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Introduction

Inventory management and choosing the right price are key elements in optimizing the profit of your
business or personal project. The biggest obstacle when determining the quantities one wants to have
in stock and for which price to sell these is the unpredictability of the demand. When the exact demand
is known, everyone can maximize their profit by ordering the exact demand for a given price. However,
in general, this is not the case and there are only previous demands to rely on. In this thesis, we will
discuss two models, that describe approximations of real-world problems, concerning inventory man-
agement.

The first model is a single-period model for perishable products with a price-dependent demand
D with known probability density function φD . After a brief review of existing literature, which is done
in Chapter 1, the single-period model will be analyzed in Chapter 2. This analysis consists of proving
the existence of a unique optimal ordering quantity q∗

1 and optimal price p∗ and of finding, if possible,
an explicit expression for them. Because of the complexity of the model, it is not possible to obtain
an expression for general demand distribution, so multiple demand distributions are considered in
Section 2.2. To determine q∗ and p∗ we will use the following roadmap:

1. Determine the general profit function, which has parameters q , p and D.

2. Determine the expected profit function, since the demand D is a random variable.

3. Assume p to be given and maximize the expected profit function for q∗. This will give an expres-
sion for q∗, which depends only on p.

4. Use the found expression for q∗ to determine the expected profit function, given the optimal
ordering quantity and maximize for p to find p∗.

The second model we will discuss is a two-period model for stable products, i.e., non-perishable
products. As with the first model, this model considers a price-dependent demand D with a known
probability density function φD . Here we add the assumption that unsatisfied demand from the first
period can be met in the second period. Another important assumption is that the price p is the same
in both periods. Again, specific probability density functions are assumed to solve this problem, which
is analyzed in Chapter 4. The same roadmap as above can be used to determine the optimal quantities
q∗

1 , q∗
2 for the first and second period respectively, and the optimal price p∗, with the only difference

the parameters q1 and q2 instead of q .
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Chapter 1

Single-period problem

Nowadays, running a company or store comes with many difficulties and challenges. One of these is
inventory management, which requires one to make sure that there always are enough products to
meet the demand and at the same time that there are not too many products in the inventory, as this
will lead to more costs. Of course, the type of product is majorly important as it comes to determining
how many products you want in your inventory. We distinguish two types of products: stable products
and perishable products. Stable products are products that one can always sell, no matter how long
they are stored. Perishable products, on the other hand, can only be sold for some time, after which
they will become unsellable.

The first examples of perishable products that will probably come to mind are food, flowers, news-
papers, or seasonal products such as winter clothing. But also such things as reservations or tickets
are perishable products since they lose their value after the event has ended. The fact that these are
perishable products explains the recurring sales in these industries.

Although sales is an effective method to clear your inventory and still make some profit, better in-
ventory management will prevent this and increase your profit. But how can inventory management
be improved? For the optimal inventory policy, both the probability of underordering, which causes
revenue loss and overordering, which leads to unsellable leftovers, need to be considered.

One well-known model that describes this is the so-called Newsboy or single-period Problem. This
model considers the inventory policy of perishable products for a single period. Newspapers fit this
model very well, hence the name.

Assumptions of the model

1. It involves a single perishable product.
2. It involves a single time period.
3. There is no initial inventory.
4. The only decision to be made is the value of q , the number of units to order.
5. The demand for buying products is a random variable D with known probability distributionφD ,

and is independent of the price.
6. The goal is to minimize the costs, where the cost components are:
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c = the cost for ordering a single product
s = the salvage value per product leftover at the end of the period
p = the cost of unsatisfied demand

The single-period problem is, as stated earlier, well-known, and it comes as no surprise that this is
already solved. As Hillier showed [1], the cost function, which we want to minimize, is

C (D, q) = c · y +p ·max{0,D −q}− s ·max{0, q −D}. (1.1)

We will not show the entire proof of Hillier here, but there is a part of it that is convenient to mention.
In reality, the demand is a discrete random variable. However, since the probability distribution of this
demand is often hard to find and will most probably lead to expressions, which are slightly more difficult
to solve analytically, Hillier approximated the discrete demand D with a continuous random variable.
We will follow his reasoning and, thus, unless otherwise stated, continuous demand is assumed in the
rest of this thesis.

The maximization of the cost function results in an optimal ordering quantity q∗, which is the value
which satisfies

ΦD (q∗) = p − c

p − s
, (1.2)

whereΦD (q∗) is the probability density function of our demand D.
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Chapter 2

Single-periodmodel with price
dependent demand

The Newsboy Problem gives us an optimal ordering quantity for a single period, assuming that the de-
mand is independent of the price. In the next model, we will take away this assumption. Furthermore,
instead of minimizing the costs, we will maximize our profit and, more importantly, we will do this
for both the ordering quantity and the price. To be more precise, we will first determine the ordering
quantity that maximizes the profit, given the price, and then we will maximize the profit function for
the price.

Assumptions of the model

1. It involves a single perishable product.
2. It involves a single time period.
3. There is no initial inventory.
4. The decisions to be made are the value of q , the number of units to order, and p, the received

price per sold unit.
5. The demand for buying products is a random variable D with known probability distributionφD ,

and is dependent on the price.
6. The goal is to maximize the profit.

2.1 The Optimal Quantity
The choice of the value of q depends for a great part on the probability distribution of our demand. For
instance, choosing a value of q higher than the maximum possible demand would be far from optimal,
as there certainly will be unsold items at the end of the period. As stated before, a balance of the risk
of overordering and underordering is needed to maximize the profit. Aside from the demand, multiple
factors play a role in this model.

We have the following variables:
p = the price per product
q = the quantity ordered at the beginning of the period
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c = the costs to produce a single product
s = the salvage value per product, i.e. the price received per leftover

. D = the demand per period
Note that the salvage value can also be negative, implying that costs are attached to getting rid of left-
overs. This could be the case when products need to be destroyed, transported or when there exist
taxes for these products. The salvage value is assessed at the end of the period since that is the only
time when it is certain that they will not be sold anymore. However, in our model, we assume positive
values of the salvage value.

The total profit of the model is equal to the revenue minus the costs. The revenue here consists of
the revenue of the sold products and the unsold products.

The amount that is sold at the end of the period is given by

min{D, q} =
{

D if D < q

q if D ≥ q.

Similarly, the amount that is unsold at the end of the period is

max{0, q −D} =
{

0 if D > q

q −D if D ≤ q.

So if we put these together we find that the profit function is given by

Pp (D, q) = p ·min{D, q}+ s ·max{0, q −D}− c ·q. (2.1)

The profit function can be rewritten as:

Pp (D, q) = p ·min{D, q}+ s ·max{0, q −D}− c ·q

= p · (D −max{0,D −q}
)+ s ·max{0, q −D}− c ·q

= p ·D −Cp (D, q).

Since p ·D is independent of q , maximizing Pp (D, q) for q is the same as maximizing Cp (D, q), which
is then equivalent with minimizing Eq. (1.1). With Hillier’s result (Eq. (1.2)), we find that the optimal
ordering quantity is the value which satisfies

ΦD (q∗) = p − c

p − s
. (2.2)

Of course, we can derive this solution ourselves by maximizing our expected profit function. As we
discussed before, we assume the demand D to be a continuous random variable. To rewrite our profit
function we use the fact that

c ·q = c · (q −D
)+ c ·D = c · (max{0, q −D}−max{0,D −q}

)+ c ·D.

This result can be used to show that

Pp (D, q) = p · (D −max{0,D −q}
)+ s ·max{0, q −D}− (

c · (max{0, q −D}−max{0,D −q}
)+ c ·D

)
= (p − c) ·D − (p − c) ·max{0,D −q}− (c − s) ·max{0, q −D}.
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Now that the profit function is in this form, the expected profit can be derived.
To derive this expected profit, we will apply the linearity of expectation, i.e., the expectation of a

sum of random variables is equal to the sum of their individual expectations of these random variables,
regardless of whether they are independent. The expected profit Pp (q) is expressed as

Pp (q) = E[Pp (D, q)]

= E[(p − c) ·D − (
(p − c) · (D −q)++ (c − s) · (q −D)+

)
]

= (p − c) ·E[D | p]− (p − c) ·
∞∫

q

(ξ−q) ·φD (ξ) dξ− (c − s)

q∫
0

(q −ξ) ·φD (ξ) dξ (2.3)

where φD (x) denotes the density function of our demand D. Now that we have determined our ex-
pected profit function, maximizing it is just a matter of taking the derivative and finding the roots of
this derivative. Since the goal is to maximize for q , the derivative should also be with respect to q which
results in

dPp (q)

d q
= (p − c) ·

∞∫
q

φD (ξ) dξ− (c − s) ·
q∫

0

φD (ξ) dξ

= (p − c) · (1−ΦD (q))− (c − s) ·ΦD (q).

Solving for the roots of this function gives us that

ΦD (q∗)
(−(p − c)− (c − s)

)=−(p − c)

ΦD (q∗) = p − c

p − s
. (2.4)

We also have that

d 2Pp (q)

d q2 =−(p − s) ·φD (q) ≤ 0

for all q . Thus our found ordering quantity q∗ indeed maximizes Pp (q) and this is the same result as we
saw before (Eq. (2.2)).

2.2 The Optimal Price
We have now determined the optimal ordering quantity, given the price. However, this price may not
be optimal for the profit. Hence, the next step is to maximize the profit function for the price, given the
optimal quantity. In this way, the profit will be maximized for both the ordering quantity and the price.
To do so, we will consider three different probability distributions for the demand. The distributions
we will consider are

1. Uniform Distribution

2. Exponential Distribution

3. Normal Distribution
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Choosing specific distributions allows us to obtain an explicit formula for the optimal ordering quantity,
which we will need to analytically prove the optimal price.

In real-world problems, the demand depends on the price of the product. The higher the price of a
product, the lower the demand. To implement this in the model, the assumption is made that themean
value or expected value of the demand distribution is linearly decreasing with p, i.e.

E[D|p] =µ(p) = (
α−βp

)+ ,

with α,β > 0. Note that this mean value must be non-negative since the demand can not be negative.
This results in an important condition for our price p; it must be less than or equal to α/β. Also, since
the goal is to maximize the profit, the price should be higher than or equal to our costs c. Hence, the
condition for p expands to

c ≤ p ≤ α

β
.

So, on this interval µ(p) =α−βp.

2.2.1 UniformDistribution
In this section, the demand is uniformly distributed with mean value µ(p) as defined above. Note that
the boundaries of the interval, the minimum and maximum values of the distribution, are also depen-
dent on p. Thus

D ∼U
[
a(p),b(p)

]
.

Using the known values for the mean value and variance of the uniform distribution we can determine
the values of these boundaries. The variance σ2(p) is by assumption constant.

µ(p) = E[
D|p]=α−βp = b(p)+a(p)

2
a(p)+b(p) = 2(α−βp),

σ2(p) = (b(p)−a(p))2

12
(b(p)−a(p))2 = 12σ2

b(p)−a(p) = 2σ
p

3

Combining these two outcomes gives us a system of equations:{
a(p)+b(p) = 2(α−βp)

a(p)−b(p) = 2σ
p

3.

Solving this system gives us that

a(p) =α−βp −σp3 (2.5)

b(p) =α−βp +σp3. (2.6)
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You can see that the minimum and maximum values of the uniform distribution behave as expected.
They lie evenly far from the mean value and are, as stated before, dependent on p. So,

D ∼U
[

(α−βp)−σp3 , (α−βp)+σp3
]

.

