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Introduction

After the discovery of the complex numbers, several mathematicians like Gauss, Weierstrass and
Dedekind questioned the existence of even bigger number systems which would still have some
of the basic properties of the complex numbers.
In the middle of the nineteenth century, the mathematician Hamilton discovered the quaternions,
a four dimensional number system in which the properties of the complex numbers still persist,
with the exception of the commutativity law [19]. This discovery was closely followed by the one
of the octonion numbers, an eight dimensional number system which conserves most properties
of the quaternions, but in which the associativity law does no longer hold [7].
Even if some structure was lost when forming those higher dimensional number systems, they
all remain what we call division algebras, which roughly design spaces in which division can be
performed. It is then natural to wonder whether it is possible to get divisions algebras over R
of a even higher dimension that the one of the octonions.
Heinz Hopf put a first step into answering this question by stating in 1940 that if any higher
dimensional real division algebra would exist, then its dimension would have to be a power of
two, thereby reducing the field of possibilities. A bit later, Michel Kervaire and John Milnor
proved that the only dimensions a division algebra over R can take are the dimensions 1,2,4 or
8, thereby excluding the possibility of a real division algebra whose dimension would be higher
than the one of the octonions. This thesis aims at giving a proof of this theorem called the
1,2,4,8-Theorem.
The outline of this work is as follows:
In section 1 we will introduce the concept of real division algebras and describe the spaces of the
quaternions and octonions.
In section 2 we will give a proof oh Hopf’s theorem, with the use of some notions in algebraic
topology. This theorem will give us that the dimension of a real division algebra has to be a
power of two.
In section 3, we will introduce the concepts of vector bundles and complex K-theory and give
some of their properties.
In section 4 we will use the theory of vector bundles and complex K-theory to introduce the
notions of Hopf invariant and Adams operations in order to eventually prove that the only
possible dimensions of a real division algebra are indeed given by 1,2,4 or 8.



1 Real division algebras

In this section, we will describe the concept of a finite dimensional real division algebra and in
particular introduce the one of the quaternions and octonions. This will enable us to grasp the
structure of real divisions algebras of different dimensions and thus give us an insight about the
kind of objects they are. Our main references for this section will be given by [14] and [15].
We start by introducing the concept of a real algebra:

Definition 1.1. Let V be a vector space over the field R. Suppose that V is provided with a
multiplication · : V × V → V, (x, y) 7→ x · y. Then V is said to be an algebra over R (or a real
algebra), if this multiplication obeys the two following distributive laws:

• (λx+ µy) · z = λ(x · z) + µ(y · z)

• x · (λy + µz) = λ(x · y) + µ(x · z)

with λ, µ ∈ R and x, y, z ∈ V .

Furthermore:

• if for all x, y, z ∈ V , the relation x · (y ·z) = (x ·y) ·z holds, then V is an associative algebra.

• if for all x, y ∈ V , the relation x · y = y · x holds, then V is an commutative algebra.

Definition 1.2. Let A be a real algebra. An element e ∈ A is called an identity (or unit)
element if for all x ∈ A, we have that x · e = e · x = x.

Proposition 1.1. Let A be a real algebra. If there exists such an identity element e in A, then
it is unique.

Definition 1.3. Let A be a real algebra and x an element of A. Then x is called a divisor of
zero (or zero divisor) if there exists y ∈ A with y 6= 0 such that the relation x · y = 0 (left zero
divisor) or y · x = 0 (right zero divisor) holds. If A has no divisors of zero then the equation
x · y = 0 for x, y ∈ A implies that either x or y is zero. A is then said to have no zero divisors.

Several examples of real algebras can be given:

Example 1.1. Familiar examples of real algebras are given by the vector spaces R and C over R,
respectively of dimension 1 and 2. They are associative and commutative, contain 1 as identity
element, and have no zero divisors.

Example 1.2. The R-vector space S(n,R) of symmetric n× n-matrices with coefficients in R
equipped with the symmetrical matrix product (A,B) 7→ 1

2 (AB+BA) forms a real commutative
algebra. However, because of the non-commutativity of matrices in general, this algebra is non
associative for n > 1.

Example 1.3. We define the space of Hamilton’s quaternions, denoted H, as the space of num-
bers of the form a+bi+cj+dk where a, b, c, d are real numbers and i, j, k the so-called quaternions
units. This space forms an extension of the complex numbers and was first described by the Irish
mathematician William Rowan Hamilton in 1843 ([19]). In this space, the multiplication on the
base {1, i, j, k} is defined using the following table:



ab 1 i j k
1 1 i j k
i i -1 k -j
j j -k -1 i
k k j -i -1

where a is the element of the row and b the one of the column. By extension, this table
gives us a multiplication on the whole space which turns the space of the quaternions into a four
dimensional real algebra. Looking at the properties of the basis elements and then extending it,
one can easily prove that this algebra has the element 1 as identity element, is associative and
has no zero divisors.
Since the quaternion units does not commute with each other (for example ij 6= ji), this algebra
is non-commutative.

Example 1.4. We define the space of Cayley octonions, denoted O, as the space of real linear
combinations of the so called octonion units {e0, e1, e2, e3, e4, e5, e6, e7}. This space was first
described in 1843 by John T.Graves in a letter to William Rowan Hamilton ([7]) and later by
Arthur Cayley ([5]) independently. It forms an extension of the quaternions just as the quaternion
space forms an extension of the complex numbers. The multiplication of the octonion units is
defined using the following table:

ab e0 e1 e2 e3 e4 e5 e6 e7

e0 e0 e1 e2 e3 e4 e5 e6 e7

e1 e1 -e0 e3 -e2 e5 -e4 -e7 e6

e2 e2 -e3 -e0 e1 e6 e7 -e4 -e5

e3 e3 e2 -e1 -e0 e7 -e6 e5 -e4

e4 e4 -e5 -e6 -e7 -e0 e1 e2 e3

e5 e5 e4 -e7 e6 -e1 -e0 -e3 e2

e6 e6 e7 e4 -e5 -e2 e3 -e0 -e1

e7 e7 -e6 e5 e4 -e3 -e2 e1 -e0

where a is the element of the row and b the element of the column. This table gives us
by extension the multiplication on the whole space. Using this table, one can prove that the
octonions form an eight dimensional real algebra with e0 as identity element and with no zero
divisors. Like the quaternions, we can see from the table that this algebra is non-commutative.
Besides this algebra is also non-associative: we have for example that (e1e2)e4 = e3e4 = e7 but
e1(e2e4) = e1e6 = −e7.

Definition 1.4. (R-algebra homomorphisms)
Let A = (V, ·) and B = (W, ∗) be real algebras. We say that a R-linear map f : A → B is an
R-algebra homomorphism if for all x, y ∈ V , we have that f(x · y) = f(x) ∗ f(y)

Remark 1.2. The terms monomorphism, epimorphism, endomorphism, isomorphism ,automorphism
are used when the R-linear map f is a morphism of the corresponding type.

Theorem 1.3. Let A = (V, ·) be a one dimensional real algebra such that the multiplication · is
not the zero mapping. Then A is isomorphic to the algebra R.



Proof. Let A be a one-dimensional real algebra with a non-zero multiplication (x, y) 7→ x · y.
Then A = Ra, for some a ∈ A \ {0}. Since the multiplication is not the zero mapping, we have
that the product x · y with x, y ∈ A is not always zero. Let x = αa and y = βa, α, β ∈ R. Then
the statement x · y 6= 0 means that αβa2 6= 0 and therefore a2 must also be non-zero. Hence,
we have that A = Ra2 as well and there exists an γ ∈ R such that a = γa2. Take now e = γa.
Then for all x = αa ∈ A, we have that e · x = γa · αa = αγa2 = αa = x and similarly for x · e.
Thus, e is the identity element of A.
Take now the map f : R → A given by α 7→ αe. Clearly this map is R-linear and for all
α, β ∈ R, we have f(αβ) = αβe = αe · βe = f(α) · f(β). Thus f is an R-algebra morphism
between two real algebras of dimension 1. Besides, f is clearly injective and therefore bijective.
Thus, it yields an isomorphism between R and A.

Definition 1.5. (Division algebras)
Let A = (V, ·) be a non-zero algebra. We say that A is a division algebra if for all a, b ∈ V such
that a 6= 0 the two equations a · x = b and y · a = b have unique solutions in A.

It is clear that every division algebras has no zero divisors. For finite-dimensional algebras,
we have the following:

Criterion. For a finite-dimensional algebra A, the following statements are equivalent:

1. A has no zero divisors;

2. A is a division algebra;

Proof. We only need to show that 1⇒ 2. Let A be a finite-dimensional algebra with multiplica-
tion (x, y) 7→ x · y. Assume A has no zero divisors and take then a ∈ A \ {0}.
Consider now the linear map f : A → A given by x 7→ a · x. By hypothesis the map is injective
and therefore it is also bijective. This means that for all b ∈ A, there is a unique x ∈ A such
that a · x = b. By doing the exact same proof for the linear map y 7→ y · a, we have that the
equation y · a = b for any b ∈ A has a unique solution as well, which concludes the proof.

Example 1.5. The real algebras R and C, as well as the Hamilton’s quaternions H and the
Cayley octonions O, as stated before, have no zero-divisors. Since those are finite-dimensional
real algebras, the criterion gives us that they must be real division algebras.

