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1 Introduction

A dynamical system is an evolution rule that defines a trajectory as a function of a single
parameter, time, on a set of states, the phase space [10]. In this thesis dynamical systems
given by a system of differential equations are considered, see Chapter 2. Real-life dynamical
systems can for instance describe population sizes of predator and prey species in an ecosystem,
erosion of coastal defence areas, the average temperature of the world and financial markets.
The liveliness, resilience and flexibility of all these developing, dynamical systems are tested
continuously by sudden disruptions, which leads to the stretching and crossing of existing limits
such that the characteristics of systems can be changed. Boundaries of systems are stretched
or crossed by disturbances such as (over)fishing to fish populations [7], exorbitant greenhouse
gas emission to global temperature, or maintenance activities like beach nourishment to coastal
areas [6]. Sudden and instant disturbances may result in a significant change to the system,
which are part of our interest. Even though the word “disturbance” normally has a negative
connotation, disturbances can have positive effects. For instance the shooting of a part of a prey
population in an ecosystem where their natural predator is absent so that animal suffering by
starvation can be reduced to a minimum [13]..Repeated external changes, or to rephrase it in
the language of dynamical systems, kicks that are applied repeatedly after a certain flow time,
can influence the characterstics of stable states or balance unstable situations in the way we
want, when the right change is applied at the right moment. Based on the theoretical framework
of flow-kick systems which is developed in [11], this thesis will analyse specific disturbances by
both numerical and theoretical analysis, by answering the main research question how flow-kick
systems function. The main question is answered in four chapters by considering the following
subquestions in detail:

1. How do flow-kick disturbances function in one-dimensional dynamical systems?

2. In what way do higher-dimensional flow-kick systems differ from one-dimensional ones?

3. How do flow-kick and flow-push systems relate to each other?

4. In what way can fast-slow and flow-kick systems be linked and how do instant disturbances
function in fast-slow systems?

The scientific context on which the following chapters and previous questions are based, encloses
the research done by Mary Lou Zeeman et al. in [11]. The article introduces a flow-kick
framework that quantifies resilience to disturbances explicitly in term of their magnitude and
frequency. Chapter 2 portrays this theoretical framework together with some basic concepts of
dynamical systems. By elaborating on examples about ecosystems and climate systems the article
illustrates the potential complexity of flow-kick dynamics and in its appendix mathematical
arguments that establish the basis for their observations are presented. Since some assumptions
are made, the first proposition proved in the article directly raises the first subquestion. In
the proposition is stated which points belong to the resilience boundary that divide the stable
from unstable disturbances defined by a pair consisting of flow time τ and a kick κ for a
one-dimensional vector field with only one local minimum on a certain interval. However, in
real-life examples these dynamics describe a very specific case. Therefore, we would like to know
what occurs with the one-dimensional flow-kick dynamics if the vector field generating the flow
in the undisturbed system has several local minima on (a, b). This question will be treated in
Chapter 3 and will bring us closer to answering the first subquestion. Furthermore, it would
be unrealistic to fix the disturbance for all of eternity. Interventions that change the kick size
based on done observations are not uncommon and therefore, we also consider the influence of
this time-dependency in Chapter 3.
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The flow-kick framework is combined with theory on dynamical systems including the
Hartman-Grobman theorem [10]. The Hartman-Grobman theorem which will come in handy
when analyzing n-dimensional dynamical systems with n ≥ 2. In one-dimensional systems
the only choice we can make relating to the kick is the time the system has to recover from
the instant change. In n-dimensional systems, however, the direction of the kick might also
have tremendous impact on the stability and possible periodicity of orbits. As a result, we
are interested in to what extent the direction and the magnitude of the kick influences the
flow-kick dynamics. Besides this, we attempt to obtain periodic flow-kick orbits for unstable
equilibria. In contrast with the real-life examples from [11] and the difficulties one encounters
when considering unstable equilibria in these systems, we leave the concrete examples behind in
Chapter 4. This way, new and more abstract options are opened up. This leads to an extended
notion of recovering and we ask ourselves what it exactly means to recover from a disturbance
in a higher-dimensional system to be able to answer the second subquestion.

Sometimes the duration of a kick is not negligible to the length of the processes described in
the underlying dynamics. In stead of kicks, one has a push in the system. A lake can for example
be polluted for a couple of years by a factory that leaks (degradable) chemicals. When the
chemicals are easily degraded, the time the pollution took place is not negligible in proportion
to the time it takes for the system to recover from the pollution [14]. Another example of
pushes are wildfires or heathland fires. These heathland fires, however, can be considered like an
intrinsic property of the system, since some heathlands need these fires regularly to flourish [12].
In the previous examples, the change is not instant, and therefore, the disturbances can better
be described as pushes with a certain duration than as kicks that take zero time. This flow-push
system raises up the research question whether there is a substantial difference between the
flow-kick and flow-push dynamics.

To embroider on the notion that heathland fires can also be approached as an intrinsic part
of the dynamical system describing them, fast-slow systems are singled out. In comparison to
flow-kick or -push dynamics, the fast-slow systems enclose sudden changes in their definition,
because the state variables function on different time scales. Accordingly, fast-slow systems are
defined and an example, the Saltzman-Maasch climate model, is considered. Since we want to
know how fast-slow and flow-kick systems can be linked and how kicks function in fast-slow
dynamics, Chapter 6 zooms in on this subject.

The structure of the different chapters are similar, except for Chapter 2. Since Chapter 2
mainly states known theory, less examples are included than in Chapter 3 until 6. The chapters
on flow-kick dynamics in one- and higher-dimensional systems, Chapter 3 and 4, first approach
the subject theoretically and then numerically. This method persists roughly in Chapter 5 and
6. The final chapter will include a conclusion of the findings and answer the research questions.
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2 Defining flow-kick dynamics

Kicks are instantaneous large perturbations that are applied to an undisturbed dynamical
system. To construct a theoretical framework of flow-kick dynamics, we therefore first need
to define these systems. Throughout this thesis, we assume that for x ∈ Rn the undisturbed
dynamics are determined by a system of ordinary differential equations

ẋ =
dx

dt
= f(x). (2.1)

From now on, we assume that f : Rn → Rn is sufficiently smooth, so f ∈ Ck for some
k ≥ 1. After applying a kick κ, the system is given a certain time during which again only the
undisturbed system determines the flow. This time is called the recovery time or flow time, τ ,
and is, just as kick κ, an intrinsic part of the flow-kick map G : Rn → Rn defined by

Gτ,κ(x) = ϕτ (x) + κ. (2.2)

Here, ϕτ (x) : Rn → Rn is the flow generated by the vector field f from (2.1). Basic properties
of flow ensure that ϕ0(x) = x for all x ∈ Rn and that, for all s ∈ R, flowing for time s + t is
the same as first flowing for time s and then t, so (ϕt ◦ ϕs)(x) = ϕt(ϕs(x)) = ϕs+t(x) [10]. To
analyse the resilience of a system to these flow-kick disturbances, we first focus on the basin of
attraction of equilibrium point x∗. Since x∗ is an equilibrium it holds that f(x∗) = 0.

Definition 2.1. An equilibrium x∗ of flow ϕt is stable if for any neighborhood N of x∗ there
exists a neighborhood M ⊆ N such that for ϕt(x) ∈ N for all t ≥ 0 if x ∈ M . Furthermore, if
limt→∞ d(ϕt(x), x∗), with d : Rn ×Rn → R the Euclidean distance between the points, then x∗ is
asymptotically stable (see Figure 2.1).

The stability and character of x∗ can be determined by finding the linearization of (2.1)
around x∗, which is given by Df : Rn → Rn that is

Df(x) =
(

∂f
∂x1

. . . ∂f
∂xn

)
. (2.3)

By evaluating Df in x∗ the eigenvalues λ1, . . . , λn of Df(x∗) can be obtained. Assume that x∗
is a hyperbolic equilibrium, then for all i ∈ {1, . . . , n} we have Re(λi) ̸= 0 [10]. For hyperbolic
equilibria the approach used for determining stability and character of equilibria is based on the
following theorem.

Theorem 2.1 (Hartman-Grobman Theorem [10]). Let x∗ be a hyperbolic equilibrium of a
C1 vector field f with associated flow ϕt, then there exists a neighborhood N of x∗ such that
ϕ is topologically conjugate to its linearization Df on N . In other words, there exists a
homeomorphism h : Rn → Rn such that Df = h−1 ◦ f ◦ h.

Figure 2.1: A neighborhood N of stable equilibrium x∗ such that there is a neighborhood M ⊆ N
such that flow ϕt(x) will stay inside N for all t ≥ 0 if x ∈ M .
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A sketch of the proof of Theorem 2.1 can be found in [10]. Being able to translate properties
of linear systems into a nonlinear context is a very convenient tool while studying equilibria of
nonlinear systems. The stability of equilibria in linear systems is determined by their eigenvalues,
which we can obtained quite easily. In the two-dimensional linear systems this leads to following
ways to characterize the equilibria.

First we assume that both imaginary parts of the eigenvalues are zero, Im(λ1) = Im(λ2) = 0.
Now, the real parts of the eigenvalues and the number of distinct eigenvectors determine
the character of the equilibrium. The equilibrium is an asymptotically stable node for two
distinct eigenvalues with Re(λ2) < Re(λ1) < 0 for coinciding eigenvectors, see “stable node
(iii)” in Figure 2.2 and for two distinct eigenvectors (ii). For coinciding eigenvalues with
Re(λ1) = Re(λ2) < 0 and two distinct eigenvectors, the equilibrium is also a stable node (i).
When Re(λ2) ≥ Re(λ1) > 0 the equilibria are nodes as well, but then the direction of the orbits
in Figure 2.2 is reversed and the nodes are unstable. An equilibrium is an unstable saddle point
when Re(λ1) < 0 < Re(λ2).

If the imaginary parts, however, are nonzero, write λ1 = α + iβ, λ2 = α − iβ, with α and
β ∈ R, we have a stable center point for α = 0, an asymptotically stable focus for α < 0 or an
unstable focus for α > 0. These characters are also depicted in Figure 2.2 [1].

Figure 2.2: Characters of stable equilibria and a saddle point equilibrium. Unstable versions are
exactly the same, except for the direction of the arrows, this direction is reversed.

This thesis, except for a part of Chapter 4, focuses on asymptotically stable equilibria and
their basin of attraction in relation to flow-kick maps.

Definition 2.2. The basin of attraction (or stable set) of an invariant set, Λ, is the set of all
points x ∈ Rn for which limt→∞ d(ϕt(x),Λ) = 0.

Note that singletons consisting of an equilibrium are by definition invariant sets and thus
have a basin of attraction that contains at least the equilibrium. This notion is needed to
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introduce the concept of stability for flow-kick systems.

Definition 2.3. A disturbance (τ, κ) is stable if the flow-kick trajectory of point x ∈ Rn stays
in the basin of attraction of equilibrium x∗, B(x∗), for all t > 0.

Definition 2.3 follows from [11] and seems quite strict, since the trajectory needs to be in
B(x∗) for all t > 0. Note, however, that if there would exist a T > 0 such that the flow-kick
trajectory would not be in B(x∗), the undisturbed system would not be able to recover from the
disturbance and therefore never return to the basin of attraction, thus be unstable. Besides this,
the flow-kick trajectory of the disturbance is initiated at x∗ and x∗ is contained in its own basin
of attraction. Thus, the flow-kick trajectory of x∗ should stay in the basin of attraction for all
t > 0.

In Figure 2.3 the basin of attraction of asymptotically stable equilibrium x∗, B(x∗) = (A,∞),
is highlighted in red. The associated system is given by

ẋ = f(x) = rx
( x
A

− 1
)(

1− x

C

)
and describes the population growth in an ecosystem with carrying capacity C = x∗, and an
Allee threshold, A [5]. The coefficient r is the intrinsic growth rate of the population. This Allee
threshold is an unstable equilibrium and denotes a critical population size. If the population
size, x, is smaller than A, it will decrease such that the population collapses. If x ∈ B(a) this
does not happen naturally, since x∗ is an asymptotically stable equilibrium in the undisturbed
dynamics. A substantial kick can, however, make the population size fall below the threshold.
Figure 2.3 depicts a stable kick κ in blue and the orbits during the flow time in green. The
flow-kick trajectory of starting point x∗ stays in its basin of attraction, in this case the time in
which the system could to recover from κ was sufficient. If either the kick had been larger or
the flow time shorter, this might not have been the case. In Section 3.1 we will return to this
concept and make this observation precise.

Figure 2.3: A one-dimensinal flow-kick system that describes population growth by f(x) =
rx
(
x
A − 1

) (
1− x

C

)
with carrying capacity C, Allee threshold A such that 0 < A < C, and r a

constant for the intrinsic growth rate. Disturbances consist of a blue arrow for the kick and a
green arrow indicating the flow during the flow time.
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3 One-dimensional flow-kick systems

For the convenience of analysing one-dimensional flow-kick systems, we assume without loss
of generality that the vector field can be divided into intervals such that it is similar to the f
in Figure 3.1 on these intervals. This means that the system ẋ = f(x) has an asymptotically
stable equilibrium, a, and an unstable one, b. We can assume that f(x) < 0 on (a, b), that the
derivative of f in a is negative, f ′(a) < 0, and that this derivative is positive in b, f ′(b) > 0.
At a first glance, f describing the population growth (see Figure 2.3) does not meet these
requirements on the interval (A − ε, x∗ + ε), with 0 < ε ≪ d(x̃, A) and x̃ ∈ (0, A) such that
f ′(x̃) = 0. Mirroring f on this interval solves our problem. After rotating, x∗ is the left and
asymptotically stable equilibrium, A the right and unstable one, and are the function values also
smaller than zero in between both equilibria. All the reasoning on the one-dimensional systems
can via this way be reformulated. In this case, interesting things only happen when κ > 0. For
κ < 0 and all τ > 0 the flow-kick trajectory of a will stay inside its basin of attraction. For
κ > 0 it is, however, possible to leave B(a).

Figure 3.1: A one-dimensional system generated by f with two equilibria a and b such that f(x) < 0
for x ∈ (a, b) and f ′(a) < 0, f ′(b) > 0.

3.1 Resilience boundaries

The stability of a flow-kick trajectory depends on the pair (τ, κ) for which flow-kick map Gτ,κ is
defined. All the disturbances (τ, κ) to which the system is resilient together, form the resilient
region, Rs, of the (τ, κ)-space or disturbance space. The disturbance space is given by R>0×R>0

and since a disturbance is either stable or unstable, the disturbances in Ru := R>0 × R>0 \Rs

form the non-resilient region. For these disturbances the flow-kick trajectory of equilibrium x∗
escapes from B(x∗). Since f is sufficiently smooth, this results in a sharp separation between
these regions. In [11] a new metric to quantify the resilience of (eco)systems, with the so-called
resilience boundary, R, at its core, is defined on the disturbance space.

Definition 3.1. The resilience boundary, R, for the basin of attraction of a, B(a), separates
disturbance patterns (τ, κ) for which the flow-kick trajectory of a remains in B(a) from the
disturbance patterns (τ, κ) for which the flow-kick trajectory of a escapes from B(a).