The known probability density function of a uniform distribution is 1/w, where w denotes the width of
the distribution, i.e., the maximum value minus the minimum value for all the values in the interval
and zero otherwise. This results in the density function

φD (x) =
{

1
2σ

p
3

for a(p) ≤ x ≤ b(p)

0 else,
(2.7)

with the accessory cumulative density function

ΦD (x) =
{ x−a(p)

2σ
p

3
for a(p) ≤ x ≤ b(p)

0 else.
(2.8)

From Eq. (2.4) we can obtain our optimal ordering quantity q∗:

ΦD (q∗) = q∗−a(p)

2σ
p

3
= p − c

p − s

q∗ = a(p)+2σ
p

3 · p − c

p − s
. (2.9)

Solving for the price
Now that we have found the optimal ordering quantity for the Uniform Distribution, we can continue
with the optimal price. Now that the demand has a known probability density function, the expected
profit can be written as

Pp (q) = E[Pp (D, q)]

=Cu ·E[D | p]−Cu ·
∞∫

q

(ξ−q) ·φD (ξ) dξ−Co

q∫
0

(q −ξ) ·φD (ξ) dξ

= (p − c) · (α−βp)− (p − c) ·
b(p)∫
q

(ξ−q) · 1

2σ
p

3
dξ− (c − s)

q∫
a(p)

(q −ξ) · 1

2σ
p

3
dξ

= (p − c) · (α−βp)− p − c

2σ
p

3
·
[

1

2

(
ξ−q

)2
]b(p)

q
− p − s

2σ
p

3
·
[
−1

2

(
q −ξ)2

]q

a(p)

= (p − c) · (α−βp)− p − c

4σ
p

3
· (b(p)−q)2 − c − s

4σ
p

3
· (q −a(p))2. (2.10)
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We can now substitute our optimal ordering quantity q∗ (Eq. (2.9)) for q in Eq. (2.10) to find the
function we want to maximize for p, since this q∗ maximizes the profit function for any given p.

Pp (q∗) : = E[Pp (D, q∗)]

= (p − c) · (α−βp)− p − c

4σ
p

3
·
(
b(p)−a(p)−2σ

p
3 · p − c

p − s

)2

− c − s

4σ
p

3
·
(

a(p)+2σ
p

3 · p − c

p − s
−a(p)

)2

= (p − c) · (α−βp)− p − c

4σ
p

3
·
(
2σ

p
3−2σ

p
3 · p − c

p − s

)2

− c − s

4σ
p

3
·
(
2σ

p
3 · p − c

p − s

)2

= (p − c) · (α−βp)− (p − c) ·σp3 ·
(
1− p − c

p − s

)2

− (c − s) ·σp3 ·
(

p − c

p − s

)2

(2.11)

Eq. (2.11) shows the expected profit function Pp (q∗), only depending on the known parameters and
the variable p. Now we will prove that there exists a unique value p∗ ∈ [c,α/β] that maximizes Pp (q∗) in
this interval. To do so, we will use the first derivative for proving that there exists a root and the second
derivative for proving that there exists a maximum and that it is unique.

dPp (q∗)

d p
= (α−βp)−β(p − c)−σp3 ·

(
1− p − c

p − s

)2

− (p − c) ·σp3

[(
1− p − c

p − s

)2]′
− (c − s) ·σp3 ·

[(
p − c

p − s

)2]′
= (α−βp)−β(p − c)−σp3 ·

(
1− p − c

p − s

)2

− (p − c) ·σp3 ·−2 ·
(
1− p − c

p − s

)
· c − s

(p − s)2

− (c − s) ·σp3 ·2 · p − c

p − s
· c − s

(p − s)2

= (α−βp)−β(p − c)−σp3 ·
(

c − s

p − s

)2

+2σ
p

3 · p − c

p − s
·
(

c − s

p − s

)2

−2σ
p

3 · p − c

p − s
·
(

c − s

p − s

)2

= (α−βp)−β(p − c)−σp3 ·
(

c − s

p − s

)2

(2.12)

The values at the boundaries of the desired interval, so at p = c and p = α/β can tell us a lot about the
behaviour of P ′

p (q∗). At p = c the first derivative is equal to

P ′
c (q∗) = (α−βc)−σp3

= a(c),

and at p = α/β it is

P ′
α/β

(
q∗)= (α−α)− (α−βc)−σp3

(
c − s
α
β − s

)2

<−(α−βc +σp3)

=−b(c).

To be certain that we have a non-negative derivative at p = c, we need the condition a(c) ≥ 0, i.e., c ≤
α/β−σp3. Intuitively, the interval for the price should be sufficiently large. Note that the value b(c) is by
definition greater than zero, since c ≤ α/β. Thus we have a negative first derivative at the right boundary.
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Since P ′
p (q∗) is continuous for p > s, it also is continuous in the desired interval. Since

P ′
c (q∗) ·P ′

α/β(q∗) ≤ 0, the Theorem of Bolzano tells us that there exists at least one p ∈ [c,α/β] such that
P ′

p (q∗) = 0.
We have now proven the existence of a root in the interval [c,α/β]. The second derivative will give

more information about whether this is a maximum or a minimum. The second derivative is

P ′′
p (q∗) := d 2Pp (q∗)

d p2 =−2β+2σ
p

3 · (c − s)2

(p − s)3 . (2.13)

If we determine the zeros of the second derivative, we only have one real zero pz , which is

σ
p

3 · (c − s)2

(pz − s)3 =β

(pz − s)3 = (c − s)2 ·σp3

β

pz = 3

√
(c − s)2 ·σp3

β
+ s. (2.14)

So this pz is the only real root of our second derivative. We also have that

dP ′′
p (q∗)

d p
=−3 ·2σ

p
3 · (c − s)2

(p − s)4 , (2.15)

which is strictly negative for all p ∈ R. So the second derivative is strictly decreasing on the whole of
R. So, for all p > pz , we have a negative second derivative, i.e., the expected profit function is concave.
More importantly, the function is convex for p ≤ pz . There are two options: either pz ≤ c or pz > c. We
will now determine in which situations we encounter the different cases.

P ′′
c (q∗) = 0

1

c − s
·2σ

p
3 = 2β

c − s = σ
p

3

β
.

In the case that c − s < σ
p

3
β , then

pz = 3

√
(c − s)2 ·σp3

β
+ s > 3

√
(c − s)3 + s = c.

Concluding this section, there are two possible cases: pz as in Eq. (2.14) is either less than or equal to
the cost c, in which case the expected profit function Pp (q∗) is concave on the whole interval, or pz is
greater than the cost, which results in a convex and concave part.

In the last part of this section we will compare these two cases.

• pz ≤ c, which is equivalent to c − s ≥ σ
p

3
β

In this case, the expected profit function Pp (q∗) is, as stated before, concave and since there exists
a root of P ′

p (q∗), this is also the global maximum.
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• pz > c, which is equivalent to c − s < σ
p

3
β

In this case, c lies in the convex part of the function, and P ′
c (q∗) > 0. Combining these two facts,

ensures that if there exists an extreme value, which is true, this value will be a global maximum.

Thus in both cases there exists a unique value p∗ which maximizes the expected profit PP (q∗) in the
interval [c,α/β].

Numerically solving for p∗

Now that we have proven the existence and uniqueness of an optimal price p∗, we still need to deter-
mine the value of this p∗. p∗ is a root of Eq. (2.12) and, although this equation is solvable for specific
values of the parameters, we can not solve it analytically. What we do know is that, when we numeri-
cally solve the roots of Eq. (2.12), p∗ is the maximum (real) root. This is because if there exists a root
x ≥ p of P ′

p (q∗), this would contradict the concaveness of the function for p > pz .
We will consider two examples: one of each of the two possible cases described above. In the first

example we have µ(p) = 200−5p with cost c = 5, salvage value s = 1 and variance σ2(p) = 1. This gives
the graph

and results in an optimal ordering quantity q∗ ≈ 88,62 and optimal price p∗ ≈ 22,49. In the plot, p∗ is
the maximum root of Eq. (2.12), which indeed is the maximum value here. Furthermore, it is easy to
see that we are in the first case, namely pz ≤ c.

The second example has the exact same parameters as the first example, but a significant higher
variance of σ2(p) = 900. This gives the graph
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and results in an optimal ordering quantity q∗ ≈ 120,86 and optimal price p∗ ≈ 22,32.

Sensitivity Analysis

In this next section, we will change the parameters one by one to see the sensitivity of these parameters.
This will give us a good insight into which parameters have the greatest influence on the model.

TABLE 2.1: Changing α

α β c s σ q∗ p∗ Pp∗ (q∗)

100 5 5 1 1 38,13 12,48 276,73

150 5 5 1 1 63,44 17,49 776,00

200 5 5 1 1 88,62 22,49 1525,61

250 5 5 1 1 113,73 27,50 2525,37

300 5 5 1 1 138,81 32,50 3775,20

TABLE 2.2: Changing β

α β c s σ q∗ p∗ Pp∗ (q∗)

200 2 5 1 1 96,47 52,50 4506,11

200 5 5 1 1 88,62 22,49 1525,61

200 10 5 1 1 75,63 12,49 557,98

200 20 5 1 1 49,92 7,48 122,34

200 30 5 1 1 24,45 5,81 19,65

The results in Table 2.1 and 2.2 are as expected; increasing α leads to a higher optimal ordering
quantity and optimal price, since the mean value µ(p) of the demand increases as α increases. In the
same way, decreasing β leads to the same results, since µ(p) decreases as β decreases.
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TABLE 2.3: Changing c

α β c s σ q∗ p∗ Pp∗ (q∗)

200 5 2 1 1 96,56 21,00 1803,35

200 5 5 1 1 88,62 22,49 1525,61

200 5 10 1 1 75,55 24,98 1115,26

200 5 20 1 1 49,83 29,93 488,68

200 5 30 1 1 24,40 34,87 117,69

TABLE 2.4: Changing s

α β c s σ q∗ p∗ Pp∗ (q∗)

200 5 5 0 1 88,50 22,49 1524,51

200 5 5 1 1 88,62 22,49 1525,61

200 5 5 2 1 88,74 22,50 1526,81

200 5 5 3 1 88,88 22,50 1528,14

200 5 5 4 1 89,05 22,50 1529,61

TABLE 2.5: Changing σ

α β c s σ q∗ p∗ Pp∗ (q∗)

200 5 5 1 1 88,62 22,49 1525,61

200 5 5 1 2 89,73 22,49 1519,97

200 5 5 1 5 93,08 22,47 1503,06

200 5 5 1 10 98,66 22,44 1474,88

200 5 5 1 20 109,78 22,38 1418,54

Furthermore, looking at the tables, one can see that changing α, β, or c has a significantly greater
effect on the optimal ordering quantity q∗, as well as on the optimal price p∗, than changing s or σ.
Therefore it also has a significantly greater effect on the expected profit, which the tables show.

The most interesting table, most likely, is Table 2.4, as it might not show what one would initially
think. When we increase the salvage value s, i.e., we get more value for every unsold product, the risk
of overordering decreases, since the loss is significantly less. However, since we still want to minimize
this risk, increasing the salvage value only leads to a slight increase in the expected profit.

Lastly, we note that the variance σ has a completely different influence than the other parame-
ters. In all the other cases, either both the optimal ordering quantity and the optimal price significantly
change, or they both roughly stay the same. In Table 2.5 however, we can see that, as the optimal price
stays basically the same, the optimal ordering quantity increases quite a bit more. Also, as the variance
increases, the expected profit decreases, which intuitively is caused by the fact with a greater variance
comes a greater range for the demand. This increases both the risk of overordering and the risk of un-
derordering, which in its turn, causes the expected profit to decrease.
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2.2.2 Exponential Distribution
In this section, the demand is exponentially distributed with mean valueµ(p) =α−βp. The mean value
of an exponential distribution with parameter λ is 1/λ, thus

D ∼ E xp

[
1

α−βp

]
.

Opposite to the uniform distribution, the exponential distribution has a probability density function
on the interval [0,∞] for all mean values µ(p). This density function has a relatively high probability for
all demands less than the mean value and is explicitly described in the following way:

φD (x) =
{

1
α−βp ·e−

x
α−βp x ≥ 0

0 x < 0,
(2.16)

with the accessory cumulative density function

ΦD (x) =
{

1−e−
x

α−βp x ≥ 0

0 x < 0.
(2.17)

From Eq. (2.4) we once again can obtain the optimal ordering quantity q∗.