Example 1.6. The four dimensional R-vector space S(2,R) of symmetric 2× 2-matrices with
coefficients in R equipped with the symmetrical matrix product as defined previously contains

divisors of zero such as A =

(
1 0
0 0

)
since A · B = 0 when we take, for instance, B =

(
0 0
0 1

)
.

Therefore it is not a real division algebra.

We have stated in this section that all one-dimensional real algebra are isomorphic to R.
In fact, the existence, up to isomorphism, of finite dimensional real division algebras in general
is quite restricted. The possibility of such an algebra to exist has been studied by several
mathematicians in the twentieth century. It has given rise to a few theorems on the subject,
which will constitute the topic of the following sections.



2 Hopf’s theorem. Homology and cohomology with coef-
ficients in Z2.

The first important theorem on the subject is called Hopf’s theorem, stated and proved by the
German mathematician Heinz Hopf in 1940([11]). The theorem in its general form gives a result
about the dimension of particular unit spheres. By using some tools of algebraic topology, we
will give a proof of this theorem, before looking more closely at one of its corollary which deals
with the dimension of real division algebras.

2.1 Hopf’s theorem and its corollary

In order to state the general theorem, we will firstly recall some definition:

Definition 2.1. We define the (n− 1)−dimensional unit sphere Sn−1 as the set of points:

Sn−1 := {x ∈ Rn | ||x|| = 1}

where || · || denotes the Euclidean norm on Rn: ||(x1, x2, ..., xn)|| =
√
x2

1 + x2
2 + ...+ x2

n

As we have already dealt in the previous with the real division algebra of dimension 1, we
will now consider in the rest of this article that n is an integer greater or equal to 2.

Definition 2.2. Let f be a map going from a product of spaces X × Y to a space Z. We say
that f is odd if for all (x, y) ∈ X × Y , f(−x, y) = f(x,−y) = −f(x, y)

With those two definitions, we can now state Hopf’s theorem:

Theorem 2.1. (Hopf’s theorem)
If there exists a continuous odd mapping of Sn−1 × Sn−1 into Sn−1 then n is a power of 2.

From Hopf’s theorem follows an interesting corollary about the dimension of real division
algebras.

Corollary. The dimension of a finite dimensional real division algebra is a power of two.

Proof. Let A be a n-dimensional real division algebra. A is an algebra so there exist on A a
multiplication ∗ : A × A → A. Because A is a real division algebra of dimension n, we can
find a vector space isomorphism of A onto Rn and transfer the multiplication ∗ on A to a
multiplication · : Rn ×Rn → Rn where x · y with x = (x1, ..., xn), y = (y1, .., yn) ∈ Rn is equal
to (x1y1, ..., xnyn). Now by restricting to Sn−1 we get a map g : Sn−1×Sn−1 → Sn−1 defined
as:

(x, y) 7→ x · y
||x · y||

with || · || being the Euclidean norm.
Since A is a division algebra, we have that for all a, b ∈ A non-zero, ab 6= 0 and therefore
g is well-defined and continuous. Moreover, it is quite easy to notice that the coefficient-wise
multiplication turns g into an odd map. Hence, we have constructed from our n-dimensional real
division algebra an odd mapping g from Sn−1×Sn−1 into Sn−1. It follows from Hopf’s theorem
that n is a power of two.
Thus the dimension of any finite-dimensional real division algebra has to be a power of two,
which proves the corollary.

We now proceed to prove the theorem with the help of algebraic topology.



2.2 Homology and cohomology

In order to prove Hopf’s theorem, we will need to take a closer look at homology and cohomology
with coefficients in Z2 on unit spheres and projective spaces. This will constitute the main topic
of the following pages.

Definition 2.3. We define the real projective space Pn−1 as the topological space of lines passing
through the origin in Rn. In other words, the real projective space Pn−1 is given by the quotient
of Rn \ {0} under the equivalence relation x ∼ λx, x ∈ Rn, λ ∈ R.

For x ∈ R \ {0}, one can always turns λx into a vector of norm 1 by taking λ = ± 1
||x|| .

Because the choice of lambda then only depends on its sign, it is possible to give an alternative
definition of the real projective space Pn−1, which we will more likely use in this section:

Definition 2.4. The real projective space Pn−1 can be defined as the (n − 1)-dimensional
manifold obtained from the sphere Sn−1 after identifying each point z ∈ Sn−1 with its antipodal
point −z. Hence:

Pn−1 := Sn−1/{±1}
We denote with α : Sn−1 → Pn−1 this identification.

The proof of Hopf’s theorem requires singular homology and cohomology on projective spaces
and spheres. The two points given below about homology groups are thus particularly relevant:
Let X be a topological space. The q-th homology group on X is denoted Hq(X).

1. Every closed path ω in X represents a homology class |ω| in H1(X)

2. Every q-dimensional submanifold M of an n-dimensional manifold X represents a homology
class |M | in Hq(X). For q = n, we have that Hn(X) ∼= Z with |X| being the non-zero
element.

For the unit sphere and real projective spaces, the homology classes are given by the points
above. This does however not hold in general. We have that:

Hq(S
n) =

{
Z if q = 0 or q = n
0 otherwise

For P an arbitrary point, |P | is the non-zero element of H0(Sn) and in the case q = n, |Sn|
is the non zero element of Hn(Sn)

For the q-th homology of the real projective space Pn, we get:

Hq(P
n) =

 Z if q = 0, n
Z2 if 0 < q < n

0 if q > n

where |Pq| is the non-zero element of Hq(P
n) with Pq the q-th dimensional projective subspace

of Pn.

In the proof of Hopf’s theorem, we will use homology with coefficients in Z2.By the univer-
sal coefficient theorem, the homology groups then have the following properties:

Every q-dimensional submanifold M of an n-dimensional oriented closed manifold X repre-
sents a homology class |M | in Hq(X,Z2). For q = n, we have that Hn(X,Z2) ∼= Z2 with |X|
being the non-zero element.



The q-th homology group on the sphere is given by:

Hq(S
n,Z2) =

{
Z2 if q = 0 or q = n

0 otherwise

The q-th homology group on the real projective space is given by

Hq(P
n,Z2) =

{
Z2 if q ≤ n

0 if q > n

We now have given the q-th homology classes for the unit sphere and real projective spaces with
coefficients in Z and Z2. From now on, we will write R to denote either of the rings Z or Z2.
Since Hopf’s theorem actually deals with maps between unit spheres, we will also need the
following proposition:

Proposition 2.2. Any continuous map f : X −→ Y between X, Y topological spaces induces
a homomorphism f∗ : Hq(X,R) −→ Hq(Y,R) on the q-th homology defined as f∗([σ]) = [f ◦ σ].
This map f∗ is called the pushforward of f.

Beside being a group homomorphism, this map f∗ has the following properties:

Properties.

• Preservation of the identity: (idX)∗ = idHq(X,R)

• Preservation of the composition: For f : X → Y and g : Y → Z continuous maps, we have
that (g ◦ f)∗ = g∗ ◦ f∗ which then gives us a map Hq(X,R) −→ Hq(Z,R)

Hence we can get a map between homology groups from a continuous maps between topo-
logical spaces. We can now continue with the next important topic of this section which is the
notion of cohomology with coefficients in Z2.

Definition 2.5. The q-th cohomology group Hq(X,Z2) of a topological space X with coefficients
in Z2 is given by the dual of its homology group, in other words:

Hq(X,Z2) = Hom(Hq(X),Z2)

Notation. For u ∈ Hq(X,Z2) and x ∈ Hq(X,Z2), we will denote the value of u on x by < u, x >

We can now define a map on cohomology as well:

Definition 2.6. For f∗ : Hq(X,Z2) → Hq(Y,Z2) with X,Y topological spaces, we have a dual
homomorphism f∗ : Hq(Y,Z2)→ Hq(X,Z2) defined by f∗(u) = u ◦ f∗ such that

< f∗(u), x >=< u, f∗(x) >

for x ∈ X

With this definition we can easily see that the properties of f∗ translate into those corre-
sponding ones for f∗:

Properties.

• Preservation of the identity: (idHq(X,Z2)))
∗ = idHq(X,Z2)



• Composition: For f : X → Y and g : Y → Z continuous maps, we have that (g ◦ f)∗ =
f∗ ◦ g∗ which then gives us a map Hq(Z,Z2) −→ Hq(,Z2)

We have now defined the concept of homological and cohomological spaces with coefficients in
Z2 and see that we can construct maps between them from continuous maps between topological
spaces. As the map defined in Hopf’s theorem has a product of topological space as domain, the
next step consist in constructing a product on the cohomology and homology groups.
It is possible to define a product Hp(X,Z2) × Hq(X,Z2) → Hp+q(X,Z2) on the cohomology
groups for X a topological space([8, Chapter 3.2]). Using this product, we can define the following
ring:

Definition 2.7. Let X be a topological space. We define the cohomology ring with values in
Z2 as the direct sum H∗(X,Z2) =

⊕
p≥0H

p(X,Z2). This ring is associative and commutative.

To define the product on homology, we firstly need to use the following important theorem,
which we will state but not prove. A proof can be found in [8, Section 3.3]

Theorem 2.3. (Poincaré duality)
For M a closed oriented topological manifold, there exists an isomorphism between the (n − p)-
th homological space of M and the p-th cohomological space of M given by π : Hp(M,Z2) →
Hn−p(M,Z2), α 7→ |M |_ α.

More information about the notations used in this definition can be found in the Appendix.
Using this isomorphism, we can now define a product on homological spaces.

