 we have znh ∈ H 2 meaning that H 2 is
indeed invariant for M f .

We then have Tg Th = P Mg P Mh = P Mg Mh = P Mg h = Tg h and ThTg = (Tg Th)∗ =
T ∗

g h
= Thg , concluding the proof.

Remark 6.1.5. Note that we require the function h to be in H 2 to make use of its an-
alytical properties and h ∈ L∞(S1) to make sure the Toeplitz operator is well-defined.
To give an example of a function f ∈ H 2 with f ∉ H∞, we can consider ln(1− z) =∑∞

n=0− 1
n zn . Clearly ln(1− z) goes to infinity as z → 1 and its coefficients are indeed

square-summable.
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In spite of the previous lemma we can easily show that Toeplitz operators T f ,Tg ∈
B(H 2) are not ‘multiplicative’ in general. For if they would be multiplicative they
would be commutative, since

T f Tg = T f g = Tg f = Tg T f .

If we take h(z) = 1
z and g (z) = z (both bounded on S1), we can see that for

1 := z 7→ z0 ∈ L2(S1)

Tg Th(1) = P MzP M 1
z

(1) = P Mz(0) ̸= 1 = Thg (1) = ThTg (1)

holds, meaning that Toeplitz operators are not in general commutative. We can, how-
ever, show that the Toeplitz operators do satisfy these properties over the Calkin al-
gebra B(H 2)/K .

Lemma 6.1.6. Suppose f ∈ L∞(S1). We then have T f Tz −TzT f is of rank at most one
(Tz = P Mz denotes the Toeplitz operator multiplying with z 7→ z).

Proof. We have

T f Tz −TzT f = P M f P Mz −P MzP M f

= P M f z −P MzP M f

= P Mz M f −P MzP M f

= P Mz(1−P )M f

For any en := z 7→ zn ,n ̸= 0 we can now see that P Mz(1 − P )en = 0, meaning that
P Mz(1−P ) has rank at most one. The result follows.

We now clarify when Toeplitz operators on B(H 2)/K are multiplicative and when
they commute.

Theorem 6.1.7. For all g ∈ L∞(S1) and continuous f : S1 →Cwe have

T f Tg −T f g ∈K , and Tg T f −Tg f ∈K .

Proof. By the Stone-Weierstrass Theorem A.2.5 we can for any ϵ ∈R approximate any
continuous function f on a nonempty compact subset ofCwith a certain polynomial
p(z) =∑N

n=0 an zn such that
∥∥ f −p

∥∥∞ < ϵ. Furthermore we can see P Mp (1−P ) to be
of finite rank, similar to P Mz(1−P ).

As in the proof of Lemma 6.1.6, we have T f g −T f Tg = P M f (1−P )Mg and∥∥P M f (1−P )−P Mp (1−P )
∥∥= ∥∥P (M f −p )(1−P )

∥∥≤ ∥∥M f −p
∥∥
∞ = ∥∥ f −p

∥∥∞ < ϵ.

So there exists a sequence of finite rank operators converging to T f g −T f Tg and since
H 2 is Hilbert, we conclude T f g −T f Tg to be compact.
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Note that we can not use the same argument for Tg T f = Tg f as g is not necessarily
continuous. We can however take the adjoint, resulting in

(Tg T f −T f g )∗= T f Tg −T f g

which is compact also. Since the ideal of compacts is closed under the adjoint (see
Theorem 3.3.1) in B(H 2(S1) we have that Tg T f −T f g is compact.

6.2 Toeplitz algebras

Remember that we use T (C (S1)) to denote the space of Toeplitz operators. We shall
now combine the results from the previous section in the following theorem on the
structure of A := {T f +K : T f ∈T (C (S1)),K ∈K }.

Theorem 6.2.1. The set A := {T f +K : T f ∈ T (C (S1)),K ∈ K } is a C∗-subalgebra of
B(L2(S1))

Proof. By Lemma 6.1.3 and since compacts are bounded we know A ⊆ B(L2(S1))
to hold, so A satisfies the norming properties characteristic to C∗-algebras. Further-
more, we can easily show A to be closed under algebraic operations as for T f +K ,Tg+
K ′ ∈A it follows that

(T f +K )(Tg +K ′) = T f Tg +K T f K ′+K Tg +K K ′

= T f g +K ′′+K Tg +K Tg +K K ′

= T f g +K ′′′

holds for some K ′′,K ′′′ ∈K (H 2), since the compacts form an ideal within B(L2(S1)),
as explained in the text surrounding Equation (7). It can be shown similarly that A

is indeed closed under linear combinations. Lastly since (T f +K )∗ = T f +K ∗ and by
Theorem 3.3.2 we know A to be closed under taking adjoints as well. The property
that T (C (S1)) is norm-closed is a bit more subtle however and we will make use of
the previously established relation

∥∥T f
∥∥= ∥∥T f

∥∥
e =

∥∥ f
∥∥∞ in Theorem 6.1.3.