ΦD (q∗) = 1−e−
q∗

α−βp = p − c

p − s

e−
q∗

α−βp = 1− p − c

p − s

− q∗

α−βp
= ln

(
c − s

p − s

)
q∗ =−(α−βp) · ln

(
c − s

p − s

)
. (2.18)

Solving for the price

With the optimal ordering quantity q∗ as in Eq. (2.18), we can determine the optimal price. Just as with
the Uniform Distribution, a known probability density function leads to a simplified expected profit.
We also still have the same expected profit function as before, so we find that:

Pp (q) = E[Pp (D, q)]

= (p − c) ·E[D | p]− (p − c) ·
∞∫

q

(ξ−q) ·φD (ξ) dξ− (c − s) ·
q∫

0

(q −ξ) ·φD (ξ) dξ

= (p − c) · (α−βp)− (p − c) ·
∞∫

q

(ξ−q) · 1

α−βp
e−

ξ
α−βp dξ− (c − s) ·

q∫
0

(q −ξ) · 1

α−βp
e−

ξ
α−βp dξ.

In order to further simplify the function, the two integrals in the above function need to be determined.
Note that

I1 =
∫

(ξ−q) · 1

α−βp
e−

ξ
α−βp dξ=−

∫
(q −ξ) · 1

α−βp
e−

ξ
α−βp dξ.
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So it is sufficient to solve I1. To do so, we will use integration by parts, where

f = ξ−q =⇒ f ′ = 1, and

g ′ = 1

α−βp
e−

ξ
α−βp =⇒ g =−e−

ξ
α−βp .

So we get that

I1 =−(ξ−q) ·e−
ξ

α−βp +
∫

e−
ξ

α−βp dξ

=−(ξ−q) ·e−
ξ

α−βp − (α−βp) ·e−
ξ

α−βp

= (q −ξ− (α−βp)) ·e−
ξ

α−βp .

Now that this integral has been solved, the expected profit function is given by

Pp (q) = (p − c) · (α−βp)− (p − c) ·
∞∫

q

(ξ−q) · 1

α−βp
e−

ξ
α−βp dξ− (c − s) ·

q∫
0

(q −ξ) · 1

α−βp
e−

ξ
α−βp dξ

= (p − c) · (α−βp)− (p − c) ·
[

(q −ξ− (α−βp)) ·e−
ξ

α−βp

]∞
q
+ (c − s) ·

[
(q −ξ− (α−βp)) ·e−

ξ
α−βp

]q

0

= (p − c) · (α−βp)− (p − c) · (α−βp) ·e−
q

α−βp + (c − s) ·
(
(−(α−βp)) ·e−

q
α−βp − (q − (α−β))

)
= (p − s)(α−βp)− (p − s) · (α−βp) ·e−

q
α−βp − (c − s) ·q. (2.19)

Although some computations were needed, the expected profit function PP (q) is simplified and looks
a lot more manageable. The next step is, in a similar way as with the Uniform Distribution, to use the
value of q∗ (Eq. (2.18)) in Pp (q):

Pp (q∗) = (p − s)(α−βp)− (p − s) · (α−βp) ·e−
−(α−βp)·ln

(
c−s
p−s

)
α−βp − (c − s) ·

(
−(α−βp) · ln

(
c − s

p − s

))
= (p − s)(α−βp)− (p − s) · (α−βp) ·e

ln
(

c−s
p−s

)
+ (c − s) · (α−βp) · ln

(
c − s

p − s

)
= (p − s)(α−βp)− (p − s) · (α−βp) · c − s

p − s
+ (c − s) · (α−βp) · ln

(
c − s

p − s

)
= (p − c)(α−βp)+ (c − s) · (α−βp) · ln

(
c − s

p − s

)
. (2.20)

The expected profit function (Eq. (2.20)) depends only on the variable price p. Again, we want to find
the value p∗ that maximizes Pp (q∗).

P ′
P (q∗) = dPp (q∗)

d p
= (α−βp)−β(p − c)−β(c − s) · ln

(
c − s

p − s

)
+ (c − s)(α−βp) ·

(
ln

(
c − s

p − s

))′
= (α−βp)−β(p − c)−β(c − s) · ln

(
c − s

p − s

)
+ (c − s)(α−βp) ·

(
− 1

p − s

)
= (α−βp)−β(p − c)−β(c − s) · ln

(
c − s

p − s

)
− (α−βp) · c − s

p − s
. (2.21)

17



In particular, at p = c we have that

P ′
c (q∗) = (α−βc)−β(c − c)−β(c − s) · ln

(c − s

c − s

)
− (α−βc) · c − s

c − s
= (α−βc)−β(c − s) · ln1− (α−βc)

= 0.

Also, at p = α/β, we have that

P ′
α/β

(
q∗)= (

α−β · α
β

)
−β

(
α

β
− c

)
−β(c − s) · ln

(
c − s
α
β − s

)
−

(
α−β · α

β

)
· c − s
α
β − s

=−β
(
α

β
− c

)
−β(c − s) · ln

(
c − s
α
β − s

)

=β(c − s)−β
(
α

β
− s

)
−β(c − s) · ln

(
c − s
α
β − s

)

=β(c − s)+β(c − s) ·−
( α
β − s

c − s

)
−β(c − s) · ln

(
c − s
α
β − s

)
∗<β(c − s)+β(c − s) ·

(
− ln

( α
β − s

c − s

)
−1

)
−β(c − s) · ln

(
c − s
α
β − s

)

=β(c − s)−β(c − s)+β(c − s) · ln

(
c − s
α
β − s

)
−β(c − s) · ln

(
c − s
α
β − s

)
= 0,

where at ∗, we use that

ln{x} < x −1 for x ̸= 1,

which implies that − ln{x}−1 > −x for x ̸= 1. Since the first derivative at p = c is zero, we have already
proven the existence of a root in the interval [c,α/β]. Furthermore, we have that

P ′′
p (q∗) = d 2Pp (q∗)

d p2 =−β−β+ β(c − s)

p − s
+ β(c − s)

p − s
+ (c − s)(α−β)

(p − s)2

=−2β+2β · c − s

p − s
+ (α−βp) · c − s

(p − s)2 . (2.22)

Note that Eq. (2.22) is monotonely decreasing for p > s. Recall that in the previous section, with the
Uniform Distributed demand, there were two different cases: P ′′

c (q∗) < 0 or P ′′
c (q∗) ≥ 0. However, here

we have that

P ′′
c (q∗) =−2β+2β · c − s

c − s
+ (α−βc) · c − s

(c − s)2

= (α−βc) · 1

c − s
,

which is strictly positive for all choices of α, β, c and s. So, opposite to the Uniform Distribution, we
know that, in all cases, c lies in the convex part. Thus the first derivative P ′

c+ϵ(q∗) for ϵ ∈R>0 sufficiently
small is strictly positive.
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As P ′
p (q∗) is continuous for p > s, it also is continuous in the desired interval. Since

P ′
c+ϵ(q∗) ·P ′

α/β(q∗) < 0, the Theorem of Bolzano tells us that there exists at least one p∗ ∈ (c,α/β] such
that P ′

p (q∗) = 0. Since c lies in the convex part and P ′
c (q∗) = 0, the expected profit function Pp (q∗) has

a minimum at c and thus Pp (q∗) must have a global maximum at this root p∗. So in all cases we have a
unique value p∗ that maximizes the expected profit Pp (q∗) in the interval [c,α/β].

Numerically solving for p∗

Now that we have proven the existence and uniqueness of an optimal price p∗, we still need to deter-
mine the value of this p∗. p∗ is a root of Eq. (2.21) and, although this equation is solvable for specific
values of the parameters, we can not solve it analytically. What we do know is that, when we numeri-
cally solve the roots of Eq. (2.21), p∗ is the maximum (real) root. We know that there is a root at p = c,
which lies in the convex part. For p > pz , where pz denotes the root of the second derivative with pz > c
(the exact value of pz is irrelevant), the expected profit function is concave, so there exists only one root
(also for p > α/β), which is our optimal price p∗.

We will consider an example with the same parameters as in the first case of the Uniform Distri-
bution, thus µ(p) = 200−5p with cost c = 5, salvage value s = 1 and variance σ2(p) = 1. This gives the
graph

and results in an optimal ordering quantity q∗ ≈ 66,23 and optimal price p∗ ≈ 27,90.

Sensitivity Analysis

Just as with the uniformly distributed demand, we will perform a sensitivity analysis on the variables.
The tables are listed on the next page and show similar results for α, β, and c. All three of them cause
a significant change in the optimal ordering quantity, optimal price, and expected profit in the way

19



one would expect. With the salvage value s however, it is different than with the uniformly distributed
demand.

TABLE 2.6: Changing α

α β c s q∗ p∗ Pp∗ (q∗)

100 5 5 1 35,74 13,89 128,60

150 5 5 1 80,88 19,40 439,68

200 5 5 1 135,62 24,79 962,65

250 5 5 1 197,44 30,10 1707,64

300 5 5 1 264,89 35,37 2680,54

TABLE 2.7: Changing β

α β c s q∗ p∗ Pp∗ (q∗)

200 2 5 1 230,07 56,16 3565,44

200 5 5 1 135,62 24,79 962,65

200 10 5 1 71,47 13,89 257,19

200 20 5 1 21,59 8,13 30,59

200 30 5 1 4,20 6,08 2,18

TABLE 2.8: Changing c

α β c s q∗ p∗ Pp∗ (q∗)

200 5 2 1 272,90 22,10 1526,04

200 5 5 1 135,62 24,79 962,65

200 5 10 1 66,23 27,90 486,78

200 5 20 1 18,79 32,62 108,57

200 5 30 1 3,53 36,52 11,12

TABLE 2.9: Changing s

α β c s q∗ p∗ Pp∗ (q∗)

200 5 5 0 120,55 25,03 896,46

200 5 5 1 135,62 24,79 962,65

200 5 5 2 156,24 24,49 1042,78

200 5 5 3 187,29 24,10 1143,83

200 5 5 4 244,35 23,57 1281,21

As Table 2.9 shows, the salvage value has a greater influence than with the uniformly distributed
demand. The reason for this is that with the uniform distribution, all demands (in the interval of the
uniform distribution) are equiprobable, i.e., they all have the same chance of occurring. With the ex-
ponential distribution, however, the probability of a demand x lower than the mean value µ(p) is sig-
nificantly higher than a demand x higher than µ(p). Since low demands have a higher probability, the
risk of overordering is way higher than with the uniformly distributed demands and this causes that
increasing the salvage value leads to a much higher expected profit. In other words, since we are more
likely to overorder, we are more likely to lose c − s per leftover, which of course decreases as s increases.

2.2.3 Normal Distribution
In this section, the demand is normally distributed with mean value µ(p) = α−βp and with constant
variance σ2(p) =σ2, i.e.,

D ∼N
[
α−βp,σ2] .

The Normal Distribution is known to have one particular property, namely the fact that all numbers
that lie evenly far from the mean have equal probability. So a demand x higher than µ(p) is just as likely
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as a demand x lower than µ(p). The probability density function of the demand is given by

φD (x) = 1

σ
p

2π
e
− 1

2

(
x−α+βp

σ

)2

for all x ∈R. The accessory cumulative distribution function is

φD (x) = 1p
2π

x∫
−∞

e−
t2
2 d t ,

which is quite complicated compared to the cumulative distribution functions of the Uniform and Ex-
ponential Distribution. It is so complicated that there does not exist a closed-form expression for the
inverse cumulative distribution function. For this reason, we will denote this inverse by Φi nv in the
following derivation of the optimal ordering quantity:

ΦD (q∗) =Φ
(

q∗−α+βp

σ

)
= p − c

p − s

q∗−α+βp

σ
=Φi nv

(
p − c

p − s

)
q∗ = (α−βp)+σ ·Φi nv

(
p − c

p − s

)
. (2.23)

Note that since we have no explicit expression for our optimal quantity, it is impossible to solve this
problem analytically. We can, however, find an expression for the expected profit function Pp (q), which
will allow us to solve it numerically.