Proposition 3.1. If the function f has at most one maximum on (a, b), then R consists of
exactly these disturbances (τ, κ) for which τ is the minimum time in which the system can
recover by −κ, taken over all possible intervals of length |κ| between a and b.

A proof of Proposition 3.1 can be found in [11]. Note that Definition 3.1 only fixed
disturbances for a as initial value of a solution of ẋ = f(x) are considered, which means that
the first kick κ is applied at a, after letting a flow forward for time τ . Since f(a) = 0, the
kick starts in a itself. This does not cause trouble if the assumption is made that f has at
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most one minimum on (a, b). Figure 3.2 depicts a resilience boundary for a flow that meets the
assumptions from before.

Figure 3.2: The (τ, κ)-space is separated in a non-resilient region with unstable disturbances and a
resilient region with stable disturbances, separated by a resilience boundary (in red).

Allowing f to have more than one minimum on (a, b) has interesting consequences for
Definition 3.1. Definition 3.2 is an extension of Definition 3.1.

Definition 3.2. The resilience boundary for a point x0 ∈ B(a), Rx0, separates disturbance
patterns (τ, κ) for which the flow-kick trajectory is initiated at x0 remains in B(a) from disturbance
patterns (τ, κ) for which this flow-kick trajectory escapes from B(a).

Proposition 3.2. Let A : B(a)× R>0 → R for all x ∈ B(a) and κ > 0 be given by A(x, κ) = τ
such that τ is the minimal time in which the system can recover from −κ taken over all possible
intervals with length |κ| between x and b. Now, the resilience boundary of x0 is given by
{A(x0, κ) = τ : κ > 0}. For x0 = a, we find that R = {A(a, κ) = τ : κ > 0}.

Proof. The fact that a is asymptotically stable provides that for all x ∈ B(a) holds that
limt→∞ ϕt(x) = a. Thus, for all ε > 0 such that miny∈∂B(a) d(a, y) > ε, there exists a T ≥ 0 such
that d(ϕt(x), a) < ε. Let x(t) be the solution to the initial value problem ẋ = f(x) with initial
value x(0) = x0 such that d(x0, a) = ε and assume, without loss of generality, that x0 > a. Let
kick κ with 0 < κ < d(x0, a) be given and consider

τ = F (k) =

∫ x0

x0−κ

1

f(x)
dx, (3.1)

this integral defines the minimal time it takes the system to recover from kick κ inside of
(a− ε, a+ ε) and follows from separation of variables in (2.1). This ensures that there exists
a τ in which the system can recover from −κ. This τ is, however, not per definition minimal.
Minimizing (3.1) over all x0 ∈ B(a) with their associated solutions, gives that A exists for all
x ∈ B(a). Note however, that A is not well-defined for κ > miny∈∂B(a) d(x0, y) since (3.1) then
diverges.

Hence, the resilience boundary of x0 ∈ B(a) is given by {A(x0, κ) = τ : κ > 0}. For x0 = a
we can find the values of τ the same way as before and since R was defined as the resilience
boundary of the asymptotically stable equilibrium, we find R = {A(a, κ) = τ : κ ∈ R>0}.

In the previous proof, the fact that f can have several extrema on the basin of attraction
does not have great consequences. Definition 3.2 is closely related to the concept of convergence
intervals. In the following section the mentioned consequences emerge.
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3.2 Convergence intervals

For a stable disturbance (τ, κ) the flow-kick trajectory of a point x0 remains in B(a). In
particular, it stays around a certain interval when time continues. These convergence intervals
come in handy during further analysis, especially when f has several extrema on (a, b) and the
values at which flow-kick processes are initiated differ.

Definition 3.3. Let Ii(x0) = [xi, xi + κ] for i ∈ {1, . . . , j} be the intervals over which it takes
the system (2.1), with initial condition x0, flow time τ to recover from kick κ. For disturbance
(τ, κ) we define the convergence interval, I(x0) as the interval Ii for which the distance d(x0, xi)
is minimized.

In Definition 3.3 only the intervals over which flow time τ occurs are considered. Since both
a and b are assumed to be equilibria and f is sufficiently smooth, the number of these intervals
is finite. We are interested in these Ii(x0), since the flow-kick trajectory initiated at x0 stays in
a neighborhood that contains I(x0) after some time T ≥ 0. This claim is captured by Theorem
4.1 and proved for n-dimensional systems in Section 4.3. On the other hand, Definition 3.4
sheds a new light on the concept of convergence intervals.

Definition 3.4. Let Ii(x0) = [xi, xi + κ] for i ∈ Z≥0 be intervals the intervals on which the
system (2.1) acts with initial condition xi. For disturbance (τ, κ) we define the convergence
interval, I(x0) as the interval Ii with i the smallest index for which τ occurs over Ii and for
which the distance d(x0, xi) is minimized.

Note that the xi for which we consider the intervals Ii(x0) are values at which a disturbance
is applied to the system. Thus, the flow-kick trajectory of x0 is by Definition 3.4 given by⋃

i∈Z≥0
Ii(x0). The times that occurs over Ii(x0) are not equal to τ , but converge to τ for

i → ∞. The convergence interval is therefore selected completely different from Definition 3.3,
in Definition 3.3 τ occurs for all Ii(x0) with i ∈ {1, . . . , j}. Definition 3.4 can be useful when
analyzing a flow-kick trajectory initiated at one point in-depth. However, this section looks at
various initial values of the flow-kick map. From now on Definition 3.3 is used.

The fact that I(x0) is selected from the Ii(x0) by considering the distance between x0 and
xi, makes us wonder what happens with the intervals for which (2.1) also can recover from kick
κ in flow time τ . The following paragraphs will therefore divide the basin of attraction of a into
intervals In, for which the flow-kick trajectory of initial value x̃0 ∈ In converges to Ii(x̃0) for
i ∈ {1, . . . , j}.

Definition 3.5. The basin of attraction of an asymptotically stable equilibrium can be divided
into at least two initial condition intervals, Ir, with r ≥ 2 such that for x0 ∈ Ir1 and x̃0 ∈ Ir2,
with r1, r2 ∈ {1, . . . , r} holds for disturbance (τ, κ) that I(x0) ̸= I(x̃0).

For all i ∈ {1, . . . , j} separations of variables yields the recovery time as a function of κ, for
ẋ = f(x) we obtain

τ = F (κ) =

∫ xi+κ

xi

1

f(x)
dx,

based on results from [11]. Figure 3.3 illustrates Definition 3.3 for a certain f : R → R with two
local minima on (a, b). For a symmetric f with only one extremum we would now be able to
find the resilience boundary, composed of points (F (κ), κ), explicitly by solving and integrating
for κ in terms of τ , since the shortest time in which the system can recover by −k between
a and b occurs over an interval of length κ centered on (a + b)/2 [11]. We, however, did not
assume this and are obliged to use a different approach to analyse the system then using this
symmetry and thus divide B(a) into Ir, with r ∈ {1, 2, 3} for the example in Figure 3.3.
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Assume that f has asymptotically stable equilibrium a and unstable equilibrium b with a < b
such that f ′(a) < 0, f ′(b) > 0 and that f(x) < 0 for all x ∈ (a, b). Denote the local minima of f
on (a, b) by mi for all i ∈ {1, . . . , n}, thus n is the number of local minima of f on (a, b). Label
the local maxima by Mi with i ∈ {1, . . . , N}. For now, we have n = 2. Consider x0 ∈ (a,m1)
such that there exists a stable disturbance (τ, κ) for x0 and fix this pair (τ, κ). We have that

τ =

∫
I(x0)

1

f(x)
dx

with I(x0) the convergence interval of x0 minimizing the distance between x0 and the left
boundary, α1, of I(x0). So, I(x0) = I1(x0). Define the interval I1 by (a, α1).

By Definition 3.3, I(x0) minimizes d(x0, α1) in order that τ occurs over I(x0). It can however
be the case that I(x0) is not the only interval over which the system can recover in τ by −κ.
In Figure 3.3 the flow time also occurs over I2(x0) and I3(x0). Assume, in general, that there
exists an i ∈ {1, . . . , j} such that Ii(x0) ̸= I(x0) and that τ occurs over this interval. Mark that
Ii ⊆ I2 = (α1, α2) and choose α2 such that the time to recover from kick κ on (α2, α2 + κ) is
minimized on (M1,M2). However, since n = 2 we have in this case that r = 3. (The value of r
depends on the value of f in the extrema.) Therefore, the found α2 is not the value of α2 we
were looking for, if r > 4 it would have been. As f ∈ C1 there is a α̃2 ∈ (m2, b) such that

τ =

∫ α̃2+κ

α̃2

1

f(x)
dx.

Note that α̃2 is the left boundary of I3(x0). We have I2 = (α1, α̃2). The orange interval is the
interval over which the minimal time for which the system can recover from −κ occurs and
shows therefore, that τ is not the minimal time for which the flow-kick trajectory initiated at
x̃0 is stable and thus α̃2 exists. For all initial values ˜̃x0 ∈ (α̃2, b) is the flow-kick trajectory of
disturbance (τ, κ) unstable.

The flow-kick system will find itself in different stable states depending on the position where
the instant disturbances were first applied, in Figure 3.3 all flow-kick trajectories for disturbance
(τ, κ) starting in I1, x0 ∈ I1 converge to I1(x0), all trajectories initiated in I2 converge to I2(x0)
and all flow-kick orbits that start in {x : x ∈ (a, b)} \ {x : x ∈ I1 ∪ I2} are unstable.

Figure 3.3: If f has more than one extremum on (a, b) it can be possible that the flow-kick trajectory
defined by a fixed disturbance (τ, κ) of distinct initial values converges to separate convergence
intervals.

10



3.3 Kicks depending on time

The disturbances considered in the previous sections do not depend on how much time has
already passed. Based on real-life examples such as the effect of the fishing industry on the fish
population size in an (eco)system this assumption is, in spite its convenience, not realistic. Both
the frequency and the size of kicks could namely change in the course of time, particularly when
looking at disturbances caused by independent actors such as humans. If factors or real-life
observations would indicate that a disturbance (τ, κ) is unstable and will eventually lead to the
collapse of a population, as the flow-kick trajectory gets below the Allee threshold, one could
decide to decrease the kick size after some moment in time. By letting the kick or the flow time
depend on time, we can interfere with the flow-kick dynamics and possibly change a disastrous
outcome into an alternative. The time dependency of a disturbance can, of course, be defined
in quite exotic ways, however, for now we only consider the following time dependency.

Proposition 3.3. Assume that (τ, κ) is an unstable disturbance for x0 ∈ (a, b) for vector field
f such that |κ| < b− x0, so there exists a T ∈ R>0 for which the flow-kick trajectory of x0 is in
B(a). Then there exists a stable disturbance (τ,K(t)) with

K(t) =

{
κ for 0 ≤ t < T

κT for t ≥ T
,

with κT smaller or equal to the kick κmax for which the value of the flow-kick trajectory of x0

after time T , GT (x0), can still recover from −|κmax| in recovery time τ .

Proof. After time T , the flow-kick map Gτ,κ, see (2.2), has been applied (T − T mod τ) times,

after the disturbance has been applied for the (T − T mod τ)-th time, G
(T−T mod τ)
τ,κ (x0), flows

forward for T mod τ . Thus, GT (x0) = ϕ(T mod τ)

(
G

(T−T mod τ)
τ,κ (x0)

)
. Consider the resilience

boundary for the point GT (x0), RGT (x0). By means of Proposition 3.1 we can find a κT such
that the flow-kick trajectory of GT (x0) stays in basin of attraction B(a).

11



3.4 Numerical results

Flow-kick dynamics were implemented in one-, two- and three-dimensional systems in the Python
code that can be found in Appendix A. Here we will focus on the one-dimensional implementation
in flowkick.py from Appendix A.1. In Section 4.4 the two- and three-dimensional situations are
portrayed. We use the (straight)forward Euler method to construct the solution of the dynamical
system per coordinate and the desired disturbances (τ, κ) is applied to this undisturbed dynamics.
For N+1 and time T an array t is constructed using numpy.linspace(), between consecutive
values in t are time steps with size dt = T/N. Based on the index of t and flow time τ , κ is
applied by appending xG[-1] + dt*f(xG[-1]) + k to the array xG, which stores the values
of the flow-kick map. In this case, f is the ordinary differential equation that describes the
undisturbed dynamics.

3.4.1 Influence of kick frequency and size in one-dimensional flow-kick systems

The Figures 3.4 and 3.5 both depict two flow-kick trajectories for initial value x0 = 75 for an
Allee population model defined by

f(x) = rx
( x
A

− 1
)(

1− x

C

)
, (3.2)

with r = 0.5, A = 50 and C = 200. The disturbances characterizing the blue flow-kick trajectories
are in the resilient region of the (τ, κ)-space and the disturbances defining the red trajectories
are in the non-resilient region, since the population breaks down when the Allee threshold is
exceeded. In Figure 3.4 two different disturbances (τ1, κ1) and (τ2, κ2) are considered. Kicks κ1

and κ2 have are the same for both trajectories, namely κ1 = κ2 = −16, but the flow times differ.
The kick frequency of (τ1, κ1) is lower than the one of (τ2, κ2), we have τ1 = 1.5τ2 with τ2 = 1.
For the higher kick frequency, so lower flow time the system has not enough time to recover
from the kick, and therefore, the flow-kick trajectory x0 for (τ2, κ2) is kicked below threshold
A = 50 after t = 7.

Consider the disturbances in Figure 3.5, (τ̃1, κ̃1) is a stable disturbance in blue in contrast
to unstable disturbance (τ̃2, κ̃2) in red. For the flow times holds that τ̃1 = τ̃2, on the other hand,
the kicks have different sizes, κ̃1 = −15 and κ̃2 = −16. In short, modifying only the kick or the
flow time of a disturbance can have great impact on the (in)stability of a flow-kick trajectory.
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without kick
unstable for flow time
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Figure 3.4: Two disturbances with different
flow times, τ1 = 1.5τ2 with τ2 = 1, but same kick,
κ1 = κ2 = −16.
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Figure 3.5: Two disturbances with different
sizes, κ̃1 = −15 and κ̃2 = −16, but same flow
time, τ̃1 = τ̃2 = 1.
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3.4.2 Convergence intervals

As described in Section 3.2 the convergence interval around which the flow-kick trajectory
of fixed disturbance (τ, κ) remains, depends on the value at which the flow-kick trajectory is
initiated. In Figure 3.6 this can be observed for a certain disturbance on the undisturbed system
defined by

ẋ = f(x) = (x− 2)4 − 4(x− 2)2 − 2, (3.3)

which is graphed in Figure 3.7. We have equilibria if ẋ = 0, thus x± = 2 ±
√

2 +
√
6 are

equilibria for(3.3). For fixed disturbance (τ, κ) = (0.042, 0.25) we can now find I1, I2 and I3 from
Definition 3.5 using flowkick.py, the Python code for one-dimensional systems can be found in
Appendix A.1.

