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Functional Data Analysis Bachelor Thesis

Abstract

We introduce functional data and a basis function systems to represent it. The B-spline
basis system is explored further as we will apply it in our application. We explore principal
component analysis and functional principal component analysis. We apply functional prin-
cipal component analysis on yield curves of the United States. We validate that functional
principal component analysis gives similar results as principal component analysis. We create
two different scenarios namely a crisis scenario and a growth scenario and apply functional
principal component analysis on them. Here we see that in a extreme scenario the impact
of the second and the third principal component both significantly increase. In the end we
introduce forecasting of functional time series using a weighted functional principal component
regression. We apply a simplified model of this forecast on the yield curves.
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1 Introduction

Advancement in data collection technology has introduced a new type of data, namely functional
data. New types of data require new tools for analyses. In this paper we will discuss functional data
analyses. Data collection technology has made it possible to permit heavily densely observations
sampled over time, space or other continua. We then assume that there are underlying functions
which generate the observations, hence the name functional data. We observe this function on
discrete time points which are our data points. From a mathematical perspective, they are taken
to be random elements of an infinite dimensional Hilbert space. The interested reader should con-
sult the book Horváth and Kokoszka (2012). Some examples of functional data are growth spurts,
weather data and data of a person’s handwriting.

These underlying functions and their derivatives hold additional information which could be
very interesting. In multivariate statistics when we analyse data we have data points and treat all
of them as individual observations. With functional data we treat a curve or surface as a single
observation. The main problem with functional data is the Curse of Dimensionality which refers to
the correlation between the amount of data points and the amount of space for these data points.
With functional data we have a continuum hence there is a infinite amount of space but we only
have a finite amount of data points. As a result Classical Multivariate data analysis is not fully
able to analyse functional data. Thus there is a need for a alternative way to analyse the functional
data, which is called functional data analysis (FDA). We will mainly consult the book of Ramsay
and Silverman (2005)

As we then have the recorded curve the questions then arises how to interpret it. This curve
can contain outliers and measure errors. Hence we want to find some kind of system which fits this
curve but also keeps these disturbances in mind. Therefore with FDA we want to approximate the
underlying function x which generates the data y. We use a system of basis functions to estimate
x. A system of basis functions is a set of K functions which are independent of each other. There
are various basis functions which can be used but for the sake of this paper we will only consider
spline functions. FDA of course greatly depends on how we choose our basis system. Which basis
functions, how many basis functions? Hence we view K as a parameter on itself. These basic
functions should ideally have the same characteristics as the data. For example if we look at pe-
riodic data we would like to use functions which are themselves periodic. Because then we can
capture this feature of data more naturally. The choice of basis system is particularly important
for the estimates of the derivatives. We should also consider the smoothness of our basis system
because if we estimate to precisely we might include too much noise in our system. This results in
high-frequency oscillations and poor estimates of the derivatives. So there is a trade-off between
the fit of our basis system and the noise of the measurement.

As stated before we are going to focus on spline functions for our basis system. Spline functions
are the most common used functions for the approximation of systems for non-periodic functional
data. This system combines fast computation of polynomials with flexibility. We divide our data
in intervals and we define over each of these intervals a polynomial of order m. At the knots which
is where the adjacent intervals the polynomials join up ”smoothly”. Placement of knots can be
at intervals, equally spacing, at data the points or dependable of density of the data. The splines
are then fully characterised by the location of the knots and their order. Increasing the order does
not always comes with a better estimation. Because if we increase the order we also increase the
influence of noise in our system. There are multiple ways to construct such systems but the most
common used is the B-spline basis developed by de Boor De Boor (2001).
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We are going to apply our basis system to yield curves of the United States. Yield curves
represent annual interest rates of government-issued stocks. The cure is a graph of yield versus
time to maturity. We use the package ”FDA” and ”Yieldcurve” in R to get our data. We will first
look at principal component analysis in a multivariate context. After we will transcribe this to an
functional context, functional PCA (fPCA). The main goal of PCA is to identify patterns in the
data. PCA aims to detect the correlation between variables. If a strong correlation between vari-
ables exists, the attempt to reduce the dimensionality only makes sense. Functional PCA (fPCA)
uses the same thinking as with PCA but only in an functional context. PCA has been applied to
Yield curves in infinite dimension and we want to validate those results.

The structure of the thesis is as follows. In chapter 2 we will first show some examples of
functional data. We explain why we call them functional data and discuss the underlying function
which we assume exists. We than will explain more about functional data and how to approach it.
Chapter 3 we introduce the system of basis functions. Especially the method we will use later with
the yield curves, namely b-splines. Now we have a way represent the data we will discuss principal
component analyses and functional principal component analyses in chapter 4. This is largely
based on Ramsay and Silverman (2005). Now we can apply this technique on yield curves using R.
At first we will introduce yield curves and explain that they are often used as health indicators of
the economy. We will discuss our strategy and how we did our fPCA. Then we discuss our results
and see if we get similar results as using PCA. At the end we investigate how much impact specific
economical states have on our fPCA and present our conclusion.
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2 Introduction to Functional Data Analysis

2.1 Introduction

We call Functional Data a set of observations along a continuum which are taken together to form a
single curve or surface. Time is a common used continuum but any continuous domain is sufficient.
Other continuum’s are spatial position, frequency, weight, and so forth.

An example of functional data is the temperature and precipitation at 35 different locations
in Canada over 1960 to 1994. The data is collected from 35 different weather stations in Canada.
The temperature curves are displayed in figure 1. Even though the cities are not all close to each
other they do show similar trends. For example Vancouver and Toronto are both in this data set
and still they have the same trend. This could be explained by seasonal weather. Furthermore the
curves are reasonable smooth as there are no extreme outliers or high oscillations. Therefore we
can assume that there exists an underlying function which generates the data. So we then view
the temperature of a city over a year as one entity captured in a curve and treat it as such. The

Figure 1: Weather data of different cities.

main application that we will explore later in the thesis are yield curves. The term yield curve can
be used on various curves in a economic setting. We will look at the most common used setting
which is in the bond market. Here it refers to a plot made by the yields of government-issued
stocks. Where the yield curves represent effective annual interest rates of these bonds. The curve
is a graph of yield versus time to maturity. Here we also assume there is an underlying function
which we will try to estimate and use to analyse the data.