Pp (q) = E[Pp (D, q)]

= (p − c) ·E[D | p]− (p − c) ·
∞∫

q

(ξ−q) ·φD (ξ) dξ− (c − s) ·
q∫

−∞
(q −ξ) ·φD (ξ) dξ

= (p − c) · (α−βp)− (p − c) ·
∞∫

q

ξ ·φD (ξ) dξ+ (p − c) ·q
(
1−Φ(q∗)

)− (c − s) ·q ·Φ(q∗)

+ (c − s) ·
q∫

−∞
ξ ·φD (ξ) dξ

= (p − c) · (α−βp)− (p − c) ·
∞∫

q

ξ ·φD (ξ) dξ+ (p − c) ·q

(
c − s

p − s

)
− (c − s) ·q · p − c

p − s

+ (c − s) ·
q∫

−∞
ξ ·φD (ξ) dξ

= (p − c) · (α−βp)− (p − c) ·
∞∫

q

ξ ·φD (ξ) dξ+ (c − s) ·
q∫

−∞
ξ ·φD (ξ) dξ
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= (p − c)

 ∞∫
−∞

ξ ·φD (ξ) dξ−
∞∫

q

ξ ·φD (ξ) dξ

+ (c − s) ·
q∫

−∞
ξ ·φD (ξ) dξ

= (p − s) ·
q∫

−∞
ξ ·φD (ξ) dξ. (2.24)

To further simplify Pp (q) we need to determine the integral

I1 =
q∫

−∞
ξ ·φD (ξ) dξ=

q∫
−∞

ξ · 1

σ
p

2π
e
− 1

2

(
ξ−α+βp

σ

)2

dξ.

To do so, we will split the integral into two integrals that are easier to solve.

I1 =σ ·
q∫

−∞

(
ξ−α+βp

σ

)
· 1

σ
p

2π
e
− 1

2

(
ξ−α+βp

σ

)2

dξ+ (α−βp) ·
q∫

−∞

1

σ
p

2π
e
− 1

2

(
ξ−α+βp

σ

)2

dξ

=σ ·
q∫

−∞

(
ξ−α+βp

σ

)
· 1

σ
p

2π
e
− 1

2

(
ξ−α+βp

σ

)2

dξ+ (α−βp) ·Φ(q∗)

= σp
2π

·
q∫

−∞

(
ξ−α+βp

σ

)
·e

− 1
2

(
ξ−α+βp

σ

)2

dξ+ (α−βp) · p − c

p − s

= σp
2π

·
[

‘−e
− 1

2

(
ξ−α+βp

σ

)2]q

∞
+ (α−βp) · p − c

p − s

=− σp
2π

·e
− 1

2

(
q−α+βp

σ

)2

+ (α−βp) · p − c

p − s
. (2.25)

If we replace I1 with Eq. (2.25), we find that

Pp (q) = (p − s) · I1

= (p − c) · (α−βp)− (p − s) · σp
2π

·e
− 1

2

(
q−α+βp

σ

)2

. (2.26)

Substituting q∗ as in Eq. (2.23) in the expected profit function in Eq. (2.25) results in

Pp (q∗) = (p − c) · (α−βp)− (p − s) · σp
2π

·e
− 1

2

(
Φi nv

(
p−c
p−s

))2

. (2.27)

Solving for the price numerically

As we stated before, we can not maximize Eq. (2.27) analytically. However, it is possible to solve this nu-
merically, simply by looping over all possible values of p and determining the value p∗ that maximizes
Pp (q∗).

For µ(p) = 200−5p, cost c = 5, salvage value s = 1 and variance σ2(p) = 1 we then have the graph
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and results in optimal ordering quantity q∗ ≈ 88,44 and optimal price p∗ = 22,49.

Sensitivity Analysis

As with the previous two distributions, we end with a section in which we analyze the sensitivity of the
parameters of our model. The parameters of the normally distributed demand behave in a very similar
way as with uniformly distributed demand. This is mostly due to the fact that both distributions have
the property that all demands x from the mean are equiprobable.

In fact, the values in the tables on this and the next page differ with less than 1 on all entries with
the uniformly distributed demand. When we consider this similarity, one could suggest using the found
optimal ordering quantity and optimal price of the case with the uniformly distributed demand to find
a good approximation for the normally distributed demand, since we were not able to find an explicit
formula for these.

TABLE 2.10: Changing α

α β c s σ q∗ p∗ Pp∗ (q∗)

100 5 5 1 1 37,99 12,48 277,00

150 5 5 1 1 63,25 17,49 776,09

200 5 5 1 1 88,44 22,49 1525,49

250 5 5 1 1 113,58 27,49 2525,05

300 5 5 1 1 138,69 32,49 3774,69

TABLE 2.11: Changing β

α β c s σ q∗ p∗ Pp∗ (q∗)

200 2 5 1 1 96,44 52,49 4505,01

200 5 5 1 1 88,44 22,49 1525,49

200 10 5 1 1 75,49 12,49 558,25

200 20 5 1 1 49,90 7,49 122,51

200 30 5 1 1 24,45 5,82 19,61
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TABLE 2.12: Changing c

α β c s σ q∗ p∗ Pp∗ (q∗)

200 5 2 1 1 96,64 21 1802,94

200 5 5 1 1 88,44 22,49 1525,49

200 5 10 1 1 75,47 24,97 1115,90

200 5 20 1 1 49,90 29,94 489,34

200 5 30 1 1 24,49 34,89 117,24

TABLE 2.13: Changing s

α β c s σ q∗ p∗ Pp∗ (q∗)

200 5 5 0 1 88,31 22,49 1524,55

200 5 5 1 1 88,44 22,49 1525,49

200 5 5 2 1 88,60 22,49 1526,55

200 5 5 3 1 88,77 22,5 1527,76

200 5 5 4 1 89,11 22,5 1529,22

TABLE 2.14: Changing σ

α β c s σ q∗ p∗ Pp∗ (q∗)

200 5 5 1 1 88,44 22,49 1525,49

200 5 5 1 2 89,38 22,48 1519,73

200 5 5 1 5 92,20 22,45 1502,47

200 5 5 1 10 96,89 22,4 1473,71

200 5 5 1 20 106,26 22,29 1416,28
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Chapter 3

Two-period problem

Some companies may want to, for various reasons, plan for two periods instead of one. If, for example,
it turns out that in the second period the company needs considerably fewer products, they might cut
down on their production staff or machinery and in this reduce their costs. Another example is that
sometimes companies have contracts with other companies that provide either products or materials
that cover multiple periods.

Although it may seem reasonable, using the optimal single-period solution twice will, in most cases,
not be the optimal solution for the two-period problem. Besides the fact of having two periods, the
assumptions of this model are basically the same as in the single-period model.

Assumptions of the model

1. It involves a single stable product.
2. It involves a two-time period, where unsatisfied demand in period 1 is backlogged to be met in

period 2. However, unsatisfied demand in period 2 can in no way be backlogged.
3. There is no initial inventory.
4. The only decisions to be made are the values of q1 and q2, the number of units to order at the

beginning of period 1 and period 2.
5. The demands for buying products are indepent and identically distributed random variables D1

and D2 with known probability distribution φD , and are independent of the price.
6. The goal is to minimize the total costs for both periods, where the cost components are:

c = the cost for ordering a single product
s = the salvage value per product leftover at the end of the period
p = the cost of unsatisfied demand

Note that the assumption is made that the two demand distributions are the same and that the values
of the costs are also the same in both periods. In particular, we assume that the price p is the same in
both periods.
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As with the single-period problem, the optimal ordering quantity for the case where the demand is
independent of the price has already been proven. Hillier [1] showed that the expected cost function
for both periods, C1(D, y), is given by

C1(x1) = c ·q1 +L(q1)+
q1−q∗

2∫
0

L(q1 −ξ)φD (ξ) dξ+
∞∫

q1−q∗
2

[(q∗
2 −q1 +ξ)+L(q∗

2 )]φD (ξ) dξ, (3.1)

where

L(x) = p ·
∞∫

x

(ξ−x)φD (ξ) dξ− s ·
x∫

0

(x −ξ)φD (ξ) dξ.

In Eq. (3.1) q1 denotes the ordering quantity of period 1 and q∗
2 denotes the optimal ordering quantity

of period 2, which actually is the optimal ordering quantity of the single-period model, as in Eq. (1.2).
The reason for not showing the whole proof of Hillier is the fact that in the next chapter we will, for our
own model, prove the same results in a very similar way. If one wants to read the full length of Hillier’s
proof, it is available at [1].

The value of q1 that minimizes Eq. (3.1), denoted by q∗
1 , satisfies the equation

−p + (p − s) ·Φ(q∗
1 )+ (c −p)Φ(q∗

1 −q∗
2 )+ (p − s)

q∗
1 −q∗

2∫
0

Φ(q∗
1 −ξ)φd (ξ) dξ= 0. (3.2)

The accessory optimal ordering policy is to order q∗
1 products at the beginning of period 1 and for period

2 ordering max{0, q∗
2 − x}, where x is the stock level at the beginning of period 2. Eq. (3.2) holds for

general demand distributions φD and can not be solved explicitly. However, for some specific demand
distributions, this expression leads to a bit simpler result.

When the demand is uniformly distributed over the range 0 to t , i.e.,

φD (ξ) =
{

1
t if 0 ≤ ξ≤ t

0 otherwise,

q∗
1 can be obtained from the expression

q∗
1 =

√
(q∗

2 )2 + 2t (c[p)

p − s
q∗

2 + t 2[2p(p − s)+ (c − s)2

(p − s)2]
− t (c − s)

p − s
. (3.3)

When the demand is exponentially distributed, i.e.

φD (ξ) =
{
αe−αξ if ξ≥ 0

0 otherwise,

q∗
1 satisfies the equation

(c − s)e−α(q∗
1 −q∗

2 ) + (p − s)e−αq∗
1 +α(p − s)(q∗

1 −q∗
2 )e−αq∗

1 = c −2s. (3.4)
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Chapter 4

Two-periodmodel with price
dependent demand

Whereas the two-period problem assumed a price-independent demand, the model we will observe
will have a price-dependent demand. Also, instead of minimizing the costs, we will maximize the profit.
The rest of the assumptions remain basically the same.

Assumptions of the model

1. It involves a single stable product.
2. It involves a two-time period, where unsatisfied demand in period 1 is backlogged to be met in

period 2. However, unsatisfied demand in period 2 can in no way be backlogged.
3. There is no initial inventory.
4. The only decisions to be made are the values of q1 and q2, the number of units to order at the

beginning of period 1 and period 2.
5. The demands for buying products are independent and identically distributed random variables

D1 and D2 with known probability distribution φD , and are dependent on the price.
6. The goal is to maximize the profit.

4.1 The Optimal Ordering Quantities
Just as with the single-period model, we will first determine the optimal ordering quantities for general
demand D with probability density function φD . The variables of the two-period model are the same
as the variables of the single-period model, with the small change of the demand and the ordering
quantity, which are now defined per period. The rest of the variables are assumed to be the same in
both periods. So we now have the variables:

p = the price per product
qi = the quantity ordered at the beginning of period i

c = the costs to produce a single product
s = the salvage value per product, i.e. the price received per leftover at the end of period 2

. Di = the demand of period i
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We will determine the optimal policy of this model by using dynamical programming, that is, first
solving for the second period and then for the first period. So if we take a look at the second period,
there is still a single period left, after which the products can no longer be sold. Thus, at the beginning
of the second period, we are in the exact same situation as with the single-period model. So we can find
our optimal ordering quantity q∗

2 as before (Eq. (2.2)):

ΦD (q∗
2 ) = p − c

p − s
(4.1)

Note that there is a possibility that, at the beginning of period 2, we have a stock level of x > 0. However,
the only difference in the profit function, which we want to maximize, is an extra c · x term. Since this
term does not depend on the ordering quantity or the price, both the optimal ordering quantity and
optimal price stay the same. Hence Eq.(4.1) shows the same optimal ordering quantity as in the single-
period model.

Since the quantity that maximizes the profit in the second period stays the same, the optimal order-
ing policy is to stock untill this quantity is reached, i.e.,

if
{

x < q∗
2 order q∗

2 −x

x ≥ q∗
2 order nothing,

where x is the stock level at the beginning of period 2. The profit (of period 2) of this optimal policy can
be expressed in the following way:

P2(x) =
{

Pp (D2, q∗
2 )+ c · x if x < q∗

2

Pp (D2, x)+ c · x if x ≥ q∗
2 .

(4.2)

Here, Pp (D, q) is the profit function of the single-period model, as in Eq. (2.1). Note that x = q1−D1 and
thus that x is a random variable, as it is unknown at the beginning of period 1. With that knowledge we
will compute the expected profit of the second period.