Let (T fn +Kn)n≥0 ⊂ T (C (S1)) be a (Cauchy) sequence with limit X ∈ B(S1). We
can see that∥∥ fn − fm

∥∥= ∥∥T fn− fm

∥∥= ∥∥T fn −T fm

∥∥
e ≤

∥∥T fn +Kn − (T fm +Km)
∥∥→ 0

holds, where the inequality follows straight from the definition of the essential norm.
From this we can see that the associated sequence ( fn)n≥0 converges to some f ∈
C (S1). Hence

∥∥T fn −T f
∥∥= ∥∥ fn − f

∥∥→ 0, so T fn converges to T f . Since we know Kn →
X −T f , X − t f must be compact by Lemma 5.1.2. So A is indeed a C∗-algebra.
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Corollary 6.2.2. The C∗-algebra A /K is a commutative unital C∗-algebra isometrically-
*-isomorphic with C (S1).

Proof. We know by Theorem 3.3.2 that A /K is indeed a unital C∗-algebra which is
commutative by Lemma 6.1.7. Lastly, since we can easily see the mapping f 7→ T f

to be linear, multiplicative by Lemma 6.1.4, isometric by Lemma 6.1.3 and surjective
by definition 6.1.1 we know it to be invertible as well by the Banach isomorphism
theorem. Lastly it maintains adjoints as well by Lemma 6.1.3, meaning it is indeed an
isometric *-isomorphic between C (S1) and A /K .

Before moving to our main theorem we now have a final remark to make on the
structure of A = {T f +K : T f ∈T (C (S1)),K ∈K }.

Theorem 6.2.3. For the C∗-algebra generated by Tz ∈ A we have C∗(Tz) = A . More-
over we have

C∗(Tz) ∼=K ⊕C (S1).

Proof. We already know A to be a C∗-algebra and Tz ∈A . The only thing left to prove
now is A ⊆C∗(Tz).

First we take T f ∈ T (C (S1), associated with f ∈ C (S1). Since S1 is a compact
Hausdorff space it follows from Stone-Weierstrass’s theorem A.2.5 that for every ϵ ∈
R>0 there exists a polynomial p(z) =∑n

i=0 an zn ∈C (S1) such that
∥∥ f −p

∥∥< ϵ.
Now suppose ϵ ∈R>0. For

∑n
i=0 ai (Tz)i ∈C∗(Tz) we can see

n∑
i=0

ai (Tz)i =
n∑

i=0
ai Tzi +ai Ki with Ki ∈K (S1)

= P M∑n
i=0 ai zi + K̃ with K̃ =

n∑
i=0

ai Ki

= Tp + K̃ (11)

to hold. Should the compact operators be in C∗(Tz) we can then easily deduce
T (C (S1)) ⊂C∗(Tz).

We will first prove that all finite rank operators are in C∗(Tz). The idea is related to
Remark 5.2.3 on shift operators on theℓ2(N). Since z 7→ z ∈ H∞, Tz acts on the natural
orthonormal basis of H 2 as the unilateral shift σ acts on the natural orthonormal
basis of ℓ2(N), by Lemmas 6.1.4 and 6.1.3. More specifically: there is an isometric-*-
isomorphism between C∗(Tz) and C∗(σ).

Using Example 3.1.4 we can then readily deduce that all finite rank operators on
H 2 are present in C∗(Tz) and, more so, all compacts since H 2 is a Hilbert space by
5.1.2 as seen in Remark 5.2.3. From (11) it then follows that Tp ∈ C∗(Tz). Thus we
have T (C (S1)) ⊆C∗(Tz). Combining these two facts yields C∗(Tz) =A as required.
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Finally we wish C∗(Tz) ∼=K ⊕C (S1) as (C∗-algebras) to hold. Since we have A ∼=
C∗(Tz) and A /K ∼= C (S1) by Corollary 6.2.2 the statement is equivalent to proving
that the short exact sequence

0 →K →A →A /K

admits a continuous section. We can see this property holds, since, if we write
q : A → A /K and s(T f ) = T f we know (q ◦ s)(T f ) = q(T f ) = T f , which is a compo-
sition of *-homomorphisms between C∗-algebras so clearly this map is continuous.
We can then apply the splitting lemma and obtain our result.

6.3 The Toeplitz index theorem for a continuous symbol

Now all the ingredients are in place to phrase and discuss our main result.

