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1 Introduction

Mathematical objects often come with an associated base field k. Examples include vector
spaces over k, algebras over k, schemes over k, and elliptic curves over k. If K /k is a field
extension and X is an object over k, then we say that an object Y over k is a K /k-twist of X if
X and Y “become isomorphic” over K . If Y is in addition not isomorphic to X over the base
field k, then we say that Y is a nontrivial twist of X . By studying such twists we can get a grip
on the arithmetic of the base field k.

Example 1.1. Consider the conic C ⊂P2
R

given by the equation x2 + y2 + z2 = 0 over the field
of real numbers R. After extending our base field from the real numbers to the field of complex
numbers C, the conic C has a point over the base field, which implies that C is isomorphic to
the complex projective line P1

C
. The field R fails to provide us with a point on C , and so C is a

nontrivial twist of the real projective line P1
R

.

The goal of this thesis is to understand the K /k-twists of a given object X over k, when
K /k is a Galois extension, using the theory of Galois cohomology introduced in sections
2 and 3. For many classes of objects, we can parameterize the K /k-twists in terms of the
first cohomology set of Gal(K /k) with coefficients in AutK (X ), denoted H 1(K /k,AutK (X )).
Theorem 5.5 makes this precise. One should also think of H 1(K /k,AutK (X )) as the object that
contains the obstruction preventing K -isomorphisms from descending to isomorphisms over
k, and so this gives information about the arithmetic of k.

The “general principle” of parameterizing K /k-twists of a k-object X in terms of
H 1(K /k,AutK (X )) is well known. See, for instance, [Ser97, Chapter 3] or [Bru09]. Our treatment
of the subject differs from these texts, as we build a general framework in which such a
parameterization is possible. This is done through the notion of a base extension introduced
in Section 4.

In Section 6 we apply the theory of twists to study Severi-Brauer varieties; these are twists
of projective spaces. We have already seen an example above. Section 7 treats central simple
algebras, which are twists of matrix algebras. These objects share a close connection, because
the automorphism groups of Mn(K ) and Pn−1

K , with n > 0 an integer, coincide. Specifically,
this group is PGLn(K ). The parameterization of these objects in terms of H 1(K /k,PGLn(K ))
will give us a correspondence between Severi-Brauer varieties and central simple algebras.

This thesis is concluded with the introduction of the Brauer group in Section 8. This group
contains information regarding central simple algebras and Severi-Brauer varieties. Using
Galois cohomology, we will derive some basic results and perform some calculations about
Brauer groups.

From the reader we expect familiarity with basic algebra, in particular (infinite) Galois
theory (see, for instance, [Lan02, Chapter VI]). Basic scheme theory is used in sections 4 and 6,
as can for instance be found in [Har10, Chapter 2]. Familiarity with only the basic theory of
varieties (over fields which are perhaps not algebraically closed), as in [Sil13, Chapter 1], will
be sufficient if the reader is fine with taking some results in Section 4 for granted. Knowledge
of category theory including limits and adjunctions, as can be found in [Rie17], is assumed. To
build up the theory of Galois cohomology in sections 2 and 3, we make extensive use of the
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material in Appendix A on homological algebra. We take a rather abstract approach to Galois
cohomology, using the theory of derived functors. This is not only “the correct approach”, but
will also be crucial for calculations in Section 8. However, much of the material in sections
4 through 7 only depends on Section 3.4 on nonabelian cohomology, which can be read
independently from the other material on Galois cohomology, if the reader does not mind a
lack of motivation behind the definitions and results.

2 Cohomology of groups

Much of the material in this section is based on [Wei13, Chapter 6] and [Mil20, Chapter 2].
Throughout this section we fix a group G .

2.1 The category of G-modules

Definition 2.1 (G-modules). A G-module is an abelian group A equipped with a G-action
G → Aut(A). A G-map, or a map of G-modules, is a homomorphism ϕ : A → B such that ϕ is
G-equivariant: we have

ϕ(σa) =σϕ(a)

for all σ ∈G and a ∈ A. The category of G-modules is denoted G-Mod.

Note that providing an abelian group with a G-action, is the same as providing it with the
structure of a ZG-module, where ZG is the group ring given by

ZG =
{ ∑
σ∈G

cσσ : cσ ∈Z zero for all but finitely many σ ∈G

}
,

with evident addition and multiplication. The categories G-Mod andZG-mod are isomorphic,
and so the category of G-modules is abelian. In particular, the category of G-modules has
enough projective and injective objects (see Example A.21 and Proposition A.23).

Example 2.2. (i) Any abelian group is a G-module if G is the trivial group.

(ii) Z is a G-module by letting G act trivially on Z.

(iii) Suppose G is the group Z× = {±1}. For any integer n ≥ 1 we equip Z/nZwith a G-action
by setting σ ·a =σa for σ ∈ {±1} and a ∈Z/nZ.

There is an evident forgetful functor

G-Mod → Ab.

This functor admits a right adjoint given by HomAb(ZG ,−) (see [Wei13, Proposition 2.6.3]); if
M is an abelian group, then G acts on HomAb(ZG , M) by

(σϕ)(x) =ϕ(xσ),

for σ ∈G and ϕ ∈ HomAb(ZG , M). We abreviate the functor HomAb(ZG ,−) with the following
definition.
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Definition 2.3. We define the functor indG : Ab → G-Mod by indG = HomAb(ZG ,−). If M is an
abelian group, then we call indG M a G-induced module, or simply an induced module.

In the above definition, we often omit the superscript G from indG and simply write ind.

Remark 2.4. What we call induced modules are often referred to as coinduced modules in the
literature, where the word “induced module” is reserved for modules of the form M ⊗ZZG .
When G is finite these notions actually coincide. See [Wei13, Lemma 6.3.4].

Proposition 2.5. The functor ind is exact and preserves injective objects.

Proof. Exactness follows from the fact that ZG is free as an abelian group. The functor ind
preserves injectives, because it is a right adjoint to the exact forgetful functor G-Mod → Ab. ■

2.2 Cohomology groups

Fix a G-module A. We denote the subset of A of elements invariant under the action of G by

AG = {a ∈ A :σa = a for all σ ∈G}.

It is straightforward to check that AG is a subgroup of A. Any map of G-modules induces a
map on invariants by restriction. In this way we get a functor

(−)G : G-Mod → Ab.

Remark 2.6. Equip Zwith the trivial G-action. We note that there is an isomorphism
(−)G ≃ HomG (Z,−), given on G-modules A by sending a ∈ AG to the map Z→ A,1 7→ a.

By the above remark and Proposition A.8 we immediately get the following result.

Proposition 2.7. The functor (−)G is left exact.

In general, (−)G need not be right exact.

Example 2.8. Let G be the group of order 2 and equip Z/nZwith the G-action of Example 2.2.
We consider the short exact sequence of G-modules

0 →Z/2Z
·4−→Z/8Z→Z/4Z→ 0.

Taking invariants yields the exact sequence

0 →Z/2Z
·4−→ 4Z/8Z

0−→ 2Z/4Z,

which is clearly not short exact.

Since the category of G-modules has enough injectives, it is now sensible to consider
the right derived functors of (−)G (see Section A.5), which is precisely how we define our
cohomology groups.
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Definition 2.9 (cohomology groups). For all integers n ≥ 0 we define the functor
H n(G ;−) : G-Mod → Ab by

H n(G ;−) = Rn(−)G ,

the n-th right derived functor of (−)G . We call H n(G ; A) the n-th cohomology group of G with
coefficients in A.

Example 2.10. Suppose G is the trivial group. Then taking invariants is simply the identity
functor. As a result we have

H n(1;−) = 0

for n > 0.

Lemma 2.11. Let M be an abelian group. We have a natural isomorphism M ≃ (ind M)G of
abelian groups given by

M
≃−→ (ind M)G

m 7→ (σ 7→ m).

Proof. Clearly this is an injective map of abelian groups. Let ϕ ∈ (ind M)G . Then for all σ ∈G
we have

ϕ(σ) = (σϕ)(1) =ϕ(1),

and hence the map described in the lemma is surjective. Naturality is straightforward. ■
Proposition 2.12 (cohomology of induced modules). Suppose A is an induced G-module.
Then

H n(G ; A) = 0

for n > 0.

Proof. Let M be an abelian group such that A = ind M . Let 0 → M → I∗ be an injective
resolution in Ab. Then 0 → A → ind I∗ is an injective resolution for A by Proposition 2.5. The
group of invariants of ind I i under G is naturally isomorphic to I i by Lemma 2.11, and so for
n > 0 we find

H n(G ; A) = H n((ind I∗)G ) = H n(I∗) = 0.

■
Remark 2.13. Proposition 2.12 is a special case of a more general statement, known as Shapiro’s
lemma. See [Wei13, Lemma 6.3.2].

Proposition 2.14. Suppose G is finite. Then H n(G ; A) is torsion for all n > 0.

Proof. Let A0 be A considered as an abelian group. Consider the maps

A → ind A0,

a 7→ (ϕa : x 7→ xa)
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and

ind A0 → A

ϕ 7→∑
σ
σ(ϕ(σ−1)).

These maps are G-equivariant. The composition A → ind A0 → A is multiplication by #G . The
induced map on cohomology is then also multiplication by #G . This map factors through
H n(G ; ind A0), which is zero by Proposition 2.12. We conclude that H n(G ; A) is annihilated by
#G , and hence it is torsion. ■

By Remark 2.6, we see that H n(G ;−) = Extn
ZG (Z,−). In combination with Example A.33 this

gives us more flexibility in computing cohomology groups.

Example 2.15 (cohomology of infinite cyclic groups). Suppose G is infinite cyclic. Notice that
ZG =Z[σ,σ−1]. We have a projective resolution of Z as a trivial G-module given by

0 →ZG
σ−1−−−→ZG →Z→ 0,

where the first map is multiplication by σ−1 and the second sends 1 to 1; indeed, localisation
is exact, and we obtain the above sequence by localising the clearly exact sequence

0 →Z[σ]
σ−1−−−→Z[σ] →Z→ 0

of Z[σ]-modules at σ. Applying the contravariant functor Hom(−, A) to the sequence

0 →ZG
σ−1−−−→ZG

we find the complex

A
σ−1−−−→ A → 0.

Taking cohomology we find

H n(G ; A) = Extn
ZG (Z, A) ≃


AG n = 0

A/(σ−1)A n = 1

0 n ≥ 2.

Example 2.16 (cohomology of finite cyclic groups). Suppose G is cyclic of order m. Notice
that ZG =Z[σ]/(σm −1). Let N = 1+σ+σ2 + . . .+σm−1. We will show that the sequence

. . .
N−→ZG

σ−1−−−→ZG
N−→ZG

σ−1−−−→ZG →Z→ 0 (2.1)

is a projective resolution of Z as a trivial G-module. Exactness at ZG
σ−1−−−→ZG →Z follows from

the commutative diagram of abelian groups

Z[s] Z[s] Z

ZG ZG Z

0 0

s−1

=
σ−1
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in which the top row and the columns are exact; here Z[s] →ZG sends s to σ.
We see that N (σ−1) = (σ−1)N = 0, and so the sequence in (2.1) is a complex. Suppose

a =∑
k ckσ

k , with k ranging over Z/mZ, is such that (σ−1)a = 0. Then a is invariant under
the action of G and so for any g ∈G we get∑

ck gσk = g a = a =∑
ckσ

k .

Comparing coefficients, we see that the ck are all equal, and so we have a ∈ NZG ; hence, the

sequence in (2.1) is exact at ZG
N−→ZG

σ−1−−−→Z.
Now suppose b =∑

dkσ
k is such that N b = 0. Then

0 = N b =∑
dk Nσk =∑

dk N = N
∑

dk ,

and so
∑

dk = 0. It follows from exactness of ZG
σ−1−−−→ZG →Z that b ∈ (σ−1)ZG ; hence, the

sequence in (2.1) is exact at ZG
σ−1−−−→ZG

N−→ZG . We conclude that the sequence in (2.1) is a
projective resolution.

Applying Hom(−, A) to the sequence

. . .
N−→ZG

σ−1−−−→ZG
N−→ZG

σ−1−−−→ZG

we get the complex

A
σ−1−−−→ A

N−→ A
σ−1−−−→ A

N−→ A → . . . .

Taking cohomology we find

H n(G ; A) = Extn
ZG (Z, A) ≃


AG n = 0

{a ∈ A : N a = 0}/(σ−1)A n = 1,3,5, . . .

AG /N A n = 2,4,6, . . . .

Computing the long exact sequence of cohomology groups corresponding to the short
exact sequence of Example 2.8 yields

0 →Z/2Z
·4−→ 4Z/8Z

0−→ 2Z/4Z
≃−→Z/2Z

0−→Z/2Z
≃−→Z/2Z

0−→Z/2Z
≃−→ 4Z/8Z

0−→ 2Z/4Z→ . . . .

2.3 Cocycles and coboundaries

Examples 2.15 and 2.16 compute cohomology groups by finding a projective resolution of Z as
a trivial G-module. We will do this more generally for any group G . For the rest of this section
we fix a G-module A.