2.2 Functional data

We consider a observation to be functional if the data implies the existence a function x which
generates the data. This does not mean that x is fully recorded because that would mean that
we would have to store an infinite number of values. Furthermore we want x to be smooth. We

5



Functional Data Analysis Bachelor Thesis

mean by smooth that the function x can be differentiated one or multiple times. In practice we
only assume this property holds and we do not prove if directly. We will use the discrete data
Y = {y1, y2, ..., yn} to estimate the function x and some of its derivatives. Denoted Dmx, where
m is the order of the derivative. For example if we track the position of an object the underlying
function x would then represent the position of the object in space and time. Its first derivative
Dx would be its velocity and D2x is the acceleration. Both of these derivatives store a lot of
information and hence are important for the analysis of the data. The actual collected data may
not be smooth at all due noise and measurement error. Hence we smooth our data before we further
analyse it. The interval T over which the data is recorded may vary between the curves. Also the
interval can be periodic for example if we look at yearly data. The function x in the beginning of
the interval will smoothly pick up the values of the end of the interval. We call those functions
periodic and non-periodic if the function does not have clear periodic behaviour. Finally, the data
may be distributed over a multidimensional domain. For example brain photographs where the
intensity and possibly colour composition is a function of spatial location.

The smoothness of the function x is an trade-off between additional information and the pos-
sibility of including more noise. If we have our data vector Y we use the following notation to
express yi

yi = x(ti) + εi, (1)

where εi is the error term regarding yi. This holds for i = 1, 2, ..., n. If we use vector notation we
get a simpler and cleaner expression

Y = x(t) + e, (2)

Where Y, x(t) and e are column vectors of length n. In the standard multivariate statistics model
for the distribution of the εi’s we assume that they are independently distributed with mean zero
and constant variance σ2. Then in this model we have the following formula for the variance

V ar(Y) = σ2I (3)

where I is the identity matrix of order n. However if we want to use this assumption of the
independently distributed errors with mean zero and constant variance σ2 for functional data it
oversimplifies the situation. Which is not viable. Rather we can assume that the variance of the
residuals will vary over the continuum. Also we have to consider correlation between εi’s. In fact
the concept of independently distributed errors which is made in the standard model is not realistic
in nature because it would require infinite dimension to achieve. Here the meaning of dimension
is that the observed data captures all of the information.For example, fluctuations in a large stock
market are often treated as having white noise properties, but in reality only a limited number
of stocks can be traded within a short time interval such as a millisecond, and consequently scale
stock prices will exhibit some structure within a time scale that is small enough. However we
do not always necessarily have to model the variable variance or auto-correlation structure in the
residuals. If we do use a complicated model for the variance and auto-correlation structure of
the residuals this could slow down computation significantly. However the estimates of functions
could be approximately the same as when we assume independence in residuals. Hence the payoff
might not always be as significant and so you should consider the importance of your residuals
model. Nevertheless a model which only specialises in the variance and/or auto-correlation can be
very interesting itself and may pay off with better estimation. We should also keep in mind that
errors or disturbances might multiply rather than add when the data are intrinsically positive, in
which case it is more sensible to work with the logarithms of the data. For more details about the
structure of the model of residuals and its importance one should consult Ramsay and Silverman
(2005).
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2.3 Functional means and variances

The classical multivariate statistics definitions apply equally to functional data. The mean function
with values

x̄(t) = N−1
N∑
i=1

xi(t) (4)

is the average of the functions point-wise across ”replications”. Similarly the variance function var
has values

varx(t) = (N − 1)−1
N∑
i=1

|xi(t)− x̄(t)|2, (5)

and the standard deviation function is the square root of the variance function.

2.4 Curve registration

Besides dealing with discrete measurements, often we have to deal with perturbed data as well.
Intuitively speaking, such a perturbation implies that the “peaks” and the “valleys” of given
functions are not aligned properly. We have two variations of this misalignment of the ”peaks”
and ”valleys”. One with respect to the x-axis and the other to the y-axis.

It is visible from figure 2 that the curves show similar behaviour but with a difference in the
magnitude of the peaks as well as a misalignment with respect to the x-axes or y-axis. These
horizontal perturbations might come from an uncertainty in the data sampling process or they can
represent an inherent variability of the process itself that needs to be separated from the variability
along the y-axes. Mathematically we talk about amplitude variation and phase variation.

Figure 2: Perturbed data displaying amplitude variation and phase variation.

Whether phase variation is a problem for the statistical inference depends on the specific ap-
plication. In general, the Karhunen–Loeve expansion of X is very different from the one of X and
an unaccounted-for warping can introduce errors and artefacts in the statistical analysis. There is
no canonical way to solve the curve registration problem. Liu and Müller (2004), Panaretos and
Zemel (2016), Kneip and Gasser (1992), Tang and Müller (2008) among others offer a variety of
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different registration methods. We will not further discuss these methods in this paper. Amplitude
variation however can be easier to solve. A method to solve this problem is multiplying the curves
with respect to their mean.

3 Representation of functional data

In this chapter we will discuss how to represent the data when handling functional data. In
multivariate statistics it is more straightforward. We have a set of points and this can be easily
represented as there are no unseen variables which you have to consider. With functional data
we assume that there exists an underlying function and this is what we want to represent. If we
succeed in doing so we can use strategies from the multivariate statistics and transform them to
be applied on the given representation.

3.1 Basis functions

A basis function system is a set of know functions φk that are independent of each other in a Hilbert
space. Again consult Horváth and Kokoszka (2012) for a more detailed explanation. This system
can approximate arbitrarily well any function by taking the weighted sum or a linear combination
of a number K of these functions. Basis functions give a linear expression of a function x

x(t) =

K∑
k=1

ckφk (6)

where there are K known basis functions φk. Let c be the vector of length K of the coefficients
ck and Φ as the functional vector whose elements are the basis functions φk. If we express (6) in
matrix notation we get

X = c′Φ = Φ′c. (7)

In reality, basis expansion methods represent the potentially infinite dimensional world of functions
within the finite-dimensional framework of vectors like c. The dimension of the expansion is
therefore K which is the amount of basis functions. However this is not a simple reduction to
multivariate data analysis. FDA also greatly depends on how the basis system, Φ, is chosen. An
exact representation or interpolation is achieved if K = n. Then we can choose the coefficients ck to
hold x(tj) = yj for each j. Hence the smoothing of the data as opposed to interpolation of the data
is determined by K. As a result we see K not as a fixed number but as a parameter itself which
we choose according to the characteristics of the data. The basis functions should ideally have the
same features as the functions that are being estimated. This would make it easier to estimate
those functions while using a smaller number of K. If we have a small K we obtained a set of basis
functions which captures the characteristics of the data. In general, the smaller K is we have more
degrees of freedom we have to test hypotheses and compute accurate confidence intervals the less
computation is required. Moreover the coefficients ck might even become interesting descriptors of
the data and contain valuable information. Hence there is no such thing as a universally good basis
it all depends on the characteristics of the data. The choice of system is particularly important for
the estimates of the derivatives

Dx̂(t) =

K∑
k

ĉkDφk(t) = ĉ′DΦ(t). (8)

Do note that some bases may work well for function estimation but are poor for the derivatives
estimates. This is because accurate representation of the observations may result in small but
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high-frequency oscillations in x̂. With functional data we can use various basis system however in
this paper we will only discuss B-spline basis. We will explore this basis system in chapter 3.4.