Theorem 6.3.1. (Toeplitz Index Theorem) Let f ∈C (S1). The operator T f is Fredholm
if and only if 0 ∉ Im( f ). Furthermore if T f is Fredholm its index satisfies

ind(T f ) =−Wn( f ).

Proof. By Theorem 5.2.2 and Corollary 6.2.2 we know T f +K to be Fredholm for K ∈
K if and only if f is invertible. Assume so and thus 0 ∉ Im f . In Section 4 we saw that
f is homotopic to z 7→ zn , for some n ∈Z. Denote this homotopy by F : [0,1]×S1 →C,
with F (0, s) = f (s) and F (1, s) = sn . We can then see that the mapping s 7→ TF (t ,s) is a
continuous mapping as a composition of two continuous functions (note f 7→ T f is
continuous due to Corollary 6.2.2 and Lemma 3.1.3). Now, due to 5.2.3, and the fact
that Tzn acts as shifting n places on the basis of H 2(S1) we have Wn( f ) = Wn(z 7→
zn) =− ind(Tzn ) =− ind(T f ) yielding our main result.

To give the reader a bit of context why this theorem is so cherished in pure math-
ematics we note it is a special case of the Atyiah-Singer index theorem. This theorem
was first pulbished in the Paper [3] in 1963 by Michael Atiyah and Isadore Singer. It
roughly relates a topological index, here the winding number, to an analytical index,
here the Fredholm index. The discovery of this theorem paved the way for an entire
new field of mathematics called index theory which has applications in fields such as
geometry, topology as well as physics see [4]. As promised we shall see one particular
application in the next section.
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7 Application: Wiener–Hopf operators

Having build up the preceding theory we now demonstrate an application of Toeplitz
operators to integral equations. In doing so, we view Toeplitz operators as a specific
case of so-called Wiener–Hopf operators. This more general definition allows cer-
tain integral operators to be defined and we will display an interesting connection
between these and Toeplitz operators. The material is loosely based on chapter 9 of
[6] but will feature explicit calculations, explanation and examples not present in this
book.

Definition 7.0.1 (Wiener–Hopf operators). Let a vector space V a linear operator A :
V → V and a projection P : V → V (a mapping satisfying P 2 = P ) satisfying ImP =U
be given. The Wiener–Hopf operator associated with A and P is given by

W : U →U , W = PA.

Clearly, Toeplitz operators are Wiener–Hopf operators, where P represents the
projection on the Hardy space, and A represents a multiplication operator.

If we take in the above definition V = Lp (R), 1 ≤ p ≤∞, P : Lp (R) → Lp (R) de-
fined by

P ( f )(x) =
{

0 x ≤ 0

f (x) x > 0

and A : Lp (R) → Lp (R) with A(φ) = cφ+∫ ∞
0 k(_−s)φ(s)d s we can define the following

operator.

Definition 7.0.2 (Wiener–Hopf integral operators). The Wiener–Hopf integral oper-
ator associated with c ∈C and a real-valued k ∈ L1(R) is defined as a linear operator
on Lp (R+) := { f ∈ Lp (R) : f (x) = 0, for x < 0} by

W (φ)(t ) =
{

cφ(t )+∫ ∞
0 k(t − s)φ(s)d s t ≥ 0

0 t < 0
. (12)

Note we defined U = Im(P ) in this instance of a Wiener–Hopf operator. We write
Lp (R+) := ImP and this is the space on which W acts.

Having stated this definition some remarks are in place as to it being well defined.
Firstly the convergence of the integral follows directly from Young’s inequality A.2.1,
which states that for any s, q,r ∈R, 1 ≤ s, q,r ≤∞ satisfying 1/s +1/q = 1/r +1, we
have for f ∈ Ls , g ∈ Lq that f ⋆ g ∈ Lr and

∥∥ f ⋆ g
∥∥

r ≤ ∥∥ f
∥∥

s

∥∥g
∥∥

q . In the setting of 12
we can see we have s = 1 and q = r = p, indeed satisfying this inequality.

Since Wiener–Hopf integral operators W themselves are difficult to analyse — we
will for example not be able to use the Fredholm alternative 5.1.6 as we will see in
7.1.3 — we would rather analyse a simpler object closely related to W .
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Definition 7.0.3. Given a Wiener–Hopf integral operator W as above. We define a :
R→C to be the bounded continuous function with

a(ξ) := c +
∫ ∞

−∞
e iξxk(x)d x =: c +F k(ξ). (13)

We call this the symbol of W and shall write Wa :=W .

Remark 7.0.4. Note that the symbol — which will play a crucial role in the section to
come — is nothing more than the Fourier transform F : L1(R) →C (R) of the function
k translated with a scalar c. From [16, Theorem 9.6], we can indeed see that F k ∈
L∞(R) and ||F k||∞ ≤ ∥k∥1. Furthermore F k will converge to 0 on both positive and
negative infinity. For this reason we can see limξ→±∞ a(ξ) = c. Finally, to explore the
link between a symbol and its associated integral operator we state the following for
the special case p = 2.