To start with I1, we know that I1 ≈ (a, α1) with a the asymptotically stable equilibrium x−.
The right boundary of I1 is given by α1 for which holds that

τ =

∫ α1+κ

α1

dx

f(x)
=

∫ α1+κ

α1

1

(x− 2)4 − 4(x− 2)2 − 2
dx. (3.4)

We find α1 ≈ 0.4381 numerically, thus I1 ≈ (x−, 0.4381), and d(α1, a) is minimized for α1 ∈ B(a).
Note that, [α1, α1 + κ] = I(a). The second interval of initial conditions, I2, such that the flow-
kick trajectory converges to a different convergence interval than I1 ≈ (0.4381, 0.6881), is given
by I2 = (α1, α̃2) ⊇ I1 such that for α̃2 holds

τ =

∫ α̃2+κ

α̃2

dx

f(x)
=

∫ α̃2+κ

α̃2

1

(x− 2)4 − 4(x− 2)2 − 2
dx, (3.5)

with α̃2 ∈ (M1, b). Consider (3.5), we find

τ =

[
− arctan

(
x− 2√
2 +

√
6

)
+ arctan

(
x− 2√
−2 +

√
6

)]α̃2+κ

α̃2

= − arctan

(
(α̃2 + κ)− 2√

2 +
√
6

)
+ arctan

(
(α̃2 + κ)− 2√

−2 +
√
6

)

−

(
arctan

(
α̃2√
2 +

√
6

)
+ arctan

(
α̃2 − 2√
−2 +

√
6

)). (3.6)

Solving (3.6) numerically for α̃2 gives α̃2 = 3.257... or α̃2 = 3.311.... The flow-kick trajectory
defined by disturbance (τ, κ) = (0.042, 0.25) for x0 ∈ (3.257..., 3.311...) converges to Ii(x0) =
(3.257..., 3.507...). We get I2 = (0.483..., 3.257...) and I3 = (3.257..., x+). In Table 3.1 the
convergence intervals for two different initial values are included.

In summary, for all x̃0 ∈ I1 we see that the convergence intervals of I(x̃0) for fixed disturbance
(τ, κ) are the same. For x0 ∈ I2 the convergence intervals also match. For flow-kick trajectories
initiated in I3, the disturbance that was originally stable appears to be unstable. Basins of
attraction of asymptotically stable equilibria in a one-dimensional system can therefore be
divided into at least two sections for which a flow-kick trajectory initiated in the other section
has different properties, dependent on the number of local minima and the magnitude of the
the minima.
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Figure 3.6: For distinct initial values, x0 = 0.771... and x̃0 = 0.265..., the stable disturbance
(τ, κ) = (0.042, 0.25) has distinct convergence intervals.
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Figure 3.7: Undisturbed dynamics generated by vector field f(x) = (x− 2)4 − 4(x− 2)− 2. See Table
3.1 for the used input values.

Initial value Initial condition interval Ir Convergence interval I
x̃0 = 0.265... I2 = (0.483..., 3.257...) (3.257..., 3.507...)
x0 = 0.771... I1 = (x−, 0.438...) (0.438..., 0.688...)

Table 3.1: Results for numerical analysis in Section 3.4.2 with disturbance (τ, κ) = (0.042, 0.25).
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3.4.3 Time-dependent kicks

Practical examples of disturbances whose magnitude depends on time are population models
that include an Allee threshold, a model with such a threshold is described by (3.2) and is
already depicted in Figure 2.3 [7]. Both A and C are equilibria of this vector field, with C = x∗
is an asymptotically stable one.

Since f has only one mimimum on (A, x∗), the basin of attraction of x∗ can be split up in two
intervals, I1 and I2, constructed as in Section 3.2 and 3.4.2, for which the convergence intervals
for fixed disturbance (τ, κ) differ. For all x0 in interval I2 = (A,α1) the disturbances are unstable.

In other words, for every x0 ∈ I2 there is a T ≥ 0 such that G
(T−T mod τ)
τ,κ (x0) ≤ A. Assuming

that T > 0, with Proposition 3.3 we can define a stable disturbance (τ,K(t)) based on the fixed
disturbance (τ, κ) such that the system will still be able to recover from the kick, K describes
in what way we intervene with the original kick dependent on time. This is illustrated by the
graphs in Figures 3.8 and 3.9, the kick applied to the trajectory of initial point x0 = 75.515...
changes after running for t = 7, after this time the kick that is applied is κT with κT = 1

4
κ.

The flow-kick process starts afresh from time T on, only from a different initial value which
is still above the Allee threshold, namely x̃0 = GT (x0), and for a different (fixed) disturbance
(τ, κT ). Since we observe that the x-position of the blue trajectory converges to a convergence
interval after T = 7, this new initial value is contained in I1 when this interval would have been
constructed for (τ, κT ).

However, when κT would have been changed differently, the system might still not have
been able to recover in time τ from −κT , if this disturbance had been initiated at x̃0. This
happens when a kick is altered either too late, too little or both. This is the instance for the
red flow-kick trajectory in Figure 3.9. After T = 7 the original kick, κ = −16, is divided by
two, which gives κT = −8 for unaltered flow time τ = 1. Although the kick now is considerably
smaller than before, the flow time, τ = 1, stays smaller than the minimal time it takes for the
system to recover from −κT . In other words, for all x ∈ (A+ |κT |, x̃0) we ensure with the fact
that f ∈ C1 that

1 = τ <

∫ x

x−|κT |

1

f(x)
dx =

∫ x

x−|κT |

1

rx
(
x
A
− 1
) (

1− x
C

)dx,
by calculating this integral for x = x̃0 and x approaches A+ |κT |. In this case, the latter integral
diverges as, since we divide by x

A
− 1. However, it is not always the case that the divergence of

the integrand guarantees convergence of the integral. For r = 1
2
, A = 50 and C = 200, we find,

with flowkick.py, the value of x̃0 = 64.052... and that∫ x̃0

x̃0−|κ|

1

rx
(
x
A
− 1
) (

1− x
C

)dx =

∫ 64.052...

56.052...

1

rx
(
x
A
− 1
) (

1− x
C

)dx = 2.017... > 1.

The flow-kick trajectory of (τ,K(t)) with

K(t) =

{
−16 for 0 ≤ t < 7

−8 for t ≥ 7
,

is thus unstable. Changing this definition of K to

K(t) =

{
−16 for 0 ≤ t < 4

−8 for t ≥ 4
,

leads contrarily to a stable flow-kick trajectory for disturbance (τ,K(t)) with a different initial
value ˜̃x0 = 80.359.... This initial value yields∫ ˜̃x0

˜̃x0−|κ|

1

rx
(
x
A
− 1
) (

1− x
C

)dx =

∫ 80.359...

72.359...

1

rx
(
x
A
− 1
) (

1− x
C

)dx = 0.649... < 1.
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The system can consequently recover from the changed disturbance (τ,K(t)) in the indicated
flow-time if the kick size is adjusted early enough.
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Figure 3.8: After T = 7 the kick size of the blue
trajectory is four times smaller than before
which leads to a stable situation. The kick
applied to the red trajectory does not depend on
time.
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Figure 3.9: After T = 4 the kick applied to the
blue flow-kick trajectory is bisected. In contrast
to the red trajectory where this is done at a later
moment, at T = 7, the blue trajectory remains
in B(x∗).
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4 Two-dimensional flow-kick systems

In one-dimensional flow-kick systems the choice of kick is restricted by the fact that the phase
space is a line. The only thing that can be determined is therefore the size of the kick, which
can be positive or negative. In n-dimensional systems the possibility to apply kicks in other
directions broadens our horizon and makes it possible to extend some previous definitions. To
embroider on the definitions from Chapter 2 we consider the undisturbed dynamics of the
two-dimensional system defined by

f(x) =

{
ẋ = −x− y + cos(x)

ẏ = sin(x)
, (4.1)

see Figure 4.1. This figure is plotted by means of the application pplane written for Java. The
complexity of the phase plane of this systems raises several questions regarding the stability
of disturbances. For equilibria of (4.1) holds that ẋ = 0 and ẏ = sin(x) = 0. From the latter
equality follows that x-coordinates of equilibria are given by x = kπ with k ∈ Z. Combining
this with the former equality yields

0 = ẋ

= −x− y + cos(x)

= −kπ − y + cos(kπ)

= −kπ − y + (−1)k.

Consequently, equilibria are given by (x, y) = (kπ,−kπ + (−1)k) with k ∈ Z. Consider the
basin of attraction of x̃∗ = (−2π, 2π + 1), B(x̃∗), highlighted in orange in Figure 4.1. If the
length of a kick in a disturbance applied from initial value x∗, |κ| =

√
κ2
1 + . . .+ κ2

n, is fixed and
the direction of κ varies, the effect of the kick direction can be studied. This is covered in the
following sections, as well as the higher dimension of the phase space of the flow-kick dynamics
that makes it less apparent what it means to recover from a disturbance in comparison to
recovering in one-dimensional flow-kick systems. Another question arising for two-dimensional
systems is whether there always is a kick for a certain recovery time for which the flow-kick
trajectory stays in a neighborhood of an asymptotically stable equilibrium. This question is
studied in Section 4.3.

Figure 4.1: Phase plane of (4.1) with basins of attraction of asymptotically stable equilibria x∗
and x̃∗ indicated by red respectively orange.
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4.1 Resilient and non-resilient sets

Resilient and non-resilient regions in n-dimensional flow-kick systems with n ≥ 2, see Definition
3.2, are analogous to their one-dimensional equivalents.

Definition 4.1. The resilient set for a point x0 ∈ B(a), Rs
x0
, contains all disturbance pairs

(τ, κ) with τ ∈ R>0 and κ ∈ Rn for which the flow-kick trajectory initiated at x0 remains in
B(a) ⊆ Rn. This resilient set is separated from the non-resilient set for a point x0 ∈ B(a),
Ru

x0
, which contains all the disturbances for which there exists a T > 0 such that the flow-kick

trajectory of disturbance (τ, κ) escapes from B(a), by the resilience boundary of x0, Rx0.

Definition 4.2. A n-dimensional system is said to be able to recover from a disturbance (τ, κ)
initiated at x0 ∈ B(a) with κ ∈ Rn, if there is an i ∈ Z≥1 such that there exists an orbit between
ϕτ (G

i−1
τ,κ (x0)) and Gi

τ,κ(x0) in the phase space defined by (2.2) such that flowing forward for time
τ after applying kick κ results in the same position in the phase plane as before applying κ to
the system. In other words, for some i ∈ Z≥1 holds that

ϕτ (G
i
τ,κ(x0)) = Gi−1

τ,κ (x0).

This means that the system can only recover from kick κ when there is at least a t0 ≥ 0 such
(t0, t0 + τ) ⊆ R≥0 and a X0 ∈ B(a) such that for the end points of a segment of the forward
orbit of X0,

{ϕt(X0) : t ∈ (t0, t0 + τ)} ⊆ Γ+(X0) = {ϕt(X0) : t ≥ 0},

we have that
ϕt0(X0)− ϕt0+τ (X0) = κ.

Even though this thesis mainly focuses on disturbances applied to systems with asymptotically
stable equilibria in their undisturbed dynamics, these orbit segments can also be constructed
for unstable nodes, unstable focuses or stable equilibria in undisturbed systems. For equilibria
that are stable but not asymptotically stable we only pursue the hyperbolic situation, thus, a
stable center equilibrium. Further analysis of these non-hyperbolic equilibria is unfortunately
not in the range of this thesis, but will be discussed in short in Chapter 8.

4.2 Linear undisturbed dynamics

A hyperbolic equilibrium x∗ in a nonlinear system is topologically conjugate to its linearization
on a neighborhood N of x∗, by Theorem 2.1. Understanding how disturbances in linear systems
behave, is therefore useful. Periodic orbits can be obtained by applying very specific kicks,
which is explained in the following paragraphs.

For all unstable nodes the real eigenvalues are greater than zero. We obtain three situations
for n = 2. To start, assume that the eigenvalues λ1 and λ2 are equal with two linearly
independent eigenvectors v1 and v2, see Figure 4.2. The orbit of every solution in this linear
system is a half-line and can be written in the form x(t) = eλt(c1v1 + c2v2) for constants c1
and c2 and for all choices of c1 and c2 the set of vectors {c1v1 + c2, v2} cover every direction
in the (x, y)-plane. Hence, for every κ ∈ R2 there exists a X0 for which there is an orbit
segment {ϕt(X0) : t ∈ (t0, t0 + τ)}, part of a half-line with direction c1v1 + c2v2 = −κ, such that
ϕt0(X0) − ϕt0+τ (X0) = κ. In Figure 4.2 these orbit segments are highlighted in blue for two
initial values X0 and X̃0.

Consider the unstable saddle point with eigenvalues λ1 < 0 < λ2 and two distinct eigenvectors,
see Figure 4.3. Solutions of the system are given by x(t) = c1e

λ1tv1 + c2e
λ2tv2. Let X0 be the

desired value at which the flow-kick trajectory is initiated and the initial value of the problem,
so X0 = x(0). The kick for which there exists a time-interval (t0, t0 + τ) = (0, τ) for this
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X0, is given by κ = ϕ0(X0)− ϕτ (X0) = X0 − ϕτ (X0). The system can therefore recover from
disturbance (τ,X0 − ϕτ (X0)) if the flow-kick trajectory is initiated at ϕτ (X0). Via the same
way we can find a κ for a X0 if the equilibrium is an unstable node as depicted in Figures 4.4
and 4.5 (or a stable center, see Figure 4.6). For eigenvalues with nonzero imaginary part (focus
points), disturbances from which the system can recover can be constructed the same way as
for unstable saddle points.

Figure 4.2: For an unstable node with one
eigenvalue with multiplicity two, there is a X0

and an interval (t1, t2) ⊆ R>0 with length τ ∈ R
for which ϕt1(X0)− ϕt2(X0) = κ for all κ ∈ R2.

Figure 4.3: A kick κ can be determined for
an unstable saddle point equilibrium with real
eigenvalues λ1 < 0 < λ2 for all initial values
X0 ∈ R2 and flow times τ .

Figure 4.4: A kick κ can be determined for
an unstable node with two distinct eigenvalues
with a method analogous to the one for saddle
points .

Figure 4.5: For an unstable node with two
eigenvalues but only two eigenvectors a kick
κ can be found the same way as for the unsta-
ble node in Figure 4.4.
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Figure 4.6: For all κ around a stable center
there exists a X0 such that we obtain a periodic
flow-kick trajectory.

Figure 4.7: A periodic flow-kick trajectory via
center equilibrium x∗ such that flow-kick trajec-
tory stays in equilibrium for τ .

Stable but not asymptotically stable equilibria are often found in systems with non-hyperbolic
equilibria and open up a whole new world of flow-kick dynamics then examined so far. A sneak
preview is given in Figures 4.6 and 4.7. In Figure 4.6 the situation is comparable with the one
from the unstable saddles and nodes. For any disturbance (κ, τ) there exists a initial value for the
flow-kick trajectory such that there is an orbit between the end points of {ϕt(X0) : t ∈ (t0, t0+τ)}
with ϕt0(X0) − ϕt0+τ (X0) = κ. Figure 4.7 is on the other hand more exotic. Note that kick
κ is applied twice from initial value X0 on and that the flow-kick trajectory passes through
stable equilibrium x∗ = Gτ,κ(X0). The obtained periodic flow-kick orbit consists of four actions:
applying κ from X0 on to x∗; staying for time τ at x∗, since ẋ = 0 for x∗; applying κ another
time, from x∗ to G2

τ,κ(X0); and flowing back from G2
τ,κ(X0) to X0. In this manner the stable

disturbance (τ, κ) is not instant anymore and takes time τ , as if someone “pressed pause” for τ
in the middle of the execution of the kick. Chapter 8 elaborates a bit on this observation.