3.2 Introduction to splines

Spline functions are the most common used functions for the approximation systems for non-
periodic functional data. This system combines fast computation of polynomials with flexibility
with the spacing of the intervals. This can often be realized with only a modest number of basis
functions. We will first discuss the structure of spline functions, and then we will describe the
usual basis system used to construct it, the B-spline system.

3.3 Spline functions

A spline is a string of piecewise polynomials on intervals which are ”clicked” together. The first
step in defining a spline is to divide the domain over which a function is estimated in L intervals
separated by values τl, with l = 1, 2, ..., L− 1 which are called knots or breakpoints. Note that the
endpoints are τ0 and τL. Over each of these intervals a spline is a polynomial of specified order m.
The order of the polynomial is the number of constant needed to define it. The order is one more
than its degree, its highest power.

We will give an example of a spline function used to approximate the sinus function on the
interval [0− 2π]. On the left side op the panel we see the spline basis, on the other side we can see
how this interpolates to the points. In the top row the order of the spline function is three and we
increase it by one each row. The number of basis functions increases then with the order. Adjacent
polynomials join up smoothly at the breakpoints, so that the function values are bounded to the
interval where they are defined on. So in the top row the number of basis functions is five and it
increases by one each row. Here we can see that if we increase the order of the spline function the
fit of the spline increases. But of course as there is no measuring error increasing the order stops
having a effect after order 3. When we look at the derivatives of the spline functions they also
must meet a condition. Namely the derivatives order up to order m − 2 must also be one more
than its degree. For the total number of degrees of freedom we have the following rule

The total number of degrees of freedom in the fit equals the order of the polynomials plus the the
number of interior breakpoints.

If there are no interior knots, hence the interval is the full domain, then the spline reverts
to a simple polynomial. Increasing the order does not always come with a better estimation.
Mainly because if we increase the order we also increase the influence of noise in our system.
The main way to increase flexibility is by increasing the number of breakpoints. We can equally
space the intervals but we can also increase the number of breakpoints where the data has the
most complex variation. A notable remark is that we do not want an interval that does not have
data. Which is reasonable because when there is no data we can not capture function’s features.
Moreover note that breakpoints are not the same as knots. This is because we can have that two
or more breakpoints are coalescent or be coincident. With this we can engineer abrupt changes
in a derivative or even a function value at pre-specified breakpoints. The interested reader should
consult De Boor (2001) for further details on this matter. Thus the term breakpoint refers to the
number of unique knots, while knots refers to the values at the breakpoints. In conclusion, a spline
function is determined by two things: the order of the polynomials within the intervals and the
knot sequence τ . There is also a rule for the required amount of parameters to define a spline
function,

#parameters = m+ L− 1. (9)
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Figure 3: Sinus function.

3.4 The B-spline basis

As mentioned before we will mainly discuss the B-spline basis for the system of functions. We will
use this basis later when we examine yield curves in chapter 4. In the previous sub-chapter we
discussed splines but we have not yet talked about how to actually construct them. For this we
will define a system of basis functions φk(t) with the following properties:

• each basis function φk(t) is itself a spline function as defined by an order m and a knot
sequence τ

• since a multiple of a spline function is still a spline function, and since sums and differences
of splines are also splines, any linear combination of these basis functions is a spline function

• any spline function defined by m and τ can be expressed as a linear combination of these
basis functions

There are multiple ways to construct such systems but the most common used is the B-spline basis
developed by De Boor (2001). Which is also widely available in programming languages such as
R and Matlab. Other spline basis systems are discussed in De Boor (2001) and Schumacher et al.
(1981).

An order m B-spline basis function has the property that it is positive over no more than m
intervals. Furthermore these intervals are adjacent. This property is called the compact support
property and is very important for efficient computation. When we have K B-spline basis func-
tions, then the order K matrix of inner products of these functions will be band-structured. This
matrix will only have m− 1 sub-diagonals above and below the main diagonal containing non-zero
values. Hence no matter how large K is the computation of spline functions can be organised
such that in only increases linearly with K. Thus splines share the computational advantages of
potentially orthogonal basis systems. Do note that we lose differentiability of the functions that we

10



Functional Data Analysis Bachelor Thesis

Figure 4: Thirteen basis functions defining an order four spline with nine interior knots, shown as vertical
dashed lines, Ramsay and Silverman (2005)

try to estimate at the boundaries of the intervals. This is displayed in figure 4 where we lose differ-
entiability at the boundaries. Which makes sense because we do not know what happens beyond
the domain of the data. Hence we do allow the possibility that our functions may be discontinuous
beyond those boundaries. Note that each of the seven basis functions complies to the compact
support property. This behaviour of B-slpine basis functions is orchestrated by placing m knots at
the boundaries. When B-splines are actually computed the knot sequence τ is extended at each
end to add a additional m−1 replicates of the boundary knot value. We have discussed before that
it is not always preferable to have m − 2 derivatives at certain fixed points in the interior of the
domain. With B-splines this is can be readily accommodated. We place a knot at such fixed points
and every time we differentiate an additional knot is placed at that location as well. For example,
if we were working with order four splines, and wanted the derivative to be able to change abruptly
at a certain value of t but still wanted the fitted function to be continuous, we would place three
knots at that value. We use the notation Bk(t, τ) to indicate the value at t of the B-spline basis
function defined by the breakpoint sequence τ . The number k refers to the number of largest knot
or the value of the point immediate left of the value t. This notation gives us m + L − 1 basis
functions, as required in the usual case where all interior knots are discrete. We can now define a
spline function S(t) with discrete interior knots as

S(t) =

m+L−1∑
k=1

ckBk(t, τ). (10)

The question arises where to place the interior breakpoints or knots. The most common used
technique is equal spacing. This strategy works as long as the data is equally spaced. If this is
not the case one should consider placing a knot at every jth data point, were j is a fixed number
in advance. A special case of this is smoothing splines which we use in the Canadian weather
example. The data is then smoothened by a certain roughness penalty. In spline smoothing the
mean squared error is one way of capturing what we usually mean by the quality of estimate. In the
Canadian weather example we look at the square of the second derivative [D2x(t)]2 of a function
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at t. For more about smoothing one should consult chapter 5 Ramsay and Silverman (2005).
Lastly, we can place more knots in regions of the data containing high curvature, and fewer in

regions where there is less curvature.
An important note regarding features of spline bases is that increasing K does not naturally

result in a better fit to the data. We fix the order of the spline however the function space defined
by K b-splines is not necessarily contained within that K+1 B-splines. Complicated effects due to
knot spacing relative to sampling points can result in a lower-dimensional B-spline system actually
producing better results than a higher-dimensional system. However, if we increase K by adding
a new breakpoint to τ or by increasing the order and leaving τ unchanged then the K-space is
contained within the (K + 1)-space.

