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Introduction

The English mathematician Thomas Harriot was working as a mathematician
for the statesman Sir Walter Raleigh in the late 16th and early 17th century
when he was one day asked by Raleigh what the most efficient way was to
stack cannonballs on a ship. This is a question that a modern-day grocery clerk
might ask himself too when stacking apples for display. The problem of packing
spheres in the densest possible way is called the sphere packing problem. In
3-dimensional space, the densest packing is given by extending the following
configuration, a pyramid with square base, see [CSdlH98].

This conceptually not very complex problem remained unproven for the next
four centuries and it was only in 2005 when a proof was published by the Amer-
ican mathematician Thomas Hales using computer assistance, see [Hal05].

The theory of sphere packings that was developed in these centuries has
many applications in other sciences such as modern atomic theory and quantum
gravity in physics, see [HMR19], and crystallography in chemistry, see [KP81].
The reason for this is that a subset of sphere packings, called the lattice packings,
are inherently related to a certain symmetric structure called a lattice which is
formed by the center of the spheres in a lattice packing. These lattices occur
very often in nature.

This is not nearly the end of the story of sphere packings however since we
can easily generalise this 3-dimensional problem to an n-dimensional problem
for any n ∈ Z>0 where we pack n-dimensional spheres in Rn. After this ab-
straction, many other surprising properties of sphere packings can be discovered
and many more connections with other mathematical areas can be made. The
ones we will focus on are coding theory and group theory, more precisely error-
correcting codes and the Classification Theorem of finite simple groups which
is a marvellous subject on its own.

Error-correcting codes are used when transmitting data so that small errors
that pop up can be corrected by the receiver. One code in particular that was
widely used is the Golay code G24 which was even used by NASA on space
missions in the 20th century. A very special 24-dimensional lattice packing can
be constructed using the Golay code. This lattice, called the Leech lattice Λ24,
was first discovered by John Leech in 1967, see [Lee67], and a year later a truly
fascinating connection to group theory was found by John Conway, see [Con68].

Since lattices are very symmetric structures we can look at certain symme-
tries that form a group together. It turns out that one of the groups related to
the symmetry group of the Leech lattice Λ24 is a never before discovered group
called the first Conway group Co1. This group is one of the sporadic groups that
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play a crucial role in the Classification Theorem of finite simple groups which
aims to classify the finite simple groups like how the periodic table classifies all
atoms.

The classification consists of a few families containing an infinite number of
finite simple groups but there are just 26 more finite simple groups that do not
fit into any of these infinite families and are called the sporadic groups. The first
sporadic groups were discovered in the 1860s and 1870s by the French mathe-
matician Mathieu, see [Mat61] and [Mat73], and the largest of these Mathieu
groups, M24, is the symmetry group of the mentioned Golay code G24.

We see that this mysterious and fascinating Leech lattice has many connec-
tions with other mathematical areas and with the help of even another area of
math, namely modular forms, it was finally proven in 2017 that the Leech lattice
packing is the densest sphere packing in 24-dimensional space, see [CKM+17].

In this thesis, we will give an easy to understand introduction to the Leech
lattice for anyone that has basic knowledge of group theory. We start by dis-
cussing sphere packings and linear codes and then construct some objects, the
hexacode and the Golay code, that will function as stepping stones for the Leech
lattice. We will also study the symmetry groups of these three objects and prove
the simplicity of the groups M24 and Co1. We will not prove that Λ24 produces
the densest 24-dimensional sphere packing since these proofs require entirely
different techniques than the group theory we want to focus on.

In case the reader is not familiar with simple groups and the Classification
Theorem, we advise them to read Appendix B after finishing section 3.3.1. If
the reader has gotten curious to study more sporadic groups after finishing the
main part of this thesis, they can read Appendix C where the other Mathieu
and Conway groups are defined, as well as some other sporadic groups related
to Co1. Lastly, Appendix A contains any non-basic group theory that is needed
in the proofs such as semidirect products and commutators.

The added value of this thesis compared to the existing literature is not only
that many different sources are combined to give a comprehensive introduction
to the Leech lattice but also that many verifications and proofs actually can
not be found easily anywhere in the literature. The Leech lattice is usually
part of a much bigger story which means not everything is worked out to detail.
These proofs and verifications are not that easy however if you do not have a
background in this area. This thesis is therefore meant for students or mathe-
maticians active in other areas who want to gain a better understanding of the
Leech lattice and the related sporadic groups. After finishing this thesis, the
reader will have a solid foundation in this subject to study many other problems
related to the Leech lattice.
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1 Sphere packings

Our motivation for studying the Leech lattice is the sphere packing problem.
What is the most efficient way to stack spheres in n dimensions? We will
formalise this question in this chapter and provide some useful definitions and
ideas that will help us in determining our approach to studying the Leech lattice.
We will mostly follow [Slo02] and Chapters 1 and 2 in [CSdlH98].

Definition 1.1. An n-dimensional sphere packing is an infinite set of non-
overlapping spheres in Rn with the same radius. So these spheres are allowed
to touch but have pairwise disjoint interiors.

Remark 1.1.1. We use the Euclidean metric on Rn.

We now define what we mean when we say ‘most efficient’.

Definition 1.2. Let st be the sphere with center at the origin of Rn and radius
t and let Vol be the volume function on Rn. The density ∆ of a sphere packing
P is the limit

∆(P ) = lim
t→∞

∑
b∈P Vol(b ∩ st)

Vol(st)

if it exists. In other words, the portion of space taken by the sphere packing.

If P is very symmetric we can calculate the density by dividing Rn into
smaller identical parts. We will look at the hexagonal sphere packing in 2 di-
mensions.

Example 1.3. The hexagonal sphere packing in 2 dimensions consists of the
circles with radius 1 and centers of the form x(2, 0) + y(1,

√
3) with x, y ∈ Z.

The seven circles closest to the origin are then as follows.

(2, 0)

(1,
√

3)

It is called the hexagonal packing since the centers of six circles touching a given
circle form a regular hexagon.

We can calculate the density of this sphere packing quite easily.

Lemma 1.4. The density ∆ of the 2-dimensional hexagonal sphere packing is
π

2
√

3
.
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Proof. The regular hexagons clearly form a regular tiling of R2 so the density ∆
is equal to the proportion of space taken by the sphere packing in one of these
hexagons. The circle and circular sectors of the hexagonal packing form 3 unit
circles within one hexagon, so with area formulas we get

∆ =
3π

6
√

3
=

π

2
√

3

We were able to simplify our calculation because the centers in the hexagonal
sphere packing form a simple and symmetric structure. In general, the centers
are the most important pieces of information of a sphere packing since we can
just choose half of the minimal distance between two centers as the radius of
the spheres and recover the original or an even denser sphere packing. One
particular type of sphere packing which is the one we will focus on, are the
sphere packings whose centers form a type of structure called a lattice.

Definition 1.5. An n-dimensional lattice is an additive subgroup of Rn that
contains a basis of Rn and is isomorphic to Zn. This is equivalent to being of
the following form for some linearly independent bi ∈ Rn.

Zb1 + Zb2 + . . .+ Zbn
We call {b1, . . . , bn} a basis of the lattice.

Remark 1.5.1. The centers of the 2-dimensional hexagonal sphere packing from
Example 1.3 form a lattice called A2.

Definition 1.6. A lattice packing is a sphere packing whose centers form a
lattice.

The lattice packings are the most interesting and studied sphere packings.
We give another example which is one of the most well-known lattice packings.

Example 1.7. The 3-dimensional face-centered cubic (fcc) lattice is the set

{x(1, 1, 0) + y(1, 0, 1) + z(0, 1, 1) : x, y, z ∈ Z}.

In other words, the points whose coordinates add up to an even number. The
fcc lattice packing traditionally has the most real-life applications like stacking
apples in the supermarket or cannonballs on the battlefield.
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The figures are taken from [CSdlH98]. A subset of the sphere packing is
depicted in (a) and the open circles in (b) are centers of the sphere packing.

One interesting class of lattices is the following.

Definition 1.8. Let an inner product x ·y be given on Rn. A lattice L is called
integral if for all x, y ∈ L we have x · y ∈ Z.

Example 1.9. The 3-dimensional fcc lattice and the 2-dimensional hexagonal
lattice from Examples 1.7 and 1.3 are integral.

We now generalise the way we calculated the density of the 2-dimensional
hexagonal sphere packing so we can apply it to the 3-dimensional fcc packing
and all other lattice packings. To do this, we will first have to define some
properties of lattices.

Definition 1.10. Let B = {b1, . . . , bn} be a basis of a lattice L. The matrix
M with bi as the i-th row is called a generator matrix of L.

Remark 1.10.1. It is easy to see that L = {vB : v ∈ Zn}.

Definition 1.11. Let B = {b1, . . . , bn} be a basis of a lattice L. The region
consisting of the points

θ1b1 + . . .+ θnbn with 0 ≤ θi < 1

is called the fundamental region of L given the basis B.

We look at an example of a fundamental region.

Example 1.12. If we pick the basis {(2, 0), (1,
√

3)} for the A2 lattice of the
2-dimensional hexagonal packing, we get the following fundamental region.

We can see that in this case, copies of the fundamental regions can form a
tiling, or in higher dimensions a tessellation, of the space Rn in the following
way. Let L be a lattice with some basis B and F its fundamental domain, then
the sets of the form

u+ F = {u+ f : f ∈ F}

for u ∈ L are disjoint and cover Rn. We can see that the parts of the spheres
within one copy of the fundamental region form exactly one sphere together. It
turns out that this is always the case.
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Lemma 1.13. Let L be a lattice. The density of the corresponding lattice
packing is

∆ =
Vol(one sphere in the sphere packing)

Vol(fundamental region of L)

Proof Sketch. There is one sphere per lattice point and the tessellation of Rn
is formed by translating the fundamental region by lattice vectors, so there is
also one fundamental region per lattice point. The equality then easily follows
from the fact that the copies of the fundamental domain, including the partial
spheres within them, are identical.

Now we just need to calculate the volume of a sphere and the volume of
a fundamental region. The first one is easy. If Vn is the volume of the n-
dimensional unit sphere and ρ is the radius of the spheres in the sphere packings
we get Vol(one sphere) = Vnρ

n. The second one follows from the following
lemma.

Lemma 1.14. Let L be a lattice with basis B and corresponding generator
matrix M and fundamental region F . We then have

Vol(F ) = |detM |

Proof. This is a well-known fact from linear algebra, see for example [Fis02].

Remark 1.14.1. It is easy to prove that Vol(F ) and |detM | are both independent
of the choice of a basis of L.

Our formula for the density of a lattice packing L with generator matrix M
and spheres of radius ρ now becomes

∆(L) =
Vnρ

n

|detM |

This formula simplifies even further if |detM | = 1.

Definition 1.15. An integral lattice is called unimodular if its generator matrix
has determinant ±1. Its density is then ∆ = Vnρ

n.

One obstacle to comparing the densities of lattice packings in different di-
mensions is the fact that Vn decreases rapidly for increasing n. To compensate
for this effect, we also define an alternative density.

Definition 1.16. The center density δ of an n-dimensional sphere packing is
defined as

δ =
∆

Vn

Remark 1.16.1. For a lattice packing L with generator matrix M and sphere of
radius ρ we get

δ(L) =
ρn

|detM |

6



We can now use these formulas to calculate the densities of the 3-dimensional
fcc lattice packing.

Theorem 1.17. The 3-dimensional fcc lattice packing has densities

∆ =
π

3
√

2
and δ =

1

4

√
2

Proof. A basis of the fcc lattice is given by {(1, 1, 0), (1, 0, 1), (1, 0, 1)} and the
corresponding generator matrix has determinant 2. The smallest distance be-
tween two lattice points is

√
2, so the fcc lattice packing has spheres of radius

1
2

√
2. The values of ∆ and δ now follow from the formulas.

Another related quantity of a lattice packing is its kissing number.

Definition 1.18. The kissing number of a lattice packing is the number of
spheres that touch a given sphere.

Remark 1.18.1. A higher kissing number does not always result in a denser
sphere packing. The problem of the highest kissing number in Rn is a different
problem with a potentially different answer than the sphere packing problem.

1.1 Densest sphere packings

Now that we have defined the mathematical “machinery” for the sphere packing
problem, we will discuss some of the advancements made in solving the sphere
packing problem over the past few centuries and most notably the past 80 years.
This section is purely meant as motivation for studying the Leech lattice and
will not reappear in the later chapters.

A question that is relatively easier than finding the n-dimensional sphere
packing with the highest density is to find the densest lattice packing because
the lattice structure imposes many restrictions. The densest lattice packings
for n ≤ 20 (and some other values) have been found recently with some com-
puter assistance, see [KEG10], [MT13] and [Kal13]. The densest overall sphere
packings are however only known for n ∈ {1, 2, 3, 8, 24}. It is generally not true
that the densest lattice packing is also the densest sphere packing since there
are dimensions where a non-lattice packing is known to have a higher density
than the densest lattice packing. The smallest known example is for n = 10,
see [Slo02].

Much more is known nonetheless about lattice packings, so we will focus on
them. We will look at some families of packings.

Example 1.19. The simplest lattice is obviously Zn which is generated by the
n vectors (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1). We can calculate that this
packing has center density δ = 2−n.

Example 1.20. A more efficient lattice is the checkerboard lattice Dn defined
by

Dn = {x ∈ Zn : x1 + . . .+ xn ≡ 0 mod 2}
It can be calculated that this lattice packing has center density 2−

1
2 (n+2).
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Remark 1.20.1. The fcc lattice from Example 1.7 is D3.

The checkerboard lattices form the densest lattice packings for n = 3, 4, 5
and the hexagonal packing is the densest lattice packing for n = 2. This last
fact was already proven by Lagrange in 1773 and in 1890, Axel Thue gave a
non-rigorous proof that this packing is the densest 2-dimensional sphere pack-
ing among all packings, including the irregular ones. This last fact is often
called Thue’s Theorem although the first rigorous proof was published by the
Hungarian mathematician László Fejes Tóth, see [FT42].

We now jump to the case n = 3. Johannes Kepler already conjectured in
1611 that D3 is the densest 3-dimensional sphere packing which has been called
Kepler’s conjecture for this reason. It was proven in 1811 by Gauss that D3

is the densest lattice packing but it took until very recently in 1998 to prove
that D3 is also the densest sphere packing among non-lattice packings when
Thomas Hales announced a proof which was a proof by exhaustion, checking
all potential counterexamples and dismissing all of them. This was done with
computer assistance and was finally published in 2005, see [Hal05].

We now move on to a construction of lattice packings that produces most
(but not all) of the densest known lattice packings. It follows a greedy strategy
and is therefore defined recursively.

Definition 1.21. Let Λ1 be the lattice Z ⊂ R. For n ≥ 2, look at all the
n-dimensional lattices L that contain a sublattice isomorphic to a lattice Λn−1

such that x ·x ≥ 4 for all x ∈ L\{0}. We select the ones whose generator matrix
has smallest determinant. Each selected lattice is a laminated lattice Λn.

Remark 1.21.1. As follows from the definition, n-dimensional laminated lat-
tices are not unique but for certain values of n they are. More information on
laminated lattices can be found in [CS82].

Remark 1.21.2. Λ2 is the 2-dimensional hexagonal lattice, Λ3 is the fcc lattice
and Λ24 is the Leech lattice. These three are the unique laminated lattices (up
to isomorphism) in their respective dimensions.

The densest known lattice packings in up to 24 dimensions and their prop-
erties are shown in Table 1 taken from [CSdlH98] where K11, K12 and K13

are non-laminated lattices but are not important for our story. The most in-
teresting of these are the cases n = 8 and n = 24 since it has been proven
extremely recently in 2017 that the lattices Λ8

∼= E8 and Λ24 are the densest
sphere packings, even among non-lattice packings. See [Via17] and [CKM+17]
for proofs.

In this thesis, we will construct Λ24, calculate its densities and kissing num-
ber and study some of its relations with other important mathematical objects
since Λ24 pops up in many other problems besides the sphere packing problem,
see [CKM+19]. We will not use the laminated lattice construction of Λ24 which
is more useful for other purposes but construct the Leech lattice with the help
of two linear codes, the hexacode and the Golay code. Afterwards, we will also
study its symmetry group which will relate the Leech lattice to the Classification
Theorem that is explored in Appendix B.
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We will not prove that Λ24 is the densest 24-dimensional sphere or why the
cases n = 8 and n = 24 are special since that makes use of a whole different
area of mathematics, namely modular forms. The purpose of this thesis is to
introduce the reader to the Leech lattice and gain some understanding of this
truly fascinating object and its symmetries.

n Packing ∆ δ Kissing number

1 Λ1
∼= Z 1 1

2 2

2 Λ2
∼= A2 0.90690 1

6

√
3 6

3 Λ3
∼= D3 0.74048 1

8

√
2 12

4 Λ4
∼= D4 0.61685 1

8 24

5 Λ5
∼= D5 0.46526 1

16

√
2 40

6 Λ6 0.37295 1
24

√
3 72

7 Λ7 0.29530 1
16 126

8 Λ8 0.25367 1
16 240

9 Λ9 0.14577 1
32

√
2 272

10 Λ10 0.09202 1
48

√
3 336

11 K11 0.06043 1
54

√
3 432

12 K12 0.04945 1
27 756

13 K13 0.02921 1
54

√
3 918

14 Λ14 0.02162 1
48

√
3 1422

15 Λ15 0.01686 1
32

√
2 2340

16 Λ16 0.01471 1
16 4320

17 Λ17 0.008811 1
16 5346

18 Λ18 0.005928 1
24

√
3 7398

19 Λ19 0.004121 1
16

√
2 10668

20 Λ20 0.003226 1
8 17400

21 Λ21 0.002466 1
8

√
2 27720

22 Λ22 0.002128 1
6

√
3 49896

23 Λ23 0.001905 1
2 93150

24 Λ24 0.001930 1 196560

Table 1: Densities of densest known lattice packings
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2 The hexacode H6

The hexacode is the first object needed to eventually construct the Leech lat-
tice, which produces the densest 24-dimensional sphere packing. The knowledge
gained through examining the hexacode will be fundamental for our later ex-
ploration of the Leech lattice and its symmetries. We mostly follow Chapter 3
in [CSdlH98].

2.1 Linear codes

The hexacode and the next crucial object, the binary Golay code which will be
the center of attention in Chapter 3, are both examples of linear codes, so some
relevant definitions and observations on general linear codes will be discussed
first to make our exploration of these two codes more straightforward. We will
also show how linear codes are related to sphere packings.

However, the reason linear codes were studied in the first place had nothing
to do with sphere packings. Another seemingly unrelated practical problem was
the motivation for linear codes, namely transmitting messages. Most digital
systems use zeroes and ones to pass on information but what happens if one of
these numbers gets corrupted? The intended message also gets corrupted. In
most circumstances, corruptions are common, so a solution must be found to
reliably transmit data. The solution to this is coding theory. Longer segments
consisting of multiple digits are used to represent a single digit so that if a
corruption happens, the original segment can be recovered. We now define this
rigorously.

Definition 2.1. A q-ary linear code of length n is a linear subspace C ⊂ Fnq
where q is a prime power and n is a positive integer. A word is an element of Fnq
and a codeword is an element of C. The dimension of the code is the dimension
of C as a linear subspace of Fnq .

Remark 2.1.1. Words are notated in the following way, u = u1u2 . . . un where
u1, u2, . . . , un are the coordinates of u ∈ Fnq .

The codewords are exactly the segments that are transmitted. Let us look
at an example to understand this abstract definition.

Example 2.2. Recall that F4 = F2[X]/(X2 + X + 1) = {0, 1, ω, ω} where
ω + ω = 1 = ω · ω. We look at the code E ⊂ F6

4 of length 6 generated by the
words 11 11 00 and 00 11 11. For convenience reasons that will become apparent
later, the 6 coordinates of a word in F6

4 are separated into three pairs of two.
This is clearly a 2-dimensional code, so there are exactly 42 = 16 codewords.
We can write them all down:

00 00 00 11 11 00 00 11 11 11 00 11 11ωω ωω ωω ωω 11
ωω ωω 00 00ωω ωω ωω 00ωω ωω 11ωω ωω 11ωω
ωω ωω 00 00ωω ωω ωω 00ωω ωω ωω 11 11ωω ωω

10



If one of these codewords is corrupted in one position, we can still uniquely
determine the original codeword. For example 11 01 11 is corrected to 11 00 11.
This way, the linear code E forms a 16 symbol alphabet that can be reliably
transmitted.

