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Abstract

Drug development for targets in the brain is a difficult research topic. To improve quantitative
understanding of drug pharmacokinetics (PK) in the brain, a mathematical model for 3D brain units
was established by Vendel, Rottschäfer and De Lange [1][2][3]. CapSys is a software program that
has translated this mathematical model into a computational model. In this thesis the quality of
the simulation in CapSys will be investigated by comparing it to exact solutions of the differential
equations it simulates. The focus of this investigation will be on the diffusion equation in different
domains within the software. CapSys correctly simulates the diffusion equation in a cubic domain.
The simulation converges to the exact solution at the expected rate with decreasing time steps and
grid size. Further qualitative analysis does show some issues appearing with rounded shapes in the
domain, such as cells.
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1 Introduction
Two of the most important fields of study in pharmaceutical sciences are the fields of pharmacoki-
netics and pharmacodynamics. Pharmacokinetics describes what the body does to a drug, including
the uptake, transportation and metabolism of the drug. Pharmacodynamics describes what the drug
does to the body, including the desired effect at the target site, but also undesirable effects. Together,
pharmacokinetics (PK) and pharmacodynamics (PD) can model the concentration of a drug at dif-
ferent areas in the body over time and describe the effect on the body at that dose. This methodology
is called pharmacokinetic/pharmacodynamic (PK/PD) modelling. An often expressed adage in the
field of toxicology is ”The dose makes the poison”, a quote often credited to Parcelsus [4]. PK/PD
modelling allows us to optimize the dosage, such that a drug does not become a poison.
The modelling of pharmacological phenomena has lead to the creation of the field of mathematical
pharmacology. By combining mathematical models with pharmacological research data, we can get
more insight into why something does or doesn’t work. This increased understanding can then be
experimentally tested in a pharmacological setting.
A model is a simplified description of depiction of a more complex underlying topic. Well known
pharmacological models include the well known images of signal transduction cascades in cells.
PK/PD modelling is an example of a mathematical model, where reality is simplified and translated
into mathematical language. The advantage of describing concepts in a mathematical model, is that
it can lead to a better understanding of these concepts. Mathematical models show us the relation
between different variables very clearly in equations. By allowing us to easily change parameters,
models can show us the outcome of changing a certain parameter at any point in time.
Once a mathematical model has been established and shown to have good predictive capabilities by
comparing it to experimental results, the model can become a useful tool in itself. It can predict the
uptake and transport speed to the target organ of a certain drug, if the required properties are known.
The model can predict the concentration of a drug over time in places where it cannot be measured,
such as the brain. A good mathematical model can even lead to in silico - in computer simultation
- drug research, where computers run mathematical models to aid in drug discovery. This type of
research has the potential to reduce the need for in vivo - in living organisms - research on animals
and humans.
In this thesis, I will look at CapSys, a software program containing a mathematical model for drug
transport in the brain. CapSys will be analyzed based on its implementation of diffusion of drug
through the brain intersitial fluid. To get there, first we need to understand the physiology and phar-
macology that the mathematical model is based on. Then, the mathematical model itself will be
laid out. After that we will solve the diffusion equation in the mathematical model for several types
of domains. This will give exact solutions to those equations that we can compare the simulations
from CapSys to. Fourth will be the theoretical background behind the expected difference between
the exact solution and our simulation. Then we will look at the actual results from the simulations
in CapSys. Finally, we will discuss the implications of the findings.

2 Physiology and pharmacology of the brain
In order to give a good mathematical description of drug distribution mechanisms within the brain,
an understanding of both the physiology and pharmacology of the brain is required.
Physiology describes how living organisms function. It covers the whole range of function, from
the function of a single protein in a cell to function of multiple organs working in conjunction in the
human body [5]. Central to the study of physiology is the concept of homeostatis. Homeostasis is a
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steady range of conditions that a living system attempts to maintain. When a function or condition
fluctuates too far from the homeostatic range, a healthy body has mechanisms that can restore that
equilibrium.
Pharmacology is the study of the effects of drugs on the function, or physiology, of living organ-
sims. This broad term often captures the fields of pharmacokinetics and pharmacodynamics men-
tioned previously. Pharmacokinetics describes the uptake, transportation and metabolism of drugs
in the body. Many facets of pharmacokinetics can vary between organs, because of physiological
differences between them. An important example of a physiological element in the brain that has
a large impact on pharmacokinetics is the blood-brain barrier (BBB). This barrier means that brain
capillaries have no pores in them, resulting in many drugs that can’t penetrate it [6]. Physiology and
pharmacokinetics are important to understand in tandem, as illustrated by the following example:
The BBB, an element of the physiology of the brain, normally makes the brain inaccessible to the
antibiotic penicillin. This might make it seem like this would rule out penicillin as a treatment
for meningitis. However, meningitis causes inflammation, which disrupts the homeostasis of the
brain. This disruption in homeostasis causes the physiology of the BBB to change. After these
physiological changes, penicillin is able to penetrate the BBB, making it an effective treatment.

2.1 Physiology of the brain
The brain is a vital and vulnerable organ. As such it is protected by mechanisms from forces out-
side the body and from toxins inside the body. While these layers of protection are all incredibly
important for our health, they are obstacles for drug targeting.
Protection from the outside mostly has to cover concussive head trauma. The first layer of protection
is the skull, making it incredibly hard to administer drugs directly to the brain. Beneath the skull,
there are three layers of membranes called meninges. From the skull inwards we find the dura mater
covering the inside of the skull, the arachnoid mater in the middle and then the pia mater around
the brain tissue. Between the dura mater and arachnoid mater the veins are located, draining the
blood back to the heart. Below that, the subarachnoid space is found between the arachnoid mater
and pia mater. This space contains a layer of cerebrospinal fluid (CSF) that helps absorb shocks.
Because the brain tissue is soft and delicate, this is important to reduce trauma.
Located centrally in the brain is the choroid plexus, an epithelial structure that produces CSF. From
the choroid plexus the CSF flows down past the brain stem, where it flows into the subarachnoid
space. It drains at the top of the cranium into veins. The choroid plexus produces enough CSF to
allow for the CSF to fully renew three times a day [5]. Flow of CSF from the choroid plexus through
the brain to the outflow in the cranium can be seen in figure 1.
Protection of the brain from toxins is mainly achieved through the BBB. The BBB is a collection

of cells that line the capillary blood vessels in the brain. It consists of both physical barriers, such as
tight junctions, as well as physiological structures, such as active transport systems [5]. These junc-
tions almost eliminate passive paracellular (through spaces between cells) diffusion through pores
in the capillaries in favour of active transport or passive transport through cells. Passive transcellu-
lar (through the cells) transport is possible for lipid-soluble molecules. For water-soluble molecules
that are important in the brain, such as glucose, there are active transport solutions. This means
that the interstitial fluid (ISF) in the brain is quite different from the blood plasma. The intersitial
systems, including the ISF make up an estimated 15-20% of total brain volume [8]. The differences
between brain capillaries with the BBB and regular capillaries are illustrated in figure 2.
Besides the BBB there are also barriers between the blood and choroid plexus. In addition to those
barriers, the choroid plexus also acts as a sort of barrier in the production of the CSF, not letting
unwanted molecules through. This is important, since the CSF and ISF are connected and exist in a
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Figure 1: Cross section of the brain showing the production and flow of CSF and all three meninges. The
CSF is produced in the choroid plexus in the center before flowing through the ventricles to the brain stem,
where it flows into the subarachnoid space between the dura mater and arachnoid mater [7].

diffusion equilibrium.
The brain ISF is supplied by the blood flow. Part of the drainage of the ISF comes directly from
drainage by the veins. Another major drainage source is the ventricular CSF. It has been estimated
that up to 20% of CSF could be drained ISF [8]. The third drainage path is through cervical lymph
nodes (in the neck) [9]. Combined, these methods of drainage cause advection (bulk flow) in the
ISF towards the regions of drainage.
Finally, there are the neurons that make up the majority of the brain. These act as physical barriers
for molecules in the ISF that are moving through diffusion or advection. Chemically, the neurons
are also nearly always active. This is most apparent at the synapses, where a signal is sent from one
neuron to the next by excretion of neurotransmitters into the ISF in the synaptic cleft. In these clefts
there are also many receptor proteins, making them essential targets for many drugs.

2.2 Pharmacokinetics of the brain
Drugs are delivered to the brain by the blood flow. To understand the drug delivery in the brain from
the capillaries onward, as the subject model of this thesis attempts, we need to understand all the
steps in the pharmacokinetics of the brain. Most models describing the pharmacokinetics of a drug
use the ADME model[10]:

1. Absorption

2. Distribution

3. Metabolism

4. Excretion
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We will describe each of these processes separately in detail as is relevant to the pharmacokinetics
of the brain.

2.2.1 Absorption

Absorption describes all the steps leading to the drug entering the blood circulation in the body. The
first important step here is the drug administration. There are several methods of administering a
drug:

• Oral,

• Rectal,

• Intravenous,

• and more.

Each of these administration methods can have entire chapters dedicated to their intricacies, so
the focus here will mostly be on oral - or gastrointestinal - administration. This is the most com-
mon method and features many obstacles that are shared by other administration methods in some
way. Generally, the goal of studying absorption is to increase the bioavailability of the drug. The
bioavailability is the fraction of administered drug that reaches the systemic circulation. Systemic
circulation is the section of blood circulation that supplies all organs with blood, the circulation that
leaves the heart through the aorta.
Oral administration of drugs leads to absorption mostly in the small intestine. Uptake in the stom-
ach rarely happens due to the acidic environment and the small intestine is simply the largest of the
organs in the gastrointestinal tract in terms of surface area. There are several mechanisms that im-
pact the bioavailability of drugs. First there is metabolism in the gastrointestinal lumen by enzymes.
Second, there is the uptake by the gut wall, which prefers lipophilic (soluble in fat) drugs. If a drug
does not go through the gut wall it is excreted before reaching circulation, reducing bioavailability.
While the gut wall is somewhat selective in favour of lipophilic drugs, it is not nearly as selective
as the BBB. In the gut wall, there is another set of enzymes that can metabolise the drug, lowering
bioavailability further. After passing through the gut wall, the drug is in the bloodstream, but not yet
in the systemic circulation. Blood coming from the gastrointestinal tract does not directly flow into
the heart, but flows into the portal vein towards the liver. The liver is where most drugs are even-
tually metabolized before excretion. For drugs that are administered gastrointestinally, they have a
chance to be metabolized by the liver before reaching the circulation. This is called the first-pass
effect and has a large impact on bioavailability. A recent example is the Covid-19 drug remdesivir,
which cannot be administered orally, because the first pass effect would eliminate nearly all of the
drug [11].

2.2.2 Distribution

After absorption, the drug has entered the circulation. After reaching the heart it is then spread
throughout the body by the arteries. Within the arteries, the drug moves with the advection of blood
and, in much smaller part, by diffusion within the blood. Since blood flows much faster than the
rate of diffusion, this second effect can largely be ignored.
After entering the brain through the brain artery, the artery splits into arterioles, which in turn split
into capillaries. These capillary blood vessels transport the drug throughout the brain. The blood
vessels are separated from the interstitial fluid (ISF) of the brain by the blood-brain barrier (BBB).
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(a) A two dimensional representation of a capillary net
structure. The blood flows in from the arteries into the
arterioles and into the capillary net from there. As the
capillary net passes through the tissue, oxygen is being
used by the cells and CO2 is moved into the capillaries.
The CO2 rich blood then flows out of the capillary net
through the venule into the veins. Image from NIH [12].