E[P2(q1 −D1)] =
∞∫

0

P2(q1 −ξ)φD (ξ) dξ

=
q1−q∗

2∫
0

Pp (D2, q1 −ξ)φD (ξ) dξ+
∞∫

q1−q∗
2

Pp (D2, q∗
2 )φD (ξ) dξ+ c · (q1 −E[D1|p]).

Note that we here assume that q1 ≥ q∗
2 , since any leftovers of the first period can still be sold the second

period. If we now look at the expected profit of the two periods combined, we find that

Pp (q1) = E[P1(q1)]

= Pp (D1, q1)+E[P2(q1 −D1)]

= Pp (D1, q1)+
q1−q∗

2∫
0

Pp (D2, q1 −ξ)φD (ξ) dξ+
∞∫

q1−q∗
2

Pp (D2, q∗
2 )φD (ξ) dξ+ c · (q1 −E[D1|p]). (4.3)

Thus Eq. (4.3) is the function that we want to maximize for q1. To do so, we first take the derivative of
this expected profit function with respect to q1.
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dPp (q1)

d q1
= d

d q1

Pp (D1, q1)+
q1−q∗

2∫
0

Pp (D2, q1 −ξ)φD (ξ) dξ+
∞∫

q1−q∗
2

Pp (D2, q∗
2 )φD (ξ) dξ+ c · (q1 −E[D1|p])



= d

d q1

(
Pp (D1, q1)

)+ d

d q1

 q1−q∗
2∫

0

Pp (D2, q1 −ξ)φD (ξ) dξ

+ c. (4.4)

We will determine the two derivatives in the above expression seperately. We have that

d

d q

(
Pp (D1, q1)

)= d

d q1

(p − c) ·E[D1|p]− (p − c) ·
∞∫

q1

(ξ−q1)φD (ξ) dξ− (c − s) ·
q1∫

0

(q1 −ξ)φD (ξ) dξ


= (p − c) ·

∞∫
q1

φD (ξ) dξ− (c − s) ·
q1∫

0

φD (ξ) dξ

= (p − c) · (1−ΦD (q1))− (c − s) ·ΦD (q1)

= (p − c)− (p − s) ·ΦD (q1),

and

d

d q1

 q1−q∗
2∫

0

Pp (D2, q1 −ξ)φD (ξ) dξ


=

q1−q∗
2∫

0

d

d q1

(p − c) ·E[D2|p]− (p − c) ·
∞∫

q1−ξ
(ξ−q1)φD (ξ) dξ− (c − s) ·

q1−ξ∫
0

(q1 −ξ)φD (ξ) dξ

φD (ξ) dξ

=
q1−q∗

2∫
0

(
(p − c) · (1−ΦD (q1 −ξ))− (c − s) ·ΦD (q1 −ξ)

)
φD (ξ) dξ

=
q1−q∗

2∫
0

(
(p − c)− (p − s) ·ΦD (q1 −ξ)

)
φD (ξ) dξ

= (p − c) ·ΦD (q1 −q∗
2 )− (p − s) ·

q1−q∗
2∫

0

·ΦD (q1 −ξ)φD (ξ) dξ.

Substituting the computed values of the two derivatives in Eq. (4.4) results in

dPp (q1)

d q
= p − (p − s) ·ΦD (q1)+ (p − c) ·ΦD (q1 −q∗

2 )− (p − s) ·
q1−q∗

2∫
0

·ΦD (q1 −ξ)φD (ξ) dξ. (4.5)
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It can be seen clearly now that the value q∗
1 that maximizes the profit function satisfies the equation

p − (p − s) ·ΦD (q1)+ (p − c) ·ΦD (q1 −q∗
2 )− (p − s) ·

q1−q∗
2∫

0

·ΦD (q1 −ξ)φD (ξ) dξ= 0, (4.6)

since this value q∗
1 should be a root of the first derivative. This result is the same as Hillier’s (Eq. (3.2)).

4.2 The Optimal Price
We have now found the optimal ordering quantity q∗

2 for the second period and the equation, which
the optimal ordering quantity q1 should satisfy. Both of these results were with a given price p, which
might not be the best price. Thus the next step is to determine the optimal price for specific probability
distributions for the demand. The two distributions we will consider are

1. Uniform Distribution

2. Exponential Distribution

Choosing a specific probability distribution for the demand will allow us to simplify the found equations
and to obtain some explicit results. Just as with the single-period model we have that the mean value
or expected value of the demand distributions is equal to

E[D1|p] = E[D2|p] =µ(p) = (α−βp)+,

with α,β> 0. Again, there is the condition that

c ≤ p ≤ α

β
,

which ensures that µ(p) is non-negative.

4.2.1 UniformDistribution
In this section, the two demands D1 and D2 are uniformly distributed with mean value µ(p) as defined
above. Recall the construction of the exact form of the Uniform Distribution in Section 2.2.1, which
gave us that

D1,D2 ∼U
[

(α−βp)−σp3,(α−βp)+σp3
]

.

The found probability density function φD of both D1 and D2 is

φD (x) =
{

1
2σ

p
3

for a(p) ≤ x ≤ b(p)

0 else,

with the accessory cumulative density function (of both D1 and D2)

ΦD (x) =
{ x−a(p)

2σ
p

3
for a(p) ≤ x ≤ b(p)

0 else.
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These two functions will allow us to significantly simplify Eq. (4.6) and even make it possible to find an
explicit expression for our optimal ordering quantity q∗

1 of the first period.

p − (p − s) ·ΦD (q∗
1 )+ (p − c) ·ΦD (q∗

1 −q∗
2 )− (p − s) ·

q∗
1 −q∗

2∫
0

·ΦD (q∗
1 −ξ)φD (ξ) dξ= 0

p − (p − s) · q∗
1 −a(p)

2σ
p

3
+ (p − c) · q∗

1 −q∗
2

2σ
p

3
− (p − s) ·

q∗
1 −q∗

2∫
0

q∗
1 −ξ−a(p)

2σ
p

3
· 1

2σ
p

3
dξ= 0

p − (p − s) · q∗
1 −a(p)

2σ
p

3
+ (p − c) · q∗

1 −q∗
2

2σ
p

3
− p − s

12σ2 ·
q∗

1 −q∗
2∫

0

(
q∗

1 −ξ−a(p)
)

dξ= 0

p − (p − s) · q∗
1 −a(p)

2σ
p

3
+ (p − c) · q∗

1 −q∗
2

2σ
p

3
− p − s

12σ2 ·
[

(q∗
1 −a(p)) ·ξ− 1

2
ξ2

]q∗
1 −q∗

2

0
= 0

p − (p − s) · q∗
1 −a(p)

2σ
p

3
+ (p − c) · q∗

1 −q∗
2

2σ
p

3
− p − s

12σ2 ·
(

1

2
q∗

1
2 + (q∗

2 −q∗
1 ) ·a(p)− 1

2
q∗

2
2
)
= 0.

Note that the left side of the equation is a polynomial of order 2. So to solve it, we can use the abc-
formula. In order to do so, we will first group the q∗

1
2, q∗

1 and q∗
1

0 = 1 components.(
− p − s

24σ2

)
·q∗

1
2 +

(
− p − s

2σ
p

3
+ p − c

2σ
p

3
+ p − s

12σ2 ·a(p)

)
·q∗

1

+
(

p + p − s

2σ
p

3
·a(p)− p − c

2σ
p

3
·q∗

2 − p − s

12σ2

(
q∗

2 ·a(p)− 1

2
q∗

2
2
))

·1 = 0

1

2
·q∗

1
2 +

(
2σ

p
3−2σ

p
3 · p − c

p − s
−a(p)

)
·q∗

1

+
(
− p

p − s
·12σ2 −2σ

p
3 ·a(p)+2σ

p
3 · p − c

p − s
·q∗

2 +q∗
2 ·a(p)− 1

2
q∗

2
2
)
·1 = 0

1

2
·q∗

1
2 +

(
2σ

p
3 · c − s

p − s
−a(p)

)
·q∗

1

+
(
− p

p − s
·12σ2 −2σ

p
3 ·a(p)+2σ

p
3 · p − c

p − s
·q∗

2 +q∗
2 ·a(p)− 1

2
q∗

2
2
)
·1 = 0.

The above equation can not be simplified any further, so we will now use the abc-formula to solve it.
First, we will compute the discriminant D.
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D =
(
2σ

p
3 · c − s

p − s
−a(p)

)2

−4 · 1

2
·
(
− p

p − s
·12σ2 −2σ

p
3 ·a(p)+2σ

p
3 · p − c

p − s
·q∗

2 +q∗
2 ·a(p)− 1

2
q∗

2
2
)

D = 12σ2 · (c − s)2

(p − s)2 −4 ·σp3 ·a(p) · c − s

p − s
+a(p)2

+
(

2p

p − s
·12σ2 +4σ

p
3 ·a(p)−4σ

p
3 · p − c

p − s
·q∗

2 −2 ·q∗
2 ·a(p)+q∗

2
2
)

D = 12σ2 · (c − s)2

(p − s)2 −4 ·σp3 ·a(p)+4 ·σp3 ·a(p) · p − c

p − s
+a(p)2

+
(

2p

p − s
·12σ2 +4σ

p
3 ·a(p)−4σ

p
3 · p − c

p − s
·q∗

2 −2 ·q∗
2 ·a(p)+q∗

2
2
)

.

Further simplification gives us that

D = 12σ2 · (c − s)2

(p − s)2 +a(p)2 + 2p

p − s
·12σ2 −4σ

p
3 · p − c

p − s
· (q∗

2 −a(p))−2 ·q∗
2 ·a(p)+q∗

2
2

D = 12σ2 · ((c − s)2 +2p(p − s))

(p − s)2 + 4σ
p

3 · (c −p)

p − s
· (q∗

2 −a(p))+ (q∗
2 −a(p))2. (4.7)

Now that we have computed the discriminant D, it is easy to find the value of q∗
1 .

q∗
1 =

p
D −

(
(c−s)
(p−s) ·2σ

p
3−a(p)

)
2 · 1

2

q∗
1 =

p
D −

(
(c − s)

(p − s)
·2σ

p
3−a(p)

)
. (4.8)

Note that, although the abc-formule returns two values of q∗
1 , this is the only possible solution, since

a negative sign before the root of the discriminant D would cause the optimal ordering quantity to be
less than a(p), i.e., less than the minimum demand. Also note that for a(p) = 0 and 2σ

p
3 = t , so in the

case of a uniform distribution over the range 0 to t , Eq. (4.8) is the same as Eq. (3.3).
Since we now have a specific demand distribution, we can find an expression for q∗

2 with Eq. (4.1).
This expression will be the same as the expression of the single-period model with the uniform distri-
bution (Eq. (2.9)) and is

q∗
2 = a(p)+2σ

p
3 · p − c

p − s
. (4.9)

With Eq. (4.9) we can now simplify the discriminant D (Eq. (4.7)).
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D = 12σ2 · ((c − s)2 +2p(p − s))

(p − s)2 + 4σ
p

3 · (c −p)

p − s
· (q∗

2 −a(p))+ (q∗
2 −a(p))2

D = 12σ2 · ((c − s)2 +2p(p − s))

(p − s)2 + 4σ
p

3 · (c −p)

p − s
·
(
2σ

p
3 · p − c

p − s

)
+

(
2σ

p
3 · p − c

p − s

)2

D = 12σ2 · ((c − s)2 +2p(p − s))

(p − s)2 − 24σ2 · (p − c)2

(p − s)2 + 12σ2(p − c)2

(p − s)2

D = 12σ2 · ((c − s)2 +2p(p − s))

(p − s)2 − 12σ2 · (p − c)2

(p − s)2

D = 12σ2 · ((c − s)2 +2p(p − s)− (p − c)2)

(p − s)2

D = 12σ2 · (c2 −2cs + s2 +2p2 −2ps −p2 +2pc − c2)

(p − s)2

D = 12σ2 · ((p − s)2 +2c(p − s))

(p − s)2 .

