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1 Introduction

At the start of the 20th century David Hilbert posed twenty-three problems which, Hilbert argued,
would give the direction for mathematical research for the next century. The thirteenth problem
deals with rewriting a solution of a seven degree polynomial. This problem was disproved midway
in the 20th century by Andrej Kolmogorov and his student Vladimir Arnold with the Kolmogorov-
Arnold representation theorem (KA representation). Their theorem states that any multivariate
continuous function can be decomposed in additive continuous functions with one variable. The
decomposed form compares to a two-hidden-layer neural network and there is a long standing debate
whether there is indeed a link. A true connection between the KA representation and a two-hidden-
layer neural network clarifies why neural networks can avoid the so called curse of dimensionality
and why having more than one hidden layer in neural networks is so useful.

Section 2 starts with an introduction to the curse of dimensionality. Specifically, we first define the
non-parametric regression model underlying many machine learning methods. We assume in this
thesis that the regression function f is β-Hölder-smooth. Next, we define a good approximation
rate for f which avoids the curse of dimensionality. In Section 3 we introduce shallow and deep
neural networks as an approximation for the non-parametric regression model. In Section 4 we
introduce the Kolmogorov-Arnold representation theorem and examine its connection to neural
networks. To further strengthen the link between the KA representation and neural networks, in
Section 5 an extension of the KA representation of [28] is proved on the compact domain [a, b]d.
This extended KA representation is given using space-filling curves. Other compact domains in
Rd are also discussed. Our goal here is to find a similar KA representation as in [28]. Finally, in
Section 6, we construct a deep ReLU network which mimics the KA representation from Section
5 to approximate a β-Hölder-smooth function f . We then apply stochastic gradient descent to
this deep ReLU network and analyze the expected approximation rate with respect to the order of
parameters when f are the p-norms.
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2 Machine learning and the curse of dimensionality

To start, we introduce the standard regression model.

Definition 2.1 (Regression model). Let n, d ≥ 1 be integers. Given pairs (X1, Y1), . . . , (Xn, Yn)
which are independent and identically distributed (i.i.d.) for each i = 1, . . . , n, where Xi ∈ Rd are
the given covariates as a vector and Yi the observed response variable. We assume that there is a
function f : Rd → R, which we call the regression function, such that

Yi = f(Xi) + εi, with εi
i.i.d.∼ N (0, 1), for all i = 1, . . . , n.

Here, N (0, 1) is the standard normal distribution. The given pairs (Xi, Yi)i=1,...,n are the data and
we name n the sample size. The regression function f in this definition, is a map from the input
Xi to a neighbourhood of Yi from the data. In Definition 2.1, our goal is to find the regression
function that provides the best fit to the data. Therefore, we look at the function space of f . We
define the function space of f as the parameter space given by F . As a first example of a parameter
space we have the linear regression model.

F = {f : Rd → R | f = a>x + b, a,x ∈ Rd, b ∈ R}.

In this function space we only need to adjust (d + 1) parameters to fit the data. If the parameter
space has a finite amount of parameters, we call it a parametric model. On the contrary, if the
parameter space has an infinite amount of parameters, we call it a non-parametric model. This last
model is of interest if we want to assume as little as possible on the regression function. In this
thesis we look at the parameter space of β-Hölder-smooth functions, defined as follows.

Definition 2.2 (β-Hölder-smoothness). Let d ≥ 1 be an integer, D ⊆ Rd and set β ∈ (0, 1]. We
call f : D → R, β-Hölder-smooth if there exists a constant C ∈ R such that

|f(x)− f(y)| ≤ C‖x− y‖β∞ for all x,y ∈ D.

Where ‖x‖∞ = sup{|x| : x ∈ D} is the sup-norm. We can also refer to this definition as Hölder-
smooth or β-smooth. For β-Hölder-smooth functions the parameter space is

F =
{
f : Rd → R | f is β −Hölder-smooth for all β ∈ (0, 1]

}
.

If f is β-smooth for β = 1, then f is Lipschitz continuous. Furthermore, any β-smooth function is
continuous. Thus, this function space is non-parametric. Another example of β-smooth functions
are the real vector norms.

Theorem 2.3. Let p ∈ [1,∞), integer d ≥ 1 and f : D → R the p-norm f(x) = ‖ · ‖p on a compact
domain D ⊂ Rd. Then f is β-smooth for any positive β ≤ 1.

Proof. Let p ≥ 1. We have for some x,y ∈ D ⊂ Rd for compact D and positive β ≤ 1,

|f(x)− f(y)| ≤
∣∣∣‖x‖p − ‖y‖p∣∣∣ ≤ ‖x− y‖p,

≤ C‖x− y‖∞,
= C‖x− y‖1−β∞ · ‖x− y‖β∞,
≤ C̃‖x− y‖β∞.
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For suitable constants C, C̃ ∈ R≥0. In the first inequality we use the reverse triangle inequality,
in the second step we use the fact that all norms are equivalent on Rd and in the last inequality
we use the notion that all norms are bounded on compact domains in Rd. This concludes the
statement.

We can extend the regression function by viewing it as a function of a parameter vector θ, i.e.
we have Yi = f(Xi, θ) + εi for i = 1, . . . , n given n pairs (Xi, Yi)i=1,...,n. This parametrizes the

regression function. Our goal then is to find appropriate parameter vector θ̂ that approximates
the true regression function of the data. Consequently we can redefine a non-parametric model in
terms of parameters. The parameter space F is non-parametric if the number of real parameters
to parametrize f ∈ F grows with the sample size n. It is therefore difficult to reconstruct the
regression function in the non-parametric model. Moreover, the space of covariates d is also of
influence for the number of parameters. This is called the curse of dimensionality [3].

Definition 2.4 (Curse of dimensionality). The sample size n needed to estimate a non-parametric
regression function up to a certain precision, grows exponentially with respect to the number of
dimensions.

As a result from this curse, we need an exponential amount of parameters to parametrize f ∈ F .
It is known that to approximate a β-smooth function f up to an error m−β , we need at least an
order of md parameters [28]. If we want to avoid the curse of dimensionality, we need an order
of parameters less than md to approximate f up to an error of m−β . The curse of dimensionality
exists since the parameter space of a non-parametric model grows exponentially with respect to the
number of dimensions of the domain (see Figure 1).

In machine learning, adjusting an exponential amount of parameters is very costly with respect to
the run time. We therefore wish to avoid using so many parameters. Moreover, in typical machine
learning applications, the input dimension d is large. For example, if our application is classifying
an e-mail between spam or not-spam, our input vector are the individual words of the e-mail which
is usually a huge number.

