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1 INTRODUCTION

1 Introduction

1.1 Background

In the nineteenth century, we only knew about seven planets in the solar system,
anything beyond Uranus was unknown territory. In the aftermath of Uranus’
discovery in 1781, astronomers observed irregularities in Uranus’ orbit around
the Sun [1]. Two independent astronomers concluded that a yet undiscovered
planet must be the cause. The British mathematician John C. Adams [2] and
the French astronomer Urbain Le Verrier [3] both predicted Neptune’s location
by hand. The latter made the better prediction. Neptune is discovered in 1846
with the aid of a telescope within 1° of his predicted location [3]. Neptune was
observed earlier on in the nineteenth century, but it was thought to be some
faint star [2]. In this thesis, based on the derivations and structure of [4], we
will reproduce the discovery of Neptune with the tools of modern technology.

Figure 1: John C. Adams Figure 2: Urbain Le Verrier

1.2 Goals

We aspire to reproduce the discovery of Neptune using the historical data re-
garding the irregularities in Uranus’ orbit. Using basic celestial mechanics to
understand the interaction between the two interfering planets, we formulate a
function representing the theoretical perturbation of Uranus by Neptune. We fit
this to the historical measured perturbations and hope to be able to accurately
predict Neptune’s location.

1.3 Outline

In Chapter 2, we introduce some preliminary knowledge. We mainly discuss
physics laws that are necessary to describe planetary motion.

In Chapter 3, we consider the forward problem. We first derive an expres-
sion for the theoretical perturbation of Uranus by Neptune. In the forward
problem, we fit this function to the historical data using the known Neptune
characteristics.
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1.3 Outline 1 INTRODUCTION

In Chapter 4, we consider the inverse problem. In the inverse problem,
we also fit the theoretical perturbation to the historical data, but we only use
information known at the time of the discovery. From this, we derive Neptune’s
location.
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2 PHYSICS

2 Physics

In this chapter, we discuss the preliminary knowledge relevant throughout this
thesis. Predominantly physics laws that are necessary to describe planetary
motion in the solar system. We notice that relatively few laws are required to
understand how planets move through space. We also illustrate the abnormali-
ties in the orbit of Uranus that eventually led to the discovery of Neptune. This
chapter is based on laws described in [1] and [5].

2.1 Notation

First, we introduce some notation to distinguish between vector quantities and
scalar quantities. We write vectors in boldface (F ) and scalars in regular font
(m) throughout the thesis. The length of a vector may be written as a scalar
or between vertical bars (|x− y|), depending on the more legible case.

We will also encounter differential equations with derivatives of vector quan-
tities. For practical reasons we write one dot for the first derivative and two

dots for the second derivative with respect to time (r̈ = d2r
dt2 ).

2.2 Physics Laws

In order to describe planetary motion, we require some physics. Several laws
from Kepler, Newton, and Bode will be featured.

2.2.1 Kepler’s Laws

Kepler’s three empirical laws regarding planetary motion characterize how plan-
ets behave in their orbit around the Sun [1]. These laws are:

1. Each planet moves in an elliptical orbit with the Sun at one of the foci.

2. The line from a planet to the Sun sweeps out equal areas in equal times.

3. The period of a planet squared is proportional to the length of the semi-
major axis cubed.

2.2.2 Newton’s Law of Gravitation

Newton’s law of gravitation states that masses attract each other [5]. This force
is calculated as follows:

F = − Gm1m2

|r1 − r2|3
(r1 − r2) (1)

Where:

• F is the gravitational force planet 2 exerts on planet 1.

• m1, m2 are the masses of planet 1 and 2.
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2.3 Astrophysical Concepts 2 PHYSICS

• r1, r2 are the positions of planet 1 and 2.

• |r1 − r2| is the distance between the centers of planet 1 and 2.

• G is the gravitational constant.

2.2.3 Newton’s Second Law

From Newton’s famous three laws, we use Newton’s second law. This law states
that the sum of all forces acting on an object equals the mass times acceleration
[5]. Or in short: ∑

i

F i = mr̈ (2)

Where:

• m is the mass of the object.

• r̈ is the acceleration of the object.

• F i is the i’th force acting on the object.

2.2.4 Bode’s Law

In the nineteenth century, Bode’s law was used to predict the length of the
semi-major axis of planets in the solar system [4]. Bode’s law states:

a = 0.3× 2n + 0.4 AU (3)

Where:

• a is the semi-major axis of planet with index n in Astronomical Units
(AU).

• n is the index corresponding to the planets in the solar system where
n ∈ {−∞, 0, 1, 2, 3, . . . }.

At the time, this law seemed to be correct for the known planets, but for Neptune
and beyond it fails to predict the length of the semi-major axis. However, we
will use this law in order to reproduce the discovery of Neptune.

2.3 Astrophysical Concepts

In astronomy, one deals with great distances and masses but with small angles
and discrepancies. Therefore, the regular SI-units are not always convenient.
We introduce several useful units and concepts from [1] used throughout the
following chapters.
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2.4 Equation of Motion of a Three-Body System 2 PHYSICS

2.3.1 Units

The following units are used instead of the usual SI-units for angles, distances,
and masses.

• An arcsecond (′′) is 1
3600 of a degree.