Lemma 7.0.5. Denote by S ⊆ L∞(R) the space of bounded continuous functions of the
form a(ξ) = c +F k(ξ), for c ∈C, and k ∈ L1(R). Then the mapping

Ψ : S →B(L2(R+)), a 7→Wa

is a linear isometry of Banach spaces.

Proof. Verifying the linearity of Ψ is trivial. We will show that ∥a∥∞ = ∥Wa∥∞ holds.
Using the Fourier-Plancherel theorem (see [16, Theorem 9.13]) we have a map F : L2(R) →
L2(R) satisfying F |L1 = F |L2 and

∥∥F f
∥∥

2 = p
2π

∥∥ f
∥∥

2, for f ∈ L2(R). We can then
firstly derive for f ∈ L2(R)

2π
∥∥Wa f

∥∥2
2 =

∥∥F (Wa f )
∥∥2

2 =
∥∥cF f +F (k⋆ f )

∥∥2
2 .

Note that by Young’s inequality we have k ⋆ f ∈ L2(R). In [16, Theorem 9.2] it is
shown that the Fourier transform F on L1(R) satisfies the property that F (h ⋆ l ) =
F (h)F (l ), for h, l ∈ L1(R) and we can show F (k⋆ f ) = F (k)F ( f ) to hold, by using that
L1 ∩L2 is dense in both L1 and L2 (under their respective topologies).

Having obtained this, we derive

2π
∥∥cF f +F (k⋆ f )

∥∥2
2 =

∫ ∞

−∞
|c(F f )(t )+ (F k)(t )(F f )(t )|2 d t

=
∫ ∞

−∞
|(c + (F K )(t ))|2|(F f )(t )|2 d t

≤ ∥c + (F k)∥2
∞

∫ ∞

−∞
(F f )(t )2 d t

= ∥a∥2
∞

∥∥F f
∥∥2

2

= 2π∥a∥2
∞

∥∥ f
∥∥2

2 ,
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which yields ∥Wa∥ ≤ ∥a∥∞.
For the opposite inequality ∥Wa∥ ≥ ∥a∥∞ we construct a sequence ( fn)n≥0 ⊆ L2(R+)

satisfying
∥∥ fn

∥∥
2 = 1 for all n ∈N and limn→∞

∥∥Wa fn
∥∥

2 = ∥a∥∞. To do so, first note
that by Remark 7.0.4 a is a continuous bounded function on R which tends to zero
near ±∞. We then know that maxξ∈R a(ξ) = a(t̃ ) exists for some t̃ ∈R.

The idea is to define ( fn)n≥0 in such a way that ( fn(t̃ ))n≥0 converges to infinity
while still having

∥∥ fn
∥∥

2 = 1 for all n ∈N. Write thus

x 7→ fn =
√

1

2π
F−1

(
1

n
p
π

e− 1
2 ( x

n )2
)
=:

√
1

2π
F−1(δn).

making fn essentially the inverse Fourier-Plancherel transform a normal distribution
δn centered around 0 scaled to have a 2-norm of 1. We indeed note that fn ∈ L2(R)
and

∥∥ fn
∥∥

2 = 1, and see that

∥∥Wa fn
∥∥2

2 =
1

2π

∥∥∥∥WaF−1δn +
∫ ∞

0
(F−1δn)(t )k(_− t )d t

∥∥∥∥2

2

= ∥∥cδn + (FF−1δn ·F k
∥∥2

2

=
∫ ∞

−∞
δn(s)2|c + (F k)(s)|2 d s

→|(c +F k)(t̃ )|2 = ||a||∞
holds, meaning that indeed ∥Wa∥2 ≥ ∥a∥∞ .

Remark 7.0.6. As has been said, the existence of the mapping F : L2(R) → L2(R) we
used, stems from the Fourier-Plancherel Theorem [16, Theorem 9.13], and we will
refer to it as the Fourier-Plancherel transformation. For our application we need this
map instead of the Fourier transformation F : L1(R) → L∞(R). Even though the map-
pings F and F agree on L1∩L2, we do not have an explicit form for F contrasting its
counterpart F , as seen in (13). Usually we resolve this by first looking at L1 ∩L2 be-

fore using the fact that L1 ∩L2 = L2. In Theorem 7.1.2 below we will simply prove the
statement for functions L1∩L2 and the rest to the reader to avoid more technicalities.