Figure 1: The curse of dimensionality visualized. As space grows exponentially for increasing
number of dimensions, the function space grows exponentially as well. Therefore, the amount
of parameters to parametrize the non-parametric regression function grows exponentially as well.
(Source: [9])
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3 Introduction to neural networks

Neural networks are at the heart of modern machine learning. The concept of neural networks
is derived from observing neural activity in the human brain. For example, reading the letter Q,
neurons in the brain are activated (positively) confirming we indeed read the letter Q. Another set
of neurons activates whenever it reads the letter U. We can view the activity of one neuron as a
function. The letter can be seen as an image x ∈ Rd where d indicates the number of pixels. The
neuron maps the image to the set {activated, not-activated}. This neuron function is called a unit.
The model describing the relation of one unit is called the perceptron. The perceptron model is
originally defined by Rosenblatt [25] as follows.

Definition 3.1 (Perceptron model). For activation function σ : Rd → {−1, 1} with input x ∈ Rd,
weights w ∈ Rd and bias a ∈ R we define a unit as

σ(w>x + a) = sgn(w>x + a) =

{
1 if w>x + a ≥ 0,
−1 if w>x + a < 0.

The perceptron model should return 1 if the image input is the letter Q. To increase the plane for
which w>x + a ≥ 0, we increase the weights on the pixels that make up the letter Q. In return
we get a positive activation. The bias a gives more flexibility for the activation function σ. The
perceptron model is not restricted to activation function σ(x) = sgn(x). In this paper we focus on
the Rectified Linear Unit (ReLU) activation function. The ReLU activation function is given by
σ(x) = max{x, 0} (Figure 2 right). It equals the identity function if activated and 0 if not.

σ

activation
function

Y
∑

w3x3

...
...

wdxd

w2x2

w1x1

input weights

σ(w>x + a)

w>x + a

σ

0

Figure 2: On the left side: The perceptron model visualized with input layer x = (x1, . . . , xd) and
on the right side: the ReLU-activation function.

We can naturally extend the number of outputs and units we use. This gives a shallow neural
network. We define the number of units used in a shallow neural network as the width.
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Definition 3.2 (Shallow neural network (SNN)). A shallow neural network with input x ∈ Rd,
activation function σ, width m ∈ N, weights wj ∈ Rd and bias aj , dj ∈ R is a function f : Rd → R
of the form

f(x) =

m∑
j=1

djσ(w>x + aj).

This neural network can also be viewed as a directed acyclic graph (Figure 3). Here we have three
rows of nodes. The first row is the input layer with nodes (x1, . . . , xd). The second row consists of
m nodes which contains the computed activation function from the input layer (Figure 2 with m
outputs). The third row are the results of the output layer.

σ(w>x + a)

xd

x3

...

x2

x1

f

input layer hidden layer Output layer

Figure 3: A shallow neural network with input x ∈ Rd, width m = 5 and output f as in Definition
3.2 for each output neuron.

We can also increase the number of hidden layers between the input layer and output layer. This
gives us a deep neural network. To make sense of deep neural networks, we first define for each
activation function in each hidden layer the shifted activation function. Secondly, we need a repre-
sentation for the widths in each layer. This is the network architecture. The maximum units used
in one of the hidden layers gives the width of the total deep neural network.

Definition 3.3 (Shifted activation function). Let n ≥ 2 be an integer. For a choice of activation
function σ and shift vector v ∈ Rn, the shifted activation function σv : Rn → Rn is defined as

σv

x1...
xn

 =

σ(x1 − v1)
...

σ(xn − vn)

 .

Definition 3.4 (Network architecture). A network architecture is a pair (L,p) with positive integer
L which defines the number of hidden layers and p = (p0, . . . , pL+1) ∈ NL+2 is the width vector.
More precisely, p0 is the width of the input layer, pj the width of the j-th hidden layer and pL+1

the width of the output layer.
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Definition 3.5 (Deep neural network (DNN)). A deep neural network or multi-layer neural network
with architecture (L,p), weight matrices Wi ∈ Mat(pi+1 × pi,R), shift vector vi ∈ Rpi and shifted
activation functions σvi : Rpi → Rpi is a function f : Rp0 → RpL+1 of the form

f(x) = WLσvLWLσvL−1
. . .W1σv1

W0x.

In the non-parametric regression model of Definition 2.1, we have p0 = d and pL = 1. We can
choose different activation functions σ in each hidden layer. In case that for all units in each
hidden layer the ReLU activation function is chosen and L > 1, the network is called a deep
ReLU network. Moreover, if the activation function overall is the identity function, then the neural
network simplifies into a linear function. An example of a deep neural network is given below.

x1

x2

x4

...

xd

f

Figure 4: DNN with architecture (2, (d, 3, 5, 2)), input x ∈ Rd and width 5. For each output unit we

have f(x) =
∑5
q=1 dqσ

(∑3
p=1 bpqσ

(
w>p x + ap

)
+ cq

)
with parameters wp ∈ Rd, dq, bpq, ap, cq ∈ R.

We now look at neural networks as an approximation for the regression function. In a two-hidden-
layer neural network with m1 the width of the first hidden layer and m2 the width of the second
hidden layer, we have a total of 2m2+m1m2+(d+1)m1 parameters. With addition of more hidden
layers, the amount of parameters needed to form a deep neural network is a polynomial function.
Therefore, if we have a deep neural network with L is of smaller order than d, then the order of
parameters needed to approximate a non-parametric regression function is smaller with respect to
an approximation which uses an exponential amount of parameters. Moreover, if in this case we get
an equal order of approximation rate, we avoid the curse of dimensionality in terms of parameters.
Furthermore, if an activation function σ has the universal approximation property defined below,
a shallow neural network with σ can approximate any continuous function up to an error ε > 0.

Definition 3.6 (Universal approximation property). Shallow neural networks with activation σ
have the universal approximation property if for any ε > 0 and any continuous f on [0, 1]d, there
exists an integer m = m(f, ε) such that

inf

{
‖f − g‖∞ ≤ ε

∣∣∣∣∣f, g on [0, 1]d, g any SNN with width m

and activation function σ

}
.
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Theorem 3.7. Consider shallow neural networks with smooth activation function σ and σ not a
polynomial. Then the universal approximation property holds.

The proof of which can be found in [27]. Theorem 3.7 can be extended to hold for ReLU activation
function [29] as well. This suggests shallow neural networks are sufficiently enough to approximate
the regression function. Nevertheless, deep neural networks are widely used nowadays, outperform-
ing shallow networks, [19]. This raises the question into why additional hidden layers provide more
benefits.