Definition 2.8. For X a topological space, the intersection product on H∗(X,Z2) is defined
degree by degree as the multiplication:

Hn−p(X,Z2)×Hn−q(X,Z2)→ Hn−(p+q)(X,Z2)

Concerning the intersection product of projective spaces, which will be our main tool in the
proof of Theorem 2.1, we can state those two important examples:

Example 2.1. We recall that q projective spaces of dimension n−1 in general position intersect
in a projective subspace Pn−q of dimension n− q where 0 ≤ q ≤ n.

Let t = π(|Pn−1|) be the non-zero element of H1(Pn,Z2) and tq = π(|Pn−q|) the non-zero
element of Hq(Pn,Z2).
Then

H∗(Pn,Z2) = Z2[t]�(tn+1),

with (tn+1) denoting the ideal generated by the element tn+1

Example 2.2. The homology classes |Pr ×Ps| with r+ s = q with 0 ≤ r, s ≤ n form a basis of
Hq(P

n ×Pn,Z2).
With the intersection product |Pr × Ps||Pk × Pl| = |Pr ∩ Pk × Ps ∩ Pl| we have that the

cohomology ring is equal to Z2[t]�(un+1, vn+1) where u = π(|Pn−1×Pn|) and v = π(|Pn×Pn−1|)

2.3 Proof of Hopf’s theorem

We now have the necessarily knowledge to prove the theorem. The proof mainly consists in the
proof ow two smaller claims that will then quite quickly lead us to Hopf’s theorem.



Proof. (Hopf’s theorem)

Let g : Sn−1×Sn−1 → Sn−1 be a continuous odd mapping. Define G : Pn−1×Pn−1 → Pn−1 as
being the map induced by g on projective spaces through α, with α as given in Definition 2.4.
Hence, the map G is given by ([x], [y]) 7→ [g(x, y)] where x, y ∈ Sn−1 and [·] denotes the equiva-
lence class for the equivalence relation

x ∼ y, if y = ±x

which α is the quotient map.

Example 2.2. about intersection product of projective spaces gives us the following:

• There exist u and v such that:

H∗(Pn ×Pn,Z2) = Z2[t]�(un+1, vn+1)

and the definitions of such u and v give us that < u, |P1 × point| >= 1;
< u, |point×P1| >= 0 and < v, |P1 × point| >= 0; < v, |point×P1| >= 1.

• H1(Pn−1 ×Pn−1) has |P1 × point| and |point×P1| as basis.

Claim. We have that: G∗(|P1 × point|) = G∗(|point×P1|) = |P1|

Proof of the claim. We have to prove that G∗(|P1 × point|) = G∗(point × P1) is the non-zero
element of H1(Pn−1).

Let |ω| ∈ Pn−1 be the homology class of a closed path in Pn−1. Then there exist a path
ω̃ ∈ Sn−1 such that ω = ω̃. Because ω is closed, we have two possibilities for ω̃.

Either:

• The path ω̃ is already closed in Sn−1 in which case |ω| = 0, or;

• we may have, from the definition of Pn−1 as quotient of Sn−1 that ω̃ is a path joining
two antipodal points in Sn−1 in which case |ω| 6= 0. Indeed, ω̃ ◦ ω̃ then lifts to loop in
Sn−1 which can thus be homotoped to the trivial loop since H1(Sn−1) = 0 . Thus, the
projection of ω̃ ◦ ω̃ through α is also zero, and, since H1(Pn−1) = Z2 for n > 2, which is
the only interesting case in the theorem, we have then that |ω| defines an element of order
2 in H1(Pn−1) and is thus non zero.

We have that |P1× point| is a closed path ω× point in Pn−1×Pn−1 and we take ω̃ as being
a path joining two antipodal points.
Since g is an odd map, we then get that g(ω̃×point) still joins two antipodal points on the circle.
Under α, this path in Sn−1 becomes G(ω × point) which then becomes G∗(|ω × point|) on the
homological spaces which is then non-zero,as stated before.
Because the same proof holds for |point| ×P1 with a closed path point× ω, the claim holds.

Take now t, u, v as defined before for the intersection product of projective spaces but this
time on Pn−1. Hence, we now have

H∗(Pn−1,Z2) = Z2[t]�tn and H∗(Pn−1 ×Pn−1,Z2) = Z2[t]�(un, vn)

.

Claim. The following equation between t, u and v holds:

G∗(t) = u+ v



Proof of the claim. Let’s compute < G∗(t), |point×P1| >. We have that:

< G∗(t), |point×P1| >=< t,G∗(|point×P1|) >=< t, |P1| >= 1

as well as:
< u+ v, |point×P1| >= 1

and similarly for |P1 × point| But since a cohomology class is determined only by its value on
the homology class, this gives us indeed that G∗(t) = u+ v, which proves the claim.

Now that we have proven those two claims, the proof theorem follows rather easily: We know
that tn = 0 and that G∗ is a homomorphism, hence:

0 = G∗(tn) = (G∗(t))n = (u+ v)n

Therefore:

0 =

n−1∑
k=1

(
n

k

)
ukvn−k

since un = 0 and vn = 0.
Thus, all the coefficients

(
n
k

)
have to be 0. In Z2, this implies that n has to be a power of two,

which proves the theorem.

With Hopf’s theorem, we now have proven that the dimension of a real division algebra is a
power of two. In fact, we know since 1958 that this dimension has to be either 1, 2, 4 or 8. This
result was proven for the first time by Kervaire [13] and Milnor [17] independently. The proof of
this fact will be the main topic of the following parts of this article.

3 Vector bundles and complex K-theory.

To prove that the dimension of a real division algebra can only be either 1, 2, 4 or 8, we will
in this article make use of complex K-theory. In order to define K-theory, we will firstly take a
closer look at vector bundles:

3.1 Vector bundles

We start with the definition of a vector bundle:

Definition 3.1. Let E and B be topological spaces. An n-dimensional vector bundle ξ over a
field F is a triple (E, p,B) with p : E → B a continuous bijection, together with a n-dimensional
vector space structure over F on p−1(b) for each b ∈ B such that the following local condition is
satisfied: each point b ∈ B has a neighbourhood U and a U -isomorphism h : U × Fn → p−1(U)
such that for every x ∈ U , the restriction x× Fn → p−1(x) is a vector space isomorphism.

If F = R, then (E, p,B) is called a real vector bundle. Similarly, it is called a complex vector
bundle when F = C.

The map h is called a local trivialization of the vector bundle. The space B is called the base
space and the space E the total space. We will sometimes denotes a vector bundle only bi its
total space E. The vector spaces p−1(b) for b ∈ B are called the fibers.

From now on, we will consider the field F to be either R or C. Several examples of vector
bundles can be given:



Example 3.1. Let B be a topological space. Set E = B × Fn and let p : E → B define the
projection onto the first factor. Then (E, p,B) forms a n-dimensional real or complex vector
bundle called the product or trivial bundle. When the field is clear from the context, the trivial
n-dimensional vector bundle over a fixed base space B will be denoted by εn.

Example 3.2. Consider the complex projective space CPn as the space of complex lines through
the origin. The tautological line bundle is given by the bundle (H, p,CPn) where H is defined
as:

H = {(l, v) ∈ CPn ×Cn+1 | v ∈ l}
and p : H → CPn, (l, v) 7→ l the projection onto CPn.

Because each line in CPn can be defined by a point z in Cn+1 with a least one coefficient being
non zero, we have that CPn is covered by opens Ui where Ui is the set of points (z1, ..., zn+1) ∈
Cn+1 such that zi 6= 0. The local trivializations hi : p−1(Ui) → Ui × Cn are then given by
(l, v) 7→ (l, ziv).

Example 3.3. We define the tangent bundle TSn of Sn in Rn+1 as the bundle (E, p,B) where
E = {(x, v) ∈ Sn×Rn+1 | x ⊥ v} and p : E → B is given by (x, v) 7→ x. Let x ∈ Sn and take Ux
the open space consisting of the hemisphere containing x and bounded by the hyperplane passing
through the origin and orthogonal to x. Let πx be the orthogonal projection projecting a vector
v ∈ Rn+1 onto p−1(x). Then, since for y ∈ Ux, the projection πx restricts to an isomorphism of
p−1(y) onto p−1(x), we can define local trivializations hx : p−1(Ux)→ Ux ×Rn of the bundle as
(y, v) 7→ (y, πx(v)).

Example 3.4. The normal bundle NSn of Sn in Rn+1 is given by the bundle (E, p,B) where
E = {(x, v) ∈ Sn×Rn+1 | v = tx, for some t ∈ R}, i.e. E is the space of pairs (x, v) ∈ Sn×Rn+1

where v has to be perpendicular to the tangent plane to Sn at x, and p : E → Sn is given by
(x, v) 7→ x. Local trivializations hx : p−1(Ux)→ Ux×Rn can then be given by using orthogonal
projections of p−1(y) onto p−1(x) for y ∈ Ux, as in the previous example.

One can also induce a bundle from a continuous map between base spaces of vector bundles:

Definition 3.2. Let ξ = (E, p,B) be a vector bundles and f : B′ → B a continuous map. We
define the pullback or induced bundle by f as the bundle (f∗E, π,B′) where f∗E corresponds
to the space {(b′, e) ∈ B′×E | f(b′) = p(e)} ⊆ B′×E equipped with the subspace topology and
π is given by π : f∗E → B′, (b′, e) 7→ b′.