Lemma 7.0.5 shows writing Wa for the Wiener–Hopf integral operator assoicated
with symbol a ‘makes sense’ and we will henceforth fix p = 2. Do note that the map-
ping a 7→Wa is not multiplicative in general, making us unable to describe the spec-
trum of Wa completely through a.

The rest of this section will have the following outline. First we show the con-
nection between Wiener–Hopf operators and Toeplitz operators whereafter we use
the index theorem 6.3.1 to state results on the existence and uniqueness of solutions
of Wa(φ) = g , with φ, g ∈ L2(R+). Finally we will present a worked example with a
particularly nice geometrical interpretation.
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7.1 The correspondence between a Toeplitz operator and a Wiener–
Hopf operator

The main aim of this subsection is to construct an isometric isomorphism mapping
Wa to some Toeplitz operator T f . Since T f is uniquely defined by f we wonder what
a suitable pick for f ∈ C (S1) would be. In light of the discussion above, we turn to
the symbol a :R→C, yet it is not defined on S1. We can resolve this problem using
some domain transformations which we will state shortly. The necessary properties
are summarised in the next lemma.

Lemma 7.1.1. If we define U and U# as follows,

U : L2(S1) → L2(R), (Uφ)(x) =
p

2

i +x
φ

(
i −x

i +x

)
, x ∈ S1, (14)

U# : L∞(S1) → L∞(R), (U#a)(x) = a

(
i −x

i +x

)
, x ∈R, (15)

the following statements hold true.

1. The mapping U is an isometric isomorphism of vector spaces with inverse

(U−1φ)(t ) = i
p

2

i + t
φ

(
i

1− t

1+ t

)
, for φ ∈ L2(R), t ∈ S1 \ {−1}.

2. The mapping U# is an isometric isomorphism of C∗−algebras with inverse

(U−1
# a)(t ) = a

(
i

i − t

i + t

)
, for a ∈ L∞(R), t ∈R.

3. The restriction U#|C (S1) defines an isometric isomorphism between C (S1) and
C (R∪ {∞}).

4. We have U H 2(S1) =FL2+ = H 2(R) and U#H∞(S1) = H∞(R).

The properties 1-3 are easily satisfied and the reader is encouraged to look at Ap-
pendix A.3 for proofs and issues of well-definedness. The transformations U and U#

stem from the so called Cayley transformations on which more can be found in Chap-
ter 6 of [12]. Property 4 with a proof can be found in [16, Chapter 9].

Now we can make the relation between the integral and Toeplitz operators clear.
Firstly we note that 1

∥F∥U−1F is an isometric isomorphism between L2(R+) onto

H 2(S1), with inverse 1
∥F−1∥F−1U . This leads us to the following theorem, and we

will give a sketch of its proof.
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Theorem 7.1.2. Let Wa be a Wiener–Hopf integral operator associated with symbol a.
Then we have the following equality,

Wa =F−1U TU−1
# aU−1F , (16)

where TU−1
# a denotes the Toeplitz operator associated with U−1

# a. Moreover if a(ξ) ̸= 0
for all ξ ∈R∪ {±∞} we have

dimkerWa = dimkerTU−1
# a , dimcokerWa = dimcokerTU−1

# a .

Proof. Suppose a(ξ) = c +F k(ξ) for some k ∈ L1(R). We want to prove that for any
φ ∈ H 2(S1) we have TU−1

# a(φ) =U−1FWaF−1U (φ). As said in Remark 7.0.6 we will first

consider φ ∈ H 2(S1) with U (φ) ∈ L1(R)∩L2(R+).
Instead of introducing new notation, we will denote (F−1 f )(x) := ∫ ∞

−∞ e−i xs f (s)d s
for any f ∈ L1(R) even if f is not in the range of F . We then have that
(F−1U )(φ)(x) = ∫ ∞

−∞ e−i xsU (φ)(s)d s, and that F−1Uφ ∈ L2(R+) by Statement (4) of
Lemma 7.1.1. Composing with Wa yields

WaF−1U (φ)(x) = cF−1Uφ(x)+
∫ ∞

0

∫ ∞

−∞
e−t siU (φ)(s)d sk(x − t )d t

= cF−1Uφ(x)+
∫ ∞

−∞

∫ ∞

−∞
e−t siU (φ)(s)d sk(x − t )d t

= cF−1Uφ(x)+
∫ ∞

−∞

∫ ∞

−∞
e(v−x)siU (φ)(s)k(v)d v d s

= cF−1Uφ(x)+
∫ ∞

−∞
e−xsi

∫ ∞

0
ev si k(v)d vU (φ)(s)d s

= cF−1Uφ(x)+
∫ ∞

−∞
e−xsiU (φ)(s)(F k)(s)d s

= cF−1Uφ(x)+F−1(U (φ)(F k))(x).