4 Kolmogorov-Arnold representation theorem

In this chapter we recall the Kolmogorov-Arnold representation theorem (KA representation) and
cover the main discussion of this thesis. As stated in the introduction, the Kolmogorov-Arnold
representation theorem disproves Hilbert’s thirteenth problem [12]: is it possible for the solution x
in

x7 + ax3 + bx2 + cx+ 1 = 0,

seen as a three-variable function x(a, b, c), to be rewritten as a composition of two-variate functions?
Kolmogorov and Arnold gave a generalized negative answer to this problem in 1957 [15].

Theorem 4.1 (Kolmogorov-Arnold representation theorem). Let d ≥ 1 be an integer and
f : [0, 1]d → R be any d-variate continuous function. There exists univariate continuous functions
gq, ψp,q such that

f(x1, . . . , xd) =

2d∑
q=0

gq

(
d∑
p=1

ψp,q(xp)

)
.

Theorem 4.1 is also called the Superposition theorem. If we think of each gq, ψp,q to be activation
functions and for width 2d, we have a similar representation with a shifted two-hidden-layer neural
network of the form:

f(x) =

m1∑
q=1

dqσ

(
m2∑
p=1

bpqσ
(
w>p x + ap

)
+ cq

)
,

with parameters wp ∈ Rd,
dq, bpq, ap, cq ∈ R.

This similar representation gives insight into our discussion at the end of Section 3 as it says that
any d-variate function defined on the unit cube can be rewritten as a shifted two-hidden-layer neural
network. This connection was made for the first time in 1987 by Hecht-Nielsen [10]. It was initially
declared irrelevant by Poggio and Girosi in 1989 [23] for two reasons. First, the outer function
gq depends on f . Secondly, the inner function ψp,q is chosen independent from f but is highly
non-smooth even though it is continuous. Moreover, the original proof of Theorem 4.1 is non-
constructive giving little information about the inner and outer functions. In 1991, Kůrková made
the connection more precisely by giving a proof of Theorem 3.6 using the Superposition theorem as
a deep neural network. Furthermore, improved versions of Theorem 4.1 in [20], [30], [31], [4] and [5]
paved the way for a stronger connection between neural networks and the Superposition theorem
[24], [13], [18]. To further strengthen the relation between KA representation and neural networks,
we need to construct a new KA representation which is equivalent to a deep neural network.
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We now summarize the discussion so far. To estimate a d-variate β-smooth regression function f
with positive number β ≤ 1 up to error m−β , we need an order of md parameters to parametrize
f . We want to construct a deep neural network which uses at most an order of md parameters to
approximate f up to an error m−β . Moreover, this deep neural network mimics the KA represen-
tation. i.e., our construction is a rewriting of a d-variate function into a composition of univariate
functions.

5 An extension of the KA representation

To construct a deep neural network as described above, we first need a KA representation which
we can imitate. We get a new KA representation from [28], Section 2. In this section we extend the
domain [0, 1]d on which the new KA representation is proven and check if we obtain an equal order
of approximation rates. Since we only extend the domain, the proofs of Theorem 5.3, Theorem 5.5
and Theorem 5.6 are similar as the original proof in [28]. We first consider the domain [a, b]d ⊂ Rd
with a < b. Our goal is to find an approximation of β-Hölder-smooth functions f : [a, b]d → R. The
new KA representation uses space-filling curves which are defined as follows.

Definition 5.1 (Space-filling curve). Let d ≥ 2 be an integer. For non-empty compact domain
D ⊂ Rd, a space-filling curve is a surjective map γ : [0, 1]→ D.

Popular examples of space-filling curves on the unit cube are the Hilbert curve and the Peano curve
([11], [22]). If the inverse γ−1 exists, we can rewrite a function k : [0, 1]d → R as follows:

k = (k ◦ γ) ◦ γ−1.

For f , we map the domain [a, b] to [0, 1] by transformation T (x) := (x− a)/(b− a). We can extend
this transformation so that it holds for d dimensions. We have Td : [a, b]d → [0, 1]d defined by
Td(x) := (T (x1), . . . , T (xd)). We rewrite

f = (f ◦ T−1d ◦ γ) ◦ (γ−1 ◦ Td) = g ◦ Γ, with g := f ◦ T−1d ◦ γ, and Γ := γ−1 ◦ Td.

This gives an outer function g that depends on f and an inner function Γ : [a, b]d → [0, 1]. This
inner function is d-variate so it differs from the original KA representation Theorem 4.1. A diagram
below shows what happens.

[a, b]d R

[0, 1]d [0, 1]

f

Td
Γ

g

γ−1

The main difficulty of space-filling curves with respect to the KA representation is Netto’s theorem
([17] Proposition 4.4).

Theorem 5.2 (Netto’s theorem). A continuous surjective map γ : [0, 1]→ [0, 1]2 cannot be
injective.
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Theorem 5.2 seems to make it impossible to find a continuous inner function, i.e. we cannot find a
continuous map Γ−1. In total we now have two problems to rewrite f in a KA representation using
space-filling curves. First, the inner function is a d-variate function. Secondly, the inner function
is discontinuous by Netto’s theorem. The following theorem overcomes the first problem. It is an
extension of Lemma 1 in [28]. The proof uses the B-adic representation for choices of B ∈ Z≥2.
e.g. for B = 2 we have binary number representation and for B = 10 we have the decimal number
system.

Theorem 5.3. Fix integers d,B ∈ Z≥2 and a, b ∈ R with a < b. There exists a monotone function
ψ : [a, b] → R such that for any function f : [a, b]d → R we can find a function g : R → R that
satisfies

f(x1, . . . , xd) = g

(
d∑
p=1

B−pψ(xp)

)
.

Proof. First, rewrite each x ∈ [a, b] in its B-adic representation. This is however not unique e.g.
for B = 10 we have 1 = 0.9. Therefore, we select one B-adic representation for each x. For
nxj ∈ {0, . . . , B − 1} we have the following B-adic representation,

x =

∞∑
j=1

nxj
Bj

=: [0.nx1n
x
2n

x
3 . . .]B .

Secondly, we map x to y = T (x) = (x− a)/(b− a) ∈ [0, 1]. In B-adic representation we have,

y = T (x) = T

 ∞∑
j=1

nxj
Bj

 = T ([0.nx1n
x
2n

x
3 . . .]B) = [0.my

1m
y
2m

y
3 . . .]B .