(b) Zoom-in on a cross section of a capillary, with a capil-
lary surrounded by the blood-brain barrier on the left and
a regular capillary on the right. The most important dis-
tinctions are the difference between the fenestra (pore) in
the peripheral capillary compared to the tight junctions that
are present in the BBB. The astrocyte feet in the BBB also
give more structure to the BBB. Image from an article in
Ther Deliv [13].

Figure 2: Stylised image of a capillary net structure and an image showing the difference between general
capillaries and those with the BBB surrounding them.

In figure 2a we can see a 2D representation of how a capillary net looks. In the gaps between blood
vessels we can find the ISF with the cells embedded there. From these capillaries, drug can move
from the capillaries by active and passive transport.
Passive transport is mostly achieved by diffusion. The rate of diffusion is affected by the environ-
ment in which the diffusion takes place and the properties of the drug molecule. On the environment
side the important factors are the permeability of the membrane, the surface area for transport and
the difference in concentration on either side of the membrane. Specific to the brain is a very low
permeability, since there are no pores in the capillaries due to the BBB. This means that there is
almost no paracellular (in between the cells) transportation, even for smaller molecules [14],[15].
Most transportation through the barrier is through channels, pumps and transcellular receptor medi-
ated transportation (RMT) [14]. Smaller lipophilic molecules are passively transported through the
cell membranes by passive diffusion.
On the drug side, there are three important properties that govern transport. First we have the size
of the molecule, smaller molecules are easier to transport. Second there is the lipophilicity of the
molecule, how well it dissolves in fat. Finally the charge, or ionization, of the molecule is impor-
tant. For the BBB specifically, the lipophilicity is the most important factor among these three.
Most transport has to go through cells and this mode heavily favour lipophilic compounds [10]. The
other factors do still matter, since even very lipophilic drugs are hardly able to penetrate the BBB if
they become too large.
After transportation through the BBB, the drug has reached the brain ISF. In the ISF the main
method of transportation is diffusion from the capillaries to the brain cells. There is also some
advection in the ISF towards the ventricular CSF as mentioned previously. Both the diffusion and
advection rates are affected by the presence of physical cells, that block a lot of the movement. In
many cases these cells are also the target of the drugs.
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2.2.3 Metabolism

Most of the metabolism of drugs takes place in the liver. After reaching the circulation, a por-
tion of the drug goes through the liver with each pass through the body. This results in the drug
concentration in the circulation decreasing over time. With this decreased concentration comes de-
creased diffusion to the target site and reduced effect. Different compounds have different rates of
metabolism. In designing medication, taking the rate of metabolism in mind in creating the drug
and the administration schedule is of great importance.

2.2.4 Excretion

Drug excretion, or elimination, can take place before or after the compound is metabolized. The
most common path for drug excretion by far is renal excretion, excretion through the urinary tract.
Besides that path, almost any part of the body that excretes liquids can cause excretion of active or
metabolized drugs. Other methods of excretion include through tears, sweat, milk or faeces. Taking
excretion into consideration is important in understanding the concentration of drug in the circula-
tion over time.

2.3 Protein binding of drug
Proteins are large molecules in organisms, that perform a variety of functions. They are involved in
metabolic processes, DNA replication, transportation of molecules and response to stimuli among
other functions. Many of these functions require proteins to bind other molecules. Since proteins
are everywhere in the body, this binding needs to be taken into account in most pharmacokinetic
models. Receptors, a category of proteins, are the target for many drugs.
There are two important categories in pharmacokinetics for protein binding: specific and non-
specific protein binding. Specific protein binding is binding to the intended target protein. Non-
specific protein binding is all other binding to proteins that aren’t its intended target.
Non-specific binding can occur almost anywhere in the body. After absorption, the first place to take
this in consideration are the blood vessels. This non-specific binding is generally reversible and dis-
sociation is generally rapid [10]. This means that bound and unbound drug are almost always in
equilibrium in the plasma. Protein-bound drug becomes too large a complex to diffuse through cell
membranes. This means that in our situation of diffusion through the BBB, protein-bound drug is
essentially removed from the circulation [10]. As mentioned in section 2.2.2, large molecules such
as these proteins cannot penetrate the BBB. Therefore there is very little plasma protein binding in
the brain ISF [16].
In the brain there are many receptors on the neurons. For drugs targeting these receptors, this of
course causes the desired specific binding. However there is also some non-specific receptor bind-
ing taking place. As with the plasma protein binding, specific and non-specific receptor binding is
generally reversible and over time reaches an equilibrium. With the reduced diffusion into the brain
ISF due to the BBB, non-specific binding can slow the rate of specific binding in the brain even
more. This makes it relevant to take into account in a model.
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3 Mathematical model of the brain
Drug delivery in the brain is a difficult subject to study. Brain physiology is an important part of
drug distribution within the brain, but this cannot easily tested in a laboratory setting. In order to en-
hance our understanding of the processes described in chapter 2, a mathematical model of the brain
was constructed. The model will not cover the metabolism (section 2.2.3) and excretion (section
2.2.4). This model was developed by Vendel, Rottschäfer and De Lange [1],[2],[3]. The base part
that was developed is the 3D brain unit. This unit is a small section of brain tissue surrounded by
capillary blood vessels. This 3D brain unit is made to contain all physiologically relevant processes
that take place in the brain.
First, the assumptions made in the creation of the model will be laid out. Then the 3D brain unit will
be described. This will be followed by a mathematical description of the 3D brain unit. After this
it will be described how we can simulate larger sections of the brain with a 3D brain unit network.
Finally, the different domains that are studied in this thesis will be described.

3.1 Assumptions
As mentioned, any model relies on assumptions and it is important to state those explicitly. We will
start with the assumptions about the capillaries:

a) Blood flows at a constant speed.

b) Blood can only enter the system through the arteriole and only leave through the venule (there
are no other capillaries that it can enter or exit through)

c) Drug concentration in the blood that flows into the brain unit can be described as a function
of time

d) Diffusion of drug through the blood plasma is a negligible form of transportation in the cap-
illaries and will be left out

e) Drugs are not bound to proteins in the blood plasma and are all available

Assumption c) is there to exclude absorption, metabolism and excretion from the model. Those
factors can be taken into consideration when constructing such a function of time. Assumption e)
contradicts the points mentioned in section 2.3. This is covered by constructing the concentration
curve of the blood entering the arteriole with the volume of distribution of the drug in mind, since
plasma protein binding is part of that volume.
For the ISF, we have a separate set of assumptions:

a) Drug moves through the ISF by diffusion and advection

b) The advection is uni-directional in the x-direction

c) Drug-receptor binding happens on the membrane of cells, drugs don’t have to cross a mem-
brane to bind to receptors

d) The total number of specific and non-specific binding sites remains constant

e) Drug-receptor binding is reversible
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Figure 3: Left: The structure represented by the 3D brain unit. An arteriole carries blood plasma (containing
drug) into a brain capillary bed, that is connected to a venule that drains the blood plasma. The brain capillar-
ies (red) surround the brain ISF (blue). Middle: the 3D brain unit and its sub-domains. The unit consists of a
brain-ISF-domain (blue) and a blood-plasma-domain (red). The blood-plasma-domain is divided into several
subdomains: Uin is the domain where the dose of absorbed drug enters the 3D brain unit, Ux1-x4, Uy1-y4
and Uz1-z4 are the domains representing the x-directed, y-directed and z-directed capillaries, respectively.
Right: Directions of transport in the model. The drug enters the brain capillaries in Uin. From there, it is
transported through the brain capillaries by the brain capillary blood flow in the direction indicated by the
small arrows. Drug in the brain capillary blood plasma exchanges with the brain ISF by crossing the BBB.
Drug within the brain ISF is, next to diffusion, transported along with brain ISF advection (indicated by the
bold arrow). Image from the article by Vendel et al [2].

3.2 The 3D brain unit
In figure 3 (left) there is an overview of the structure of the 3D brain unit. In the lower left is
the arteriole that supplies the blood to the 3D unit (Uin) and on the far upper corner is the venule
that drains the blood from the system (Uout). These two blood vessels are connected by a network
of capillaries that allow the blood to flow through our unit. To simplify the physical reality for
mathematical modelling, the brain unit is represented by a cube. Instead of the complex net of
capillaries that make up actual brains, as illustrated in figure 2a, the capillaries are located at the
edges of the cube, represented by red rods in figure 3. At the vertices, three capillaries go into the
vertex, with some flowing in and some flowing out of the vertex. At the vertices where the arteriole
or venule is connected, only capillaries that flow out of and in to the vertex exist respectively. The
arteriole and venule exist on opposite sides in all three spatial directions. This means that the
blood must travel through a capillary in the x, y and z directions. Because there are four edges in
each direction of the cube, there are four capillaries in each of the x, y and z directions, named
Ux,1−Ux,4, Uy,1−Uy,4 and Uz,1−Uz,4 as shown in the middle of figure 3.
Between the capillaries the brain ISF and the neurons are found. The drug enters the ISF from
the capillaries through passive and active transport, based on the concentrations of drug on either
side of the barrier. In the ISF the drug is transported through the ISF by diffusion and advection.
The advection is unidirectional in the x direction in the model, as shown on the right of figure 3.
Cells are located within the ISF and the drug cannot flow through them by advection or diffusion.
The model developed by Vendel, Rottschäfer and De Lange does not physically place cells in the
ISF, but considers them through adding so-called tortuosity to the model. Tortuosity is a value that
describes how much longer the path of a drug molecule is when compared to a straight path. This
mimics the blocking effect that going around cells has on the distribution of the drug through the
brain, as discussed in section 2.2.2.
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3.3 Mathematical description of the drug distribution in the ISF
The concentration of the drug in the ISF changes over time and location based on the diffusion,
advection and protein binding. Describing the dependency of the concentration on protein binding
also requires equations for protein binding based on concentration. The partial differential equations
that describes the changes in concentration over time are:

∂CISF

∂ t
=

D
λ 2 ∆CISF −νISF

∂CISF

∂x
,

− k1,on(Bmax
1 −B1)CISF + k1,offB1− k2,on(Bmax

2 −B2)CISF + k2,offB2, (3.1)

∂B1

∂ t
= k1,on(Bmax

1 −B1)CISF − k1,offB1 (3.2)

∂B2

∂ t
= k2,on(Bmax

2 −B2)CISF − k2,offB2, (3.3)

where:

CISF(t,x,y,z) : gives the free drug concentration at time t and point x,y,z in the ISF,
B1/2(t,x,y,z) : the concentration of drug bound to specific (1) and non-specific (2) binding sites,

as a function of time and location,

∆CISF : (
∂ 2CISF

∂x2 +
∂ 2CISF

∂y2 +
∂ 2CISF

∂ z2 ), the Laplacian of the concentration,

D : diffusion coefficient,
λ : tortuosity, the effect of going around the cells,

νISF : advection flow speed,
k1/2,on/off : associaton (on) and dissociation (off) rates,

for specific (1) and non-specific (2) binding sites,
Bmax

1/2 : total concentration of specific and non-specific binding sites.