There are also non-linear codes but the linear codes are the most regular
and symmetric and have the nicest properties. In this regard, they are similar
to lattice packings among the sphere packings. To further show the similarities
between linear codes and lattice packings, we now also define a type of norm on
Fnq which will play the same role as the Euclidean norm on Rn.

Definition 2.3. The weight w(u) of a word u is

w(u) = |{i : ui 6= 0}|

So the number of non-zero coordinates of u.

Definition 2.4. Let C be a code of length n and let ak = |{u ∈ C : w(u) = k}|
be the number of codewords with weight k. Then the weight distribution of C
is the expression

0a0 1a1 . . . nan

where all the terms kak with ak = 0 are removed.

We look at what these definitions mean for our code E from Example 2.2.

Example 2.5. The code E from Example 2.2 has six words of weight 6, nine
words of weight 4 and one word of weight 0, so the weight distribution of E is
01 49 66.

Like the Euclidean norm, the weight also imposes a distance function and
this allows us to formalise a correspondence between linear codes and sphere
packings.

Definition 2.6. The Hamming distance h(u, v) between two words u and v is

w(u− v) = |{i : ui 6= vi}|

. So the number of positions where the coordinates of u and v differ.

Definition 2.7. The minimal distance of a code C is

d = min{h(u, v) : u, v ∈ C, u 6= v}

Remark 2.7.1. The minimal distance of a linear code is also the minimal weight
of a non-zero codeword since h(u, v) = h(u− v, 0) = w(u− v).

Remark 2.7.2. Let C ⊂ Fnq be a code with minimal distance d > 2r for some
r ∈ Z>0, then the ‘Hamming spheres’ of radius r around the codewords, so the
sets {v ∈ Fnq : h(u, v) ≤ r} for u ∈ C, are disjoint and form an Fq-equivalent of
an n-dimensional sphere packing.
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Remark 2.7.3. The minimal distance of the code E in example 2.2 is 4 since
the minimal non-zero weight is 4. This means that we can form a 6-dimensional
Hamming sphere packing in F6

4 with spheres of radius 1.

We can visualize this type of sphere packing with the following figure taken
from [Tho83] that uses the linear code {000, 111} ⊂ F3

2. The codewords are the
centers of the two spheres and the points in the Hamming spheres are the words
that will be interpreted as the codeword in the center, so the points with the
same colour in the figure. In this case, the minimal distance is d = 1, so a single
error can be corrected.

We now take a look again at the practical applications of linear codes. One
particular instance where the chance of corruption is high and linear codes are
therefore useful is outer space. The Golay code which we will cover later is
especially interesting in this regard since it was used by NASA for the two
Voyager probes launched in 1977 to transmit images that these probes took.
These include hundreds of pictures of Jupiter, Saturn, Uranus and Neptune, see
[Cur16]. This shows that the Golay code is not just used in the construction of
the Leech lattice but is a highly interesting object on its own. That is one of the
most exciting aspects of this subject, the fact that different areas of mathematics
are combined to obtain the highly unusual and fascinating Leech lattice.

Aside from Remark 2.7.2, there are even more ways we can build sphere
packings from codes. We give two constructions from [CSdlH98] to create a
sphere packing in Rn that are relevant for our study of the Leech lattice.

Definition 2.8. Let C be a binary length n linear code with M codewords and
a minimal distance d. Then the set

A(C) = {x ∈ Zn : x ≡ c mod 2 for some c ∈ C}

is a lattice and forms a lattice packing. The radius of the spheres in this packing
is ρ = 1

2 min(2,
√
d) and the center density is δ = Mρn2−n

Remark 2.8.1. Let C be the binary linear code {000, 110, 101, 011} of length 3
then the fcc lattice, defined in Example 1.7, is A(C).

We can adjust this construction to obtain a lattice packing that is often
denser. Applying this new construction to the Golay code G24 gives a sublattice
of the Leech lattice Λ24 with index 2 as we will see in section 4.1.
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Definition 2.9. Let C be a binary length n linear code with M codewords and
a minimal distance d. Then the set

B(C) =

{
x ∈ Zn : x ≡ c mod 2 for some c ∈ C and

n∑
i=1

xi ≡ 0 mod 4

}

is a lattice and forms a lattice packing. The radius of the spheres in this packing
is ρ = 1

2 min(
√

8,
√
d) and the center density is δ = Mρn2−n−1

Remark 2.9.1. If d > 4, B(C) is denser than A(C) for n large enough.

Both of these constructions can also be applied to non-linear codes to ob-
tain non-lattice packings. The 10-dimensional sphere packing, mentioned in
section 1.1, that is denser than all the 10-dimensional lattice packings can be
constructed by applying construction A on a non-linear code.

We now move on to another aspect of linear codes. As we mentioned in the
introduction, one of the fascinating properties of the Leech lattice and also the
Golay code is that they are exceptionally symmetric and this is the key property
we are going to study in this thesis by examining the groups of symmetries of
these objects. Therefore, we will first cover the symmetries of a general linear
code which are called automorphisms.

Definition 2.10. A monomial transformation is an Fq-linear map Fnq → Fnq
defined by

(u1, u2, . . . , un) 7→ (c1uσ(1), c2uσ(2), . . . , cnuσ(n))

where ci ∈ F∗q and σ ∈ S24. In other words, we perform a permutation σ−1

on the coordinates and coordinate-wise multiplications with (possibly different)
non-zero scalars c1, . . . , cn.

Remark 2.10.1. If we consider the associated matrices of monomial transfor-
mations w.r.t. the standard basis of Fnq , then the monomial transformations
correspond exactly to the n× n-matrices over Fq whose rows and columns each
contain exactly one non-zero entry.

Definition 2.11. An automorphism of a code C is a monomial transformation
that preserves C. The automorphisms of a code form a group Aut(C) under
composition.

We look at an example again to get a better understanding of these defini-
tions.

Example 2.12. We once again look at the code E from Example 2.2. Some
trivial automorphisms are the scalar multiplications with 1, ω or ω which to-
gether generate a subgroup isomorphic to C3.

Recall that we write down the six coordinates of a word in F6
4 in three

pairs of two coordinates. A family of more exciting automorphisms are then
the permutations of these three pairs which can be checked to preserve E and
generate a subgroup isomorphic to S3 together. If we number the coordinate
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positions then this S3 is exactly generated by the permutations (135)(246) and
(13)(24).

One last type of automorphism we want to highlight is the transposition of
any two coordinates within the same pair, so the permutations (12), (34) and
(56) on the coordinates. They generate a subgroup isomorphic to C2×C2×C2

together.
We can look at the associated matrices of two automorphisms of the latter

types: 
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0




0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0


The images of a word u under these automorphisms are u3u4 u5u6 u1u2 and
u2u1 u3u4 u6u5 respectively.

Aside from the automorphisms, there are many more maps from Fnq to Fnq
that preserve a code since the definition of a monomial transformation is quite
restrictive. Most of these maps are not important for our purposes but we will
have to look at one broader type of code-preserving map which includes the
automorphisms.

Definition 2.13. A semi-automorphism of a code C ⊂ Fnq is a monomial
transformation combined with a field automorphism of Fq, applied on all n
coordinates, that preserves C. The semi-automorphisms of a code form a group
Aut∗(C) under composition.

Example 2.14. We look at the code E ⊂ F6
4 from example 2.2 again. The only

field automorphisms of F4 are the identity and the conjugation map : F4 7→ F4,
so the map that sends ω to ω and vice versa but preserves 0 and 1. Since E is
generated by 00 11 11 and 11 11 00, it is clear that conjugation preserves E, so
the semi-automorphisms in this case are just the usual automorphisms and the
usual automorphisms composed with conjugation.

2.2 The hexacode

Now that we have looked at linear codes and have a good understanding of them,
we can define our object of interest, the hexacode. We mostly follow sections
11.1-11.4 in [CSdlH98] and section 5.2.1 in [Wil09]. Like the linear code E in
the examples of the previous section, the hexacode is a code in F6

4. We keep the
convention of writing down the six coordinates in three pairs of two. We give
two definitions of the hexacode.

Definition 2.15. The hexacode H6 ⊂ F6
4 is the linear code generated by the

words
ωω ωω ωω, ωω ωω ωω, ωω ωω ωω and ωω ωω ωω
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Remark 2.15.1. The generators are not linearly independent since every gener-
ator is the sum of the three others.

Definition 2.16. Let φa,b,c be the polynomial aX2 + bX + c ∈ F4[X]. The
hexacode H6 ⊂ F6

4 consists exactly of the words ab cd ef such that

c = φa,b,c(0), d = φa,b,c(1), e = φa,b,c(ω) and f = φa,b,c(ω)

Remark 2.16.1. It follows easily from this definition that 11 11 00 and 00 11 11
are elements of H6, so the code E from Example 2.2 is contained in H6.

These two definitions are both more useful than the other in some cases, so
we would like to use both characterisations of the hexacode.

Lemma 2.17. Definitions 2.15 and 2.16 are equivalent.

Proof. Let A be the hexacode defined by the first definition and B the one by
the second. Since F4 has characteristic 2 we get the identity (x+ y)2 = x2 + y2.
For u, v ∈ B it then follows easily from Definition 2.16 that also u + v ∈ B.
Furthermore, it follows easily from this definition that B is closed under scalar
multiplication, so B is linear. It can also be checked with the definition that
the generators of A are contained in B, so it follows that A ⊂ B.

Note that dim(B) = 3 since any first 3 coordinates determine a unique
codeword. Taking three out of the four generators of A gives a basis of A, so
also dim(A) = 3 and it follows that A = B.

An immediate consequence of Lemma 2.17 is the size of H6.

Corollary 2.18. H6 contains 64 codewords.

Proof. We saw that H6 ⊂ F6
4 has dimension 3, so |H6| = 43 = 64.

Now that we have proven that these two definitions are equivalent, we can
use them both for different purposes. The main purpose of the first definition
is to verify whether a given automorphism does indeed preserve H6 by looking
at the images of the generators in Definition 2.15. The second definition can be
used to check whether a given word is an element of H6.

Our ultimate goal is to describe the symmetries of the Leech lattice for which
the hexacode is a stepping stone, so we are also interested in the symmetries
of the hexacode. Understanding these will help us understand the symmetries
of the Golay code and in turn, the symmetries of the Leech lattice. Therefore,
we will first look at some easily spottable automorphisms of H6 which are very
similar to the automorphisms in Example 2.12.

Lemma 2.19. Recall that the six coordinates of a word are written down in
three pairs of two. The following maps are then contained in Aut(H6).

• Scalar multiplication of the whole word with 1, ω or ω.

• Any permutation of the three pairs. So (135)(246), (13)(24) etc.
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• The composition of exactly two transpositions that each switch two coor-
dinates within a pair. We call these a double flip, so (12)(34) etc.

Proof. Check that the images of the generators of H6 in Definition 2.15 under
each automorphism are elements of H6.

Example 2.20. The images of the hexacodeword 01 01ωω under some of these
automorphisms are:

Automorphism Image of 01 01ωω
u 7→ (ωu1, ωu2, ωu3, ωu4, ωu5, ωu6) 0ω 0ω ω1

u 7→ u3u4 u5u6 u1u2 01ωω 01
u 7→ u2u1 u3u4 u6u5 10 01ωω

Before we look at the other automorphisms in Aut(H6), we will look more
closely at the automorphisms we have already seen.

Definition 2.21. G ⊂ Aut(H6) is the subgroup generated by the automor-
phisms in Lemma 2.19.

Lemma 2.22. G is isomorphic to C3 × S4.

Proof. Let N be the subgroup of G generated by the double flips, H the sub-
group generated by the permutations of the three pairs and G′ the subgroup
generated by both of these types of elements. It is easy to check that N /G′ is
a normal subgroup and that the intersection H ∩N is trivial. It follows that G′

is an inner semidirect product of H acting on N .
Furthermore, we have that N ∼= V4 and H ∼= S3 and the action of H on N

corresponds to the action of S3 on V4 in Example A.9. So we get

G′ = N oH ∼= V4 o S3
∼= S4

Now let M be the subgroup of G containing the scalar multiplications. We
then easily see that M /G is a normal subgroup, M ∼= C3 and the intersection
M ∩G′ is trivial. We therefore get that G is a semidirect product of G′ acting
on M but since M commutes with G′ this is just the direct product. So we get

G ∼= M ×G′ ∼= C3 × S4

Since Aut(H6) acts on H6 in an obvious way we can also look at the action
of the subgroup G on H6.

Lemma 2.23. The orbits under the action of G on H6 are as follows:

Representing element Orbit Length
01 01ωω 36
ωω ωω ωω 12
00 11 11 9

11ωω ωω 6
00 00 00 1
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Proof. It is clear that the representing elements are elements in different orbits
since elements in the same orbit must have the same weight because of the
definition of G and it follows from inspection that 00 11 11 and 01 01ωω, and
ωω ωω ωω and 11ωω ωω, are in different orbits.

The orbit lengths can be determined by either writing down all the elements
in the orbit or using the orbit-stabiliser theorem, see Lemma B.10, combined
with the fact that

|G| = |C3 × S4| = |C3| × |S4| = 3 · 4! = 72

The lengths of the shown orbits add up to 64 = |H6|, so these are all the
orbits.

Remark 2.23.1. The last three orbits form exactly the code E from Example
2.2.

Remark 2.23.2. We will see this kind of proof a few more times where we count
some objects and then find out by adding the numbers that we have counted
all the objects.

From the information gained through studying the automorphisms in G, we
can also deduce the following fact about the code H6.

Corollary 2.24. The weight distribution of H6 is 01 445 618.

Proof. Words in the same orbit have the same weight, so this follows directly
from Lemma 2.23.

We now start looking at the other automorphisms of the hexacode. One of
them is the linear map s : F6

4 → F6
4 defined by

u 7→ (ωu1, ωu2, u3, u6, u4, u5) (1)

which indeed preserves H6. Adjoining this element to G is enough to obtain
the whole automorphism group of H6. The notation used for extensions in the
following Theorem can be found in Definition A.6.

Theorem 2.25. Aut(H6) = 〈s,G〉 ∼= 3 .A6

Proof. We will construct a short exact sequence

1 C3 〈s,G〉 A6 1
f g

Let C3 = Z/3Z = {0, 1, 2}. For f : C3 → 〈s,G〉, we take the map that sends x
to the scalar multiplication with ωx. This is clearly an element of G and it can
be easily seen that f is an injective group homomorphism.

For the homomorphism g, we will have to do some more work. Let X be
the set of axes of F6

4 and number them from 1 to 6 in the natural way, so for
example

x1 = {00 00 00, 10 00 00, ω0 00 00, ω0 00 00}
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From the definition of an automorphism, it follows that 〈s,G〉 acts on the axes
in a well-defined manner. This induces a group homomorphism 〈s,G〉 → S6.
We look at the images of s and the generators of G in Lemma 2.19 under this
homomorphism. We use cycle notation for the elements of A6.

Automorphism(s) Image(s)
s (456)

scalar multiplications identity map
permutations of the three pairs (13)(24), (15)(26), (35)(36),

(135)(246), (153)(264)
double flips (12)(34), (12)(56), (34)(56)

We see that all the images are even and it can be manually verified that they
generate A6, so it follows that this group homomorphism can be restricted to a
group homomorphism 〈s,G〉 → A6, we take this homomorphism for g.

Lastly, we have to check that Im(f) = ker(g). We know that ker(g) consists
of the automorphisms that fix all the axes, in other words, the automorphisms
that only consist of coordinate-wise scalar multiplication and do not permute
the coordinates. Let

h : F6
4 → F6

4, u 7→ (c1u1, c2u2, c3u3, c4u4, c5u5, c6u6)

be contained in ker(g). It must then be an automorphism of H6 so

h(00 11 11) = 00 c3c4 c5c6 and h(11 11 00) = c1c2 c3c4 00

must be hexacodewords. It follows from Lemma 2.23 that this can only be
the case if c1 = c2 = . . . = c6, so if h is a scalar multiplication. We already
know that Im(f) consists of the scalar multiplications, so it indeed follows that
Im(f) = ker(g) and we have constructed the desired short exact sequence.

We conclude that 〈s,G〉 is an extension of A6 by C3 and it can be shown
that this extension is non-split, so 〈s,G〉 ∼= 3 .A6. The same exact reasoning
applies to a short exact sequence where we replace 〈s,G〉 with Aut(H6), so

1 C3 Aut(H6) A6 1
f g

We therefore also get Aut(H6) ∼= 3 .A6. Since all these groups are finite and we
have 〈s,G〉 ⊂ Aut(H6), it follows that Aut(H6) = 〈s,G〉 ∼= 3 .A6.

Now that we have described Aut(H6) we can look at the semi-automorphisms
of H6. One of them is the map t : F6

4 → F6
4 defined by

u 7→ (u1, u2, u3, u4, u6, u5) (2)

Analogously to the proof of Theorem 2.25, the following statement can be
proven.

Theorem 2.26. Aut∗(H6) = 〈Aut(H6), t〉 ∼= 3 .S6.

Proof. Construct similar short exact sequences which lead to isomorphisms
〈Aut(H6), t〉 ∼= 3 .S6 and Aut∗(H6) ∼= 3 .S6. Since these groups are finite and
〈Aut(H6), t〉 ⊂ Aut∗(H6), the theorem follows.
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3 The binary Golay code G24

Now that we have covered the hexacode and its symmetries we can take the
next step and use it to define the Golay code which is a binary code of length
24, so G24 ⊂ F24

2 , and study its symmetries. We mostly follow section 11.5 in
[CSdlH98] and section 5.2 in [Wil09] where we fill in some of the details that
were left out. First however, we have to introduce some notation that we will
use extensively throughout the next chapters.

3.1 Miracle Octad Generator

This notation is the Miracle Octad Generator (MOG) which was first introduced
in 1976 by R.T. Curtis, see [Cur76], as a mathematical tool to write down
codewords in the Golay code G24, automorphisms in the Mathieu group M24,
vectors in the Leech lattice Λ24 and even more. The advantage of the MOG
is that it is not just a way to write these down but also makes claims easier
to state and verify. G24,M24 and Λ24 are the next three main objects of our
study, so understanding the MOG is crucial for our goals and we will, therefore,
explain the MOG step-by-step.

Firstly, the 24 coordinates of a word in F24
2 are restructured into a 4 × 6-

matrix. The first coordinate corresponds to the leftmost entry of the top row
and the direction taken is first from top to bottom within the columns and then
from left to right between the columns. Zero-coordinates are indicated by empty
matrix entries while one-coordinates are indicated by a dot as the corresponding
matrix entry. This way, we get for example the following unfinished MOGs for
two words in F24

2 .

Example 3.1.

Next, we write down the weights of the six columns on top of the columns
and write down the weight of the top row to the right of that row. Similar to the
six coordinates in a hexacodeword, we also separate the 6 columns into three
pairs of two. For our examples, we then get the following.
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Example 3.2.

1 3 1 2 2 3

4

3 1 1 1 1 1

1

Next, we assign the elements of F4 as labels to the 4 rows of the MOG.
Starting with the top row, the labels are successively 0, 1, ω and ω. Lastly, the
score of a column is the sum of the row labels of the dots (one-coordinates) in
that column. The scores are written down below their corresponding columns.
For our examples, we get the following.

Example 3.3.

0

1

ω

ω

1 3 1 2 2 3

4

0 ω ω 1 ω 0

0

1

ω

ω

3 1 1 1 1 1

1

0 ω ω 1 ω 0

Remark 3.3.1. Notice that the two example words have the same exact scores.
This is possible since different columns can have the same score. The scores of
all 24 = 16 columns are as follows.

0 1 ω ω

Every score is obtained by 4 columns, two with even weight and two with odd
weight. From now on, we will say that a column is odd (resp. even) if it has
odd (resp. even) weight.

3.2 The Golay code

Now that the reader has hopefully understood the rules and conventions of the
MOG, we can use it to construct the Golay code which was first discovered in
1949 by the Swiss mathematician Marcel Golay, see [Gol49]. There are many
other constructions of the Golay code but the one using the MOG and the hex-
acode is the most insightful for our purposes, namely studying the symmetries.
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Definition 3.4. The Golay code G24 ⊂ F24
2 consists of the length 24 binary

words for which the following holds in MOG-notation:

• The weights of the columns and the first row have the same parity mod 2.

• Concatenating the scores, in the natural way, gives a hexacodeword.

We call a Golay codeword odd (resp. even) if the columns are odd (resp. even).