This gives a unique B-adic representation for each T (x) in [0, 1] and my
j ∈ {0, . . . , B − 1}. Thirdly,

we define τ : [0, 1] by

τ(z) :=

∞∑
j=1

nzj
Bd(j−1)

= [nz1.0 . . . 0n
z
20 . . . 0nz20 . . .]B for z ∈ [0, 1].

Where in B-adic notation we have (d− 1)-many zeros between each nzj , j = 1, 2, . . .. The function
τ is monotone increasing since we fixed d,B ≥ 2 and transformation T is monotone increasing as
a < b. The composition ψ := τ ◦ T is therefore monotone increasing as well. Lastly, we define
Ψ : [a, b]d → [0, 1] by

Ψ(x1, . . . , xd) :=

d∑
p=1

B−pψ(xp) = [0.my1
1 m

y2
1 . . .myd

1 m
y1
2 . . .]B .

Reversing the steps recovers x1, . . . , xd from Ψ. So the inverse Ψ−1 exists. Defining g := f ◦ Ψ−1

concludes the statement.

We now have that Ψ−1 : [0, 1] → [a, b]d is a space-filling curve. Furthermore, the inner function Ψ
consists of additive univariate interior functions ψ hence the inner function itself is univariate. We
therefore overcome our first problem as discussed above.
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The inner function is however still discontinuous for finite B-adic representation. Set for example
x = 1/2. We have for limit x ↓ 1/2,

Ψ−1(x)→ (T−1(1/2), T−1(0), . . . , T−1(0)) = (b/2− 3a/2,−a, . . . ,−a)

and for limit x ↑ 1/2,

Ψ−1(x)→ (T−1(1/2), T−1(1), . . . , T−1(1)) = (b/2− 3a/2, b− 2a, . . . , b− 2a).

Which is only equal if and only if a = b. This makes ψ also discontinuous. Function Ψ seems
unclear at first glance but it works similar as Hilbert’s hotel [16] where for input Td(x1, . . . , xd)
in B-adic representation we assign my1

1 to the first hotel room, my2
1 to the second and myi

j to the
j(i+1)’th room. For B = d = 2 we get the Morton order coinciding up to rotation with the Z-order
curve ([21], [2]). To overcome the second problem of discontinuity, we define g on the domain of
the Cantor set.

Definition 5.4 (Cantor set). The Cantor set C ⊂ [0, 1] is defined as

C := [0, 1] \
∞⋃
n=1

3n−1−1⋃
k=0

(
3k + 1

3n
,

3k + 2

3n

)
.

It is the set for which iteratively, the open middle third is removed of a line segment in [0, 1],
infinitely many times. Using the B-adic representation above, we can rewrite C as

C = {x ∈ [0, 1] : [0.nx1n
x
2n

x
2 . . .]3 with nxi = {0, 2}, for all i = 1, 2, . . .}.

This gives the following extension of Theorem 5.3.

Theorem 5.5. For fixed dimension d ≥ 2, a, b ∈ R with a < b, there exists a monotone function
φ : [0, 1]→ C such that for any function f : [a, b]d → R we can find a function g : C → R such that

(1) f(x1, . . . , xd) = g
(

3
∑d
p=1 3−pφ(T (xp))

)
;

(2) if f is continuous, then g as well;

(3) if there exists positive β ≤ 1 and a constant Q, such that |f(x)− f(y)| ≤ Q‖x− y‖β∞ for all

x,y ∈ [a, b]d, then, |g(x)− g(y)| ≤ (2(b− a))βQ|x− y|
β log 2
d log 3 for all x, y ∈ C.

Proof. We prove (1) by using the same construction as in Theorem 5.3. We now associate each
y = T (x) ∈ [0, 1] with a 2-adic representation and define

φ(y) :=

∞∑
j=1

2my
j

31+d(j−1)
= [0.(2my

1)

(d−1)−times︷ ︸︸ ︷
0 . . . . . . . . . 0(2my

2)0 . . . . . . . . .]3,

Φ(y1, . . . , yd) := 3

d∑
p=1

3−pφ(yp) = [0.(2my1
1 )(2my2

1 ) . . . (2my1
2 )(2my2

2 ) . . .]3.

For all j = 1, 2, . . . we have the 3-adic representation of φ with my
j ∈ {0, 2 · 1}. By definition of the

Cantor set we can conclude that the image of φ is in C. Moreover, the function Φ : [a, b]d → C is
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also mapped correctly to the Cantor set. Using the same construction as Theorem 5.3 we deduce
that φ is monotone increasing and we can reverse the construction so that Φ−1 exists. Finally, we
define g := f ◦ Φ−1 : C → R and conclude (1).

Next, to prove (2) and (3) we show that

‖Φ−1(x)− Φ−1(y)‖∞ ≤ 2(b− a)|x− y|log 2/d log 3, for all x, y ∈ C.

First, the space-filling curve Φ−1 maps each point [0.y1y2 . . .]2 ∈ C to the d-dimensional vector

(T−1([0.(y1/2)(yd+1/2) . . .]2), . . . , T−1([0.(yd/2)(y2d/2) . . .]2))>

= (b− a)([0.x1xd+1 . . .]2, . . . , [0.xd, x2d, . . .]2)> + a ∈ [a, b]d.

With T−1(yi) = (b− a)xi + a for all i = 1, . . . , d. Hence the inverse expands the space in Rd by a
factor of (b− a). Secondly, suppose x, y ∈ C and define positive integer k∗(x, y) for which

3−(k+1)d ≤ |x− y| < 3−kd.

It denotes the number for which the first d · k∗ ternary digits of x and y coincide. For Φ−1(x) and
Φ−1(y) it denotes the first k∗ binary digit that agree in each component. Therefore, by expansion
of T−1 and the definition of k∗ we have∥∥∥Φ−1(x)− Φ−1(y)

∥∥∥
∞
≤
∥∥∥ [(b− a)([0.x1xd+1 . . .]2, . . . , [0.xd, x2d, . . .]2)> + a

−(b− a)([0.y1yd+1 . . .]2, . . . , [0.yd, y2d, . . .]2)> − a
] ∥∥∥
∞
,

= (b− a)
∥∥∥ [([0.x1xd+1 . . .]2, . . . , [0.xd, x2d, . . .]2)>

−([0.y1yd+1 . . .]2, . . . , [0.yd, y2d, . . .]2)>
] ∥∥∥
∞
,

≤ (b− a)2−k
∗

= 2(b− a)2−(k
∗+1) = 2(b− a)

(
3−(k

∗+1)d
)log 2/d log 3

,

≤ 2(b− a)|x− y|log 2/d log 3.