4 Functional Principal Component Analysis

In this chapter we will discuss Functional Principal Component Analysis (fPCA) which we will
apply on yield curves of the United States.

4.1 Principal component analysis

When doing analyses on any data there are multiple obstacles we need to overcome. Data sets can
be very big, how do we read the data? And what to do with it? Principal component analysis
(PCA) is a common technique for dimensionality reduction/extracting features/finding patterns
in high dimensional data. It does so by focusing on the main direction of variation and to find
features that summarise within them as much variation as possible. The interested reader should
consult Jolliffe and Cadima (2016) for more details about PCA. Before we introduce fPCA we will
first discuss PCA.

In classical multivariate analysis the variance-covariance and correlation functions can be diffi-
cult to interpret. And so does not always give a direct comprehensible presentation of the structure
of the variability in the observed data. PCA provides a reasonable easy way to look at the covari-
ance structure that is very informative. The central concept exploited many times in multivariate
statistics is that of taking a linear combination of variable values,

fi =

p∑
j=1

βjxij , i = 1, ..., N, (11)

or in matrix notation
fi = β′xi, i = 1, ..., N. (12)

where β is the vector of weighting coefficients applied to the observed values in the vector xi =
xi1,...,xip . In the multivariate situation, we choose the weights to display types of variation that are
strongly represented in the data. We can define PCA by the following step-wise procedure. Here
we define sets of normalised weights that maximise variation in the fi’s

1. Find the weight vector ξ1 = (ξ11, ..., ξp1)′ for which the linear combination values

fi1 =
∑
j

ξj1xij = ξ1xi

Have the largest possible mean square N−1
∑

i f
2
i1 subject to the constraint∑

j

ξ2j1 = ||ξ1||2 = 1.
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2. Carry out second and subsequent steps, possibly up to a limit of the number of variables
p. On the mth step, compute a new weight vector ξm with components ξjm and new values
fim = ξ′mxi. Thus, the values fim have maximum mean square, subject to the constraint
||ξm||2 = 1 and the m− 1 additional constraint(s)∑

j

ξjkξjm = ξ′kξm = 0, k < m.

In the first step we maximise the mean square to identify the strongest and most important mode
of variation in the variables. To be sure that the problem is well-defined we need the constraint
of the unit sum of squares on the weights. Otherwise the mean squares of the linear combination
values could be made arbitrarily large. On second and subsequent steps, we again seek the most
important modes of variation, but require the weights defining them to be orthogonal to those
identified previously, so that they are indicating something new. Of course, the amount of variation
measured in terms of N−1

∑
i f

2
im will decrease on each step. At some point, usually well short of

the maximum index p, we expect to lose interest in modes of variation thus defined. The definition
of principal components analysis does not actually specify the weights uniquely; for example, it is
always possible to change the signs of all the values in any vector ξm without changing the value
of the variance that it defines.

The values of the linear combinations fim are called principal component scores and are often
of great help in describing what these important components of variation mean in terms of the
characteristics of specific cases or replicates. To be sure, the mean is a very important aspect of
the data, but we already have an easy technique for identifying it. While doing PCA we look at a
number of dimensions that are smaller than the dimension of our data set but still as interesting as
possible. With interesting we mean how much the observations vary along each dimension. We do
not care how far away from the origin our data are, therefore we center data removing their mean.
Also, this distance from the origin can be unequal across dimensions and skew what we want to
see.

4.2 PCA for functional data

We have seen in short how PCA works for multivariate data now we are going to look how it works
in a functional context. Because we now work with curves as our observations and the function
values xi(s) are our variables. So we replace the discrete index j by a continuous index s. We
combine the weight vector β0 with the data vector x by calculating the inner product

β′x =
∑
j

βjxj .

When β and x are functions β(s) and x(s), summations over j are replaced by integrating over s
to define the inner product ∫

βx =

∫
β(s)x(s) ds. (13)

So the weight βj become functions with values βj(s). Using the notation (13), the principal
component scores with respect to weight β are now

fi =

∫
βxi =

∫
β(s)xi(s) ds. (14)

As discussed in the previous section PCA gives a way to explain our data. In the functional context
PCA gives a way to approximate/explain the curves which we have observed. We will first need
to find the appropriate weight functions. Again we will explain this by a step-by-step procedure.
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1. We first have to find the principal component weight function ξ1(s) for which the principal
components scores

fi1 =

∫
ξ1(s)xi(s) ds

maximise
∑

i f
2
i1 subject to ∫

ξ21(s) ds = ||ξ1|| = 1.

2. Next, compute weight function ξ2(s) and principal component scores maximising
∑

i f
2
i2

subject to the constraint ||ξ2||2 with the additional constraint∫
ξ2(s)ξ1(s) ds = 0

3. And so on as required where the weight function ξm must satisfy the mentioned additional
constraint

∫
ξkξm = 0, k < m on subsequent steps, known as the orthogonality constraint(s)

Each weight function has to define the most important mode of variation in the curves subject to
each mode being orthogonal to all modes defined in previous steps. Again we note that the weight
functions are defined within a sign change.

Before we further investigate the computational methods for fPCA we first must look to a
characterisation of fPCA. To do this we are going to discuss the characterisation of fPCA in terms
of the eigenanalysis of the variance-covariance function or operator. As we have seen before we are
in a functional context hence we view xi(t) as our observed values. Which we assume results from
subtracting the mean function values, so that their cross-sectional means N−1

∑
i xi(t) are zero.

We define the covariance function v(s, t) by

v(s, t) = N−1
N∑
i=1

xi(s)xs(t). (15)

One may prefer to use a divisor of N − 1 to N since the means have been estimated, but it makes
no significant difference to the PCA. We can find the principal component weight functions ξj(s)
using results discussed in Section A.5.2 of Ramsay and Silverman (2005). The weight functions
satisfy the equation ∫

v(s, t)ξ(t) ds = ρξ(s). (16)

With respect to an appropriate eigenvalue ρ. The left side of (16) is an integral transform V of the
weight function ξ defined by

V ξ =

∫
v(·, t)ξ(t) dt. (17)

We call this integral transform the covariance operator V . Hence we can express the eigenfunction
as follows

V ξ = ρξ (18)

where ξ is a eigenfunction rather than a eigenvector. So fPCA can be translated to the problem of
the eigenanalysis of the covariance operator V .