Hence U−1FWaF−1U (φ)(x) = (c + (F k)(x))φ(x) after applying U−1F

= TU−1
# (c+(F k))φ(x)

where in the last step we used that the function WaF−1U (φ) ∈ L2(R+) yielding by
Lemma 7.1.1 that U−1FWaF−1U (φ) ∈ H 2(R). Note that the domains of the integrals
could be adjusted since FU−1φ ∈ L2(R+).

We get
Wa(ψ) = F−1U TU−1

# aU−1F (ψ)

for every ψ ∈ L1(R)∩L2(R+) with Fψ ∈ L1(R), hence we obtain

Wa(ψ) =F−1U TU−1
# aU−1F (ψ), (17)
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for every ψ ∈ L1(R)∩L2(R+) with Fψ ∈ L1(R).
As said in Remark 7.0.6, it can be shown that the set of theseψ is dense in L2(R+).

Since the operators on the left and right hand side in (17) are all bounded on L2(R+),
we obtain (17) for general ψ ∈ L2(R+).

Finally by the Toeplitz index theorem 6.3.1 we have

dimkerTU−1
# a <∞, dimcokerTU−1

# a) <∞

and since 1
∥F∥U−1F is an isometric isomorphism with inverse 1

∥F−1∥F−1U we have the

same properties for the kernel and cokernel of Wa .

Now that we have established this connection we can see that by the Toeplitz
index theorem for a continuous symbol a, the corresponding Wiener–Hopf operator
Wa will be Fredholm if and only if 0 ∉ Im(U−1

# a) = Im(a). As a small corollary the
equation

Wa(φ)(t ) = cφ(t )+
∫ ∞

0
k(t − s)φ(s)d s = 0

will have a solution for non trivial φ only if the winding number associated with its
symbol will be negative.

One could wonder whether we could not simply use the Fredholm alternative
5.1.6 to analyse Wiener–Hopf integral operators.

Corollary 7.1.3. For k ∈ L1(R),k ̸= 0, the integral operator T : L2(R+) → L2(R+)

T ( f (t )) =
∫ ∞

0
k(t − s) f (s)d s

is not compact.

Proof. If T were compact, for any c ∈ C the corresponding Wiener–Hopf operator
would be of the form cI −T with T ∈K (L2(R+)). However using Theorem 7.1.2 this
would imply that we can associate a Toeplitz operator of the similar form cI − K̃ , for
some K̃ ∈ K (H 2(S1)), implying that K̃ would be a Toeplitz operator meaning that
0 = K̃ as corollary of Lemma 6.1.3. Thus T = 0 contradicting with the fact that k ̸=
0, µ−a.e.

Remark 7.1.4. Corollary 7.1.3 might seem counter-intuitive as we have proved in
5.1.4 that some similarly shaped integral operators are compact. We must note how-
ever we can not use Arzela-Ascoli A.2.2 to prove since the integration domain in 7.0.1
is clearly not compact.
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7.2 A worked example

Having established this theory we turn to a worked example. Let c, z ∈C and observe
the following Wiener–Hopf integral operator

Wa f (t ) = c f (t )+
∫ ∞

0
f (s)e−(t−s−z)2/2 d s, t ≥ 0, (18)

associated with symbol

a(ξ) = c +
∫ ∞

−∞
e iξse− 1

2 (s−z)2
d s = c +p

2πe iξze− ξ2

2 . (19)

Clearly, we have taken k(t ) = e− (t−z)2

2 . In deriving (19), one uses the fact that e− 1
2 t 2

is an eigenvector for Fourier transform F with eigenvalue
p

2π along with a simple
derivation. It is easy to see for nonzero c, z ∈C, that, 0 ∉ Im(a) meaning that TU−1

# a will

indeed be Fredholm which yields U−1
# a will possess finite winding number around

zero.
Having stated this, we wish to get some insight in the winding number associated

with the Toeplitz operator TU−1
# a . It may seem tempting to use complex analysis to

calculate the winding number trying to solve
∫

S1
1

U−1a(ζ)
dζ but this is ill-advised as

the resulting integral may be very difficult to handle.
Instead noting that Im(a) = Im(U−1

# a) We can thus also look at a(ξ) directly. The
shape of a(ξ) suspects that as ξ goes to ±∞, a(ξ) will converge to c. In doing so, the
factor e iξz will ensure that a will spin around this point infinitely many times. This
is not a problem however as we are as before only interested in the winding number
around zero. It behavior is best seen in the following pictures.

For z = 2, c = 1. For z = 3, c = 1. For z = 13, c = 1.