For n ≥ 0 we define Pn to be the free abelian group on the (n +1)-tuples (g0, . . . , gn) of
elements in G . We equip Pn with the G-action specified on basis elements by

σ(g0, . . . , gn) = (σg0, . . . ,σgn)
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for σ ∈G . We define homomorphisms fn : Pn → Pn−1, given on basis elements by

fn(g0, . . . , gn) =
n∑

i=0
(−1)i (g0, . . . , ĝi , . . . , gn),

where the hat means “omit”. It is easy to see that fn is also G-equivariant.

Lemma 2.17. The following sequence

. . .
f3−→ P2

f2−→ P1
f1−→ P0

f0−→Z→ 0, (2.2)

where the map f0 sends all g to 1, is a projective resolution of Z as a trivial G-module.

Proof. We see that Pn is free as a ZG-module on the basis consisting of elements of the form
(1, g1, . . . , gn), so Pn is projective. We verify that fn−1 ◦ fn = 0.

We define a map hn : Pn−1 → Pn given on basis elements by (g1, . . . , gn) 7→ (1, g1, . . . , gn).
For n = 0 we define h0 : Z→ P0 by 1 7→ 1. We now compute

fn+1 ◦hn +hn−1 ◦ fn = id.

For x ∈ ker fn we get fn+1(hn(x)) = x, and so x ∈ im fn+1. We conclude that the sequence in
(2.2) is exact, and hence it is a projective resolution of Z as a trivial G-module. ■

By remark A.33 we now get

H n(G ; A) = Extn
ZG (Z, A) = H n(Hom(P∗, A)).

There is a more convenient complex, which is isomorphic to Hom(P∗, A), and is often used in
practice. Define

C n(G ; A) = {ϕ : Gn → A a function}.

This is a group under pointwise addition. We define a homomorphism

∂n : C n(G ; A) →C n+1(G ; A)

by

∂nϕ(g1, . . . , gn+1) = g1ϕ(g2, . . . , gn+1)+
n∑

i=1
(−1)iϕ(g1, . . . , gi gi+1, . . . , gn+1)

+ (−1)n+1ϕ(g1, . . . , gn).

(2.3)

Proposition 2.18. The sequence C∗(G ; A) is a complex, and it is isomorphic to Hom(P∗, A).

Proof. The group Hom(Pn , A) can be identified with the abelian group of G-equivariant maps
Gn+1 → A. We define

Hom(Pn , A) →C n(G , A)

ϕ 7→ ((g1, . . . , gn) 7→ϕ(1, g1, g1g2, . . . , g1 . . . gn)).
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An inverse to this map is given by

C n(G , A) → Hom(Pn , A)

ψ 7→ ((1, g1, . . . , gn) 7→ψ(g1, g−1
1 g2, g−1

2 g3, . . . , g−1
n−1gn)).

It is straightforward to check that these maps commute with the coboundary maps. As a result,
C∗(G ; A) is a complex and isomorphic to Hom(P∗, A). ■
Definition 2.19. We define subgroups Z n(G ; A) and B n(G ; A) of C n(G ; A) by

Z n(G ; A) = ker∂n ,

B n(G ; A) =
{

im∂n−1 n > 1

0 n = 0,

called the group of n-cocycles with coefficients in A and the group of n-coboundaries of G with
coefficients in A, respectively.

Corollary 2.20. We have a natural isomorphism

H n(G ; A) ≃ Z n(G ; A)

B n(G ; A)
.

2.3.1 The first cohomology group

Of special importance in this thesis is the first cohomology group. By Corollary 2.20, we have a
natural isomorphism

H 1(G ; A) ≃ Z 1(G ; A)

B 1(G ; A)
= {ϕ : G → A | ∀σ,τ ∈G : ϕ(στ) =ϕ(σ)+σϕ(τ)}

{ϕ : G → A | ∃a ∈ A∀σ ∈G : ϕ(σ) =σa −a}
. (2.4)

As a demonstration, we prove a classical theorem known as Hilbert’s Theorem 90.

Proposition 2.21. Let K /k be a finite Galois extension. Then H 1(Gal(K /k);K ×) = 0.

Proof. Write G = Gal(K /k). Let ϕ : G → K × be a 1-cocycle. We will prove that there exists
a ∈ K × such that for all τ ∈ G we have ϕ(τ) = a/τ(a), and hence that ϕ is the 1-coboundary
associated to a−1. Let b ∈ K × be such that

a = ∑
σ∈G

ϕ(σ)σ(b)

is nonzero. Such a b always exists by independence of characters (see [Lan02, Chapter VI,
Theorem 4.1]). For all τ ∈G we find

τ(a) = ∑
σ∈G

τ(ϕ(σ))τ(σb)

= ∑
σ∈G

ϕ(τ)−1ϕ(τσ)(τσ)(b)

=ϕ(τ)−1a,

and so ϕ(τ) = a/τ(a). ■
In section 3 we will develop a more specialized cohomology theory of Galois groups, for

which an analog of Proposition 2.21 will be true for infinite Galois extensions.
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3 Galois cohomology

We assume knowledge of Galois theory, which can be found, for instance, in [Lan02, Chapter
VI]. Much of the material in sections 3.1 through 3.3 is based on [Wei13, Chapter 6] and [NSW,
Chapter I]. The material on nonabelian cohomology in Section 3.4 is based on [Ser97, §I.5].

3.1 Profinite groups

In this section, I will always denote a partially ordered directed set; that is, I is a partially
ordered set such that any two elements have a common upper bound. We write TopGrp for
the category of topological groups. We view I as a category. An inverse system of topological
groups indexed by I is a functor I opp → TopGrp. The inverse limit of such a system is defined
to be the limit of this functor and will be denoted lim←−−i∈I

Gi , where we write Gi for the image of
i ∈ I . This is well defined, because limits exist in the category of topological groups by [Sta22,
Tag 0B20].

Definition 3.1. We call a topological group G profinite if it is isomorphic to an inverse limit
lim←−−i∈I

Gi , with Gi a finite discrete topological group for all i ∈ I .

Remark 3.2. We can view the inverse limit lim←−−i∈I
Gi as the closed subgroup of

∏
i∈I Gi given by{

(xi )i∈I ∈
∏
i∈I

Gi : f i
j (xi ) = x j for j ≤ i

}
,

where we write f i
j : Gi →G j for the map induced by j ≤ i .

Example 3.3. 1. Any discrete finite group is profinite.

2. The group of p-adic integers Zp = lim←−−n≥1
Z/pnZ is a profinite group by definition.

The most important class of examples (and in fact every example by [Wat74]) are the Galois
groups.

Example 3.4 (Galois groups are profinite). Let K /k be a Galois extension. We have an isomor-
phism of topological groups

Gal(K /k) ≃ lim←−−Gal(F /k),

with the direct limit taken over the finite Galois extensions F /k with F contained in K , by
[Lan02, Chapter VI, Theorem 14.1]. In particular, Gal(K /k) is profinite, because Gal(F /k) is
discrete if F /k is finite Galois.

Proposition 3.5. Let G be a profinite group. Then G is

(i) Hausdorff,

(ii) compact,

(iii) totally disconnected.

10
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Proof. Let G = lim←−−i∈I
Gi be a profinite group, and embed G into the product

∏
i∈I Gi as in

remark 3.2. Products of discrete finite groups have the above properties, so G is Hausdorff and
totally disconnected, because it is a subspace of a space with these properties. Compactness of
G follows from the fact that G is a closed subspace of the compact Hausdorff space

∏
i∈I Gi . ■

Corollary 3.6. Finite profinite groups are always discrete.

Proof. Finite Hausdorff spaces are discrete. ■
Corollary 3.7. If U ⊂G is an open subgroup of G, then U has finite index in G.

Proof. The cosets of U cover G , and G is compact. ■
Remark 3.8. As it turns out, the converse of Proposition 3.5 is also true, as shown in [Ser97,
Chapter 1, Proposition 0], giving us a different characterization of profinite groups.

3.2 The category of discrete G-modules

Fix a profinite group G .

Definition 3.9. We call a G-module A discrete if the multiplication map

G × A → A

is continuous when A is equipped with the discrete topology. The category of discrete G-modules
is the full subcategory of the category of G-modules on the discrete G-modules. We denote this
category by dG-Mod.

The following proposition gives a slightly more concrete condition for a G-module to be
discrete.

Proposition 3.10. A G-module A is discrete if and only if we have an equality

A =⋃
AU

taken over all open subgroups U ⊂G.

Proof. Suppose A is a discrete G-module. Let a ∈ A. We have a composition of continous
maps

G ≃G × {a} ,→G × A → A.

The inverse image of {a} under this map is the open subgroup StabG (a) = {σ ∈G :σa = a}. In
particular, a is fixed by StabG (a).

Conversely, suppose A =⋃
AU . Let a ∈ A and consider the inverse image X of {a} under

the multiplication map. Consider a pair (σ,b) ∈ X . There exists an open subgroup U ⊂ A such
that b ∈ AU , by assumption. We now have an open neighbourhood σU × {b} of (σ,b) in X . So
X is open, and hence G × A → A is continuous. ■
Example 3.11. (i) If G is finite, then any G-module A is a discrete G-module.
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(ii) For any Galois extension K /k, the unit group K × is a discrete Gal(K /k)-module by Propo-
sition 3.10: for α ∈ K × we have α ∈ (K ×)Gal(K /k(α)), and Gal(K /k(α)) ⊂ Gal(K /k) is open,
because its index is finite by Galois theory.

Proposition 3.12. The category dG-Mod is abelian.

Proof. The category dG-Mod contains 0. Finite direct sums, kernels and cokernels all inherit
continuous actions. ■

Consider the evident inclusion functor i : dG-Mod ,→ G-Mod.

Lemma 3.13. The functor i admits a right adjoint ∪(−)U : G-Mod → dG-Mod sending a G-
module A to ∪AU , with the union taken over all open subgroups U ⊂G.

Proof. Let A be a discrete G-module, and B a G-module. Then ∪BU is a G-module: it is clearly
closed under addition, and for any x ∈ BU and any σ ∈G , the element σx is fixed by the open
subgroup σUσ−1. The module ∪BU is discrete by Proposition 3.10. The action of ∪(−)U on
maps is clear. We have a natural isomorphism

HomG-Mod(A,B)
≃−→ HomdG-Mod(A,∪BU )

sending f : A → B to f̃ : A →∪BU , x 7→ f (x), and so we have an adjunction i ⊣∪(−)U . ■
Proposition 3.14. The category dG-Mod has enough injectives.

Proof. Let A be a discrete G-module. Then there exists a G-module I and an embedding
A ,→ I , because G-Mod has enough injectives. This gives an embedding

A ,→∪IU .

The functor ∪(−)U is a right adjoint to an exact functor by Lemma 3.13, so by the same
argument as in the proof of Proposition A.23 we see that ∪IU is injective. ■

3.3 Cohomology of profinite groups

In this section fix a profinite group G and a discrete G-module A. As in the case of G-modules,
we consider the functor taking invariants under the action of G

(−)G : dG-Mod → Ab.

This is, again, a left exact functor. By Proposition 3.14 the following definition now makes
sense.

Definition 3.15. For all integers n ≥ 0 we define the functor H n
cont(G ;−) : dG-Mod → Ab by

H n
cont(G ;−) = Rn(−)G ,

the n-th right derived functor of (−)G . We call Hcont(G ; A) the n-th (continuous) cohomology
group of G with coefficients in A.
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Usually the subscript “cont” will be dropped. Unless otherwise specified, this definition
then supersedes definition 2.9.

Notation 3.16. If K /k is a Galois extension, then the functors H n(Gal(K /k);−) will often be
denoted H n(K /k;−) for the sake of brevity. If K = k s is a separable closure of k, then we will
simply write H n(k,−).

Remark 3.17. Suppose G is finite. Then G is discrete by Corollary 3.6, and so the continuous
cohomology groups are the same as the ordinary cohomology groups.

3.3.1 Continuous cocycles and coboundaries

We can give a description of H n(G ; A) similar to the one in Section 2.3. It is, however, reasonable
to expect that the topology of G should be taken into account for this. This motivates us to
consider the following. We define C n

cont(G ; A) to be the abelian group of continous maps
Gn → A. As before, the subscript “cont” will usually be dropped. This yields an additive functor

C n(G ;−) : dG-Mod → Ab.

With the same coboundary maps as in (2.3) we can extend this to a functor

C∗(G ;−) : dG-Mod → ChAb,

with values in the category of chain complexes of abelian groups. Define

T n(G ;−) = H n(C∗(G ;−)) : dG-Mod → Ab.

We will want to turn the collection T ∗(G ;−) = (T n(G ;−)) into a δ-functor.

Lemma 3.18. The functor C∗(G ;−) is exact.