As we have discussed the characterisation of fPCA we can return to some computational meth-
ods for fPCA. Suppose we have a set of N curves xi. Before hand we have subtracted the mean
curve. Let v(s, t) be the sample covariance function of the observed data. We have setup the
eigenanalysis problem in (16) and we will consider some possible strategies for approaching this.
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While there are several strategies we will always convert the continuous functional eigenanalysis
problem to an approximately equivalent matrix eigenanalysis task.

A simple but efficient strategy that we will discuss in this paper is to discretize the observed
functions xi to a fine grid of n equally spaced values sj that span the interval T . This approach is
used by Rao (1958), Rao (1987) and Tucker (1958), who applied multivariate principal components
analysis without modification to observed function values.

We obtain an N×n data matrix X which we can put into a standard multivariate PCA program.
From this we can derive the eigenvalues and eigenvectors satisfying

Vu = λu (19)

for n-vectors u. Do note that we may have a n which is much larger than N .
A possible strategy is to work with the n×nmatrix V to find the eigenvalues of the eigenequation

(19). The variance matrix satisfies NN = WD2W′, and hence the non-zero eigenvalues of V are
the squares of the singular values of X. Furthermore the corresponding eigenvector are the columns
of U. If we use a standard FDA package, which we do, these steps are carried out automatically.

To transform these vector principal components back into functional terms there are some steps
needed. The elements of the sample variance-covariance matrix V = N−1X′X are v(sj , sk) where

v(s, t) is the sample covariance function. Let ξ̃ be the n-vector of values ξ(sj). Let w = T/n where
T is the length of T . Then, for each sj

V ξ(sj) =

∫
v(sj , s)ξ(s) ds ≈ w

∑
v(sj , sk)ξ̃,

so the functional eigenequation V ξ = ρξ has the approximate discrete form

wVξ̃ = ρξ̃.

The solutions of this equation will be the same as the solutions of (19), with eigenvalues ρ = wλ.
The discrete approximation to the normalisation

∫
ξ(s)2 ds = 1 is w||ξ̃||2 = 1, so that we set

ξ̃ = w−
1
2u if u is a normalised vector of U. Finally to derive the estimate of the eigenfunction ξ

from the discrete values ξ̃ we use a interpolation method. When the values sj are closely spaced,
the difference between interpolation method will be very small.

To discretize the integral is the first approach to fPCA used by Rao (1958), Rao (1987) and
Tucker (1958), who applied multivariate principal components analysis without modification to
observed function values.

There are multiple ways to motivate PCA, and one is to define the following problem: We want
to find a set of exactly K orthonormal functions ξm so that the expansion of each curve in terms
of these basis functions approximates the curve as closely as possible. Since these basis functions
are orthonormal, it follows that the expansion will be of the form

x̂i(t) =

K∑
k=1

fikξK(t),

where fik is the principal component value
∫
xiξk. As a fitting criterion for an individual curve,

consider the integrated squared error

||xix̂i||2 =

∫
[x(s)− x̂(s)]2 ds
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and as a global measure of approximation,

PCASSE =

N∑
i=1

||xi − x̂i||2. (20)

The problem is then, more precisely, what choice of basis will minimise the error criterion (20).
The answer is exactly the same set of principal component weight functions that maximise variance
components as defined above. For this reason, these functions ξm are referred to in some fields as
empirical orthonormal functions, because they are determined by the data they are used to expand.

5 Analyses on yield curves

In this chapter we will discuss our analyses on yield curves. First we will explain what yield curves
are, how we got our data and which packages we used. Next we will discuss and compare our
results using fPCA with the results of a paper which used PCA. We consult Choudhry (2019) and
European Central Bank (2021) to give accurate descriptions of our economical terms.

Figure 5: Interest curves of the United States bonds dating back to 1990.

5.1 Yield curves

Before we can discuss yield curves we first need to introduce bonds. A bond is a fixed income
instrument that represents a loan made by an investor to a borrower (typically corporate or gov-
ernmental). An individual bond is a piece of a massive loan. That’s because the size of these
entities requires them to borrow money from more than one source. Bonds are used by companies,
municipalities, states, and sovereign governments to finance projects and operations. Owners of
bonds are debt holders, or creditors, of the issuer. You have different type of bonds with various
maturity dates.
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A yield curve is a representation of the relationship between market interest rates and the
remaining time to maturity of debt securities. Easier said governments or companies want to
borrow money and to do so they sell bonds. These are then paid back over time with interest.
These interest rates are then displayed in yield curves. A yield curve can also be described as the
term structure of interest rates. Yield Curves date are published every trading day on the Treasury
website (Federal Reserve, European central bank, . . . .). The yield curves that we shall analyse
represents the interest rates of U.S. government bonds. From observing yield curves in different
markets at any time, we notice that a yield curve can adopt one of four basic shapes, which are;

1. Normal or conventional in which yields are at “average” levels and the curve slopes gently
upwards as maturity increases, all the way to the longest maturity;

2. Upward-sloping or positive or rising in which yields are at historically low levels, with long
rates substantially greater than short rates;

3. Downward-sloping or inverted or negative in which yield levels are very high by historical
standards, but long-term yields are significantly lower than short rates;

4. Humped where yields are high with the curve rising to a peak in the medium-term maturity
area, and then sloping downwards at longer maturities.

We very rarely observe a somewhat flat yield curves which suggests that investors require different
rates of return depending on the maturity of the instrument they are holding. It is also possible that
yield curves show some combination of the above-mentioned features. For instance, a commonly
observed curve in developed economies exhibits a positive sloping shape up to the penultimate
maturity bond, and then a declining yield for the longest maturity.

Figure 6: Observed yield curve shapes, Choudhry (2019)

When buying and selling bonds, investors include their expectations of future inflation, real
interest rates and their assessment of risks. An investor calculates the price of a bond by discounting
the expected future cash flows. The information content of a yield curve reflects the asset pricing
process on financial markets. Asset pricing theory tries to understand the pries values of claims
to uncertain payments. The interested reader should consult Cochrane (2009). The role of asset
prices including interest rates, stock returns, dividend yields and exchange rates as predictors of
inflation and growth is extensive and the literature is studied with great interest by policymakers1.

1Mehl (2009)
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Interest rates are normally viewed upon as always positive. The unconventional situation
has come to pass that we have negative interest rates. Yields on bonds and Treasury securities
(government bonds) have dipped below zero. Interest rates depend on supply and demand and this
is indicated by the neutral interest rate. Which is the rate where the inflation is steady and the
economy is at full employment. This neutral interest has been decreasing over the past decades
and as a result it is at an all-time low. All over the world countries and some big companies show
negative interest2. Negative interest rates operate in an upside-down world of banking. Instead of
a bank paying you to hold your money so you can save you have to pay them.