4.3 Nonlinear undisturbed dynamics

The disturbances in the previous section were applied to linear dynamical systems. Theorem
2.1 states that for a hyperbolic equilibrium x∗ of (2.1) there exists a neighborhood N of x∗
such that the dynamics in the nonlinear is topologically conjugate to its linearization in this
neighborhood. Some interesting observations about flow-kick dynamics in nonlinear systems
can now be derived in N .

Theorem 4.1. For an asymptotically stable equilibrium x∗ of a system given by ẋ = f(x) and a
certain recovery time τ there exists a kick κ ̸= 0 such that the flow-kick trajectory of x∗ stays in
a neighborhood N of x∗ for t ≥ T with T ≥ 0.

Proof. With Theorem 2.1 there exists a neighborhood M of asymptotically stable equilibrium x∗
such that the flow is topologically conjugate for homeomorphism h : Rn → Rn to its linearization
on M . Note that all eigenvalues of Df(x∗) are, by assumption, strictly smaller than zero.
Consequently, we have that x∗ = limt→∞ ϕt(x) for all x ∈ h(M). This yields a compact subset
of h(M) denoted by V such that for all t > 0 and all x ∈ V holds that ϕt(x) ∈ V , which gives
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that V is a trapping region. Assume that x0 ∈ ∂V . Let x0 be the initial value of the problem
ẋ = Df(x) and let y0 : R → Rn be the associated solution for this x0. Consider

I := min
x0∈∂V

∫ τ

0

y0(t)dt, (4.2)

and a neighborhood
Ñ := {x ∈ V : d(x, ∂V ) > I}

of x∗. For all x ∈ Ñ the flow-kick trajectory, defined by disturbance (τ, κ) such that |κ| < I,
will definitely return to Ñ , because the distance between ϕt(x) and x∗ decreases by the solutions
of the linearization. However, if x ∈ V \ Ñ we cannot guarantee this return. The flow-kick
trajectory can, namely, be “kicked out” of trapping region V . Since h is a homeomorphism we
can translate these sets with their properties to the nonlinearized system. This gives that there
exists a kick κ ̸= 0 such that the flow-kick trajectory of x∗ stays in neighborhood N := h−1(Ñ)
of x∗ for all t ≥ 0.

Figure 4.8: Sketch of proof of Theorem 4.1. On the left the nonlinear system is depicted and on
the right the linearized version.

Figure 4.8 illustrates the proof and Figure 4.9 depicts the construction of Ñ , about which
the following remarks need to be made. Note that N , in the nonlinear system, might not be
the biggest neighborhood for which there exists an κ ≠ 0 such that the flow-kick trajectory
of an asymptotically stable equilibrium stays in N . Consider X = {ϕτ (x) : x ∈ ∂V }, black in
Figure 4.9. To illustrate this, x̃0 ∈ ∂V is indicated in Figure 4.9 in blue. The distance between
x̃0 ∈ ∂V and ϕτ (x̃0) ∈ X is larger than the distance between x0 ∈ ∂V and ϕτ (x0) ∈ X, in other
words, d(x̃0, ϕτ (x̃0)) > d(x0, ϕτ (x0)). There follows that I ≤ d(x0, ϕτ (x0)). Assume that (4.2) is
minimal for x0 ∈ ∂V and ϕτ (x0) highlighted in green in Figure 4.9. For this x0, which does not
have to be unique, ϕt(x0)− x0 does not have to be perpendicular to the tangent space of V in
x0. If this were the case, Ñ would be maximal. If this angle, α, would not be right, it could be
taken into consideration by defining Ñ = {x ∈ V : d(x, ∂V ) > I sin(α)}. After applying h−1 to
Ñ , we now obtain a larger neighborhood N of x∗ for which there exists a κ with |κ| < I such
that the flow-kick trajectory will stay in N after time t ≥ T .
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Figure 4.9: Construction of Ñ , in red, in proof of Theorem 4.1. V is orange.

4.4 Numerical results

Figures 10(a) and 10(b) are plotted by flowpush.py from Appendix A.2. As in the one-dimensional
version, kick κ is applied based on the index of t and flow time τ . In two dimensions this is done
by appending xG1[-1] + dt*f1(xG1[-1],xG2[-1]) to the array xG1 that stores the values of
the first coordinate and appending xG2[-1] + dt*f1(xG1[-1],xG2[-1]) to xG2 for defining
what happens to the second coordinate. In this case, f1 and f2 are the coordinate functions of
a two-dimensional system, for the one-dimensional case f2 does not exist and f1 only has one
argument. The three-dimensional case is approached in a similar way. The numerical results
from this section illustrate the influence of kick direction.

In Table 4.1 the input values are stated for the flow-kick trajectories and undisturbed orbit
depicted in the Figures 10(a) and 10(b), which compare a vertical and horizontal disturbance
to the same initial value of (4.1). For the horizontal disturbance, the flow-kick trajectory of
(x0, y0) = (0.386..., 0.773...) stays inside the basin of attraction of the asymptotically stable
equilibrium x∗ from (4.1). On the other hand, the flow-kick trajectory for the vertical disturbance
escapes from B(x∗)

Initial value (x0, y0) Flow time τ Kick κ Stability of orbit See Figure 4.10
(0.386..., 0.773...) − 0 Stable In red
(0.386..., 0.773...) 0.5 (0.5, 0) Stable (a)
(0.386..., 0.773...) 0.5 (0.469...,0.171...) Stable (c)
(0.386..., 0.773...) 0.5 (0.383...,0.321...) Stable (d)
(0.386..., 0.773...) 0.5 (0.25,0.433...) Unstable (e)
(0.386..., 0.773...) 0.5 (0, 0.5) Unstable (b)

Table 4.1: Some results for numerical analysis of (4.1).

In Figure 10(a) a horizontal stable disturbance given by (0.5; (0.5, 0)) is applied to initial
value x0 = (0.386..., 0.773...) for the system defined by (4.1). For this disturbance, the flow-kick
trajectory stays in B(x∗).

Figure 10(b) portrays a vertical unstable disturbance applied to the same system. The red
orbits in both figures are the same, but since the disturbance (0.5; (0, 0.5)) makes the flow-kick
trajectory of x0 escape the basin of attraction of x∗, see 4.1, it appears as if the orbits have
different size. Figure 4.1 also depicts orbit in red in B(x∗). For Figure 10(c) until 10(e) the kick
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magnitude of κ, |κ|, is fixed on 0.5. The direction is adjusted by rotating over 20 degrees. For
an angle γ somewhere between 40 and 60 degrees the flow-kick trajectory escapes from the basin
of attraction. By applying all possible disturbances to the initial value x0 = (0.386..., 0.773...)
we would be able to construct a resilience boundary for x0. See Chapter 8 for more information
on the construction of this resilience boundary.
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Figure 4.10: Disturbances with |κ| = 1
2 applied to undisturbed dynamics of (4.1) for initial value

x0 = (0.386..., 0.773...).
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5 Flow-push dynamics

In the previous chapters, it was assumed that a kick is an instant change to a dynamical system.
However, sometimes it is not realistic to assume this, a wildfire, for instance, can for example
take longer than a week and then this time might not be negligible in proportion to the time it
takes for the system to recover. Therefore, this section covers “pushes”, disturbances that are
not instant and have a certain duration, and their induced flow-push dynamics.

5.1 Definition

Flow-push systems can be defined in more than one way. This depends on how the push is
approached. The push can be explicitly added to the undisturbed dynamics, see Definition 5.1,
or be considered as an internal property of a system such that it is more implicitly (de)activated
when time continues, see Definition 5.2.

Definition 5.1. A flow-push system, P : Rn ×R → Rn, for x ∈ Rn, t ∈ R, triplet (τ, τp, κ) and

sufficiently smooth push p : [0, τp) → Rn given by t 7→

p1(t)
...

pn(t)

 such that

∫ τp

0

pi(t)dt = κi,

with κi the i-th coordinate of an instant kick κ, pi the i-th coordinate function of p, τp the time
over which the push is applied to a system of ordinary differential equations given by ẋ = f(x),
and recovery time τ − τp ≥ 0, is defined by

Pτ,τp,κ(x, t) =


ẋ1 = f1(x) + p1(t mod τ)

ẋ2 = f2(x) + p2(t mod τ)
...

...

ẋn = fn(x) + pn(t mod τ)

, for t mod τ ∈ [0, τp).

For t mod τ ∈ [τp, τ) the flow-push system is defined by the original system given by ẋ = f(x).

In this case, the push is only defined on the interval when it is actually applied, so for t
mod τ ∈ [0, τp). This is instead of switching the push on when t ∈ [jτ, jτ + tp) and off when
t ∈ [jτ + τp, (j + 1)τ) for j ∈ Z≥0 for t ≥ 0.

Definition 5.2. A flow-push system, P̃ : Rn × R → Rn, is defined for x ∈ Rn, t ∈ R, and
triplet (τ, τp, κ) of kick κ ∈ Rn, push time τp and recovery time τ − τp ≥ 0 by

P̃τ,τp,κ(x, t) =


ẋ1 = f1(x) + p̃1(t)

ẋ2 = f2(x) + p̃2(t)
...

...

ẋn = fn(x) + p̃n(t)

,

with p̃ : R≥0 → Rn given by t 7→

p̃1(t)
...

p̃n(t)

 such that p̃ is sufficiently smooth on [jτ, jτ + jτp) for

all j ∈ Z≥0 and that for all i ∈ {1, . . . , n} holds that p̃i(t) = 0 for t mod τ ∈ [τp, τ). Besides,
for all j ∈ Z≥0 holds that ∫ jτ+τp

jτ

p̃i(t)dt = κi.
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If pi(0) = pi(τp) = 0 and p̃i(jτ) = p̃i(τp + jτ) = 0 for all i ∈ {1, . . . , n} and j ∈ Z≥0,
flow-push systems are continuously differentiable. In this thesis, we have not yet considered the
non-homogeneous pushes. Applying a homogeneous push p continuously gives that

pi(t) =
pi
τp
,

since ∫ τp

0

pi
τp

dt =

[
pi
τp
t

]τp
0

= pi.

Note that a kick κ would be a push p with τp = 0, this gives

lim
τp→0

∫ τp

0

pi
τp

dt = lim
τp→0

[
pi
τp
t

]τp
0

= lim
τp→0

pi − 0 = pi.

This gives that
∫ τp
0

pi(t)dt = κi. We should also remark that τ − τp ≥ 0, since the system
should be able to recover from a disturbance before a new disturbance kicks in. If τ − τp < 0
the intensity of the push would increased after τ which, in some real-life examples, is not
even possible. Consider for example wildfires. If τ − τp < 0 the original fire would not have
been extinguished before the second fire starts. In other real-life examples it might however
be possible to apply new pushes before the old ones are worn off. The concentration rate of
pollution with chemicals in a lake can for example increase, when two different contaminating
loads are leaking into it at the same time.

5.2 Numerical results

The situation for τ − τp < 0 can be approached in two different ways. In the first case, the
impact of the pushes piles up after flow time τ passed and an extra push is applied. In the
second case, a new push is applied at τ and the previous push is overwritten by this new push.
The Python code flowpush-trajplot.py in Appendix A.2 does not explicitly exclude pushes for
which τ − τp < 0. Both the old and new push are defined by (τ, τp, κ). When analyzing system
numerically, homogeneous pushes come down to adding

p/
τp
dt
,

for τp/dt time steps of size dt, this way we have
∑ τp

dt
n=1 p/

τp
dt

= τp
dt
· p/ τp

dt
= p, and as before a

kick κ would be a push p with τp = 0. Thus,
∑ τp

dt
n=1 p/

τp
dt

= κ. When τ − τp < 0 the old push
is overwritten by the new one in the code. Note that pi

τp
< pi

τ
, so the applied push is in total

strictly smaller than κ. We have

τ
dt∑

n=1

p
τp
dt

=
τ

dt

p
τp
dt

=
τ

τp
p < p = κ,

and not equal to κ. Pushes for which τ − τp < 0 given by (τ, τp, κ) can now be rewritten to
pushes defined by (τ, τ̃p, κ̃) with τ̃p = τ and κ̃ = τ

τp
κ, so that these pushes meet the requirement

that ∫ τp

0

pi(t)dt = κi,

from Definitions 5.1 and 5.2, see Figures 5.1 and 5.2.
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Flow-push trajectory for (0.5,1.0,(0.5,0)) 
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Figure 5.1: Push with τ−τp < 0 in system given
by {ẋ = −x− y + cos(x), ẏ = sin(x)}.
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Figure 5.2: Redefining push from 5.1 such that
τ − τp = 0 and that Definition 5.1 holds, the
push is defined by

(
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(
1
2 , 0
))
.

In Figure 5.4 the effect of an increasing push time in a linear system is depicted. The
undisturbed dynamics of the linear system are given by{

ẋ = −x− y

ẏ = −x
. (5.1)

The pushes are all defined by the same flow time τ and same kick κ, the flow-push trajectories
are all initiated at the same value (x0, y0) = (0.0502...,−0.0016...). See Figure 5.3 for the
flow-kick trajectory defined by (τ, κ). Note that the size of the red orbit in the undisturbed
dynamics stays the same size in all six figures, this way we can compare the orbits.
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Figure 5.3: Disturbance (τ, κ) = (6, (−1, 1)) initiated at (0.0502...,−0.0016)... is shown here for the
system given by (5.1).
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Flow-push trajectory for (6,3.005,(-1,1)) 
without push
with push for flow time 3.005
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without push
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Figure 5.4: Flow-push trajectories initiated at (0.0502...,−0.0016...) for the push defined by (τ, τp, κ) =
(6, τp, (−1, 1)) with τp increasing from 0.005 until 6 on the undisturbed dynamics given by (5.1).