• An Astronomical Unit (AU) is the average distance between the Earth
and the Sun.

• A solar mass (m�) is the mass of the Sun.

2.3.2 Ecliptic

The vast majority of planets in the solar system move in approximately the
same plane. The plane in which the Earth orbits the Sun is referred to as the
ecliptic [1]. The trajectory of most other planets only have a slight inclination
with respect to this plane. Hence, we refer to the ecliptic as the approximate
plane in which all planets orbit the Sun.

2.3.3 Longitude and Latitude

In order to specify positions in the sky, we use heliocentric longitudes and lat-
itudes [1]. Latitude is measured as the angle between the ecliptic and the line
connecting the position of the celestial body and the Sun’s center. Latitudes to
the south are negative. Longitude is measured as the angle between the vernal
equinox and the line connecting the position of the celestial body and the Sun’s
center. An equinox is the line through the Sun and the Earth when it is parallel
to the equator plane. This phenomenon occurs twice a year, once in September
and once in March. The March equinox is referred to as the vernal equinox.
Longitudes to the west are negative.

2.4 Equation of Motion of a Three-Body System

The equation of motion is the differential equation we obtain when substituting
all forces interfering with our object into Newton’s second law [5]. Solving this
equation yields the position, velocity, and acceleration of an object in time.
We consider a three-body system. We sum the gravitational forces between the
three celestial bodies and use Newton’s second law. This results in the following
equation [4]:

r̈i = −G
3∑
j 6=i

mj

|ri − rj |3
(ri − rj) (4)

Using this equation, we can predict the path of a planet if only two other celestial
objects are interfering with its trajectory.
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2.5 Perturbations of Uranus 2 PHYSICS

2.5 Perturbations of Uranus

When observing Uranus’ orbit between the eighteenth and nineteenth century,
one noticed that Uranus moved in a peculiar way. It did not behave according
to Kepler’s laws [4]. Its orbit was sometimes ahead or behind its predicted
course. At the time, there were few theories that could explain the irregularities
in Uranus’ orbit. Scientists considered that perhaps the Sun’s gravity differs at
great distances or that it might be observational errors [3]. Neither turned out
to be the case. Another theory was that the planet was being pulled out of its
orbit by a yet unknown mass in or near the solar system [4]. Thus, there might
be another planet in the solar system. This turned out to be the case. We now
know this planet as Neptune.

2.5.1 Neptune’s Influence

To visualize the perturbations in Uranus’ orbit, we first consider the force field
of a single planet. A force field is a vector field in which the arrows represent
the direction and magnitude of the force an object would experience at that
specific location [5]. In Figure 3, we see the force field of one planet. The planet
is located at (5, 5).

Figure 3: The force field of one single planet located at (5, 5). The ar-
rows represent the direction and magnitude of the force an object would
experience at that specific location.

Nearby the planet an object is pulled towards the planet, but at greater distances
we can neglect this force. From Neptune’s force field, we can visualize how
Uranus’ perturbations originate. We consider the force field of one planet again,
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2.5 Perturbations of Uranus 2 PHYSICS

this represents the force field caused by Neptune. In Figure 4, we see the force
field of Neptune and the orbit of Uranus.

Figure 4: A graphical representation of the influence of Neptune on
Uranus’ orbit. The blue circle represents Uranus’ orbit and the purple
circles represent Uranus at different moments in time. The purple arrows
from these circles are the forces Uranus experiences due to the gravitational
force of Neptune.

The blue circle represents Uranus’ orbit and the small purple circles represent
Uranus at different moments in time. The arrows from these purple dots rep-
resent the force that Neptune exerts on Uranus. We see that Uranus is pulled
towards Neptune. If we imagine Uranus moving counterclockwise, we observe
at the right side of the orbit that Uranus is pulled ahead in its orbit and at the
top it is pulled back in its orbit. This is what caused the observed irregularities
in Uranus’ orbit by Neptune.

2.5.2 Discrepancy

The perturbations of Uranus are referred to as the discrepancy in longitude.
The discrepancy ∆φ is the remaining discrepancy in longitude of Uranus after
subtracting other planetary perturbations [4]. Hence, ∆φ is the discrepancy
caused by the unknown mass we are looking for. The remaining discrepancy
∆φ is shown in Figure 5 in arcseconds. The data can be found in [4].
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2.5 Perturbations of Uranus 2 PHYSICS

Figure 5: The measured discrepancy ∆φ in arcseconds after subtracting
other planetary perturbations. Thus, ∆φ is the remaining discrepancy
caused by Neptune. The table with this data can be found in [4].
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3 FORWARD PROBLEM

3 Forward Problem

Prior to predicting Neptune’s location from the remaining discrepancy, we con-
sider the forward problem introduced in [4]. In the forward problem, we use the
known Neptune characteristics to determine the theoretical discrepancy. This
theoretical discrepancy will be useful in the reverse case, where we calculate the
Neptune characteristics from the historically measured perturbations. All as-
sumptions, derivations, notation and solutions in the following two subsections
stem from the forward problem discussed in [4].