Proof. For this it suffices to prove that C n(G ;−) is exact. Left exactness of this functor follows
as in the proof of Proposition A.8. We will show that C n(G ;−) preserves surjections to show
right exactness. Let g : B →C be a surjective map of discrete G-modules. Let ϕ : Gn →C be
a continuous map. Let {Ui } be an open cover of Gn such that ϕ is constant on each Ui , and
the Ui are pairwise disjoint. Such a cover exists by discreteness of C . Define ψ : Gn → B by
sending x ∈Ui to an element bi ∈ B such that g (bi ) =ϕ(x). Then ψ is continuous, because it is
locally constant, and we have gψ=ϕ. ■

If U ⊂U ′ are open normal subgroups of G , then there is a map

C∗(G/U ′; AU ′
) →C∗(G/U ; AU )

given by sending a function ϕ : (G/U ′)n → AU ′
in C n(G/U ′; AU ′

) to the composition

(G/U )n → (G/U ′)n ϕ−→ AU ′
,→ AU ,

where the map (G/U )n → (G/U ′)n is induced by the quotient map G/U →G/U ′. These maps
concatenate into a direct system {C∗(G/U ; AU )} indexed by the open normal subgroups
U ⊂G .
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Lemma 3.19. We have a natural isomorphism

C∗(G ; A) = lim−−→
U⊂G

C∗(G/U ; AU ),

taken over all open normal subgroups U ⊂G.

Proof. We refer to [NSW, Proposition 1.2.6]. ■
By Lemma 3.18, given a short exact sequence 0 → A → B → C → 0 in dG-Mod, we get a

short exact sequence
0 →C∗(G ; A) →C∗(G ;B) →C∗(G ;C ) → 0

of complexes. By the “Zigzag Lemma” from homological algebra (see [Lee, Lemma 13.17]) we
find maps

δn : T n(G ;C ) → T n+1(G ; A),

making T ∗(G ;−) = (T n(G ;−)) a δ-functor.

Theorem 3.20. The δ-functors T ∗(G ;−) and H∗(G ;−) are isomorphic.

Proof. It is sufficient to show that T 0(G ;−) = H 0(G ;−) and that T ∗(G ;−) is universal. The first
statement can easily be checked. For the second statement we apply Proposition A.30. Let I
in dG-Mod be an injective object, then IU is an injective G/U -module, because (−)U is right
adjoint to resG/U

G , which is an exact functor. We have H n(G/U ; IU ) = 0 for all n ≥ 1, because
G/U is finite (Corollary 3.7) and ordinary group cohomology vanishes on injective objects. By
Lemma 3.19,

T n(G ; I ) = H n(C∗(G ; I ))

= H n(lim−−→C∗(G/U ; IU ))

= lim−−→H n(G/U ; IU ) = 0.

■
Analogously to Definition 2.19 we have the following definition.

Definition 3.21. We define abelian groups Z n(G ; A) (or Zcont(G ; A)) and
B n(G ; A) (or Bcont(G ; A)) by

Z n(G ; A) = ker(∂n : C n(G ; A) →C n+1(G ; A)),

B n(G ; A) =
{

im(∂n−1 : C n−1(G ; A) →C n(G ; A)) n > 0

0 n = 0,

called the group of (continuous) n-cocycles and n-coboundaries, respectively.

Corollary 3.22. We have isomorphisms

H n(G ; A) ≃ Z n(G ; A)

B n(G ; A)
.
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Corollary 3.23. For all n > 0 the group H n(G ; A) is torsion.

Proof. By Proposition 2.14 and Corollary 3.7 we have that H n(G ; A) is a direct limit of torsion
groups, and hence is itself torsion. ■

We can now give a generalization of Proposition 2.21.

Proposition 3.24. Let K /k be a Galois extension. Then

H 1(K /k;K ×) = 0.

Proof. By Lemma 3.19 and Proposition 2.21 we find

H 1(K /k;K ×) = lim−−→H 1(F /k; (K ×)Gal(K /F )) = lim−−→H 1(F /k;F×) = 0,

where the direct limit is taken over all finite Galois extensions F /k such that F ⊂ K . ■

3.4 Nonabelian cohomology

We again fix a profinite group G . Thus far, discrete G-modules have been abelian groups
equipped with some continuous G-action. In this thesis, we will encounter many non-
commutative groups with continuous G-actions. A more primitive version of our cohomology
is applicable in this situation.

Let A be a (perhaps noncommutative) group with a continuous G-action G×A → A. We will
still refer to A as a discrete G-module, and we will sometimes add the prefix noncommutative
if A is not abelian. We denote the action of σ ∈ G on x ∈ A by σx. As in Proposition 3.10,
continuity of this action is equivalent to the equality

A =⋃
AU ,

where this union is taken over all open subgroups U ⊂ G . We define H 0(G ; A) to be the
subgroup of A consisting of elements invariant under the action of G .

We call a continuous function c : G → A a cocycle, or 1-cocycle, if for all σ,τ ∈G we have

cστ = cσ
σcτ.

We define Z 1(G ; A) to be the set of 1-cocycles G → A. We say that cocycles (cσ) and (dσ) are
cohomologous, and write (cσ) ∼ (dσ), if there exists a ∈ A such that for all σ ∈G we have

dσ = a−1cσ
σa.

This defines an equivalence relation on Z 1(G ; A) and we define the first cohomology set of G
with coefficients in A by

H 1(G ; A) = Z 1(G ; A)/ ∼ .

Compare this to (2.4). The set H 1(G ; A) no longer has the structure of a group, but still
has the structure of a pointed set with the basepoint being the class of the trivial cocycle
sending everything in G to 1 ∈ A. Note that the constructions of H 0 and H 1 are functorial. If
G = Gal(K /k) is a Galois group, then we often simply write H 0(K /k;−) and H 1(K /k;−). When
K = k s is a separable closure of k, then we write H 0(k;−) and H 1(k;−).

Analogously to Proposition 3.19, we have the following statement.
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Proposition 3.25. We have
H 1(G ; A) = lim−−→H 1(G/U ; AU ),

with the direct limit taken over all open normal subgroups U of G.

The existence of long exact sequences of cohomology groups has the following analogy in
the noncommutative case.

Proposition 3.26. Suppose we have an exact sequence

1 → A → B →C → 1

of (perhaps noncommutative) discrete G-modules, then we get an exact sequence

1 → H 0(G ; A) → H 0(G ;B) → H 0(G ;C )
δ−→ H 1(G ; A) → H 1(G ;B) → H 1(G ;C )

of pointed sets, in the sense that the image of a map is the inverse image of the basepoint. If, in
addition, A lies in the center of B, then this sequence can be extended by a map

H 1(G ;C )
∆−→ H 2(G ; A) such that the resulting sequence is exact.

We only give the connecting map. See [Ser79, Appendix: Non-abelian Cohomology, propo-
sitions 1 and 2] for a complete proof.

Sketch of proof. For x ∈ H 0(G ;C ), let y ∈ B be such that y 7→ x. Define cσ = y−1σy for σ ∈ G .
The elements cσ get mapped to 1 under the map B → C , because x is invariant under the
action of G . As a result, the elements cσ can be viewed as elements of A, since A is the kernel of
the map B →C . The collection c = (cσ) defines a 1-cocycle G → A whose class is independent
of the choice of y . We set δ(x) = [c]. This defines a pointed function δ : H 0(G ;C ) → H 1(G ; A).

Suppose that A lies in the center of B . For a 1-cocycle (dσ) ∈ H 1(G ;C ), let bσ ∈ B be such
that bσ 7→ dσ for all σ ∈G . For all σ,τ ∈G define aσ,τ = bσσbτb−1

στ. By a similar argument as
above we can view the elements aσ,τ in A. Then a = (aσ,τ) defines a 2-cocycle G ×G → A
whose class is independent of the choice of lifts bσ. We set ∆([d ]) = [a]. This defines a pointed
function ∆ : H 1(G ;C ) → H 2(G ; A). ■

4 Galois descent

Mathematical objects often have an associated base field. For example, if k is a field, then
we can consider vector spaces over k, algebras over k, schemes over k, elliptic curves over k,
etc. If K /k is a field extension, then there is often a natural way to extend objects over k to
objects over K . An example of this is given in the introduction. Given an object X over K , it is
not necessarily true that there exists an object x over k such that x extends to X . If this is the
case, then we say that X descends to x. In this section we will prove that if K /k is finite Galois,
then certain objects X over K can be descended to objects over k by giving an action of the
Galois group Gal(K /k) on the object X satisfying certain properties. Roughly speaking, we call
descent through this method Galois descent. The notion of a base extension, introduced in
Section 4.1, makes this precise.

For the rest of this section we fix a finite Galois extension K /k with group G .
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4.1 Base extensions

Let
(−)K : Ck →CK and res: CK →Ck

be functors, with res faithful. We think of the categories Ck and CK as categories of objects
over k and K , respectively. We will, for example, write Homk and ≃k to indicate Hom-sets and
isomorphisms in the category Ck , and similarly for CK . The functor (−)K extends objects X
over k to objects XK over K , and the functor res restricts objects Y over K to objects resY over
k.

For σ ∈G and X ,Y ∈CK we let

Homσ(X ,Y ) ⊂ Homk (res X , resY )

be a subset of Homk (res X , resY ) such that the collection of these subsets satisfies

• for X ,Y ∈CK we have
Homid(X ,Y ) = HomK (X ,Y ), (4.1)

where we view HomK (X ,Y ) as a subset of Homk (res X , resY ) via res (which we had
assumed to be faithful);

• for σ,τ ∈G and X ,Y , Z ∈CK composition induces a map

Homσ(X ,Y )×Homτ(Y , Z ) → Homτσ(X , Z ). (4.2)

We refer to the set Homσ(X ,Y ) as the set of σ-twisted, or σ-linear, maps X → Y .
If X is an object over K and S : G → Autk (res X ) is a homomorphism, then we say that S

is a semi-linear, or Galois, action if for all σ ∈ G we have S(σ) ∈ Homσ(X , X ). We will often
abreviate S(σ) to σ. We write C K

k for the category whose objects are objects over K with Galois
action, and whose morphisms are G-equivariant morphisms: K -maps f : X → Y such that for
all σ ∈G the diagram

res X resY

res X resY

res f

σ σ

res f

commutes.
Notice that there is an evident forgetful functor C K

k →CK . For the above data to define a
base extension, we require a factorization of (−)K via this forgetful functor.

Ck CK

C K
k

(−)K

We sumarize in the definition below.
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Definition 4.1. A base extension consists of

• functors (−)K : Ck →CK and res: CK →Ck , with res faithful;

• sets Homσ(X ,Y ) ⊂ Homk (res X , resY ) for all σ ∈G and X ,Y ∈ CK such that the condi-
tions in (4.1) and (4.2) are satisfied;

• a factorization of (−)K via the forgetful functor C K
k → CK , where the category C K

k is
defined as above.

We say that such a base extension satisfies Galois descent if the induced functor Ck
≃−→C K

k is an
equivalence of categories.

A base extension will often be denoted just (−)K : Ck →CK , leaving the other data implicit.
In the future, restricting objects or morphisms will often be done implicitly; the restriction of
an object X over K will simply be denoted X if no confusion can arise.

We have the following examples of base extensions, but this list can certainly be extended
(see [Bru09] and [Jah00]).

Example 4.2. (i) If F is a field, then we write VectF for the category of vector spaces over
F . We define the functor (−)K : Vectk → VectK by V 7→V ⊗k K . The functor res: VectK →
Vectk is defined to be the evident restriction functor.

For vector spaces W and W ′ over K , and σ ∈ G , we write Homσ(W,W ′) for the set of
k-linear maps f : W →W ′ such that for all a ∈ K and x ∈W we have

f (ax) =σ(a) f (x).

The sets Homσ(W,W ′) then satisfy the conditions in (4.1) and (4.2).

Define the category VectK
k as above. If V is a vector space over k, then we can equip

VK =V ⊗k K with a semi-linear G-action by letting σ ∈G act as id⊗σ. A map of k-vector
spaces f : V →V ′ then gives a G-equivariant map fK : VK →V ′

K . We see that the functor
(−)K factors via the forgetful functor VectK

k → VectK , and hence that we have defined a
base extension.

(ii) If F is a field, then we write AlgF for the category of algebras over F . We define the functor
(−)K : Algk → AlgK by A 7→ A ⊗k K . The functor res: AlgK → Algk is defined to be the
evident restriction functor.

For K -algebras B and B ′, and σ ∈G , we write Homσ(B ,B ′) for the set of k-maps
f : B → B ′ such that the diagram

B B ′

K K

f

σ

commutes. The sets Homσ(B ,B ′) then satisfy the conditions in (4.1) and (4.2).

Define the category AlgK
k as above. If A is an algebra over k, then we can equip

AK = A⊗k K with a semi-linear G-action by lettingσ ∈G act as id⊗σ. A map of k-algebras
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f : A → A′ then gives a G-equivariant map fK : AK → A′
K . We see that the functor (−)K

factors via the forgetful functor AlgK
k → AlgK , and hence that we have defined a base

extension.

(iii) If F is a field, then we write SchF for the category of schemes over F . We define the
functor (−)K : Schk → SchK by X 7→ X ×Speck SpecK . The functor res: SchK → Schk is
defined by sending a K -scheme X → SpecK to X → SpecK → Speck.