The different parts of this system of equations will now be examined in more detail, starting with
equation (3.1). This equation describes the change in concentration of free drug over time at a cer-
tain location within the ISF. On the right/hand side (r.h.s.) of (3.1) the first term, D

λ 2 ∆CISF , describes
the diffusion of free drug over time. The constant term D∗ = D

λ 2 is the effective diffusion constant
and will from now on be abbreviated as such. The Laplacian ∆CISF describes how much free drug
diffuses towards or away from a point, based on the unmixed second partial derivatives.
The second part of equation (3.1) is−νISF

∂CISF
∂x . This describes the advection of the drug in the ISF.

It depends on the flow speed (νISF ) in the ISF and the derivative in the x-direction.
Next there is the second line of (3.1) that is linked with the two expressions (3.2), (3.3) that represent
the changes in concentration due to protein binding as discussed in section 2.3. One is for specific
binding (B1), while the other is for non-specific binding (B2). Mathematically for the purpose of
modeling concentration in the ISF, the two binding types function the same. In many experimental
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situations, the specific binding is often the desired outcome. The drug concentration in the ISF de-
creases with binding, which is governed by the association rate kon. Dissociation, with rate koff, from
the proteins increases the concentration in the ISF. Binding is increased with higher concentrations
in the ISF (CISF -term). There are finitely many binding sites, giving a maximum concentration of
bounded drug of Bmax

1/2 before all binding sites are occupied. As more binding sites are occupied the
rate of association reduces with the (Bmax

1/2 −B1/2) term. We can see that protein binding stops when
there is no drug in the ISF (CISF = 0) or if all receptors are saturated (B1/2 = Bmax

1/2 ). The rate of
dissociation increases with the amount of drug bound to binding sites.

3.4 Brain unit network
The brain unit described above is limited in its representation of drug distribution within the brain
due to its limited size and lack of interconnected capillaries [3]. By creating a network of the 3D
brain units above, larger sections of brain with interconnected capillaries can be represented. These
networks also allow for different brain units to be given different properties, such as a higher specific
binding site concentration. This can mimic the fact that some targets can be harder to reach than
others, as they can be further from the blood flowing in to the tissue through the arteriole.
The brain unit network consists of many connected brain units. Each brain unit, as described in
section 3.2, is a cube with capillaries on the edges. Two connected brain units share one of the
faces, where the ISF becomes one large area and the capillaries on the edges of the face are joined
together. There are no barriers between the ISF of the different brain units and drug can flow freely
between them by diffusion or advection.

3.5 Domains for this thesis
For this thesis, several domains were created in the CapSys software based on the model by Vendel,
Rottschäfer and De Lange [2]. The domains that were used will be discussed in more details here.

3.5.1 Cubic domain

First a cubic domain is used to assess the implementation of the diffusion equation. The reason this
domain is used, is that the discretization of the physical space works optimally with a cubic region.
This way all grid areas are present in full and not cut-off, as is the case in other domain types, such
as a sphere. To ensure there is no other interference of elements with the workings of the diffusion
equation, the cells and capillaries are removed from the domain. With the removal of the cells, there
is also no protein binding in this domain. This means that the domain consists of only ISF with
some starting distribution for the drug concentration. The distance between the capillaries, if they
would be included, is 50 µm. The cube in between the capillaries has its lower bound placed on the
zero-coordinates. This gives us the ranges for x, y and z from 0 to 50µm. While the capillaries are
not included, the area where they would be located is included within the domain as ISF. This means
that in all directions, the size of the domain is increased by two times the radius of the capillaries.
With the radius of the capillaries set at 2.5µm, the total domain becomes:

Dcube = {(x,y,z) :−5µm≤ x, y, z≤ 55µm}. (3.4)
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3.5.2 Spherical domain

For the second domain, the goal was to simulate the diffusion equation in CapSys around a cell. A
shape like a cell does not neatly fit in a discretized grid, leading to some grid spaces having parts
inside and outside the cell. This lead to the choice of a spherical domain with a single cell in the
center. As with the cubic domain (3.5.1), there are no capillaries in the spherical domain and no
regularly generated cells either. The radius of the sphere is half the distance between the capillaries,
giving a radius of 25 µm. The radius of the central cell is set to 4.5µm. This gives the following
domain in polar coordinates:

Dsphere = {(r,θ ,ϕ) : 4.5µm≤ r ≤ 25µm,0≤ θ ≤ 2π,0≤ ϕ ≤ π}. (3.5)

3.5.3 Cylindrical domain

Finally, the behaviour of the diffusion equation around a capillary is also of interest. The choice
domain for investigating this, is the cylindrical domain with a single capillary running through the
center of the cylinder. The cylindrical domain does not contain any cells. The outer radius of the
cylinder is the same as the radius of the sphere from section 3.5.2 at 25 µm. The length of the
cylinder is set at the length of the sides from the cubic domain in section 3.5.1 from -5 µm to 55µm
in the z-direction. The cylinder has a capillary with radius 2.5 µm running through the center.
Together these aspects give the following domain in cylindrical coordinates:

Dcylinder = {(r,θ ,z) : 2.5µm≤ r ≤ 25µm,0≤ θ ≤ 2π,−5µm≤ z≤ 55µm}. (3.6)
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4 Solutions to the diffusion equation
CapSys will be tested with the diffusion equation. Diffusion can be taxing for software and can often
be difficult to model on the discretized space. It is more likely that we find issues with this equation
than the protein binding or advection. For this reason, the assumptions B1 = B2 = Bmax

1 = Bmax
2 = 0

and νISF = 0 are made. This eliminates equations (3.2) and (3.3) from the system of equations
(3.1)-(3.3) and gives:

∂CISF

∂ t
= D∗∆CISF = D∗

(
∂ 2CISF

∂x2 +
∂ 2CISF

∂y2 +
∂ 2CISF

∂ z2

)
, (4.1)

where D∗ = D
λ 2 .

4.1 Diffusion equation in a cubic domain
The cubic domain is as described in section 3.5.1. For the boundaries x0 and x1 it is assumed there
is no transportation across them. This results in the boundary conditions:

∂CISF

∂x
(t,x0,y,z) =

∂CISF

∂x
(t,x1,y,z) = 0 for y0 ≤ y≤ y1, z0 ≤ z≤ z1, t > 0, (4.2)

∂CISF

∂y
(t,x,y0,z) =

∂CISF

∂y
(t,x,y1,z) = 0 for x0 ≤ x≤ x1, z0 ≤ z≤ z1, t > 0, (4.3)

∂CISF

∂ z
(t,x,y,z0) =

∂CISF

∂ z
(t,x,y,z1) = 0 for x0 ≤ x≤ x1, y0 ≤ y≤ y1, t > 0. (4.4)

To increase clarity in the software simulation, we will look for a solution that is constant in the y
and z directions. This means that the partial derivatives in the y- and z-direction are both equal to 0
on the entire domain. The initial condition at t = 0 will also be independent of y and z. This will be:

CISF(0,x,y,z) =Cinitial(x) for x0 ≤ x≤ x1, y0 ≤ y≤ y1, z0 ≤ z≤ z1, (4.5)

where Cinitial(x) will be determined later.

There are no changes in the coordinate system necessary, so we can use equation (4.1) as is. This
equation is linear, which means that the method of separation of variables can be used to used to
write the function of concentration as follows:

CISF(t,x,y,z) = H(t)G(x)K(y)L(z). (4.6)

Substituting this into the partial derivatives in equation (4.1) turns those partial derivatives into the
following derivatives:

∂CISF

∂ t
= G(x)K(y)L(z)

dH
dt

,

∂ 2CISF

∂x2 = H(t)K(y)L(z)
d2G
dx2 ,

∂ 2CISF

∂y2 = H(t)G(x)L(z)
d2K
dy2 ,

∂ 2CISF

∂ z2 = H(t)G(x)K(y)
d2L
dz2 .
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Now we can substitute these derivatives into equation (4.1) and divide both sides by H(t)G(x)K(y)L(z):

1
H(t)

dH
dt

= D∗
(

1
G(x)

d2G
dx2 +

1
K(y)

d2K
dy2 +

1
L(z)

d2L
dz2

)
. (4.7)

When we apply the condition that the solution is constant in the y and z directions we find that the
second derivatives in those directions must also be zero. This simplifies expression (4.7) to:

1
H(t)

dH
dt

=
D∗

G(x)
d2G
dx2 . (4.8)

This results in an equality between expressions of different variables on the different sides. This
means that both sides must be equal to a constant. Let both the right-hand side (r.h.s.) and left-hand
side (l.h.s.) equal a constant −κ . From the l.h.s. we then obtain:

1
H(t)

dH
dt

=−κ,

which implies that,
H(t) = c1e−κt . (4.9)

Here we find that H(t) is bounded if κ ≥ 0.
The r.h.s. can be solved in a similar way. There we have:

D∗

G(x)
d2G
dx2 =−κ, (4.10)

D∗
d2G
dx2 +κG(x) = 0. (4.11)

This is a second order differential equation, which we can solve by finding the roots to the charac-
teristic polynomial of (4.11):

D∗r2 +κ = 0. (4.12)

The solutions to (4.12) are r =±
√
−κ√
D∗

, with κ > 0. This means both solutions of (4.12) are complex.
From this we obtain the solution for G:

G(x) = c2 cos(
√

κ

D∗
x)+ c3 sin(

√
κ

D∗
x). (4.13)

Substituting expressions (4.9) and (4.13) into (4.6) gives a solution:

CISF(t,x,y,z) =c1e−κt(c2 cos(
√

κ

D∗
x)+ c3 sin(

√
κ

D∗
x))

(4.14)

To apply the boundary conditions from (4.2) to G(x) (4.13, we determine the derivative:

G′(x) =−c2

√
κx

D∗
sin(
√

κx

D∗
x)+ c3

√
κx

D∗
cos(

√
κx

D∗
x). (4.15)
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The boundary conditions in (4.2) give G′(x0) = G′(x1) = 0. And since there is no x such that

sin(
√

κx
D∗ x) = cos(

√
κx
D∗ x) = 0, at least one of c2 or c3 must be 0. It will assumed that c3 = 0, which

means that:

sin(
√

κx

D∗
x0) = 0 =⇒

√
κx

D∗
x0 = 0+ k0π, (4.16)

sin(
√

κx

D∗
x1) = 0 =⇒

√
κx

D∗
x1 = 0+ k1π, (4.17)

with k0, k1 ∈ Z.
We set k0 = 0 and k1 = k ∈ Z. To ensure

√
κx
D∗ x0 = 0 where x0 6= 0, we translate the function by x0

to get:

G′(x) = c2

√
κx

D∗
sin(
√

κx

D∗
(x− x0)), (4.18)

which now equals 0 at x0. We are left with the second boundary condition which we can solve:√
κx

D∗
(x1− x0) = kπ, (4.19)√

κx

D∗
=

kπ

x1− x0
. (4.20)