For a local trivialization h : p−1(Ui) → Fn of ξ, we can define on f∗E a local trivialization
h′ : π(f∗(Ui))→ f∗Ui×Fn, (b′, e) 7→ (b′, pr2(h(e))) where pr2(h(e)) denotes the projection onto
the second coordinate of h(e).

We will now introduce two important notions on vector bundles that will be needed later on.
The first one is the one of transition functions:

Definition 3.3. Let (E, p,B) be an n-dimensional vector bundle over F = R or C. Then
there exists an open covering Ui of B with i ∈ I and I an index set, such that we get local
trivializations:

hi : p−1(Ui)→ Ui × Fn

such that for i, j ∈ I the map :

hij = hi ◦ h−1
j : Ui ∩ Uj → p−1(Ui ∩ Uj)× Fn

is linear on each fibre. Hence we have that hij(x, v) = (x, gij(x)(v)) for some gij : Ui ∩ Uj →
GL(n.F ). These functions (gij) are called the transitions functions of the vector bundle (E, p,B)
with respect to the local trivializations (Ui, hi).



Property. (Cocycle condition) For Ui ∩ Uj ∩ Uk with i, j, k ∈ I, the function gijgjkgki is the
identity.

Proof. For hi a local trivialization as defined above, we have that hi ◦h−1
i is the identity and for

all i, j, k ∈ I and (x, v) ∈ Ui ∩ Uj ∩ Uk × Fn, this can be rewritten as:

(x, v) = (hi ◦ h−1
i )(x, v) = (hi ◦ h−1

j ◦ hj ◦ h
−1
k ◦ hk ◦ h

−1
i )(x, v)

= (hi ◦ h−1
j ◦ hj ◦ h

−1
k )(x, gki(x)(v)) = (hi ◦ h−1

j )(x, gjkgki(x)(v)) = (x, gijgjkgki(x)(v))

Conversely, let U = (Ui)i∈I be an open covering of B indexed by the set I and let gij :
Ui ∩Uj → GL(n, F ) be continuous maps satisfying the cocycle condition. Then we can take the
disjoint union

⊔
(Ui × Fn) and use the maps gij to glue this to form an n-dimensional vector

bundle over B with

E =

⊔
(Ui × Fn)�∼U

where ∼U is here the equivalence relation given by (x, v) ∼U (x, gij(x)(v)).

Definition 3.4. Let ξ = (E, p,B) be a vector bundle. We say that a map s : B → E is a section
of the bundle ξ if it assigns to every b ∈ B a vector s(b) which is contained in the fiber p−1(b).
In other words, the map p ◦ s is the identity on B.

It is quite clear that every vector bundle has a canonical section, by taking the section whose
value is zero on each fiber. This section is called the zero section.

We will now define the concept of morphisms between vector bundles. One can broaden the
definition of morphism between vector spaces to one between vector bundles as follows:

Definition 3.5. Let ξ = (E, p,B) and ξ′ = (E′, p′, B′) be two vector bundles. We say that
a (u, f) : ξ → ξ′ is a morphism between the vector bundles ξ and ξ′ if u : E → E′ and
f : B → B′ are continuous maps such that p′u = fp, and for each b ∈ B, the restriction
u : p−1(b)→ p′−1(f(b)) is a linear map.

When B = B′, this definition turns into the corresponding one:

Definition 3.6. Let ξ = (E, p,B) and ξ′ = (E′, p′, B) be two vector bundles over the same base
space B. We say that a continuous map u : ξ → ξ′ is a B-morphism between ξ and ξ′ if p′u = p
and the restriction u : p−1(b)→ p′−1(b) is linear for all b ∈ B.

This enables us to define the concept of isomorphism of vector bundles, which will be later
required in complex K-theory:

Definition 3.7. Let u : ξ → ξ′ be a B-morphism between two vector bundles. Then, u is an
isomorphism if for all b ∈ B, the restriction u : p−1(b) → p′−1(b) is an isomorphism of vector
spaces. Hence each fiber p−1(b) in E is sent to the corresponding fiber p′−1(b) in E′ by a linear
isomorphism.
If there exists an isomorphism u between two vector bundles ξ and ξ′, then the vector bundles
are said to be isomorphic.

Notation. We will use the notation E ≈ E′ to indicate that the bundles (E, p,B) and (E′, p′, B)
are isomorphic.



3.2 Operations on vector bundles

In order to define complex K-theory,we will need the concepts of direct sum, tensor product and
exterior product of vector bundles as much as the one of isomorphisms.

Definition 3.8. Let ξ = (E, p,B) and ξ′ = (E′, p′, B) be two vector bundles over the same base
space B. We define their direct sum E ⊕ E′ as the vector bundle with total space:

E ⊕ E′ = {(e, e′) ∈ E × E′ | p(e) = p′(e′)}

with the projection π : E ⊕ E′ → B sending the pair (e, e′) ∈ E ⊕ E′ to the point p(e) = p′(e′)
in B.

Proposition 3.1. Let (E, p,B) and (E′, p′, B) be two vector bundles. Then (E ⊕ E′, π,B) is
again a vector bundle whose fibers are the direct sum of the fibers of E and E′.

Proof. Let ξ = (E, p,B) and ξ′ = (E′, p′, B′) be vector bundles and let A be a subset of B. Define
now the restriction map r : p−1(A)→ A on A and the product map q = p×p′ : E×E′ → B×B′,
(e, e′) 7→ (p(e), p′(e′))).

Then both maps r and q defines vector bundles (p−1(A), r, A) and (E×E′, q, B×B). This is
quite trivially verified for the restriction. For the product, the fibers are then given by p−1(b)×
p′−1(b′) with (b, b′) ∈ B×B′ and the local trivialization property is verified by observing that for
h1 : p−1(U1)→ U1×Fm local trivialization for ξ and h2 : p′−1(U2)→ U2×Fm local trivialization
for ξ′, we obtain that the product h1 × h2 is a local trivialization for (E × E′, q, B ×B′).

The proof then follows from the remark that for vector bundles (E.p,B), (E′, p′, B) with the
same base space B, the direct sum E ⊕E′ corresponds to the restriction of the product map on
the diagonal space ∆ = {(b, b), b ∈ B} in B.

We can give some examples of direct sums of vector bundles:

Example 3.5. Let εn and εm be the n and m-dimensional trivial vector bundles over a base
space B. Then their direct sum is again a trivial vector bundle, of dimension n + m, for it is
given by the space:

{((b, v)(b, w)) ∈ (B × Fn)× (B × Fm)}

which we can then isomorphically send to B × Fn+m through ((b, v)(b, w)) 7→ (b, (v, w)).

Example 3.6. Consider the tangent bundle TSn and the normal bundle NSn of Sn as defined
above. Their direct sum is then given by the space:

{((x, v)(x,w)) ∈ (Sn ×Rn+1)× (Sn ×Rn+1) | x ⊥ v, w = tx for some t ∈ R}

which can be sent isomorphically to Sn ×Rn+1 via the map ((x, v)(x,w)) 7→ (x, v + w). Thus,
the direct sum of TSn and NSn is trivial.

One can state several important properties about the direct sum of vector bundles. In order
to state those properties, we first need to define the concept of inner product on vector bundles.
We recall that a inner product on a vector space V over F is a positive definite bilinear form
< . >: V × V → F satisfying the property of conjugate symmetry.

Definition 3.9. Let ξ = (E, p,B) be a vector bundle over F . An inner product on ξ is a map
< . >: E ⊕ E → F that restricts to an inner product on each fiber.

Proposition 3.2. Let ξ = (E, p,B) be a vector bundle over a compact Hausdorff topological
space B. Then, there exists an inner product on ξ.



Proof. Let ξ = (E, p,B) be a n-dimensional vector bundle over F with B compact Hausdorff.
On fibers {b} × Fn, with b ∈ B, the inner product is given by ((b, v), (b, w)) 7→< v,w > where
< · > is the standard inner product on Fn. This can be generalized on neighbourhoods Ub for
b ∈ Ub, by using local trivializations hb : p−1(Ub)→ Ub ×Fn and pulling back the inner product
< · > of Fn to an inner product < · >b on p−1(Ub). The Ub with b ∈ Ub ⊂ B form a open cover
of B.

Since B is compact Hausdorff, there exists a partition of unity subordinate to the collection
of Ub’s, i.e. a collection of maps ϕβ : B → [0, 1] such that the support of ϕβ is contained in Ub
and

∑
β ϕβ = 1. Using this partition of unity, we can glue together the different inner product

on each p−1(Ub) to form a inner product on the whole bundle by setting

< v,w >=
∑
β

ϕβ(p(v)) < v,w >bβ

where {φβ} has its support contained in Ubβ .

Proposition 3.3. Let ξ = (E, p,B) be a vector bundle with B compact Hausdorff and let E0 ⊂ E
be a vector subbundle. Then there exists a vector subbundle E⊥0 such that the direct sum E0⊕E⊥0
is isomorphic to the total space E.

Proof. Let ξ = (E, p,B) be a n-dimensional vector bundle with B compact Hausdorff and E0 ⊂ E
an m-dimensional vector subbundle of ξ. Define E⊥0 as the subspace of E that consists in each
fiber of all vectors orthogonal to vectors in E0, with respect to a chosen inner product on the
bundle. The aim is to show that that (E⊥0 , p, B) is a vector bundle. Indeed, if this statement
holds, then E0 ⊕ E⊥0 will then be isomorphic to E through the map (v, w) 7→ v + w, according
to Definition 3.6. and 3.7.