For K -schemes Y and Y ′, and σ ∈G , we write Homσ(Y ,Y ′) for the set of k-maps
f : Y → Y ′ such that the diagram

Y Y ′

SpecK SpecK

f

(σ−1)∗

commutes. Then the conditions in (4.1) and (4.2) are satisfied; indeed, (4.1) is clear, and
for σ,τ ∈G , f : Y → Y ′ a map in Homσ(Y ,Y ′) and g : Y ′ → Y ′′ a map in Homτ(Y ′,Y ′′) we
have a commutative diagram

Y Y ′ Y ′′

SpecK SpecK SpecK ,

f g

(σ−1)∗

((τσ)−1)∗

(τ−1)∗

which shows that the condition in (4.2) holds.

Define the category SchK
k as above. If X is a k-scheme, then we let σ ∈G act on XK by the

map induced by (σ−1)∗ via the universal property of the fiber product, id×Speck (σ−1)∗.
This equips XK with a Galois G-action, and if f : X → X ′ is a map of k-schemes, then
fK : XK → X ′

K is G-equivariant. We see that the functor (−)K : Schk → SchK factors via
the forgetful functor SchK

k → SchK , and hence that we have defined a base extension.

Suppose we have a base extension (−)K : Ck → CK . Let X and Y be objects over K with
Galois G-action and let g : X → Y be a K -map. By (4.1) and (4.2), the compostition σgσ−1 is a
again a K -map for σ ∈G . In this way we define an action of G on HomK (X ,Y ) given by

σ f =σ f σ−1, (4.3)

for all σ ∈G and f ∈ HomK (X ,Y ). Note that the G-equivariant maps X → Y are precisely the
maps invariant under this action. This action is compatible with composition in the sense
that if X ,Y and Z are K -objects with Galois G-action, and g : X → Y and h : Y → Z are maps
of K -objects, then we have

σ(h ◦ g ) =σhgσ−1 =σhσ−1σgσ−1 = σh ◦σg .
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In particular, this turns AutK (X ) into a (perhaps noncommutative) G-module. This fact is
exploited in the next section.

In the rest of this section we will show that (i) and (ii) of Example 4.2 satisfy Galois descent.
We will also show that the example in part (iii) satisfies Galois descent if we restrict to the full
subcategory of quasi-projective schemes.

4.2 Descent of vector spaces

We consider the base extension (−)K : Vectk → VectK described in (i) of Example 4.2. Since the
isomorphism class of a vector space is entirely determined by its dimension, and the tensor
product preserves dimension, all vector spaces descend. It will, however, turn out to be very
useful to still describe a category VectK

k and an equivalence of categories Vectk ≃ VectK
k .

Given an object W in VectK
k , the set of fixed points under the action of G , denoted W G , has

the structure of a k-vector space. A map f : W →W ′ in VectK
k restricts to a map f G : W G →W ′G

of k-vector spaces. This yields a functor

(−)G : VectK
k → Vectk .

By the following theorem, the base extension (−)K : Vectk → VectK satisfies Galois descent.

Theorem 4.3. There is an equivalence of categories

Vectk ≃ VectK
k

V 7→V ⊗k K

W G ← [ W.

Our proof of this theorem uses the following lemma.

Lemma 4.4. Given a vector space W over K with a semilinear G-action, the map

ϕ : W G ⊗k K →W

x ⊗a 7→ ax

is an isomorpism of K -vector spaces compatible with G-actions.

Proof. We follow the proof from [Bru09, Lemma 6.4]. Let (α1, . . . ,αn) be a k-basis for K . Write
G = {σ1, . . . ,σn}. For w ∈W we consider

v j =
n∑

i=1
σi (α j w) =

n∑
i=1

σi (α j )σi (w) ∈W G ,

for j = 1, . . . ,n. By independence of characters, the matrix (σi (α j ))i , j is invertible. In particular,
we can express w = id(w) as a K -linear combination of the v j , hence w is in the image of ϕ
and ϕ is surjective.

We will show that ϕ is injective. Let (ei )i be a k-basis for W G , then (ei ⊗1)i is a K -basis for
W G ⊗k K .
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Suppose that v =∑
i ai (ei ⊗1) ∈ kerϕ, with ai ∈ K , is a nonzero element with minimal num-

ber of nonzero coefficients. By rescaling and reordering we can assume that a1 = 1. If all
coefficients ai are in k, then

v =
(∑

i
ai ei

)
⊗1 =ϕ(v)⊗1 = 0,

which contradicts v ̸= 0, so we can assume that a2 ∉ k. By the fact that K /k is Galois, there
exists σ ∈G such that σ(a2) ̸= a2. It follows that σ(v)− v ̸= 0. We compute

ϕ(σ(v)− v) =ϕ(σ(v))−ϕ(v) =σ(ϕ(v)) = 0,

and so σ(v)− v ∈ kerϕ. However, σ(v)− v has fewer nonzero coefficients than v , because
a1 = 1. This is a contradiction. We conlude that kerϕ= 0, and hence that ϕ is injective. ■
proof of Theorem 4.3. An isomorphism (−)K ◦ (−)G ≃ id is described by Lemma 4.4. Clearly,
(−)G ◦ (−)K ≃ id. ■

4.3 Descent of algebras

We consider the base extension (−)K : Algk → AlgK described in (ii) of Example 4.2.

Example 4.5. Let n > 0 be an integer. Consider the k-algebra Mn(k) of n ×n-matrices over k.
Its base extension is given by

AK = A⊗k K = Mn(K ).

The Galois group G simply acts on the coefficients of a matrix.

If B is a K -algebra equipped with a semi-linear G-action, then the elements of B invariant
under this action form a k-algebra, which we denote BG . If f : B → B ′ is a map compatible
with G-actions, then it restricts to a map of k-algebras f G : BG → B ′G . We see that we have a
functor

(−)G : AlgK
k → Algk .

By the following theorem, the base extension (−)K : Algk → AlgK satisfies Galois descent.

Theorem 4.6. There is an equivalence of categories

Algk ≃ AlgK
k

A 7→ A⊗k K

BG ← [ B.

Proof. Lemma 4.4 also works for algebras. The proof of this theorem is then completely
analogous to that of Theorem 4.3. ■
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4.4 Descent of quasi-projective schemes

We consider the base extension (−)K : Schk → SchK described in (iii) of Example 4.2.

Example 4.7. (i) Suppose k =Q and K =Q(ζ) with ζ a seventeenth root of unity. Let X be
the affineQ-scheme X = SpecQ[x, y]/(x2 + y2 −1). The extension of X toQ(ζ) is given by

XQ(ζ) = X ×SpecQ SpecQ(ζ) = Spec(Q[x, y]/(x2 + y2 −1)⊗QQ(ζ))

= SpecQ(ζ)[x, y]/(x2 + y2 −1).

The action of the map σ ∈ Gal(Q(ζ)/Q) given by ζ 7→ ζ5 on XQ(ζ) is induced by the Q-
algebra map

Q(ζ)[x, y]/(x2 + y2 −1) →Q(ζ)[x, y]/(x2 + y2 −1)

x 7→ x, y 7→ y,ζ 7→ ζ7.

On coefficients this map is the inverse of σ.

(ii) Let n ≥ 0 be an integer, and consider projective n-space Pn
k = Projk[x0, . . . , xn] over k. We

find the unsurprising expression
(Pn

k )K =Pn
K .

An element σ ∈G acts on Pn
K as the map induced by the map of graded rings

K [x0, . . . , xn] → K [x0, . . . , xn]

sending a ∈ K to σ−1(a) and xi to xi . Recall that K -points SpecK → Pn
K correspond to

tuples [a0 : a1 : . . . : an], with ai ∈ K not all zero, modulo multiplication by elements of K ×

(see [Har10, §II.7]). Equation (4.3) gives us an action on K -points by

σ[a0 : a1 : . . . : an] = [σa0 :σa1 : . . . :σan],

with σ ∈G and [a0 : . . . : an] ∈PK (K ).

If F is a field, then we write QPSchF for the category of quasi-projective schemes over F .
By Example 4.7(ii), and the fact that both open and closed immersions are stable under base
change, we can define a base extension (−)K : QPSchk → QPSchK . All other data in this base
extension is defined analogously to Example 4.2. We will show that this base extension satisfies
Galois descent.

Definition 4.8. Given an object Y ∈ QPSchK
k and a map of k-schemes f : Y → X , we call f a

G-invariant map if for all σ ∈G we have

f ◦σ= f .

Proposition 4.9. Given an object Y ∈ QPSchK
k , there exists a quasi-projective k-scheme Y /G

and a G-invariant map of k-schemes q : Y → Y /G such that for any G-invariant map of k-
schemes Y → X there exists a unique map of k-schemes Y /G → X making the following diagram
commute.

Y X

Y /G

q ∃!
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Sketch of proof. We only roughly sketch the construction of quotients. We refer to [Bru09,
Theorem 12.1] for a complete proof.

If Y = SpecB is taken to be affine with B a K -algebra, then B is equipped with a semi-linear
G-action from Y , and the quotient is given by the map SpecB → SpecBG induced by the
inclusion BG ,→ B . In the general case we cover Y by open affines Ui stable under the action
of G and construct the quotient of Y by glueing the quotients Ui /G and U j /G together along
(Ui ∩U j )/G =Ui /G ∩U j /G . The reason we can always cover Y by G-stable open affines is by
the assumption that Y is quasi-projective (see [Jah00, Lemma 2.10]). ■

Notice that quotients are unique up to canonical isomorphism.

Definition 4.10. In the above proposition, we refer to q : Y → Y /G as the quotient of Y by the
action of G.

Given objects Y ,Y ′ ∈ QPSchK
k and a map f : Y → Y ′ in QPSchK

k , let q ′ : Y ′ → Y ′/G be the
quotient of Y ′ by G . The composition q ′ ◦ f is a G-invariant map:

q ′ ◦ f ◦σ= q ′ ◦σ◦ f = q ′ ◦ f ,

and hence we get a natural map f /G : Y /G → Y ′/G of k-schemes. In this way we obtain a
functor

(−)/G : QPSchK
k → QPSchk .

The following theorem shows that the base extension (−)K : QPSchk → QPSchK satisfies
Galois descent.

Theorem 4.11. There is an equivalence of categories

QPSchk ≃ QPSchK
k

X 7→ X ×Speck SpecK

Y /G ←[ Y .

Proof. Let X be a quasi-projective scheme over k. If X is affine, the natural map XK → X
is a quotient by Theorem 4.6. The general case then follows by glueing; hence, we have
(−)/G ◦ (−)K ≃ id.

Given Y ∈ QPSchK
k . If Y is affine, we get that (Y /G)K ≃ Y by Theorem 4.6. In the general

case we proceed as in the proof of Proposition 4.9 and cover Y by G-stable open affines {Ui }.
Then (Y /G)K can be constructed by glueing (Ui /G)K =Ui , which gives (Y /G)K ≃ Y ; hence, we
have (−)K ◦ (−)/G ≃ id. ■

5 Twists

We use the same notation and terminology as in Section 4.
Suppose K /k is a field extension and (−)K : Ck →CK is a functor. For an object X over k, it

is interesting to consider the so called K /k-twists of X : objects over k to which XK descends.
Explicitly, we define

TK /k (X ) = {Y ∈Ck : YK ≃K XK }/ ≃k . (5.1)
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We endow TK /k (X ) with a basepoint given by the class of the trivial twist, X . When K = k s is a
separable closure of k, we simply refer to k s/k-twists as twists. In this case we also write T (X )
instead of Tk s /k (X ).

For the rest of this section we fix a finite Galois extension K /k with group G , a base
extension (−)K : Ck →CK satisfying Galois descent, and an object X over k. The functor (−)K

can be viewed as a functor Ck →C K
k by the definition of a base extension, where the category

C K
k is defined as in Section 4. We let F : C K

k → Ck be a functor such that F (−)K ≃ id and
(−)K F ≃ id, which exists by Galois descent. Equation (4.3) provides us with an action of G on
AutK (XK ), turning it into a (perhaps noncommutative) G-module. Theorem 5.5 describes a
bijection between TK /k (X ) and the first cohomology set H 1(G ;AutK (XK )).

Let Y be a K /k-twist of X , and let ϕ : XK → YK be a K -isomorphism. For every σ ∈G we
define cσ ∈ AutK (XK ) by

cσ =ϕ−1 ◦σϕ. (5.2)

This defines a function c : G → AutK (XK ),σ 7→ cσ, which essentially measures to which extent
ϕ is not a G-equivariant map. In particular, if ϕ is G-equivariant, then c sends all σ ∈G to the
identity map 1: XK → XK .

The function c is a cocycle: for σ,τ ∈G we have

cστ =ϕ−1 ◦στϕ
=ϕ−1 ◦σϕ◦ (σϕ)−1 ◦στϕ
= cσ ◦σ(ϕ−1 ◦ τϕ)

= cσ ◦σcτ.

Example 5.1. Suppose the Galois extension K /k is Q(
p

3)/Q, and let X be the conic over Q
given by the equation x2 + y2 = 3z2. The conic X is aQ(

p
3)/Q-twist of the projective line over

Q: the base extension of X toQ(
p

3) is the conic overQ(
p

3) given by the same equation, and
we have an isomorphism

ϕ : P1
Q(

p
3)

≃−→ XQ(
p

3)

[s : t ] 7→
[

s2 − t 2

2
: st :

s2 + t 2

2
p

3

]
.