With this simplified form of D we can determine the explicit expression of our optimal ordering quantity
q∗

1 of the first period, which is

q∗
1 =

p
D −

(
(c − s)

(p − s)
·2σ

p
3−a(p)

)
q∗

1 = 2σ
p

3

p − s
·
√

(p − s)2 +2c(p − s)−
(

(c − s)

(p − s)
·2σ

p
3−a(p)

)
q∗

1 = 2σ
p

3

p − s
·
(√

(p − s)2 +2c(p − s)− (c − s)

)
+a(p)

q∗
1 = 2σ

p
3

(√
1+ 2c

p − s
− c − s

p − s

)
+a(p). (4.10)

Solving for the price

Now that both optimal ordering quantities are obtained, the next step is to determine the optimal price.
To do so, we will first determine the expected profit function Pp (q∗

1 ) of the two periods combined. Eq.
(4.3) shows the expected profit function for general demand distribution and general ordering quantity
q1. Since the demand distribution is now known, we can rewrite Pp (q1). Recall that

Pp (q∗
1 ) = Pp (D1, q∗

1 )+
q∗

1 −q∗
2∫

0

Pp (D2, q∗
1 −ξ)φD (ξ) dξ+

∞∫
q∗

1 −q∗
2

Pp (D2, q∗
2 )φD (ξ) dξ+ c · (q∗

1 −E[D2|p])

= (1)+ (2)+ (3)+ c · (q∗
1 − (α−βp)).
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Since this will be quite a lengthy computation, we will determine the parts (1), (2) and (3) seperately.

(1) = Pp (D1, q∗
1 )

= (p − c) ·E[D1|p]− (p − c) ·
∞∫

q∗
1

(ξ−q)φD (ξ) dξ− (c − s) ·
q∗

1∫
0

(q∗
1 −ξ)φD (ξ) dξ

= (p − c) · (α−βp)− p − c

4σ
p

3
· (b(p)−q∗

1 )2 − c − s

4σ
p

3
· (q∗

1 −a(p))2.

In the following two parts where we determine (2) and (3), there are two terms colored red. These are
two (p − c)(α−βp) terms that both integrals have in common. Since they both have the same term,
which is independent of ξ, multiplied with the density function, these will together result in an extra
(p − c)(α−β) and are left out in the rest of the calculation for the purpose of simplification.

(2) =
q∗

1 −q∗
2∫

0

Pp (D2, q∗
1 −ξ)φD (ξ) dξ

= 1

2σ
p

3

q∗
1 −q∗

2∫
0

(
(p − c) · (α−βp)− p − c

4σ
p

3
· (b(p)− (q∗

1 −ξ))2 − c − s

4σ
p

3
· ((q∗

1 −ξ)−a(p))2
)

dξ

= 1

24σ2 ·

−(p − c) ·
q∗

1 −q∗
2∫

0

(b(p)− (q∗
1 −ξ))2 dξ− (c − s) ·

q∗
1 −q∗

2∫
0

((q∗
1 −ξ)−a(p))2 dξ


= 1

24σ2 ·
(
−(p − c) · 1

3

((
b(p)−q∗

2 )
)3 − (

b(p)−q∗
1

)3
)
+ (c − s) · 1

3

((
q∗

2 −a(p))
)3 − (

q∗
1 −a(p)

)3
))

.

And lastly, we have that

(3) =
∞∫

q∗
1 −q∗

2

Pp (D2, q∗
2 )φD (ξ) dξ

=

 ∞∫
q∗

1 −q∗
2

φD (ξ) dξ

 ·Pp (D2, q∗
2 )

=

 2σ
p

3∫
q∗

1 −q∗
2

1

2σ
p

3
dξ

 ·Pp (D2, q∗
2 )

=
(

2σ
p

3− (q∗
1 −q∗

2 )

2σ
p

3

)
·
(
(p − c) · (α−βp)− (p − c) ·σp3 ·

(
1− p − c

p − s

)2

− (c − s) ·σp3

(
p − c

p − s

)2)

=
(

2σ
p

3−q∗
1 +q∗

2

2σ
p

3

)
·
(
−(p − c) ·σp3 ·

(
1− p − c

p − s

)2

− (c − s) ·σp3

(
p − c

p − s

)2)
.
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So if we add this al together, we find the expected profit function

Pp (q∗
1 ) = 2 · (p − c) · (α−βp)− p − c

4σ
p

3
· (b(p)−q∗

1 )2 − c − s

4σ
p

3
· (q∗

1 −a(p))2

+ 1

72σ2 ·
(
−(p − c) ·

((
b(p)−q∗

2

)3 − (
b(p)−q∗

1

)3
)
+ (c − s) ·

((
q∗

2 −a(p)
)3 − (

q∗
1 −a(p)

)3
))

+
(

2σ
p

3−q∗
1 +q∗

2

2σ
p

3

)
·
(
−(p − c) ·σp3 ·

(
1− p − c

p − s

)2

− (c − s) ·σp3

(
p − c

p − s

)2)
+ c · (q∗

1 − (α−βp)),

(4.11)

where q∗
1 and q∗

2 are the optimal quantities that we computed before. Since these values are known
(Eq. (4.9) and Eq. (4.10)), the following equations can be used to simplify Pp (q∗

1 ).

q∗
1 −a(p) = 2σ

p
3 ·

(√
1+ 2c

p − s
− c − s

p − s

)
+a(p)−a(p)

= 2σ
p

3 ·
(√

1+ 2c

p − s
− c − s

p − s

)
b(p)−q∗

1 =−(q∗
1 −a(p))+2σ

p
3

= 2σ
p

3 ·
(

1−
√

1+ 2c

p − s
+ c − s

p − s

)
q∗

2 −a(p) = a(p)+2σ
p

3 · p − c

c − s
−a(p)

= 2σ
p

3 · p − c

p − s

b(p)−q∗
2 =−(q∗

2 −a(p))+2σ
p

3

= 2σ
p

3 ·
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p

3 ·
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With these equations we find our final expression of the expected profit function, which is given by

Pp (q∗
1 ) = 2 · (p − c) · (α−βp)−σp3 · (p − c) ·

(
1−

√
1+ 2c

p − s
+ c − s

p − s

)2

−σp3 · (c − s) ·
(√

1+ 2c

p − s
− c − s

p − s

)2

− 1

3

p
3σ · (p − c) ·

(
1− p − c

p − s

)3

+ 1

3

p
3σ · (p − c) ·

(
1−

√
1+ 2c

p − s
+ c − s

p − s

)3

+ 1

3

p
3σ(c − s) ·

(
p − c

p − s

)3

− 1

3

p
3σ(c − s) ·

(√
1+ 2c

p − s
− c − s

p − s

)3

+
(

2−
√

1+ 2c

p − s

)
·
(
−(p − c) ·σp3 ·

(
1− p − c

p − s

)2

− (c − s) ·σp3

(
p − c

p − s

)2)

+ c ·
(

2σ
p

3

(√
1+ 2c

p − s
− c − s

p − s

)
−σp3

)
. (4.12)

In comparison to the expected proft function of the single-period model, this is quite a complicated
expression. Although it might be possible, finding and proving the optimal price p∗ which maximizes
this function analytically is extremely difficult. For this reason we will not cover this in this thesis. We
can, however, solve it numerically and compare this to the found values of the single-period model.

Numerical Analysis

We will here consider one example, namely the first example we used for the uniform distribution with
the single-period model. There we had µ(p) = 200−5p with cost c = 5, salvage value s = 1 and variance
σ2(p) = 1. This here gives the graph
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and results in optimal ordering quantities q∗
1 ≈ 89,32, q∗

2 ≈ 88,59 and an optimal price p∗ ≈ 2,50. If
we compare this to the results of the single-period model, where we had q∗

1 ≈ 88,62 and optimal price
p ≈ 22,49, we see that the optimal price is almost equal. Furthermore, as the optimal ordering quantity
of the first period is slightly higher than the single period, the optimal ordering quantity of the second
period is slightly less, which is what we would expect. Lastly, if we compare the graphs, we see that
at the optimal price p∗, the expected profit of the two-period model is roughly twice as high as in the
single-period model, which seems logical, since we have twice the amount of periods.

Of course, this is only a single example and this can not guarantee that this is the case for all ex-
amples. In the next section, we will see in more detail more what happens when we change certain
parameters.

Sensitivity Analysis

Just as with the single-period model we will perform a sensitivity analysis on the two-period model.
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Since the analysis of the parameters is basically the same as with the single-period model, it is more
interesting to compare the two models (See pages 14 and 15 for the single-period model). The first
thing we note is that in all cases the optimal price p∗ is similar to the optimal price in the single-period
model. The biggest difference is a difference of nine cents, which occurs in the last row of Table 4.5.

Furthermore, again in all cases, the expected profit is higher than twice the expected profit of the
single-period model. This justifies the statement that using the optimal solution of the single-period
model twice is not optimal in all cases. In most cases, this is just slightly higher, around ten more. How-
ever, when the variance increases (Table 4.5), the expected profit of the two-period model is signifi-
cantly higher than twice the single-period expected profit, up to almost 150 more. This phenomenon
can be explained by the following reasoning.

As one can see, in all the other tables, the difference between the optimal ordering quantities q∗
1 and

q∗
2 is quite small. In Table 4.5 however, we can see that this difference increases along with the variance.

With a greater variance, there comes less predictability which in the single-period model decreases the
expected profit by a lot. In the two-period model, however, where backlogging of unsatisfied demand of
the first period can be met in the second period (so there is no risk of underordering), one can counter
this with a higher optimal ordering quantity for the first period since this will cause the probability of
underordering to be negligible and therefore increase the expected profit significantly.

4.2.1.1 Constraint on the Salvage Value

As we saw in the Sensitivity Analysis, the salvage value does not have a significant influence on the
outcome of the model. However, when the salvage value comes too close to the costs, the optimal price
drops extremely fast until it reaches the lowest possible price, which is c.

We would like to find some constraint for the salvage value, which would assure that we have a
concave function, similar to the two cases with the single-period model on the top of page 13. To find
this constraint, we first need to determine the first and second derivative of our expected profit function
Pp (q∗

1 ) as in Eq. (4.12). Since the computations are quite lengthy and trivial, we will only show the
outcomes.
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The first derivative is given by

P ′
p (q∗

1 ) = 2α−4βp +2βc −σp3
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
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
− 1

3

p
3σ

(
c − s

p − s

)3

+p
3σ

p − c
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√
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 . (4.13)

39



The second derivative is given by

P ′′
P (q∗

1 ) =−4β−4σ
p
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 . (4.14)
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From analyzing the plots of the two-period model with the uniform distributed demand, the obser-
vation was made that, as in the single-period model, the concaveness at p = c is a sufficient condition
for the function to be concave on the whole interval, i.e., the second derivative is non-increasing on our
interval.

Thus, we want to determine in which cases the second derivative is negative at p = c. Luckily, for
p = c, the second derivative becomes significantly simpler, since there are many factors (p − c). As we
stated before, we are looking for a condition for the salvage value, i.e.,

s ≤ γ · c,

for γ ∈ [0,1]. To find this condition we will substitute γc for s in our second derivative. Altogether this
results in

P ′′
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p

3 ·

 2
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(4.15)
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This then further simplifies into

P ′′
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 . (4.16)

Although, compared to Eq. (4.14), this equation is significantly simpler, we still need to solve it nu-
merically. If we plot Eq. (4.16) for values of γ, with the variables of the example on page 32, we find
that,

as we expected, for high values ofγ, thus the salvage value close to the cost, we have a positive derivative.
If we numerically compute the root of the second derivative, we find that

γ= 0.8470 (with steps of 0.001)

for this specific example. In general the constraint on the salvage value is

s ≤ γ · c, (4.17)
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where γ satisfies the equation
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(
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(
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= 4β. (4.18)

4.2.2 Exponential Distribution
In this section the demands D1 and D2 are exponentially distributed with mean value µ(p) = α−βp.
Thus the probability density function is given by

φD (x) =
{

1
α−βp ·e−

x
α−βp for x ≥ 0

0 else,
(4.19)

with the accessory cumulative density function

ΦD (x) =
{

1−e−
x

α−βp for x ≥ 0

0 else.
(4.20)

Recall that the optimal ordering quantity q∗
1 satisfies the equation

p − (p − s) ·ΦD (q1)+ (p − c) ·ΦD (q1 −q∗
2 )− (p − s) ·

q1−q∗
2∫

0

·ΦD (q1 −ξ)φD (ξ) dξ= 0. (4.21)

With Eq. (4.19) and (4.20) we can simplify this equation.
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1 )+ (p − c) ·ΦD (q∗
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)
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−(p − s) ·
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)
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1 −q∗
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α−βp = c −2s. (4.22)

With Eq.(4.1) and the fact that the demand is exponentially distributed demand, we can find an ex-
pression for the optimal ordering quantity q∗

2 . This expression will be the same as the optimal ordering
quantiy of the single-period model in Eq.(2.18), which is

q∗
2 =−(α−βp) · ln

(
c − s

p − s

)
. (4.23)

Solving for the price

Although we do not have an explicit expression for the optimal ordering quantity q∗
1 , the next step

is to determine the expected profit function. q∗
1 can be computed numerically and then used in the

expected profit function later. The expected profit function for general demand distribution (see Eq.
(4.3)) is given by

Pp (q∗
1 ) = Pp (D1, q∗

1 )+
q∗

1 −q∗
2∫

0

Pp (D2, q∗
1 −ξ)φD (ξ) dξ+
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Pp (D2, q∗
2 )φD (ξ) dξ+ c · (q∗

1 −E[D1|p])

= (1)+ (2)+ (3)+ c · (q∗
1 − (α−βp)).