Applying these findings at the boundary to (4.13) gives the solution:

G(x) = c2 cos(
x− x0

x1− x0
kπ). (4.21)

The product (4.21) and (4.9) gives the function CISF by reversing the separation of variables:

CISF(t,x) = H(t)G(x) = c1c2e−D∗
(

kπ

x1−x0

)2
t cos(

x− x0

x1− x0
kπ). (4.22)

The constants that are still in this equation can now be chosen. For the best resolution in the
simulation we choose k = 1, since that gives us a half-period of the cosine function. This also
means that the maximum of the function is at x0. We see that CISF(0,x0) = c1c2, is the maximum
value. We set c1c2 = 1.
The value for the concentration needs to be non-negative, since negative concentrations don’t exist.
The minimum concentration can be found at t = 0 and x = x1, where CISF(0,x1) =−1. This means
that to ensure that our initial solution is non-negative, 1 needs to be added everywhere. This gives
the initial function for the simulation and the exact solution:

CISF(0,x,y,z) = cos(
x− x0

x1− x0
π)+1, (4.23)

CISF(t,x,y,z) = e−D∗
(

π

x1−x0

)2
t cos(

x− x0

x1− x0
π)+1. (4.24)

4.2 Diffusion equation in a spherical domain
The spherical domain that will be used here is a generalized version of the domain laid out in
section 3.5.2. To analyze the spherical domain, the Cartesian coordinates (x,y,z) are transformed to
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spherical coordinates (r,θ ,ϕ). In spherical coordinates the only boundary of the domain is based
on the radius of the sphere. In the domain we want to study, the outer boundary is the edge of the
domain at r1 and the inner boundary is the central cells, with radius r0. There is no flow across these
boundaries This gives the following boundary conditions:

∂CISF

∂ r
(t,r0,θ ,ϕ) =

∂CISF

∂ r
(t,r1,θ ,ϕ) = 0, t ≥ 0, 0≤ θ ≤ 2π, 0≤ ϕ ≤ π. (4.25)

(4.26)

For the spherical domain it is useful to look for a solution that is symmetric around the center, as
this will increase clarity in the simulation. This adds the symmetry conditions:

∂CISF

∂θ
(t,r,θ ,ϕ) = 0, (4.27)

∂CISF

∂ϕ
(t,r,θ ,ϕ) = 0. (4.28)

Finally we have an initial condition at t = 0. Because of the symmetry conditions that we want to
apply to the solution, the initial condition will also have to be symmetric. Because of this, the initial
condition will only depend on the radius r:

∂CISF

∂ t
(0,r,θ ,ϕ) =Cinitial(r), r0 ≤ r ≤ r1, 0≤ θ ≤ 2π, 0≤ ϕ ≤ π. (4.29)

With the transformation to spherical coordinates, the Laplacian is also transformed to:

∆CISF =
1
r2

∂

∂ r

(
r2 ∂CISF

∂ r

)
+

1
r2 sin(θ)

∂

∂θ

(
sin(θ)

∂CISF

∂θ

)
+

1
r2 sin2(θ)

∂ 2CISF

∂ϕ2 . (4.30)

Symmetry in the solution means that the conditions from (4.27) and (4.28) can be applied to the
Laplacian (4.30), resulting in the Laplacian:

∆CISF =
1
r2

∂

∂ r

(
r2 ∂CISF

∂ r

)
=

∂ 2CISF

∂ r2 +
2
r

∂CISF

∂ r
. (4.31)

When substituting the Laplacian (4.31) into equation (4.1) we find:

∂CISF

∂ t
=

∂ 2CISF

∂ r2 +
2
r

∂CISF

∂ r
. (4.32)

Applying the method of separation of variables to (4.32) and assume

CISF = H(t)R(r), (4.33)

to get:
1

H(t)
dH
dt

= D∗
1

R(r)

(
d2R
dr2 +

2
r

dR
dr

)
. (4.34)

The l.h.s. only depends on t and the r.h.s. only depends on r. This implies both sides must be equal
to some constant, which we will call −η . Then the solution on the l.h.s. is the same we saw before:

H(t) = c1e−ηt . (4.35)
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We see that η > 0 must hold for for H(t) to converge. The r.h.s., after multiplying both sides by r2,
becomes:

r2 d2R
dr2 +2r

dR
dr

+ r2 η

D∗
R = 0. (4.36)

This equation is a spherical Bessel equation, specifically a zeroth spherical Bessel equation, since
there is no constant R-term in the equation. The solutions to spherical Bessel equations can be
found in chapter 10 of Abramowitz and Stegun [17]. We rewrite the equation in the standard form

by setting
√

η

D∗ = λ . The first kind of this Bessel equation is:

R1(r) = J0(λ r) =
sin(λ r)

λ r
. (4.37)

It can be checked that (4.36) holds.
The zeroth order Bessel equation of the second kind is:

R2(r) = Y0(λ r) =−J−1(λ r) =−cos(λ r)
λ r

. (4.38)

Once again (4.36) holds.
Any linear combination of R1 and R2 is again a solution to our differential equation. This gives the
general solution of αR1 +βR2. When a = α

λ
and b = −β

λ
the solution for R becomes:

R(r) =
acos(λ r)+bsin(λ r)

r
(4.39)

Combining (4.39) and (4.35) we find the general solution:

CISF(t,r,θ ,ϕ) = c1e−ηt acos(λ r)+bsin(λ r)
r

(4.40)

To find the values for a, b and λ we need to apply the boundary conditions from (4.25) to (4.40).
Before they can be applied the derivative:

∂CISF

∂ r
(t,r,θ ,ϕ)=

d
dr

H(t)R(r)=H(t)R′(r)= c1e−ηt λ

r
(acos(λ r)−bsin(λ r))− 1

r2 (asin(λ r)+bcos(λ r)) ,
(4.41)

is required. Since our boundary condition sets the derivative to 0, and eηt 6= 0 for any (t,r), we only
need to solve for R′(r0/1) = 0.

However this expression cannot be used to solve for all three of a, b and λ , since there are only two
conditions. We can set a = 1. Now only b and λ have to be found from two conditions, which can
be done. The expression can be simplified as follows:

R′(r) =
λ

r0/1

(
cos(λ r0/1)−bsin(λ r0/1)

)
− 1

r2
0/1

(
sin(λ r0/1)+bcos(λ r0/1)

)
= 0, (4.42)(

λ − b
r0/1

)
cos(λ r0/1) =

(
1

r0/1
+λb

)
sin(λ r0/1), (4.43)(

λ r0/1−b
)(

1+λbr0/1
) = tan(λ r0/1). (4.44)
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Applying the boundary condition at r0 to equation (4.44) allows for a solution to b in terms of λ :

(λ r0−b)
(1+λbr0)

= tan(λ r0), (4.45)

b(r0λ tan(λ r0)−1) = tan(λ r0)−λ r0, (4.46)

b =
tan(λ r0)−λ r0

λ r0 tan(λ r0)−1
. (4.47)

The outer boundary condition at r1 can be applied to equation (4.44). By substituting the expression
for b found in (4.47), we get the following expression:

(λ r1−b)
(1+λbr1)

− tan(λ r1) = 0, (4.48)(
λ r1− tan(λ r0)−λ r0

λ r0 tan(λ r0)−1

)
(

1+λ r1
tan(λ r0)−λ r0

λ r0 tan(λ r0)−1

) − tan(λ r1) = 0, (4.49)

λ 2r1r0 tan(λ r0)+λ (r0− r1)− tan(λ r0)

−λ 2r1r0 +λ tan(λ r0)(r1 + r0))−1
− tan(λ r1) = 0. (4.50)

In expression (4.50) we have an equation of just one variable (λ ) with two known parameters in r0
and r1 that we can sole for numerically.
Using equations (4.50) and (4.47) and the boundary conditions at r1 and r0, a numerical solution for
λ and b can be found. The matlab code used for this numerical solution can be found in appendix
A. The solutions are λ = 286192.3646 and b = 0.62738 using the radii r0 = 4.5 · 10−6 and r1 =
2.5 ·10−5.
From these values for λ and b the solutions can be determined. This give the initial function:

CISF(0,r,θ ,ϕ) =
cos(286192.3646r)+0.62738sin(286192.3646r)

r
. (4.51)

Once again the concentration is not something that can be negative. To make sure the concentration
is non-negative everywhere, the minimum of (4.51) is added everywhere. We add the minimum
specifically so that the minimum of our actual initial function will be zero. This gives the following
initial function:

CISF, 1(0,r,θ ,ϕ) =
cos(2.86 ·105 r)+0.63sin(2.86 ·105 r)

r

− min
[r0,r1]

{
cos(2.86 ·105 r)+0.63sin(2.86 ·105 r)

r

}
(4.52)

For the exact solution η = D∗λ 2 = 5 ·10−128 ·286192.36462 = 0.4095 can also be calculated (since

we set λ =
√

η

D∗ . The exact solution is:

CISF, 1(t,r,θ ,ϕ) = e−0.4095t cos(2.86 ·105 r)+0.63sin(2.86 ·105 r)
r

− min
[r0,r1]

{
cos(2.86 ·105 r)+0.63sin(2.86 ·105 r)

r

}
(4.53)

21



The exact value of this function at t = 0 and r = r0 is in the order of 105. This is a huge value and
can lead to computational problems. To account for this, we scale the function (4.53), dividing it by
the maximum value of the initial function (4.52). This gives us the final function that we can use
for simulation:

CISF(t,r,θ ,ϕ) =
CISF, 1(t,r,θ ,ϕ)

max[r0,r1]CISF, 1(0,r,θ ,ϕ)
(4.54)

4.3 Diffusion equation in a cylindrical domain
The cylindrical domain that will be used here is laid out in section 3.5.2. To analyze the cylindrical
domain, the Cartesian coordinates (x,y,z) are transformed to cylindrical coordinates (r,θ ,z). In this
domain there are the radial boundaries at the capillary with radius r0 and the domain edge at r1 and
the edge boundaries at z0 and z1. Since there is assumed to be no flow through the boundaries of the
domain, we find the following boundary conditions:

∂CISF

∂ r
(t,r0,θ ,z) =

∂CISF

∂ r
(t,r1,θ ,z) = 0, t ≥ 0, 0≤ θ ≤ 2π, z0 ≤ z≤ z1, (4.55)

∂CISF

∂ r
(t,r,θ ,z0) =

∂CISF

∂ r
(t,r,θ ,z1) = 0, t ≥ 0, r0 ≤ r ≤ r1, 0≤ θ ≤ 2π. (4.56)

(4.57)

For the cylindrical domain it is useful to look for a solution that is radially symmetric around the
capillary and constant in the z-direction, as this will increase clarity in the simulation. This adds the
conditions:

∂CISF

∂θ
(t,r,θ ,z) = 0, (4.58)

∂CISF

∂ z
(t,r,θ ,z) = 0. (4.59)

(4.60)

Because of the same reasoning as for the spherical domain, we want the initial condition to be:

∂CISF

∂ t
(0,r,θ ,z) =Cinitial(r), 0≤ θ ≤ 2π, z0 ≤ z≤ z1. (4.61)

Because of the transformation into cylindrical coordinates, the Laplacian also changes with the
coordinates to:

∆CISF =
1
r2

∂

∂ r

(
r2 ∂CISF

∂ r

)
+

1
r2

∂ 2CISF

∂θ 2 +
∂ 2CISF

∂ z2 . (4.62)

Applying the conditions from (4.58) and (4.59) to the Laplacian (4.62) gives the simplified Lapla-
cian:

∆CISF =
1
r2

∂

∂ r

(
r2 ∂CISF

∂ r

)
. (4.63)

By assuming we can separate CISF as follows,

CISF(t,r,θ ,x) = cH(t)R(r), (4.64)
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where c = T (θ)L(z) is constant, we can separate (4.63) as follows:

1
H(t)

dH
dt

= D∗
1

R(r)

(
d2R
dr2 +

1
r

dR
dr

)
. (4.65)

Since the l.h.s. of (4.65) only depends on t and the r.h.s. only on r, both sides of the expression
equal a common constant −µ . Similar to the previous solutions, we find:

H(t) = c1e−µt . (4.66)

We see that µ > 0 must hold for H(t) to converge. Setting the r.h.s. of (4.65) equal to −µ and
multiplying by r2, we find:

r2 d2R
dr2 + r

dR
dr

+ r2 µ

D∗
R = 0. (4.67)

This is the Bessel equation mentioned in expression (9.1.52) of Abramowitz and Stegun [17]. For
µ

D∗ = ν2 the solution to equation (4.67) is:

R(r) = aJ0(νr)+bY0(νr), (4.68)

where J0 is the zeroth Bessel function of the first kind and Y0 is the zeroth Bessel function of the
second kind.