We compute the cocycle associated to ϕ. Let σ ∈ Gal(Q(
p

3)/Q) be such that σ ̸= 1. We find

[s : t ]
σϕ7−−→

[
s2 − t 2

2
: st :

−s2 − t 2

2
p

3

]
ϕ−1

7−−→ [−t : s].

We conclude that cσ =ϕ−1 ◦σϕ is the projective transformation given by the matrix

(
0 −1
1 0

)
.

The choice of K -isomorphism ϕ : XK → YK is not canonical, but the resulting cocycle class
is, as shown by the following proposition.
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Proposition 5.2. Let Y be an object over k such that [Y ] ∈ TK /k (X ), and let Z ∈Ck be such that
Y ≃k Z . Letϕ : XK → YK andψ : XK → ZK be K -isomorphisms. Consider the cocycles associated
to ϕ and ψ given by cσ =ϕ−1 ◦σϕ and dσ =ψ−1 ◦σψ, respectively. Then the cocycles c and d are
cohomologous.

Proof. Let f : Z → Y be a k-isomorphism. The map fK is a morphism in C K
k , and so it is

invariant under the action of G . Define the K -automorphism a =ϕ−1 ◦ fK ◦ψ. We compute

dσ =ψ−1 ◦σψ
= a−1 ◦ϕ−1 ◦ fK ◦σ( f −1

K ◦ϕ◦a)

= a−1 ◦ϕ−1 ◦σϕ◦σa

= a−1 ◦ cσ ◦σa,

and so c and d are cohomologous. ■
The above proposition allows us to speak of the cocycle class associated to the k-isomorphism

class of a K /k-twist. We now get a well-defined function

θ : TK /k (X ) → H 1(G ;AutK (XK )) (5.3)

sending the class of a K /k-twist to its associated coycle class. The class of the trivial twist gets
sent to the class of the trivial cocycle, so this is a map of pointed sets. We intend to construct
an inverse to this map, so that θ−1 will give us a parameterization of the K /k-twists of X .

Let ϕ : XK → YK be as before. The map ϕ is not G-equivariant if c is not the trivial cocy-
cle, but it will be if we let σ ∈ G act on XK by the k-automorphism cσσ instead: we have a
commutative diagram

XK YK

XK YK .

cσσ

ϕ

σ

ϕ

Using the fact that c is a cocycle, we show that this actually defines an action on XK . Indeed,
for σ,τ ∈G we have

cστ ◦ (στ) = cσ ◦σcτ ◦σ◦τ
= cσ ◦σ◦ cτ ◦σ−1 ◦σ◦τ
= (cσσ)◦ (cττ).

This action is also Galois by (4.1) and (4.2), because cσ ∈ HomK (XK , XK ) = Homid(XK , XK ).

Definition 5.3. Let c = (cσ) be a cocycle G → AutK (XK ). We define the action of G twisted by c
on XK by letting σ ∈G act on XK as the k-automorphism cσ ◦σ. We write c XK for XK equipped
with this action.

Proposition 5.4. Let c = (cσ) and d = (dσ) be cocycles G → AutK (XK ). If c and d are cohomolo-
gous, then c XK and d XK are isomorphic in C K

k .
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Proof. Let a ∈ AutK (XK ) be such that cσ = a−1dσσa for all σ ∈ G . We have a commutative
diagram

XK XK

XK XK .

a

cσσ dσσ

a

It follows that a defines an isomorphism c XK ≃ d XK in C K
k . ■

Given a cocycle c : G → AutK (XK ), the object F (c XK ) over k is a K /k-twist of X , because of
the equivalence F : C K

k ⇄Ck : (−)K and the fact that c XK and XK are the same when viewed
as K -objects. By the above proposition we now have a well-defined function

η : H 1(G ;AutK (XK )) → TK /k (X )

[c] 7→ [F (c XK )].
(5.4)

The trivial cocycle class gets mapped to the class of the trivial twist, so this is a map of pointed
sets. The following result states that the maps θ and η, defined in (5.3) and (5.4), are inverse to
each other.

Theorem 5.5 (Main result on twists). There is an isomorphism of pointed sets

TK /k (X )
≃−→ H 1(G ;AutK (XK ))

θ : [Y ] 7→ [(ϕ−1 ◦σϕ)σ∈G ]

[F (c XK )] ←[ [c] : η,

where ϕ : XK → YK is some K -isomorphism.

Proof. Let [Y ] be the class of a K /k-twist Y of X , let ϕ : XK → YK be a K -isomorphism, and let
c = (cσ) = (ϕ−1 ◦σϕ) be its associated cocycle. The map ϕ defines an isomorphism c XK → YK

in C K
k (see the paragraph above Definition 5.3). Applying F we get a k-isomorphism

F (c XK )
≃−→ F (YK ) ≃ Y . We find η◦θ = id.

Let [c] = [(cσ)] ∈ H 1(G ;AutK (XK )) be the cohomology class of a cocycle c. There exists an
isomorphism ϕ : c XK → F (c XK )K of objects in C K

k . We now have a commutative diagram

XK (F (c XK ))K

XK (F (c XK ))K .

cσσ

ϕ

σ

ϕ

It follows that ϕ−1 ◦σϕ= cσ. Thus, the cocycle class associated to F (c XK ) is equal to [c], and
hence we find θ ◦η= id. ■
Example 5.6. Suppose K /k is the Galois extension C/R. Let A be the R-algebra R×R ≃
R[x]/(x2 −1). The extension of A to C is given by

AC = A⊗RC≃C[x]/(x2 −1) ≃C×C.
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The group AutC(AC) is of order 2. As a result, Gal(C/R) must act trivially on AutC(AC), and so
we find

H 1(R;AutC(AC)) = Hom(Gal(C/R),AutC AC).

This set consists of only two elements, and so by Theorem 5.5 the algebra A has only one
non-trivial twist up to R-isomorphism. It is given by A′ =C; indeed, we have

A′
C =C⊗RC≃C×C≃ AC,

and A′ is not isomorphic to A, because A is not a field.
In terms of affine schemes: the scheme X = SpecR⊔SpecR only has one non-trivial twist

given by the R-scheme SpecC= SpecR[x]/(x2 +1).

Corollary 5.7. Let L/ℓ be a Galois extension, and n ≥ 0 an integer. We have an action of
Gal(L/ℓ) on GLn(L) by acting on the coefficients of a matrix. This turns GLn(L) into a discrete
Gal(L/ℓ)-module, and we have

H 1(L/ℓ;GLn(L)) = 0.

Proof. Notice that GLn(L) is the automorphism group of the L-vector space Ln . If L/ℓ is finite,
the result follows from Theorem 5.5, and the fact that twists of a vector space are always trivial.
Continuity of the action in the general case is clear, and we find

H 1(L/ℓ;GLn(L)) = lim−−→H 1(F /ℓ;GLn(L)Gal(L/F ))

= lim−−→H 1(F /ℓ;GLn(F )) = 0,

by Proposition 3.25, with the direct limit taken over the finite Galois extensions F /ℓ such that
F ⊂ L. ■

Notice that we retrieve Proposition 3.24 from Corollary 5.7 by taking n equal to 1. For this
reason, the above corollary is often referred to as the generalized Hilbert’s Theorem 90.

6 Severi-Brauer varieties

This section will look at a geometric application of the theory of twists, so called Severi-
Brauer varieties. The theory of twists will yield a parametrization of all Severi-Brauer varieties.
Throughout this section we fix a field k with a separable closure k s . Many of the results in this
section can also be found in [Jah00, §4], but in our case they follow more readily from Section
5.

If L/ℓ is a field extension, and X is scheme over ℓ, then we write XL for the fiber product
X ×Specℓ SpecL.

Definition 6.1. Let X be a k-scheme. We call X a Severi-Brauer variety (over k) of dimension r ,
if there is an isomorphism Xk s ≃Pr

k s .
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In other words, the Severi-Brauer varieties over k of dimension r are precisely the twists
of Pr

k . In agreement with our notation for twists, the set of k-isomorphism classes of Severi-
Brauer varieties of dimension r is denoted T (Pr

k ), and a Severi-Brauer variety is called trivial if
it is isomorphic to Pr

k .
To be able to parameterize Severi-Brauer varieties as twists using the results from Section

5, we need to be able to apply Galois descent as in Section 4.4, and so we need to know that
Severi-Brauer varieties are at least quasi-projective. This turns out to be true, as shown by the
following proposition.

Proposition 6.2. Let X be a Severi-Brauer variety, then X is projective.

Proof. We refer to [Jah00, Lemma 2.12]. ■
Remark 6.3. Severi-Brauer varieties have many more nice properties. For example, they are
integral and of finite type. See [Jah00, Lemma 2.12]. This justifies the use of the word “variety”
in Definition 6.1, but we will not need any of these properties.

It turns out to be sufficient to consider finite Galois extensions when working with Severi-
Brauer varieties, as shown by the following proposition.

Proposition 6.4. Let X be a Severi-Brauer variety of dimension r . Then there exists some finite
Galois extension ℓ/k such that we have an isomorphism Xℓ ≃ℓ Pr

ℓ
.

Proof. Let ϕ : Pk s → Xk s be a k s-isomorphism. Then ϕ is of finite type. As a result, only a finite
number of coefficients in k s are needed to describe ϕ. Considering the field extension over
k generated by these coefficients, and embedding it in a finite Galois extension, we obtain a
finite Galois extension ℓ of k over which Xℓ and Pr

ℓ
are isomorphic. ■

In the above proposition, we refer to ℓ as a splitting field of X and say that X is split by ℓ.
To adhere to our notation for twists, we write Tℓ/k (Pr

k ) for the set of Severi-Brauer varieties of
dimension r split by ℓ. As a result of the above proposition, we obtain the expression

T (Pr
k ) = lim−−→Tℓ/k (Pr

k ), (6.1)

with the direct limit running over the finite Galois extensions ℓ/k with ℓ⊂ k s . The transition
maps are given by the natural inclusion maps; if X is split by ℓ and ℓ⊂ ℓ′, then X is also split
by ℓ′:

Xℓ′ = (Xℓ)ℓ′ ≃ (Pr
ℓ)ℓ′ =Pr

ℓ′ ,

where the last equality is by Example 4.7(ii).

Example 6.5. The conic X over Q given by the equation x2 + y2 = 3z2 is an example of a
Severi-Brauer variety over Q of dimension 1, as shown in Example 5.1. To see that this is a
non-trivial Severi-Brauer variety, note that the curve x2+ y2 = 3z2 admits noQ-rational points.
To prove this, we can show that the equation admits no solutions in integers by considering it
modulo 4.

At the end of this section we will see that the existence of a rational point is actually enough
to prove triviality of a Severi-Brauer variety. For smooth conics this is a well known basic fact
from geometry.
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We recall (see, for instance, [Har10, Chapter 2, Example 7.1.1]) that the ℓ-automorphism
group of Pr

ℓ
, with ℓ a field, is the group PGLr+1(ℓ) defined by the exact sequence of groups

1 → ℓ× → GLr+1(ℓ) → PGLr+1(ℓ) → 1, (6.2)

where the map ℓ× → GLr+1(ℓ) is given by sending a scalar to that scalar times the
(r +1)× (r +1)-identity matrix. Explicitly, a matrix A = (ai j ) ∈ PGLr+1(ℓ) acts on an ℓ-point
[a0 : . . . : an] ∈Pr

ℓ
(ℓ) by viewing it as a column vector and multiplying it on the left by A.

If ℓ/k is finite Galois, then the action of Gal(ℓ/k) on PGLr+1(ℓ) given by acting on coordi-
nates corresponds to the action defined in (4.3). In particular, this turns the sequence in (6.2)
into an exact sequence of Gal(ℓ/k)-modules.

Corollary 6.6. Let ℓ/k be a finite Galois extension, and Let r ≥ 0 be an integer. We have an
isomorphism of pointed sets

Tℓ/k (Pr
ℓ)

≃−→ H 1(ℓ/k,PGLr+1(ℓ))

X 7→ [(ϕ−1 ◦σϕ)σ],

where ϕ : Pr
ℓ
→ Xℓ is an isomorphism. This isomorphism is natural in ℓ.

Proof. This isomorphism is the one obtained from Theorem 5.5. Naturality is straightforward.
■

We similarly equip PGLr+1(k s) with a Gal(k s/k)-action by acting on the coordinates of a
matrix. This action is then continuous. Taking Gal(k s/ℓ)-invariants of the sequence

1 → (k s)× → GLr+1(k s) → PGLr+1(k s) → 1,

we get the exact sequence of Gal(ℓ/k)-modules

1 → ℓ× → GLr+1(ℓ) → PGLr+1(k s)Gal(k s /ℓ) → 1,

by Proposition 3.26, because of the equality H 1(k, (k s)×) = 0 from Corollary 5.7. It follows that
PGLr+1(k s)Gal(k s /ℓ) = PGLr+1(ℓ) as Gal(ℓ/k)-modules. By Proposition 3.25 we now find

H 1(k,PGLr+1(k s)) = lim−−→H 1(ℓ/k,PGLr+1(ℓ)), (6.3)

with the direct limit runing over the finite Galois extensions ℓ/k with ℓ⊂ k s .