The red lines denote the positive values for ξ whereas the blue lines denote the
negative values of ξ. Starting at c = 1 the curve thus moves counterclockwise as ξ→
∞. From the pictures it is clear that the winding number of a(ξ) will be 0, 2, 6 for
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z = 2, z = 3, z = 13, respectively. To prove this in a more formal fashion we proceed
as follows.

Assuming z to be an integer and since we assume c to be positive we are only
interested in the amount of times a(ξ) intersects with the real axis while a is negative
real. In the spirit of this we substitute ξ= kπ

z and derive as follows:

a(ξ) = c +p
2πe iξze− 1

2ξ
2 < 0

⇔ c +p
2πe iξze− k2π2

2z2 < 0

⇔ c −p
2πe− 1

2ξe− k2π2

2z2 < 0

⇔ cp
2π

< e− 1
2ξe− k2π2

2z2

⇔
−2z2 ln( cp

2π
)

π2
> k2.

We can now explicitly state for which k we have solutions. As we can see in Figure
7.2, we note that the winding number always must be an integer multiple of two. Also
note that the condition c <p

2πmust always be satisfied, regardless of our value of z.
We now know that for example z = 3 we indeed have a winding number of 2,

meaning that by the Toeplitz index theorem 6.3.1 we obtain

dimcokerWa −dimkerWa =− ind(Wa) = Wn(a) = 2.

This means that our integral operator has a nontrivial cokernel of at least dimension
2 meaning that for at least two linear independent g ∈ L2(R+),

c f (t )+
∫ ∞

0
f (s)e

−(t−s−3)2

2 d s = g (t )

has no solution f ∈ L2(R).
Should we have taken z̃ =−z instead, we would have obtained a symbol

ã(ξ) = c +p
2πe−iξze− ξ2

2

with the same image but rotating in the opposite direction. This would give us a
Wiener–Hopf integral equation with index at least 2 meaning that

c f (t )+
∫ ∞

0
f (s)e

−(t−s+3)2

2 d s = 0

has at least solution 2 linearly independent solutions. More generally if

c f (t )+
∫ ∞

0
f (s)e

−(t−s+3)2

2 d s = g (t )

would have solutions, at least two would be linearly independent.
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7.3 Further notes

Note that in Section 7.2 we could only give bounds on the amount of linearly inde-
pendent solutions since the Fredholm index theorem 6.3.1 only makes a statement
on the index, not on dimkerWa and dimcokerWa separately. Strengthening the Fred-
holm index theorem to make statements dimkerWa and dimcokerWa would be diffi-
cult, however as any winding number can correspond to multiple Toeplitz operators
with different sizes of kernels and co-kernels.

For example if we write f (z) = zn and if we once again describe T f as a unilateral
shift on an orthonormal basis we can see dimker(T f T f −1 ) = n and
dimcoker(T f T f −1 ) = n, which leaves us with an associated Wiener–Hopf integral op-
erator using 7.1.2 with a kernel and co-kernel of dimension n. On the other hand,
T f −1 T f will simply be the identity with trivial kernel and co-kernel which carries over
to its associated integral operator. The curves f ⊙ f −1 and f −1⊙ f are still homotopic
however.

In order to resolve this problem, we would need to find a way to count winding
numbers as we are stepping through the curve, but it is not obvious as to how this
should be done. For instance, we know any curve with nonzero winding number
should pass the positive real axis and should self-intersect but the converse is not
true in general, indicating this information is not sufficient to determine the winding
number of our curve. Giving a formal proof of the conjecture that in example 7.2 we
can replace "at least" with "exactly" will thus be difficult.

The reader could also wonder if we can make statements on the spectrum of
Wiener–Hopf integral operators defined on general Lp spaces. We, of course, have
no correspondence with Toeplitz operators as the Fredholm index theorem heavily
relied on the fact that H 2 was a Hilbert space. Furthermore, it is not clear the Wiener–
Hopf integral operators form a normed algebra or what the closure of such an algebra
would look like, so using techniques like 2.4.4 will be difficult. Lastly, note we can not
use the symbol either to deduce spectral properties since the mapping in 7.0.5 is of
course not multiplicative.
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A Appendix

A.1 Kernels and Cokernels

Below is a short discussion on kernels and cokernels and their place in functional
analysis. If we view the space of bounded operators B(V ) on a Banach space V we
know the space V /ker(T ) to be a Banach space since bounded operators always have
closed kernels.

If we require the image of our operator T to be closed we can also define the
Banach space cokerT :=V /Im(T ) which we call cokernel of T . We say dimcokerT to
be the codimension of T . We can note the whereas injectivity of T is equivalent with
having a trivial kernel, surjectivity is equivalent with having a trivial cokernel.

In functional analysis we can consider coker(T )′, the space dual to the cokernel
and note that it is isomorphic to the annihilator of Im(T ), the set Ann(Im(T )) = { f ∈
V ∗ : Im(T ) ⊆ ker( f )}.