The map Φ−1 is thus (log 2)/(d log 3)-Hölder-smooth with constant 2(b−a) so it is continuous. If f
is continuous, then the composition g is continuous as well and we conclude statement (2). Lastly,
if f is β-smooth for some positive β ≤ 1, then for all x, y ∈ C we have,

|g(x)− g(y)| =
∣∣f(Φ−1(x))− f(Φ−1(y))

∣∣ ≤ Q (‖Φ−1(x)− Φ−1(y)‖∞
)β ≤ (2(b− a))βQ|x− y|

β log 2
d log 3 .

This concludes the last statement.

Restricting the space-filling curve to the Cantor set makes it continuous and we avoid the conclusion
of Netto’s theorem. We now have overcome the two problems discussed above and the KA repre-
sentation is extended to the [a, b]d-domain. This KA representation has continuous outer function
g and additive continuous inner function Φ. Specifying on the space-filling curve of this KA repre-
sentation, our space-filling curve Φ−1 is the Z-order curve. Next, we look if this new representation
gives a good approximation for f . Even though Φ is continuous, the interior function φ is discontin-
uous for the same reason as ψ from Theorem 5.3 is discontinuous. To get an approximation for f ,
we truncate φ. This also reduces the complexity of the discontinuous interior function. We obtain
the following approximation.
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Theorem 5.6. Let d ≥ 2, a, b ∈ R with a < b and suppose positive integer K. For a binary
representation x ∈ [a, b]d and y = T (x) define

φK(y) :=

K∑
j=1

2my
j3−1−d(j−1).

If there exists β ∈ (0, 1] and a constant Q such that |f(x)−f(y)| ≤ Q‖x−y‖β∞ for all x,y ∈ [a, b]d,
then, we can find univariate function g such that

(1) |g(x)− g(y)| ≤ (2(b− a))βQ|x− y|(β log 2)/(d log 3) for all x, y ∈ C;

(2) for all x = (x1, . . . , xd)
> ∈ [a, b]d,∣∣∣∣∣f(x)− g

(
3

d∑
p=1

3−pφK(T (xk))

)∣∣∣∣∣ ≤ 2(b− a)Q2−βK .

Proof. We let φ and g be as in Theorem 5.5(1) and φK defined as above. This returns a sufficient
g for (1). For (2). Since φ is in the Cantor set, the truncated φK is in C as well and have the same
first Kd ternary representation. We have∣∣∣∣∣f(x)− g

(
3

d∑
p=1

3−pφK(T (xp))

)∣∣∣∣∣ =

∣∣∣∣∣g
(

3

d∑
p=1

3−pφ(T (xp))

)
− g

(
3

d∑
p=1

3−pφK(T (xp))

)∣∣∣∣∣ ,
≤ (2(b− a))βQ

∣∣∣∣∣3
d∑
p=1

3−p (φ(T (xp))− φK(T (xp)))

∣∣∣∣∣
β log 2
d log 3

= ?.

Because φ and φk have the same first Kd ternary digits we obtain

d∑
p=1

φ(T (xp))− φK(T (xp)) =

d∑
p=1

∞∑
j=Kd+1

2m
yp
j

31+d(j−1)
≤ 2

∞∑
q=Kd+1

3−q.

Continuing, from the geometric sum formula
∑∞
q=0 3−q = 3/2, we can conclude statement (2) by,

? ≤ (2(b− a))βQ

∣∣∣∣∣∣2
∞∑

q=Kd+1

3−q

∣∣∣∣∣∣
β log 2
d log 3

,

≤ (2(b− a))βQ

∣∣∣∣∣2 · 3−Kd+1
∞∑
q=0

3−q

∣∣∣∣∣
β log 2
d log 3

= (2(b− a))β
∣∣3−Kd∣∣ β log 2

d log 3 ,

≤ 2(b− a)Q2−βK .

Truncating φ up to K digits gives an approximation for f . Comparing Theorem 5.6 to Lemma 4
in [28], we get equal approximation up to a factor (b − a). Therefore, wee can conclude that the
domain is of influence to the approximation rate. The interior function φK is by truncation still
discontinuous and the outer function g is still f depended. In Section 6 we overcome these last
two problems by replacing φK with a deep ReLU network and show that the outer function can be
well-approximated by a shallow ReLU network.
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5.1 Other compact domains for the KA representation

We have now extended the KA representation from [28] using space-filling curves on the general
d-dimensional cube. The representation of Theorem 5.5 is up to transformation Td equivalent to
the KA representation of [28]. In each component dimension we were able to do the same smooth
transformation from [a, b] to [0, 1]. Thus the [a, b]d-domain is not of major influence to the KA
representation. What happens to the KA representation if we consider other compact domains in
Rd? Will the KA representation differ from Theorem 4.1 and Theorem 5.5? We now look at the
d-dimensional closed ball which is defined as

Bd = {x ∈ Rd : ‖x‖2 ≤ 1},

and try to obtain a similar KA representation for β-smooth functions f on [0, 1]d. To do this we use
the same strategy as for the [a, b]d-domain. Topologically, these spaces are homeomorphic to each
other, thus there exists a homeomorphism between the unit cube and closed ball. A first choice
would be a homeomorphism of the following theorem.

Theorem 5.7. Let d ≥ 1 be an integer. The function h1 : Bd → [−1, 1]d given by

h1(x) =
‖x‖2x

max{|x1|, . . . , |xd|}
1{x 6= 0}, is homeomorphic.

Proof. First we show bijectivity. h1(x) = 0 if and only if x = 0 by definition of h1. Secondly, we
note that ‖x‖2/max{|x1|, . . . , |xd|} ∈ R. Therefore, we have h1(x) = λx for λ ∈ R. A line segment
from the origin to the boundary of the ball is extended by λ as a line segment from the origin to
the boundary of the d-cube (see Figure 5). The set of all the line segments from the origin to the
boundary of the ball contain all the points in Bd. Furthermore, each line in this set only intersects
each other at 0. Hence for each point p ∈ Bd \ {0} we can find a unique line segment that passes
through p. This gives a unique mapping of h1 to the unit cube as h1(p) = λp, the unique point
in the line segment from the origin to the unit cube that passes through h1(p). The map h1 is
by these two points bijective. Next, the inverse is given by h−11 (x) = λ−1x through the previous
arguments. If we take a point h1(p) ⊂ [−1, 1]d with open neighbourhood U of h1(p) contained
in [−1, 1]d, then U consists of multiple open intervals of line segments. Furthermore, the inverse
h−11 U = λ−1U is open on the ball, hence it is continuous. We conclude the statement.

x

y

x

y

h1

Figure 5: Example for d = 2. A line segment from the origin to the boundary in B2 is extended
to the boundary of [−1, 1]2 by h1.
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The problem with h1 is that the max function can not be decomposed as a summation of compo-
sitions of one-variable functions. If we try to use h1 in a similar fashion as Td from the previous
subsection we lose the benefit of Theorem 5.3. The inner function cannot be rewritten as a sum-
mation of univariate functions and the inner function remains d-variate. To find better options, we
consider d = 2 and look at the map

h2(x, y) = (x, x2 + y2).