The more the push time increases towards the flow time, the smaller the flow-push orbits get
in comparison to the orbit of the initial value in the undisturbed dynamics. Besides this, the
obtained trajectories all appear to become periodic when time continues. This observation is
not extremely surprising, when taking Definition 4.2 in consideration. As flow-push systems are
an extension of flow-kick systems, the notion of recovering can also be translated from flow-kick
to flow-push. However, since the underlying undisturbed dynamical system influences the orbits
during the implementation of a push the definition would be less clear-cut. We will therefore not
define this, but illustrate this with so-called Poincaré sections and maps. This method comes
down to constructing a discrete map by means of intersections of an orbit, our flow-push/kick
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trajectory, with a hyperplane. The hyperplane or Poincaré section is chosen such that the orbit
passes through the plane after a certain time and returns to this hyperplane as well. If the
distance between the consecutive points given by the map decreases to zero if time continues
this is a strong indication that the orbit is indeed periodic [10]. How these Poincaré sections
and maps exactly work, can be found in Section 6.3. Figure 5.5 shows us that the distances
between the consecutive points in the used Poincaré section, Slin = {(x, y) ∈ R2 : x = 0, y > 0},
indeed decrease logarithmically for linear system (5.1). Thus, the flow-push trajectory converges
to a periodic orbit. Note that this logarithmic relation does not hold at the very beginning of
the flow-push map, the flow-kick orbit needs some time to converge to a periodic one. This is
also the case in Figure 5.6. In Figure 5.6 the Poincaré technique is applied to the flow-push
trajectories obtained on nonlinear undisturbed dynamics for different push times for a section
given by Snonlin = {y = −0.4, x ≥ 1.25}, the nonlinear dynamics from the figure are given by{

ẋ = −x− y,

ẏ = 1
5
x+ 1

2
y − x2y

. (5.2)

Some flow-push trajectories for (5.2) are depicted in Figure 5.7. In addition, some flow-push
trajectories defined on (5.1) are displayed in Figure 5.4.
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Figure 5.5: Distance between consecutive points in Poincaré map for flow-push trajectories
defined by (τ, τp, κ) = (6, τp, (−1, 1)) initiated at (0.0502...,−0.0016...) for increasing push time, τp, on
undisturbed dynamics given by (5.2).
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Figure 5.6: Distance between consecutive points in Poincaré map for flow-push trajectories defined
by (τ, τp, κ) = (2, τp, (1.5,−1.5)) for increasing push time, τp, with flow-push trajectories initiated at
(0.938...,−0.476...) on the undisturbed nonlinear dynamics given by (5.2).
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Figure 5.7: Flow-push trajectories defined by (τ, τp, κ) = (2, τp, (1.5,−1.5)) for increasing push time
initiated at (0.938...,−0.476...) on the undisturbed nonlinear dynamics given by (5.2).
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6 Fast-slow systems

Kicks and pushes are fast changes to systems of differential equations. The variables x1, . . . , xn

in the undisturbed system function on a the time scale described by t, which is in comparison
to the rapidity of the kicks and pushes much slower. This makes us wonder whether systems in
which variables operate on separate time scales can be linked to flow-kick or -push systems.

This chapter will therefore first define fast-slow systems in Section 6.1. Based on this
theoretical portrait an example of fast-slow systems, the three-dimensional Saltzman-Maasch
climate model, is considered in Section 6.2 and 6.3.

6.1 Definition

The following definition is strongly based on the definition of fast-slow systems in [8].

Definition 6.1. A (m,n)-fast-slow system is a system of ordinary differential equations taking
the form

dx

dt
= ẋ = f(x, y, ε),

ε
dy

dt
= εẏ = g(x, y, ε),

(6.1)

with f : Rm × Rn × R → Rm, g : Rm × Rn × R → Rn and 0 < ε ≪ 1. The x-variables are
called the slow variables and the y-variables the fast variables. The system can be rewritten

when setting t′ =
t

ε
, this gives the equivalent form

dx

dt′
= x′ = εf(x, y, ε)

dy

dt′
= y′ = g(x, y, ε),

(6.2)

We refer to t as the fast time scale and to t′ as the slow time scale.

Notation for fast-slow systems has not been uniform and different conventions has been used
throughout several scientific publications. Sometimes, the naming of the slow and fast variables
has been interchanged or are f and g not separated explicitly stated [8]. In Figure 6.1 the phase
plane of the so-called Van der Pol equation given by

f(x) =

{
ẋ = y

εẏ = (1− x2)y − x
, (6.3)

is depicted [8]. In line with the nonuniform tradition of notation in fast-slow systems research,
the used notation in the definition of the Van der Pol equation differs from Definition 6.1. In
this case, f is not only describing the slow variables of the system, but both slow and fast
variables. This will occurs more often in the next section, since this is more convenient for
low-dimensional systems. The Van der Pol equation was introduced by Balthasar van der Pol in
1920 and is known as a type of limit cycles in electrical circuits that use vacuum tubes. To prove
that the system has a limit cycle, Liénard’s theorem is used and therefore, the transformed
version of the system enjoys greater fame than the version stated in (6.3) [8]. When comparing
the phase space of the Van der Pol equation to Figure 6.2, it looks as if a push can be defined
on non-fast-slow system such that the limit cycles match in some way. Chapter 8 embroiders a
little on this observation, since it might be worthwhile examining thoroughly.
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Figure 6.1: Phase plan of vector field defining
Van der Pol equation for ε = 1

10 with some
highlighted orbits.

Figure 6.2: Flow-push system for stable
node such that periodic orbit corresponds
in some way with limit cycle in Van der
Pol equation from Figure 6.1.

6.2 Saltzman-Maasch model

The Saltzman-Maasch model is a conceptual model given by a 3-dimensional dynamical system
and describes the relation between the global ice mass, x, the concentration of atmospheric
carbon dioxide, y, and the volume of the North Atlantic Deep Water (NADW) production,
z, theoretically [4]. The conceptuality of the Saltzman-Maasch model is about the fact that
the derivation of the model involves physical arguments, but that it is not guaranteed that it
actually corresponds to what happened during the Pleistocence, see Figure 6.3.

Figure 6.3: Atmospheric CO2 concentration in black and green and total global ice mass during
the Pleistocene in yellow [9].

Due to the fact that the rapid evolution of the NADW production occurs in a short time,
while the global ice mass and the concentration of atmospheric carbon dioxide change on slow
time scales, one can easily conclude that the Saltzman-Maasch model is a fast-slow system [3].
The model is given by the following dynamical system:

ẋ = −x− y,

ẏ = ry − pz + sz2 − yz2

ż = −qx− qz.

(6.4)
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Note that we need various transformations to obtain the real, positive coefficients p, q, r and s
to formulate the model in an exact way. Hence, the correspondence of x to the global ice mass,
of y to the atmospheric CO2 concentration and z to the NADW production is not immediate.
More details on these transformations and the rest of the derivation of the model can be found
in [4]. The effective ratio of the characteristic time scales of the change in global ice mass and
the NADW production is given by the coefficient q > 1. The coefficients p and r represent the
rates at which the CO2 concentration and the volume of the NADW changes, respectively. The
model is symmetric if s = 0. Although it is not realistic that this is the case, since glacation
and deglacation do not occur at the same rate, we assume for the convenience that it is.

As carbon dioxide is a greenhouse gas, a high concentration leads to global temperature rise,
which will eventually result in a smaller global ice mass. This gives that the change in ice mass,
x, depends on the atmospheric CO2 concentration, y.

The atmospheric CO2 concentration also influences the volume of the NADW production, z.
The NADW is a deep water mass formed in the North Atlantic Ocean and plays an important
role in the thermohaline circulation. This circulation is part of the large-scale ocean circulation
from the southern hemisphere into the North Atlantic that is fueled by temperature differences
created by surface heat and fresh water supply. Evaporation and fusion with other water masses
change the salinity of the water flowing northward. An increase in salinity and a drop in
temperature makes this water flow sink when it reaches the North Atlantic. The great depths
of the North Atlantic accommodate a thick layer of cold water and the outflow of this layer is
the volume of the NADW production. Furthermore, the larger the NADW volume, the more
atmospheric CO2 is absorbed by the ocean, since the oceanic pump becomes stronger if this
volume increases. Thus, the dependency of z on x is linear to leading order.

6.3 Periodicity in Saltzman-Maasch model approached numerically
and theoretically

The processes described by the model hint to periodicity. For ẏ > 0 we have that the amount
of carbon dioxide increases, if y becomes positive, this leads to a decrease in the total amount
of ice, ẋ < 0. Now, x becomes smaller than 0 and since ż = −qx − qz, we deduce that the
volume of the NADW will increase. If z becomes positive again, the amount of atmospheric
CO2 decreases and, with ẏ = ry − pz + sz2 − yz2, y becomes negative. Once y is negative, the
opposite happens. Figures 6.4 and 6.5, plotted with saltzmanmaasch.py (see Appendix A.3),
suggest convergence to a periodic orbit of a certain initial value in the Saltzman-Maasch model.
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This observation can be verified with Poincaré maps, which arise naturally when taking
sections of the flow.

Definition 6.2. For a flow ϕt in Rn a section S is a smooth surface of dimension n− 1 such
that for all x ∈ S we have that the velocity vector of ϕt(x) is not tangent to S.

Definition 6.3. For a section S of flow ϕt in Rn, we define the Poincaré map P : S → S for
x ∈ S, with return time T (x) for the first return of ϕt(x) to S, by

P (x) = ϕT (x)(x).

However, it can be the case that T (x) does not exist for all x in S, if ϕt(x) does never return
to S, then the Poincaré map is not well-defined. The Banach fixed-point theorem on complete
metric space S ⊂ Rn gives that {P n(x)} converges if there exists a contraction mapping on S.
This is the case if the distance between consecutive points in {P n(x)} gets smaller from some N
forward. Let d : Rn → R be the Euclidean distance between two points and let N ∈ Z≥0. Define
{dn}n≥0 such that dn is given by d(P n(x), P n+1(x)) and assume that for all n ≥ N , which gives
rise to a contraction mapping, and thus a periodic orbit [10].

Proposition 6.1. If the sequence {P n(x)} converges to a limit point for a Poincaré map P
defined for section S and flow ϕt, then there exists a periodic orbit for ϕt.

Proof. The proof follows by definition.

In Figure 6.6 we see the distance between consecutive points of the Poincaré map for some
section and some parameter values of p, q, r and s decreases logarithmically. The distance
between the values is smaller than 10−4 from the thirteenth return to the section on wards
(t = 133.721). The orbit defining the Poincaré map returns to the defined section fourteen times
for t ∈ (0, 150). This gives us that the orbit of (1, 0,−1

2
) converges to a periodic orbit [10]. The

fact that the graph is steeper on (0, 20) than for the rest of the run time, can be explained by
the fact that q > 1 in our example. The orbits of the fast-slow system with initial value not
in the critical manifold, which is given by C0 = {(x, y) ∈ Rm × Rn : f(x, y, ε) = 0}, thus, for
q → ∞, are attracted to this manifold and after some time the orbits thrive on C0 [8].
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Disturbances can, of course, also be applied to fast-slow systems such as the Saltzman-Maasch
model. Consider the disturbances (τi, κ) with κ = (0.5, 1.5, 0.5) for with t1 = 9.9, t2 = 10 and
t3 = 10.1. For the various flow time we obtain Figure 6.7. Due to the applied disturbances the
distances dn do now not decrease logarithmically. For the different flow times, the flow-kick
trajectories behave differently, since the orbits need first to converge to a periodic orbit. The
flow-kick trajectories first need to stabilize and approach the orbit for which Definition 4.2 holds
and it appears that it takes therefore longer for the distances to decrease logarithmically for τ3
in comparison to τ1 and τ2. The sequence {dn}n≥0 maps might even allow us to determine the
period of the limit cycle in the Saltzman-Maasch model, see Chapter 8.
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7 Conclusion

Flow-kick dynamical systems can be a useful tool in scientific research regarding a great range
of issues. Repeated human influences or natural disturbances can be taken into consideration
and be incorporated into the mathematical analysis of these systems with an increasing degree
of complexity for the number of variables for which it is defined.

This increasing complexity is exemplified by the resilience boundaries discussed in Chapter
3 on one-dimensional flow-kick systems and the resilience surfaces established in Chapter 4. Not
assuming that the vector field defining the underlying, undisturbed dynamics of the flow-kick
system has only one local minimum on a certain interval contained in the basin of attraction
of asymptotically stable equilibrium, leads to the observation, that the basin of attraction can
be divided into at least two intervals for disturbance (τ, κ) such that the flow-kick trajectory
converges to a different convergence interval when initiated in these distinct initial condition
intervals, Ir from Definition 3.5.

When the kick magnitude is interfered with after some time T , a flow-kick trajectory is
re-initiated and therefore it might be the case that an adjustment steers the orbit away from
collapse or towards a different convergence interval. The break down of a fish population in a
lake disturbed by overfishing can this way be conquered by increasing the flow time or decreasing
the kick size when the flow-kick trajectory is not yet kicked out of the basin of attraction, in
particular, below the Allee threshold of the considered system describing the fish population
size. In classifying the intervals in which the flow-kick trajectory is initiated the disturbance
has a leading role, instead of the initial value, which is determining for the resilience boundary.

The resilience boundary is expanded to higher-dimensional systems in Chapter 4. We see
that the direction and length of the kick can have great influence on whether or not a disturbance
is stable or unstable. If there is a point x̃ in the phase space of the system such that flowing
forward for the recovery time after applying kick κ to this point leads to the same position
of the flow-kick trajectory in the orbit as before the disturbance happened, so ϕτ (x̃+ κ) = x̃.
Therefore, a flow-kick trajectory converges to a periodic orbit inside of the basin of attraction of
an asymptotically stable equilibrium. It is clear that the undisturbed dynamics of the system
plays a decisive role. However, for unstable and stable but not asymptotically stable equilibria,
this is not by definition the case. A periodic orbit can artificially be created by applying a
disturbance with very high precision, but the characters of the solutions do not automatically
lead to convergence to the periodic orbit, even though one would apply the first disturbances in
a small neighborhood of x̃. For asymptotically stable equilibria it is nonetheless possible for
every recovery time τ to find a kick κ such that the flow-kick trajectory of an equilibrium stays
in a neighborhood of the equilibrium after some time T ≥ 0.

Since it is sometimes not realistic that kicks are instant, flow-push systems are considered.
It appears, however, that homogeneous pushes do not differ a lot from instant kicks, especially
pushes for which the push time is equal to the flow time, so that the system has zero time to
recover from the push. The flow-push system is in this case comparable with an undisturbed
dynamical system, which is based on the original undisturbed dynamics. Poincaré sections
illustrate how long it takes for a flow-push trajectory to become periodic. The push time
influences this process in the beginning, but after some time in a linear system all orbits converge
almost as fast to a periodic orbit. In nonlinear systems, it can be the case that the flow-push
orbit converges a lot faster to this periodic orbit than for others. Thus, the underlying system
is again crucial.

Chapter 6 deals with fast-slow systems and considers the Saltzman-Maasch model as an
example. The fast-slow systems were introduced because of a possible link with flow-push
dynamics. However, this link appeared less evident than expected, see Chapter 8, and more time
is needed to investigate it in detail. Nonetheless, disturbances were applied to the Saltzman-
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Maasch model and by means of Poincaré sections it was made clear that the flow-kick orbit
converges to a periodic orbit. The rate at which the orbits converge to this periodic orbit
depends on the flow-time.

Altogether, the framework of flow-kick dynamical systems shows a great variety in possible
approaches. It appears that the undisturbed dynamical system and the applied disturbance are
closely connected. The subdivision of the phase space of (2.1) in the different basin of attractions
for the determines the disturbances to which the system is resilient. Besides, subdivisions of the
basin of attraction also disclose properties of flow-kick trajectories that converge to a certain
periodic orbit. In what way the flow-kick techniques are promising will be described in the
following chapter.
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8 Discussion

So far, this thesis discussed flow-kick dynamics in one-dimensional and two-dimensional systems,
we expanded the theoretical framework of flow-kick dynamics by looking at non-instant kicks,
pushes with a certain duration, and fast-slow systems were considered. Exploring these subjects
led to some interesting observations and also broached new aspects of the theory. Unfortunately,
we could not gain more in-depth knowledge on these new perspectives due to the time limit of
this project. Next to some clarifications on recommendations already made in previous chapters,
the current chapter provides a reflection on the done research.