Now we apply the boundary conditions from (4.55). Similar to the spherical equations, a = 1 is set
so that the two boundary conditions can be used to solve for b and ν . The derivative of our solution
is also given by Abramowitz and Stegun in equation (9.1.28) [17]:

R′(r) =−νJ1(νr)−νbY1(νr). (4.69)

The outer boundary condition is applied to find an expression for b:

b =−J1(νr1)

Y1(νr1)
. (4.70)

This value for b can be substituted into (4.69) at the inner boundary to get an expression with only
ν as parameter:

−νJ1(νr0)+ν
J1(νr1)

Y1(νr1)
Y1(νr0) = 0. (4.71)

Using the radii r0 = 2.5 · 10−6 and r1 = 2.5 · 10−5, we can numerically solve this to find the pa-
rameters ν = 38.578 and b = 7.305 ·10−7 (matlab code in appendix B). Additionally, µ = D∗ν2 =
7.441 · 10−9 can be calculated from all the constants (since we set ν2 = µ

D∗ ). This gives the initial
function:

CISF(0,r) = J0(38.578r)+7.305 ·10−7Y0(38.578r). (4.72)

Again, to ensure there are no negative concentrations in the domain, the minimal value is subtracted.
We could have chosen any constant larger than the minimum, but choosing the minimum sets the
smallest concentration to exactly zero. This gives the following initial function and exact solution:

CISF(0,r) = J0(38.578r)+7.305 ·10−7Y0(38.578r)

− min
[r0,r1]

{
J0(38.578r)+7.305 ·10−7Y0(38.578r)

}
,

(4.73)

CISF(t,r) = e−7.441·10−9t (J0(38.578r)+7.305 ·10−7Y0(38.578r)
)

− min
[r0,r1]

{
J0(38.578r)+7.305 ·10−7Y0(38.578r)

}
. (4.74)
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5 Theoretical results
Numerical methods for solving differential equations, such as the diffusion equation, always have
an error. There are differences between the numeric approximation of the derivative of a function
and the actual derivative. The error that results from approximation is called the truncation error.
Another error is caused by the physical restrictions of the memory of a machine. Computers can-
not store an infinite number of decimals, so they always have to round real numbers to a decimal
place. This is called the rounding error. Together, these two errors sum to the total error of a numer-
ical system. We will look at the truncation error, rounding error and total errors of all used functions.

5.1 Local Truncation Error
The truncation error is the difference between the actual derivative of a function and the estimated
derivative as determined by our numerical system. CapSys applies the method of backwards Euler,
which approximates the derivative with the following expression:

Qb(∆t) =
f (t)− f (t−∆t)

∆t
, (5.1)

where Qb is backward difference and ∆t is the time step. The truncation error is defined as:

Rb(∆t) = f ′(t)−Qb(∆t) = f ′(t)− f (t)− f (t−∆t)
∆t

, (5.2)

where Rb is the truncation error for the backward difference. To estimate the truncation error, a
Taylor expansion of f (t−∆t) around t is used:

f (t−∆t) = f (t)−∆t f ′(t)+
∆t2

2
f ′′(ξ ), (5.3)

with ξ ∈ (t−∆t, t). Substituting this into the truncation error in equation (5.2) gives:

Rb(∆t) = f ′(t)−
f (t)− f (t)+∆t f ′(x)− ∆t2

2 f ′′(ξ )
∆t

=
∆t
2

f ′′(ξ ) = O(∆t). (5.4)

Since the differential equation contains the first derivative with respect to time, this gives the trun-
cation error with respect to time as well. It is found that the order of convergence in time is linear.
In other words, halving the time step, should double the accuracy.

For the truncation error with respect to the distance, the error of estimation for the second derivative
is required. Using a central difference method to calculate the second derivative gives the expres-
sion:

Q[2]
c (∆x) =

f (x−∆x)−2 f (x)+ f (x+∆x)
∆x2 , (5.5)

where Q[2]
c is the central difference formula for the second derivative. This leads to the truncation

error for the second derivative, which is:

R[2]
c (∆x) = f ′′(x)−Q[2]

c (∆x) = f ′′(x)− f (x−∆x)−2 f (x)+ f (x+∆x)
∆x2 . (5.6)
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To calculate the error, Taylor expansions of both f (x−∆x) and f (x+∆x) of the third order are
required. These are:

f (x−∆x) = f (x)−∆x f ′(x)+
∆x2

2
f ′′(x)− ∆x3

6
f ′′′(x)+

∆x4

24
f (4)(ξ ), (5.7)

f (x+∆x) = f (x)+∆x f ′(x)+
∆x2

2
f ′′(x)+

∆x3

6
f ′′′(x)+

∆x4

24
f (4)(ξ ), (5.8)

where ξ ∈ [x−∆x,x+∆x]. Substituting both (5.7) and (5.8) into (5.6) shows all terms up to and
including the third derivative cancel each other. What is left is a term of O(∆x2), which is then the
order of the error in the spatial dimensions.
This means that the total truncation error of the numerical system is of order O(∆t +∆x2 +∆y2 +
∆z2). Since the domain is discretized into the same resolution in all three spatial dimensions, ∆x =
∆y = ∆z, those terms can be added together. This leads to the total truncation error of order O(∆t +
∆x2).

5.2 Rounding Error
The rounding error is determined by the absolute machine precision. For a 32 bit machine, the
rounding error is 2−23 ≈ 1.19 · 10−7 and for a 64 bit machine this is 2−52 ≈ 2.22 · 10−16. These
errors are small, but the impact of these rounding errors increase as we make the time steps smaller.
This places a mechanical limit on the lower bound for the possible time step before the rounding
error makes the numerical method unreliable. For the method of backwards Euler that CapSys uses,
the rounding error can be determined:

St = |Qc− Q̂c|, (5.9)

where Qc is the exact expression from (5.1) and Q̂c is the rounded machine estimation of that
expression. We can substitute expression (5.1) to get:

St =

∣∣∣∣ f (x)− f (x−∆t)− f̂ (x)+ f̂ (x−∆t)
∆t

∣∣∣∣
≤ | f (x)− f̂ (x)|

∆t
+
| f (x−∆t)− f̂ (x−∆t)|

∆t

≤ 2ε

∆t
,

where ε is the machine accuracy and f̂ (x) is the rounded machine estimation of f (x). From here a
64 bit machine will be considered, giving ε = 2.22 ·10−16.

5.3 Total Error
The total error E is the sum of both the rounding error and truncation error:

E = St +Sx +Rt +Rx =
2ε

∆t
+

2ε

∆x
+

Mt

2
∆t +

Mx

24
∆x2, (5.10)

where Mt is the upper bound for f ′′(t) in the domain and Mx for f (4)(x). St and Sx are the machine
rounding errors for the functions of t and x respectively, as discussed in section (5.2). Rt and Rx are
as calculated in section (5.1).
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5.3.1 Cubic domain

To determine the error in the time step for the cubic domain, an upper bound for the second deriva-
tive of the exact function (4.23) is required. Specifically, an upper bound for the absolute value is
needed, since a large negative derivative also gives a large truncation error. The second derivative
of the exact function with respect to time is given by:

|∂ 2
t Ccube(t,x,y,z)|= |D∗2

(
π

x1− x0

)4

e−D∗
(

π

x1−x0

)2
t cos(

x− x0

x1− x0
π)|. (5.11)

The second derivative has its maximum at x = x0 or x = x1, since at those values the absolute value
of the cosine is 1. The only part dependent on the time is the e−kt expression. The exponential
function decreases with time, meaning that the maximum is found at t = 0. At t = 0 the exponential
function is equal to 1. For the cubic domain we have D∗ = 2.5 ·10−10 and the values for x0 and x1
as mentioned in section (3.5.1). Substituting these gives:

|∂ 2
t Ccube(t,x,y,z)| ≤ |D∗2

(
π

x1− x0

)4

| ≈ 0.47, (5.12)

as the value for Mt . Substituting (5.12) as Mt into (5.10) gives:

Ecube(∆t) =
4.44 ·10−16

∆t
+0.24∆t, (5.13)

where Ecube is the total error of the numerical system for the cubic domain.
By finding the root of the derivative of this function, the optimal value for the time step can be found
to be 3.3 · 10−11 seconds. This is such a small time step that it will almost never be approached.
Only for time steps smaller than the optimal value, does the effect of the machine error start to
outweigh the truncation error. Practically, this means that for most calculations the machine error
can be left out. At the standard chosen time step of 0.1 seconds, the upper bound for the error is
2.4 ·10−2.

For the error in resolution (Mx) the fourth derivative with respect to direction is required. The fourth
derivative with respect to x is:

∣∣∂ 4
x Ccube(t,x,y,z)

∣∣= ∣∣∣∣∣
(

π

x1− x0

)4

e−D∗
(

π

x1−x0

)2
t cos

(
x− x0

x1− x0
π

)∣∣∣∣∣ . (5.14)

Both the exponential function, as well as the cosine are bounded above by 1 for the variables in
the correct domain. Subsituting 1 for the exponential function and cosine in (5.14) gives the upper
bound for the fourth derivative:

|∂ 4
x Ccube(t,x,y,z)| ≤

∣∣∣∣∣
(

π

x1− x0

)4
∣∣∣∣∣≤ 7.52 ·1018. (5.15)

Since the value for Mx is larger than Mt , the effect of the machine error is even smaller for resolution
than it was for time step. This means that the machine error is again negligible. We can substitute
this value for Mx into the total error (5.10). This gives an overall upper bound for the total error
depending on both the time step as well as distance step:

E(∆t,∆x) = 0.24∆t +3.13 ·1017
∆x2. (5.16)
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The upper bound on the error is very high for the spatial term, this means that we need (∆x) to be
very small to reduce this error term. Since the maximum domain size is only 60µm, this value will
always be very small. It is still really important to take small spatial steps in order to increase the
accuracy. More importantly than the upper bound is the fact that the error term is O(∆t)+O(∆x2).
This means that the error should decrease linearly with a reduction in ∆t and quadratically with ∆x.