3.1 The Equation of Motion

In order to derive the theoretical discrepancy, denoted ∆φth [4], we take a
closer look at the orbit of Uranus. We want to be able to describe its location,
velocity, and acceleration at any moment in time. We accomplish this by solving
the equation of motion of a three-body system. We start by simplifying the
problem and formulate Uranus’ equation of motion. Subsequently, we solve
these equations to obtain ∆φth.

3.1.1 Assumptions

Since ∆φ is the remaining discrepancy, we only consider a three-body system
with the Sun, Uranus, and Neptune. The orbits of these planets are nearly
circular. We neglect these small eccentricities and assume that all three orbits
are perfect circles. Furthermore, we assume that the radii of the orbits are
equal to the length of the semi-major axis. Since it does not differ much from
the semi-minor axis, this is just a matter of choice. Also, we assume that the
three planets move in the same plane. Hence, we neglect the small inclinations
with respect to the ecliptic.

3.1.2 Perturbed and Unperturbed Motion

Before we describe the perturbed and unperturbed motion of Uranus, we intro-
duce some notation useful throughout the thesis. The subscripts U, N, and �
refer to Uranus, Neptune, and the Sun. The following constants regarding the
three celestial bodies will appear in the upcoming chapters:

• Radii : RU , RN and R� in AU.

• Mass: mU , mN and m� in solar masses i.e. m� = 1.

• Orbital period : TU and TN in years.

• Angular frequency : ΩU = 2π
TU

and ΩN = 2π
TN

in radians per year.

Define t0 = 1822 to be the time of conjunction [4]. The time of conjunction
is the year in which Uranus, Neptune and the Sun align. To visualize the mo-
tion of the two planets around the Sun, observe Figure 6. It depicts Uranus and
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3.1 The Equation of Motion 3 FORWARD PROBLEM

Neptune with their respective orbits. Both planets are moving counterclockwise
around the Sun. In the figure, the time of conjunction occurs when the three
celestial bodies are on the x-axis.

Figure 6: The unperturbed motion of Uranus (U) and Neptune (N). The
two planets move counterclockwise in their respective orbits around the
Sun (S) located at the center. The figure can be found in [4].

In [4], they switch to a more convenient time scale τ = t − t0. Consequently,
τ = 0 during the time of conjunction.

To envision the perturbations, they change to a rotating frame with angular
frequency ΩU . In this frame, depicted in Figure 7, Uranus would be stationary
without the perturbations. Neptune on the other hand is moving with an angu-
lar frequency −Ω, where Ω is defined as Ω = ΩU −ΩN . The minus sign informs
us it is moving clockwise.

Figure 7: The perturbed motion of Uranus in the frame rotating with ΩU .
In this frame, Uranus is only showing its perturbations u and v. Uranus
would be stationary without the perturbations. Neptune moves clockwise
with angular frequency Ω = ΩU − ΩN . The figure can be found in [4].

As stated earlier, Uranus is only showing its perturbations in this frame. We
define the perturbation in the x-direction as u(τ) and the perturbation in the

13



3.1 The Equation of Motion 3 FORWARD PROBLEM

y-direction as v(τ). This implies that u is the radial deviation and v
RU

= ∆φ is
the deviation in longitude. To grasp why the latter is true, consider ∠USv. In
Figure 7, ∠USv = ∆φ is the perturbation in longitude caused by Neptune [4].
We know tan(∆φ) = v

RU
. Using the small angle approximation, tan(∆φ) ≈ ∆φ,

yields ∆φ = v
RU

.

From these observations, they deduce the perturbed and unperturbed solutions
using polar coordinates [4]:

• Unperturbed motion: ρ̃(τ)= RU and φ̃(τ)= ΩUτ .

• Perturbed motion: ρ(τ)= RU + u(τ) and φ(τ)= ΩUτ + v(τ)
RU

.

For the remainder of the chapters, we will only be interested in deriving the
perturbations in longitude. We lack the data regarding the radial perturbations,
since radial perturbations are hard to measure [4]. Therefore, we do not take it
into consideration.

3.1.3 Deriving the Equation of Motion

We follow the derivation of the equation of motion as in [4]. We start by
introducing heliocentric coordinates. In other words, sun-centered coordinates:

ρi = ri − r� (5)

where i ∈ {N,U,�}. Thus, the equation of motion as previously discussed
becomes:

ρ̈U = −r̈� −G
∑
j=N,S

mj

|ρU − ρj |3
(ρU − ρj) (6)

where r̈� is called the pseudo acceleration. This term is the result of choosing
a non-inertial frame of reference i.e. a frame undergoing acceleration. We
calculate the pseudo acceleration as follows:

r̈� = −G
∑
j=U,N

mj

|0− ρj |3
(0− ρj) = G

(
mU

(ρU )3
ρU +

mN

(ρN )3
ρN

)
(7)

We substitute r̈� into the equation of motion, which results in:

ρ̈U +G(mS +mU )
ρU
ρ3
U

= GmN

(
ρN − ρU
|ρN − ρU |3

− ρN
ρ3
N

)
=
GmN

R2
N

F = εF (8)

where εF with ε = GmN

R2
N

is the total force that the Sun and Neptune exert

on Uranus. Using polar coordinates, the equation of motion separates into the
following two differential equations:

ρ̈− ρφ̇2 +
G(mS +mU )

ρ2
= εFr (9)

14



3.2 Solving the Equation of Motion 3 FORWARD PROBLEM

ρφ̈+ 2ρ̇φ̇ = εFφ (10)

where Fr and Fφ are the r- and φ-components of F .