Chapter 3 considers flow-kick maps on one-dimensional undisturbed dynamical systems and
zooms in on resilience boundaries, convergence intervals and disturbances (τ,K(t)) for which
the kick K(t) depends on how much time has passed. The definition of resilience boundaries for
flow-kick trajectories of asymptotically stable equilibria is extended to resilience boundaries for
flow-kick trajectories that are initiated at a point different from equilibrium, a, in the basin of
attraction of the equilibrium a, B(a). The geometrical representation of this resilience boundary
(or actually surface) should be investigated in further depth. In other words, the properties
of the image of A : B(a) × R>0 → R>0 given by

⋃
x0∈B(a){A(x0, κ) = τ : κ > 0} should be

considered more extensively. The maximal kick κmax that can be applied to x0 ∈ B(a) for which
the flow-kick trajectory is stays in B(a) or is not immediately kicked out of B(a) when the
first kick is applied, depends on the distance between this point and the boundary of the basin
of attraction, d(x0, ∂B(a)). This way, adding an extra axis to the (τ, κ)-space, see Figure 3.2,
representing the values x0 at which the flow-kick trajectories begins, results in a surface in a
three-dimensional “disturbance” space. Properties of the resilience surface in this space can
be determined with the fact that vector field f ∈ C1 dictating the undisturbed dynamics can
have several local minima on B(a) in mind. We expect the several extrema of f to result in
anomalies in the smoothness of the obtained surface, since the basin of attraction can be split
up in intervals for which the initial values can have different convergence intervals. For this
subdivision of the basin of attraction of a is determined by the applied disturbance, this must
also be taken into consideration. To conclude the effects on the surface, however, these basic
properties should first be ascertained for vector fields with only one minimum on B(a). Is this
surface for example convex for f with one minimum and is this convexity compromised when f
has several?

In addition, studying the consequences of disturbances for which the kick is dependent on
time might be worthwhile, since the outcome of changing a kick based on an observation can
have tremendous impact on the direction in which a system is headed. Reducing or adjusting
kicks can make models more realistic. Beach nourishment could be a great example for this,
since erosion of the coastal line of defence depends on a lot of factors and adjusting the quantity
of sand replenishment is not uncommon [6].

As suggested in Chapter 4 the resilience surfaces can not be depicted as easily for higher-
dimensional systems as for one-dimensional systems. The direction of kick κ add to this
complexity directly. Besides this, it might be interesting for further research to pursue the
influence of the character of an equilibrium at which a flow-kick trajectory is initiated on the
resilient and non-resilient set, which is already illustrated in Section 4.2, but can be analyzed
more extensively. For example, by some numerical analysis and zooming in on the possibility
of creating a periodic orbit for stable centers via a disturbance (τ, κ) such that the flow-kick
trajectory passed through the center point and stays there for flow time half of the period of
the orbits around the center, x∗. This way, the periodic flow-kick orbit can be mapped to a
semicircle in a neighborhood of this equilibrium.

However, when κ would not exactly be the vector between the initial value of the flow-kick
trajectory and another point in the orbit of this x0 in this neighborhood for a certain flow time
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τ , the disturbance (τ, κ) generates a periodic orbit consisting of two orbits that can be mapped
to two semicircle orbits with different radii which can be found when linearizing the system
in a neighborhood of x∗. One radius is in this linear system r, the radius of the orbit of x0

after mapping it to the linearization and the radius of the newly obtained semicircle r ± h(|κ|))
connected by the straight kicks. Periodic flow-kick orbits now consist of multiple disturbances
and in this way recovering from disturbances around stable equilibria (see Definition 4.2) should
be reformulated again based on the character of the equilibria. This observation should be
worked out and, of course, proved in detail.

In Section 4.3 was proved that the flow-kick trajectory of an asymptotically stable equilibrium,
x∗, stays in the neighborhood of this equilibrium for a kick with given flow time. A main aspect
in the proof was the utilization of Theorem 2.1. However, Theorem 2.1 does not hold on the
whole of the basin of attraction of x∗, B(x∗). Further research should determine the resilience
boundary of all flow-kick trajectories initiated in B(x∗), just as in Proposition 3.1.

Next to instant disturbances, this thesis discussed so-called flow-push dynamics in Chapter 5.
The assumption that these pushes are applied homogeneously, can in addition be loosened a bit
and this might open up the possibility to link the theoretical framework of flow-push dynamics
to real-life examples of disturbances. As it happens, disturbances in real-life systems can also be
build up from zero instead of being instantly “switched on”, which occurs when the push has the
same value during the whole push time. Consider for example the rising average temperature in
the ocean which lead to massive coral bleaching and more absorption of CO2 into the oceans
such that the acidity rises. The slow increase of the temperature can be considered as a slow
push [2]. In Section 5.1 was noted that the time the system has to recover from a kick needs
to be greater than zero, by increasing the push time of a disturbance given by (τ, τp, κ) the
difference between τ and τp therefore goes to zero. However, one could fix τ − τp and with
increasing the push time, τ would change. This might influence the rate at which a flow-push
trajectory becomes periodic.

In Chapter 6 it is observed that the link between flow-kick an flow-push dynamics is promising.
In flow-kick systems, the kick is approached as an external factor that influences the system.
In fast-slow systems, the push or kick is an internal property. In fast-slow systems sometimes
the fast dynamics determine the system and sometimes the slow has the upper hand. This is
illustrated by means of the Van der Pol equation in Figure 6.1. The undisturbed Van der Pol
dynamics is linked with a flow-push system in Figure 6.2 since the same limit cycle as in the
Van der Pol system can be obtained by applying a push to the critical manifold C0, with

C0 = {(x, y) ∈ Rm × Rn : f(x, y, ε) = 0},

in some restricted vector field f ∈ C1. The definition of critical manifolds yields

C0 =

{
(x, y) ∈ R2 : y =

x

1− x2
and x ∈ R \ {±1}

}
,

for the Van der Pol equation and this manifold plays an important role in connecting the
fast-slow systems to flow-push systems. Further research should clarify the role of the critical
manifold in linking fast-slow to flow-kick or -push systems.

The Saltzman-Maasch fast-slow model described in Chapter 6, is analyzed in detail in [4] and
[3]. These publications display the great complexity of the model by spelling out bifurcations and
different structures that can be found in the model for q → ∞, therefore, on the critical manifold
of the system. Since coefficients are based on physical parameters it would be recommended to
look further into what kicks or pushes would be relevant to apply and what these disturbances
mean for the periodicity of the model. Moreover, we expect that the period of the limit cycle for
some values of the parameters in the Saltzman-Maasch model can be found through Poincaré
maps. The distances dn between the consecutive points might decrease faster when the flow time
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would be closer to the period of the limit cycle from the model. It would then namely take less
time for the flow-kick trajectory to converge to a periodic orbit. This would also be applicable in
other (non-fast-slow) systems such as Figures 5.3, 5.5, and 5.7, but then to determine the time
it takes to return to a section for an orbit in the undisturbed dynamics, around for instance a
stable focus. The sections that should be considered for Figure 5.3 until 5.5 would be the lines
y = 0 or x = 0. Besides this, the numerical analysis of the Saltzman-Maasch model could have
been more focussed on the fast-slow aspect of the system, by choosing a (much) greater value
for q. This remark leads to the following observations about the research in general.

In the numerical analysis this thesis mainly targeted particular examples, often distinguishing
linear and nonlinear dynamical systems. Further research could and should rearrange this
structure by qualifying the hyperbolic equilibria by means of their characters which can be
determined via their linearizations. This way a broader range of features can be compared
and analyzed systematically. While adjusting this structure, one should also pay attention to
bifurcation theory and constructing resilience boundaries (as curves or surfaces) by adjusting
disturbances only a little. Even though the obtained numerical results could have been sharper,
for instance by determining numerical and rounding errors, applying a more exact algorithm than
the forword Euler method to find solutions of the undisturbed dynamics or finding intersections
with Poincaré sections, we were able to answer the research questions stated in the first chapter
in Chapter 7.

39



References

[1] M. Braun. Differential Equations and Their Applications. An Introduction to Applied
Mathematics. Springer Verlag, New York, 3 edition, 1982.

[2] C. Eakin, H. Sweatman, and R. Brainard. The 2014–2017 global-scale coral bleaching event:
insights and impacts. Coral reefs, 38(4):539–545, 2019.

[3] H. Engler, H. Kaper, J. Kaper, and T. Vo. Dynamical systems analysis of the
Maasch–Saltzman model for glacial cycles. Physica. D, 359:1–20, 2017.

[4] Hans Engler, Hans G. Kaper, Tasso J. Kaper, and Theodore Vo. Modeling the Dynamics
of Glacial Cycles. In Hans G. Kaper and Fred S. Roberts, editors, Mathematics of Planet
Earth: Protecting Our Planet, Learning from the Past, Safeguarding for the Future, pages
3–33. Springer International Publishing, Cham, 2019.

[5] J. Garnier, L. Roques, and F. Hamel. Success rate of a biological invasion in terms of
the spatial distribution of the founding population. Bulletin of Mathematical Biology,
74(2):453–473, 2012.

[6] H. Hanson, A. Brampton, M. Capobianco, H. Dette, L. Hamm, C. Laustrup, A. Lechuga,
and R. Spanhoff. Beach nourishment projects, practices, and objectives—a European
overview. Coastal engineering (Amsterdam), 47(2):81–111, 2002.

[7] A. Kramer, B. Dennis, A. Liebhold, and J. Drake. The evidence for Allee effects. Population
ecology, 51(3):341–354, 2009.

[8] C. Kuehn. Multiple Time Scale Dynamics, volume 191 of Applied Mathematical Sciences.
Springer International Publishing, Cham, 2015.
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A Python code

The used Python code is included here. One-dimensional flow-kick systems can be plotted
with the code from Appendix A.1, two-dimensional with the one in Appendix A.2 and the
Saltzman-Maasch model is simulated with the code from A.3. Note that the several documents
can be fused to a connected project, however, one can select easily the desired functions by
selecting the right document with the needed variables included.

A.1 Python code for one-dimensional flow-kick systems

A.1.1 flowkick.py

1 import matp lo t l i b . pyplot as p l t
2 import numpy as np
3 import s c ipy . i n t e g r a t e as i n t e g r a t e
4

5 N = 10000 # number o f s t ep s
6 T = 8 # to t a l run time
7 dt = T/N
8 t f l ow = 0.042 # f low or recovery time f o r f low−k ick system
9 k = 0.25 # kick s i z e

10 k dept = −16
11 k dept2 = −16
12 th r e sho ld dept = 7
13 t f l ow dep t = 1
14 t f l ow dep t2 = 1
15 th r e sho ld dept2 = 4
16 k dur = 1 # length o f push in time s t ep s
17

18 x0 = 3.56 # i n i t i a l va lue o f f low−k ick t r a j e c t o r y
19 X0 = 0.5
20 xt0 = 75
21

22 x IV = np . l i n s p a c e (2−np . sq r t (2 + np . sq r t (6 ) ) , 2+np . sq r t (2 + np . sq r t (6 ) ) , N+1)
23

24

25 de f f ( x ) :
26 re turn −4∗(x−2)∗∗2 +(x−2)∗∗4 − 2
27

28 # to f i nd the r i g h t boundary o f I
29 de f F(x ) :
30 re turn 1/ f ( x )
31

32 de f kt ( kick , time , th r e sho ld ) :
33 i f time > th r e sho ld :
34 k ick = kick /2
35 re turn k ick
36

37 A = 50
38 A plot = np . array ( [ ] )
39 A plot = np . append ( A plot , A)
40 K = 200
41

42 de f A l l e e ( x ) :
43 re turn 0 .5∗ x∗( x/A−1)∗(1−x/K)
44

45 t = np . l i n s p a c e (0 ,T,N+1)
46 x = np . array ( [ ] )
47 X = np . array ( [ ] ) # second i n i t i a l va lue
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48 xt = np . array ( [ ] ) # with time dependent k i ck
49 xG = np . array ( [ ] )
50 XG = np . array ( [ ] ) # save k i ck s f o r second i n i t i a l va lue
51 xGt = np . array ( [ ] ) # with time dependent k i ck
52 xGt2 = np . array ( [ ] ) # with time dependent k i ck
53 I = np . array ( [ ] )
54

55 x = np . append (x , x0 )
56 xG = np . append (xG, x0 )
57 X = np . append (X, X0)
58 XG = np . append (XG, X0)
59 xt = np . append ( xt , xt0 )
60 xGt = np . append (xGt , xt0 )
61 xGt2 = np . append (xGt2 , xt0 )
62

63 k i ck s = 1
64 k i ck s dep t = 1
65 k i ck s dept2 = 1
66

67 f o r n in range (N) :
68 # implementation forward eu l e r
69 A plot = np . append ( A plot , A)
70 x = np . append (x , x [−1] + dt∗ f ( x [ −1]) )
71 X = np . append (X,X[−1] + dt∗ f (X[ −1]) )
72 xt = np . append ( xt , xt [−1] + dt∗Al l e e ( xt [ −1]) )
73 xG = np . append (xG, xG[−1] + dt∗ f (xG[ −1]) )
74 XG = np . append (XG,XG[−1]+dt∗ f (XG[ −1]) )
75 xGt = np . append (xGt , xGt [−1] + dt∗Al l e e (xGt [ −1]) )
76 xGt2 = np . append (xGt2 , xGt2 [−1] + dt∗Al l e e ( xGt2 [ −1]) )
77 # apply ing k i ck s
78 i f k i ck s dep t == in t ( t [ n ] / t f l ow dep t ) and n!= 0 :
79 xGt[−1] += kt ( k dept , t [ n ] , th r e sho ld dept )
80 k i ck s dep t += 1
81 # to check at what IV the flow−k ick t r a j e c t o r y i s r e i n i t a t e d
82 i f k i ck s dept2 == 7 :
83 pr in t (”new IV : ” , xGt[−1]−0.5∗ k dept )
84 i f k i ck s dept2 == in t ( t [ n ] / t f l ow dep t2 ) and n!= 0 :
85 xGt2 [−1] += kt ( k dept2 , t [ n ] , th r e sho ld dept2 )
86 k i ck s dept2 += 1
87 i f k i ck s dept2 == 4 :
88 pr in t (”new IV : ” , xGt[−1]−0.5∗ k dept2 )
89 i f k i ck s == in t ( t [ n ] / t f l ow ) and n != 0 :
90 i f k i ck s == 1 :
91 pr in t (” i n i t i a l va lue x0 : ” , xG[ −1])
92 pr in t (” i n i t i a l va lue X0 : ” , XG[ −1])
93 pr in t (” i n i t i a l va lue xt0 : ” , xGt [ −1])
94 f o r i in range ( k dur ) :
95 i f i == 0 :
96 xG[−1] += k/k dur
97 XG[−1] += k/k dur
98 e l s e :
99 xG = np . append (xG, xG[−1] + dt∗ f (xG[ −1]) + k/k dur )