The main reason of implementation of negative interest rates is reserving them for the most
desperate of times, economically speaking. They have been promoted as methods to spur intense
borrowing and spending, to push inflation back up to target and to devalue a country’s currency,
boosting trade. Hence to increase the growth of a country’s economy.

But there is also reason for this negative interest which can not be solved that easily. The main
reason is oversupply and a shortage of demand. The oversupply is caused by various developments.
One of them is that we have developed in what is called an ageing society. Life expectancy has
increased and therefore our pension is longer and we need more money, so we save more money. The
demand is also a lot lower as the biggest companies are tech companies like Amazon, Google and
Facebook. These large tech companies mainly offer services and do not need expensive machinery
so there is less need of big investments. Furthermore if you loan money it must be profitable else
you would only lose money on the interest rates. One should consult Cœuré (2016) and Rognlie
(2016) for more detailed economical reports about negative interest.

Another concerning development is the inverted yield curve. When the interest rates on long-
term government bonds are lower than the interest rates on short-term government bonds, the
yield curve is inverted. For many economists, this means one thing: an economic recession is on
the way. That’s because, for the past six decades, three months of an inverted yield curve was
followed by a recession. The yield curve has inverted in March and has inverted for over a quarter
so are we going in to a future recession? This is not certain because the yield curve is distorted
by the FED. And policymakers do know about the inverted yield curve and act accordingly. The
interested reader should consult Wright (2006).

5.2 Data

We got our data from de YieldCurve package in R via command data(FedYieldCurve). These are
the yield curves with maturity dates 3 months, 6 months, 1 year, 3 years, 5 years, 7 and 10 years.
Our yield curves start in 12-31-1981 and end in 30-11-3012. Our time periods are months and
we look at monthly mean. We convert our data to a matrix and from there we can compute our
b-spline basis functions. We consult the book J. Ramsay, Hooker, and Graves (2009) for most of
the packages and functions.

5.3 Fitting basis to Yield curves

We are going to use the package ”FDA” to analyse the data. We plotted a sample of the yield
curves which can be seen in figure 7. We want to compute the basis functions and for this we are
going to use B-spline basis functions. Using the function smooth.basis we compute these functions
in R. Now we can interpolate these basis functions to our data and then we can do our analysis on
this approximation.

2PWC (2019), European Central Bank (2021)
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Figure 7: Sample of yield curves from our data.

5.4 Analyses of Yield curves

We have fitted a system of b-spline basis functions which approximates the underlying function.
We will use this system to perform fPCA on the yield curve data. To check if FDA is a possible
tool to analyse functional data we want to validate statements made by researchers and economist
about yield curves who used PCA. If we obtain comparable results it would be an argument to use
FDA more often when analysing functional data.

We will directly compare our results with Ramin Nakisa (2021). They applied PCA on U.S.
yield curve data which dates from 1950-01-01 up to the present day. The maturity dates are 1Y, 2Y,
5Y, 7Y and 10Y. Note that we have more maturity dates. The results of their PCA is illustrated in
figure 8. The red flat line is the first principal component, and corresponds to a parallel move up

Figure 8: Red = PC1, Green = PC2, Blue = PC3.

and down in the level of the entire yield curve. The green line is the second principal component
and is a steepening and flattening of the curve. The third component is a twist. For this data the
first principal component captures 98.98%. The second component manages to capture 0.96% and
the third component 0.05%, beyond that only 0.01% of variance remains.
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5.5 Results of fPCA

We will break this subsection in three parts. In the first part we will talk about what we did and
why we used certain strategies. The second part will be about our results and in the third and last
part we will compare our results with the results of the earlier mentioned paper which used PCA.

5.5.1 Strategy

For all our programming we used R. We used the packages ”YieldCurve” and ”fDA”. For the
approximation of basis system of functions we use b-splines as this is the most common used for
non-periodical data. For conveniency we equally space our intervals so we have eight knots which
results in seven intervals and six breakpoints. The number of basis functions is eight so we have
cubic splines as nbasis = nbreaks + order −2 hence the order is four. We chose for cubic splines
as again it is most commonly used. Using the package ”FDA” we could easily apply fPCA and we
only computed the first four principal component as the other principal components are negligible
against the first three.

5.5.2 Results of fPCA

First we look at the variance explained by the first four principal components.

PC1 PC2 PC3 PC4
0.9843 0.0147 0.00065 0.00016

The principal components that are computed using fPCA are similar to the principal component
computed using PCA by Ramin Nakisa (2021). The first principal component explains almost all
the variance, and after the third principal component there is little variance not explained. In figure
9 there is a plot of the eigenfunctions to check if the interpretation of the first principal component
is also the same. We can than use this to check the statements with respect to the interpretation
of the second and third principal component. We will only plot the first three principal component
as after that there is not much variance unexplained.

Figure 9: Red = PC1, Green = PC2, Blue = PC3

All the yield curves can be constructed as linear combinations of these first three principal
components. We can derive from this that the first principal component corresponds with a feature
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of the yield curves which is constant over time, the intercept. Combining this with the variance
explained by this principal component we know that the intercept of the yield curve has a big
impact on the rest of the curve. The second principal component is orthogonal to the first principal
component. Moreover it is increasing and hence this hints that it corresponds with the slope of
the yield curves. We will see in other plots this is indeed the case. We can not say much about the
third principal component yet but as its slope does change this might imply that it has something
to do with the curvature of the curve. Furthermore, we will investigate this further in the same
manner as we will do with the second principal component. As we know that the first principal
component corresponds with the intercept we can use this to determine the corresponding features
of the second and third principal component. We do this by using scatter plots where we plot the
first principal component to the second or third principal component. We will first discuss the
second principal component.

Figure 10: PC1 to PC2 scatter plot.

Because all the principal component are orthogonal to each other we can rotate the data in
the direction of the principal components. This way we can observe the relation between the
second principal component with a certain feature of the data as we know what the first principal
component relates to. Note that the yield curves are highly correlated hence we do not see clear
clusters (each point represents a yield curve). So the idea is that we take two curves with a similar
value of the first principal component, which corresponds with the intercept, and we have opposite
values for the second principal component. If we then plot these two curves in a graph we can see
what the second principal component corresponds with. This is displayed in the following plot

Note that the curves have opposite slope and using the information from figure 10 we can
determine that the second principal component corresponds with the slope of the yield curve.
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Figure 11: Two curves with similar first principal component but are differentiated by the second principal
component

We can do the same for the third principal component and we observe that is corresponds
with the flexing of the slope of the yield curve. Again we use the first principal component to

Figure 12: Scatter plot PC1 to PC3

differentiate the third principal component.
Again we take two curves with a similar intercept but have very different values for the third

principal component. We can derive then from this plot that the third principal component corre-
sponds with the flexing of the yield curve.
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Figure 13: Curves which are differentiated by the third principal component

5.5.3 fPCA versus PCA

As stated before we are going to compare our results with the PCA displayed by Ramin Nakisa
(2021).