Remark 3.4.1. Scores and weights of the columns and the first row mod 2 are
additive. Since H6 is a linear code, it follows from the definition that G24 is also
indeed a linear code.

Because of the MOG-structure, we can interpret every length 24 words as
a concatenation of six length 4 words, namely the columns. We can therefore
define the following.

Definition 3.5. Let u be a Golay codeword and let ak be the number of columns
in the MOG with weight k. Then the column distribution of u is the expression

0a0 1a1 2a2 3a3 4a4

where the terms kak with ak = 0 are removed.

We will look at some examples of Golay codewords and their column distri-
butions.

Example 3.6. The left word in example 3.3 is not a Golay codeword since
the weights of the columns and the first row do not all have the same parity
mod 2. The weights in the right word are all odd and the scores form the word
0ω ω1ω0 which can be checked to be in the hexacode. So the right word is a
Golay codeword and has column distribution 31 15.

Example 3.7. It is easy to construct a Golay codeword from the definition.
Just pick a hexacodeword, for instance 00 11 11, and for each coordinate pick a
corresponding column such that all columns have the same parity and the weight
of the first row also has that parity. We can get, for example, the following even
and odd Golay codeword with column distributions 41 24 01 and 33 13 this way.

0

1

ω

ω

0 4 2 2 2 2

4

0 0 1 1 1 1

0

1

ω

ω

3 1 3 1 1 3

3

0 0 1 1 1 1

We will now begin our exploration of the Golay code and its symmetries.
First of all, we are interested in how many Golay codewords there are and how
they can be characterised.
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Lemma 3.8. G24 is a 12-dimensional linear code with 4096 codewords.

Proof. We count the number of Golay codewords with the same scores, in other
words, that correspond to the same hexacodeword. Let an arbitrary hexacode-
word be given and look at the corresponding even Golay codewords. There
are exactly two even columns that correspond to each coordinate of this hexa-
codeword, so we can then create 26 even words in MOG-notation that have the
desired scores.

Lastly, these have to satisfy the criterion that the first row has even weight.
Notice that out of the two even columns per coordinate, one has a dot in the top
row and one does not. Equivalently, one contributes 1 to the weight of the first
row and one contributes 0. It follows that to form a Golay codeword, the last
column is uniquely determined by the previous five, so we find 25 even Golay
codewords.

Analogously, we find 25 odd Golay codewords. So we see that every hexa-
codeword has 26 corresponding Golay codewords and we know from Corollary
2.18 that |H6| = 64, so we get

|G24| = 64 · 26 = 4096 = 212 and dim(G24) = 12

Theorem 3.9. The weight distribution of G24 is 01 8759 122576 16759 241.

Proof. We use 0 for the word consisting of 24 zeroes and 1 for the word consisting
of 24 ones. It can be verified with the definition that 0,1 ∈ G24. There are
no other words with weights 0 or 24, so the terms 01 and 241 in the weight
distribution are correct.

Since G24 is linear and 1 ∈ G24, we get that u ∈ G24 iff 1 − u ∈ G24. Note
that

w(1− u) = 24− w(u) and 1− u 6= u

So the number of words with weight k is equal to the number of words with
weight 24− k. So if the term 8759 is correct, the term 16759 is also correct.

We now show that the terms 8759 and 122576 are correct. Just like in lemma
3.8, we approach this by combinatorially constructing Golay codewords from
their corresponding hexacodeword, but now we also pay attention to the weights
of these Golay codewords.

We look at all the possible columns in Remark 3.3.1 and give each column
a characteristic (x, y) where x is the weight of the column and y is the value
of the entry in the top row. Note that the columns corresponding to 1, ω and
ω have the same characteristics, namely (1, 0), (3, 1), (2, 1) and (2, 0) while the
columns for 0 have characteristics (0, 0), (4, 1), (1, 1) and (3, 0). Also note that
for a MOG-word corresponding to a hexacodeword, the weights of the columns
and the first row determine its weight and whether it is a Golay codeword, so the
characteristics give all the necessary information of the columns. This means
that we can treat the coordinates 1, ω and ω the same but not 0, so we have
to classify the hexacodewords by their number of zeroes or equivalently their
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number of non-zeroes which is their weight. It is now a classic combinatorial
counting exercise to determine the number of even and odd Golay codewords
of weights 8 and 12 that correspond to a hexacodeword with a certain weight.
These numbers are:

Weight of the even GCW odd GCW even GCW odd GCW

hexacodeword of weight 8 of weight 8 of weight 12 of weight 12

0 15 6 0 20

4 8 6 16 20

6 0 6 32 20

We also know from Corollary 2.24 that the weight distribution ofH6 is 01445618.
So we find

21 + 14 · 45 + 6 · 18 = 759 Golay codewords of weight 8

20 + 36 · 45 + 52 · 18 = 2576 Golay codewords of weight 12

We have now verified the terms 01, 8759, 122576, 16759 and 241. These account
for

1 + 759 + 2576 + 759 + 1 = 4096 = |G24| Golay codewords

So there are no Golay codewords of weight other than 0, 8, 12, 16 or 24 and the
weight distribution is indeed 01 8759 122576 16759 241.

Remark 3.9.1. The weights of all Golay codewords are divisible by 4 and the
minimal weight and distance of G24 is 8.

We will encounter the 759 words with a minimal weight of 8 a few more
times, so we give them a name and classify them.

Definition 3.10. An octad is a Golay codeword of weight 8.

Remark 3.10.1. It follows from the table in the proof of Theorem 3.9 that there
are 384 odd octads and 375 even octads.

Corollary 3.11. The 384 odd octads all have column distribution 31 15. Of the
even octads, 15 have column distribution 42 04 and the other 360 have column
distribution 24 02

Proof. The odd octads can only consist of columns of weight 1 and 3, so for the
whole MOG-word to have weight 8, the column distribution must necessarily
be 31 15.

An even octad can only potentially have the column distributions 42 04,
41 22 03 and 24 02. There are exactly

(
6
2

)
= 15 of the first type and these

all correspond to the hexacodeword 00 00 00. There are none of the second
type since they would correspond to a hexacodeword with exactly 4 zeroes, so
of weight 2 but we know from Corollary 2.24 that these do not exist. So we
conclude that the remaining 360 even octads then have column distribution
24 02.
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We have already characterised the elements of G24 quite a bit and know
almost as much about the Golay code as the hexacode. One last necessary piece
of information before we move on to the automorphisms of the Golay code is a
basis of G24.

Example 3.12. It can be easily verified that the following 12 elements, taken
from [Gri98], form a basis of G24. The first 6 elements generate all the 26 Go-
lay codewords whose scores form the hexacodeword 00 00 00 and the latter 6
elements make it so the Golay codewords corresponding to the other hexacode-
words are also obtained.

0

1
ω

ω

0 0 0 0 0 0

3 1 1 1 1 1

5 0

1
ω

ω

0 0 0 0 0 0

1 3 1 1 1 1

5 0

1
ω

ω

0 0 0 0 0 0

1 1 3 1 1 1

5

0

1
ω

ω

0 0 0 0 0 0

1 1 1 3 1 1

5 0

1
ω

ω

0 0 0 0 0 0

1 1 1 1 3 1

5 0

1
ω

ω

0 0 0 0 0 0

1 1 1 1 1 3

5

0

1
ω

ω

1 1 1 1 0 0

2 2 2 2 0 0

4 0

1
ω

ω

0 0 1 1 1 1

0 0 2 2 2 2

4 0

1
ω

ω

0 1 0 1 ω ω

0 2 0 2 2 2

4

0

1
ω

ω
ω ω ω ω 0 0

2 2 2 2 0 0

4 0

1
ω

ω

0 0 ω ω ω ω

0 0 2 2 2 2

4 0

1
ω

ω

0 ω 0 ω ω 1

0 2 0 2 2 2

4

Similarly to the generators of H6, this basis of G24 can be used to verify that
the automorphisms we will use do indeed preserve G24. This is done by checking
that the images of the basis elements are contained in G24.

3.3 The Mathieu group M24

Now that we have a good understanding of G24 and what its codewords look
like, we can start exploring the many symmetries of the Golay code.
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Definition 3.13. The Mathieu group M24 is the automorphism group Aut(G24)
of the Golay code.

Remark 3.13.1. Note that every monomial transformation of F24
2 is just a per-

mutation of the coordinates since 1 is the only non-zero scalar in F2. We
can therefore interpret M24 as a subgroup of S24 and because of the MOG-
structure we will at times specifically interpret them as maps {1, 2, . . . , 6}×F4 →
{1, 2, . . . , 6} × F4.

Remark 3.13.2. Since there are no non-trivial field automorphisms of F2, we
also have M24 = Aut∗(G24).

As mentioned, we will use the MOG-notation to depict elements of M24 and
in general, monomial transformations of F24

2 . For this, we will introduce some
new conventions. Firstly, we will remove the weights and the scores since those
do not apply here and all 24 positions in the MOG will contain dots. Let a
monomial transformation be given and interpret it as a permutation of these
24 positions. We now represent this permutation in the MOG by drawing lines
between the permuted positions and their images. In case there is a cycle of
length at least 3, we also draw an arrowhead to indicate the direction of the
cycle. We get, for example, the following monomial transformations this way.

Example 3.14. The left monomial transformation swaps the first column with
the second and the fifth column with the sixth. The right example cyclically
permutes the second, third and fourth row.

0

1

ω

ω

0

1

ω

ω

We will also look at some examples of applying these automorphisms on
specific Golay codewords. We indicate the argument of an automorphism in
M24 by putting it in square brackets.

Example 3.15. We apply the right automorphism from Example 3.14 on the
right Golay codeword from Example 3.3 and get the following.

=

0

1

ω

ω

0

1

ω

ω

3 1 1 1 1 1

1

0 ω ω 1 ω 0

3 1 1 1 1 1

1

0 1 ω ω 1 0
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3.3.1 The subgroup 26: 3 .S6

Just like with the automorphism group of the hexacode in the previous section,
we will first look at some specific automorphisms contained in M24 and the
subgroup generated by them to get a feel of this group M24. Since the Golay
code is constructed with the help of the hexacode, it would be convenient if our
knowledge about the symmetries of the hexacode also transfers to the Golay
code. It turns out that this is the case.

Definition 3.16. We define a map ϕ : Aut(H6) → M24 as follows. For an
automorphism of the hexacode defined by

u 7→ (c1uσ(1), c2uσ(2), c3uσ(3), c4uσ(4), c5uσ(5), c6uσ(6))

for some σ ∈ S6 and non-zero scalars ci, the image under ϕ is the automorphism
of G24 that maps the entry in column i with label λ to the entry in column σ−1(i)
with label cσ−1(i)λ, so we get

ϕ(u) : {1, . . . , 6} × F4 → {1, . . . , 6} × F4 (i, λ) 7→ (σ−1(i), cσ−1(i)λ)

Remark 3.16.1. If we have an automorphism f ∈ Aut(H6) and a Golay codeword
u with scores v ∈ H6. Then the the Golay codeword

(
ϕ(f)

)
(u) will have scores

f(u). So ϕ(f) ∈ M24 applied on the scores of the MOG is the automorphism
f ∈ Aut(H6).

Because of our construction of the Golay code with the MOG and the hex-
acode scores, these are quite natural automorphisms. Let us look at some ex-
amples.

Example 3.17. The monomial transformations in Example 3.14 are contained
in Im(ϕ). The left example corresponds to a double flip and the right example
corresponds to scalar multiplication with ω. Both of these are elements of
Aut(H6) as mentioned in Lemma 2.19.

Another example is the image of the automorphism s of the hexacode which
was defined in (1) in the previous chapter. The image of a word u1u2 u3u4 u5u6

under this automorphisms is (ωu1, ωu2, u3, u6, u4, u5). The automorphism ϕ(s)
is then as follows.

0

1

ω

ω

We also have more hexacode-preserving maps that we can embed into M24,
namely the semi-automorphisms. One of them was the map t defined in (2).
The image of a word u under this semi-automorphism is (u1, u2, u3, u4, u6, u5).

Definition 3.18. The map ϕ can be extended to a map ϕ∗ : Aut∗(H6)→M24

where conjugation is achieved by swapping the last two rows with each other.
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Remark 3.18.1. It can be easily checked that ϕ∗ is a group homomorphism.

Example 3.19. The automorphism ϕ∗(t) ∈M24 is represented as follows.

0

1

ω

ω

We see that all (semi-)automorphisms of the hexacode can be naturally
embedded in M24. But there are even more automorphisms of the Golay code
we can already describe. Not only can we embed the automorphisms of the
hexacode in M24 but also the hexacode itself.

Definition 3.20. We define a map ψ : H6 → M24 as follows. Let a hexacode-
word u be given. Then its image under ψ is the automorphism of the Golay
code which maps the entry in column i with label λ to the entry in column i
with label λ+ ui. So we get

ψ(u) : {1, . . . , 6} × F4 → {1, . . . , 6} × F4 (i, λ) 7→ (i, λ+ ui)

Remark 3.20.1. If we consider H6 as an additive group, it can be easily checked
that ψ is a group homomorphism.

Remark 3.20.2. For a hexacodeword u and a Golay codeword g with scores
v ∈ H6 we get that the Golay codeword

(
ψ(u)

)
(g) has scores v + u if g is odd

and v if g is even. This follows from the fact that only the non-zero entries in
a Golay codeword contribute to the score and F4 has characteristic 2.

Example 3.21. A trivial example is ψ(00 00 00) which is just the identity map
on F24

2 . Let us look at two more exciting examples such as ψ(00 11 11) and
ψ(0ω ω1ω0). We then get the following MOG-representations.

0

1

ω

ω

0

1

ω

ω

Remark 3.21.1. Note that for all the images under ψ, we get either the identity
or the composition of two disjoint transpositions within each column.

We now know two types of automorphisms of the Golay code, corresponding
to elements of H6 or elements of Aut∗(H6). We will investigate these automor-
phisms further before moving on to the other automorphisms as we did with
the group G for the hexacode.
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Lemma 3.22. Im(ϕ∗) ∼= 3 .S6 and Im(ψ) ∼= 26.

Proof. It follows easily from Definitions 3.18 and 3.20 that ϕ∗ and ψ are injective
group homomorphisms. We therefore get

Im(ϕ∗) ∼= Aut∗(H6) ∼= 3 .S6 and Im(ψ) ∼= H6

As an additive group, it is easy to see that H6 is an abelian group with 26

elements where each except 00 00 00 has order 2. So it is an elementary abelian
group and Im(ψ) ∼= 26.

We will now look at the subgroup generated by the images of ϕ∗ and ψ. The
notation used for extensions can be found in Definition A.6.

Definition 3.23. The subgroup H = 〈 Im(ϕ∗), Im(ψ) 〉 is the subgroup of M24

generated by the images of ϕ∗ and ψ.

Theorem 3.24. H is isomorphic to 26: 3 .S6.

Proof. We will show that H is the semi-direct product of Im(ψ) and Im(ϕ∗). As
maps {1, 2, . . . , 6}×F4 → {1, 2, . . . , 6}×F4, we get for u ∈ H6 and f ∈ Aut(H6)

ψ(u) : (i, λ) 7→ (i, λ+ ui) and ϕ∗(f) : (i, λ) 7→ (σ−1(i), cσ−1(i)λ)

for some σ ∈ S6 and non-zero scalars ci.
We first have to prove that Im(ψ) is normal in H. We can check that the

following holds for u, v ∈ H6 and f ∈ Aut(H6).

ψ(u)ψ(v) = ψ(v) ◦ ψ(u) ◦ ψ(v)−1 = (i, λ) 7→ (i, λ+ ui) = ψ(u)

ψ(u)ϕ
∗(f) = ϕ∗(f) ◦ ψ(u) ◦ ϕ∗(f)−1 = (i, λ) 7→ (i, λ+ ciuσ(i)) = ψ(f(u))

The equality ψ(u)ϕ
∗(f) = ψ(f(u)) also holds if f is a semi-automorphism, so

we see that Im(ψ) is preserved by conjugation with the generators of H, so
Im(ψ) / H is normal.

Lastly, we have to check that the intersection Im(ψ)∩ Im(ϕ∗) is trivial. Let
an automorphism in this intersection be given. It is then simultaneously of the
form

(i, λ) 7→ (i, λ+ ui) and (i, λ) 7→ (σ−1(i), cσ−1(i)ui)

for some u ∈ H6, σ ∈ S6 and ci ∈ F∗4. It clearly follows that σ must be the
identity map from which follows that the equality λ + ui = ciui must hold for
all i and λ ∈ F4. It is easy to see that this only holds for ui = 0 and ci = 1. So
the intersection Im(ϕ∗) ∩ Im(ψ) is indeed trivial.

We conclude that H is the semi-direct product of Im(ψ) and Im(ϕ∗). It then
follows from Lemma 3.22 and the fact that semi-direct products are the same
as split extensions that

H = Im(ψ) o Im(ϕ∗) ∼= 26 o 3 .S6 = 26: 3 .S6

28



We now know a considerable amount of information about this subgroup
26: 3 .S6 ⊂M24, so it is time to move on to the group M24 itself. As mentioned
in the introduction, M24 is one of the 26 sporadic groups, the groups that do
not fit nicely into one of the infinite families of finite simple groups in the
Classification Theorem. We would like to explore this property more, so we will
specifically prove that M24 is a simple group in the next few sections.

A detailed exploration of finite simple groups can be found in Appendix
B where we mention that Iwasawa’s lemma, see [Iwa41], is the easiest way of
proving that a certain finite group is simple. We advise the reader to read
through Appendix B and specifically section B.2 involving actions.

Observation 3.25. We need to meet the following conditions to apply Iwa-
sawa’s lemma on M24 and conclude that M24 is simple.

1. M24 is finite and perfect

2. A faithful and primitive action of M24 on some set X.

3. A point stabiliser H with a normal, abelian subgroup A.

4. The conjugates of A generate M24.

We can already verify one part of the first condition.

Remark 3.25.1. M24 is finite since it is the automorphism group of a (finite)
linear code.

By far the hardest part of applying Iwasawa’s lemma is finding the right ac-
tion of M24 on some set X. We could try the natural action of M24 on the Golay
code or the action on the 24 coordinates of the MOG but it turns out that both
of these do not meet the conditions of Iwasawa’s lemma. Specifically, condition
4. can not be met since the normal, abelian subgroups of point stabilisers are
not large enough to generate M24 together with its conjugates in these cases.

Instead of immediately finding the right action, we could also choose a suit-
able group H and a normal, abelian subgroup A ⊂ H and then reverse engineer
the right set X and the right action of M24 on X. We have already suggestively
defined a subgroup H in Definition 3.23 and this is indeed the one we will choose
for Iwasawa’s lemma. We have also already seen that H contains the normal
abelian subgroup Im(ψ) = 26 which contains 64 elements. That is relatively
many and we will see that choosing this group for our A will meet condition
4. Now we just have to find the right action and set X and then verify all the
conditions.

3.4 Sextets and tetrads

We will spend this section on discovering such a suitable primitive action. One
necessary condition is that 26: 3 .S6 should be a point stabiliser of some element
of X, so we have to find some kind of element that is preserved by 26: 3 .S6.
It is not immediately clear from the definition what that would be. We know
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that 26: 3 .S6 contains the automorphisms ϕ∗(f) and ψ(u) for f ∈ Aut∗(H6)
and u ∈ H6. These are all very different automorphisms but there is one thing
that they all preserve. We can see that MOG-entries within the same column
stay within the same column when we apply one of those automorphisms. The
elements ψ(u) only permute entries within the same column and the elements
ϕ∗(f) permute whole columns with each other. So we see that this structure is
preserved by 26: 3 .S6.

To put it more precisely, this specific partition of the 24 MOG-positions into
6 groups of 4, namely the 6 columns, is preserved. The set X on which we will
define an action of M24 consists of these kinds of partitions of the MOG into
6 groups of 4. We will, however, not include all possible partitions in X but
only certain partitions so that the action we will define is indeed primitive and
faithful as required. The partitions of the MOG into 6 groups of 4 positions
that are included in X will be called sextets.

3.4.1 Cosets

We now have an intuitive feeling of what our set X is going to be but we will
first define these sextets rigorously and get a better feeling of which partitions
are included in X. To do this, we will have to look at the cosets of G24 within
F24

2 . Specifically, we will look at representatives of minimal weight of these
cosets. The cosets where the minimal representative has weight 4 will induce
the partitions we are interested in, so the sextets. We need the next two lemmas
to count the number of these cosets and sextets.