100 XG = np . append (XG, XG[−1] + dt∗ f (XG[ −1]) +k/k dur )
101 n += 1
102 k i ck s += 1
103

104 # populat ion s i z e cannot be sma l l e r than zero in natura l c i r cumstances
105 f o r n in range (N) :
106 i f xGt [ n+1]< 0 :
107 xGt [ n+1] = 0
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108 i f xGt2 [ n+1] <0:
109 xGt2 [ n+1] = 0
110

111 #ca l c u l a t i n g a l l i n t e v a l s over which f low time occurs between e q u i l i b r i a
112 f o r n in range (N) :
113 i f x IV [ n ] + k <= 2+np . sq r t (2 + np . sq r t (6 ) ) :
114 I = np . append ( I , i n t e g r a t e . quad (F , x IV [ n ] , x IV [ n]+k) [ 0 ] )
115 i f ( abs ( i n t e g r a t e . quad (F , x IV [ n ] , x IV [ n]+k) [ 0 ] ) <= t f l ow and abs (

i n t e g r a t e . quad (F , x IV [ n−1] , x IV [ n−1]+k ) [ 0 ] ) > t f l ow ) or ( abs (
i n t e g r a t e . quad (F , x IV [ n ] , x IV [ n]+k) [ 0 ] ) >= t f l ow and abs ( i n t e g r a t e .
quad (F , x IV [ n−1] , x IV [ n−1]+k ) [ 0 ] ) < t f l ow ) and n!= 0 :

116 pr in t (”n : ” , n )
117 pr in t (”x : ” , x IV [ n ] )
118 e l s e :
119 I = np . append ( I , 98) #dummy
120

121 # time−dependent k ick in p l o t with A l l e e th r e sho ld i nd i c a t ed
122 ’ ’ ’
123 p l t . p l o t ( t , xt , l i n ew id th = 1 , c o l o r = ’ darkgreen ’ )
124 p l t . p l o t ( t , xGt , l i n ew id th = 1 , c o l o r = ’ crimson ’ )
125 p l t . p l o t ( t , xGt2 , l i n ew id th =1, c o l o r = ’ dodgerblue ’ )
126 p l t . p l o t ( t , A plot , l i n ew id th = 0 .75 , c o l o r = ’ black ’ , l i n e s t y l e = ’−− ’)
127 p l t . t i t l e (”Kick s i z e ∗ 0 .5 a f t e r some time in A l l e e model ” , f o n t s i z e = 13)
128 l a b e l s = [ ” without k i ck ” , ” unstab le d i s turbance ” , ” s t ab l e d i s turbance ” , ” A l l e e

th r e sho ld A” ]
129 p l t . l egend ( l a b e l s = l a b e l s )
130 p l t . x l ab e l ( ’ t ’ , f o n t s i z e = 12)
131 p l t . y l ab e l ( ’ x−pos i t i on ’ , f o n t s i z e = 12)
132 p l t . s a v e f i g ( ’ 1 d im a l l e e samek i ck s t imedept2 . pdf ’ )
133 p l t . show ( )
134

135 ’ ’ ’
136

137 #two d i f f e r e n t i n t i a l va lue s in one p l o t f o r f i x ed d i s turbance
138 p l t . x l ab e l ( ’ t ’ , f o n t s i z e = 12)
139 p l t . y l ab e l ( ’ x−pos i t i on ’ , f o n t s i z e = 12)
140 p l t . p l o t ( t , x , l i n ew id th = 1 , c o l o r = ’ darkgreen ’ )
141 p l t . p l o t ( t , X, l i n ew id th = 1 , c o l o r = ’ darkblue ’ )
142 p l t . p l o t ( t , xG, l i n ew id th = 1 , c o l o r = ’ crimson ’ )
143 p l t . p l o t ( t , XG, l i n ew id th = 1 , c o l o r = ’ dodgerblue ’ )
144 p l t . t i t l e (” Disturbance ( t , k ) = ( 0 . 0 4 2 , 0 . 2 5 ) on dx/dt = (x−2)ˆ4−4(x−2)ˆ2−2” ,

f o n t s i z e = 13)
145 l a b e l s 1 = [” without k i ck f o r x0 = 0 . 7 7 1 . . . ” , ”without k ick f o r ˜x0 = 0 . 2 6 5 . . . ” ,

”with k ick f o r x0 = 0 . 7 7 1 . . . ” , ”with k ick f o r ˜x0 = 0 . 2 6 5 . . . ” ]
146 p l t . l egend ( l a b e l s=labe l s 1 , l o c=’ c ente r r i ght ’ )
147 p l t . s a v e f i g ( ’ 1 dim kick . pdf ’ )
148 p l t . show ( )
149

150 # p l o t t i n g undisturbed dynamics
151 p l t . x l ab e l ( ’ x ’ , f o n t s i z e = 12)
152 p l t . y l ab e l ( ’ f ’ , f o n t s i z e = 12)
153 p l t . t i t l e (” Undisturbed dynamics f o r dx/dt = (x−2)ˆ4−4(x−2)ˆ2−2” , f o n t s i z e = 13)
154 x p l o t = np . l i n s p a c e ( −0 .2 ,4 .2 ,100)
155 p l t . p l o t ( x p lot , f ( x p l o t ) , l i n ew id th = 1 , c o l o r = ’ darkgreen ’ )
156 p l t . s a v e f i g ( ’ 1 dim undisturbed . pdf ’ )
157 p l t . show ( )
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A.2 Python code for two-dimensional flow-kick systems

A.2.1 flowpush.py

1 import matp lo t l i b . pyplot as p l t
2 import numpy as np
3

4 N = 20000 # t o t a l o f s t ep s
5 T = 25 # t o t a l run time
6 dt = T/N # s i z e o f time s t ep s
7 t f l ow = 2 # f low time
8 k1 = −1 # f i r s t argument o f k i ck
9 k2 = 0 # second argument o f k i ck

10 k durat ion = 1 # how many time s t ep s the push l a s t s
11 k durat i on t ime = k durat ion ∗dt # push durat ion in time and not in s t ep s
12

13 # i n i t i a l va lue s o f o r b i t
14 u0 = 0
15 v0 = 1
16

17 # i n i t i a l va lue s f o r van der pol o s c i l l a t o r
18 #u0 = −1
19 #v0 = 1
20

21 # c o e f f i c i e n t s f o r non l inearsystem1
22 r = 0 .5
23 p = 0 .2
24

25 # c o e f f i c i e n t s f o r van der po l o s c i l l a t o r
26 #r = 10
27

28 # l inea r sy s t em1
29 de f f 1 (u , v ) :
30 re turn −v−u
31 de f f 2 (u , v ) :
32 re turn u
33

34 # nonl inearsystem1
35 #def f 1 (u , v ) :
36 # return −u−v
37 #def f 2 (u , v ) :
38 # return r ∗v+p∗u−u∗∗2∗v
39

40 # nonl inearsystem2
41 #def f 1 (u , v ) :
42 # return −u−v+np . cos (u)
43

44 #def f 2 (u , v ) :
45 # return np . s i n (u)
46

47 # van der pol o s c i l l a t o r
48 #def f 1 (u , v ) :
49 # return v
50

51 #def f 2 (u , v ) :
52 # return r∗(1−u∗∗2) ∗v−u
53

54 # de f i n i n g time array
55 t = np . l i n s p a c e (0 ,T,N+1)
56

57 #l a b e l s f o r p l o t s
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58 l a b e l s d i s t = [ ]
59 l a b e l s t r a j = [ ]
60

61 #whi le k durat ion ∗dt <= T: # apply ing var i ous pushes
62 i f k durat ion != 0 : # dummy cond i t i on so that we do not have to
63 #de l e t e a l l tabs when only p l o t t i n g one k durat ion
64 k i ck s = True
65

66 # de f i n i n g ar rays and i n i t i a t i n g them
67 d i s t = np . array ( [ ] )
68 x1 = np . array ( [ ] )
69 x1 = np . append ( x1 , u0 )
70 x2 = np . array ( [ ] )
71 x2 = np . append ( x2 , v0 )
72

73 xG1 = np . array ( [ ] )
74 xG1 = np . append (xG1 , u0 )
75 xG2 = np . array ( [ ] )
76 xG2 = np . append (xG2 , v0 )
77

78 f o r n in range (N) :
79 #genera t ing o rb i t without push or k i ck
80 x1 = np . append (x1 , x1 [−1] + dt∗ f 1 ( x1 [ −1] , x2 [ −1]) )
81 x2 = np . append (x2 , x2 [−1] + dt∗ f 2 ( x1 [ −1] , x2 [ −1]) )
82 xG1 = np . append (xG1 , xG1[−1] + dt∗ f 1 (xG1[ −1] ,xG2[ −1]) )
83 xG2 = np . append (xG2 , xG2[−1] + dt∗ f 2 (xG1[ −1] ,xG2[ −1]) )
84 #apply ing push
85 i f n % ( i n t ( t f l ow /dt ) ) < k durat ion and n >= k durat ion and n !=0:
86 xG1[−1] += k1/ k durat ion
87 xG2[−1] += k2/ k durat ion
88 i f k i ck s == True :
89 pr in t (” push i s f i r s t app l i ed at : (” , xG1[−1] − k1/ k durat ion ,
90 ” ,” , xG2[−1] − k2/ k durat ion ,
91 ”) ”)
92 k i ck s = False
93 i f k durat ion ∗dt −k durat ion :
94 p l o t t r a j = p l t . p l o t ( x1 , x2 , c o l o r =’crimson ’ , l i n ew id th = 1)
95 l a b e l s t r a j . append (” without push ”)
96 l a b e l t r a j = ”with push f o r f low time {}” # CHANGE when k i ck dura t i on = 1
97 l a b e l s t r a j . append ( l a b e l t r a j . format ( round ( k durat ion ∗dt , 3 ) ) )
98 p l o t t r a j = p l t . p l o t (xG1 , xG2 , c o l o r=”dodgerblue ” ,
99 l a b e l = l a b e l t r a j . format ( round ( k durat ion ∗dt , 2 ) ) ,

100 l i n ew id th = 1)
101 p l o t t r a j = p l t . l egend ( l a b e l s t r a j )
102 k durat ion += 200
103

104 #make sure s i z e o f f i g u r e i s r i g h t !
105 #p l o t t r a j = p l t . xl im ( −0 .1 ,2 .1 ) # f i x i n g x−range
106 #p l o t t r a j = p l t . yl im ( −2 .5 ,0 .1 ) # f i x i n g y−range
107 p l o t t r a j = p l t . x l ab e l (”x” , f o n t s i z e = 12)
108 p l o t t r a j = p l t . y l ab e l (”y” , f o n t s i z e = 12)
109 p l o t d i s t = p l t . t i t l e (”Flow−push t r a j e c t o r y f o r ( 2 , 1 . 501 , ( 1 . 5 , −1 . 5 ) ) ” ,
110 f o n t s i z e = 12)
111 p l t . s a v e f i g (” f l owpush non l inear sys tem1 f l owt ime3 . pdf ”)
112 p l t . show ( p l o t t r a j )
113

114

115 pr in t (” k i ck du ra t i on : ” , k dura t i on t ime )
116

117 #plo t development o f coo rd ina t e s aga in s t time
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118 ’ ’ ’
119 p lo t2 = p l t . p l o t ( t , xG1 , c o l o r =’green ’ , l i n ew id th = 1)
120 p lo t3 = p l t . p l o t ( t , xG2 , c o l o r =’orange ’ , l i n ew id th = 1)
121 l a b e l s =[”with k ick ” , ”without k i ck ” ]
122 p l t . x l ab e l ( ’ t ’ , f o n t s i z e =12)
123 p l t . y l ab e l ( ’ x ’ , f o n t s i z e =12)
124 p l t . l egend ( l a b e l s=l ab e l s , l o c=’upper r ight ’ )
125 p l t . s a v e f i g (” c o o r d i n a t e s f l owk i c k t r a j . pdf ”)
126 ’ ’ ’

A.2.2 flowpush distance.py

1 import matp lo t l i b . pyplot as p l t
2 import numpy as np
3

4 N = 20000 # t o t a l o f s t ep s
5 T = 50 # t o t a l run time
6 dt = T/N # s i z e o f time s t ep s
7 t f l ow = 6 # f low time
8 k1 = 1 .5 # f i r s t argument o f k i ck
9 k2 = −1.5 # second argument o f k i ck

10 k durat ion = 2 # how many time s t ep s the push l a s t s
11 k durat i on t ime = k durat ion ∗dt # push durat ion in time and not in s t ep s
12

13 # i n i t i a l va lue s o f o r b i t
14 u0 = 0
15 v0 = −2
16

17 # i n i t i a l va lue s f o r van der pol o s c i l l a t o r
18 #u0 = −1
19 #v0 = 1
20

21 # c o e f f i c i e n t s f o r non l inearsystem1
22 r = 0 .5
23 p = 0 .2
24

25 # c o e f f i c i e n t s f o r van der po l o s c i l l a t o r
26 #r = 10
27

28 # l inea r sy s t em1
29 de f f 1 (u , v ) :
30 re turn −v−u
31 de f f 2 (u , v ) :
32 re turn u
33

34 # nonl inearsystem1
35 #def f 1 (u , v ) :
36 # return −u−v
37 #def f 2 (u , v ) :
38 # return r ∗v+p∗u−u∗∗2∗v
39

40 # nonl inearsystem2
41 #def f 1 (u , v ) :
42 # return −u−v+np . cos (u)
43

44 #def f 2 (u , v ) :
45 # return np . s i n (u)
46

47 # van der pol o s c i l l a t o r
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48 #def f 1 (u , v ) :
49 # return v
50

51 #def f 2 (u , v ) :
52 # return r∗(1−u∗∗2) ∗v−u
53

54 # de f i n i n g time array
55 t = np . l i n s p a c e (0 ,T,N+1)
56

57 # l a b e l s f o r p l o t s
58 l a b e l s d i s t = [ ]
59 l a b e l s t r a j = [ ]
60

61 whi le k durat ion ∗dt <= t f l ow : # apply ing var i ous pushes
62 #i f k durat ion != 0 : # dummy cond i t i on so that we do not have to
63 #de l e t e a l l tabs when only p l o t t i n g one k durat ion
64 k i ck s = 1 # kick counter
65

66 # de f i n i n g ar rays and i n i t i a t i n g them
67 d i s t = np . array ( [ ] )
68 x1 = np . array ( [ ] )
69 x1 = np . append ( x1 , u0 )
70 x2 = np . array ( [ ] )
71 x2 = np . append ( x2 , v0 )
72

73 xG1 = np . array ( [ ] )
74 xG1 = np . append (xG1 , u0 )
75 xG2 = np . array ( [ ] )
76 xG2 = np . append (xG2 , v0 )
77

78 # arrays f o r s t o r i n g P o i n c a r s e c t i o n s
79 s e c t i on1 = np . array ( [ ] )
80 s e c t i on1 = np . append ( sec t i on1 , 1)
81 s e c t i on2 = np . array ( [ ] )
82 s e c t i on2 = np . append ( sec t i on2 , 1)
83 t d i s t = np . array ( [ ] )
84