Theorem 6.7. Let r ≥ 0 be an integer. We have an isomorphism of pointed sets

T (Pr
k )

≃−→ H 1(k;PGLr+1(k s))

X 7→ [(ϕ−1 ◦σϕ)σ],

where ϕ : Pr
k s → Xk s is an isomorphism.
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Proof. By Corollary 6.6 we have natural isomorphisms

θℓ/k : Tℓ/k (Pr
k )

≃−→ H 1(ℓ/k;PGLr+1(ℓ)),

for all finite Galois extensions k ⊂ ℓ⊂ k s . These isomorphisms concatenate into an isomor-
phism

(Tℓ/k (Pr
k ))

≃−→ (H 1(ℓ/k;PGLr+1(ℓ)))

of direct systems, and hence

T (Pr
k ) = lim−−→Tℓ/k (Pr

k ) ≃ lim−−→H 1(ℓ/k;PGLr+1(ℓ)) = H 1(k;PGLr+1(k s)),

where the first equality is by (6.1) and the last equality is by (6.3). That this isomorphism is
given by the map in the theorem is now not hard to see.

■
The following theorem shows that determining whether a Severi-Brauer variety is trivial, is

equivalent to determining whether it has a rational point over k. This is important information
about the arithmetic of k.

Theorem 6.8. Let X be a Severi-Brauer variety, then X is trivial if and only if X has a k-rational
point.

Proof. This proof is inspired by [Jah00, Proposition 4.8]. If X is trivial, then clearly X has a
rational point. Now suppose X has a k-rational point Q ∈ X (k). Let ϕ : Pr

k s → Xk s be an iso-
morphism. The k-point Q induces a k s-point Qk s , and by composing with an automorphism
of Pr

k s we can assume that ϕ(P ) =Qk s , where P is the point [1 : 0 : . . . : 0] ∈Pr
k s (k s). We consider

the cocycle c = (cσ =ϕ−1 ◦σϕ) associated to ϕ. To show triviality of X , it suffices to prove that
[c] = 0 in H 1(k;PGLr+1(k s)) by Theorem 6.7.

The points Qk s and P are invariant under the action of Gal(k s/k), as both are induced by
k-points, and so we find

cσ(P ) =ϕ−1σϕ(P )

=ϕ−1σϕ(σP )

=ϕ−1σ(ϕ(P ))

=ϕ−1σ(Qk s )

=ϕ−1(Qk s ) = P.

As a result cσ lies in the stabilizer of P under PGLr+1(k s). This stabilizer is equal to

SP =




∗ ∗ . . . ∗
0 ∗ . . . ∗
...

...
. . .

...
0 ∗ . . . ∗

 ∈ PGLr+1(k s)

 .
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The subgroup SP is, in fact, a Gal(k s/k)-submodule of PGLr+1(k s), and so we can view the
cocycle class of c in H 1(k,SP ). Considering its image under the map induced by the inclusion
SP ,→ PGLr+1(k s), we obtain the cocycle class of c in H 1(k,PGLr+1(k s)). We now have a
commutative diagram of Gal(k s/k)-modules

GLr+1(k s)

SP PGLr+1(k s),

where the dashed arrow is given by scaling the top left coefficient to 1. Considering the induced
maps on H 1, we obtain the diagram

H 1(k;GLr+1(k s))

H 1(k;SP ) H 1(k;PGLr+1(k s)).

By Corollary 5.7, we find that H 1(k;GLr+1(k s)) = 0, and so the map
H 1(k;SP ) → H 1(k;PGLr+1(k s)) is zero. We conclude that [c] = 0 in H 1(k;PGLr+1(k s)), and
hence that there exists an isomorphism X ≃k P

r
k by the pointed isomorphism in Theorem

6.7. ■

7 Central simple algebras

This section considers an algebraic application of the theory of twists. Using Theorem 5.5
we will give a parametrization of so called central simple algebras. We will also show the
existence of a one-to-one correspondence between central simple algebras and the Severi-
Brauer varieties from Section 6. This correspondence will be made explicit for one-dimensional
Severi-Brauer varieties. Many of the results in the first part of this section can also be found in
[Jah00, §3] and [GS17, Chapter 2]. Throughout this section we fix a field k with a separable
closure k s .

If A is an ℓ-algebra, and L/ℓ is a field extension, then we write AL for the L-algebra A⊗ℓ L.

Definition 7.1. Let A be a finite-dimensional algebra over k. We call A central if the center of A
equals k. We call A simple if A has no non-trivial two-sided ideals.

Example 7.2. Let r ≥ 1 be an integer. The algebra of r × r -matrices over k, denoted Mr (k), is a
central simple algebra of dimension r 2 over k. See [GS17, Example 2.1.2].

The example above turns out to be crucial, as shown by the following theorem: the central
simple algebras are precisely the twists of Mr (k) with r ranging over the positive integers.

Proposition 7.3. Let A be a k-algebra. Then A is a central simple algebra if and only if there
exists an isomorphism Ak s ≃ Mr (k s) for some r ≥ 1.
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Proof. We refer to [GS17, Proposition 2.2.5]. ■
In particular, every central simple algebra has dimension equal to a square by the above

proposition.
Proposition 7.3 can be rephrased in the language of twists by saying that the central simple

algebras are precisely the twists of Mr (k) with r ranging over the positive integers. In line with
this interpretation, we denote the set of k-isomorphism classes of r 2-dimensional central
simple algebras by T (Mr (k)), and call a central simple algebra trivial if it is isomorphic to
Mr (k).

Analogously to Proposition 6.4 we have the following statement.

Proposition 7.4. Let A be a central simple algebra over k of dimension r 2, then there exists a
finite Galois extension ℓ/k such that Aℓ ≃ Mr (ℓ).

In the above proposition we refer to ℓ as a splitting field of A and say that A is split by ℓ.
As with twists, we write Tℓ/k (Mr (k)) for the set of k-isomorphism classes of central simple
algebras of dimension r 2 split by ℓ. Analogously to (6.1) we obtain the following expression

T (Mr (k)) = lim−−→Tℓ/k (Mr (k)),

with the direct limit running over the finite Galois extensions ℓ/k with ℓ ⊂ k s . To parame-
terize central simple algebras of dimension r 2 over k as twists, we need to understand the
automorphism group of Mr (k). To this end we state the following proposition.

Proposition 7.5 (Skölem-Noether). Let r ≥ 1 be an integer, and let F be a field. We have an
isomorphism

PGLr (F )
∼−→ AutF (Mr (F ))

B 7→ (A 7→ B AB−1).

Proof. We refer to [GS17, Corollary 2.4.2]. ■
If ℓ/k is a finite Galois extension, then the induced action of Gal(ℓ/k) on PGLr (ℓ) from (4.3)

is given by acting on the coefficients of a matrix. Analogously to Corollary 6.6 and Theorem 6.7
we obtain the following results.

Corollary 7.6. Let r ≥ 1 be an interger, and let ℓ/k be a finite Galois extension. Then we have
an isomorphism

Tℓ/k (Mr (k))
≃−→ H 1(ℓ/k,PGLr (ℓ))

[A] 7→ [(ϕ−1 ◦σϕ)],

with ϕ : Mr (ℓ) → Aℓ an isomorphism. This isomorphism is natural in ℓ.

Theorem 7.7. Let r ≥ 1 be an integer. Then we have an isomorphism

T (Mr (k))
≃−→ H 1(k s/k;PGLr (k s))

[A] 7→ [(ϕ−1 ◦σϕ)],

with ϕ : Mr (k s) → Ak s an isomorphism.
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Let r ≥ 1 be an integer. By composing the isomorphisms in theorems 6.7 and 7.7 we obtain
an isomorphism of pointed sets

T (Mr (k)) ≃ T (Pr−1
k ). (7.1)

Corollary 7.8. Let A be a central simple algebra. Then A is trivial if and only if the Severi-Brauer
variety associated to A (up to k-isomorphism) has a rational point.

Proof. This follows from Theorem 6.8 ■

7.1 Quaternion algebras and associated conics

This section is inspired by [Ser97, §3.1.4, Exercise 3]. We assume Char(k) ̸= 2 unless otherwise
specified. We consider central simple algebras of dimension 22 = 4 over k. Given units
a,b ∈ k×, letH(a,b) be the k-algebra generated by i and j satisfying the relations

i 2 = a, j 2 = b, i j =− j i .

We callH(a,b) the quaternion algebra corresponding to the pair (a,b). The algebraH(a,b) is a
central simple algebra of dimension 4 split by k(

p
a). An isomorphism is given by

H(a,b)⊗k k(
p

a)
≃−→ M2(k(

p
a))

i 7→
(p

a 0
0 −pa

)
, j 7→

(
0 1
b 0

)
.

By the following proposition, the quaternion algebras exhaust all central simple algebras of
dimension 4.

Proposition 7.9. Let A be a central simple algebra of dimension 4, then there exist a,b ∈ k×

such that A ≃k H(a,b).

Proof. We refer to [GS17, Proposition 1.1.7 and Proposition 1.2.1]. ■
By (7.1), we obtain a correspondence between the quaternion algebras and Severi-Brauer

varieties of dimension 1. In particular, by the following theorem and the above proposition,
this correspondence shows that the Severi-Brauer varieties of dimension 1 are precisely the
smooth conics over k.

Theorem 7.10. The isomorphism of pointed sets

T (P1
k )

≃−→ T (M2(k))

of (7.1) sends the k-isomorphism class of a conic in P2
k given by the equation ax2 +by2 = z2

with a,b ∈ k×, to the k-isomorphism class ofH(a,b).

We refer to the conic given by the equation ax2 +by2 = z2 as the conic associated to the
pair (a,b).
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Proof. Let a,b ∈ k×. Let X be the conic in P2
k given by the equation ax2 +by2 = z2. A splitting

field for this conic is given by k(
p

a). Indeed, over k(
p

a) we have that Xk(
p

a) is isomorphic
to the conic x2 +by2 = z2, which has a rational point, [1 : 0 : 1], and hence it is isomorphic to
P1

k(
p

a)
. An isomorphism ϕ : P1

k(
p

a)
→ Xk(

p
a) is given by

[s : t ] 7→
[

bs2 − t 2

2
p

a
: st :

t 2 +bs2

2

]
.

Let σ ∈ Gal(k(
p

a)/k) with σ ̸= 1. We compute the cocycle c associated to ϕ:

cσ =ϕ−1 ◦σϕ=
(

0 1
b 0

)
∈ PGL2(k(

p
a)).

We consider the action twisted by c of Gal(k(
p

a)/k) on M2(k(
p

a)) by letting σ act as cσσ.
Explicitly, σ acts on matrices as(

α β

γ δ

)
7→

(
0 1
b 0

)(
σ(α) σ(β)
σ(γ) σ(δ)

)(
0 1
b 0

)−1

.

The k-isomorphism class in T (M2(k)) associated to the cocycle class of c is the class of the
algebra c M2(k(

p
a))Gal(k(

p
a)/k). This algebra consists of matrices of the form(

α1 +α2
p

a α3 +α4
p

a
α3b −α4b

p
a α1 −α2

p
a

)
,

with αi ∈ k. As a result, it is generated as a k-vector space by

1 =
(
1 0
0 1

)
, I =

(p
a 0

0 −pa

)
, J =

(
0 1
b 0

)
, I J =

(
0

p
a

−b
p

a 0

)
.

The relations I 2 = a, J 2 = b, I J =−J I are now easily computed and it is clear that no further
relations can exist. We obtain an isomorphism c M2(k(

p
a))Gal(k(

p
a)/k) ≃k H(a,b). ■

Corollary 7.11. The quaternion algebra H(a,b) with a,b ∈ k× is isomorphic to M2(k) if and
only if the associated conic ax2 +by2 = z2 has a rational point.

Proof. By Theorem 7.10 this is a special case of Corollary 7.8. ■
Remark 7.12. Suppose that the characteristic of k is 2. Let a,b ∈ k× and let H(a,b) be the
algebra generated over k by i and j , with the relations i 2 + i = a, j 2 = b, j i = i j + j . We refer
to H(a,b) as the quaternion algebra corresponding to the pair (a,b). The correspondence
T (P1

k ) ≃ T (M2(k)) is given by sending the class of the conic X given by the equation x2 +x y +
ay2 +bz2 = 0 to the the class of the algebraH(a,b). See [Ser97, §3.1.4, Exercise 3]. We refer to
X as the conic associated to the pair (a,b).

As in Corollary 7.11, the algebra H(a,b) is isomorphic to M2(k) if and only if the conic
associated to the pair (a,b) has a rational point.

Remark 7.13. The statement that two quaternion algebras are isomorphic if and only if their
associated conics are isomorphic is a theorem of Witt. A direct proof, without the theory of
twists, can be found in [GS17, Theorem 1.4.2].
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8 The Brauer group

In this section we parameterize all central simple algebras over a field (or Severi-Brauer
varieties over a field), regardless of dimension, under an appropriate notion of equivalence,
using Galois cohomology. Much of the material in this section is based on [GS17, §4.4].
Throughout this section we fix a field k with a separable closure k s , and a finite Galois extension
ℓ/k. The letters m and n will always denote positive integers.