Recall the perturbed motion of Uranus and compute the derivatives:

• ρ(τ) = RU + u(τ), where ρ̇(τ) = u̇(τ) and ρ̈(τ) = ü(τ).

• φ(τ) = ΩUτ + v(τ)
RU

, where φ̇(τ) = ΩU + v̇(τ)
RU

and φ̈(τ) = v̈(τ)
RU

.

Substituting the perturbed solution in the differential equations and simplifying
them yields:

ü− 2ΩU v̇ − 3Ω2
Uu = εFr (11)

v̈ + 2ΩU u̇ = εFφ (12)

Solving these equations provides us with the theoretical discrepancy ∆φth. We
refer to [4] for a more detailed derivation of the above equations of motion.

3.2 Solving the Equation of Motion

When solving differential equations, we look for the homogeneous solution and
the inhomogeneous solution. Recall that the solution of differential equations
is the sum of the homogeneous and inhomogeneous solutions. We begin with
the homogeneous equations. A more detailed derivation of both solutions can
be found in [4].

3.2.1 Homogeneous Solution

The homogeneous equations of motion are merely the regular equations of mo-
tions, except we set F = 0. Hence:

ü− 2ΩU v̇ − 3Ω2
Uu = 0 (13)

v̈ + 2ΩU u̇ = 0 (14)

The solutions to this system of differential equations stem from the normal
modes or the natural frequencies 0 and ΩU . The solutions for both normal
modes are outlined below.

The solution for natural frequency 0 is:

• u = − 2
3α1

• v = α1ΩUτ + α2

The solution for natural frequency ΩU is:

• u = − 1
2α3cos(ΩUτ) + 1

2α4sin(ΩUτ)

• v = α3sin(ΩUτ) + α4cos(ΩUτ)

One can easily verify these are the solutions to the homogeneous equations.

15



3.2 Solving the Equation of Motion 3 FORWARD PROBLEM

3.2.2 Inhomogeneous Solution

Prior to solving the inhomogeneous equation of motion, we take a closer look
at εFr and εFφ, which are the r- and φ-components of:

εF = GmN

(
ρN − ρU
|ρU − ρN |3

− ρN
ρ3
N

)
(15)

where ρU = (RU , 0) and ρN = (RNcos(Ωτ),−RN sin(Ωτ)). If we substitute
these expressions in equation (15), we obtain:

Fr =
cos(Ωτ)− k

(1− 2k cos(Ωτ) + k2)3/2
− cos(Ωτ) (16)

Fφ =
− sin(Ωτ)

(1− 2k cos(Ωτ) + k2)3/2
+ sin(Ωτ) (17)

where k = RU

RN
. We leave out the ε term. In Figure 8 below, we see one oscillation

of both Fr and Fφ. We immediately observe that Fr is an even function and Fφ
an odd function. Both are not purely sinusoidal. Therefore, they must contain
harmonics at frequencies nΩ for n ∈ N.

Figure 8: One oscillation of Fr and Fφ. These are the r- and φ-components
of F , where εF is the total force the Sun and Neptune exert on Uranus.

In order to find dominating terms, we describe Fr and Fφ using Fourier series.
We conclude that they must be of the following form given the observed parity:

• Fr =
∑∞
n=0 an cos(nΩτ)

• Fφ =
∑∞
n=0 bn sin(nΩτ)

Recall that we can determine all an and bn as follows:

an =
1

2π

∫ 2π

0

Fr cos(nΩτ)d(Ωτ) (18)
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3.2 Solving the Equation of Motion 3 FORWARD PROBLEM

bn =
1

2π

∫ 2π

0

Fφ sin(nΩτ)d(Ωτ) (19)

If we substitute the expressions for Fr and Fφ in our equations of motions, we
conclude that u and v must be of the following form:

• u = ε
∑∞
n=0 un cos(nΩτ)

• v = ε
∑∞
n=0 vn sin(nΩτ)

Substituting u and v into the equations of motion gives us expressions for the
un’s and vn’s. For n ≥ 1, we have:

vn =
−2nΩΩUan + (3Ω2

U + n2Ω2)bn
n2Ω2(Ω2

U − n2Ω2)
(20)

un =
nΩan − 2ΩUbn
nΩ(Ω2

U − n2Ω2)
(21)

with u0 = − a0
3Ω2

U
and v0 = 0. Since these are elaborate expressions, we look

for dominating terms. We do this by searching for resonant terms. Resonance
occurs when the driving frequency is near the resonance frequency. In our case,
the driving frequency is nΩ and the resonance frequency is ΩU . Thus, we search
for the n ∈ N such that ΩU ≈ nΩ. In this case, the denominator of vn is close
to zero, resulting in large values for vn. Therefore, this term must dominate.

This turns out to be the case for n = 2. For n ∈ N \ {2}, the result is at
least one order of magnitude smaller and hence we neglect them. We conclude
that the inhomogeneous solution is:

vinhom = ε

∞∑
n=0

vn sin(nΩτ) ≈ εv2 sin(2Ωτ). (22)

where εv2 = −γ = −4.32× 10−3 rad= 890′′. Since the measured discrepancy is
in the range 0 - 100 arcseconds, we suspect that γ is a factor too large.