Lemma 3.26. A coset of G24 in F24
2 can not have two different representatives

of weight at most 3.

Proof. We know from Theorem 3.9 that the weight distribution of G24 is

01 8759 122576 16759 241

So the minimal weight/distance of the Golay code is 8. If there would be a coset
with two different representatives of weight at most 3, then their difference,
which is the same as their sum since we work in F2, would be a Golay codeword
and have a non-zero weight of at most 6 which is not possible. This proves the
lemma by contradiction.

Definition 3.27. We call two words u, v in F24
2 disjoint if they do not have a

one-coordinate in the same position.

Remark 3.27.1. Since we work in F2, this is equivalent to w(u+v) = w(u)+w(v).

Lemma 3.28. A coset of G24 in F24
2 can not have two non-disjoint representa-

tives of weight at most 4.

Proof. The same principle as in the proof of Lemma 3.26 applies since the
difference (or sum) of two non-disjoint representatives of weight at most 4 has a
non-zero weight of at most 6 because the one-coordinates in the same position
in both representatives cancel each other.
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Using these lemmas we can now count the number of cosets with a minimal
representative of weight 4.

Theorem 3.29. There are exactly 1771 cosets of G24 whose minimal represen-
tative has weight 4.

Proof. We know from Lemma 3.8 that dim(G24) = 12 and G24 ⊂ F24
2 , so there

are exactly 224−12 = 212 = 4096 cosets of the Golay code. We know from
Lemma 3.26 that each word of weight at most 3 is contained in a unique coset.
This way, we count exactly(

24

0

)
+

(
24

1

)
+

(
24

2

)
+

(
24

3

)
= 2325 cosets

with a minimal representative of weight at most 3. We now look at the words of
weight 4. Because of the same argument as in the two lemmas, all these words
can not be in one of the 2325 already found cosets. From Lemma 3.28, it follows
that at most 6 words of weight 4 can be contained in the same coset since it is
impossible to have 7 disjoint words of weight 4. We therefore find at least(

24

4

)/
6 = 1771 more cosets

We have now accounted for at least 2325+1771 = 4096 different cosets but that
is also the total number of cosets, so we have found them all. We conclude that
there are exactly 1771 cosets with a minimal representative of weight 4 and all
of these 1771 cosets contain exactly 6 disjoint representatives of weight 4.

Remark 3.29.1. This is another “count some objects and then find out those
are all of them” proof.

We can now define how these cosets induce the desired partitions.

Definition 3.30. Each of the 1771 cosets in Theorem 3.29 contains 6 disjoint
representatives of weight 4. We place each representative in the MOG and form
a group of the 4 positions that contain a dot, so the one-coordinates. Such a
group is called a tetrad. The 6 tetrads in the same coset are disjoint, so they
form a partition of the 24 positions into 6 groups of 4. This partition is called
a sextet. We define X to be the set of sextets.

Remark 3.30.1. It follows from Theorem 3.29 that |X| = 1771 since different
cosets determine different sextets.

Remark 3.30.2. Every choice of 4 positions of the MOG form a tetrad that is
contained in a sextet since every word of weight 4 is contained in one of the
1771 cosets from Theorem 3.29.

Remark 3.30.3. Look at two tetrads in a sextet. The MOG-word that has one-
coordinates in exactly the positions of these two tetrads is a Golay codeword
since the result is the sum of two representatives of the same coset which must
give an element of G24.
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We have finally defined the set X on which we will let M24 act, so let us
look at some elements of X to get a better feeling of this set. Once again, the
MOG comes in handy and we will introduce some conventions to specifically
represent sextets.

We will not write down row labels, weight and scores since they do not apply
to sextets. The positions in the same tetrad will be given the same number and
if possible, lines will be drawn to separate the different tetrads from each other.
This gives, for example, the following 2 MOGs.

Example 3.31.

1 2

1 2

1 2

1 2

3 4

3 4

3 4

3 4

5 6

5 6

5 6

5 6

1 1

1 1

2 2

2 2

3 3

3 3

4 4

4 4

5 5

5 5

6 6

6 6

The left sextet in this example will be necessary for our proof of the simplicity
of M24, so we will give it a name.

Definition 3.32. K is the left sextet in Example 3.31.

Before we study the action of M24 on the sextets, we will define an important
characteristic of sextets that we will need.

Definition 3.33. Let a sextet be given and look at the column distributions of
its 6 tetrads. We pick the distribution that has the highest coefficient for the
4-term and if there is a tie, the highest coefficient for the 3-term, etc. We also
remove the 0-term in the picked distribution. This is the characteristic of the
sextet.

Let us look at some examples again.

Example 3.34. K has characteristic 41 and the other sextet in Example 3.31
has characteristic 22. The following two MOGs also represent sextets which can
be checked by verifying that any choice of two tetrads forms an octad in the
Golay code together. They have characteristics 31 11 and 21 12 respectively.

1 2

2 1

2 1

2 1

3 3

4 4

5 5

6 6

3 3

4 4

5 5

6 6

1 1

1 2

3 5

4 6

1 2

2 2

6 4

5 3

5 6

4 3

3 6

5 4

We will take a closer look at the characteristics of the sextets.

Lemma 3.35. There is 1 sextet of characteristic 41, 90 of 22, 240 of 31 11 and
1440 of 21 12.
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Proof. From Remark 3.30.2, we can count the number of tetrads with each
column distribution. We get the following numbers.

Column distribution Number of tetrads

41 6

22 540

31 11 480

21 12 3840

14 5760

The tetrads with distribution 41 are exactly the tetrads of K, so there is in-
deed one sextet of characteristic 41. Because of the parity condition for Golay
codewords and the fact that two tetrads form an octad together, tetrads with
distribution 22 can not be in the same sextet as any tetrad with one of the three
bottom distributions. They must then be contained in sextets with 6 tetrads of
type 22, so we find 540/6 = 90 sextets of characteristic 22.

With similar parity arguments and the column distributions of octads found
in Corollary 3.11, we can deduce that there are exactly 240 sextets containing 2
tetrads of distribution 31 11 and 4 tetrads of distribution 14. And there are 1440
sextets with 2 tetrads of distribution 14 and 4 tetrads of distribution 21 12.

3.4.2 Transitivity and the order of M24

We now have enough information about sextets to move on to studying the
action of M24 on the set X of sextets. We take the natural action of M24 on X,
namely the one induced by the natural action of M24 on the 24 points of the
MOG. Just like with Aut(H6) previously, we will first look at the action of a
subgroup, in this case H = 26: 3 .S6, on X.

Lemma 3.36. The orbits of X under the action of H consist exactly of the
sextets with the same characteristic.

Proof. It is clear from the definition ofH, as the group generated by the elements
of Im(ϕ) and Im(ψ), that H preserves characteristics of sextets, so sextets with
different characteristics can not be in the same orbit.

Now we just have to show that sextets with the same characteristic are
contained in the same orbit. It is easy in this case to explicitly construct an
element of H that maps one sextet to the other. We will show this by example
but the general approach will become clear. We will take the following two
sextets for our proof by example.

1 1

1 2

3 5

4 6

1 2

2 2

6 4

5 3

5 6

4 3

3 6

5 4

5 3

5 4

4 6

3 6

6 2

5 1

1 6

2 5

3 1

4 1

2 3

2 4
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Note that every tetrad is contained in a unique sextet, so if we find an
automorphism that maps the left 1-tetrad to the right 1-tetrad, it also maps
the left sextet to the right sextet. We will now find the right element of H.
We first want to correctly permute the columns containing 1s. This is always
possible since Im(ϕ∗) ⊂ H acts on the columns like a full S6. Here, we can take
the permutation (15)(26) on the columns followed by the automorphism ϕ∗(s),
defined in Example 3.17.

=

5 6

4 3

3 6

5 4

1 2

2 2

6 4

5 3

1 1

1 2

3 5

4 6

5 6

5 6

4 4

3 3

1 1

2 2

6 5

5 6

2 1

2 1

4 3

3 4

We now pick an automorphism ψ(u) for some u ∈ H6 such that the 1s in
the columns are mapped to the right position. By inspection of the 1s, this
hexacodeword must be of the form ??ω1 ?0. It follows from Definition 2.16 that
any 3 coordinates can be extended to a hexacodeword. In this case, we get
u = 0ω ω1ω0. Applying ψ(0ω ω1ω0) then gives us

=

5 6

5 6

4 4

3 3

1 1

2 2

6 5

5 6

2 1

2 1

4 3

3 4

5 3

5 4

4 6

3 6

6 2

5 1

1 6

2 5

3 1

4 1

2 3

2 4

We now move on to the action of the full group M24 on the sextets. This
is the action that will meet the conditions of Iwasawa’s lemma together with
the choice of subgroups H and A = Im(ψ) = 26. We already implicitly claimed
that H is the point stabiliser of the sextet K consisting of the six columns. We
will verify that now.

Lemma 3.37. The point stabiliser (M24)K of the sextet K under the action of
M24 is H = 26: 3 .S6.

Proof. It is clear that H ⊂ (M24)K . We now prove the reverse inclusion. Let
an automorphism f ∈ (M24)K be given. We will prove that f ∈ H. First of
all, f preserves the sextet K, so the column structure. It therefore acts on the
columns like some σ ∈ S6. We know that H acts on the columns like a full
S6, so there is some g ∈ H which acts like σ−1 on the columns. Now look at
g ◦ f which then not only preserves K but also the tetrads of K, so the columns
themselves.
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We look at the images of (i, 0), the entry in column i with label 0, under
g ◦ f . Let these images be (i, ui). By looking at the image under g ◦ f of the
first basis element in Example 3.12, we know that u1u2 u3u4 u5u6 must be a
hexacodeword since those are the scores of the image and we know that g ◦ f
preserves the Golay code. Now let h = ψ(u1u2 u3u4 u5u6)◦g ◦f . We then know
that h preserves the columns and maps (i, 0) to (i, 0).

Now look at the images under h of the 7th, 8th, 10th and 11th element of
the basis in Example 3.12 and the two corresponding Golay codewords with
scores ωω ωω 00 and 00ωω ωω. It follows easily from our knowledge of the
hexacode, the definition of the Golay code and the fact that h ∈ M24 that h
is the automorphism corresponding to a scalar multiplication in Aut(H6). It
follows that h ∈ H and therefore also f ∈ H. We see that (M24)K ⊂ H and
thus (M24)K = H.

Another condition of Iwasawa’s lemma is that the action of M24 on the sex-
tets is primitive. A prerequisite for primitive actions is that they are transitive,
so we check that first.

Lemma 3.38. The action of M24 on the set X of sextets is transitive.

Proof. Look at the following monomial transformation which we will call α.

It can be checked that α ∈ M24 with the basis elements from Example 3.12.
It is also easy to check that α fuses the four orbits from Lemma 3.36, in other
words, for every choice of two orbits (under the action of H), there is a sextet in
one that is mapped to a sextet in the other. Like previously, we can concentrate
on the tetrads since they determine a unique sextet. The claim then follows by
checking the images of the following tetrads, indicated by coloured boundaries.

It follows from Lemma 3.35 that the four orbits, so the four characteristics, are
indeed fused by α and therefore there is only one orbit for the action of M24 on
X, so M24 acts transitively on the sextets.

One useful aspect of actions is that we can use the orbit-stabiliser theorem to
calculate the order of the group if we know the sizes of the orbit and stabiliser
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of an element. We now know those sizes for the sextet K, so an important
intermediate result is the order of M24.

Corollary 3.39. |M24| = 244823040 = 210 · 33 · 5 · 7 · 11 · 23

Proof. We know from Lemma 3.37 that (M24)K = 26: 3 .3S6 and from Lemma
3.38 that M24K = X, so we get with the orbit-stabiliser theorem that

|M24| = |(M24)K | · |M24K| = |26: 3 .6| · |X|
= 26 · 3 · 6! · 1771 = 244823040 = 210 · 33 · 5 · 7 · 11 · 23

Remark 3.39.1. Notice that |M24| is divisble by 20 · 21 · 22 · 23 · 24. As we will
after Lemma C.4, this is not a coincidence.

3.5 Simplicity of M24

As mentioned, the action of M24 on the sextets is not only transitive but also
primitive which is necessary for Iwasawa’s lemma, so we will prove that now.

Theorem 3.40. The action of M24 on the set X of sextets is primitive.

Proof. We already saw that M24 acts transitively. Now assume that M24 does
not act primitively on the sextets, so there is some non-trivial partition of X
that is preserved by M24. We clearly have M24 6= (M24)K = H, so M24 does
not always preserve the sextet K which means that K can not be in a singleton
set in this partition. So K is contained in an imprimitivity block, name this
block B, and there is at least one more sextet L ∈ B. We will show that all
the sextets must be contained in B which is not possible by the definition of an
imprimitivity block, so this would prove the claim.

Let an arbitrary f ∈ H be given, we then get

{K, f(L)} = {f(K), f(L)} ⊂ f(B)

We know that f(B) = B or f(B)∩B = ∅ by definition but clearly K ∈ f(B)∩B,
so the last option is not possible. We get f(B) = B and therefore f(L) ∈ B.
So we see that the orbit of L under the action of H must be contained in B. It
follows from Lemma 3.35 that all sextets with the same characteristic as L are
elements of B. Now all we have to do is show that for each characteristic, there
is some sextet in B since then all sextets are in B.

We will look at the automorphism α from Lemma 3.38 again and some new
tetrads indicated by the coloured boundaries.
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We can see that α is contained in the stabilisers of the sextets corresponding
to the three left sextets. These three sextets all have different characteristics,
so at least one of them is contained in B. Assume wlog that the blue one is
contained in B and call it S. The sextets corresponding to the two right sextets
have the same characteristic and are then also contained in B. We can now
apply the same trick we did with H = (M24)K to α ∈ (M24)S and get that
the images of the right two sextets under α are contained in B. These have
characteristics 22 12 and 31 11 respectively, so there is at least one sextet of each
characteristic in B It follows that B contains all sextets which is not possible.
So by contradiction, it is proven that M24 works primitively on the sextets.

With this Theorem, we have proven the most difficult condition of Iwasawa’s
lemma for our action. There are 2 important remaining conditions. The con-
jugates of A = 26 = Im(ψ) need to generate M24 and M24 needs to be perfect.
We focus on the conjugates first.

Definition 3.41. J is the subgroup of M24 generated by the conjugates of A.

Remark 3.41.1. By definition, J is closed under conjugation.

We want to prove that J = M24 which is just a matter of writing down
conjugates of A until we have enough to generate M24. We first prove the
following intermediate result.

Lemma 3.42. The subgroup H = 26: 3 .S6 is contained in J .

Proof. We know that H is generated by the elements in Im(ϕ∗) and Im(ψ) =
26. By definition, Im(ψ) ⊂ J , so we only need to show that the image of
ϕ∗ : Aut∗(H6)→M24 is contained in J . We know from Lemma 2.19, Theorem
2.25 and Theorem 2.26 that Aut∗(H6) is generated by scalar multiplications,
permutations of coordinate pairs, double flips, the automorphism s and the
semi-automorphism t. So it is enough to show that the following elements of
M24 are contained in J where m is a scalar multiplication, p is a permutation
of the the coordinate pairs and d is a double flip.

ϕ∗(m) ϕ∗(p) ϕ∗(d)

ϕ∗(s) ϕ∗(t) ϕ∗(t) ◦ ϕ∗(m)
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If all these elements are in J , then also the other permutations of coordinate
pairs, scalar multiplications and double flips are in J since they are either con-
jugates of the shown elements or generated by them. For the proof that these
elements are in J , we have to look at the following sextets.

1 1

1 1

2 2

2 2

3 3

3 3

4 4

4 4

5 5

5 5

6 6

6 6

1 2

2 1

2 1

2 1

3 3

4 4

5 5

6 6

3 3

4 4

5 5

6 6

1 1

2 2

1 1

2 2

3 3

4 4

3 3

4 4

5 5

6 6

5 5

6 6

It is easy to see that ϕ∗(t) preserves the left sextet, ϕ∗(d) preserves the
middle sextet and ϕ∗(t)◦ϕ∗(m) preserves the right sextet. Since M24 acts tran-
sitively on the sextets, we know that the point stabilisers are conjugates. So
these three automorphisms are conjugates of elements in H and from inspec-
tion, it follows that they are conjugates of some automorphism ψ(0a 0a bc) ∈ A
since within each tetrad they are either the identity or the composition of two
transpositions which was also the case for A = Im(ψ) and the sextet K, see
Remark 3.21.1. So these elements are all contained in J .

It then also follows that ϕ∗(m) ∈ J and we see that ϕ∗(d)ϕ
∗(s) = ϕ∗(p),

so this element is also in J since J is closed under conjugation. Lastly, we see
that ϕ∗(s) preserves the middle sextet and is a conjugate of ϕ∗(m), so all the
required elements are in J and we conclude that H ⊂ J .

We can now prove that J = M24.

Lemma 3.43. The conjugates of A generate M24.

Proof. It follows from Lemma 3.42 that H ⊂ J . We also know that the following
automorphism α is contained in J since just like ϕ∗(t) in Lemma 3.42, it pre-
serves the left sextet and it follows that it is a conjugate of some ψ(0a 0a bc) ∈ A.

Since H ⊂ J and α ∈ J , it follows from the proof of Lemma 3.38 that J acts
transitively on the sextets and JK = H, so with the orbit-stabiliser theorem we
get

|J | = |JK | · |JK| = |H| · |X| = |M24|

We also clearly have J ⊂M24, so it follows that J = M24.

Next, we have to check that the group M24 is perfect but this actually follows
quite easily from the fact that the conjugates of A generate M24.

Corollary 3.44. The automorphism group M24 is perfect.
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Proof. We have to prove that the commutator group [M24,M24] generated by
the commutators is the whole group M24. The following equality for u ∈ H6

can be easily checked

[ψ(u), ϕ∗(m)] = ψ(u)ϕ∗(m)(ψ(u))−1(ϕ∗(m))−1 = ψ(u)ψ(ωu) = ψ(ωu)

It follows easily that the image of ψ is contained in [M24,M24], soA ⊂ [M24,M24].
We also know that conjugates of commutators are commutators, so it fol-
lows that J ⊂ [M24,M24] but it then follows from Lemma 3.43 that M24 =
[M24,M24], so M24 is perfect.

Now, we only have one condition remaining that we need to check. M24

needs to act faithfully on the sextets.

Lemma 3.45. M24 acts faithfully on the set X of sextets.

Proof. We have to show that there is no non-identity element of M24 that pre-
serves all the sextets. Assume there is such an automorphism f . We interpret f
as an element in S24 and it can then be written as a product of disjoint cycles.
We will construct a tetrad T such that its sextet S is not preserved by f .

First assume that f contains a cycle of at least length 3. Pick a position a
in this cycle and put a, f(a) and two random elements which are not f(f(a))
in T . We then clearly get that f(T ) and T are unequal and non-disjoint, so
f(S) 6= S.

Now assume that there are at least two cycles of length 2 in f , say (ab) and
(cd). Then pick T = {a, b, c, e} where d 6= e and we also get f(S) 6= S. Lastly,
assume that there is only one cycle (ab) of length 2 and all other cycles have
length 1. Then pick T = {a, c, d, e} where c, d, e 6= b and in this case too, we get
f(S) 6= S. We conclude that M24 acts faithfully on the sextets.

We have completed all the hard work and we can finally apply Iwasawa’s
lemma to prove the simplicity of M24.

Theorem 3.46. The automorphism group M24 is simple.

Proof. We use Iwasawa’s lemma where X is the set of sextets, H = 26: 3 .S6 and
A = 26. The conditions with the references to their proofs are then as follows.

1. M24 is finite (Remark 3.25.1) and perfect (Corollary 3.44).

2. M24 acts faithfully (Lemma 3.45) and primitively (Theorem 3.40) on X.

3. There is a point stabiliser H (Lemma 3.37) with a normal, abelian sub-
group A (Theorem 3.24).

4. The conjugates of A generate M24. (Lemma 3.43)

We conclude that M24 is simple.

We end our study of the Golay code and its automorphism group M24 with
this important result. The main results we have obtained are the dimension,
weight distribution and a basis of G24, the simplicity of M24 and a good under-
standing of the automorphisms in M24, especially the elements of H.
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4 The Leech lattice Λ24

With the knowledge of G24 and M24 from the previous section, we can finally
define the main object of this thesis, the Leech lattice Λ24. We will mostly
follow section 5.4 in [Wil09] where we fill in many details that were left out.
Unlike the Golay code and the hexacode, Λ24 is a lattice and not a linear code.
One might expect that this means our study of the Leech lattice will be very
different from our study of the Golay code. This is not the case however and it
turns out that there will be many similar notions and proofs. This is why we
will not provide as detailed proofs as for the Golay code in most cases. Most of
them require a lot of calculating and verifying which the reader should be able
to do themselves by mirroring the proofs in the previous chapter for the Golay
code.