This map can be decomposed additively for e(x) = x2 with h2(x, y) = (x, e(x) + e(y)). However, it
is not bijective because h2(x, y) = h2(x,−y) (see Figure 6). The following map from [8] is bijective.

Theorem 5.8. Let d = 2. The map h3 : B2 → [−1, 1]2 given by

h3(x, y) =

(
x,

y√
1− x2

)
,

is bijective.

Proof. First, we note that the image of y =
√

1− x2 for x ∈ [−1, 1] is the half-circle for x ≥ 0 with
radius 1 from the origin. Therefore, y/

√
1− x2 is a ratio which depends on the radius for the point

(x, y) ∈ B2. Using c2 = x2 + y2 for radius c ∈ [0, 1], we can rewrite the map h3 as follows:

h3(x, y) =

(
x,

y√
1− x2

)
=

(
x,

√
c2 − x2
1− x2

)
.

Secondly, suppose h3(x1, y1) = h3(x2, y2) for (x1, y1), (x2, y2) ∈ B2. This means x1 = x2 and
therefore, y1 = y2 using the rewriting of h3 above. This proves injectivity. For surjectivity, suppose
(x2, y2) ∈ [−1, 1]2. We set x1 = x2 and y1 = y2

√
1− x22. This gives

h3(x1, y1) = h3

(
x2, y2

√
1− x22

)
=

(
x2,

y2
√

1− x22√
1− x22

)
= (x2, y2).

It is left to show that (x1, y1) is indeed a point in B2. We have

c2 = x21 + y21 = x22 +

(
y2

√
1− x22

)2

= x22 + y22 − x22 y22 ≤ 1.

Where we use the inequality of (x2, y2) ∈ [−1, 1]2. This proves surjectivity and we conclude the
statement.
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x

y
x

y

h2

h3

y

x

Figure 6: Visualisation of functions h2 and h3 from the ball to the unit cube. For the dashed
contour, the radius is 0.5.

Again as with h1, the function h3 is not a composition of additive functions so it is difficult to
incorporate h3 in a KA representation. For h2 we can also look at the positive side of the ball
Bd+ := Bd ·1{xd ≥ 0}. This will give us the desired homeomorphism: we define h4 : Bd+ → [0, 1]d by

h4(x1, . . . , xd) :=

(
x1 + 1

2
,
x2 + 1

2
, . . . ,

xd−1 + 1

2
,
√
x21 + . . .+ x2d

)
.

This function is bijective as all its individual components are now bijective on each individual
component domain. Setting r(x) = (x+ 1)/2, s(x) =

√
x and t(x) = x2, we can rewrite h4 as

h4(x1, . . . , xd) =

(
r(x1), . . . , r(xd−1), s

(
d∑
p=1

t(xp)

))
.

Function h4 now transforms each component of Bd+ to each component in [0, 1]d. With respect to the
map Td from the previous subsection we have a similar transformation up to the last component.
Hence if we now find a new KA representation on the domain Bd+, it will differ from the KA
representation we have seen so far. This KA representation is more complex as our transformation
in the last component is more complex (i.e. we have more compositions of univariate functions).
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6 Applying the extended KA representation

In the previous section we obtained an approximation of a β-smooth function f from the cube [a, b]d

to R:

f(x) ≈ g

(
3

d∑
p=1

3−pφK(T (xp))

)
, with φK(x) =

K∑
j=1

2axj 3−1−d(j−1).

The interior function φK is still discontinuous and the outer function is f depended. Setting
a = 0, b = 1, then T is the identity function. We can approximate φK with a deep ReLU network
from [28], Section 3. Using this deep ReLU network we apply gradient descent to the above
approximation and investigate if we get the expected approximation rate using a suitable amount
of network parameters.

6.1 Gradient descent

In Section 2 we introduced the non-parametric model. We have data (Xi, Yi)i=1,...,n and our goal
is to find the best fitting regression function f such that for all i = 1, . . . , n, we have

Yi = f(Xi, θ) + εi with εi ∼ N (0, 1),

where θ is the real parameter vector. This regression model is non-parametric as we assumed our
regression function is in the parameter space which consists of β-Hölder-smooth functions. Next,
in Section 3 we defined deep ReLU networks f̂ to approximate the regression function. We use the
least squared loss as our measure of fit. For V a real vector space, we want to find parameter vector

θ̂n ∈ argminθ∈V
1

n

n∑
i=1

(
Yi − f̂(Xi, θ)

)2
.

In general, we can rewrite the above functional as the loss L(θ; Xi, Yi). To obtain small loss,
stochastic gradient descent (SGD) is the most popular choice. In short, SGD iteratively updates
the weights and bias parameters of a neural network by moving them in the direction of the negative
gradient of the loss. For this, the ReLU activation has to be differentiable which it is on R\{0}. For
the point on the origin, we can fix 0 or 1 as the differential at this point. We update the parameter
weights using

θi := θi−1 − α∇L(θ; Xi, Yi).

Updating the parameters of f̂ using SGD leads to a local minimum for the loss. We get a local
minimum as deep neural networks are in general non-convex. SGD can be computed for neural
networks using the backpropagation algorithm [26]. For the scope of this thesis we leave out these
details.
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In SGD, α is called the step size or learning rate. It determines the change of weights from
the gradient. Choosing the correct learning rate is difficult and depends on the neural network. A
learning rate which is too small gives little training whereas a high learning rate results in oscillations
and in turn gives a non optimal minimum. We choose Adam [14] as our SGD optimizer. It uses
an adaptive learning rate for each network parameter. The Adam optimizer is developed for large
data sets and high-dimensional parameter space.

In total, for input Xi ∈ [0, 1]d and output Yi ∈ R we wish to approximate a β-smooth function
f : [0, 1]d → R using the KA approximation of Theorem 5.5 with T (x) = x. We use the Adam
optimizer with least squares loss and examine that our estimator contains md parameters to ap-
proximate f with expected rate of m−β .