3.2.3 Complete Solution

For the complete solution, we sum the solutions to the homogeneous and inho-
mogeneous equations. Or in short:

∆φth =
vinhom
RU

+
vhom
RU

(23)

In which we substitute the foregoing solutions:

• vhom,0 = α1ΩUτ + α2

• vhom,ΩU
= α3 sin(ΩUτ) + α4 cos(ΩUτ)

• vinhom = εv2 sin(2Ωτ)
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Substituting these solutions yields the following expression for the theoretical
discrepancy in longitude:

∆φ(τ) = −γ sin(2Ωτ) + β1ΩUτ + β2 + β3 sin(ΩUτ) + β4 cos(ΩUτ) (24)

where βi = αi

RU
and −γ = εv2. For a more detailed derivation of ∆φth, we refer

one to [4].

3.3 Fitting the Data Using ∆φth

In this section, we fit the theoretical discrepancy ∆φth from [4] to the historical
data. In this manner, we can find the optimal values for βi with i ∈ {1, 2, 3, 4}.
We execute the fits with the known time of conjunction t0, the theoretical γ,
and once where we vary both parameters. Furthermore, we consider the error
between the observed discrepancy and the theoretical discrepancy regarding
these various cases. This way one can truly compare the cases. We use the root-
mean-square error (D2 or RMS) introduced in [4] to accomplish this. The fit
function is simply ∆φth, in which we substituted the known Neptune parameter
Ω = ΩU − ΩN :

∆φth(t) = −γ sin(2Ω(t−t0))+β1ΩU (t−t0)+β2+β3 sin(ΩU (t−t0))+β4 cos(ΩU (t−t0))
(25)

3.3.1 Vary t0

We start by comparing the fitted ∆φth for different values of t0. In Figure 9,
we see the results for values of t0 between 1800 and 1840. Evidently, the values
close to 1822 seem to allow a closer fit to the data. The fit with t0 = 1830 might
even agree more with data than t0 = 1820.

Figure 9: ∆φth fitted to the historical data for different values of t0
between 1800 and 1840. The curve with t0 = 1830 seems the closest fit.
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We continue with the actual time of conjunction and compare this with other
values close to t0 = 1822. We compare the results in Figure 10.

Figure 10: ∆φth fitted to the historical data for different values of t0 close
to the actual time of conjunction t0 = 1822. We fitted ∆φth for values of
t0 between 1818 and 1828. The curves between 1822 and 1828 seem the
closest fits. Thus, the optimal value for t0 might be later than 1822.

We observe that the overall form of the plots are similar, but around t0 = 1822
the fits resemble the data more than for other years. This is in line with our
expectations, but we conclude that a few years more or less does not drastically
change the fit. A few years later might even allow for a better fit to the data.

3.3.2 Vary γ

We continue with the second case, where we compare the theoretical value
γth = 890′′ with different values of γ. We first consider ∆φth for different values
of γ. In this case we fix t0 = 1822. The results are plotted in Figure 11. We
observe that γ between 500′′ and 700′′ allows for the closest fits. Therefore, we
conclude that γth = 890′′ must be too large.
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Figure 11: ∆φth fitted to the historical data for different values of γ
between 100 and 1100. The curve with γ = 500′′ seems the closest fit. The
theoretical γth = 890′′ is probably too large.

We continue with the following three cases:

1. We fix both γth = 4.32× 10−3 rad = 890′′ and t0 = 1822.

2. We vary γ and fix t0 = 1822.

3. We fix γth = 4.32× 10−3 rad = 890′′ and vary t0.

We fitted the three preceding situations to the data and obtained the results
displayed in Figure 12. Case two, where we varied γ, is the best fit to the data.
This is in line with our expectations since the theoretical γth was a factor larger
than the observed perturbations. We obtained γ = 550.3649′′ in the second case.
Indeed, lower than the theoretical γth = 890′′, but bigger than the measured
discrepancy.
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Figure 12: ∆φth fitted to the historical data for the three different scenar-
ios discussed previously. We clearly observe that using γth = 890′′ obtains
a worse result than varying γ. Varying t0 on the other hand does not
improve the result much.

Furthermore, we see little distinction between the other two cases. Since the
fixed t0 = 1822 is the actual time of conjunction, varying t0 should not make a
big difference, which is displayed in the figure. In the third case, we obtained
t0 = 1823.3955.

3.3.3 Vary All

In this last section, we vary both parameters t0 and γ. In Figure 13, the outcome
is plotted. We see that the plot is really consistent with the data. In this case,
we have γ = 541.9447′′ and t0 = 1824.7048.

Figure 13: ∆φth fitted to the historical data where we vary both γ and
t0.

We compare this result to the results from the previous section. Thus, we plot
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the case where t0 = 1822, the case where γth = 890′′, and the plot from the
preceding figure. In Figure 14, we observe these three cases.

Figure 14: ∆φth fitted to the historical data with fixed γ, fixed t0 or
varied γ and t0. Using γth = 890′′ prevents us from getting a close fit to
the data. The other two cases are similar, but varying both γ and t0 allows
for the closest fit.