4.1 Construction of the Leech lattice

Like how we defined the Golay code with the help of the hexacode, we will
now give a definition of the Leech lattice that uses the Golay code. It was first
constructed by John Leech in 1967, see [Lee67], although Witt claims to have
found the Leech lattice in 1940, see [Wit98]. There are many other constructions
of the Leech lattice but the one we present here gives us the most information
for our purposes.

Definition 4.1. The Leech lattice Λ24 ⊂ R24 consists of the vectors x =
(x1, . . . , x24) ∈ Z24 for which the following conditions hold:

• There is an m ∈ {0, 1} for which xi ≡ m mod 2 for all 1 ≤ i ≤ 24.

•
24∑
i=1

xi ≡ 4m mod 8.

• For all k ∈ {0, 1, 2, 3} the word uk ∈ F24
2 defined by

(uk)i =

{
1 if xi ≡ k mod 4

0 otherwise

is a Golay codeword.

If m = 0, then the Leech lattice vector is called even, if m = 1, it is called odd.

Remark 4.1.1. It is easy to check that this definition indeed gives a lattice.

Remark 4.1.2. In the third condition, for two choices of k we have uk = 0 since
either all coordinates are odd or all are even. If m = 1, then we clearly have
u1 = 1− u3, so it is only necessary to check that one of them is in G24.

This construction is related to the general construction of a lattice from a
code mentioned in Definition 2.9 since

2B(G24) =

{
2x : x ≡ u mod 2 for some u ∈ G24 and

24∑
i=1

xi ≡ 0 mod 4

}
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contains exactly half of the lattice points of Λ24, namely the even Leech lattice
vectors. The other half is given by the translated lattice 2B(G24)+(−3, 1, . . . , 1).
The lattice B(G24) was first noticed by Leech in 1964, see [Lee64], but he later
noticed that one more translated copy of B(G24) could be fit into the holes of
the former lattice and discovered the Leech lattice which was published in 1967,
see [Lee67].

Let us look at some examples to get a better understanding of this defini-
tion, especially the last condition relating the Leech lattice to the Golay code.
Once again, we use MOGs to denote Leech lattice vectors. Zero-coordinates
are indicated by empty entries while we write down the values of the other
coordinates.

Example 4.2. The first two conditions in Definition 4.1 are easy to check. We
give the numbers that are 1 mod 4 a red colour and the numbers that are 2
mod 4 a blue colour. For the third condition, we then need to check that the
red or blue positions form a Golay codeword together which is the case for the
following four vectors.

4

4

0

1

ω

ω

0 0 0 0 0 0

2 2

2 2

2 2

2 2

0

1

ω

ω

ω ω ω ω 0 0

−3 1 1 1 1 1

1 1 1 1

1 1

1 1

1 1 1

1 1 1

1

1 1 1

0

1

ω

ω

0 0 0 0 0 0

1

1

1

1

1

1

1 1

3 −1−1−1−1

−1−1 −1−1

−1 −1

−1

−1 −1

−1 −1

0

1

ω

ω

0 ω ω 1 ω 0

It also follows easily from the definition how we can find Leech lattice vectors.

Example 4.3. Pick some Golay codeword. Then pick an m ∈ {0, 1, 2, 3} and
in the positions of the Golay codeword, put integers m mod 4. In the other
positions, put integers m + 2 mod 4. Now check whether the sum of the co-
ordinates is 4m mod 8. If not, add 4 to a random coordinate. We can get,
for example, the following Leech lattice vector when we choose the right Golay
codeword from Example 3.7 and m = 0.

8 −4 12

8 −8

4 8 8

4 4

2 2 −2

6 10 2

−6 −2

2 −6−2

6

0

1

ω

ω

0 0 1 1 1 1
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Now that we have a better understanding of what a Leech lattice vector is
and what they look like, we would like to classify them in some way as we did
with the Golay codewords. One important aspect we studied was the weight of
a codeword which was an Fnq -equivalent of the Euclidean norm. We therefore
want to also assign a weight to the Leech lattice vectors which we can define
with the Euclidean norm. The standard dot product in R24 would work in this
case but it follows with some modular arithmetic that the standard dot product
of two Leech lattice vectors is always divisible by 8. We therefore define the
following scaled inner product.

Definition 4.4. We work with the inner product x · y on R24 defined by

x · y =
1

8

24∑
i=1

xiyi

Remark 4.4.1. This is the smallest scaling of the standard dot product such
that x · y is an integer for all x, y ∈ Λ24 so that Λ24 is integral. The top two
Leech lattice vectors in Example 4.2 have inner product 1 and the two on the
left have inner product −1.

Remark 4.4.2. Another approach frequently used in the literature is to use the
standard dot product but scale the Leech lattice by a factor 1√

8
. In our case,

this would make some presentations unnecessarily complicated.

We can now define a weight function on the Leech lattice.

Definition 4.5. The weight of a vector x ∈ Λ24 is defined as w(x) = x · x.

Remark 4.5.1. Note that w(λx) = λ2w(x) for all λ ∈ Z and x ∈ Λ24.

Remark 4.5.2. It follows with some modular arithmetic that w(x) is even for all
Leech lattice vectors x.

Example 4.6. All the Leech lattice vectors in Example 4.2 have weight 4 while
the vector in Example 4.3 has weight 100.

For the rest of this section, our strategy is analogous to what we did while
defining the weight of a vector. Namely, thinking about what we did with the
Golay code and trying to find equivalent concepts, elements or objects for the
Leech lattice.

4.2 Minimal vectors

One piece of information that was very important for our study of the Golay code
was its weight distribution. We can not determine a usual weight distribution
since a lattice contains an infinite number of vectors but the number of vectors
with a certain weight is finite since lattices are discrete. We can therefore define
the following generating series for a lattice.
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Definition 4.7. Let L be a lattice. Its theta function is given by the following
expression.

ΘL(τ) =
∑
x∈L

eπiτ ·w(x)

For even integral lattices like Λ24 we can express the theta function in nicer
terms.

Remark 4.7.1. Let ak be the number of Leech lattice vectors with weight 2k
and let q = eτ , we then get

ΘΛ24
(τ) =

∞∑
k=0

akq
k

The theta function ΘΛ24
is actually a modular form and plays a huge role in

the proof that Λ24 is the densest 24-dimensional sphere packing, see [CKM+17].
We will not go into the details since this thesis does not focus on modular forms
but while studying the automorphism group of Λ24, we will need the values of
a0, . . . , a4, so we will give the relevant vectors a name.

Definition 4.8. A Leech lattice vector x is called a short vector if w(x) ≤ 8.

Remark 4.8.1. The coordinates of a short vector are in {−8,−7, . . . , 7, 8}
We now want to determine the values of a0, . . . , a4. While counting the

number of Leech lattice vectors of a certain weight, there are multiple cases
that need to be handled differently. We first introduce a characteristic for short
vectors that identifies these cases. This characteristic is very reminiscent of the
column distribution of a Golay codeword or the characteristic of a sextet.

Definition 4.9. Let x be a short Leech lattice vector and let ak be the number
of coordinates with value k or −k. The expression

(8a8 , 7a7 , 6a6 , 5a5 , 4a4 , 3a3 , 2a2 , 1a1 , 0a0)

where the terms with ak = 0 are removed, is the characteristic of x.

Example 4.10. The Leech lattice vectors in Example 4.2 are all short. They
have characteristics (42, 022), (28, 016) and (3, 123).

We can now start counting the short vectors. We already mentioned in
Remark 4.5.2 that every Leech lattice vector has even weight and it is clear
that there is exactly one Leech lattice vector of weight 0. So the following four
lemmas are sufficient.

Lemma 4.11. There are no short vectors of weight 2.

Proof. It follows from some simple arithmetic that a Leech lattice vector of
weight 2 would have characteristic (41, 023) or (24, 020). The first one can not
meet the first condition in Definition 4.1 while the second one can not meet the
third condition since there are no weight 4 Golay codewords.
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Lemma 4.12. There are 196560 short vectors of weight 4.

Proof. It follows from some basic arithmetic that a Leech lattice vector of weight
4 can only have characteristic (31, 123), (28, 016), (42, 022) or (41, 24, 019). The
last case does not meet the third condition in Definition 4.1. We count the num-
ber of short vectors of the other characteristics. These are simple combinatorial
problems.

In the case of (31, 123) we have 24 options for the position of the ±3. Fur-
thermore, we have 224 choices for the signs of all the coordinates. However,
most of these do not give a Leech lattice vector since u1 and u3 (as in Definition
4.1) have to be Golay codewords. We know from Lemma 3.8 that there are
212 = 4096 Golay codewords, so exactly 4096 choices for the signs give a Leech
lattice vector. In total, we count

4096 · 24 = 98304 short vectors of characteristic (31, 123)

For (42, 022), all the vectors of this characteristic automatically meet all the
conditions in Definition 4.1. There are

(
24
2

)
choices for the positions of the

±4-coordinates and we have 22 sign choices. So we count(
24

2

)
· 4 = 1104 short vectors of characteristic (42, 022)

For (28, 016), we must have that u2 is a Golay codeword, so the eight coordi-
nates with value 2 or -2 must form an octad. We know from Theorem 3.9 that
there are 759 octads. Furthermore, there are 28 sign choices but only half of
them meet the second condition in Definition 4.1, having the total sum of the
coordinates be divisible by 8, and give a Leech lattice vector. We count

759 · 27 = 97152 short vectors of characteristic (28, 016)

In total, we find 98304+1104+97152 = 196560 short vectors of weight 4.

The proofs for the short vectors of weight 6 and 8 are analogous to the proof
of Lemma 4.12 but are even longer because of more possible characteristics.
Therefore, we will just write down the characteristics and the number of short
vectors per characteristic and leave it as an exercise to the reader to verify them.

Lemma 4.13. There are 16773120 short vectors of weight 6.

Proof. The factor 2576 in the last row comes from the number of weight 12 Golay
codewords, see Theorem 3.9. All the numbers indeed add up to 16773120.

Characteristic Combinatorial interpretation Number of short vectors

(5, 123) 24 · 212 98304

(33, 121)
(

24
3

)
· 212 8290304

(4, 28, 015) 759 · 16 · 28 3108864

(212, 012) 2576 · 211 5275648
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Lemma 4.14. There are 398034000 short vectors of weight 8.

Proof. The numbers below add up to 398034000.

Characteristic Combinatorial interpretation Number of short vectors

(5, 32, 121)
(

24
2

)
· 22 · 212 24870912

(35, 119)
(

24
5

)
· 212 174096384

(8, 023) 24 · 2 48

(6, 27, 016) 759 · 8 · 27 777216

(44, 020)
(

24
4

)
· 24 170016

(42, 28, 014) 759 ·
(

16
2

)
· 29 46632960

(4, 212, 011) 2576 · 12 · 212 126615552

(216, 08) 759 · 215 24870912

As with the hexacode and Golay code, we want to find generators and a
basis of Λ24. Our knowledge about the short vectors is enough to find these.

Theorem 4.15. The Leech lattice is generated by the short vectors of weight 4.

Proof. Let x ∈ Λ24 be randomly given. We will show that x can be written as
the sum of short vectors of weight 4. We can assume that x is even since if it is
odd we add a short vector of characteristic (3, 123) to get an even vector. Now
the word u2, consisting of all positions with a coordinate 2 mod 4, is a Golay
codeword. We know from the basis in Example 3.12 that the Golay code is
generated by the octads, so we can add suitable short vectors of characteristic
(28, 016) so that all the coordinates of x become divisible by 4.

Now note that a short vector of characteristic (8, 023) can be easily written
as the sum of two short vectors of characteristic (42, 022), for example

(8, 0, . . . , 0) = (4,−4, . . . , 0) + (4, 4, . . . , 0)

Now add or subtract vectors of characteristic (8, 023) to x so that all coordinates
become 0 or 4. The sum of all coordinates needs to be divisible by 8, so there
is an even number of fours in x which can then easily be written as the sum of
short vectors of characteristic (42, 022). So x is in the linear span of the short
vectors of weight 4 and we see that Λ24 is generated by these vectors.

It follows from Lemma 4.12 and Theorem 4.15 that we have found a set of
196560 generators for the Leech lattice. However, most of these are not necessary
since Λ24 is 24-dimensional. We can write down an explicit 24 element basis.

Corollary 4.16. The following 24 Leech lattice vectors, taken from [CSdlH98],
form a basis of Λ24.
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4
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4
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2

2

2

2

2

2

4 4

4

4

4

4

2

2

2

2

2

2

2

2

4 4 2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

4 4 2 2

2

2

2 2

2

2

2 2

2

2

2 2

2

2

2 2

2

2

2 2

2

2

22 2

2

2 2

2

2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

−3 1 1 1 1 1

1 1 1 1

1 1

1 1

1 1 1

1 1 1

1

1 1 1
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Proof. It is easy to see that all of these vectors are indeed in the Leech lattice.
We put these 24 vectors in standard vector notation and then put them into a
24 × 24 matrix M as columns from left to right. We get an upper triangular
matrix with determinant 812, so these vectors are linearly independent.

Let L ⊂ Λ24 be the sublattice generated by these 24 linearly independent
vectors. We have that M is a generator matrix of L and since we use the
scaled inner product, the volume also gets scaled by 8−12. The corresponding
fundamental region F therefore has volume 1.

Let M ′ be a generator matrix of Λ24. Since Λ24 ⊂ Z24 is integral, the volume
of the fundamental region F ′ of Λ24 has integer volume and we get the following
inequality from linear algebra for the index of L inside Λ24.

[Λ24 : L] =
|det(M)|
|det(M ′)|

=
Vol(F )

Vol(F ′)
=

1

Vol(F ′)
≤ 1

So it follows that [Λ24 : L] = 1 and therefore L = Λ24 and the 24 shown vectors
form a basis of Λ24.

4.3 Leech lattice packing

Before we move on to studying the symmetries of the Leech lattice, we explore
the sphere packing induced by the Leech lattice which was our motivation to
go on a journey to define the Leech lattice. We will determine some of the
properties of this sphere packing. As mentioned in chapter 1, the proof that
the Leech lattice packing is indeed the densest 24-dimensional sphere packing
requires extensive knowledge of modular forms which is not the focus of this
thesis. We refer the curious reader to [CKM+17] for this proof.

We follow the approach mentioned in Remark 4.4.2, so we use the usual
standard inner product instead of the scaled one but scale the whole Leech
lattice with a factor 1√

8
. Note that the weights of the vectors remain the same

after this change. We choose the basis from Corollary 4.16 and look at the
corresponding generator matrix M . We can then show the following.

Theorem 4.17. The Leech lattice packing has densities

∆(Λ24) =
π12

12!
and δ(Λ24) = 1

Proof. It follows that

det(M) = 812 ·
(

1√
8

)24

= 1

so Λ24 is a unimodular lattice. Furthermore, the minimal weight of a Leech
lattice vector is 4, so the minimal distance between two Leech lattice points is√

4 = 2. This means that the spheres in the Leech lattice packing have radius
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ρ = 1. With the formulas from Chapter 1 we then get

δ =
ρn

|detM |
=

124

1
= 1

∆ = V24 · δ =
π12

12!

Lastly, we determine the kissing number of Λ24 which is quite easy to do
now.

Lemma 4.18. The kissing number of the Leech lattice is 196560

Proof. The kissing number is the number of spheres that touch a given sphere.
We can choose the sphere with center (0, . . . , 0) and the kissing number becomes
the number of lattice points whose distance to the origin is 2ρ = 2. In other
words, the number of Leech lattice vectors of weight 4. It now follows from
Lemma 4.12 that the kissing number is 196560.

4.4 The Conway group Co0

We now move on to studying the symmetries of the Leech lattice which we
will study in a very similar way to M24. We have previously only defined
automorphisms for linear codes, so we define what we consider an automorphism
of a lattice.

Definition 4.19. Let L ⊂ Rn be a lattice. An R-linear map Rn → Rn is called
an automorphism of L if it preserves L and preserves the inner product so

f(L) = L and f(x) · f(y) = x · y

The automorphisms of L form a group Aut(L).

Remark 4.19.1. Automorphisms also preserve weights. The inner product pre-
serving condition is equivalent to the associated matrix A being orthogonal, so
AAT = In and det(A) = ±1.

Definition 4.20. The group Co0 is the automorphism group Aut(Λ24) of the
Leech lattice. It was first discussed by John Conway in [Con68] and [Con69].

Remark 4.20.1. Every automorphism in Co0 is defined uniquely by its action
on the 196560 short vectors of weight 4. We can interpret Co0 as a subgroup of
S196560, a group of order 196560! ≈ 3.4× 10955127, so Co0 is finite.

An important difference between automorphisms of a lattice and automor-
phisms of a code is that we do not just restrict ourselves to monomial transfor-
mations, permutations of the coordinates combined with coordinate-wise scalar
multiplications, but consider many more linear maps, namely all the orthogonal
transformations. One undesirable consequence of this is that in general there is
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no easier way to represent automorphisms of the Leech lattice than just writing
down the corresponding 24×24-matrix (w.r.t. to the standard basis of R24). In
some cases, we can adjust the MOG to represent an automorphism or describe
the 24× 24-matrix using smaller matrices like in the following example.

Example 4.21. The linear map β : R24 → R24, inspired by a similar element
in [Gri98], whose associated matrix is the following block matrix

−Bl 0 0 0 0 0
0 Bl 0 0 0 0
0 0 Bl 0 0 0
0 0 0 Bl 0 0
0 0 0 0 Bl 0
0 0 0 0 0 Bl

 where Bl =
1

2


1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1



is an automorphism of Λ24. It is easy to check that the matrix of β is orthogonal
and that β preserves the Leech lattice by checking that the images of the basis
elements in Corollary 4.16 are Leech lattice vectors.

Remark 4.21.1. β acts like −Bl on the first column and Bl on the other columns
in the MOG-notation of a Leech lattice vector.

Let us look at an example of an automorphism in action.

Example 4.22. We get the following if we apply β on the 21st basis element
in Corollary 4.16.

=

22 2

2

2 2

2

2

3 1 1 1 1 1

1

1

1

−1

−1

−1

−1−1−1−1

−1 −1

−1 −1

−1 −1

−1 −1

β

4.4.1 The subgroup 212:M24

We now proceed to the automorphisms that we can represent with the MOG.
These automorphisms are related to the elements of G24 and M24 and generate
a subgroup 212:M24. This is almost identical to the subgroup 26: 3 .S6 ⊂ M24

that was built from automorphisms related to elements of H6 and Aut∗(H6).
We first define how we embed M24 and G24 into Co0.

Definition 4.23. We define a group homomorphism Φ : M24 → Co0 where
Φ(f) is the linear map that acts on the coordinates of R24 like f acts on the
coordinates of F24

2 .

Remark 4.23.1. It follows from Definition 4.1 that Φ is well-defined and we
clearly have that Φ is injective, so Im(Φ) ∼= M24.
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The homomorphism Φ is a very natural homomorphism. So natural in fact,
that we can just use the same MOG for Φ(f) as for f . We will take a look at
an example.

Example 4.24. Let α ∈ M24 be defined as in Lemma 3.38. We then get the
following if we apply Φ(α) to the 20th basis element in Corollary 4.16. The
result is indeed a Leech lattice vector.

=

2 2

2

2

2 2

2

2

2 2

2

2

2

2

22

We also embed the Golay code itself, interpreted as an additive group, into
Co0 as follows.

Definition 4.25. We define a group homomorphism Ψ : G24 → Co0 where Ψ(u)
is the linear map that sends the coordinates xi of a Leech lattice vector x to

xi 7→

{
xi if ui = 0

−xi if ui = 1

So it switches the signs at the positions of the one-coordinates and is the identity
at the zero-coordinates.

Remark 4.25.1. It is easy to see again with Definition 4.1 that Ψ is well-defined
and injective. We know from Lemma 3.8 that |G24| = 212 and each has order 2
since F2 has characteristic 2. So we see Im(Ψ) ∼= G24 = 212.