85 f o r n in range (N) :
86 # genera t ing o rb i t without push or k i ck
87 x1 = np . append (x1 , x1 [−1] + dt∗ f 1 ( x1 [ −1] , x2 [ −1]) )
88 x2 = np . append (x2 , x2 [−1] + dt∗ f 2 ( x1 [ −1] , x2 [ −1]) )
89 # genera t ing o rb i t with push or k ick
90 xG1 = np . append (xG1 , xG1[−1] + dt∗ f 1 (xG1[ −1] ,xG2[ −1]) )
91 xG2 = np . append (xG2 , xG2[−1] + dt∗ f 2 (xG1[ −1] ,xG2[ −1]) )
92 # apply ing push or k i ck
93 i f n % ( i n t ( t f l ow /dt ) ) < k durat ion and n >= k durat ion and n !=0:
94 xG1[−1] += k1/ k durat ion
95 xG2[−1] += k2/ k durat ion
96 #check i f go ing through s e c t i o n
97 f o r n in range (N) :
98 # l inea r sy s t em1
99 i f xG1 [ n ] < 0 and xG1 [ n+1] >= 0 :

100 # nonl inearsystem1
101 #i f xG2 [ n ] > −0.4 and xG2 [ n+1] <= −0.4:
102 # nonl inearsystem2
103 #i f xG1 [ n ] < 0 and xG1 [ n+1] >= 0 :
104 A = abs (xG2 [ n ] ) /( abs (xG2 [ n ] )+abs (xG2 [ n+1]) ) # xG2 might need to be
105 # changed in to a xG1
106 # fo r d i f f e r e n t systems
107 s e c t i on1 = np . append ( sec t i on1 , xG1 [ n]+A∗(xG1 [ n+1]−xG1 [ n ] ) )
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108 s e c t i on2 = np . append ( sec t i on2 , xG2 [ n]+A∗(xG2 [ n+1]−xG2 [ n ] ) )
109 t d i s t = np . append ( t d i s t , t [ n ] )
110 d i s t = np . append ( d i s t , np . s q r t ( ( s e c t i on1 [−1]− s e c t i on1 [ −2]) ∗∗2
111 +( s e c t i on2 [−1]− s e c t i on2 [ −2]) ∗∗2) )
112 # f i x i n g s t u f f f o r p l o t
113 l a b e l d i s t = ”push time {}”
114 l a b e l s d i s t . append ( l a b e l d i s t . format ( round ( k durat ion ∗dt , 3 ) ) )
115 p l o t d i s t = p l t . p l o t ( t d i s t , np . log10 ( d i s t ) , l i n ew id th = 1)
116 p l o t d i s t = p l t . l egend ( l a b e l s d i s t )
117 k durat ion += 400 # in c r e a s i n g push durat ion
118 # more s t u f f f o r p l o t
119 p l o t d i s t = p l t . x l ab e l (” t ” , f o n t s i z e = 12)
120 p l o t d i s t = p l t . y l ab e l (” log10 ( d i s t anc e ) ” , f o n t s i z e = 12)
121 p l o t d i s t = p l t . t i t l e (” Distance between conse cu t i v e po in t s in P o i n c a r map\ nfo r

l i n e a r undisturbed dynamics and i n c r e a s i n g push time ” ,
122 f o n t s i z e = 12)
123 p l t . s a v e f i g (” d i s t l i n e a r s y s t em1 . pdf ”)
124 p l t . show ( p l o t d i s t )

A.3 Python code for Saltzman-Maasch model

A.3.1 saltzmanmaasch.py

1 import matp lo t l i b . pyplot as p l t
2 import numpy as np
3 from mp l t o o l k i t s import mplot3d
4

5 N = 100000 # t o t a l o f s t ep s
6 T = 150 #t o t a l run time
7 dt = T/N # s i z e o f time s t ep s
8 t f l ow = 10.00 #f low time
9

10 # d i r e c t i o n s o f k i ck
11 k1 = 0
12 k2 = 0
13 k3 = 0
14

15 # i n i t i a l
16 x0 = 1
17 y0 = 0
18 z0 = −0.5
19

20 # parameters Saltzman−Maasch
21 p = 0 .8
22 q = 1 .6
23 r = 0 .6
24 s = 0 .8
25

26 # coord inate f unc t i on s o f Saltzman−Maasch model
27 de f f 1 (x , y , z ) :
28 re turn −x−y
29

30 de f f 2 (x , y , z ) :
31 re turn r ∗y−p∗z+s ∗z∗∗2−y∗z ∗∗2
32

33 de f f 3 (x , y , z ) :
34 re turn −q∗x−q∗z
35

36 # de f i n i n g ar rays to s t o r e va lue s o f t r a j e c t o r i e s

48



37 t = np . l i n s p a c e (0 ,T,N+1)
38 x1 = np . array ( [ ] )
39 x2 = np . array ( [ ] )
40 x3 = np . array ( [ ] )
41

42 xG1 = np . array ( [ ] )
43 xG2 = np . array ( [ ] )
44 xG3 = np . array ( [ ] )
45

46 x1 = np . append (x1 , x0 )
47 x2 = np . append (x2 , y0 )
48 x3 = np . append (x3 , z0 )
49

50 xG1 = np . append (xG1 , x0 )
51 xG2 = np . append (xG2 , y0 )
52 xG3 = np . append (xG3 , z0 )
53

54 k i ck s = 1
55 f o r n in range (N) :
56 #f i r s t argument
57 x1 = np . append ( x1 , x1 [−1] + dt∗ f 1 ( x1 [ −1] , x2 [ −1] , x3 [ −1]) )
58 xG1 = np . append (xG1 , xG1[−1] + dt∗ f 1 (xG1[ −1] ,xG2[ −1] ,xG3[ −1]) )
59 #second argument
60 x2 = np . append ( x2 , x2 [−1] + dt∗ f 2 ( x1 [ −1] , x2 [ −1] , x3 [ −1]) )
61 xG2 = np . append (xG2 , xG2[−1] + dt∗ f 2 (xG1[ −1] ,xG2[ −1] ,xG3[ −1]) )
62 #th i rd argument
63 x3 = np . append ( x3 , x3 [−1] + dt∗ f 3 ( x1 [ −1] , x2 [ −1] , x3 [ −1]) )
64 xG3 = np . append (xG3 , xG3[−1] + dt∗ f 3 (xG1[ −1] ,xG2[ −1] ,xG3[ −1]) )
65 i f k i ck s == in t ( t [ n ] / t f l ow ) and n!= 0 :
66 xG1[−1] += k1
67 xG2[−1] += k2
68 xG3[−1] += k3
69 k i ck s += 1
70 #pr in t (” bez ig ” , n ) #u s e f u l when you are impat ient
71 # fo r 3D p lo t
72 ax = p l t . axes ( p r o j e c t i o n =’3d ’ )
73 plot3D = ax . plot3D (xG1 , xG2 , xG3 , ’ crimson ’ )
74 ax . s e t t i t l e (” Orbit in Saltzman−Maasch model f o r p = 0 .8 ,\ nq = 1 . 6 , r = 0 .6 and

s = 0 . 8 , f low time = 10” ,
75 f o n t s i z e =12)
76 ax . s e t x l a b e l ( ’ x ’ , f o n t s i z e =12)
77 ax . s e t y l a b e l ( ’ y ’ , f o n t s i z e =12)
78 ax . s e t z l a b e l ( ’ z ’ , f o n t s i z e =12)
79 p l t . s a v e f i g ( ’ per iod ic i tySaMa 10 . pdf ’ )
80 p l t . show ( plot3D )
81

82 # x , y , z p l o t t ed aga in s t time
83 p lo t1 = p l t . p l o t ( t , xG1 , c o l o r =’green ’ , l i n ew id th = 1)
84 p lo t2 = p l t . p l o t ( t , xG2 , c o l o r =’orange ’ , l i n ew id th = 1)
85 p lo t3 = p l t . p l o t ( t , xG3 , c o l o r =’blue ’ , l i n ew id th =1)
86 l a b e l s =[”x i c e mass ” , ”y CO2 concent ra t i on ” , ”z NADW volume ” ]
87 p l t . x l ab e l ( ’ t ’ , f o n t s i z e = 12)
88 p l t . y l ab e l ( ’ x , y , z ’ , f o n t s i z e = 12)
89 p l t . l egend ( l a b e l s=l ab e l s , l o c=’upper r ight ’ )
90 p l t . s a v e f i g ( ’ SaMa var i ab l e s s epa ra t e l y . pdf ’ )
91 p l t . show ( p lo t1 )
92 p l t . show ( p lo t2 )
93 p l t . show ( p lo t3 )
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A.3.2 saltzmanmaasch distance.py

1 import matp lo t l i b . pyplot as p l t
2 import numpy as np
3

4 N = 200000 # t o t a l o f s t ep s
5 T = 100 # t o t a l run time
6 dt = T/N # s i z e o f time s t ep s
7 t f l ow = 10 .1 # f low time
8

9 # d i r e c t i o n s o f k i ck
10 k1 = 0 .5
11 k2 = 1 .5
12 k3 = 0 .5
13

14 #i n i t i a l va lue
15 x0 = 1
16 y0 = 0
17 z0 = −0.5
18

19 # parameters Saltzmann−Maasch
20 p = 0 .8
21 q = 1 .6 # i f q >> 1 then apply ing k ick in slow d i r e c t i o n does
22 # not do much in the x and y d i r e c t i o n
23 r = 0 .6
24 s = 0
25

26 # coord inate f unc t i on s o f Saltzman−Maasch model
27 de f f 1 (x , y , z ) :
28 re turn −x−y
29

30 de f f 2 (x , y , z ) :
31 re turn r ∗y−p∗z+s ∗z∗∗2−y∗z ∗∗2
32

33 de f f 3 (x , y , z ) :
34 re turn −q∗x−q∗z
35

36 # lab e l f o r p l o t
37 l a b e l s d i s t = [ ]
38

39 k i ck s = 1
40 whi le t f l ow < 1 0 . 2 : # p l o t t i n g f o r f low times 9 .995 , 10 and 10.005
41 t = np . l i n s p a c e (0 ,T,N+1) #time ax i s
42 # fo r undisturbed dynamics
43 x1 = np . array ( [ ] )
44 x2 = np . array ( [ ] )
45 x3 = np . array ( [ ] )
46 x1 = np . append ( x1 , x0 )
47 x2 = np . append ( x2 , y0 )
48 x3 = np . append ( x3 , z0 )
49

50 # fo r flow−k ick dynamics
51 xG1 = np . array ( [ ] )
52 xG2 = np . array ( [ ] )
53 xG3 = np . array ( [ ] )
54 xG1 = np . append (xG1 , x0 )
55 xG2 = np . append (xG2 , y0 )
56 xG3 = np . append (xG3 , z0 )
57

58 # fo r P o i n c a r s e c t i o n
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59 s e c t i on1 = np . array ( [ ] )
60 s e c t i on1 = np . append ( sec t i on1 , 1)
61 s e c t i on2 = np . array ( [ ] )
62 s e c t i on2 = np . append ( sec t i on2 , 1)
63

64 # fo r dn ’ s de f i ned by P o i n c a r s e c t i o n
65 t d i s t = np . array ( [ ] )
66 d i s t = np . array ( [ ] )
67 k i ck s = 1 # kick counter
68

69 # cons t ruc t i ng o f undisturbed dynamics and o rb i t i n f l u en c ed by d i s turbance
70 f o r n in range (N) :
71 #f i r s t argument
72 x1 = np . append (x1 , x1 [−1] + dt∗ f 1 ( x1 [ −1] , x2 [ −1] , x3 [ −1]) )
73 xG1 = np . append (xG1 , xG1[−1] + dt∗ f 1 (xG1[ −1] ,xG2[ −1] ,xG3[ −1]) )
74 #second argument
75 x2 = np . append (x2 , x2 [−1] + dt∗ f 2 ( x1 [ −1] , x2 [ −1] , x3 [ −1]) )
76 xG2 = np . append (xG2 , xG2[−1] + dt∗ f 2 (xG1[ −1] ,xG2[ −1] ,xG3[ −1]) )
77 #th i rd argument
78 x3 = np . append (x3 , x3 [−1] + dt∗ f 3 ( x1 [ −1] , x2 [ −1] , x3 [ −1]) )
79 xG3 = np . append (xG3 , xG3[−1] + dt∗ f 3 (xG1[ −1] ,xG2[ −1] ,xG3[ −1]) )
80 i f k i ck s == in t ( t [ n ] / t f l ow ) and n!= 0 :
81 xG1[−1] += k1
82 xG2[−1] += k2
83 xG3[−1] += k3
84 k i ck s += 1
85 #pr in t (” bez ig : ” , n ) # u s e f u l when you are impat ient
86 # cons t ruc t i ng i n t e r s e c t i o n s with s e c t i o n ( de f ined in i f −statement )
87 f o r n in range (N) :
88 i f xG3 [ n ] > 0 and xG3 [ n+1] <= 0 and xG1 [ n ] > 0 :
89 A = abs (xG3 [ n ] ) /( abs (xG3 [ n ] )+abs (xG3 [ n+1]) )
90 s e c t i on1 = np . append ( sec t i on1 , xG1 [ n]+A∗(xG1 [ n+1]−xG1 [ n ] ) )
91 s e c t i on2 = np . append ( sec t i on2 , xG2 [ n ] + A∗(xG2 [ n+1]−xG2 [ n ] ) )
92 t d i s t = np . append ( t d i s t , t [ n ] )
93 d i s t = np . append ( d i s t , np . s q r t ( ( s e c t i on1 [−1]− s e c t i on1 [ −2]) ∗∗2
94 +( s e c t i on2 [−1]− s e c t i on2 [ −2]) ∗∗2) )
95 l a b e l d i s t= ” d i s t an c e s dn f o r f low time {}”
96 #l a b e l d i s t = ”without k ick ”
97 p l o t d i s t = p l t . p l o t ( t d i s t , np . log10 ( d i s t ) , l i n ew id th = 1 ,
98 l a b e l = l a b e l d i s t . format ( t f l ow ) )
99 p l o t d i s t = p l t . l egend ( l a b e l s d i s t )

100 pr in t ( d i s t )
101 t f l ow += 0.1 # in c r e a s i n g f low time with smal l s t ep s
102 # making a n i c e p l o t
103 p l t . x l ab e l ( ’ t ’ , f o n t s i z e = 12)
104 p l t . y l ab e l ( ’ log10 ( d i s t anc e ) ’ , f o n t s i z e = 12)
105 p l t . l egend ( )
106 #pl t . t i t l e (” Dis tances dn in P o i n c a r map f o r Saltzman−Maasch model without k ick

” , f o n t s i z e =12)
107 p l t . t i t l e (” Dis tances dn in P o i n c a r map f o r var i ous \nf low times in Saltzman−

Maasch model ” ,
108 f o n t s i z e =12)
109 p l t . s a v e f i g ( ’ p e r i od i c i t ySaMa d i s t . pdf ’ )
110 p l t . show ( p l o t d i s t )
111 pr in t ( d i s t )
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