We compare the three results and observe that the best fit to the forward prob-
lem is the one where we varied both t0 and γ. Obviously, having fewer con-
straints allows for a better fit. Comparing it to the other two cases, we see that
γth must be too large. Varying t0 does not influence the result considerably.

3.4 Root-Mean-Square Errors

In this section, we calculate the error between the fit and the original data
for the three cases previously discussed. We use the root-mean-square error to
accomplish this. The root-mean-square error is defined as follows:

D2 =
1

N

N∑
i=1

[∆φ(τi)−∆φth(τi)]
2 (26)

where ∆φ(τi) are the observed remaining discrepancies in Uranus’ orbit and
∆φth(τi) the fitted function value at time τi. This expression for the root-
mean-square error can be found in [4].

3.4.1 Vary t0

We start with calculating the root-mean-square error of the fit for different
times of conjunction. We vary γ in this section. The root-mean-square error for
different values of t0 is plotted in Figure 15.
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Figure 15: The root-mean-square error D2 for different values of t0 where
for every t0 the discrepancy ∆φth is fitted to the data. The error is periodic
and the minimum closest to 1822 is D2 = 74.0006 at t0 = 1824.7048.

We observe that the error is periodic and attains it minimum every few years.
This is expected, since the fit function ∆φth a summation of trigonometric
functions. A minimum of D2 closest to 1822 is attained at t0 = 1824.7048,
where D2 = 74.0006. The minimum is thus reached a few years after the actual
time of conjunction.

At t0 = 1822 the error is D2 = 94.9520, a significant difference compared to
the global minimum of D2.

3.4.2 Vary γ

In this section, we compare the error for the three cases of γ.

1. In the first case, where we fixed both t0 and γ, the error is D2 = 221.1766.

2. For the second case, where we varied γ and fixed t0, we plot the error
against γ. Examine Figure 16.
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Figure 16: The root-mean-square error D2 for different values of γ where
for every γ the discrepancy ∆φth is fitted to the data. We fixed t0 = 1822.
The error is parabola shaped and the minimum is D2 = 94.9520 attained
at γ = 550.3649′′.

We observe a parabola shaped error plot, which eventually keeps on in-
creasing in γ. The error plot attains its minimum at γ = 550.3649′′, where
D2 = 94.9520.

3. We pursue with the third case, where we fixed γth = 890′′ and varied t0.
In Figure 17, we plotted the error against t0.

Figure 17: The root-mean-square error D2 for different values of t0 where
for every t0 the discrepancy ∆φth is fitted to the data. We fixed γth = 890′′.
The error is periodic and the minimum closest to 1822 is D2 = 209.4250 at
t0 = 1823.4.

Once more, we have a periodic D2 with respect to t0. The minimum value
for the error is D2 = 209.4250, where t0 = 1823.4.
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From the values of D2 of the previous cases, we conclude that in particular using
γth prevents us from obtaining a better fit to the forward problem. Varying t0
has a less drastic effect on the root-mean-square error.

3.4.3 Vary All

In this last section, we consider the error when we varied both γ and t0. In
Figure 18, we observe the error plotted against t0.

Figure 18: The root-mean-square error D2 for different values of t0 where
for every t0 the discrepancy ∆φth is fitted to the data. The error is periodic
and the minimum closest to 1822 is D2 = 74.0006 at t0 = 1824.7048.

We observe a sinusoidal error plot. This is always the case when observing the
error of different values of t0. A minimum of D2 is attained at t0 = 1824.7048.
In Figure 19, we plotted the error against γ.
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Figure 19: The root-mean-square error D2 for different values of γ where
for every γ the discrepancy ∆φth is fitted to the data. We varied t0. The
error is parabola shaped and the minimum is D2 = 74.0006 attained at
γ = 541.9447′′.

Here, the minimum for D2 is attained at γ = 541.9447′′. The minimum error is
D2 = 74.0006. This is the smallest error we have encountered. Therefore, this
is the best fit to the forward problem.

3.5 Conclusion Forward Problem

Using the equation of motion of a three-body system, we derived a system of
differential equations for the perturbations in the radial and φ-direction. We
solved these equations and obtained an expression for ∆φth [4]. We proceeded
with fitting this theoretical discrepancy to the historical data. We concluded
that a later time of conjunction agrees a bit better with the data and that the
theoretical γ is a factor too large. The best fit to the forward problem is obtained
when varying both γ and t0. We obtained t0 = 1824.7048 and γ = 541.9447′′,
with error D2 = 74.0006. Changes in γ seemed to have the greatest impact on
the D2 error. In the forward problem discussed in [4], the result for D2 is lower,
namely, D2 = 11.1. This is probably due to the fact that back in the day it was
sufficient to use Bézier curves or other techniques to make plots agree with the
data. For example, they might have taken a wire and bent it until they were
satisfied. It seems that they used such a technique to obtain a lower D2 error
than we did.
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4 Inverse Problem

In this chapter, we consider the inverse problem introduced in [4]. In this case,
we assume we only know the observed perturbations and Uranus’ characteristics.
We do not use any known information about Neptune. We start by fitting the
theoretical discrepancy ∆φth to the data using Bode’s law [4]. We also vary
ΩN to the data. Subsequently, we calculate the root-mean-square error for both
these cases and finally deduce Neptune’s predicted location.