6.2 Constructing a deep ReLU network based on the KA representation

After discussing SGD, we now construct a deep ReLU network by following the construction in
[28], Section 3. We first build a deep ReLU network to approximate the interior function φK .
Concatenating all interior functions gives a network for the inner function. Afterwards, we extend
the network so that it approximates the outer function g. A network here can also be referred to
as a model.

6.2.1 Constructing a deep ReLU network for the interior function

To compute φK in a deep ReLU network we want to extract each bit axj from the binary input x =
[0.ax1a

x
2 . . .]2 for j = 1, . . . ,K. We do this by using threshold activation function 1{x ≥ 1/2} = σ(x)

and the identity activation function id(x) = x. Starting, we obtain the first bit by

σ([0.ax1a
x
2 . . .]2) = 1{[0.ax1ax2 . . .]2 ≥ 1/2} = ax1 ,

and then compute
2id(x)− 2σ(x) = 2(x− ax1) = [0.ax2a

x
3 . . .]2.

Iterating through these steps gives us axj for j = 1, . . . ,K. To convert it to a ReLU network we
note that the input is non-negative so we can change the identity activation function by the ReLU
activation function. Additionally, we can change the threshold activation function by two ReLU
activation functions for choice of ε ↓ 0 with

1{x ≥ 1/2} =
1

ε
max

{
x− 1− ε

2
, 0

}
− 1

ε
max

{
x− 1 + ε

2
, 0

}
=: σ1(x)− σ2(x).

This gives us three individual ReLU networks in each hidden layer (see Figure 7). Two networks
are used to extract each bit from the input with architecture (2, (2, 1, 1, 1)), (2, (2, 1, 2, 1)) and one
network to compute the result with architecture (2, (2, 1, 1, 1)). As we want to extract K digits
from the input, our interior function is a deep ReLU Network with 2K hidden layers and width
4 (see Figure 8 left). To sum up, from input x = [0.ax1a

x
2 . . .]2 this deep ReLU network outputs

3φK(x) with network architecture (2K, (1, 4, . . . , 4, 1)).
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∑j
n=1 3−d(n−1)axn

·
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Figure 7: The individual models to compute φK(x)

6.2.2 Constructing the full model

Having constructed the deep ReLU network to compute φK , we now build the full network to
estimate β-smooth functions f . For this we use the following theorem.

Theorem 6.1. Schmidt-Hieber 2020 (Theorem 3 in [28]) Let p ∈ [1,∞). If there exists β ≤ 1 and a
constant Q, such that |f(x)−f(y)| ≤ Q|x−y|β∞ for all x,y ∈ [0, 1]d. Then, there exisits a deep ReLU
network f̃ with 2K + 3 hidden layers, network architecture (2K + 3, (d, 4d, . . . , 4d, d, 1, 2Kd + 1, 1))
and all network weights bounded in absolute value by 2 max{Kd, ‖f‖∞} · 2Kmax{d,pβ}, such that

‖f − f̃‖p ≤ 2 (Q+ ‖f‖∞) · 2−βK .

Hence after computing the inner function φK(xi) for each i = 1, . . . , d, we can approximate the
outer function by a shallow neural network with ReLU activation function and width 2Kd+1. This
gives in total a deep ReLU network with architecture (2K + 3, (d, 4d, . . . , 4d, d, 1, 2Kd + 1, 1)) (see
Figure 8 right). The weight initializations of the last hidden layer are to be sampled from a given
distribution and all other network parameters are initialized by its corresponding construction of
the inner function. Theorem 6.1 leads to the rate 2−Kβ using of the order 2Kd parameters.

6.2.3 Program

The full model is programmed in Python and can be found on github [32] which contains extra
details. For this we used the Keras functional API module in TensorFlow ([7], [1]). The functional
API gives us a lot of flexibility when programming the network as we do not have a fully connected
deep neural network. The total model to approximate f consists of several smaller models combined
together as described above. For each output graph, a special function is made. In total we have
3·2Kd+4+(24K+33)d parameter weights for K > 2. This gives indeed an order of 2Kd parameters.
Additionally, it imitates the KA approximation as desired.
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·· · · ···
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(
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∑d
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)
Figure 8: On the left side: the deep ReLU network to approximate φK using the three individual
2-hidden-layer models. On the right side: the total model from Theorem 6.1 to approximate β-
smooth function f .

6.3 Results

Next, we will confirm that this deep ReLU network returns the expected approximation rate of
2−βK . Our data consists of 10,000 random points in [0, 1]d which we split in 10% test and 90%
train datasets. Moreover, we represent this dataset in binary form using the binary_input function.
In any training we use 200 epochs. We do this because for most cases, after 200 epochs there is little
to no training and in some cases it even increases the loss. As this is undesirable we ignore these
cases. We view the result of training by plotting the model loss as a function of epochs. First we test
the φK-network by making a prediction dataset from the random data including some noise. The
noise takes samples of the normal distribution with variance 0.01. Adding noise gives the regression
model from Definition 2.1. We train the model for d = 1, K = 1, . . . , 10 and ε = 10−1, . . . , 10−4.

Analyzing the results of the φK-model in Figure 9, we obtain no training for K = 1 and all ε. As
K = 1, our output set consists of two points {0, 2 · 1}. We truncated a binary input up to K digits
so we get a maximum number in the output set of 2K . With only two outputs, the model gets the
best loss for choosing one of the two options. This results in no training.
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Figure 9: Loss versus epoch of φK with different choices of ε. All choices have same random input
data set

For K > 1 we get different loss for all ε. As we decrease ε, the training results are more volatile.
This result is justified by the model which computes each bit axi for i = 1, . . . ,K (Figure 7 middle).
For any ε ∈ (0, 1) we have σ1(x) − σ2(x) = 1{x ≥ 1/2}. Therefore, the output of the truncated
activation function is independent of ε. So why do we have different results? For σ1, σ2 we initialize
the weights and biases as

σ1(x) =
1

ε
max

{
x− 1− ε

2
, 0

}
= max

{
1

ε
x− 1− ε

2ε
, 0

}
= σ1

(
1

ε
x− 1− ε

2ε

)
,

which for ε ↓ 0 gives large initial weights and biases. Focusing on the learning rate, we have large
shifts for the weights and biases even if the learning rate is low. Moreover, the learning rate is
adaptive and so the weights and biases of σ1 and σ2 differ during training and in return may result
in false digit output. Additionally, the output space is split up by the first digit. For large K, the
output set is split between intervals [0, 1) and [2, 3). During training, the prediction may switch
between these intervals and subsequently increases or decreases the loss significantly. For K > 6
we get similar results (Appendix A, Figure 13). As ε = 0.1 is the most stable option, we choose
this ε in the next results.