PC1 PC2 PC3
FPCA 98.43% 1.47% 0.065%
PCA 98.98% 0.96% 0.05%

The differences are very small moreover as we can see in the plots of respectively the eigenvectors
and eigenfunctions in figure 8 and figure 9 are also very similar. From multiple papers and analyses
of applying PCA on yield curves it followed that the first principal component corresponds with the
intercept, the second principal component with the slope and the third principal component with
the curvature of the yield curve. As we have seen in chapter 5.5.2 we can validate these statements
using fPCA.

5.6 Extreme situations and its influences on principal components

We know that fPCA is a way to handle big data sets and give a better interpretation of the variance
structure. We have seen we can extract certain features of the data set corresponding to the first
three principal components. However we have a big data set containing multiple scenario’s of
economical ”stages”. Our data encompasses both economic prosperity and also a huge financial
crisis. Furthermore the economy has overall grown during the time period of our data. The
question is that we asked ourselves is whether these scenarios have a big impact on our fPCA.
Does the relation between the principal components and the features of the yield curves still hold
if we look at extreme situations? Is the first principal component still the most significant? Do
these scenarios have any influence on the variance explained by these principal components?

Our data starts in 1981 and ends in 2012 during this time period there have been a period of
great economic growth and a financial banking crisis. We made two scenarios namely; The growth
scenario which is the period of 1998-04-31 to 30-04-2002 as according to Forbes (2020) that in this
period there was great economic growth. The crisis scenario is set in the period 30-06-2008 until
30-11-2011. As in this period the financial crisis occurred, The Guadrian (2011). Note that these
periods are not equally big. We then applied the fPCA on this data sets in the same manner as
we did before. We will compare these result per principal component starting with the first one.
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PC1

Variance explained by PC1:
All Growth Crisis

0.984 0.942 0.840

We can immediately see that the first component significantly explains less variance in our scenarios.
Especially in the crisis scenario which indicates that the intercept is less important for our scenarios
then in the overall situation. Before we continue our analyses we must note that the overall scenario
is in fact also a growth scenario. We know this because the economy has grown in the period 1981-
2012. So it can be expected that the growth scenario is similar to the overall scenario.

Figure 14: Red = All , Blue = Crisis, Green = Growth

First we must note that this a zoomed in picture hence there is more oscillation than in other
plots. So in the crisis scenario we can still assume that the first principal component corresponds
with the intercept. Whereas the second principal component in the growth scenario is no longer
constant but decreasing. We can explain this by looking at the data set that we have for that
period. The intercept during this period is constantly decreasing which could explain the decreasing
component. Which means that it could also be that the first principal component relates to the
the slope of the yield curve. Which is more probable hence we assume it does and we will try
to validate this by looking at the second principal component. Note that this does not work in a
similar way for the crisis scenario. This could be explained by the fact that the economy of the
U.S. is very stable and strong and can withstand a crisis. There was always faith in the recovery
of U.S. economy hence the component flattens when it crosses a certain threshold. Whereas the
trust in the growing economy is as one that never stops growing.
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PC2

Variance explained by PC2:
All Growth Crisis

0.0148 0.0557 0.1502

This result is very interesting as the second principal component is way more significant in our
extreme scenarios, especially for the crisis situation. Before we make any statement about the
interpretation of the second principal component of these scenarios we first have some notes.

Figure 15: Red = All , Blue = Crisis, Green = Growth

For the crisis scenario we saw that the first principal component still relates to the intercept.
Hence if this second principal component is similar to the second principal component in the
overall situation we can make similar statements. However for the growth scenario we shall need
to do some extra work. We will then again make the scatterplots and use this to determine the
interpretation of the second principal component in the growth scenario. But first we will show
the second principal components with respect to each other in the different scenarios.

In figure 15 the principal components have similar trends in all the scenarios. The component
in the crisis situation is mirrored to the overall scenario but principal components are indifferent
under sign changes. The growth scenario is very similar to the overall result only it has a sharper
slope in the beginning but it flattens the same as in the overall scenario. So we can still claim
that the second principal component in the crisis scenario relates to the slope of the yield curve.
Thus particularly in the crisis scenario the slope of the curve does explain a significant amount
of variance. This could be justified by the following; the crisis happened unexpected and there
was a sudden fast drop. So even when the intercept was relatively high the drop of yield rate was
enormous. So the slope has a much bigger impact on the explained variance of the yield curves.
As stated before we need to do some extra work to make any statement about the second principal
component in the growth scenario. In figure 16 we have the scatterplot.
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Figure 16: PC1 to PC2 in the growth scenario

We apply the same method as we did in the overall scenario and we pick two yield curves
with similar values for the first principal component but different values for the second principal
component.

Figure 17: Yield curves differentiated by PC2

If we assume that the first principal component relates to slope than we it follow from these
plots that the second principal component is related to the intercept. However it is not very clear
and we do not have a strong result from these plots. Nevertheless if we keep our assumption this is
a very shocking interchange of positions of components. As they are orthogonal on each other they
swap places which means that on this particular time period the intercept is no longer the biggest
principal component as before it was significantly the biggest. The reason of this could be sought
in the overwhelming trust in the economy during a period of growth. As there would never come
an end to the growth hence one would only look at the slope of the curve instead of the intercept.
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PC3

Variance explained by PC3:
All Growth Crisis

0.0006 0.0019 0.0071

As in the overall scenario the third principal component is negligible in comparison with the other
two principal components. The plots are very similar and as the third principal component is not

Figure 18: Red = All , Blue = Crisis, Green = Growth

significant in comparison with the other components the plot is not very interesting. Again we can
still claim that the third principal component in the crisis situation is related to the curvature of
the curve. For the growth scenario we can not make any statements as we have no strong claim
about the interpretations of the first and second principal component.
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6 Forecasting functional time series

In this chapter we will further explore applications of functional data analysis. We are going to
apply forecasting on an functional time series, namely the before discussed U.S. yield curves. Before
we can do this we need a technique to expand the multivariate method of forecasting to a functional
context. We are going to use the method proposed in the paper Hyndman and Shang (2009). Here
they propose a method of forecasting of functional time series using weighted functional principal
component regression.