4.1 Bode’s Law

In the nineteenth century, the approximate distance to a planet was calculated
using Bode’s law [4]. As discussed earlier, this law is correct up to Uranus but
fails to predict the distance to Neptune. Nevertheless, since astronomers used
this method at the time, we also use this law in order to reproduce the discovery
of Neptune.

4.2 Fitting the Data Using ∆φth

Recall the theoretical discrepancy derived in the forward problem:

∆φth(τ) = −γ sin(2Ωτ) + β1ΩUτ + β2 + β3 sin(ΩUτ) + β4 cos(ΩUτ) (27)

We fit this to the data in a similar way as we did in the forward problem. We
start by using Bode’s law [4] to derive ΩBode.

4.2.1 Using ΩBode

First, we use Bode’s law [4] to calculate the presumed distance to Neptune.
Since n = 6 corresponds to Uranus, we use n = 7 for Neptune, which provides
us with RN,Bode:

RN,Bode = 0.3× 27 + 0.4 = 38.8 AU (28)

We apply Kepler’s third law, namely T 2 ∝ R3, to calculate TBode,N . We observe
for all planets prior to Neptune that T 2 ≈ R3 with R in AU and T in years. We
obtain:

TN,Bode ≈ R
3
2

N,Bode = 241, 684 years (29)

From this and and the fact that Ω = 2π
T , we calculate:

ΩN,Bode =
2π

TN,Bode
= 2, 59975 · 10−2 radians per year (30)

Finally, we calculate ΩBode:

ΩBode = ΩU − ΩN,Bode = 4, 879 · 10−2 radians per year (31)
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Notice that all these results differ quite a bit from the actual Neptune constants.
Substituting ΩBode, yields the following function to fit the data:

∆φth(τ) = −γsin(2ΩBodeτ) + β1ΩUτ + β2 + β3sin(ΩUτ) + β4cos(ΩUτ) (32)

We first consider different values for Neptune’s mass and compare the fits. This
is equivalent to varying γ, since γ ∝ ε ∝ mN . In Figure 20, we plotted the fitted
function for different values of γ.

Figure 20: ∆φth with ΩBode fitted to the historical data for different
values of γ between 20 and 80. The curve with γ = 50′′ seems the closest
fit. Between γ = 55′′ and γ = 60′′ the overall look of the plots change
drastically.

From Figure 20, we conclude that around γ ≈ 50′′ the fit seems the most
consistent with the data. Furthermore, the overall look of the plot changes
drastically between 55′′ and 60′′. Beyond this value, the plots are not consistent
with the data anymore. Therefore, we expect the error to change drastically as
well. Secondly, we examine the fits for different values of t0. In Figure 21, we
plotted the fitted function for different values of t0.
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Figure 21: ∆φth with ΩBode fitted to the historical data for different
values of t0 close to the actual time of conjunction t0 = 1822. We fitted
∆φth for values of t0 between 1790 and 1830. The curve with t0 = 1810 is
the closest fit. The other curves look different but similar to each other.

We clearly see that t0 ≈ 1810 allows for the closest fit to the data. Finally, we
vary both γ and t0. This results in the following fit in Figure 22:

Figure 22: ∆φth with ΩBode fitted to the historical data with varied t0
and γ. Here γ = −50.1712′′ and t0 = 1811.3643.

This is quite a close fit which yields γ = −50.1712′′ and t0 = 1811.3643. Notice
that in the inverse problem, the value of γ is more consistent with the range of
values of the measured discrepancies than in the forward problem.

4.2.2 Vary ΩN

In this case, ΩN is a parameter when we fit the data to the theoretical discrep-
ancy. Thus, we vary Ω = ΩU − ΩN to the data. We obtain the following fit in
Figure 23:
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Figure 23: ∆φth with varied ΩN fitted to the historical data with varied
t0 and γ. Here Ω = 0.04270, t0 = 1817.0182 and γ = −100.0911′′. This is
the best fit to the inverse problem.

We immediately see that this is the closest fit so far. We have t0 = 1817.0182,
γ = −100.0911 and Ω = 0.04270 rad per year, which corresponds to Ωfit,N =
ΩU − Ω = 0.07479 − 0.04270 = 0.03209 rad per year. The actual Neptune
frequency is ΩN = 0.03813 rad per year. Thus, there is quite a difference
between the actual Neptune frequency ΩN and the fitted frequency, but a smaller
difference than between ΩBode,N and ΩN .

4.3 Root-Mean-Square Errors

In this section, we consider the root-mean-square errors [4] of the two cases
previously discussed.

4.3.1 Using ΩBode

We first consider the root-mean-square error for different values of γ. The
error plots for γ are symmetric around the D2-axis. Thus, only considering the
positive direction is enough. In Figure 24, we plotted the error against γ:
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Figure 24: The root-mean-square error D2 for different values of γ where
for every γ the discrepancy ∆φth with ΩBode is fitted to the data. We
varied t0. The error is parabola shaped at first and makes a jump around
γ ≈ 57′′. The minimum is D2 = 143.7586 attained at γ = 50.1712′′.