By the isomorphism Mn(k)⊗k Mm(k) ≃ Mnm(k), we get a map

Tℓ/k (Mn(k)) → Tℓ/k (Mnm(k)) (8.1)

[A] 7→ [A⊗k Mm(k)] = [Mm(A)].

This gives a direct system (Tℓ/k (Mn(k)))n≥1 and we define the set Br(ℓ/k) by

Br(ℓ/k) = lim−−→
n≥1

Tℓ/k (Mn(k)).

We intend to provide Br(ℓ/k) with a group structure. Let A and B be central simple algebras
of dimension n2 and m2, respectively. If A and B are split by ℓ, then the tensor product A⊗k B
is again a central simple algebra split by ℓ:

(A⊗k B)⊗k ℓ= (A⊗k ℓ)⊗ℓ (B ⊗k ℓ) ≃ Mn(ℓ)⊗ℓ Mm(ℓ) ≃ Mnm(ℓ).

As a result, we can define a map

Tℓ/k (Mn(ℓ))×Tℓ/k (Mm(ℓ)) → Tℓ/k (Mnm(ℓ)) (8.2)

([A], [B ]) 7→ [A⊗k B ].

It is straightforward to show that this is compatible with the maps in (8.1). This yields an
operation on Br(ℓ/k).

Theorem 8.1. The set Br(ℓ/k) is an abelian group under the operation described in (8.2) with
unit [k].

Proof. Associativity, commutativity and the fact that [k] is unital for this operation is clear
from basic properties of the tensor product. We need only show that Br(ℓ/k) has inverses.
Let A be a central simple algebra of dimension n2 split by ℓ/k. Let ϕ : Mn(ℓ) → A⊗k ℓ be an
ℓ-isomorphism. Consider the opposite algebra Aopp. This algebra is A as a vector space over
k, but with multiplication defined by x ·Aopp y = y x. We have an isomorphism

ϕopp : Mn(ℓ)opp → (A⊗k ℓ)opp = Aopp ⊗k ℓ.

The map Mn(ℓ) → Mn(ℓ)opp, M 7→ M t , with M t the transpose of M , is an isomorphism, and
hence Aopp is a central simple algebra split by ℓ/k. Consider the map of k-algebras

A⊗k Aopp → Endk (A)

a ⊗b 7→ (x 7→ axb),

with Endk (A) ≃ Mn2 (k) the algebra of k-linear endomorphisms of A. This map is nonzero, and
hence injective by simplicity of A⊗k Aopp. Comparing dimensions, we see that it must also be
surjective. We conclude that [Aopp] is the inverse of [A]. ■
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Definition 8.2. We define the Brauer group of ℓ/k to be the group Br(ℓ/k).

If F /k and F ′/k are finite Galois extensions, both contained in k s , then there is an evident
group homomorphism Br(F /k) → Br(F ′/k). In this way we obtain a direct system (Br(F /k))F

of abelian groups with F ranging over the finite galois extensions F /k such that F ⊂ k s .

Definition 8.3. The absolute Brauer group of k, or simply the Brauer group of k, is defined to be

Br(k) = lim−−→Br(F /k),

with the direct limit taken over the finite Galois extensions F /k such that F ⊂ k s .

8.1 The Brauer group in terms of a cohomology group

In this subsection we will give a more tangible characterization of the Brauer group in terms of
the second cohomology group the discrete Gal(ℓ/k)-module ℓ×. This will also allow for much
easier computations.

Given an ℓ-automorphism ϕ : ℓn → ℓn , tensoring with id: ℓm → ℓm yields an automor-
phism ϕ⊗ id: ℓnm → ℓnm . This gives a map GLn(ℓ) → GLnm(ℓ) of G-modules, which passes to
PGLn(ℓ) → PGLnm(ℓ). The induced map on H 1 is given by

H 1(ℓ/k;PGLn(ℓ)) → H 1(ℓ/k;PGLnm(ℓ)) (8.3)

[(cσ)] 7→ [(cσ⊗ id)].

We obtain a direct system (H 1(ℓ/k,PGLn(ℓ)))n≥1. The isomorphisms
Tℓ/k (Mn(k)) ≃ H 1(ℓ/k;PGLn(ℓ)) obtained from Corollary 7.6 are compatable with the maps in
(8.1) and (8.3), and hence concatenate into an isomorphism of direct systems. This yields an
isomorphism of pointed sets

Br(ℓ/k) ≃ lim−−→
n≥1

H 1(ℓ/k;PGLn(ℓ)). (8.4)

By the exact sequence in (6.2), Proposition 3.26 and Corollary 5.7, we obtain an exact
sequence of pointed sets

0 = H 1(ℓ/k;GLn(ℓ)) → H 1(ℓ/k;PGLn(ℓ))
δn−→ H 2(ℓ/k;ℓ×). (8.5)

Explicitly, δn sends the class of the 1-cocycle [c = (cσ)] to the class of the 2-cocycle
a : G ×G → ℓ× given by

aσ,τ = bσ
σbτb−1

στ, σ,τ ∈G ,

where bσ is a lift of cσ to GLn(ℓ).
The maps δn are compatible with the maps in (8.3); hence, by (8.4), we get a map

δ : Br(ℓ/k) → H 2(ℓ/k;ℓ×). (8.6)

Lemma 8.4. The map δ : Br(ℓ/k) → H 2(ℓ/k;ℓ×) defined in (8.6) is a group isomorphism, which
is natural in ℓ.
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We only outline the proof. A complete proof is given in [GS17, Theorem 4.4.5].

Sketch of proof. Showing that δ is a homomorphism is a direct computation with cocycles.
Injectivity follows from the fact that all the maps δn have trivial kernel by the exact se-

quence in (8.5), and the fact that δ is a group homomorphism.
It can be shown directly that δm , with m equal to [ℓ : k], is surjective, and hence that δ is

surjective.
Naturality is verified from the definitions. ■

Theorem 8.5. There are isomorphisms

Br(ℓ/k) ≃ H 2(ℓ/k;ℓ×), and Br(k) ≃ H 2(k; (k s)×).

Proof. The first isomorphism is given by Lemma 8.4, the second isomorphism is obtained by
taking a direct limit, applying Lemma 3.19. ■
Corollary 8.6. The groups Br(ℓ/k) and Br(k) are torsion.

Proof. This follows from Theorem 8.5 and the fact that Galois cohomology groups in degree
greater than 0 are torsion by Corollary 3.23. ■

Using Theorem 8.5 we can now explicitly compute some Brauer groups.

Example 8.7 (Br(R)). Let N : C× →R× be the norm map. Using Example 2.16, we compute the
Brauer group of R to be

Br(R) ≃ H 2(R;C×) ≃ (C×)Gal(C/R)/N (C×) =R×/R>0 ≃Z/2Z.

The nontrivial element of Br(R) is given by the class of Hamilton’s quaternion algebra
H= 〈i , j | i 2 =−1, j 2 =−1, i j =− j i 〉. Indeed, the conic given by the equation x2 + y2 + z2 = 0
has no R-points, so we conclude that the associated algebra is non-trivial by Corollary 7.11.

Example 8.8 (Br(Fq )). Let n be a positive integer and q a prime power. Let N : F×qn → Fq be the
norm map. By (2.1) we have an exact sequence

F×qn
N−→ F×qn → F×qn

x 7→ x−1σ(x),

where σ is the Frobenius automorphism x 7→ xq . Since x ∈ F×qn is in F×q if and only if σ(x) = x,
we find N (F×qn ) = F×q . Using Example 2.16, we compute

Br(Fqn /Fq ) ≃ H 2(Fqn /Fq ;F×qn ) ≃ (F×qn )Gal(Fqn /Fq )/N (F×qn ) = F×q /N (F×qn ) = 0.

By taking a direct limit we find that Br(Fq ) is trivial.
As a corollary, we obtain Wedderburns little theorem, which states that every finite division

algebra (equivalently, every finite domain) is a field, as shown below. Let D be a finite division
algebra, and let p be its characteristic. Writing Z (D) for the center of D, we have Z (D) ≃ Fpn
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for some integer n > 0, and so D is a central algebra over Fpn . Simplicity follows from the fact
that D is a division algebra. By the fact that Br(Fq ) = 0, we find that there exists an integer m
such that D ≃ Mm(Fpn ). Since this is only a domain for m = 1, we conclude that D ≃ Fpn is a
field.

We also state the following results. Their proofs fall outside the scope of this thesis. See
[Ser79, §X.7, Examples of Fields with Non-zero Brauer Group].

• Let p be a prime and let Qp denote the p-adic numbers. There is an isomorphism
Br(Qp ) ≃Q/Z.

• There exists a short exact sequence

0 → Br(Q) →⊕
p

Br(Qp ) →Q/Z→ 0,

where the direct sum ranges over the primes and 0, and we setQ0 =R.

A Notions from homological algebra

This appendix assumes knowledge of basic concepts from category theory (see, for instance,
[Rie17]). This appendix is largely based on [Wei13, chapter 1 and 2]. Given a ring R, we write
R-Mod for the category of left R-modules.

A.1 Abelian categories and additive functors

Definition A.1 (Ab-category). An Ab-category is a (locally small) category C such that for all
C ,C ′ ∈C the set Hom(C ,C ′) has the structure of an abelian group, and composition is linear
with respect to this structure:

a ◦ (b + c)◦d = a ◦b ◦d +a ◦ c ◦d .

Definition A.2 (abelian category). Let A be an Ab-category. We call A abelian if A has a zero
object (an object that is both initial and terminal), A has all finite products and coproducts, A

has all kernels and cokernels1, every monic map is the kernel of its cokernel, and every epic map
is the cokernel of its kernel.

Example A.3. (i) The category of modules over a fixed ring R is abelian. In particular, the
category Ab of abelian groups is abelian.

(ii) For any category A , its opposite A opp is again abelian.

Remark A.4. When working with abelian categories, it is often useful to imagine a category of
modules over a ring. The Freyd-Mitchell embedding justifies this by stating that every small
abelian category can be embedded in a category of modules over a ring. See [Wei13, Theorem
1.6.1].

1The kernel of f : A → A′ is defined to be the equalizer of f and the zero map 0: A → A′. Cokernels are defined
dually.
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Definition A.5 (additive functor). Let F : A →B be a functor between Ab-categories. We call F
additive if for all A, A′ ∈A the map

Hom(A, A′) → Hom(F A,F A′)

is a homomorphism of abelian groups.

Example A.6. (i) For every object A in an abelian category A , the functors Hom(A,−) : A →
Ab and Hom(−, A) : A opp → Ab are additive.

(ii) Fix a commutative ring R and a module M over R. The functor M ⊗R (−) : R-Mod →
R-Mod is additive.

As in Ab, in general abelian categories the notion of an exact sequence makes sense. More
specifically, let A be an abelian category and suppose we have a sequence

A′ f−→ A
g−→ A′′ (A.1)

of objects and maps in A such that the composition g f is the zero map. We write im f for

the object ker(A → coker f ). The composition im f → A
g−→ A′′ is zero, because g factors via

the cokernel of f ; hence, im f → A must factor via the kernel of g . This is illustrated in the
diagram below.

coker f

A′ A A′′

im f ker g

f g

We say that the sequence in (A.1) is exact if the induced map im f → ker g is an isomorphism.
The notion of exactness naturally extends to longer sequences of objects and maps in A . An
exact sequence of the form

0 → A′ f−→ A
g−→ A′′ → 0

is called short exact. Since f and g are monic and epic, respectively, this means that f defines
a kernel of g and g defines a cokernel of f (by the definition of an abelian category). In the
category of abelian groups (or any category of modules over a ring), we retrieve the usual
notion of an exact sequence.

Definition A.7 (exact functor). Given an additive functor F : A → B between abelian cate-
gories, we call F left exact if for any short exact sequence

0 → A′ → A → A′′ → 0

in A we get an exact sequence
0 → F A′ → F A → F A′′

in B. Analogously, we define right exact functors. An additive functor that is both left exact and
right exact is called exact.
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Proposition A.8 (left-exactness of hom). For A an object in an abelian category A , the functor
Hom(A,−) is left exact.

Proof. Let

0 → B ′′ α−→ B
β−→ B ′ → 0,

be an exact sequence in A . Consider the sequence

0 → Hom(A,B ′′) α∗−−→ Hom(A,B)
β∗−→ Hom(A,B ′)

in Ab. Exactness at Hom(A,B ′′) follows immediately from the fact that α is monic. Clearly
α∗β∗ = (αβ)∗ = 0. Let f : A → B be a map such that β f = 0. The map α is the kernel of β, and
hence there must exist g : A → B ′′ such that αg = f . We conclude that the sequence is also
exact at Hom(A,B). ■
Remark A.9. Dually, HomA (−, A) as a functor A opp → Ab is left exact.

A.2 Chain complexes

What follows can be done more generally in abelian categories, but we restrict ourselves to the
category of abelian groups (which serves as a sort of “base category”).