Indeed, if we have a f ∈ coker(T ) and denote q : V → V /(Im(T )) as the quotient
mapping, we know f ◦ q ∈ Ann(Im(T )). Likewise for any g ∈ Ann(Im(T )) we know
Im(T ) ⊆ ker(g ) thus we can factor through the cokernel of T as in

V C

coker(T )

q h

g

yielding a function h ∈ coker(T )′. Checking that the mappings f 7→ q◦ f and g 7→ h
are linear and inverses of one another is now a straightforward excersise. In case
dim(coker(T )) <∞ we have immediately from the definition of the adjoint T ′ : V ′ →
V ′ of T that Ann(T ) = ker(T ′) thus,

dim(kerT ′) = dim(coker(T ))

giving yet another reason why it makes sense to call V /Im(T ) a cokernel in func-
tional analysis.

A.2 Supposed known theorems

This appendix subsection consists of theorems assumed to be known to the reader,
but are included for sake of completeness nevertheless

Theorem A.2.1 (Young’s convolution inequality). Let G be R, S1 or Z and suppose
f ∈ Lp (G), g ∈ Lq (G), with

1

p
+ 1

q
= 1

r
+1
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and 1 ≤ p, q,r ≤∞. Then ∥∥ f ⋆ g
∥∥

r ≤
∥∥ f

∥∥
p

∥∥g
∥∥

q .

where( f ⋆ g )(x) := ∫
G f (x − t )g (t )d t

For a proof see [5].

Theorem A.2.2 (Arzela-Ascoli Theorem on compactness). If X is compact and U ⊂
C (X ) then U is compact iff U is closed bounded and equicontinuous.

For a proof [8].

Theorem A.2.3 (Alaoglu’s Theorem for Banach spaces). Given a Banach space V then
the set

{ f ∈V ′ :
∥∥ f

∥∥∞ ≤ 1}

is weak-* compact.

For a proof see [8].

Theorem A.2.4 (Banach Isomorphism Theorem). Given a bounded bijective linear
operator T : U →V of Banach spaces U and V . Then T is invertible.

For a proof see [17].

Theorem A.2.5 (Stone-Weierstrass Theorem). If X is compact and A is a unital closed
subalgebra of C (X ) such that for all x, y ∈ X , x ̸= y there exists f ∈ A such that f (x) ̸=
f (y) and for all f ∈ A we have f̄ ∈ A, then A =C (X ) holds.

In particular, the polynomials f : X →C are dense in C (X ).

Theorem A.2.6 (Liouville’s theorem). If f : C → C is a bounded and holomorphic
function onC then it is constant.

For a proof see [8].

A.3 Transforming the Hardy space

This section will be dedicated to working out some details on the transformations
used in Section 7.1. We denote the mapping U by

U : L2(S1) → L2(R), (Uφ)(x) =
p

2

i +x
φ

(
i −x

i +x

)
, x ∈R.

We can see that this mapping is invertible by U−1 defined as

U−1 : L2(R) → L2(S1), (U−1φ)(t ) = i
p

2

1+ t
φ

(
i

1− t

1+ t

)
, t ∈ T \ {−1}.
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Note that Lp spaces are defined as classes of functions that agree µ− a.e., hence we
do not fret over the fact that U−1(φ)(t ) ∈ L2(S1) is not defined for t = −1. For sake
of convention can we simply define U−1(φ)(−1) := 0. Furthermore it is easy to verify
these mapping U ,U−1 are isometric isomorphisms on their respective vector spaces.

We will show the isometric property. We have for φ ∈ L2(S1),

∥∥Uφ
∥∥2

2 =
∫ ∞

−∞

∣∣∣∣∣
p

2

i +x
φ

(
i −x

i +x

)∣∣∣∣∣ d x =
∫

S1\{−1}

∣∣φ(u)2
∣∣du = ∥∥φ∥∥2

2

where we used the substitution u = i−x
i+x .

Lastly, for φ(i 1−t
1+t ) to be well defined, we need i 1−t

1+t to be real for t ∈ S1. Taking

t = cosθ+ i sinθ, θ ∈ (−π,π) we can indeed see that i 1−t
1+t = si nθ

1+cosθ = tan(θ/2) ∈R for
θ ∈ (−π,π), yielding a bijection between S1 \ {−1} andR.

For a ∈ L∞(S1) we also define (U#a)(x) = a
( i−x

i+x

)
, x ∈R and similarly note it is an

isometric *-isomorphism between C∗−algebras L∞(S1) and L∞(R) as well as C (S1)
and C (Ṙ), where Ṙ=R∪ {∞}.
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