5.3.2 Spherical domain

To determine the error in the time step for the spherical domain, an upper bound for the second
derivative of the exact function (4.54) is required. Specifically, an upper bound for the absolute
value is needed, since a large negative derivative also give a large truncation error. The second
derivative of the exact function with respect to time is given by:

∣∣∂ 2
t CISF(t,r)

∣∣= ∣∣∣∣∣0.1677 ·10−0.4095t cos(2.86·105 r)+0.63sin(2.86·105 r)
r

max[r0,r1]CISF, 1(0,r,θ ,ϕ)

∣∣∣∣∣ , (5.17)

= |0.1677|

∣∣∣∣∣
cos(2.86·105 r)+0.63sin(2.86·105 r)

r
max[r0,r1]CISF, 1(0,r,θ ,ϕ)

∣∣∣∣∣ . (5.18)

The second derivative reaches a maximum in time at t = 0, since then the exponential function is
equal to 1. Clearly, the trigonometric functions divided by the maximum of those same functions
(maximum of (4.52)) can not exceed 1. This means that the upper bound for the second derivative
in (5.17) is 0.1677. Substituting this into (5.10) gives:

Esphere =
4.44 ·10−16

∆t
+0.1677∆t. (5.19)

This similar to the error of the cubic domain in (5.13) we can also find the optimal value for the
time step ∆t. For the sphere this optimal time step is 5.145 ·10−8 seconds. For the same reasons as
suggested in section 5.3.1, the machine error is negligible. The error at the regularly used time step
of 0.1 seconds is 0.01677.

Figure 4: Two dimensional representation
of what happens to the spherical domain on
a 4 by 4 by 4 grid. The red areas show what
falls outside the simulation domain. It is
clearly visible in this representation that not
a single grid slot is fully within the simula-
tion domain.

Determining the exact order of the error for the resolu-
tion in terms of ∆x, ∆y and ∆z is difficult for equations in
spherical coordinates. As shown in section 5.1, the error
in the spatial dimension is of order O(∆x2 +∆y2 +∆z2).
This still holds for equation (4.54).
The difference with the order of the error for the cubic
domain, is that the boundary of the spherical domain be-
comes easier to approximate as the resolution increases.
A simple example of the problems that can arise with the
spherical domain and a low resolution can be viewed in
figure 4. The red areas are part of the grid outside of the
domain between the outer boundary and inner cell. In this
extreme example of a resolution of only 4, there is not a
single grid slot that is fully within the simulated domain.
Because of this aspect, the order of convergence may, in
practice, be different from O(∆x2).
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5.3.3 Cylindrical domain

For the cylindrical domain there is not much to add over
the previous two domains. The cylindrical domain can be
viewed as a combination of the cubic and spherical do-
mains. Seeing as both of the previous two domains came
out to a theoretical error term of order O(∆t +∆x2), the expectation is that this should also hold
for the cylindrical domain. The caveat mentioned in section 5.3.2 about the cut-off around circular
elements also counts here, so the convergence may in practice be different from the expected order.
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6 CapSys results
CapSys has been modified for this thesis to allow for an exact solution to be entered into the pro-
gram, besides the regular simulation that it is meant for. The results that we get from the software
are the simulation results and the results comparing the simulation with the exact solution. Within
those two types, there are different cross sections of the domain and overall timeseries that cover
the maximum, minimum and average values, as well as the added root mean square (RMS).

There are two types of results that are important from the CapSys simulations, the qualitative and
quantitative results. Qualitative results mostly look at the images from the simulation and the com-
parison of the simulation with the exact solution. If there are large differences, especially large
peak differences, then those differences warrant a deeper look. These large differences can point
to issues within the software. Quantitative results will be looked at to examine the overall effec-
tiveness of the software. Within the quantitative results section the RMS will be an important metric.

One of the differences between the different domains is a change in the diffusion coefficient D∗.
This is done to get a good amount of convergence within the time range of 5 seconds. If the concen-
trations converge too quickly, the diffusion coefficient will be lowered and if it converges too slowly
it will be increased. Unless stated otherwise, the time step used in the simulation is 0.1 seconds.

6.1 Diffusion within the cubic domain
Diffusion within a cubic domain is one of the easier tasks for the program. CapSys was also pro-
grammed based on cubic domains and all sections fall entirely within the cubic domain. No matter
the resolution or time step size, there is never any difference in total drug volume in the ISF between
the simulated and exact solutions. Moreover, there is no change in total drug volume with changes
in resolution. This allows for a good examination of the convergence as the resolution of the grid
increases. In appendix A, the Jupyter notebook containing the diffusion within a cubic domain with
resolution 16 in each dimension can be found. These runs are with the cosine initial function in the
x-direction alone. The only changes between different runs are changes in the resolution of the grid.
D∗ has been set to 2.5 ·10−10 for the cubic domain, since that gives a good amount of diffusion over
the time frame of 5 seconds.

6.1.1 Qualitative results

First, it is important to look for errors in the simulation or large differences between the simulation
of the initial solution and exact solution from section 4.1. Visually, in figure 5 it can be seen that the
distribution at time t = 0 does appear to follow the expected distribution of a cosine. As the time
increases the concentration also approaches the average concentration of 1.

Another important check is the total drug concentration in the domain. The size of the domain is
(60µm)3 = 2.16 ·10−13m3. The average concentration is 1mmol

m3 , giving a total concentration of:

1 ·10−3 mol
m3 2.16E−13m3 = 2.16 ·10−16mol. (6.1)
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Figure 5: Visualization of the simulation in CapSys. On the left at t = 0s the initial condition can be seen.
This is as expected, with a high value of 2 (= cos(0)+1) on the left and a low value of 0 (= cos(π)+1) on
the right. As time progresses, the values everywhere converge towards 1. At t = 3s the convergence is very
close to being finished.

This means that the total drug concentration should be 0.2160 f mol (femto mol, 10−15mol), which
is also the value that CapSys returns for the total concentration in both the exact solution and simu-
lated solution.

Next the timeseries (figure 6a) of the simulation is examined to see if there are any grid slots where
something goes wrong with the values. Often a grid slot where the simulation doesn’t work cor-
rectly becomes the maximum or minimum value and stays constant instead of converging. For the
cubic grid of resolution 16, the concentrations seem to converge correctly.

Similarly, by looking at the timeseries of the difference in concentration (figure 6b) between the ex-
act solution and simulated solutions, mistakes in either the exact solution or simulation can also be
seen. For the timeseries of the comparison at a resolution of 16 there is no visual indication of any
mistakes. The maximum value of the RMS is 9.48 µmol

m3 , much smaller than the average concentra-
tion of 1000 µmol

m3 . The average difference is also 0, which is expected, since the total concentration
always remained the same in both the simulation and exact solution.

6.1.2 Quantitative results

The maximum difference between the exact solution as measured by the RMS is at 1.5 seconds. As
the resolution of the grid increases, the maximum value of the RMS decreases. There appears to be
an asymptote larger than 0 that the maximum RMS converges to. It does not look like the RMS will
decrease to 0 at 1.5 seconds as the resolution continues to increase.
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(a) The timeseries of the concentration shows very even
convergence as expected. The maximum and minimum
values converge towards the average evenly at the same
exponential rate.

(b) Timeseries of the comparison between the simulation
and exact solution. The absolute value of the maximum
difference is less than 15 µmol

m3 . These values are much
smaller than the actual concentrations, measured in mmol

m3 .
The maximum error is found around t = 1.5 seconds and
converges as time increases.

Figure 6: Timeseries of the concentrations in the simulation (6a) and of the comparison between the sim-
ulation and the exact solution (6b). Both timeseries are with time steps of 0.1 seconds and resolution of
16.

Figure 7: Graph plotting the maximum value for the root mean square (RMS) against the resolution for
different time steps. For each time step there is a clear reduction in maximum RMS as the resolution increases,
but there seems to be an asymptote for each. This asymptote appears to be explained by the error caused by
the time step, since the error at 96 resolution seems to half every time the time step is halved.

Besides the convergence at the regular time step of 0.1 seconds, the same data has also been recov-
ered for time steps of 0.2 seconds and 0.05 seconds. These were chosen since they are double and
half the standard 0.1 seconds. As explained in section 5.3.1, the expected order of convergence with
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∆t Maximum RMS Factor
0.2 16.88 –
0.1 8.70 1.94
0.05 4.42 1.97
0.025 2.24 1.97

Table 1: The factor of difference in the maximum
value of the RMS for different time steps. The fac-
tors of 1.94, 1.97 and 1.97 are very close to the ex-
pected value of 2. Therefore it can be assumed that
the numerical system converges linearly with time
step.

∆x Adjusted RMS Factor
4 13.214 –
8 3.286 4.02
16 0.816 4.03
32 0.199 4.10

Table 2: The factor of difference in the adjusted
value of the maximum RMS for different resolutions
at a time step of 0.1s. The factors of 4.02, 4.03
and 4.10 are very close to the expected value of 4.
Therefore it can be assumed that the numerical sys-
tem converges quadratically with resolution.

respect to the time step is linear. This means that, at a high resolution, it is expected that doubling
the time step, should double the error. As we can see in figure 7, this is what happens. At a reso-
lution of 96, the RMS nearly doubles from 8.70 to 16.88 µmol

m3 as the time step doubles from 0.1 to
0.2 seconds. Similarly, when halving the time step from 0.1 seconds to 0.05, the RMS nearly halves
from 8.70 to 4.42 µmol

m3 . The exact differences can be found in table 1. It can be concluded that the
error is indeed of order ∆t.

At the time step of 0.05 seconds there is a higher accuracy in time, so this time step will be used to
check the rate of convergence with resolution. Between the resolution of 64 and 96, the maximum
RMS decreases from 4.44 to 4.42 µmol

m3 . Looking at that convergence, it seems like the maximum
RMS would decrease to somewhere around 4.4 µmol

m3 as the resolution increases further. This is the
value that will be used to adjust the maximum RMS to account for the error caused by the time step.
By subtracting 4.4 from the RMS at the resolutions of 8, 16 and 32, we can see the change in error
with increasing resolution. We can compare this to our expected order of convergence, which is
quadratic convergence, as discussed in section 5.3.1. The adjusted values and the factor compared
to a resolution of 16 can be found in table 2. It can be concluded that the error is indeed of order
∆x2.

6.2 Diffusion within the spherical domain
For the spherical domain, the standard time step is 0.1 seconds and standard resolution is 16 for all
the first-look qualitative results. The chosen value for the diffusion coefficient is D∗ = 1 ·10−11.