To do so, we have to verify the local triviality condition for E⊥0 . As the question is local
in B, we may here assume that E = B × Fn. Since E0 is an m-dimensional vector subbundle,
there are, near each point b0 ∈ B, m independent local sections si : B → B × Fm, b 7→ (b, si(b))
and m ≤ n. We now may enlarge this set of m independent local sections of E0 to a set of n
independent local sections b 7→ (b, si(b)) on E. To do so, we choose sections sm, ..., sn in the
fiber f−1(b0) and then take the same vectors for all nearby fibers: Indeed, since the determinant
function is continuous and the sections s1, ..., sm, sm+1, ..., sn are independent at b0, they will
remain independent in an neighbourhood of b in B.

We can now make the s1, ..., sn orthogonal in each fiber by applying the Gram-Schmidt
process. We call those new sections s′1, ..., s

′
n. Those are continuous, according to the Gram-

Schmidt orthogonalization formula and (s′1, ..., s
′
m) forms a basis of E0 in each fiber.

Let U be an open in B and define the local trivializations as the maps h : p−1(U)→ U ×Fn
sending (b, s′i(b)) to the i-th standard basis vector of Fn. Since h sends E0 to U × Fm and E0

to U × Fn−m, a local trivialization of E⊥0 is then given by the restriction of h on E⊥0 , turning
E⊥0 , p, B into a vector subbundle and therefore making E0 ⊕ E⊥0 isomorphic to E as stated
before.

Proposition 3.4. Let ξ = (E, p,B) be a vector bundle with B compact Hausdorff. Then there
exists a vector bundle (E′, p, B) such that E ⊕ E′ is the trivial bundle.

Proof. Let ξ = (E, p,B) be a n-dimensional vector bundle over F with B compact Hausdorff.
Since ξ is a vector bundle, we have that every b ∈ B has an open neighbourhood Ub over
which E is trivial. Now, because B is compact Hausdorff we can construct an open cover map
ϕb : B → [0, 1] that is 0 outside Ub and non zero on b ([9, Proposition 1.18]).

Then the sets {ϕ−1
b (0, 1] | b ∈ B} form an open cover of B. Since B is compact, this admits



a finite open subcover Ui = ϕ−1
i (b) and relabel the ϕb on Ui as ϕi. We now look at the local

trivializations hi : p−1(Ui) → Ui × Fn and define πi : Ui × Fn → Fn the projection on Fn.
Define maps gi : E → Fn, e 7→ ϕi(p(e))πi(hi(e)) and let g be a map whose coordinates are given
by the gi’s. Then g : E → FN with FN a product of copies of Fn, and, since the gi’s are linear
injections on each fiber over ϕ−1

i ((0, 1]), g is a linear injection on each fiber.
Let now f : E → B × FN be a map whose first coordinate is given by p and whose second

coordinates is given by g. Because the projection of Fn onto the i-th component gives through
gi the second coordinate of a local trivialization over ϕ−1

i ((0, 1]), the image of f is a subbundle
of B × FN . Since f is an linear injection on each fiber, we thus get that E is isomorphic to a
subbundle of B×FN , hence by the previous proposition, there exists a complementary subbundle
such that E ⊕ E′ is isomorphic to B × FN .

In addition to the direct sum, one can also define the notions of tensor product and exterior
power on vector bundles starting from the corresponding operations on vector spaces. We start
with the latter:

Definition 3.10. Let ξ = (E, p,B) and ξ′ = (E′, p′, B) be two vector bundles over the same
base space B. We define their tensor product as the vector bundle (E ⊗E′, π,B) where E ⊗E′
is the disjoint union

⊔
x∈B p

−1(x) ⊗ p′−1(x) of the vector spaces p−1(x) ⊗ p′−1(x) with x in B,
and π = (p, p′).

This set is equipped with the following topology: Let U be an open set in B, let n1 and
n2 be the dimensions of the vector bundles (E1, p1, B) and (E2, p2, B) respectively and choose
isomorphisms h1 : p−1

1 (U) → U × Fn1 and h2 : p−1
2 (U) → U × Fn2 over which E1 and E2 are

trivial. A topology Tu is then defined on p−1
1 (U)⊗p−1

2 (U) by letting the fiberwise tensor product
map h1 ⊗ h2 : p−1

1 (U)× p−1
2 (U)→ U × (Fn1 ⊗ Fn2) be a homeomorphism.

Proposition 3.5. The topology TU is well-defined and independent of the choice of the maps h1

and h2.

Proof. Suppose we choose an isomorphism h′i instead of hi. Let U be defined as before. Then
there are a continuous map gi : U → GLni(F ) such that h′i is the composition of hi and
isomorphisms of U × Fn−1 of the form (x, v) 7→ (x, gi(x)(v)). Hence, we have that h′1 ⊗ h′2 is
a composition of h1 ⊗ h2 and isomorphisms of U × (Fn1 ⊗ Fn2) of the form (x, v) 7→ (x, g1 ⊗
g2(x)(v)) where the g1⊗ g2 are continuous maps U → GLn1n2

(F ), for the entries of the matrices
g1(x)⊗ g2(x) are the product of the entries of g1(x) and g2(x).

Suppose now we replace the open subset U bu an open subset V in B. Then, since the
local trivializations over U restrict to local trivializations over V , we have that the topology on
p−1

1 (V )⊗ p−1
2 (V ) induced by TU is the same as the topology TV .

Therefore the topology on E1 ⊗ E2 is well-defined and turns E1 ⊗ E2 into a vector bundle
over B.

Similarly to the concept of tensor products, we can also define the exterior power on vector
bundles. To do so, let us first recall the notion of exterior powers of vector spaces:

Definition 3.11. Let V be a vector space over a field F and k a positive integer. The exterior
power λk(V ) of V is obtained by taking the quotient of the k-fold tensor product V ⊗ ...⊗ V by
the subspace generated by vectors of the form v1 ⊗ ...⊗ vk − sgn(σ)vσ(1) ⊗ ...⊗ vσ(k) where σ is
any permutation of the set {1, ..., k}, and sgn(σ) = ±1 its sign. The sign of σ equals +1 for σ
an even permutation and −1 for σ an odd permutation.

Using the fibers of a vector bundle, we can now translate this definition on vector spaces to
one on vector bundles:



Definition 3.12. Let (E, p,B) be a vector bundle. We define the exterior power λk(E) of E as
the disjoint union of the exterior powers λk(p−1(b)) of the vector spaces p−1(b), with b ∈ B.

To define a topology on this set, we take (Ui)i∈I for I an index set, an open cover ofB. Because
(E, p,B) is a vector bundle, we have local trivializations Ui×Fn, where n is the dimension of the
vector bundle, which are then glued together via the transitions functions gij : Uij → Gl(n, F ).
Then, we may give in λk(E) the local trivializations Ui × λk(Fn), glued together via λk(gij).
The topology put on this set is then the one that makes those local trivializations continuous.

We can state a few properties about the exterior power of vector bundles, most of them
resulting from the properties of exterior power on vector spaces:

Proposition 3.6. Let E,E′ be vector bundles and k be a positive integer. Then the following
statements hold:

(i) λk(E ⊕ E′) =
⊕

i(λ
i(E)⊗ λk−i(E′))

(ii) λ0(E) = ε0, where ε0 is the trivial line bundle.

(iii) λ1(E) = E

(iv) λk(E) = 0 when k is greater than the maximal dimension of the fibers of E.

(v) λk(f∗E) = f∗λk(E)

with the last property following from uniqueness of the pullback bundle (see [3, chapter 1]).

3.3 Complex K-theory

Now that we have taken a look at some results from the theory of vector bundles, we are able to
introduce the idea of complex K-theory. From now on, we will thus assume all vector bundles
to be complex.

Definition 3.13. Let ξ = (E, p,B) and ξ′ = (E′, p′, B) be two vector bundles over the same
connected base space B. We then say that those vector bundles stably isomorphic, with notation
E ≈S E′, if there exists an integer n such that E ⊕ εn ≈ E′ ⊕ εn. Similarly, we will write that
E ∼ E′, if there exist integers n and m such that E ⊕ εm ≈ E′ ⊕ εn.

Proposition 3.7. Both relations ≈S and ∼ are equivalence relations.

This proposition is trivially verified.

Definition 3.14. Let (E, p,B) and (E′, p′, B) be two vector bundles and let [·]∼ be the equiv-
alence class associated to the relation ∼. Then we can define the following operation on the
equivalence classes of vector bundles:

[E]∼ ⊕ [E′]∼ = [E ⊕ E′]∼

From the definition of direct sum of vector bundles, it is quite easily verified that this operation
is well-defined, associative and commutative. This gives us the following remarkable result:

Proposition 3.8. Let X be a compact Hausdorff topological space. The set of ∼-equivalence
classes of vector bundles over X forms an Abelian group with respect to the direct sum, and with
the class of ε0 as zero element. We denote this group by K̃(X).



Proof. The existence of inverses follows from Proposition 3.4. The other conditions being trivially
verified.

We can construct another Abelian group by using this time the equivalence relation ≈S . This
goes in a similar way as the construction of rational numbers out of integers:

Definition 3.15. Let X be a compact Hausdorff topological space. Let E1, E
′
1, E2, E

′
2 be vector

bundles over X. We say that E1 − E′1 = E2 − E′2 if and only if E1 ⊕ E′2 ≈S E2 ⊕ E′1.

Proposition 3.9. The relation ”=” in the previous definition is a equivalence relation.

Proof. The relation = is trivially reflexive and symmetric. The transitive property of the relation
follows from the cancellation property, which holds since X is compact.