We can also represent the images of Ψ in MOG-notation. One possibility is
to represent Ψ(u) with the MOG of u as a Golay codeword but for compatibility
with the MOGs of the images Φ(f) we make a slight change. All entries will
have dots but the zero-coordinates will have grey dots while the one-coordinates,
where sign changes occur, have red dots. An example of applying such an
automorphism is as follows.

Example 4.26. We take the right word in Example 3.3 for u and we get the
following if we apply Ψ(u) to the last basis element in Corollary 4.16.

=

−3 1 1 1 1 1

1 1 1 1

1 1

1 1

1 1 1

1 1 1

1

1 1 1

−1

−1

−1

−1

−1

−1

−1 −1

−3 1 1 1 1

1 1 1 1

1 1

1

1 1

1 1
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As with the subgroup H = 26: 3 .S6 of M24, we look at the subgroup gener-
ated by the images of Φ and Ψ. We call this subgroup I. Then the following
Theorem easily follows.

Theorem 4.27. The subgroup I = 〈 Im(Φ), Im(Ψ) 〉 is isomorphic to 212:M24.

Proof. This is analogous to the proof of Theorem 3.24.

Remark 4.27.1. It can be shown that I consists exactly of all the monomial
transformations, so permutations of the coordinates combined with coordinate-
wise scalar multiplications, that preserve Λ24.

It also follows from this Theorem that every element of I can be uniquely
written as Ψ(u) ◦ Φ(f) for some u ∈ G24 and f ∈ M24. We can now represent
the elements of I with MOGs in a unique way. The element Ψ(u) ◦ Φ(f), note
the order of Ψ(u) and Φ(f), is represented by combining the MOGs of Φ(f)
and Ψ(u), so the dots of the one-coordinates of u are red while the dots of the
zero-coordinates of u are grey. We draw the lines for the permutation f between
the dots as usual. Take a look at the following example.

Example 4.28. We take u and f as in Examples 4.24 and 4.26. Applying
Ψ(u) ◦ Φ(f) to the vector in Example 4.3 gives the following equation.

=

8 −4 12

8 −8

4 8 8

4 4

2 2 −2

6 10 2

−6 −2

2 −6−2

6

2 8 −4 2 2 8

6 10 −8 12 −2

6 4 2 8 −2 4

−2−4−6 −6 8

To get a better understanding of this subgroup 212:M24 we take a look at its
action on the short vectors. This is well-defined since automorphisms preserve
weight.

Lemma 4.29. The orbits of the short vectors under the action of 212:M24

consist exactly of the vectors with the same characteristic except for the charac-
teristic (216, 08) which splits into 16 different orbits.

Proof. It is clear from the definition of 212:M24 and the characteristic in Def-
inition 4.9 that short vectors of different characteristics are not in the same
orbit. The full proof consists of separate small proofs for each characteristic
using certain facts about the Golay codewords and subgroups of M24. We will
demonstrate two of them.

For the characteristic (42, 28, 014), we explicitly calculate the number of el-
ements in its orbit and show that it is the total number of elements of this
characteristic, namely 46632960 as in Lemma 4.14. Let a random vector x of
this characteristic be given. First of all, the subgroup Im(Φ) gives 759 images
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of x by permuting the 8 coordinates of ±2 since M24 is transitive on octads, see
Lemma C.7.

There are another
(

16
2

)
images for each of those 759 images by permuting

the 2 coordinates of ±4 since it is known that the octad stabiliser in M24 is
2-transitive on the remaining 16 points. Lastly, it can be checked that there are
exactly 8 elements of Im(Ψ) that preserve x, so the total number of images is

759 ·
(

16

2

)
· |Im(Ψ)|

8
= 759 ·

(
16

2

)
· 29 = 46632960

For the characteristic (216, 08), we can calculate in the same way that each
vector x has

759 · |Im(Ψ)|
2

= 759 · 211 = 1554432 images

since the positions of the zeroes form an octad u and then the stabiliser (Im(Ψ))x
consists exactly of the two elements Ψ(0) and Ψ(u). Together with the tran-
sitivity of M24 on octads, we get the number 759 · 211. The total number of
vectors of this characteristic is 759 · 215, so there are 24 = 16 different orbits for
this characteristic.

Remark 4.29.1. This lemma does not agree with [Wil09] which claims that the
characteristic (216, 08) splits into only 2 orbits for this action. It is true that
these vectors split into 2 orbits for a different action, see Lemma 4.40.

We now have a good understanding of this subgroup 212:M24 ⊂ Co0, so we
proceed to studying the full automorphism group Co0. The last main goal of
this thesis to make our story complete is to connect the Leech lattice to the
story of finite simple groups and especially the sporadic groups. For the Golay
code, we proved that its automorphism group is simple, so we would also like to
do that for the Leech lattice. Unfortunately, the group Co0 itself is not simple.

Lemma 4.30. The automorphism group Co0 of the Leech lattice is not simple.

Proof. The elements Ψ(0) and Ψ(1) clearly form a subgroup C2 ⊂ Co0. Their
associated matrices are respectively I24 and −I24 and it is easy to see that
C2 / Co0 is a non-trivial normal subgroup, so Co0 is not simple.

It turns out that this subgroup C2 is the center of Co0 and that taking the
quotient group of Co0 by this C2 results in a simple group. We define this group.

Definition 4.31. The first Conway group is the quotient group

Co1 = Co0/{Ψ(0),Ψ(1)} ∼= Co0/C2

Co1, just like M24, is one of the sporadic groups. We will spend the rest of
this chapter on proving that Co1 is simple. Our strategy for this is identical to
the case of M24. We will find some action of Co1 on some set and then verify the
conditions of Iwasawa’s lemma to obtain the simplicity of Co1. These conditions
require a point stabiliser of this action with a normal abelian subgroup. A
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subgroup of Co0 that fits this description is the subgroup I = 212:M24 which
also contains C2 as a subgroup, so we take the quotient group of I and define
the following group.

Definition 4.32. We define the group I ′ = I/C2
∼= 211:M24

Like the subgroup H = 26: 3 .S6 for the Golay code, this group I ′ will indeed
be the point stabiliser we will look at. As a reminder, the conditions of Iwasawa’s
lemma we need to check then become the following.

1. Co1 is finite and perfect

2. A faithful and primitive action of Co1 on some set Y .

3. A point stabiliser I ′ with a normal, abelian subgroup B′.

4. The conjugates of B′ generate Co1.

We will take B = 212 / 212:M24 as our normal abelian subgroup of I and
the corresponding normal abelian subgroup is B′ = 211 / I ′. Furthermore, the
conditions all mention Co1, I ′ and B′ but the proofs of many of them will follow
from facts about Co0, I and B. For example, we already know from Remark
4.20.1 that Co0 is finite, so it follows that Co1 is finite.

4.5 Crosses

We spend the next few pages on finding the right set Y and the right action of
Co0 (resp. Co1) on Y . A necessary condition is that I = 212:M24 (resp. I ′) is a
point stabiliser. This does not provide us with many ideas for a suitable action
however, so we will just try to mirror the ideas in section 3.4 and try to tweak
them to make them suitable for Co1 and Λ24.

4.5.1 Cosets

The action we found in section 3.4 was the action of M24 on the sextets which
were sets of weight 4 words contained in the same coset of G24 ⊂ F24

2 . We will
therefore look at cosets related to Λ24 and representatives of minimal weight of
these cosets. Looking at the cosets of Λ24 in a bigger set such as R24 or Z24

does not provide any meaningful information but we can change our approach
and look at the cosets of some set within the Leech lattice. The easiest lattice
contained in Λ24 is the double Leech lattice 2Λ24 = {2x : x ∈ Λ24} and looking
at its cosets within Λ24 will provide us with the right action. We will first need
the following lemmas to define our action.

Lemma 4.33. Λ24/2Λ24
∼= F24

2 and there are 224 = 16777216 cosets of Λ24 in
2Λ24.

Proof. This follows from the fact that Λ24 is a lattice and thus Λ24
∼= Z24.
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Lemma 4.34. If two short vectors x, y are contained in the same coset of 2Λ24

in Λ24, then either

y = ±x or x · y = 0 and w(x), w(y) = 8

Proof. It is clear that y = ±x and x are in the same coset, so assume y 6= ±x.
We know that the minimal non-zero weight of a Leech lattice vector is 4, so it
follows that the minimal non-zero weight of a vector in 2Λ24 is 22 · 4 = 16.

Since x and y are in the same coset we find x − y ∈ 2Λ24 and x + y =
x− y + 2y ∈ 2Λ24. Therefore w(x± y) = 0 or w(x± y) ≥ 16 but the first case
does not occur since y 6= ±x. Now look at the following inequality which follows
from the definition of the inner product and the fact that x and y are short.

16 ≤ w(x± y) = (x± y) · (x± y) = w(x) + w(y)± 2(x · y) ≤ 16± 2(x · y)

It now follows easily that we must have x · y = 0 and w(x), w(y) = 8.

Remark 4.34.1. Two vectors x, y ∈ R24 are called perpendicular if x · y = 0.

We see that two short vectors are not in the same coset except for negatives
and perpendicular vectors of weight 8. This is very similar to the case of the
cosets of G24 in F24

2 where disjoint words of weight 4 could be in the same coset.
The set X of sextets we were interested in, corresponded exactly to the cosets
with disjoint representatives of weight 4. The same will happen here and the
set Y will exactly correspond to the cosets of 2Λ24 in Λ24 with perpendicular
representatives of weight 8. We first count the number of these cosets.

Theorem 4.35. There are 8292375 cosets of 2Λ24 in Λ24 whose minimal rep-
resentative has weight 8.

Proof. We know from Lemma 4.12 and 4.13 that there is one Leech lattice vector
of weight 0, 196560 of weight 4 and 16773120 of weight 6. It follows from Lemma
4.34 that two of these vectors can only be in the same coset if they are each
other’s negatives. These short vectors are therefore contained in exactly

1 +
196560

2
+

16773120

2
= 8484841 cosets

We move on to the short vectors of weight 8. They are not contained in any
of the already found 8484841 cosets and two of them can only be contained
in the same coset if they are perpendicular or each other’s negatives. It is
known from linear algebra that perpendicular vectors are linearly independent
and since we work in R24, we can then at most have 24 vectors that are mutually
perpendicular to each other. This means that together with their negatives, we
can at most have 48 short vectors of weight 8 in the same coset. We know from
Lemma 4.14 that there are 398034000 short vectors of weight 8, so the total
number of cosets we have now found is at least

8484841 +
398034000

48
= 16777216 = 224.

So we have found all the cosets of 2Λ24 in Λ24 and we get that each of these
398034000

48 = 8292375 cosets contains exactly 48 vectors of weight 8.
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We can now finally define our set Y .

Definition 4.36. A set of 48 short vectors of weight 8 that are in the same
coset Λ24/2Λ24 is called a cross. The set Y is the set of 8292375 crosses.

Remark 4.36.1. Every short vector of weight 8 is contained in a unique cross.

Unfortunately, there is no way to represent a cross with the MOG, so we will
have to use words to describe the crosses. The following cross is often called the
standard cross.

Example 4.37. Let vi be the vector with an 8 in the i-th position and zeroes
everywhere else. It is clear that vi · vj = 0 for i 6= j, so {±v1,±v2, . . . ,±v24}
forms a cross. We call this cross R and it consists of all 48 short vectors of
characteristic (81, 023).

Another type of cross is the sextet cross which is related to the sextets in
the previous chapter.

Example 4.38. Let T be a random sextet and look at the vectors of charac-
teristic (44, 020) whose ±4-positions form one of the tetrads in T . There are
exactly 6 · 24 = 96 of them and it easy to check that they form two crosses.
One containing the vectors with an even number of −4 coordinates and one
containing the vectors with an odd number of −4 coordinates.

In general, it is not that hard to find a cross.

Example 4.39. Take a short vector x of weight 8. Now take random short
vectors y of weight 4. If x±2y has weight 8, it is contained in the same cross as
x. Continue doing this until you have 24 perpendicular vectors. Together with
their negatives, they form a cross.

We can also look at the characteristics of the vectors in the same cross.
It would be straightforward if only vectors with the same characteristic are
contained in the same cross but this is not the case.

Lemma 4.40 ([CF09]). The 8292375 crosses are classified as follows in regards
to the characteristics of their vectors.

Type Characteristics Number of crosses

Standard (8, 023) 1

Sextet (44, 020) 3542

Octad 16× (6, 27, 016) 48576

32× (216, 08)

Triad 6× (5, 32, 121) 4145152

42× (35, 119)

Involution 32× (42, 28, 014) 1457280

16× (216, 08)

Duum (4, 212, 011) 2637824
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Proof. It is easy (but not short) to verify this claim with the numbers in Lemma
4.14 and following the approach mentioned in Example 4.39. For example, we
have v1 + v2 = 2v3 for the following Leech lattice vectors, so v1 and v2 are in
the same cross.

−6 2

2 2

2 2

2 2

v1

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

v2

−3 1 1 1 1 1

1 1 1 1

1 1

1 1

1 1 1

1 1 1

1

1 1 1

v3

Applying this idea repeatedly will give that there are 16 vectors of charac-
teristic (6, 27, 016) and 32 of characteristic (216, 08) in this cross. The same can
be done for all other types.

Remark 4.40.1. The characteristic (216, 08) is the only one contained in two
different crosses, the octad and involution crosses. This might explain the state-
ment in [Wil09] mentioned in Remark 4.29.1.

We will now define the action of Co1 on the set Y of crosses that we will use
for Iwasawa’s lemma but we first look at the action of Co0 on Y .

Lemma 4.41. The action of Co0 on the vectors of weight 8 induces a well-
defined action of Co0 on the crosses.

Proof. This follows from the fact that f is linear, so f(−x) = −f(x), and the
fact that f is orthogonal, so for two perpendicular vectors x, y ∈ Λ24 we also
have that f(x) and f(y) are perpendicular.

Corollary 4.42. The action of Co0 on the crosses induces a well-defined action
of Co1 on the crosses.

Proof. Remember that Co1 = Co0/{Ψ(0),Ψ(1)}, so we just have to check that
the action of Ψ(1) on the crosses is the identity. Ψ(1) is just the map x 7→ −x,
so this follows from the fact that x and −x are always in the same cross.

We have now defined the actions of Co0 and Co1 on the crosses. One re-
quirement was that I = 212:M24 is the point stabiliser of one of these crosses
for the action of Co0. We check this requirement.

Lemma 4.43. The point stabiliser (Co0)R of the cross R, defined in Example
4.37, is the group I = 212:M24.

Proof. We know that R consists exactly of all short vectors of characteristic
(81, 023), so clearly I ⊂ (Co0)R. We also know from Remark 4.27.1 that I
consists exactly of the monomial transformations that preserve Λ24, so if the
point stabiliser is bigger than I, we have some automorphism f which preserves
Λ24 and R and is not a monomial transformation. This means that in its
associated matrix there is some column, assume wlog the first one, with at least
two non-zero entries. It then easily follows that f(8, 0, . . . , 0) 6∈ R, so f does
not preserve R. We conclude that (Co0)R = I.
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4.5.2 Transitivity and the order of Co0

Now all that is left to do is to verify all the conditions of Iwasawa’s lemma for
the action of Co1 on the crosses we have just defined. One of the conditions is
primitivity which requires transitivity, so we prove that first. For this, we will
first look at the action of I = 212:M24 on the crosses.

Lemma 4.44. The orbits of the action of I on the crosses are exactly the types
in Lemma 4.40.

Proof. We know from Lemma 4.29 that the automorphisms in I = 212:M24

preserve the characteristics of the weight 8 vectors, so it is clear that if two
crosses are in the same orbit, they must have the same type.

Now take two random crosses of the same type. They then have representing
elements x and y which have the same characteristic. We can also always choose
x and y such that the characteristic is not (216, 08). It then follows from Lemma
4.29 that x and y are in the same orbit for the action of 212:M24 on the short
vectors, so it easily follows that the two corresponding crosses are in the same
orbit for the action of 212:M24 on the crosses. This proves the claim.

With this, we can prove the transitivity of Co0, and therefore Co1, on the
crosses.

Theorem 4.45. The action of Co0 on the set Y of crosses is transitive.

Proof. We have determined the orbits of the action of the subgroup I ⊂ Co0

on the crosses, so now we just have to find an automorphism that fuses these 6
orbits. An element that suffices is β ∈ Co0, defined in Example 4.21 as

−Bl 0 0 0 0 0
0 Bl 0 0 0 0
0 0 Bl 0 0 0
0 0 0 Bl 0 0
0 0 0 0 Bl 0
0 0 0 0 0 Bl

 where Bl =
1

2


1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1



The following 6 short vectors of weight 8 are representatives of the 6 types
of crosses, one for each cross. Calculating the images of these vectors, and
subsequently their crosses, is enough to verify that the 6 orbits are fused by β,
so Co0 is transitive on the crosses.

8 4 4

4

4

−6 2 2 2

2 2 2 2
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2 2

2 2

2 2

2 2

4

4 2 2

2

2

2

2 2

2 2

2 2 2

4 1

1 1

1

1 1 1

1 1 1

1 1

1

1 1 1

3 3 3 3 3

−1

−1

−1

An important consequence of the transitivity of Co0 on the crosses is that
we can now finally calculate the order of Co0.

Corollary 4.46. The order of Co0 is 8 315 553 613 086 720 000.

Proof. Applying the orbit-stabiliser theorem on the action of Co0 on the crosses,
together with the information of Lemma 4.43 and Theorem 4.45 gives us the
following equation.

|Co0| = (Co0)R · (Co0R) = |212:M24| · |Y | = 212 · 2448230 · 8292375

= 222 · 39 · 54 · 72 · 11 · 13 · 23 = 8 315 553 613 086 720 000

Remark 4.46.1. It follows immediately that

|Co1| =
|Co0|

2
= 4 157 776 806 543 360 000

4.6 Simplicity of Co1

We will spend this last section on verifying the other conditions of Iwasawa’s
lemma. First of all, we have to check that Co1 acts primitively on the crosses
which is equivalent to Co0 acting primitively on the crosses.

Theorem 4.47. The action of Co0 on the crosses is primitive.

Proof. Our approach is identical to the proof of Theorem 3.40. First note that
we already know that Co0 acts transitively. Now assume Co0 does not act
primitively on the crosses. Then there is some non-trivial partition of Y that
is preserved by Co0. Since Co0 acts transitively, the standard sextet R can not
be contained in a singleton set and is contained in some imprimitivity block P .
There is at least one other cross in P , call it Q. It then follows from Lemma
4.44 that all crosses of the same type as Q are contained in P since for f ∈ I
we have

{R, f(Q)} = {f(R), f(Q)} ⊂ f(P )

So f(P ) ∩ P 6= ∅ and therefore f(P ) = P and f(Q) ∈ P for all f ∈ I. We
can now also see that the automorphism β is contained in the stabilisers of the
crosses with the following representatives.
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4

4

4

4

2

2

2

2

−6

2

2

2

5 −3−3−3−3−3

−3 1 1 1

1 1

1 1

1 1 1

1 1 1

1

1 1 1

4

−4

2 2

2 2

2 2

2 2

−2 −2

−2 −2

−2 −2

−2 −2

2

2

2

−2

4 2

2 2

2

2

2

2 2

We can check this by verifying that x−β(x) ∈ 2Λ24 for these 5 vectors. Just
like in Theorem 3.40, we can deduce from this that for each type, there is a cross
in P and therefore all crosses are in P which contradicts the fact that P is an
imprimitivity block. We conclude that Co0 acts primitively on the crosses.

We now have three conditions left to check. Namely that the conjugates of
B′ generate Co1, that Co1 is perfect and that the action of Co1 on Y is faithful.
We now check the first of these three which is equivalent with the conjugates of
B generating Co0. Therefore, we define the following group.

Definition 4.48. U is the subgroup of Co0 generated by the conjugates of
B = 212.

We now check the condition that U is equal to Co0. We first prove the
following lemma.

Lemma 4.49. The subgroup I = 212:M24 is contained in U .

Proof. Let f = ψ(00 11 11) ∈ M24 and look at the element Φ(f) ∈ I and the
sextet cross S defined by the following short vector of weight 8.

4

4

4

4

Note that the cross S consists of the 48 vectors which contain four ±4’s in
one column of which an even number are +4’s and an even number are −4’s. It
is easy to check that Φ(f) is contained in the stabiliser (Co0)S .