One might argue that all options for ε gives insufficient loss and say we could get better results
when we have different weight initialization for the interior function network. Hence we compare
the φK-model with standard weight initialization. In Keras, the standard is the Glorot uniform
initialization [6]. In this initialization, weights are set by drawing random samples from the uniform
distribution on R.

Examining the differences in loss between weight initialization in Figure 10, we note that for small
K the Glorot uniform initializer performs better than our KA initialization. Doing multiple training
(50 times) for the Glorot uniform model gives similar loss for K = 1, 2, 3, 4. Similar to K = 1.
However, this happens infrequently. For K > 4 we get equivalent results for Glorot uniform (see
Appendix Figure 15). Presumably, there is no training as the model is too deep and the number of
random weights can not be initialized correctly.
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Figure 10: Loss versus epochs of φK with different weight initialization. All choices use the same
input data set. For KA initialization, the weights are initialized with ε = 0.1.

The Glorot uniform initialization now scores best for picking one of the two output interval spaces.
Continuing, we now check the loss for the total model. For this we look at three β-smooth functions
on [0, 1]d:

f1(x) = ‖x‖1, f2(x) = ‖x‖2 and f∞(x) = ‖x‖∞.

As these functions are p-norms they are β-smooth by Theorem 2.3. When training the total model,
we do not train the inner weights as they are initialized such that they give the expected outcome
of the inner function. We sample the weight initialization of the last hidden layer from the normal
distribution. The input data set is once more 10,000 random points in [0, 1]d and the prediction
dataset is f(input data) + noise. Both again are split in 10% test and 90% train datasets.

Figure 11: Loss versus epochs of the total model (Theorem 6.1) with K = 1, 2, 3 and d = 1, 2, 3.
For each graph the same input dataset is used.
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Figure 11 displays the loss of the total model. By Theorem 6.1, the approximation between f and
the deep ReLU network f̂ is bounded by ‖f‖∞. For d = 1, the supremum of the three functions to
approximate are equal so we get equal loss. Moreover, the 1-norm and ∞-norm are equal for d = 1
so there is no difference in their training. For d ≥ 2 we remember that ‖x‖1 ≥ ‖x‖2 ≥ ‖x‖∞ for all
x ∈ [0, 1]d. Therefore, the loss is also ordered in this sequence. In Figure 9 we saw that the inner
function model can also be trained. Hence we do the following training: for the first 100 epochs we
only train the parameters of the outer function, thereafter we train all model parameters for the
last 100 epochs (Figure 12).

We only get significant extra training for d = 1 and K > 1. For K = 1 it is expected to get no extra
training as this is in agreement of our results in Figure 9. As the input dimension increases, a local
minimum has already been obtained by the outer function model. Hence the parameter training is
done in the last hidden layer. We get similar results for d > 3 (Appendix Figure 14). By Theorem
6.1, we expected an approximation rate of 2−Kβ when using 2Kd parameters. Overall, we have up
to 23·3 parameters and get at least a loss of 2−3. We even get a maximum loss of 2−6.

Figure 12: Loss versus epochs for the total model where after 100 epochs all weights and biases
are trained.
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7 Conclusion

Overall, this thesis is divided into three parts. The first part is introductory. We defined the
non-parametric model to estimate a β-smooth regression function f for positive β ≤ 1. The curse
of dimensionality is stated as one of the main problems when finding an estimator for the non-
parametric model. Next, we developed the concept of neural networks and discuss its connection
to the curse of dimensionality. Thereafter, we introduced the Kolmogorov Arnold representation
theorem and discussed the link with neural networks. Finally, we summarized the main objective
of this thesis. Our goal is to construct a deep neural network mimicking the KA representation to
approximate Hölder-smooth map f .

In the second part we strengthen the connection between the KA representation and neural net-
works. We do this by extending the KA representation of [28] to the compact domain [a, b]d using
space-filling curves. Since we are able to smoothly transform the domain to [0, 1]d, we were able
to extend the KA representation. By truncating the interior function we get an approximation for
Hölder-smooth functions f . The approximation differs up to a factor (b−a) from the KA represen-
tation on [0, 1]d. We tried to obtain a similar transformation from the d-dimensional ball but did
not get the expected results. Concluding, we conjecture that the form of the KA representation
depends on the domain.

In the last part we gave a construction of a deep ReLU network on the original [0, 1]d-domain
such that it indeed imitates the KA representation of Section 5. Training the model in Python
we obtained four results. The first is the inconclusive choice of ε ∈ (0, 1) for the interior function
model. For now, it seems better to have a larger ε to have no oscillations during training. Secondly,
compared to random weight initialization, the KA initialization is necessary for small loss. Thirdly,
we received an expected optimal rate of 2−Kβ with parameter order 2Kd for small K and d. Lastly,
the model training is done in the last hidden layer.

Even though the model has a good approximation rate with respect to the number of parameters,
we can extend the training to obtain more insight on this KA representation. As a first extension,
we need more training initialization just as in Appendix Figure 15. This gives a better overview
of the minimum loss ε ↓ 0. Moreover, we can confirm the true approximation rate of the KA
representation. Secondly, the approximation rate has now been examined for small K and d. Will
we get matching results when training for large K and d? We are however restricted to choice of
K as real numbers are represented as floating points in Python. Thirdly, more β-Hölder-smooth
functions are to be investigated. Specifically, functions which are Hölder-smooth for small β (e.g.
f(x) = xβ). Alternatively, highly smooth functions are also of interest since the interior function
is discontinuous. As a final extension, we wish to decrease the loss of the inner function model for
any choice of K significantly. This is complicated due to the backpropagation algorithm. Weight
updates in this algorithm are done in decimal form. As a consequence, the model loses its benefits
when working with binary input: the weight initialization now is chosen such that we can compute
the interior function using 2-adic numbers. Programming a custom backpropagation algorithm
would be a good base for more research into this deep ReLU network.
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Appendices

A Additional figure results

Figure 13: Loss versus epochs of φK-model with d = 1, K = 1, . . . , 12 and ε = 10−1, . . . , 10−4.
For K > 6 we indeed still have indecisive results for choice of ε.
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Figure 14: Loss versus epochs for the total model: K = 3, ε = 0.1 and d = 1, . . . , 12. We see that
for d > 1, the total model admits little to no additional training.

Figure 15: Loss versus epochs for the φK-model with Glorot uniform initialization.
For K = 1, . . . , 6 we initialise the model 50 times. We see that for K = 1 we reach a minimum
more frequently. As K gets larger, this happens less often. For comparison with the KA weight
initialisation, as K > 1 we get a better loss.
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