We can define on those equivalence classes the following addition rule:

Definition 3.16. Let E1, E
′
1, E2, E

′
2 be total spaces of vector bundles. The addition operation

+ on the equivalence classes of formal differences E1−E′1 and E2−E′2 is given by the equivalence
class of (E1 ⊕ E2)− (E′1 ⊕ E′2), i.e. (E1 − E′1) + (E2 − E′2) = (E1 ⊕ E2)− (E′1 ⊕ E′2).

It is quite clear that the addition rule + as defined above is both commutative and associative
as it follows from the properties of the equivalence relation = and the direct sum. It is well-
defined because for total spaces E1, E

′
1, E2, E

′
2, E3, E

′
3 such that E1 − E′1 = E3 − E3, we then

have that E2⊕E3⊕E′2⊕E′1 ≈S E2⊕E′3⊕E′2⊕E1 since the condition E1−E′1 = E3−E3 gives
us that E1⊕E′3 ≈S E′1⊕E3, meaning that indeed (E3⊕E2)− (E′3⊕E′2) = (E1⊕E2)− (E′1⊕E′2)

Proposition 3.10. The set of formal differences E − E′ of vector bundles over a compact
Hausdorff space X forms an Abelian group with respect to the sum +, and with zero element the
equivalence class of the formal difference E−E for any total space E of such vector bundle. We
call this group K(X).

Proof. We only need to prove that any formal differences E −E′ has an inverse and this inverse
is trivially given by E′ − E.

Proposition 3.11. If X is a single point then K(X) = Z

Proof. Let X be a single point. Then a vector bundle over X is a vector space. Since those are
only classified by their dimension, which is given by a positive integer, we get that the space of
all the vector bundles over X is given by Z+. Hence the K group K(X) is given by the space of
integers Z.

Proposition 3.12. Let n be an integer and E a vector bundle over a compact Hausdorff space
X. The map K(X) → K̃(X) sending E − εn to the ∼-equivalence class of E is a natural
homomorphism. This homomorphism is surjective and its kernel is isomorphic to Z.

Proof. Let E,E′ be vector bundles over a compact Hausdorff space X and n,m be integers.
Notice first we can rewrite every element E−E′ in K(X) by adding a total space E′′ to both E
and E′ such that E′ ⊕ E′′ = εn (see Proposition 3.4). This gives us that E − E′ = (E ⊕ E′′)−
(E′⊕E′′) = (E⊕E′′)− εn. Thus, by writing Ê = E⊕E′′, we have that every element of K(X)
can be written as a formal difference of the form Ê − εn
Take now E− εn = E′− εm in K(X), we then have that E⊕ εn ≈S E′+ εm, thus the equivalence
E ∼ E′ holds, proving that the map in the proposition is indeed well-defined.
The map is clearly surjective and its kernel is equal to the space of formal differences E − εn
such that the ∼-class of E is the one of ε0. This means that there exist integers k, l such that



E ⊕ εk ≈0 ⊕εl. Hence E is isomorphic to εp for some integer p. Therefore the kernel of the map
is equal to formal differences of the form εp − εn. Since the subgroup {εp − εn | n, p ∈ N} of
K(X) is isomorphic to Z, the claim follows.

In fact, for x0 a basepoint of X, we have that the restriction of vector bundles to that base-
point x0 defines a homomorphism K(X) → K(x0) ≈ Z. This homomorphism restricts to an
isomorphism on the subgroup {εn − εm} which gives us a splitting K(X) ≈ K̃(X)⊕ Z.
This means for instance that for X a single point, K̃(X) = 0 since K(X) is isomorphic to Z.

Using the tensor products on vector bundles, one can also endow K(X) with a natural mul-
tiplication:

Definition 3.17. Let E1 − E′1 and E2 − E′2 be representatives for the equivalence classes of
formal differences of vector bundles. We define their product as follows:

(E1 − E′1)(E2 − E′2) = E1 ⊗ E2 + E′1 ⊗ E′2 − (E1 ⊗ E′2 + E′1 ⊗ E2).

This product is well-defined: to see that, take E3−E′3 such that (E3−E′3) = (E2−E′2). Then
E2⊕E′3 ≈ E′2⊕E3. Hence, (E1⊗E3+E′1⊗E′3)⊕(E1⊗E′2+E′1⊗E2) ≈ E1⊗(E′2⊕E3)+E′1⊗(E2⊕
E′3) ≈ E1⊗ (E2⊕E′3) +E′1⊗ (E′2⊕E3) meaning that (E1−E′1)(E2−E′2) = (E1−E′1)(E3−E′3)

Proposition 3.13. The addition and product operation in K(X) turn K(X) into a commutative
ring with the trivial line bundle ε1 as identity element for the product operation.

Proof. Let (E, p,X) be a vector bundle and E1 and E′1 be total spaces of vector bundles. We
have indeed that (E1 − E′1)(E − E) = E1 ⊗ E + E′1 ⊗ E − (E1 ⊗ E + E′1 ⊗ E) which is indeed
the neutral element for the addition. Let ε1 = (X ×C, π,X) be the trivial line bundle and take
x ∈ X. Because π−1(x) is given by {x}×C, the tensor product of p−1(x) with πx is isomorphic
to p−1(x), hence the tensor product of E with the trivial line bundle is again E which gives us
that ε1 is the identity element for the product operation. The others ring properties are trivially
verified.

Proposition 3.14. Let X,Y be compact Hausdorff space and f : X → Y a map. Then f induces
a ring homomorphism f∗ : K(Y ) → K(X), E − E′ 7→ f̃∗(E) − f̃∗(E′), where f̃∗E and f̃∗E′

define here the pullback bundles induced by f .
Moreover, f∗ has the following properties:

(i) (fg)∗ = g∗f∗ for g : Z → X with Z a compact Hausdorff space;

(ii) If id the identity map on X, then id∗ is the identity map on K(X);

(iii) If f is isomorphic to g, for g another map X → Y , then f∗ = g∗.

Proof. This properties follow from the ones on the pullback bundles:

(i) For (E, p,X) and (E′, p′, X) vector bundles and f : X ′ → X continuous, f̃∗(E ⊕ E′) ≈
f∗(E)⊕ f∗(E′) and f∗(E ⊕ E′) ≈ f∗(E)⊕ f∗(E′);

(ii) For id : X → X, the identity map id∗(E) ≈ E;

(iii) For g : Z → X ′ with Z compact Hausdorff, (fg)∗ = g∗f∗;

(iv) For g : X ′ → X continuous, f ' g ⇒ f∗E ≈ g∗E.



which themselves all follow quite easily from the definitions of pullback bundles, direct sums,
tensor products and isomorphisms of vector bundles.

We can now give the following theorem, called the splitting principle which will be important
in the next section. This theorem will not be proven in this thesis, a proof can be found in [9,
Section 2.3].

Theorem 3.15. (The splitting principle)
Let (E, p,X) be a vector bundle with X compact Hausdorff. Then there exists a compact Haus-
dorff space F (E) and a map π : F (E)→ X such that the induced map π∗ : K∗(X)→ K∗(F (E))
is injective and p∗(E) splits as a sum of line bundles.

We conclude by defining an external product in K-theory:

Definition 3.18. Let X,Y be compact Hausdorff spaces. Consider the product space X × Y
and the projections map π1 : X × Y → X and π2 : X × Y → Y . The external product
µ : K(X)⊗K(Y )→ K(X × Y ) is given by a⊗ b 7→ π∗1(a)π∗2(b).

Definition 3.19. Let X be a topological space and I the unit interval [0, 1]. We define the
suspension SX of X as the quotient of the product space X × [0, 1] modulo the equivalence
relation ∼I generated by (x1, 0) ∼I (x2, 0) and (x1, 1) ∼I (x2, 1). In other words, we obtain the
suspension SX by collapsing X × {0} to one point and X × {1} to another one.

The definition and notation of the suspension is motivated by its use on the topological space
Sn for n positive integer. Indeed, for X = Sn, we have that the suspension SX of X is given
by SSn = Sn+1 with the ”suspension points” being the north and south pole (0, 0, ..., 0,±1) of
Sn+1.

Theorem 3.16. (Bott periodicity)
Let X be a compact Hausdorff space. Then there exists a natural isomorphism : K̃(X)→ K̃(S2X)
where S2X = S(SX) is the double suspension of X.

This isomorphism can be given explicitly but this goes beyond the scope of this thesis. Some
formulas can be found for instance in [9] or in [18].
This isomorphism can be a great tool to compute some examples of K-groups, as done here
below:

Computation of some K-theory groups.

Example 3.7. We have proven that for X a single point, the groups K(X) and K̃(X) are
respectively given by Z and 0. This means that for the sphere S0, we get K(S0) ≈ Z ⊕ Z and
thus that K̃(S0) ≈ Z. Using Bott periodicity, we then conclude that K̃(Sn) ≈ Z for all n even.

For the odd spheres, we observe that every complex vector bundle over the circle S1 is also
trivial (see for instance [20, Example 4.9.1]) meaning that, similarly to the point, they only differ
by dimension, which gives us that K(S1) ≈ Z and therefore that K̃(S1) = 0. Hence K̃(Sn) = 0
for all n odd, by Bott periodicity.

Example 3.8. For CPn n-dimensional complex projective space, the space K̃(CPn) is isomor-
phic to Zn+1 and is generated by 1− [H], where H is the tautological line bundle. The proof of
this fact uses exact sequences in K-theory coming from the CW complex structure of CPn and
goes beyond the scope of this thesis. For more details, see [9, Proposition 2.24].