We will determine the parts (1), (2) and (3) seperately. (1) can be obtained from the single-period model
for general ordering quantity (Eq. (2.20)), which is given by

(1) = Pp (D1, q∗
1 )

= (p − s)(α−βp)− (p − s)(α−βp)e−
q∗1

α−βp − (c − s) ·q.

For the second and third part we use the same simplification as in the section with the uniform dis-
tributed demand. These terms (p − s)(α−βp) are highlighted in red.
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(3) =
∞∫

q∗
1 −q∗

2

Pp (D2, q∗
2 )φD (ξ) dξ

=
∞∫

q∗
1 −q∗

2

(
(p − s)(α−βp)− (p − s)(α−βp)e−

q∗2
α−βp − (c − s) ·q∗

2

)
φD (ξ) dξ

=
(
−(p − s)(α−βp)e−

q∗2
α−βp − (c − s) ·q∗

2

)
·

∞∫
q∗

1 −q∗
2

φD (ξ) dξ

= (−(c − s)(α−βp)− (c − s) ·q∗
2

) ·e−
q∗1 −q∗2
α−βp .

Combining the three parts results in the expected profit function

Pp (q∗
1 ) = 2 · (p − s)(α−βp)− (p − s)(α−βp)e−

q∗1
α−βp − (c − s) ·q

− (p − s)e−
q∗1

α−βp (q∗
1 −q∗

2 )− (c − s)(−q∗
2 +α−βp)e−

q∗1 −q∗2
α−βp + (c − s)(α−βp −q∗

1 )

− (c − s) ·q∗
2 ·e−

q∗1 −q∗2
α−βp + c · (q∗

1 − (α−βp))+ c ∗ (q∗
1 − (α−βp)), (4.24)

where q∗
1 and q∗

2 are the quantities as before. This further simplifies into

Pp (q∗
1 ) = 2 · (p − s)(α−βp)−2 · (p − s)(α−βp)e−

q∗1
α−βp −2 · (c − s) ·q∗

1

− (p − s)e−
q∗1

α−βp (q∗
1 −q∗

2 )+ (c − s)(α−βp)

(
1−e−

q∗1 −q∗2
α−βp

)
+ c ∗ (q∗

1 − (α−βp)) (4.25)

Solving this equation for both q∗
1 and p will lead to the optimal policy.
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Conclusion

In this thesis, we have studied a single-period model for perishable products as well as a two-period
model for stable products, both with (known) price-dependent demand.

For the single-period model, we have found and proven an expression for the optimal ordering
quantity q∗ (Eq. (2.4)) for general demand distribution φD . For uniformly distributed demand, which
we discussed in Section 2.2.1, we were not able to find an exact expression for the optimal price p∗.
However, we have proven the existence and uniqueness of an optimal price and the code in Appendix A
provides a fast way to find p∗ for specific situations. As with the uniformly distributed demand, we have
proven the existence and uniqueness of an optimal price p∗ for an exponentially distributed demand.
Again we have provided a code (see Appendix A) to find the exact value of p∗ for certain situations since
we did not find an expression for p∗ for general situations. Lastly, we analyzed the model with normally
distributed demand. Opposite to the two other probability distributions, the inverse normal distribu-
tion does not have an explicit form. Due to this, we were not able to solve the optimal ordering quantity
and optimal price analytically. However, we provided a numerical analysis as well as a MatLab code
(See Appendix A) to find q∗ and p∗ for specific values of the parameters.

For the two-period model with uniformly distributed demand, we found and proved explicit formu-
las (Eq. (4.9) and Eq.(4.10)) for the optimal ordering quantities q∗

1 and q∗
2 as well as an explicit formula

for the expected profit function (Eq. (4.12)). With the code in Appendix B, we have provided a quick way
to find the values of these optimal ordering quantities and the optimal price. In the exponentially dis-
tributed case, we only found implicit formulas for the optimal ordering quantity for the first period and
the optimal price. If a fast way is found to optimize the profit function for both q1 and p this problem
will also be solved for specific situations.

These models are of course at most an approximation of real-life situations and there is no guar-
antee using these strategies will lead to the best profit since the chance of having exactly these specific
demand distributions is very small. However, if previous demands are known and all very similar or
the demand can be approximated in any other way, the results in this thesis can be used to find a good
pricing and stocking policy.

.

.
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Appendix A

Codes single-periodmodel

A.1 Uniformly distributed demand

1 syms a b c d D p P s S q Q x y Z C0 C1 C2 C3
2 a = 2 0 0 ; %alpha
3 b = 5 ; %b e t a
4 c = 5 ;
5 s = 1 ;
6 S = 1 ; %sigma
7 %S i n c e p> s we can m u l t i p l y Eq . ( 2 . 1 2 ) by ( p−s ) ^2 and t h i s r e s u l t s i n a
8 %polynomial o f degre e 3
9 C0 = a ∗ s ^2 + b∗ c ∗ s ^2 − S ∗ s q r t ( 3 ) ∗ ( c−s ) ^ 2 ; %Value o f c o e f f i c i e n t o f

p^0
10 C1 = −2∗a ∗ s − 2 ∗ b∗ s ^2 −2 ∗ b ∗ c ∗ s ; %Value o f c o e f f i c i e n t o f p^1
11 C2 = a + 4∗b∗ s + b ∗ c ; %Value o f c o e f f i c i e n t o f p^2
12 C3 = − 2 ∗ b ; %Value o f c o e f f i c i e n t o f p^3
13

14 d = [ C3 C2 C1 C0 ] ; %Polynomial o f our f i r s t d e r i v a t i v e
15 Q = r o o t s ( d ) ; %S o l v e f o r t h e r o o t s o f our e q u a t i o n
16 x = Q( imag (Q) == 0 ) ; %F i l t e r r e a l s o l u t i o n s
17 p = max ( x ) ; %Take t h e maximum r o o t
18 q = a − b∗p − ( S ∗ s q r t ( 3 ) ) + 2 ∗ S ∗ s q r t ( 3 ) ∗ ( ( p−c ) / ( p−s ) ) ; %Optimal

o r d e r i n g q u a n t i t y
19 P = ( p−c ) ∗ ( a − b∗p ) − ( p−c ) ∗ S ∗ s q r t ( 3 ) ∗ ( 1 −(p−c ) / ( p−s ) ) ^2 − ( c−s ) ∗ S ∗ s q r t

( 3 ) ∗ ( ( p−c ) / ( p−s ) ) ^ 2 ; %P r o f i t
20 d i s p ( [ ’ p = ’ , num2str ( p ) ] ) ;
21 d i s p ( [ ’ q = ’ , num2str ( q ) ] ) ;
22 d i s p ( [ ’ P r o f i t = ’ , num2str ( P ) ] ) ;
23

24 Z = ( ( ( c−s ) ^2 ∗ S ∗ s q r t ( 3 ) ) /b ) ^ ( 1 / 3 ) + s ; %p_z
25

26 %P l o t t i n g our p r o f i t f u n c t i o n on c < p < a /b
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27 D = ( y − c ) ∗ ( a − b∗ y ) − ( y−c ) ∗ S ∗ s q r t ( 3 ) ∗ ( 1− ( ( y−c ) / ( y−s ) ) ) ^2 − ( c−s
) ∗ S ∗ s q r t ( 3 ) ∗ ( ( y−c ) / ( y−s ) ) ^ 2 ; %P r o f i t f u n c t i o n

28 f p l o t (D, ’ LineWidth ’ , 1 . 5 ) ;
29 x l i m ( [ 0 , ( a /b ) ] ) ;
30 x l i n e ( p , ’ − ’ , ’ LineWidth ’ , 1 . 5 ) ;
31 x l i n e ( Z , ’ − r ’ , ’ LineWidth ’ , 1 . 5 ) ;
32 x l i n e ( c , ’ −g ’ , ’ LineWidth ’ , 1 . 5 ) ;
33 l e g en d ( { ’ P r o f i t f u n c t i o n ’ , ’ Optimal p r i c e p ^∗ ’ , ’ p_z ’ , ’ Cost c ’ } , ’

L o c a t i o n ’ , ’ s o u t h e a s t ’ ) ;
34 x l a b e l ( ’ P r i c e p ’ ) ;
35 y l a b e l ( ’ P r o f i t ’ ) ;
36 t i t l e ( ’ P l o t o f Expected P r o f i t Between 0 and \ alpha / \ b e t a ’ ) ;
37 ax = gca ;
38 ax . F o n t S i z e = 2 0 ;

A.2 Exponentially distributed demand

1 syms a b c d D p P s S q Q x y
2 a = 2 0 0 ; %alpha
3 b = 5 ; %b e t a
4 c = 5 ;
5 s = 1 ;
6

7 d = ( a − b∗p ) − b ∗ ( p−c ) − b ∗ ( c−s ) ∗ ( l o g ( c−s ) − l o g ( p −s ) ) − ( a − b∗p ) ∗ ( (
c−s ) / ( p−s ) ) == 0 ; %F i r s t d e r i v a t i v e == 0

8 Q = v p a s o l v e ( d , p ) ; %S o l v e f o r t h e r o o t s o f our e q u a t i o n
9 Q = double (Q) ;

10 x = Q( imag (Q) == 0 ) ; %F i l t e r r e a l s o l u t i o n s
11 p = max ( x ) ; %Take t h e maximum r o o t
12 q = −( a − b∗p ) ∗ −( l o g ( ( p−s ) / ( c−s ) ) ) ; %Optimal o r d e r i n g q u a n t i t y
13 p = round ( p , 4 ) ;
14 q = round ( q , 4 ) ;
15 P = ( p−c ) ∗ ( a − b∗p ) + ( c−s ) ∗ ( a− b∗p ) ∗ l o g ( ( c−s ) / ( p−s ) ) ; %P r o f i t
16 d i s p ( [ ’ p = ’ , num2str ( p ) ] ) ;
17 d i s p ( [ ’ q = ’ , num2str ( q ) ] ) ;
18 d i s p ( [ ’ P r o f i t = ’ , num2str ( z ) ] ) ;
19

20 %P l o t t i n g our p r o f i t f u n c t i o n on c < p < a /b
21 D = ( y − c ) ∗ ( a − b∗ y ) + ( c−s ) ∗ ( a − b∗ y ) ∗ ( l o g ( ( c−s ) / ( y−s ) ) ) ; %P r o f i t

f u n c t i o n
22 f p l o t (D, ’ LineWidth ’ , 1 . 5 ) ; %P l o t t i n g
23 x l i m ( [ 0 , ( a /b ) ] ) ;
24 x l i n e ( p , ’ − ’ , ’ LineWidth ’ , 1 . 5 ) ;
25 x l i n e ( c , ’ −g ’ , ’ LineWidth ’ , 1 . 5 ) ;
26 l e g e nd ( { ’ P r o f i t f u n c t i o n ’ , ’ Optimal p r i c e p ^∗ ’ , ’ Cost c ’ } , ’ L o c a t i o n ’ , ’

n o r t h e a s t ’ ) ;
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27 x l a b e l ( ’ P r i c e p ’ ) ;
28 y l a b e l ( ’ P r o f i t ’ ) ;
29 t i t l e ( ’ P l o t o f Expected P r o f i t Between 0 and \ alpha / \ b e t a ’ ) ;
30 ax = gca ;
31 ax . F o n t S i z e = 2 0 ;