Since Co0 is transitive on the crosses, the point stabilisers are conjugates
and we get that Φ(f) is the conjugate of some element in I. We will show that
it is the conjugate of an element in B. For this, We look at the action of Φ(f)
on the vectors in S. It can be checked that for each vector x ∈ S, we have
Φ(f)(x) = ±x, so it either preserves x or swaps it with its negative but it does
not swap x with one of the perpendicular vectors to x. It therefore acts as a
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sign change and this action is identical to the action of Im(Ψ) = B ⊂ I on the
vectors of the standard cross R. It follows that Φ(f) is the conjugate of some
element in B, so Φ(f) ∈ U .

It is easy to check for conjugates g ∈ M24 of f that Φ(g) is a conjugate of
Φ(f) and therefore Φ(g) ∈ U since U is closed under conjugation. Since M24 is
simple and f is not contained in the centre of M24, we get that the conjugates of
f generate M24 and we get Im(Φ) ⊂ U . By definition we also have Im(Ψ) ⊂ U ,
so it follows from Theorem 4.27 that I ⊂ U .

We can now prove that U = Co0.

Lemma 4.50. The conjugates of B generate Co0.

Proof. It is easy to check that β ∈ Co0 from Example 4.21 is also contained in
the stabiliser of the cross S from the proof of the previous lemma and that it
also acts like sign changes on the vectors in S. We conclude that β is also a
conjugate of some element in B and therefore β ∈ U , so together with Lemma
4.49 it follows that 〈I, β〉 ⊂ U .

We can prove that 〈I, β〉 acts transitively on the crosses with the same ideas
as in the proof of Theorem 4.45, so it follows with the orbit-stabiliser theorem
that |〈I, β〉| = |Co0| and therefore

Co0 = 〈I, β〉 ⊂ U

We conclude that U = Co0.

We now check that Co1 is perfect which is equivalent to Co0 being perfect.
This follows quite easily from the fact that the conjugates of B generate Co0.

Lemma 4.51. The group Co0 is perfect.

Proof. We first prove that all elements of B are commutators. The following
equality holds for u ∈ G24 and f ∈M24.

[Ψ(u),Φ(f)] = Ψ(u)Φ(f)Ψ(u)−1Φ(f)−1 = Ψ(u+ f−1(u))

It is easy to see that every element of G24 can be written as u + f−1(u) for
some u ∈ G24 and f ∈ M24, so it follows that B = Im(Ψ) ⊂ [Co0,Co0]. We
know that conjugates of commutators are also commutators, so it follows that
Co0 = U ⊂ [Co0,Co0] and Co0 is perfect.

Lastly, we have to check that Co1 acts faithfully on the crosses.

Lemma 4.52. The action of Co1 on the set Y of crosses is faithful.

Proof. This is equivalent to Ψ(0) and Ψ(1) being the only elements that preserve
all the crosses for the action of Co0 on the crosses. So assume some f ∈ Co0

preserves all the crosses and is not one of these two elements.
Since f preserves the standard cross R we get f ∈ (Co0)R = I = 212:M24.

So f is of the form Ψ(u) ◦ Φ(g) for some u ∈ G24 and g ∈ M24. By looking at
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the action of f on all the sextet crosses, we can conclude that g must preserve
all the sextets but we know from Lemma 3.45 that M24 acts faithfully on the
sextets, so g is the identity and f = Ψ(u).

It now also follows from Example 4.38 that u must intersect each tetrad in
each sextet in an even number of positions since otherwise the even and odd
cross corresponding to a sextet are swapped by f . However, since u 6= 0,1, we
can easily choose some tetrad that intersects u in an odd number of positions
and then f does not preserve the corresponding sextet crosses. We conclude
that such an f does not exist, so Co1 acts faithfully on the crosses.

We have now checked all the conditions of Iwasawa’s lemma and can apply
it to prove the simplicity of Co1.

Theorem 4.53. Co1 is a simple group.

Proof. We apply Iwasawa’s lemma where Y is the set of crosses, I ′ = 211:M24

and B′ = 211. The verified conditions are then as follows.

1. Co1 is finite (Remark 4.20.1) and perfect (Lemma 4.51).

2. The action of Co1 on Y is faithful (Lemma 4.52) and primitive (Theorem
4.47).

3. I ′ is a point stabiliser (Lemma 4.43) with a normal, abelian subgroup B′

(Theorem 4.27).

4. The conjugates of B′ generate Co1 (Lemma 4.50).

We conclude that Co1 is simple.

This wraps up our exploration of the Leech lattice and the main part of this
thesis.
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5 Conclusion

Over the course of this thesis, we have gone from the very easy to state sphere
packing problem to error-correcting linear codes, lattices and finite simple groups.
We first studied sphere packings and lattice packings and looked at the recent
developments in answering the sphere packing problem which motivated our
choice to study the Leech lattice Λ24.

Next, we gave an introduction to the study of linear codes and their con-
nections to sphere packings. We examined the hexacode H6 and binary Golay
code G24 which is built from the hexacode and determined their sizes, weight
distributions, a basis and their automorphism groups. For the Golay code, we
introduced the Miracle Octad Generator which is a type of notation that is
crucial to master for anyone interested in the Leech lattice and related topics.

The next step was to study the automorphism group M24 of the Golay
code. We first looked at the subgroup 26: 3 .S6 which we built from Aut(H6).
Afterwards, we set our goal to prove the simplicity of M24. Our strategy for
this was to apply Iwasawa’s lemma on a suitable action of M24 on some set.
We constructed an action of M24 on the sextets, sets of six disjoint weight 4
vectors contained in the same coset of G24 in F24

2 . We verified all the conditions
of Iwasawa’s lemma and on the way, we calculated the order of M24.

We then set our sights on the Leech lattice, the crown jewel of this thesis.
We defined it using the Golay code and started translating concepts of linear
codes to lattices. While doing this, our study of Λ24 became pretty straight-
forward since we just followed the strategy for the Golay code but with some
little adjustments. We found a basis of the Leech lattice and characterised the
minimal and short vectors.

Lastly, we studied the automorphism group Aut(Λ24) = Co0 and specifically
the subgroup 212:M24 built from the Mathieu group M24. We defined the quo-
tient group Co1 and went on to prove the simplicity of this group. We did this
by applying Iwasawa’s lemma on the action of Co1 on the set of crosses, sets of
48 weight 8 vectors contained in the same coset of 2Λ24 in Λ24. We verified all
the conditions, calculated the order of Co0 and Co1 and concluded this thesis
with the simplicity of Co1.

This forms the end of our investigation of the Leech lattice but there is far
more one can learn about it. An obvious next step is to study the proof that the
Leech lattice packing is the densest 24-dimensional sphere packing. This was
proven in 2017, see [CKM+17]. As mentioned previously, this proof makes use
of modular forms. Another option if one is interested in sphere packings is to
study the lattice E8 which produces the densest 8-dimensional sphere packing.
This lattice is related to the Leech lattice and its automorphism group is also
a very special simple, although not sporadic, group that has applications in
theoretical physics.

If the reader is interested in finite simple groups, we recommend studying
many of the sporadic groups that are contained in M24 and Co1 as subgroups.
An overview can be found in Appendix C and another valuable resource is the

62



ATLAS of finite simple groups, see [CCN+85] and [WWT+]. Another option
is to build upwards and construct a sporadic group containing Co1. This way,
the king of sporadic groups, the monster group M , can be constructed using a
maximal subgroup that is an extension of Co1, see [Con85] and section 5.8 in
[Wil09].

Lastly, we can study the connections of the Leech lattice Λ24 to other objects
and areas of mathematics we have not mentioned yet. One of the most impor-
tant of these is studying M24, Co1 and the monster group with representation
theory. Furthermore, aside from using modular forms to prove the optimality of
the Leech lattice packing, there is a much deeper connection between modular
functions and Co1 and more importantly, the monster group. These two areas
are connected by the theory of vertex algebras, which also have applications in
physics. This connection was first conjectured in 1978 when the mathematician
John McKay noticed a relationship between the coefficients of the Fourier ex-
pansion of some special modular function and the dimensions of representations
of the monster group. This connection was coined ‘monstrous moonshine’, see
[CN79], and it was eventually proven by the American mathematician Richard
Borcherds using the monster vertex algebra, see [Bor92]. All of this goes far
beyond this thesis but we mention this to make it apparent to the reader that
this is a rich topic of which we have barely scratched the surface.

It is also entirely possible that another construction of the Leech lattice or
another connection to a different mathematical area will be found in the (near)
future since most of the advancements in this subject have taken place in just
the past 50 years. There are still many mysteries surrounding the Leech lattice
and related objects, most notably the monster group. For example, there is a
statement about Riemann surfaces that only holds for the prime factors of the
order of the monster group, see [Ogg75]. This potential connection has still
not been explained. John Conway, one of the most influential mathematicians
in the study of finite simple groups, has said the following about the monster
group in 2014, see [Har14].

There’s never been any kind of explanation of why it’s there, and it’s
obviously not there just by coincidence. It’s got too many intriguing
properties for it all to be just an accident.

We therefore encourage everyone interested in this topic to explore it further
and potentially make contributions to this field of study.
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A Miscellaneous group theory

In this chapter, we give some necessary definitions in group theory that are
used in various other proofs or explanations. We assume the reader has already
followed a basic introduction to group theory. In this chapter, G is always a
group, its identity element is e and we use 1 for the trivial group {e}. We mostly
follow [Isa08] and [Ste17].

Definition A.1. Two elements a, b ∈ G are said to be conjugate if there is
some g ∈ G such that b = gag−1. If this is the case, we write b = ag.

Definition A.2. A subgroup H ⊂ G is called normal if it is preserved by
conjugation, so gHg−1 = H for all g ∈ G. If this is the case, we write H / G.

Definition A.3. Let H1, H2 ⊂ G be subgroups. The product of H1 and H2 is
the set

H1H2 = {h1h2 : h1 ∈ H1, h2 ∈ H2}

Remark A.3.1. In most cases, H1H2 is not a subgroup but if H2 and/or H1 is
normal in G, it is a subgroup since we have H1H2 = 〈H1, H2〉 in this case.

Definition A.4. An abelian grooup G is called an elementary abelian group if
its order is a prime power pk and all elements of G \ {e} have order p. In this
case, we write G = pk.

Remark A.4.1. We have seen that the hexacode and the Golay code as additive
groups are elementary abelian groups H6 = 26 and G24 = 212.

We used the theory of semidirect products and short exact sequences for the
groups Aut(H6) = 3 .A6 and Aut∗(H6) = 3 .S6 and the subgroups 26: 3 .S6 ⊂
M24 and 212:M24 ⊂ Co0. We will now cover the part of this theory that we
used.

Definition A.5. Let A,B,C be groups and f : A → B and g : B → C be
group homomorphisms. The following sequence

1 A B C 1
f g

is called a short exact sequence if f is injective, g is surjective and Im(f) =
ker(g). In this case, B is called an extension of C by A.

Definition A.6. The extension in Definition A.5 is split if there is some group
homomorphism s : C → B such that g ◦ s is the identity on C. We denote a
split extension by A:C and a non-split extension by A .C.

The easiest extension is of course the usual Cartesian product A × C with
the group operation (x1, x2) · (y1, y2) = (x1y1, x2y2). This is called the direct
product. We look at a more interesting type of extension.
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Definition A.7. Let N and H be groups and let a group action, see Definition
B.6, of H on N be given. Let hn = σ(h)(n). The semidirect product of H acting
on N is then the Cartesian product N ×H with the following group operation.

(n1, h1) · (n2, h2) = (n1
h1n2, h1h2)

We denote this group with N oσ H or N oH if the action is obvious.

The definition we have given is the outer semidirect product since the groups
N and H are not related to each other. However, it often happens that these
groups are contained in some larger group G which we want to be the extension
of these 2 groups N and H. In these cases, there are extra relationships, so the
definition is slightly different but equivalent.

Definition A.8. Let N and H be subgroups of G such that

• The intersection N ∩H is trivial,

• The subgroup N / G is normal,

• The product NH is equal to G.

The group G is then called the inner semidirect product of H and N .

Remark A.8.1. It is an easy exercise to see that G is isomorphic to N oσ H
where σ is the action of H on N given by conjugation as elements of G.

Remark A.8.2. It can be checked that every semidirect product NoσH is a split
extension of H by N and that every split extension of H by N is isomorphic to
a semidirect product H oσ N for some action σ of H on N .

We look at an example of a semidirect product.

Example A.9. Identify S3 and V4 as subgroups of S4 in the natural way so

S3 = {e, (12), (13), (23), (123), (132)} and V4 = {e, (12)(34), (13)(24), (14)(23)}

We clearly have S3∩V4 = 1 and it is easy to check that V4S3 = S4. Furthermore,
it is easy to see that V4 / S4 is a normal subgroup, so S4 is an inner semidirect
product of S3 and V4 and is therefore isomorphic to V4 oσ S3 where σ is the
action of S3 on V4 by applying conjugation as elements in S4.

We now move on to the last topic in this chapter, commutators. We will use
Corollary A.14 in the proof of Iwasawa’s lemma, in Lemma B.20.

Definition A.10. Let elements a, b ∈ G be given. The commutator of these
two elements is given by

[a, b] = aba−1b−1

Remark A.10.1. Note that [a, b] = e iff a and b commute.

Definition A.11. The commutator subgroup [G,G] of G is the subgroup gen-
erated by all the commutators in G.
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Remark A.11.1. The commutator subgroup [G,G] is normal in G since conju-
gates of commutators are clearly commutators by the identity

[a, b]g = [ag, bg]

Definition A.12. G is called perfect if [G,G] = G. In other words, if the
commutators generate G.

Lemma A.13. Let a normal subgroup N /G be given and assume the quotient
group G/N is abelian. Then we have [G,G] ⊂ N .

Proof. Look at the natural homomorphism f : G→ G/N . Since G/N is abelian,
it follows easily that each commutator in G is contained in ker(f) = N because
of the following equality.

f([x, y]) = f(x)f(y)f(x−1)f(y−1) = f(x)f(x−1)f(y)f(y−1) = f(e) = e

So we conclude [G,G] ⊂ N .

Corollary A.14. Let G be a perfect group. Then there is no non-trivial abelian
quotient group G/N .

Proof. Assume a quotient group G/N is abelian. It follows from Lemma A.13
that G = [G,G] ⊂ N , so G = N and G/N = {e} is trivial. This proves the
claim.

We need one more group-theoretic result for the proof of Iwasawa’s lemma.

Lemma A.15. Let N / G be a normal subgroup and let H ⊂ G be a subgroup.
Then the following groups are isomorphic.

H/(H ∩N) ∼= HN/N

Proof. Restricting the quotient map G → G/N gives a map H → G/N with
kernel H ∩N and image HN/N . The claim follows.
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B Finite simple groups and actions

We prove in this thesis that M24 and Co1 are finite simple groups. In this
chapter, we will give more information about the topic of finite simple groups
and show why this simple to state problem is such an interesting subject and
occupied hundreds of mathematicians for decades. We also give a proof of
Iwasawa’s lemma which is our method for proving the simplicity of M24 and
Co1. We mostly follow Chapters 1 and 2 in [Wil09] and Chapter 1 in [Isa08].

B.1 Classification theorem of finite simple groups

A natural question that arises when working with any kind of object is ‘What
are all the different types of this object?’. In chemistry, this object can be
molecules or in number theory, it can be the natural numbers N. In both cases,
we can reduce this problem by looking at their building blocks. So chemists
look at atoms which make up molecules through bonding and number theorists
look at prime numbers which make up the natural numbers by multiplication.
We can then ask the same question for the groups. What are all the groups
and what are their building blocks? It turns out that if we limit ourselves to
finite groups, there is an answer to this question and the building blocks have
the following property.

Definition B.1. A group G is simple if there is no non-trivial normal subgroup
1 ( N ( G.

Finite groups are built from the finite simple groups in the following way.

Definition B.2. A composition series of a finite group G is a series

1 = G0 / G1 / . . . / Gn−1 / Gn = G

such that each quotient group Gi+1/Gi is non-trivial and simple. These quotient
groups are called the composition factors.

Remark B.2.1. It is clear by definition that each finite group has a composition
series. We start with 1 / G and just insert arbitrary normal subgroups that fit
into the series until it is not possible anymore which means that all the quotients
at that point are simple.

We see that every finite group can be ‘factorised’ into finite simple groups like
how natural numbers have a prime factorisation. Like the prime factorisation,
the composition series of a finite simple group is unique. We will state this
theorem without proof.

Theorem B.3 (Jordan-Hölder Theorem). The composition factors of the com-
position series of a finite group G are unique up to isomorphism and permuta-
tion.
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One difference with prime factorisation however, is that two non-isomorphic
groups can have the same composition series up to isomorphism and permuta-
tion.

Now that we have seen that finite simple groups form the building blocks
of all finite groups, we want to find or at least classify all finite simple groups.
There is one very easy family of finite simple groups.

Lemma B.4. The cyclic groups Cp of prime order are simple.

Proof. The group Cp contains no non-trivial subgroup, so also certainly no non-
trivial normal subgroup.

One more family of finite simple groups is the following.

Lemma B.5. The alternating groups An are simple for n ≥ 5.

Proof. This is not quite as easy to prove. See [Wil09] for a proof.

Besides these cyclic and alternating groups, there are many more finite sim-
ple groups that fit into such infinite families. It is beyond the scope of this thesis
to cover these families but they are represented in the following figure, taken
from [And12], which mimics the periodic table of elements in chemistry.

There are 16 more families of finite simple groups, all of Lie type which we will
not define here. There is some slight overlap between these 16 families but the
idea is clear.

As you might have noticed, there are 26 more finite simple groups at the
bottom of the figure which are not contained in an infinite family. These groups
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are called the sporadic groups. The first sporadic groups that were discovered are
the Mathieu groups M11, M12, M22, M23 and M24 which were discovered in the
19th century by the French mathematician Mathieu, see [Mat61] and [Mat73].
It was long thought that these were the only ‘leftover’ groups among the finite
simple groups until almost a century later in 1965, the next sporadic group, the
Janko group J1, was discovered by the Croatian mathematician Zvonimir Janko
and published a year later, see [Jan66]. All the remaining 20 sporadic groups
were found in the next decade, ending with the publication of the Janko group
J4 in 1976, see [Jan76]. There are many relations between these sporadic groups
which will be discussed further in Appendix C.

The next step was to prove that these groups are indeed all the finite simple
groups which is called the classification theorem of finite simple groups. This
theorem was extremely hard to prove and required proving many smaller the-
orems. The classification theorem was considered complete a few times but
new gaps were found and resolved. In the end, it took tens of thousands of
pages in hundreds of articles by about a hundred mathematicians. After a pe-
riod of almost 50 years, the last big gap was resolved in 2004 by American
mathematicians Aschbacher and Smith, see [AS04a] and [AS04b]. The Classi-
fication Theorem was one of the greatest achievements and biggest efforts of
20th-century mathematics.

There is no central publication that compiles all these proofs that together
are called the first generation proof. A second generation proof that is shorter
and more efficient is currently being published with 9 volumes (11, if counting
the contributions from Aschbacher and Smith) already out as of 2021 and it is
estimated that it will fill 5000 pages. This revision project was originally led by
Daniel Gorenstein, see [GLS94] for the first volume. There are also still some
sceptics of the completeness of the proof since not all parts of the proof have
been intensively checked. The most recently found gap was resolved in 2008,
see [HS08].

B.2 Actions

We will obviously not cover the proof of the classification theorem. We just focus
on proving the simplicity of M24 and Co1. There are numerous ways one can
prove that a certain finite group is simple. The definition alone was enough to
prove the simplicity of Cp and together with some calculation, it is also enough
to prove the simplicity of An for n ≥ 5. Usually, the definition alone is not
enough and another lemma or theorem needs to be used.

One of the easiest of these is Iwasawa’s lemma which will be stated and
proved in section B.3. The statement and proof both require knowledge of group
actions, so we will first spend a section on studying the relevant definitions and
ideas for group actions.

Definition B.6. A group action of a group G on some set X is a group homo-
morphism σ : G → S(X) where S(X) consists of all bijections from X to X.
We denote σ(g)(x) with g(x) for g ∈ G and x ∈ X.
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Remark B.6.1. The following rules must hold for a group action.

e(x) = x for all x ∈ X and (gh)(x) = g(h(x)) for all g, h ∈ G and x ∈ X

We can look at some easy examples.

Example B.7. Sn acts on a set of n points in a natural way. The cyclic group
Cn acts on a regular n-gon as the n rotations that preserve this figure.

There are some sets and subgroups that are related to group actions.