The minimum is attained at γ = 50.1712′′. We also notice an abrupt jump in
D2 around γ ≈ 57” as expected. Earlier, we observed that the overall look of
the fits changed drastically around that value.
Furthermore, we consider the error plot for different values of t0 in Figure 25.

Figure 25: The root-mean-square error D2 for different values of t0 where
for every t0 the discrepancy ∆φth with ΩBode is fitted to the data. The
error is periodic and the minimum closest to 1822 is D2 = 143.7586 at
t0 = 1811.3643.

In the figure, we observe the expected periodicity. The minimum error is D2 =
143.7586 with γ = −50.1712′′ and t0 = 1811.3643.
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4.3.2 Vary ΩN

In this section, we calculate the root-mean-square error for different values of
Ω. We plotted this in Figure 26.

Figure 26: The root-mean-square error D2 for different values of Ω where
for every Ω the discrepancy ∆φth is fitted to the data. The error attains
some local minima and the global minimum is D2 = 32.7424 at Ω = 0.0427.

We observe several local minima and the global minimum at Ω = 0.0427 with
ΩN = Ωfit,N = 0.03209. Near zero the error behaves chaotically, that is why
we observe the jump. The error at Ω = 0.0427 is D2 = 32.7424. This is the
lowest error we have encountered and thus the best fit to the inverse problem.
We can clearly see this when comparing Figure 22 and Figure 23.

4.4 Predicted Location

In this section, we calculate the location of Neptune for the two different cases
described in this chapter. We use the optimal values for t0 and ΩN from the
previous sections to achieve this. We calculate the angle between the actual and
predicted location in 1846, the year Neptune was discovered. Recall that Ω×∆t
equals the number of radians travelled by a certain planet in a time span ∆t.
We derive a formula, ∆N , for the difference between the actual location and the
predicted location as follows.

• The actual location of Neptune in 1846 is the location in 1822 plus 24×ΩN .

• The theoretical location of Neptune is the location of Uranus at t0 plus
(1846− t0)×ΩN . The location of Uranus in t0 is equal to the location in
1822 plus (t0 − 1822)× ΩU .

We take the difference of the preceding expressions. Notice that the location in
1822 cancels out. We obtain the following expression for ∆N :

∆N = |24ΩN − (t0 − 1822)ΩU − (1846− t0)Ω̃N | (33)
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where Ω̃N ∈ {ΩBode,N ,Ωfit,N}. We calculate this difference ∆N for the varied
Ωfit,N and ΩBode,N .

4.4.1 Using ΩBode

In this case, the optimal value for the time of conjunction is t0 = 1811.3643 ≈
1811. Thus, ∆N becomes:

∆N = |24ΩN + 11ΩU − 35Ω̃Bode,N |= 0.8278975 rad (34)

4.4.2 Vary ΩN

In this case, the optimal value for the time of conjunction is t0 = 1817.0182 ≈
1817. Thus, ∆N becomes:

∆N = |24ΩN + 5ΩU − 29Ω̃fit,N |= 0.35846 rad (35)

The predictions from our derived t0 and ΩN are not as close as we would expect
from the fits in the previous sections. We think we lost some valuable informa-
tion along the way by making the Uranus-Neptune model too easy. For example,
both Le Verrier and Adams did include non-zero eccentricities in their calcula-
tions. Perhaps something like this is necessary in order to get a more accurate
result. For more detailed information about the predictions of Le Verrier and
Adams, we refer one to [3] and [2].

4.5 Conclusion Inverse Problem

We used Bode’s law to calculate ΩBode and used this to fit ∆φth to the data.
Afterwards, we varied ΩN . From their respective root-mean-square errors, we
conclude that the latter allows for a more accurate result. Besides, the inverse
problem has a better fit to the problem than the forward problem. Eventually,
we calculated the difference between the predicted and actual Neptune location,
∆N . For ΩBode,N , we got ∆N = 0.8278975 rad and for Ωfit,N , we got ∆N =
0.35846 rad. Unfortunately, this is much more than the 1° error of Urbain Le
Verrier [3]. We think this is due to the simplified Sun-Uranus-Neptune system
we considered. We must have lost some valuable information.

Regarding the results in [4], we again observe a smaller D2 in [4] due to
similar reasons as described in the forward problem.
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5 Conclusion

In the previous chapters, we have taken a look at the forward and inverse prob-
lem [4]. From the equations of motion of Uranus, we derived an expression for
the theoretical perturbations ∆φth [4]. Afterwards, we fitted ∆φth to the his-
torical discrepancy. Using the root-mean-square error, we compared the results.
The best fit to the forward problem was when we varied both γ and t0. In
particular, varying γ had a major impact on the D2 error. As for the inverse
problem, we first used ΩBode and then we varied Ω. The latter led to the best
fit to the inverse problem as well as the best fit to the data in general. From
these fits, we obtained optimal values for t0 and ΩN . We calculated the pre-
dicted location of Neptune from these values. Our best prediction is 0.35846
rad away from the actual location in 1846. Le Verrier [3] predicted the location
of Neptune within 1°, this is extraordinarily close to the actual location. The
Neptune-Uranus system we used is a simplified version of reality. Hence, we
did not get such an accurate prediction. Unfortunately, we must have lost some
valuable information, even though the fits seemed close to the data.
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