Those examples of K-groups will play an important role in the proof of the 1,2,4,8 theorem,
which will be given in the next section.



4 K-Theory and the dimension of real division algebras

Now that we have introduced some properties of vector bundles and complex K-theory, as well
as given some main examples of K-groups, we can finally move on to proving that the dimension
of a real division algebra can only be 1, 2, 4 or 8. To do so, we first need some definitions:

Definition 4.1. A sphere Sn−1 is called parallelizable if there exist n− 1 tangent vector fields
to Sn−1 which are linearly independent at each point. Equivalently, the tangent bundle TSn−1

is trivial.

Definition 4.2. Let X be a connected topological space. We say that X is an H-space if there
exists a continuous map µ : X × X → X with an identity element e such that for all x ∈ X
µ(e, x) = µ(x, e) = x

Lemma 4.1. Let A be a real division algebra of dimension n or Sn−1 be a parallelizable sphere.
Then Sn−1 is an H-space.

Proof. If A is a real division algebra of dimension n with multiplication ·, then we can create a
continuous map g : Sn−1 × Sn−1 → Sn−1, (x, y) 7→ x·y

||x·y|| where || · || is the Euclidean norm (see

proof of the corollary of Hopf’s theorem in section 2), thus Sn−1 is indeed an H-space.
If Sn−1 is parallelizable then there exists n − 1 tangent vector fields v1, ..., vn−1 that are

linearly independent in every point of Sn−1. Using the Gram–Schmidt process, we can assume
the vectors x, v1(x), ..., vn−1(x) to be orthonormal for all x ∈ Sn−1. For a first standard basis
vector e1, we may also assume, by changing the sign of vn−1 to preserve the orientation of the
space and deforming the vector fields near e1 if needed, that the vectors v1(e1), ..., vn−1(e1) forms
the others standard basis vectors e2, ..., en. Let bx be the linear map that sends the standard
basis to x, v1(x), ..., vn−1(x) and consider now the map µ : Sn−1×Sn−1 → Sn−1, (x, y) 7→ bx(y).

The map µ is continuous and for x =
∑
i λiei in Sn−1, we have that µ(x, e1) = bx(e1) = x

and µ(e1, x) = be1(x) = λ1e1 + λ2v1(e1) + λ3v2(e1) + ... + λnvn−1(e1) =
∑
i λiei = x. Hence,

Sn−1 is an H-space with the vector e1 as identity element.

The goal of this section is the proof of the following theorem:

Theorem 4.2. Let n be a positive integer and A be an n-dimensional real algebra. Then the
following statements are only true for n = 1, 2, 4 or 8.

• A is a division algebra

• The sphere Sn−1 is parallelizable.

As we have proven in Section 2 that the dimension of a division algebra has to be a power of
two, we know in particular that n has to be even. The case n = 1 being already worked out in
Section 1, we will from now on write n as 2m, with m a positive integer. The proof of Theorem
4.2. requires the concept of the Hopf invariant. To be able to introduce it, we first have to define
the following notions:

Definition 4.3. Let X be a topological space and I the unit interval. Then the cone CX of X
is defined as the quotient:

CX = X × I�X × {0}
CX is called the cone of the space X for its construction intuitively makes X into a cylinder
with one end of this cylinder being collapsed into only one point.



Definition 4.4. Let X,X ′ be two topological spaces. Let A ⊂ X ′ and f be a continuous map
A → X. We can then define a quotient space of X tX ′ by identifying each point a in A with
f(a) ∈ X. The resulting quotient space X tf X ′ is said to be the space X with X ′ attached
along A via f .

This definition enables us to introduce the notion of a mapping cone for a map f :

Definition 4.5. Let X,Y be topological spaces and f : X → Y a map. We define the mapping
cone Cf as follows:

Cf = Y tf CX

where CX is the cone of X as in Definition 4.3. We attach this cone here to Y along X × {1}
by identifying (x, 1) with f(x).

Definition 4.6. Let G1, ..., Gn be groups and fi : Gi → Gi+1 group homomorphisms for i =
1, ..., n− 1. We say that the sequence of groups and group homomorphisms

G1
f1−→ G2

f2−→ ...
fn−1−−−→ Gn

is exact is for all i = 1, ..., n− 1, Im(fi) = Ker(fi+1)

Combining those definitions, we can finally introduce the Hopf invariant: consider a map
f : S4m−1 → Sm. We can form with this map the following mapping sequence:

S4m−1 f−→ S2m → Cf → SS4m−1 Sf−−→ SS2m,

where Sf denotes the map S(S4m−1))→ S(S2m) induced by f and given by (x, t) 7→ (f(x), t).
This mapping sequence gives then rise to the following exact sequence of K-groups:

0← K̃(S2m)← K̃(Cf )← K̃(S4m)

The exactness of this sequence of K-groups follows from the half-exactness of sequence in K-
groups. More information about this sequence of K-groups can be found for instance in [12,
Chapter 10] Let now α ∈ K̃(Cf ) be the image of a generator of K̃(S4m) ≈ Z and β be an

element of K̃(Cf ) that maps to a generator of K̃(S2m) ≈ Z. Since the square of every element

in K̃(S2m) is 0, we get that β2 = 0. By exactness we get that β2 = hα for some integer h.

Definition 4.7. The integer h introduced above is called the Hopf invariant of f .

Proposition 4.3. The Hopf invariant is well-defined, and independent of the choice of β, More-
over αβ = 0.

Proof. First of all, we see in the definition that the choice of β is unique up to adding up a
multiple of α. Choose now β′ = β + kα. Then β′2 = (β + kα)2 = β2 + 2kαβ + α2 = 2kαβ for
α2 is also zero, as it is the image of a generator of K̃(S4m). Because α maps to 0 in K̃(S2m) by
exactness, the product αβ maps to zero as well. This implies that αβ = cα for some integer c.
This gives us:

αβ = cα⇒ αβ2 = cαβ ⇒ α(hα) = cαβ ⇒ hα2 = cαβ → cαβ = 0

for α2 = 0. Because αβ belongs to the image of the infinite cyclic group K̃(S4m) in K̃(Cf ), the
equation cαβ = 0 implies that αβ = 0. It follows that β′2 = 2mαβ is zero as well.



Let g : Sn−1 × Sn−1 → Sn−1 be a map and let Dn = {x ∈ Rn | ||x|| ≤ 1} be unit disk in
Rn. Its boundary ∂Dn is nothing but the sphere Sn−1. Let Dn

+ be the points of Dn whose last
coordinate is positive and Dn

+ be the points of Dn whose last coordinate is negative.
We rewrite the sphere S2n−1 as ∂D2n = ∂Dn ×Dn = ∂Dn ×Dn ∪Dn × ∂Dn, and considering
the sphere Sn as the union of Dn

+ and Dn
− with their boundary identified.

Definition 4.8. We define the associated map g̃ to g as the map ĝ : S2n−1 → Sn given by
(x, y) 7→ ||y|| · g(x, y/||y||) ∈ Dn

+ on ∂Dn × Dn, and by (x, y) 7→ ||x|| · g(x/||x||, y) ∈ Dn
− on

Dn × ∂Dn.

The map ĝ is then well-defined and continuous, even for ||x|| = 0 or ||y|| = 0, on which ĝ
simply takes the value zero, and it is trivially verified that its values coincide with the ones of g
on Sn−1 × Sn−1.
We can state the following lemma, whose proof we will omit:

Lemma 4.4. ([9, Lemma 2.18]) Consider an H-space multiplication g : S2m−1 × S2m−1 →
S2m−1. Then the map associated ĝ : S4m−1 → S2m has Hopf’s invariant ±1.

Our next step in the proof of Theorem 4.2 is showing that if there exists a map f : S4m−1 →
S2m with Hopf invariant ±1, then m = 1, 2 or 4. To do so, we will have to introduce some useful
and remarkable ring homomorphisms called the Adams operations:

Theorem 4.5. Let X be a compact Hausdorff space and k ≥ 0 an integer. There exist ring
homomorphisms ψk : K(X)→ K(X) satisfying the following properties:

1. For all maps f : X → Y , ψkf∗ = f∗ψk. (naturality)

2. For L a line bundle, ψk(L) = Lk.

3. ψk ◦ ψl = ψkl.