Definition A.10 (chain complexes). A (chain) complex is a collection of maps of abelian groups
(∂n : An → An+1)n∈Z such that ∂n ◦∂n−1 = 0 for all n ∈ Z. Such a complex will frequently be
denoted A∗. A map of chain complexes f : A∗ → B∗ is a collection of maps fn : An → B n such
that we have a commutative diagram

An An+1

B n B n+1

fn

∂n

fn+1

∂n

for all n ∈Z. This constitutes an abelian category, which will be denoted ChAb, or simply Ch.

Notation A.11. Often, parts of a complex will be omited. These objects and maps should then
be read as zero.

Remark A.12. A sequence of maps in Ch is exact, if and only if at every index the induced
sequence of objects in Ab is exact.

Example A.13. Set An =Z/4Z in Ab for all n ∈Z, and define ∂n : An → An+1 to be multiplica-
tion by 2 for n even, and the zero map for n odd. The resulting sequence

. . .
0−→Z/4Z

·2−→Z/4Z
0−→Z/4Z

·2−→ . . .

is a chain complex.
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Definition A.14 (cohomology). Given a chain complex A∗, we define the n-th cohomology
group of A∗ to be

H n(A∗) = ker∂n/im∂n−1.

Maps of chain complexes naturually induce maps of cohomology groups, which gives an
additive functor

H n : Ch → Ab.

Example A.15. Letting A∗ be the complex of Example A.13, we find

H n(A∗) =Z/2Z,

for all n ∈Z.

In algebraic topology, if there exists a homotopy between two continuous maps, these
maps will give rise to the same maps on (co)homology. A similar notion exists in homological
algebra.

Definition A.16 (homotopy). Given two complexes A∗ and B∗ in Ch and a map f : A∗ → B∗,
we say that f is null homotopic if there exist maps hn : An+1 → B n such that

fn = hn∂
n +∂n−1hn−1.

If g : A∗ → B∗ is another map, we say that f and g are homotopic if f −g is null homotopic and
write f ≃ g .

An easy computation shows that nullhomotopic maps induce zero maps on cohomology
groups. By additivity of the H n , this gives us a result analogous to what we see in algebraic
topology:

Proposition A.17. Let A∗ and B∗ in Ch be chain complexes, and let f , g : A∗ â B∗ be homotopic
maps, then H n( f ) = H n(g ).

A.3 Projective and injective objects

Fix an abelian category A . Hom functors form the central class of examples of left exact
functors (see Proposition A.8). In general, the functor Hom(A,−) with A ∈ A is not exact,
because Hom(A,−) need not preserve epimorphisms. As a simple example, consider the
quotient map Z→ Z/2Z in Ab, and apply Hom(Z/2Z,−). This then raises the question for
which objects in a given abelian category these Hom functors are exact.

Definition A.18 (injective/projective objects). We call an object A in A injective if Hom(−, A)
is an exact functor. Dually, we call A projective if Hom(A,−) is exact.

Example A.19 (injectives/projectives in Ab). In the category of abelian groups, all projective
objects are free. The injective objects are precisely the divisible abelian groups. Examples of
divisible abelian groups areQ andQ/Z. See [Sta22, Tag 01D7].
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Definition A.20 (enough injectives/projectives). We say that A has enough injectives, if for any
A ∈A , there exists a monomorphism A ,→ I for some injective I in A . Dually, A has enough
projectives, if for any A ∈A there exists an epimorphism P ↠ A.

Example A.21. Any category of modules over a ring R has enough projectives, because for
any module M over R we can create a surjection R⊕M ↠ M sending the basis vector em

corresponding to m ∈ M to m. The module R⊕M is projective, because it is free.

Proposition A.22. Ab has enough injectives.

Proof. Let A be an abelian group. Define the abelian group

I = ∏
Hom(A,Q/Z)

Q/Z.

Being a product of injective objects (see Example A.19), I is injective by the universal property
of the product: the functor

Hom(−, I ) =∏
Hom(−,Q/Z)

is exact, because products preserve exact functors. There is an evident homomorphism
i : A → I sending x ∈ A to ( f (x)) f with f ranging over the maps A →Q/Z. We will show that i
is injective. Let a ∈ A such that a is nonzero. Consider the subgroup aZ of A generated by a. If
a is not a torsion element, then aZ is free and we can define a map ϕ : aZ→Q/Z sending a to
1/2. If a has finite order n, then we define ϕ : aZ→Q/Z by sending a to 1/n. In both cases,
ϕ(a) is nonzero. From the exact sequence

0 → aZ→ A

we obtain the exact sequence

Hom(aZ,Q/Z) → Hom(A,Q/Z) → 0,

becauseQ/Z is injective. Hence, ϕ can be extended to a map A →Q/Z. It follows that i (a) is
nonzero, because ϕ(a) is nonzero, and so i is injective. ■

As a corollary to the above proposition, we find that every category of modules over a ring
has enough injectives. To this end, we consider the forgetful functor

U : R-Mod → Ab.

By the tensor-hom adjunction (see [Wei13, Proposition 2.6.3]) U admits a right adjoint
V : Ab → R-Mod given by V A = HomZ(R, A) with R-module structure given by
(rϕ)(x) =ϕ(xr ).

Proposition A.23. The category of R-modules has enough injectives.
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Proof. Let M be a module over R and let M0 denote the underlying abelian group. By Proposi-
tion A.19 there exists an injective abelian group I and an embedding M0 ,→ I . We find that V I
is again injective:

Hom(−,V I ) = Hom(U−, I )

is the composition of two exact functors, and hence is exact. By left exactness of V , we find an
embedding V M0 ,→ V I . It now suffices to show that there exists an embedding M ,→ V M0.
Such an embedding is given by m 7→ (r 7→ r m). ■
Definition A.24 (injective/projective resolutions). Let A ∈ A an object. We call an exact
sequence

0 → A → I 0 → I 1 → . . . ,

with I n ∈A injective, an injective resolution of A . Dually, we call an exact sequence

. . . → P1 → P0 → A → 0,

with Pn projective in A , a projective resolution of A.

Injective, respectively projective, resolutions need not exist in an arbitrary abelian category,
but they do exist if there are enough injective, respectively projective, objects.

Proposition A.25 (existence of injective/projective resolutions). Suppose A has enough in-
jective objects. Then every object A ∈ A has an injective resolution. Dually, if A has enough
projectives, then every object A ∈A has a projective resolution.

The above propositon can be proved by constructing an injective/projective resolution
inductively for any object in A .

Although injective/projective resolutions are certainly not unique, they are up to homo-
topy, as shown by the following result.

Proposition A.26. Let f : A → A′ be a map in A , and suppose we have injective resolutions
0 → A → I∗ and 0 → A′ → I ′∗, then there exist a map ϕ : I∗ → I ′∗ of complexes, called a lift of f ,
such that

0 A I∗

0 A′ I ′∗
f ϕ

commutes. The map ϕ is unique up to homotopy. A dual statement holds for projective
resolutions.

Proof. We refer to [Wei13, Theorem 2.3.7]. ■
A particular case of interest is the case A′ = A and f = id. We find that any two injective

resolutions 0 → A → I∗ and 0 → A → J∗ are homotopy equivalent, in the sense that there exist
chain maps ϕ : I∗ → J∗ and ψ : J∗ → I∗ such that ϕψ≃ id and ψϕ≃ id.
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A.4 δ-functors

Fix abelian categories A and B.

Definition A.27 (δ-functor). A cohomological δ-functor, or simply a δ-functor, is a collection
(T n : A → B)n≥0 of additive functors with maps δn : T nC → T n+1 A in B, called connecting
maps, for every short exact sequence

0 → A → B →C → 0

in A , such that the sequence

0 → T 0 A → T 0B → T 0C

δ0

−→ T 1 A → T 1B → T 1C

δ1

−→ T 2 A → . . .

is exact. Furthermore, we assume the connecting maps to be natural, in the sense that for every
map of short exact sequences

0 A B C 0

0 A′ B ′ C ′ 0

we get a map of long exact sequences

. . . T n−1C T n A T nB T nC T n+1 A . . .

. . . T n−1C ′ T n A′ T nB ′ T nC ′ T n+1 A′ . . .

δ δ

δ δ

Let (Sn) be another δ-functor. A map of δ-functors (T n) → (Sn) is a collection of natural
transformations (T n → Sn) that commute with the connecting maps. This constitutes a category
of δ-functors from A to B. We call (T n) a universal δ-functor if it is initial among δ-functors
(Sn) with a map T 0 → S0.

Remark A.28. In particular, if (T n) is a δ-functor, then T 0 is a left exact functor.

Remark A.29. Universal δ-functors are unique up to canonical isomorphism.

Proposition A.30. Suppose A has enough injectives, and that we have a δ-functor
(T n : A →B) such that T n I = 0 for all n ≥ 1 and I in A injective. Then (T n) is universal.

Proof. We refer to [Wei13, Exercise 2.4.5]. ■
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A.5 Derived functors

Fix an abelian category A with enough injective objects. Let F : A → Ab be a left exact functor.

Example A.31. Let A = Ab, and suppose F is the additive functor (−)tor sending an abelian
group A to Ator, its subgroup of torsion elements. Then F is a left exact functor, but not an
exact functor, as shown by the short exact sequence

0 →Z
·2−→Z→Z/2Z→ 0.

By the above example, F need not be an exact functor. The so called right derived functors
of F exist to rectify this problem. Let A ∈A be an object. Let

0 → A → I∗

be an injective resolution of A. For n ≥ 0 we define

RnF (A) = H n(F (I∗)).

By Proposition A.26 and Proposition A.17 we see that choosing a different injective resolution
0 → A → I ′∗ yields a canonical isomorphism H n(F (I∗)) = H n(F (I ′∗)), showing that RnF (A) is
well-defined up to canonical isomorphism. Let A′ ∈ A , f : A → A′ a map, and 0 → A′ → I ′∗

an injective resolution of A′. By Proposition A.26 we get an up to homotopy unique map
ϕ : I∗ → I ′∗ of complexes such that

0 A I∗

0 A′ I ′∗
f ϕ

commutes. The map F (ϕ) : F (I∗) → F (I ′∗) of complexes induces maps RnF ( f ) : RnF (A) →
RnF (A′) on cohomology. Proposition A.17 shows that RnF ( f ) is independent of our choice of
ϕ. The uniqueness statement in Proposition A.26 implies that this assignment is functorial,
so we get functors RnF : A → Ab. The RnF are also additive: given a map g : A → A′ and a lift
ψ : I∗ → I ′∗ to injective resolutions, we see that ϕ+ψ is a lift for f + g . In combination with
the fact that taking cohomology is additive, this yields RnF ( f + g ) = RnF ( f )+RnF (g ).

Definition A.32 (right derived functors). We call RnF the n-th right derived functor of F .

Example A.33 (Ext). Assume A also has enough projectives. Let A and B in A . By Proposition
A.8 the functors Hom(A,−) : A → Ab and Hom(−,B) : A opp → Ab are left exact. We can
form the right derived functors of both. By [Wei13, Theorem 2.7.6], Rn Hom(A,−)(B) and
Rn Hom(−,B)(A) are canonically isomorphic, and both are denoted Extn(A,B).

Example A.34. (i) Let p ≥ 1 be an integer. We define an additive functor (−)p : Ab → Ab
sending an abelian group A to its subgroup of p-torsion elements Ap = {a ∈ A : pa = 0}.
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Note that (−)p = Hom(Z/pZ,−) is a left exact functor by Proposition A.8. Let A be an
abelian group. We have the following projective resolution of Z/pZ:

0 →Z
·p−→Z→Z/pZ→ 0.

Note that this is an injective resolution in Abopp. Applying Hom(−, A) to this resolution,
we get the following complex

A
·p−→ A → 0.

Taking cohomology we find

Rn(−)p (A) = Extn(Z/pZ, A) =


Ap n = 0

A/p A n = 1

0 n ≥ 2.

(ii) We now consider the torsion functor (−)tor from Example A.31. Let A in Ab and note that
Ator = lim−−→p≥1

Ap . Let 0 → A → I∗ be an injective resolution. We find

Rn(−)tor(A) = H n(I∗tor)

= H n(lim−−→
p≥1

I∗p )

= lim−−→
p≥1

H n(I∗p ) =


Ator n = 0

lim−−→p≥0
A/p A n = 1

0 n ≥ 2.

We can compute R1(−)tor(A) more explicitly as

R1(−)tor(A) = lim−−→
p≥1

A/p A = lim−−→
p≥1

1
p A/A = (A⊗Q)/A.

The main result about derived functors is the following theorem.

Theorem A.35. The collection of functors (RnF )n≥0 forms a universal cohomological δ-functor.

Proof. We refer to [Wei13, Theorem 2.4.7]. ■
Example A.36. Consider the short exact sequence

0 → 1
2Z

·2−→ 1
2Z→ 1

2Z/Z→ 0.

We compute the long exact sequence induced by the δ-functor (Rn(−)tor)

0 → 0 → 0 → 1
2Z/Z→Q/Z

·2−→Q/Z→ 0 → 0 → . . . ,

using the results from Example A.34.
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