6.1 Forecasting

First we will briefly discuss the subject of forecasting. Forecasting is the prediction of the future
of the data based on previous and present data. A common example is the prediction of future
interest at some specific future time point. We will only discuss the forecasting of time series as
we have time series of yield curves. Furthermore we have functional data hence we have functional
time series. We observe our functions at times t = 1, 2, ..., n and we want to forecast at times
t = n + 1, n + 2, ..., n + h. We have our representation of our functions of the data which is
displayed in equation (1). Here we assumed that the functions xi(t) are sufficiently smooth. With
the yield curves we than have for the i’th maturity date the underlying function xi(t) at date t.

There are many other applications involving functional time series including those studied in
Erbas, Hyndman, and Gertig (2007), Hyndman and Booth (2008), Hyndman and Ullah (2007) and
Yao, Müller, and Wang (2005). Hyndman and Ullah (2007) used non-parametric smoothing on
each curve yi(t) separately to obtain estimates of the smooth functions x(ti). Then they proposed
a functional principal component approach to decompose the time series of functional data into a
number of principal components and their scores. Their model can be written as follows:

xt(i) = µ(i) +

K∑
k=1

Bt,kφk(i) + et(i). (21)

Where µ(i) is the weighted functions and we will discuss this term in more detail later. φk is the
k’th principal component and Bt,k are the corresponding scores. Furthermore et(i) is the error
term which is i.i.d. random functions with mean zero. Because the principal components scores
are uncorrelated, Hyndman and Ullah (2007) suggested that each univariate time series can be
forecasted using a univariate time series model. By multiplying the forecasted principal component
scores with the principal components, estimated future curves are obtained. In the paper of Shang,
Hyndman, and Shang (2018) they extend the Hyndman–Ullah approach in several directions. They
introduce geometrically decreasing weights in the principal component decomposition to allow more
recent data to affect the results more than data in the distant past.

µ(xi) =

n∑
t=1

wtf̂t(i).

Here f̂t(i) are the estimated curves at maturity date i at time t and wt = k(1 − k)n−t is a
geometrically decreasing weight with 0 < k < 1.

With yield curves recent data has more weight on the future curves hence we want to use the
method explained in Shang et al. (2018) to forecast these curves. If we follow the steps from the
article Hyndman and Shang (2009) we obtain

yt(xi) = µ̂(xi) +

K∑
k=1

Bt,kφk(xi) + σ̂(xi)ε̂t,i. (22)
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Here σ̂(xi)ε̂t,i is the error term where σ̂(xi) depends on the maturity date and ε̂t,i is an overall
error. As stated before this is an independent univariate time series model hence we can apply
regular multivariate forecasting on this series.

For the sake of this paper we use a slightly different and robuster model for our forecast. Because
of time constraints and in the scope of this paper we leave the error term out of our model. The
same applies to the weighted average function. This function is hard implement in our model.
Hence we use a mean average of the interest at a certain maturity date, fi. So for example the
mean interest over our time period of yield bonds with maturity date of three months. Therefore
our forecast model is more robust and can be written as

yt(xi) = µ̂(i) +

K∑
k=1

Bt,kφk(xi)

where µ̂(i) = 1
n

∑n
t=1 ft(i).

6.2 Forecasting Yield curves using fPCA

We use the packages ”forecast”, ”pracma” and ”ftsa” where ”ftsa” is developed by Shang et al.
(2018) to apply their method. We first make a data frame using the equation 22. This can be
transformed to an functional time series and we can than directly forecast this using the packages
”ftsa”.

Figure 19: Fifty forecasted yield curves in comparison with thirty past yield curves.

The forecast goes to its mean very fast hence there is little variance in the forecasted curves.
This could be explained by the small differences amongst the yield curves in our data. Furthermore
our forecast is higher than the last two yield curves of our data. This is shown in figure 20. This
shows that our intercept which is our mean function is too high. The rest of the yield curve might
be skewed as a result. Here we can see that our forecast is too robust as we do not give these
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curves a bigger weight in our mean function but we use just the mean of the whole time period.
Nevertheless we do see in figure 19 that they have the same trend as our data. They all have the
same nod between the six and eight year maturity date where the curves flatten.

Figure 20: Fifty forecasted yield curves in comparison with the two last yield curves.

7 Conclusion and further work

We introduced functional data and showed a way to represent the data using functional basis
systems. We explored PCA and fPCA and focused on a economic application, namely yield curves.
To represent our data of yield curves we used B-splines. We discussed PCA on yield curves and
using this method certain statements can be done regarding the first three principal components
and to what they relate to, namely.

PC1: Parallel shift of yield curves/level/intercept on the y-axes;

PC2: Tilting of the curve/slope;

PC3: The flexing/curvature of the curve.

We have validated these claims using fPCA and we had similar values for the principal compo-
nents. So most of the variance is explained by the first principal component. The second and third
together explain the rest of the variance. Hereby we showed that we can expand our functional
analyses as we have similar results as multivariate analyses. Although the statements are verified
using fPCA we did discretize the function domain in a grid of points before applying the fPCA.
Thus one could question our methods as truly being FDA and the effective use of it. Nevertheless
this opens the way for more research as fine tuning a new analyses will eventually improve this
method. We use yield curves which are uncorrelated but it could be very interesting to validate
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that we can apply the same strategy to dependent data.

We also sought the impact of extreme economical scenario’s on our principal components. First
we will discuss the crisis scenario. Because the principal components where very similar as in
the overall scenario we can hold our claim which we did for the overall scenario regarding the
interpretation of the principal components. We have seen that in times of crisis that the second
principal component explains significant more variance than in the overall situation. As the second
principal component relates to the slope which means that the slope together with the intercept of
the curve explain almost all the variance in the crisis scenario. The third principal component did
not have any significant changes. The explained variance is bigger but still negligible with respect
to the first and second principal component.

The fPCA in the growth scenario gave very different results than our overall and crisis scenarios.
The first principal component does not relate to the intercept. The growth model implies that the
first principal component relates to the curve of the yield curve. As a result with this assumption
we can link the second principal to the intercept. For the third principal component we can still
hold our claim that it relates to the curvature. Hence the first and second principal components
in the rapid growth scenario have interchanged their interpretations but we should be careful with
these conclusions. As the statements are not very strong and might be proved wrong. Hence to
make any strong and valid statements about the growth scenario further research is needed.

Furthermore the domain of our data of the scenarios is not the same and is significantly smaller
than in the overall situation. Hence our results and conclusions do not have the same signif-
icance as statements over the overall data and might be skewed. Thus for further research one
should use data from other countries and cross check the claims and conclusions made in this paper.

We investigated the forecasting of functional time series with a weighted average function. We
saw that our forecast converged to the mean fast but further it was relatively well fitted. We used
a robust and simplified model for our forecast. For future work one could explore what kind of
model should be fitted to the error term. Furthermore using the weighted average function as in
Hyndman and Shang (2009) could also improve the fit even more.
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