Definition B.8. The orbit of an element x ∈ X under a group action of a
group G on X is the set

Gx = {g(x) : g ∈ G} ⊂ X

So the elements that can be reached from x by applying the group action.

Remark B.8.1. The set X is partitioned into disjoint orbits.

Definition B.9. The point stabiliser of an element x ∈ X is the subgroup

Gx = {g ∈ G : g(x) = x} ⊂ G

So the group elements that preserve x.

There is a special relationship between orbits and stabilisers since it is trivial
to see that the map g 7→ g(x) induces a bijection G/Gx → Gx. An immediate
consequence is the following famous fact called the orbit-stabiliser theorem.

Lemma B.10. Let a finite group G act on some set X. We then have the
following equality.

|G| = |Gx| · |Gx|

We now look at some properties a group action can have. In all these cases,
we look at the action of a group G on a set X where σ : G → S(X) is the
corresponding homomorphism.

Definition B.11. A group action is called faithful if σ is injective. In other
words, only the element e ∈ G preserves every element of X.

Definition B.12. A group action is called transitive if for some x ∈ X we have
Gx = X, so the set X consists of exactly one orbit. This is equivalent with
saying that for every x, y ∈ X, there exists some g ∈ G such that g(x) = y.

Transitivity makes the orbits easier to study since there is only one of them
but it also makes the stabiliser more useful because of the following fact.

Lemma B.13. The point stabilisers for a transitive group action are all con-
jugates and therefore isomorphic.
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Proof. Let x, y ∈ X be arbitrarily given. Since the group action is transitive
we have some g ∈ G such that g(x) = y. It is now easy to see that Gy =
gGxg

−1.

We can now also generalise the concept of transitivity.

Definition B.14. A group action is called n-transitive if for all distinct
x1, x2, . . . , xn ∈ X and distinct (but not necesarilly distinct with the previous
elements) y1, y2, . . . , yn ∈ X, there exists some g ∈ G such that

g(xi) = yi for all 1 ≤ i ≤ n

Example B.15. Sn is n-transitive and An is (n− 2)-transitive

There is another important property that is stronger than transitivity but
weaker than 2-transitivity.

Definition B.16. A transitive group action is called primitive if there is no
non-trivial partition of X that is preserved by all elements of G. So for every
non-trivial partition and elements x, y in the same set, there exists a g ∈ G such
that g(x) and g(y) are not in the same set of the partition.

Remark B.16.1. The trivial partitions are the partitions

{X} and {{x1}, {x2}, . . .}

So taking the whole group or taking all the singleton subsets.

We can define primitivity in a more useful way with the following definition.

Definition B.17. A proper non-singleton subset B ( X is called an imprimi-
tivity block if for all g ∈ G we have either g(B) = B or g(B) ∩B = ∅.

Remark B.17.1. It is easy to see that a group action is primitive iff there is no
imprimitivity block.

The last thing we will do before moving to Iwasawa’s lemma is proving
that the point stabilisers for a primitive group action have the following group-
theoretic property.

Definition B.18. A subgroup H ⊂ G is called maximal if there is no subgroup
H ( G′ ( G.

Lemma B.19. The point stabilisers of a primitive group action are maximal.

Proof. The group action is primitive and therefore transitive. It follows from
Lemma B.13 that we can look at a specific point stabiliser, so let an arbitrary
x ∈ X be given and look at the point stabiliser Gx.

Assume that Gx is not maximal, so there exists a subgroup Gx ( H ( G.
Now let B = {h(x) : h ∈ H}. We will prove that B = X. First assume that
B 6= X, we will show that B is an imprimitivity block which contradicts the
primitivity of the group action.
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First note that Gx ( H, so B is not a singleton set. Now let g ∈ G be
arbitrarily given and assume that B and g(B) are not disjoint. Then there exist
some h1, h2 ∈ H such that h1(x) = (gh2)(x) but it easily follows from this that

h−1
2 gh1 ∈ Gx ⊂ H

so g ∈ H and g(B) = B. We see that B is an imprimitivity block which is not
possible.

We conclude that B = X. We now have for all g ∈ G that g(x) ∈ X = B,
so there is some h ∈ H such that g(x) = h(x). It then follows that

h−1g ∈ Gx ⊂ H

so g ∈ H. We see that H = G which contradicts H ( G. We conclude that Gx
is a maximal subgroup of G.

B.3 Iwasawa’s lemma

We can now finally state and prove Iwasawa’s lemma which was first used in
1941, see [Iwa41], to prove the simplicity of certain projective groups.

Lemma B.20 (Iwasawa’s Lemma). Let G be a group that meets the following
conditions.

1. G is finite and perfect.

2. G acts primitively and faithfully on some set X.

3. The point stabiliser H contains a normal, abelian subgroup A.

4. The conjugates of A generate G.

Then G is simple.

Proof. We prove by contradiction that G is simple if all the conditions are met.
So assume G is not simple and meets all the conditions. We will use all the
conditions to construct a non-trivial abelian quotient group of G which is in
contradiction with the fact that G is perfect because of Corollary A.14.

We start with the non-simplicity of G from which follows that there is a non-
trivial normal subgroup N / G. Since N 6= 1, it contains at least one element
n 6= e and then there must be some x ∈ X such that n(x) 6= x since the action
of G on X is faithful. Since the action is primitive and therefore transitive,
we can choose a specific point stabiliser and we take H = Gx. Note that now
N * H.

Since N is normal, we know from Remark A.3.1 that HN is a subgroup of
G such that H ( HN since N is not contained in H. We also know that H
is maximal from Lemma B.19, so it follows that G = HN and every element
g ∈ G can be written as g = hn with h ∈ H and n ∈ N .

We now look at the conjugates of A who generate G. It now follows from
the fact that A / H is normal in H, N / G is normal in G, and Remark A.3.1
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that every conjugate of A is of the following form for some g ∈ G, h ∈ H and
n ∈ N .

g−1Ag = n−1h−1Ahn = n−1An ⊂ 〈A,N〉 = AN

So the conjugates of A are all contained in the subgroup AN ⊂ G and since
they generate G we get G = AN .

We look at the quotient group G/N and it follows from Lemma A.15 that

G/N = AN/N ∼= A/(A ∩N)

Since A is abelian, it follows that the quotient group G/N is abelian and this
quotient group is non-trivial since N was a proper subgroup of G. It follows
from Corollary A.14 that G is not perfect which was one of the conditions, so
we get a contradiction. We conclude that any group G meeting the conditions
must be simple.
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C More finite simple groups

This chapter is meant for anyone that is curious about the other sporadic groups.
We mostly follow sections 5.2-5.6 in [Wil09]. As we mentioned, there are many
relations between these sporadic groups. We define the type of relation we
consider.

Definition C.1. A subquotient of a group G is a quotient group of a subgroup
of G.

Example C.2. The Conway group Co1 contains a subgroup I ′ = 211:M24

which clearly has a quotient group isomorphic to M24, so M24 is a subquotient
of Co1.

The subquotient-relations between the sporadic groups are depicted in the
following figure where G is connected with a lower group H if it contains a
subquotient N isomorphic to H and there is no simple subquotient in between
N and G.

The red nodes are the Mathieu groups, the first discovered simple groups.
They are often called the first generation. The green nodes are the second
generation consisting of the subquotients of Co1 that are not subquotients of
M24. The third generation are the blue nodes which are the subquotients of the
Monster group M that are not subquotients of Co1. Together, the 20 groups
of the three generations are called the happy family while the 6 groups of the
white nodes are called the pariahs.

In this chapter, we will not prove all these subquotient relationships but we
will just define the other 10 sporadic groups (besides M24 and Co1) in the first
and second generation in a way that relates them to M24 and Co1. We will not
prove that these groups are simple but these proofs can be found in [Wil09] and
in most cases are similar to our proofs for the simplicity of M24 and Co1.
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C.1 Mathieu groups

We start with the first generation, so the Mathieu groups, first discovered by
Mathieu, see [Mat61] and [Mat73]. When Mathieu first discovered these groups,
many mathematicians did not believe him and some even tried to disprove
him, see [Mil98]. The doubts were removed when the German mathematician
Witt constructed the Mathieu groups in two different ways, see [Wit37a] and
[Wit37b]. The latter constructed them as the automorphism groups of Steiner
systems which is one of the other ways to construct the Golay code, see Remark
C.6.1.

We will define M23, M22, M12 and M11 as subgroups of M24 and determine
their orders. On the way, we will also show and need some properties of the
actions of the Mathieu groups on certain sets related to G24. The first property
we will need is the 5-transitivity of M24 acting on 24 points, specifically the
action on the 24 MOG positions. We first prove the following.

Lemma C.3. M24 acts 4-transitively on 24 points.

Proof. Let points x1, . . . , x4 and y1, . . . , y4 be given like in the definition of n-
transitivity. We interpret them as MOG positions and let Tx and Ty be the
tetrads containing respectively x1, . . . , x4 and y1, . . . , y4. Let Sx and Sy be the
corresponding sextets.

We know from Lemma 3.38 that M24 acts transitively on the sextets, so there
is some f ∈ M24 such that f(Sx) = Sy. Furthermore, it is easy to see that the
stabiliser 26: 3 .S6 of the standard sextet K with columns as tetrads is transitive
on these columns/tetrads. Since the action is transitive, all sextet stabilisers
are conjugates and therefore this property also holds for the stabiliser of Sy, we
can therefore assume that also f(Tx) = Ty since if not, we can compose it with
an automorphism that sends f(Tx) to Ty. We therefore know that

f({x1, x2, x3, x4}) = {y1, y2, y3, y4}

Now we just need to show that the tetrad stabiliser of Ty acts like an S4 on
{y1, y2, y3, y4}. Since the actions on the sextets and tetrads are transitive we
can look at a specific tetrad. We take the first column in the sextet K. With
elements of Im(ψ) we can clearly achieve the permutations e, (12)(34), (13)(24)
and (14)(23) on the 4 points in the tetrads. Furthermore, the automorphism
ϕ∗(t), from Example 3.19 gives the permutation (34) and scalar muliplication
gives (234). These together generate S4. So we can compose f with some
automorphism g such that g(f(xi)) = yi and we conclude that the action of
M24 on 24 points is 4-transitive.

We can now prove the 5-transitivity of M24 acting on 24 points.

Lemma C.4. M24 acts 5-transitively on 24 points.

Proof. Let x1, . . . , x5 and y1, . . . , y5 be given like in the definition of n-transitivity.
Since M24 acts 4-transitively there is some f ∈ M24 such that f(xi) = yi for
1 ≤ i ≤ 4. Now we just need to show that the point-wise stabiliser of {y1, . . . , y4}
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acts transitively on the remaining 20 points since then we can compose f with
an automorphism g that preserves y1, . . . , y4 and sends f(x5) to y5.

Because of the 4-transitivity of M24. We can look wlog at 4 specific points.
We choose the points in the third column. Now we want to permute f(x5) to y5

while preserving these 4 points. If f(x5) is not in the same column as y5, we can
permute it to the same column by applying double flips, permutations of the
column pairs and the automorphism ϕ(s) from Example 3.17. Now f(x5) is in
the same column as y5 and it follows easily that we can apply an automorphism
of the form ψ(aa 00 aa) for some a ∈ F4.

An immediate consequence of this is that |M24| needs to be divisible by
24 · 23 · 22 · 21 · 20 which we saw in Remark 3.39.1. Another consequence is that
we can define the following groups.

Definition C.5. For 1 ≤ k ≤ 5, we define the group M24−k as the stabiliser of
k points for the action of M24 on 24 points.

The following statements are known about these 5 groups. The orders of the
group follow from the fact that |M24| = 24 · 23 · 22 · 21 · 20 · 48

• M19 is not simple and has order 48.

• M20 is isomorphic to 24:A5. It is not simple and has order 960.

• M21 has order 20160 and is simple but not sporadic.

• M22 and M23 are simple sporadic groups and their orders are 443520 and
10200960 respectively.

Proofs of the simplicity using Iwasawa’s lemma on a suitable action can be found
in [Wil09].

Another useful result that follows from the 5-transitivity on points is the
following.

Lemma C.6. For every 5 points in the MOG, there is a unique octad that has
one-coordinates in these 5 positions.

Proof. It follows easily from the 5-transitivity that every 5 points can be ex-
tended to an octad. This way we find at least(

24

5

)/(
8

5

)
= 759 octads

Once again everything falls into place since there are exactly 759 octads in G24,
so every 5 points are contained in a unique octad.

Remark C.6.1. The octads are said to form a S(5, 8, 24) Steiner system by
interpreting the octads as subsets of 24 points containing exactly the points
corresponding to one-coordinates. In this way, every 5 points are contained in
a unique subset of size 8. More about this property can be found in Chapter 5
of [Gri98].
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The following important result that we used in the proof of Lemma 4.12 now
follows.

Lemma C.7. M24 acts transitively on the octads.

Proof. For any two octads O1 and O2, there is an element f of M24 that per-
mutes 5 one-coordinates of O1 to 5 one-coordinates in O2. Since M24 preserves
weight of Golay codewords and there is a unique octad containing 5 points, we
conclude f(O1) = O2, so the action of M24 on octads is transitive.

We now move on to M12 and M11 which are called the small Mathieu groups.
They were actually discovered by Mathieu before the large Mathieu groups
and M12 can be constructed as the automorphism group of the ternary Golay
code, which is a subspace of F12

3 built from a ternary tetracode instead of the
quaternary hexacode for the binary Golay code and M24. There even is a
miniMOG which is a special 4 × 3-array for calculations in the ternary Golay
code and M12.

We will however construct it as a subgroup of M24 but more about the other
construction can be found in [CSdlH98]. It can be proven that M24 is also
transitive on the duodecads, the 2576 Golay codewords of weight 12, so we can
define the following group.

Definition C.8. The group M12 is the duodecad stabiliser for the action of

M24 on the duodecads. It has order |M24|
2576 = 95040.

It can be proven that M12 acts 5-transitively on the 12 points not in the
duodecad. This can be proven most easily with the other construction of M12.
These multiply transitive groups are extremely rare. In fact, M24 and M12 are
the only finite groups not of the form Sn or An with a 5-transitive action, see
[Cam99]. This is also how Mathieu discovered these groups since he was trying
to construct multiply transitive groups, see [Mat61] and [Mat73]. Because of
the 5-transitivity we can also define the following groups.

Definition C.9. For 1 ≤ k ≤ 5, we define the group M12−k as the stabiliser of
k points for the action of M12 on 12 points.

The following is known about these 5 groups where the orders come from
the fact that |M12| = 8 · 9 · 10 · 11 · 12.

• M7, M8, M9 and M10 are not simple and have orders 1, 8, 72 and 720
respectively. M8 is isomorphic to the quaternion group and M10 is iso-
morphic to a non-split extension 2 .A6.

• M11 is a simple sporadic group of order 7920.

This finishes the first generation of sporadic groups.
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C.2 Conway groups

We move on to the second generation of the sporadic groups. In this section,
we will define the sporadic group Co2 and Co3 as subgroups of Co0. They were
discovered together with Co1 by Conway, see [Con68] and [Con69]. We need
the following lemmas to define these groups.

Lemma C.10. Co0 acts transitively on the short vectors of weight 4.

Proof. We know from Lemma 4.29 that the orbits of the action of 212:M24 on
the short vectors of weight 4 are just the characteristics, so (42, 022), (28, 016)
and (3, 123). We look at the automorphism β ∈ Co0, defined in Example 4.21
as

−Bl 0 0 0 0 0
0 Bl 0 0 0 0
0 0 Bl 0 0 0
0 0 0 Bl 0 0
0 0 0 0 Bl 0
0 0 0 0 0 Bl

 where Bl =
1

2


1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1



It follows easily from looking at the images under β of the following three Leech
lattice vectors of weight 4 that the three characteristic orbits are fused by β and
that therefore Co0 acts transitively on the short vectors of weight 4.

4 4 2 2 2

2

2 2

2

2

−3−1−1−1−1

−1

−1

−1

1

1 1

1

1 1 1

1 1 1

1 1

1

1 1 1

Lemma C.11. Co0 acts transitively on the short vectors of weight 6.

Proof. The proof is analogous to the proof of Lemma C.10. So with the same
automorphism β ∈ Co0 but with different Leech lattice vectors whose images
show that the orbits for the action of 212:M24 are fused by β.

We can now define the 2 other simple sporadic Conway groups found by
John Conway, see [Con68] and [Con69]. As with all the other simple groups in
this chapter, a proof of their simplicity can be found in [Wil09].

Definition C.12. The stabiliser for the action of Co0 on Λ24 of a short vector
of weight 4 is called the second Conway group Co2.

Definition C.13. The stabiliser for the action of Co0 on Λ24 of a short vector
of weight 6 is called the third Conway group Co3.

We can then also calculate the orders of these two groups with the orbit-
stabiliser theorem and the fact that these actions are transitive. It follows from
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Lemma 4.12 and 4.13 that

|Co2| =
|Co0|

196560
= 42 305 421 312 000 = 218 · 36 · 53 · 7 · 11 · 23

|Co3| =
|Co0|

16773120
= 495 766 656 000 = 210 · 37 · 53 · 7 · 11 · 23

C.3 Other groups

In this last section, we will cover the remaining 4 sporadic groups from the 2nd
generation and also mention the Monster group M. All lemmas and properties
of these groups will be stated without proof since these proofs are more complex
and not the focus of this thesis.

We will first construct the Higman-Sims group HS and the McLaughlin group
McL as subgroups of Co3. These two groups were originally constructed in
different ways, see [HS68] and [McL69]. We need the following lemma for the
Higman-Sims group.

Lemma C.14. Let Co3 be the stabiliser of a Leech lattice vector v of weight 6.
There are exactly 11178 short vectors u of weight 4 such that u · v = −2. The
action of Co3 on these vectors is transitive.

Definition C.15. Let u, v ∈ Λ24 such that w(v) = 6, w(u) = 4 and u · v = −2.
Then the Higman-Sims group is the stabiliser

HS = ((Co0)v)u = (Co3)u

Remark C.15.1. The order of this group is

|HS| = |Co3|
11178

= 44352000 = 29 · 32 · 53 · 7 · 11

The McLaughlin group is defined in a very similar way.

Lemma C.16. Let Co3 be the stabiliser of a Leech lattice vector v of weight
6. There are exactly 552 short vectors u of weight 4 such that u · v = −3. The
action of Co3 on these vectors is transitive.

Definition C.17. Let u, v ∈ Λ24 such that w(v) = 6, w(u) = 4 and u · v = −3.
Then the McLaughlin group is the stabiliser

McL = ((Co0)v)u = (Co3)u

Remark C.17.1. The order of this group is

|McL| = |Co3|
552

= 898128000 = 27 · 36 · 53 · 7 · 11

The remaining 2 simple sporadic groups of the 2nd generation are the Suzuki
group Suz and the second Janko group J2, also called the Hall-Janko group HJ.
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They were first defined in 1969 and 1968 respectively, see [Suz69] and [HW68].
They were constructed independently from the Leech lattice but can be defined
as subquotients of Co1, specifically, there are subgroups of Co1 isomorphic to
(A5 × J2): 2 and 3 . Suz : 2. We do not have the necessary prerequisites however
for this construction.

We can however sketch a conceptually more interesting way to construct
these groups. This method involves a complex lattice over the Eisenstein inte-
gers.

Definition C.18. Let ζ ∈ C be the element e
2πi
3 = −1+

√
3i

2 . The Eisenstein
integers are then the ring Z[ζ] = {a+ bζ : a, b ∈ Z}.

Now we need the ternary Golay code, the same one we mentioned while
discussing M12. In the same way we constructed a lattice in Z24 based on the
binary Golay code, we can construct a complex lattice in Z[ζ]12 based on the
ternary Golay code. The automorphism group of this lattice is the extension
6 . Suz and Suz contains the extension J2: 2 as a maximal subgroup, see [Wil83].
This concludes our exposition of the 2nd generation simple sporadic groups.

We now quickly mention the 3rd generation of simple sporadic groups with-
out going into the details. By far the largest sporadic group is the monster
group M which has order

808 017 424 794 512 875 886 459 904 961 710 757 005 754 368 000 000 000

= 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71

Out of the 26 sporadic groups, 20 are subquotients of M. The monster group
was first predicted to exist in 1973 (unpublished) by Bernd Fischer and in 1976
by Robert Griess, see [Gri76]. The first construction was given by Griess in
1982, see [Gri82]. The monster group has even more fascinating properties than
the Mathieu and Conway groups and as mentioned in the conclusion, is a good
next step if one is interested in finite simple groups.
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