49



A.3 Normally distributed demand

1 syms a b c q F G p P q s S v V W y
2 a = 2 0 0 ; %alpha
3 b = 5 ; %b e t a
4 c = 5 ;
5 s = 1 ;
6 S = 1 ; %sigma
7

8 F = @( y ) ( y−c ) ∗ ( a − b∗ y ) − ( y−s ) ∗ ( S / ( s q r t ( 2 ∗ p i ) ) ) ∗ exp ( − 1/2 ∗
norminv ( ( y−c ) / ( y−s ) ) . ^ 2 ) ; %Expected p r o f i t f u n c t i o n

9 G = @( y ) norminv ( ( y−c ) / ( y−s ) ) ∗ S + ( a − b∗ y ) ; %Optimal q u a n t i t y g i v e n
t h e p r i c e

10

11 P = 0 ;
12 V = 0 ;
13 v = c ; %S t a r t i n g v a l u e o f our p r i c e
14 q = ( f l o o r ( a /b − c ) ) ∗ 1 0 0 ; %Number o f s t e p s o f 0 . 0 1 between c and a /b
15 f o r i = 1 : q
16 v = v + 0 . 0 1 ; %We t a k e s t e p s o f 0 . 0 1 , s i n c e t h e s e a r e s t e p s o f 1

ce nt s , which i s t h e s m a l l e s t s t e p i n v a l u t a
17 i f F ( v ) > V
18 V = F ( v ) ; %We update our maximal v a l u e
19 P = v ; %We update our o p t i m a l p r i c e
20 end
21 end
22 Q = G( P ) ; %Computing our o p t i m a l q u a n t i t y
23

24 %P l o t t i n g our p r o f i t f u n c t i o n on c < p < a /b
25 f p l o t ( F , ’ LineWidth ’ , 1 . 5 ) ;
26 x l i m ( [ 0 , ( a /b ) ] ) ;
27 x l i n e ( P , ’ − ’ , ’ LineWidth ’ , 1 . 5 ) ;
28 l e g en d ( { ’ P r o f i t f u n c t i o n ’ , ’ Optimal p r i c e p ^∗ ’ , ’ Cost c ’ } , ’ L o c a t i o n ’ , ’

n o r t h e a s t ’ ) ;
29 x l a b e l ( ’ P r i c e p ’ ) ;
30 y l a b e l ( ’ P r o f i t ’ ) ;
31 t i t l e ( ’ P l o t o f Expected P r o f i t Between 0 and \ alpha / \ b e t a ’ ) ;
32 ax = gca ;
33 ax . F o n t S i z e = 2 0 ;
34 d i s p ( [ ’ p = ’ , num2str ( P ) ] ) ;
35 d i s p ( [ ’ q = ’ , num2str (Q) ] ) ;
36 d i s p ( [ ’ P r o f i t = ’ , num2str ( V ) ] ) ;
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Appendix B

Codes two-periodmodel

B.1 Uniformly distributed demand

1 syms a A A1 b B B1 c p P P1 P2 P3 P4 q1 q2 Q1 Q2 s S
2 a = 2 0 0 ; %alpha
3 b = 5 ; %b e t a
4 c = 5 ;
5 s = 1 ;
6 S = 1 ; %sigma
7

8 A = @( y ) a − b∗ y − ( S ∗ s q r t ( 3 ) ) ; %a ( p )
9 B = @( y ) a − b∗ y + ( S ∗ s q r t ( 3 ) ) ; %b ( p )

10 Q2 = @( y ) A ( y ) + 2 ∗ S ∗ s q r t ( 3 ) ∗ ( ( y−c ) / ( y−s ) ) %Optimal o r d e r i n g
q u a n t i t y f o r t h e second p e r i o d

11 Q1 = @( y ) ( ( 2 ∗ S ∗ s q r t ( 3 ) ) / ( y−s ) ) ∗ ( s q r t ( ( y−s ) ^2 + 2∗ c ∗ ( y−s ) ) − ( c−s ) ) +
A ( y ) ; %Optimal o r d e r i n g q u a n t i t y f o r t h e f i r s t p e r i o d

12 P1 = @( y ) ( y−c ) ∗ ( a − b∗ y ) − ( ( y−c ) / ( 4 ∗ S ∗ s q r t ( 3 ) ) ) ∗ ( B ( y ) − Q1 ( y ) ) ^2
− ( ( c−s ) / ( 4 ∗ S ∗ s q r t ( 3 ) ) ) ∗ ( Q1 ( y ) − A ( y ) ) ^ 2 ; %( 1 ) o f t h e computation

13 P2 = @( y ) ( 1 / ( 7 2 ∗ S ^ 2) ) ∗ ( −( y−c ) ∗ ( ( B ( y ) − Q2 ( y ) ) ^3 − ( B ( y ) − Q1 ( y ) )
^3) + ( c−s ) ∗ ( ( Q2 ( y ) − A ( y ) ) ^3 − ( Q1 ( y ) − A ( y ) ) ^ 3) ) ; %( 2 ) o f t h e
computation

14 P3 = @( y ) ( ( 2 ∗ S ∗ s q r t ( 3 ) − Q1 ( y ) + Q2 ( y ) ) / ( 2 ∗ S ∗ s q r t ( 3 ) ) ) ∗ ( − ( y−c ) ∗ S ∗ s q r t
( 3 ) ∗ ( 1 − ( y−c ) / ( y−s ) ) ^2 − ( c−s ) ∗ S ∗ s q r t ( 3 ) ∗ ( ( y−c ) / ( y−s ) ) ^2) ; %( 3 )

o f t h e computation
15 P4 = @( y ) c ∗ ( Q1 ( y ) − ( a − b∗ y ) ) + ( y−c ) ∗ ( a − b∗ y ) ; %R e s t
16 P5 = @( y ) P1 ( y ) + P2 ( y ) + P3 ( y ) + P4 ( y ) ; %T o t a l p r o f i t f u n c t i o n
17

18 P = 0 ;
19 V = 0 ;
20 v = c − 0 . 0 1 ; %S t a r t i n g v a l u e o f our p r i c e
21 q = ( f l o o r ( a /b −c ) ) ∗ 1 0 0 ; %Number o f s t e p s o f 0 . 0 1 between c and a /b
22 f o r i = 1 : q
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23 v = v + 0 . 0 1 ; %We t a k e s t e p s o f 0 . 0 1 , s i n c e t h e s e a r e s t e p s o f 1
ce nt s , which i s t h e s m a l l e s t s t e p i n v a l u t a

24 i f P5 ( v ) > V
25 V = P5 ( v ) ; %We update our maximal v a l u e
26 P = v ; %We update our o p t i m a l p r i c e
27 end
28 end
29 A1 = a − b∗P − ( S ∗ s q r t ( 3 ) ) ; %a ( p ) f o r o p t i m a l p r i c e
30 B1 = a − b∗P + ( S ∗ s q r t ( 3 ) ) ; %b ( p ) f o r o p t i m a l p r i c e
31 q2 = A1 + 2 ∗ S ∗ s q r t ( 3 ) ∗ ( ( P−c ) / ( P−s ) ) ; %Optimal o r d e r i n g q u a n t i t y

f o r t h e second p e r i o d f o r o p t i m a l p r i c e
32 q1 = ( ( 2 ∗ S ∗ s q r t ( 3 ) ) / ( P−s ) ) ∗ ( s q r t ( ( P−s ) ^2 + 2∗ c ∗ ( P−s ) ) − ( c−s ) ) + A1 ; %

Optimal o r d e r i n g q u a n t i t y f o r t h e f i r s t p e r i o d f o r o p t i m a l p r i c e
33

34 %P l o t t i n g our p r o f i t f u n c t i o n on c < p < a /b
35 f p l o t ( P5 , ’ LineWidth ’ , 1 . 5 ) ;
36 x l i m ( [ 0 , ( a /b ) ] ) ;
37 x l i n e ( P , ’ − ’ , ’ p ^∗ ’ , ’ LineWidth ’ , 1 . 5 ) ;
38 x l i n e ( c , ’ −g ’ , ’ LineWidth ’ , 1 . 5 ) ;
39 l e g e nd ( { ’ P r o f i t f u n c t i o n ’ , ’ Optimal p r i c e p ^∗ ’ , ’ Cost c ’ } , ’ L o c a t i o n ’ , ’

s o u t h e a s t ’ ) ;
40 x l a b e l ( ’ P r i c e p ’ ) ;
41 y l a b e l ( ’ P r o f i t ’ ) ;
42 t i t l e ( ’ P l o t o f Expected P r o f i t Between 0 and \ alpha / \ b e t a ’ ) ;
43 ax = gca ;
44 ax . F o n t S i z e = 2 0 ;
45

46 d i s p ( [ ’ p = ’ , num2str ( P ) ] ) ;
47 d i s p ( [ ’ q1 = ’ , num2str ( q1 ) ] ) ;
48 d i s p ( [ ’ q2 = ’ , num2str ( q2 ) ] ) ;
49 d i s p ( [ ’ P r o f i t = ’ , num2str ( V ) ] ) ;

B.2 Constraint on the salvage value

1 syms a A1 b c p P Q1 Q2 q1 q2 s S
2 a = 2 0 0 ; %alpha
3 b = 5 ; %b e t a
4 c = 1 ;
5 s = 1 ;
6 S = 1 ; %sigma
7

8 A1 = @( y ) − 4∗b + S ∗ s q r t ( 3 ) ∗ ( − ( 1 4 / ( ( 1 − y ) ^2∗ c ∗ s q r t ( ( 3 − y ) /(1 − y ) ) ) ) +
( 1 4 / ( ( 1 − y ) ∗ c ) ) − ( 6 ∗ s q r t ( ( 3 − y ) /(1 − y ) ) / ( ( 1 − y ) ∗ c ) ) + ( 4 / ( ( 1 − y ) ^2∗ c )

) + ( 2 / ( ( 1 − y ) ^3∗ c ∗ ( ( 3 − y ) /(1 − y ) ) ) ) + ( 2 / ( ( 1 − y ) ^3∗ c ∗ ( ( 3 − y ) /(1 − y ) )
^ ( 3 / 2 ) ) ) + ( 1 / ( ( 1 − y ) ^3∗ c ∗ s q r t ( ( 3 − y ) /(1 − y ) ) ) ) − ( 2 / ( ( 1 − y ) ^4∗ c ∗ ( ( 3 − y )
/(1 − y ) ) ^ ( 3 / 2 ) ) ) ) ; %Second d e r i v a t i v e a t p=c
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9

10 %P l o t t i n g t h e second d e r i v a t i v e a t c f o r 0 < gamma < 1
11 f p l o t ( A1 , ’ LineWidth ’ , 1 . 5 ) ;
12 x l i m ( [ 0 , 1 ] ) ;
13 l e g en d ( { ’ Second d e r i v a t i v e a t p=c ’ } , ’ L o c a t i o n ’ , ’ n o r t h w e s t ’ ) ;
14 x l a b e l ( ’ \gamma ’ ) ;
15 y l a b e l ( ’ Value o f t h e second d e r i v a t i v e ’ ) ;
16 t i t l e ( ’ P l o t o f Second D e r i v a t i v e a t p=c f o r v a l u e s o f \gamma Between 0

and 1 ’ ) ;
17 ax = gca ;
18 ax . F o n t S i z e = 2 0 ;
19

20 P = 0 ;
21 V = 0 ;
22 v = −0 . 0 0 1 ; %S t a r t i n g v a l u e o f gamma
23 f o r i = 1 : 1 0 0 0
24 v = v + 0 . 0 0 1 ; %We t a k e s t e p s o f 0 . 0 1 , s i n c e t h e s e a r e s t e p s o f 1

ce nt s , which i s t h e s m a l l e s t s t e p i n v a l u t a
25 i f A1 ( v ) < 0
26 V = A1 ( v ) ; %We update our maximal v a l u e
27 P = v ; %We update our gamma
28 end
29 end
30 d i s p ( [ ’gamma = ’ , num2str ( P ) ] ) ;
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