For the spherical domain, it was not possible to recreate all the simulations run for the cubic domain.
There were no simulations possible for spatial resolutions higher than 48 (all resolution multiples
of 4 from 48 to 196 were attempted), since they all returned RunTime errors. Resolutions of 52,
56 and 60 gave a ’no convergence’ error, meaning the numerical method didn’t convergence to any
answer within the acceptable amount of steps. For the resolution 64 the error was ’factor is exactly
singular’. At resolutions higher than 64 the returned error was ’too many polygons’.

Besides these error messages, there were two other results that were unobtainable. The simulations
at resolutions of 40 and 48 were not possible with the time step of 0.2 seconds. There was no error
message with these simulations, but after running for 12 hours, not a single step was calculated.
These resolutions were functional with time steps of 0.1 and 0.05 seconds.
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6.2.1 Qualitative results

Once again the first thing to look at is the qualitative visual results of our baseline simulation with
time steps of 0.1 seconds and a resolution of 16. The visuals of the simulation can be found in figure
8. The concentration inside the cell has been set to zero. Specifically, the concentration is 0 for all
points in the domain that are less than 4.5µm from the center. However, it does show up as higher
in the visuals in figure 8. A possible explanation for this is that for a grid with resolution 16 with
a length of 50 µm, the edge length of a single grid slot is 3.125µm. The Pythagorean theorem in
three dimensions then gives us that the furthest corner of each of the 8 cubes around the center are at
5.4µm from the center, which is larger than the cell radius of 4.5µm. This means that part of these
central grid volumes is inside the cell, while another part is outside the cell. This might explain why
the cell shows up as if it contains some drug. The simulation also does seem to work well with the
concentration that shows up inside the cell in the initial condition.

Figure 8: Visualization of the simulation in CapSys. On the left at t = 0s the initial condition can be seen. This
is as expected from the initial function, with an exception for the area inside the cell, where the concentration
was set to 0, but shows up at high values. The simulation also seems to run in that area, where diffusion
should not work within the cell. As time progresses, the values everywhere converge towards the average. At
t = 3s the convergence is very close to being finished.

Looking at the timeseries for the concentration (figure 9a) and the comparison between the simu-
lation and the exact solution (figure 9b) there are a few noticeable things. The convergence of the
maximum value decreases towards the average concentration at a high rate and there is a sudden
change in the rate of convergence at around 1 seconds. This sudden change makes it seem like
another location with slower convergence takes over as the maximum value. Looking at figure 8, it
seems like the maximum starts at the center near the cell, but moves to the edge of the sphere after
1 second, where the convergence seems to be slower. Secondly, the minimum difference between
the exact solution and simulation is very large at

∣∣∣−300 µmol
m3

∣∣∣. A negative difference means that the
exact solution has a smaller value than the simulation. By looking at the visual of the comparison
(figure 10a) at the time of 1 seconds, it can be seen that this is most likely caused by the cell in the
center. Thirdly, the difference in average concentration between the simulation and exact solution
slowly becomes negative. This is likely caused by a difference between the total amount of drug
that is present in the simulated and exact solution. At the end point of 5 seconds, there is a total
amount of 21.48amol (atto mol, 10−18mol) in the simulated solution and 22.72amol in the exact
solution. The cause for this is a small increase in total concentration in the exact solution with each
time step. As the resolution increases this difference in total amount at 5 seconds becomes smaller.

Besides these findings in the initial setup, there are other issues that were found at different reso-
lutions. The case of resolution 4 was already explained in section 5.3.2 with an expectation that
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(a) The timeseries of the concentration of the Spherical
domain is not exactly as expected. The minimum con-
centration remaining at 0 is expected, since the area out-
side the sphere and inside the cell are always at 0. The
maximum concentration starts at an exponential rate of
convergence, but seems to slow down after 1 second, ap-
pearing to switch to a different rate of convergence.

(b) Timeseries of the comparison between the simulation
and exact solution. Looking at the scale on the left of the
graph, it seems like the error is in the order of 1E−5m,
about an order larger than in the cubic domain. The
minimum difference is also really large at 0.8 seconds,
at around 300 µmol

m3 difference between exact and simula-
tion. This almost as large as the average concentration.
While the maximum and minimum values seem to con-
verge with time, the RMS converges very slowly.

Figure 9: Timeseries of the concentrations in the simulation (9a) and of the comparison between the sim-
ulation and the exact solution (9b). Both timeseries are with time steps of 0.1 seconds and resolution of
16.

(a) This image visually shows the results from the time-
series in figure 9b at t = 1 second. The large negative
minimum value is clearly in the cell in the center. It seems
like the large concentration there diffuses much faster in
the simulation than in the exact solution. On the contrary,
the maximum value is found near the edge of the sphere,
where the exact solution converges faster than the simu-
lation.

(b) Visual of the initial condition of a simulation with res-
olution 4. It looks nothing like the intended initial condi-
tion as seen in figure 8. The expected issues considered
in figure 4 are evident here.

Figure 10: Visualizations of large differences between the expectation and results. Figure 10a shows the
comparison between simulation and exact solution at resolution 16 and time step 0.1. Figure 10b shows the
initial condition of the simulation with a resolution of 4.
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(a) From this time series it is clear that there is a max-
imum concentration value at some point in the domain
that isn’t affected by the simulation, which should push
all values towards the average. The maximum value never
changes.

(b) This time series shows there is a large value in a grid
area that isn’t affected by simulation, which should push
all values towards the average. The global maximum does
decrease, but this area with a concentration of around 0.8
never changes.

Figure 11: Two time series that show error that prop up in certain grid slots. These cannot always be found in
the visual cross-sections, but do appear in these. On the left is the time series of the simulated concentrations
with resolution 40 and on the right, the same type of time series of resolution 48.

it wouldn’t behave correctly. Indeed it does not, as figure 10b shows. It does not even remotely
resemble the initial function.

Besides this expected issue, there are also issues that show at higher resolutions. In the timeseries
of the concentration over time at resolutions of 40 and 48 we see more of these. In figure 11a it
is apparent that the maximum value does not converge at all. The maximum value is found either
within the central cell or at its boundary. This gives the idea that the maximum value is inside
the central cell and the simulation does not affect this location. If this is the case, the value at
this location should have been set to zero, as all values within the central cell should be. Slightly
differently, for a resolution of 48, the maximum value does decrease, but there is a floor to the
maximum value at 0.8 mmol

m3 , as seen in figure 11b. This also looks like there is a grid point in the
domain that does not behave as expected.

6.2.2 Quantitative results

For the quantitative results of the spherical domain we will leave out the domain with resolution 4,
because of the reasons stated in section 6.2.1. For the graph in figure 12, resolution 8 is also left
out, since the maximum RMS is so high that the differences between time steps will no longer be
visible. As mentioned in section 6.2, there is no data for resolutions over 48 and for the time step of
0.2 seconds at resolutions 40 and 48.
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∆t Maximum RMS Factor
0.2 31.944 –
0.1 31.66 1.01
0.05 32.282 0.98

Table 3: The factor of difference in the maximum
value of the RMS for different time steps at a resolu-
tion of 32. The factors of 1.01 and 0.98 are nowhere
near the expected value of 2 if it would converge lin-
early. It cannot be concluded that the numerical sys-
tem converges linearly with time in a domain with
spherical elements.

∆x Maximum RMS Factor
8 124.0 –
16 36.0 3.44
32 31.7 1.14

Table 4: The factor of difference in the adjusted
value of the maximum RMS for different resolu-
tions. The factors of 3.44 and 1.14 are not close to
the expected value of 4. Therefore it cannot be con-
cluded that the numerical system converges quadrat-
ically with resolution in a domain with spherical el-
ements.

Figure 12: Graph plotting the maximum value for the root mean square (RMS) against the resolution for
different time steps. The error seems to decrease with increasing resolution, but only up to a point. The
lowest errors are found at a resolution of 32. This may be caused by the erroneous maximum values shown
in figure 11a and 11b. There does not seem to be any convergence with decreasing time steps.

In figure 12 the convergence with resolution is visible, but it is not as uniform as with the cubic
domain. Possible causes for this are the two edges of the spherical domain. At both the inner and
outer edge, the cubic grid areas cut through the edges of the domain. For all three chosen time
steps the lowest maximum RMS was with a resolution of 32. Specifically, the RMS is 31.66 µmol

m3

at 32 resolution, 34.83 µmol
m3 at 40 resolution and 31.83 µmol

m3 at 48 resolution. This does seem to
follow from the problems that were observed in the maximum values in figures 11a and 11b. There
the observed maximum value is higher at a resolution of 40 compared to the maximum value at
resolution 48, leading to a larger error.

Looking at the graph in figure 12 and the tables 3 and 4, it seems like there is baseline error factor
of around 30 µmol

m3 in the spherical domain that do not seem to reduce with increased resolution in
space or time. This large error term that seems present everywhere also restricts the ability to adjust
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the RMS, like in table 2, since it is not clear what portion of the error is caused by the time step.
With the change in resolution from 8 to 16, the factor seems to approach the expected number of 4,
if the convergence is of order O(∆x2) as explained in section 5.3.2. The next doubling in resolution
does not show that kind of convergence however, with a factor of only 1.14.

6.3 Diffusion within the cylindrical domain
The configuration of the simulation has been set up at the standard values of 16 resolution and 0.1
seconds time steps. Based on this, the diffusion coefficient has been set to D∗ = 1 · 10−10. At this
configuration setup the initial qualitative results were gathered. These results were images of the
simulation and the comparison between the simulation and exact results, as well as the timeseries
of both the simulation and comparison.

Similar to the issues discussed in section 6.2 with recreating the same results from the cubic do-
main, there were also some issues with the results here. Once again RunTime errors appeared at
higher resolution counts, but they only came in the form of ’too many polygon’ errors. While the er-
rors for the spherical domain started from resolutions of 52, here they didn’t start until resolution 68.

Further, there were no issues with certain resolutions not working for specific time steps, like those
discussed in the last paragraph of section 6.2. All results up to the resolution of 64 were obtainable
here.

Figure 13: Visualization of the simulation of the cylindrical domain in CapSys. Each image is a cross section
of the domain with the cylinder visible in the center. On the y-axis of each image is the z-direction of the
domain and in the x-axis is an intersection of the cylindrical element of the domain. On the left at t = 0s the
initial condition can be seen. This is as expected from the initial function. As the simulation progresses there
seems to be a skew in the concentrations to the right. The values everywhere converge towards the average.
At t = 3s the convergence is very close to being finished.
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(a) The time series of the concentration of the cylindrical
domain is not exactly as expected. The minimum concen-
tration remaining at 0 is expected, since the area outside
the cylinder is always at 0. The maximum concentration
as well as RMS don’t converge to the average concentra-
tion as time progresses. Both reach a steady level at some
value higher than the average.

(b) Time series of the comparison between the simulation
and exact solution. Looking at the scale on the left of the
graph, it seems like the error is in the order of 1E−4m,
about an order larger than in the spherical domain and
two orders larger than the cubic domain. The minimum
and maximum values are both around equal in magnitude,
remaining steady as time progresses instead of converg-
ing. The RMS also converges to a value different from
the average.

Figure 14: Timeseries of the concentrations in the simulation (14a) and of the comparison between the
simulation and the exact solution (14b). Both timeseries are with time steps of 0.1 seconds and resolution of
16.

(a) The time series of the comparison between the simu-
lation and exact solution at resolution of 8 and time steps
of 0.1 seconds. This shows the minimum difference ap-
pears to go to −∞ as time goes to 0, but it is set to the
exact same as the initial function at t = 0.

(b) The time series of the comparison between the simu-
lation and exact solution at resolution of 64 and time steps
of 0.1 seconds. This shows the maximum difference ap-
pears to go to ∞ as time goes to 0, but it is set to the exact
same as the initial function at t = 0.

Figure 15: Time series at different resolutions that show strange behaviour around t = 0, where the behaviour
of the minimum (figure 15a) and maximum (15b) appear asymptotic.
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6.3.1 Qualitative results

The first results will be the qualitative visual results from the simulation at 16 resolution and 0.1
seconds time steps. In figure 13 it is clearly visible at the images at 1 and 2 seconds into the simu-
lation that the simulation is not symmetric. Even in the images at 3 seconds, it appears that the area
where the concentration is not zero extends slightly further. A possible explanation for this may be
that the grid is not fully symmetric around the center of the domain used for the simulation. The
differences seem significant enough to cause problems at the boundary for the comparison with the
exact solution.

Next are the timeseries for both the simulation and the comparison between the simulation and the
exact solution. In figure 14a it the maximum value converges to a constant value as expected. This
value is not the average, as we expect and saw with the spherical and cubic simulations. There
appears no clear reason as to why this is, so this seems like another issue with this simulation.
On the right in figure 14b there are also some striking differences with the previous timeseries of
this type found in figures 6b and 9b. Here the maximum and minimum differences between the
exact solution and simulation do not converge. This also causes the RMS to increase with time
to its maximum value at 5 seconds. Finding the maximum RMS at 5 seconds holds for almost all
resolutions.

Of course these large differences between the simulation and exact solution should also visibly
show up in some of the images. They were found in figure 16. Both the maximum and minimum
differences show up in this cross-section in the z-direction. This shows that these differences show
up at the edges of the domain. There are issues with almost all sides of the cylindrical part of the do-
main, but the differences are largest for high values of x and y. This is also where the concentration
seemed to skew towards in figure 13.

There are some other resolutions where interesting situations arise. At a resolution of 8, it clearly
looks like the minimum difference between the exact solution and simulation would go to negative
infinity if the time went to 0. This can be seen in figure 15a Similarly, at resolutions over 32, the
maximum difference seems like it would go to infinity if time went down to 0. The timeseries to
illustrate this in figure 15b is at 64 resolution.

6.3.2 Quantitative results

On the quantative side there is once again convergence with increasing resolution, but similarly to
the spherical domain, this is not uniform. Once again this may be linked to how well the grid slots
align with the simulation domain. Specifically, the simulation with resolution 32 stands out because
it is less accurate then the one with resolution 24.

For all resolutions the error terms of the time steps have smaller differences than 1%, with many not
even surpassing 0.1% difference. In many cases, this is even the error term increasing, rather than
decreasing, with reduced time steps. This shows there is no notable convergence of the error term
with reduction in time steps. Clearly, there seems no linear convergence with time steps, as would
be expected.
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Figure 17: Graph plotting the maximum value for the root mean square (RMS) against the resolution for
different time steps. The error seems to decrease with increasing resolution, but not at the same rate as in the
cubic domain. Reductions in error with increasing resolution are also not uniform, as shown by the error at
resolution 32 being larger than the one at resolution 24. The differences between the errors at different time
steps are also negligible.

∆t Maximum RMS Factor
0.2 50.00 –
0.1 50.16 0.99
0.05 50.17 1.00

Table 5: The factor of difference in the maximum
value of the RMS for different time steps at a resolu-
tion of 64. The factors of 0.99 and 1.00 are nowhere
near the expected value of 2 if it would converge lin-
early. It cannot be concluded that the numerical sys-
tem converges linearly with time in the cylindrical
domain.

∆x Maximum RMS Factor
8 134.7 –
16 100.7 1.34
32 87.9 1.15

Table 6: The factor of difference in the adjusted
value of the maximum RMS for different resolu-
tions. The factors of 1.34 and 1.15 are not close to
the expected value of 4. Therefore it cannot be con-
cluded that the numerical system converges quadrat-
ically with resolution in cylindrical domain.

This lack of convergence with the expected order of O(∆t+∆x2) is clearly visible in the comparison
tables as well (5 and 6). Similar to the spherical case, there is no clear share of the error that is caused
by the time step. This means that the maximum RMS cannot easily be adjusted with that value to
more accurately compare the convergence in space. In both types of convergence it is clear that it is
not well behaved at the expected order.
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7 Discussion

Figure 16: The large maximum and mini-
mal comparison differences seen in figure
14b were visually found in a z-directional
cross section. These all seem to be around
the edge of the spherical section of the do-
main. The largest differences are seen at
higher values of x and y, which corresponds
with the skew seen in 13.

In this article we have looked at the implementation of the
diffusion equation by the software program CapSys, that
intends to simulate drug distribution through the brain.
Exact solutions to the equations have been found and used
to compare with the software implementation. After that
the expectations of the software performance were estab-
lished, with expected convergence of O(∆x2 +∆t) from
the simulation to the exact solution. We have found that
the implementation of the diffusion equation in an empty
square domain converges at the expected rate. When the
domain is not square and contains a cell or capillary, we
do not find convergence at the expected rate.

Overall, the implementation of the diffusion equation in
CapSys is successful, as seen by the accuracy of the con-
vergence shown in section 6.1.2. The cubic domain offers
no challenges to the software and is a pure assessment of
numerical method and its convergence. The results of the
rate of convergence match the expectation that was deter-
mined in 5.3.1, this tells us that the implementation of the
equation is correct.

Issues do start appearing when the domain does not neatly
follow the cubic grid spaces as set by the resolution. The
addition of a spherical outer boundary and central cell in
the spherical domain (as described in section 3.5.2) introduced errors in the software. At several
resolutions, we found specific areas where the simulation did not behave correctly. These areas
seem to be at the boundary of the domain, cell or capillary. Visually, it appears that these are areas
that are outside the simulated domain and the concentration there should have been set to 0. It seems
most of these issues appear around the cell and not the outer boundary of the domain. Since the
software intends to use cells both as targets and obstacles for diffusion, it is important to improve the
interaction between an initial concentration and the cells. Since these issues didn’t appear at lower
resolutions, such as 16 and 24, but did at resolutions of 40 and 48, tells us that simply increasing
the resolution further may not be a sufficient solution.

Since the quantitative results discussed in 6.2.2 show that the convergence does not follow the
expected value of O(∆t +∆x2). This means that for any domain with spherical elements, such as
cells and capillaries, that rate of convergence cannot be expected. If the use of larger 3D networks
is required, then higher resolutions are a necessity for accuracy. With resolutions that are too low,
issues such as illustrated in figure 4 may appear, with many of the grid slots cut off by capillaries or
cells. For this, the ’too many polygons’ error message needs to be resolved.

These issues with the spherical domain appear to carry over in the cylindrical domain with the
results shown in section 6.3. Once again there are issues around the edges of circular parts of the
domain. There is also no visible convergence with differences in time steps.

The issues found in the cylindrical domain mostly appear around the outer edge of the domain.
The area around the central capillary seems to work as intended. This could imply that the issues
disappear in a cubic 3D-unit network as discussed in section 3.4. In that case the outer boundaries
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are of the cubic domain type with the embedded capillaries causing no issues.

This article focused entirely on the diffusion equation. To get a more complete picture of the ac-
curacy of CapSys in simulating the drug distribution in the brain further investigation is needed.
Especially the addition of inflow of drug through the blood vessels and flux through the blood brain
barrier is an important addition that should be made in future studies. Further, the cells were consid-
ered empty obstacles here, while in reality there is diffusion through their membranes and there are
important drug targets inside cells and on their membranes. It is possible that many issues around
the cell membranes found in this article may be less pronounced when cells are permeable to some
degree.

Finally, there are several possibilities for improving CapSys. A solution should be found to the
issues that have appeared near the central cell in the spherical domain. Since the full brain model
contains many more cells, these issues can cause more problems. Another avenue for improvement
could be found in the speed with which the program can process certain operations, such as matrix
inversion. Using more efficient heuristic solutions to matrix inversion may allow for the program to
process domains with higher resolution more easily. These higher resolutions are likely a necessity
if you want to model domains with multiple cells.
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A Solution to spherical Bessel functions
1 r 0 = 4 . 5 * 1 0 ˆ − 6 ;
2 r 1 = 2 . 5 * 1 0 ˆ − 5 ;
3

4 syms x ;
5 eqn = ( x ˆ2* r 1 * r 0 * t a n ( x* r 0 ) +x *( r 0 − r 1 ) − t a n ( x* r 0 ) ) / ( − x ˆ2* r 1 *

r 0 + x* t a n ( x* r 0 ) * ( r 1 + r 0 ) −1)− t a n ( x* r 1 ) == 0 ;
6 f p l o t ( [ l h s ( eqn ) r h s ( eqn ) ] , [0 3 0 0 0 0 0 ] ) ;
7 lambda = do ub l e ( v p a s o l v e ( eqn , x , [285000 3 0 0 0 0 0 ] ) ) ;
8 d i s p ( [ ’ lambda = ’ , num2s t r ( lambda ) ] )
9

10 b = ( t a n ( lambda * r 0 ) −lambda * r 0 ) / ( lambda * r 0 * t a n ( lambda * r 0 ) −1) ;
11 d i s p ( [ ’ b = ’ , num2s t r ( b ) ] ) ;

B Solution to cylindrical Bessel functions with no inflow
1 r 0 = 2 . 5 * 1 0 ˆ − 6 ;
2 r 1 = 2 . 5 * 1 0 ˆ − 5 ;
3

4 syms x ;
5 eqn = b e s s e l j ( 1 , x* r 1 ) / b e s s e l y ( 1 , x* r 1 ) == b e s s e l j ( 1 , x* r 0 ) /

b e s s e l y ( 1 , x* r 0 ) ;
6 f p l o t ( [ l h s ( eqn ) r h s ( eqn ) ] , [1 2 0 0 0 0 0 ] ) ;
7 nu = do ub le ( v p a s o l v e ( eqn , x , [1 2 0 0 0 0 0 ] ) ) ;
8 d i s p ( [ ’ nu = ’ , num2s t r ( nu ) ] )
9

10 b = − b e s s e l j ( 1 , r 1 *nu ) / b e s s e l y ( 1 , r 1 *nu ) ;
11 d i s p ( [ ’ b = ’ , num2s t r ( b ) ] ) ;
12

13 f = −nu* b e s s e l j ( 1 , nu* r 0 ) − nu*b* b e s s e l y ( 1 , nu* r 0 ) ;
14 g = −nu* b e s s e l j ( 1 , nu* r 1 ) − nu*b* b e s s e l y ( 1 , nu* r 1 ) ;
15 d i s p ( [ ’ f = ’ , num2s t r ( f ) ] ) ;
16 d i s p ( [ ’ g = ’ , num2s t r ( g ) ] ) ;
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