4. For p prime, ψp(α) ≡ αp (mod p).

Proof. Let (E, p,X) and (E′, p′, X) be vector bundles over the same compact Hausdorff base X.
To be able to give such homomorphisms, we will have to make use of the exterior power of vector
bundles and its properties in Proposition 3.6.
Define a polynomial λt such that λt(E) =

∑
i λ

i(E)ti ∈ K(X). By Property (iv) of Proposition
3.6, this sum is finite and using Property (i) and (iv), we also get that λt(E⊕E′) = λt(E)λt(E

′).
Consider now the direct sum of n line bundles L1⊕ ...⊕Ln with n a positive integer. By Property
1 above we want to construct maps ψk such that ψk(L1 ⊕ ... ⊕ Ln) = Lk1 + ... + Lkn. Using the
fact that λt(E⊕E′) = λt(E)λt(E

′) as well as properties (ii), (iii) and (iv) of exterior powers, we
now get λt(L1 ⊕ ...⊕Ln) =

∏n
i=1(1 +Lit). For polynomials of the form

∏n
i=1(1 +Lit), the j-th

coefficient of tj is given by the j-th elementary symmetric functions σj of the Li’s, hence:

λj(L1 ⊕ ...⊕ Ln) = σj(L1, .., Ln)

Now, by the fundamental theorem of symmetric polynomial, every symmetric polynomial in the
variables x1, ..., xn can be written as a unique polynomial in the elementary symmetric functions
σ1, ..., σk. In particular the polynomial xk1 + ... + xkn is given by a polynomial sk(σ1, ..., σk). sk
is called the Newton polynomial, given recursively by:

sk =

k−1∑
i=1

((−1)i−1σisk−i) + (−1)k−1kσk



Define now ψk as ψk(E) = sk(λ1(E), ..., λn(E)). Then we have indeed that:

ψk(L1 ⊕ ...⊕ Ln) = sk(σ1(L1, .., Ln), ..., σk(L1, ..., Ln)) = Lk1 + ...+ Lkn

and so we constructed an operation with the desired property on L1 ⊕ ... ⊕ Ln. Indeed, with
this definition of ψk, we have that the first property ψkf∗ = f∗ψk follows from the fact that
f̃∗(λi(E)) = λi(f̃∗(E)).

For the other properties, an additive property ψk(E1 ⊕ E2) = ψk(E1) + ψk(E2) of the ψk

on vector bundles follows by the splitting principle (Theorem 3.15.) when we first pullback to
split E1 and then pullback to split E2. This additive property of ψk on vector bundles then
induces an additive operation on K(X) by defining ψk(E1 − E′1) = ψk(E1) − ψk(E′1). Indeed,
if we take E1 − E′1 = E3 − E′3 with E1, E

′
1, E3, E

′
3 total spaces of vector bundles, we have that

E1⊕E′3 ≈S E′1⊕E3, which means that ψk(E1) +ψk(E′3) = ψk(E′1) +ψk(E3) which implies that
ψk(E1)− ψk(E′1) = ψk(E3)− ψk(E′3) making this well-defined.

A multiplicative property can also be deduced from the splitting principle. Indeed, if E is a
sum of line bundle Li and E′ a sum of line bundles E′j , with i, j some indices, then E ⊗ E′ is a
sum of line bundles Li ⊗ L′j . Hence we get:

ψk(E ⊗ E′) =
∑
i,j

ψk(Li ⊗ L′j) =
∑
i,j

(Li ⊗ L′j)k =
∑
i,j

Lki ⊗ (Lj)
′k

=
∑
i

Lki
∑
j

(L′j)
k = ψk(E)ψk(E′)

which gives us a multiplication on vector bundles. It then also induces a multiplication on
elements of K(X) in a similar way as for the additive property.

Using the splitting principle and the additive property, we can now deduce Property (3), since
for a line bundle L, we get:

ψk(ψl(L)) = ψk(Ll) = Lkl = ψkl(L)

In a similar way, for E = L1⊕ ...⊕Ln with the Li’s, i = 1, ..., n being line bundles, we have that
for p a prime number:

ψp(E) = Lp1 + ....+ Lpn ≡ (L1 + ....+ Ln)p (mod p) ≡ Ep (mod p)

which then gives us Property (4) by the splitting principle and the additive property.

Proposition 4.6. Let k ≥ 0. The map ψk : K̃(S2m) → K̃(S2m) corresponds to the multiplica-
tion with km

Proof. Let m = 1 and take u the generator of K̃(S2) = Z = Z[u]�(u2) given by u = H − 1. with

H the tautological line bundle over CP1 = S2. Then, using Property 2, we get:

ψk(u) = ψk(H − 1) = Hk − 1 = (u+ 1)k − 1 = 1 + ku− 1 = ku

because uk = 0 for k ≥ 1. Since ψk is additive, this gives us that ψk : K̃(S2) → K̃(S2) indeed
corresponds to the multiplication by k.

For m ≥ 2, we know that K̃(S2m) ≈ Z ≈ Z[β]�(β2) for some generator β. Consider now the

map K̃(S2m) → K̃(S2 × .... × S2). Since, for X a topological space the map f : S2X → SX
is surjective, we then get that the induced map f∗ : K̃(SX) → K̃(S2X) is injective because



F : X → K̃(X) is a contravariant functor (see [12, Section 9.3.] for more information). This turns
the map K̃(S2m)→ K̃(S2×....×S2) into a monomorphism. The image of β under this morphism
is then given by a product α1...αm with αi is a generator of K̃(S2) for every i = 1, ...,m. Hence,
the image of ψk(β) through the morphism is given by ψk(α1)...ψk(αm) = kmα1...αm which is
km times the image of β. Because the map K̃(S2m) → K̃(S2 × .... × S2) is injective, this gives
indeed that ψk : K̃(S2m)→ K̃(S2m) corresponds the multiplication with km.

We are now able to give a proof of the following desired theorem:

Theorem 4.7. If there exists a map f : S4m−1 → S2m with Hopf invariant ±1, then m = 1, 2
or 4.

Proof. Take α, β elements of K̃(Cf ) as in the definition of the Hopf invariant for f : S4m−1 →
S2m. Because α is the image of a generator of K̃(S4m), we have that ψk(α) = k2mα. Moreover
the definition of β gives us that ψk(β) = kmβ + µkα with µk an integer. Hence,

ψk(ψl(β)) = ψk(lmβ + µlα) = kmlmβ + lmµkα+ k2mµlα

and
ψl(ψk(β)) = ψl(kmβ + µkα) = lmkmβ + kmµlα+ l2mµkα

Using ψkψl = ψlψk, we thus get that:

lmµkα+ k2mµlα = kmµlα+ l2mµkα

⇒ lmµk + k2mµl = kmµl + l2mµk

⇒ (k2m − km)µl = (l2m − lm)µk

Moreover, ψk(β2) ≡ β2 mod 2, by Property 4. of Theorem 4.6. Since ψ2(β) = 2mβ + µ2α,
the equation β2 ≡ µ2α mod 2 holds. Because β2 = hα with h the Hopf invariant, we have
hα ≡ µ2α mod 2 which implies that µ2 ≡ h mod 2. By Lemma 4.4, h = ±1, therefore, µ2 is
a odd number. Besides, the equation (k2m − km)µl = (l2m − lm)µk for k = 2 and l = 3 gives
us (22m − 2m)µ3 = (32m − 3m)µ2 ⇒ 2m(2m − 1)µ3 = 3m(3m − 1)µ2 ⇒ 2n|3m(3m − 1)µ2. This
implies that 2m has to divide 3m − 1 because both 3m and µ2 odd.

To complete the proof, we will need one last lemma from number theory:

Lemma 4.8. Suppose that 2m divides 3m − 1. Then m = 1, 2 or 4.

Proof of the lemma. Write m as m = 2lk, with l, k positive integers and k odd. Our aim is to
find the highest power of two that divides 3m − 1. We proceed by induction on l:
Let l = 0. Then m = k. Since 3 ≡ −1 mod 4, we get that 3k ≡ −1 mod 4 because k is odd.
Thus 3m − 1 = 3k − 1 ≡ 2 mod 4 and the highest power of 2 diving 3m − 1 in this case is 2.

Take now l = 1. Then m = 2k and 3m − 1 = 32k − 1 = (3k − 1)(3k + 1). We have already
proven that the highest power of 2 dividing the first factor is 2. For the second factor, we start by
noticing that 32 ≡ 1 mod 8 meaning that 3k ≡ 3 mod 8 since k is odd. Hence, 3k + 1 ≡ 4 mod 8
so the highest power of 2 dividing 3k + 1 is 4. Together, we have that the highest power of 2
dividing 3m − 1 = (3k − 1)(3k + 1) is thus 8.

For l ≥ 1, we see that if we pass from l to l + 1, we then pass from m to 2m as m is equal
to 2lk. Write now 32m − 1 as the product (3m − 1)(3m + 1). Since l ≥ 1, we now have that m
which means that 3m ≡ 1 mod 4, thus 3m + 1 ≡ 2 mod 4.
Hence the highest power of 2 dividing 32m − 1 = (3m − 1)(3m + 1) is equal to 2l+2 as it is two
times the highest power of two dividing 3m − 1 which is 2l by the induction hypothesis.
In conclusion, the highest power of two dividing 3m − 1 is 2 when l = 0 and 2l+2 if l > 0. So



if 2m divides 3m − 1, then m ≤ l + 2, which implies that 2l ≤ 2lk = m ≤ l + 2. This is only
possible when l ≤ 2 and m ≤ 4. Thus the only possibilities for m is 1, 2, 3 or 4.
Because 2 divides 2 (m = 1), 4 divides 8 (m = 2) and 16 divides 80 (m = 4) but 8 does not
divide 26 (m = 3), we get at then end that m can only be either 1, 2 or 4.

Hence, we have that the integer m has to be either 1, 2 or 4 which means that for n ≥ 2,
n = 2m can only take the values 2, 4 or 8. As we have already dealt with the case n = 1 for
division algebras in the first section, we finally get that the dimension of a real division algebra
can only be either 1, 2, 4 or 8 and they correspond to the spaces R, C, H and O as seen is Section
1.

Conclusion

After having defined the notion of real division algebra and in particular introduced the examples
of the Hamilton quaternions and the Cayley octonions, we have proven Hopf’s theorem, which
implies that the dimension of any division algebra over the real numbers must be a power of two.
The proof uses homology and cohomology with coefficients in Z2 that we introduced before.

With the help of vector bundles complex K-theory, we were eventually able to define the
Hopf invariant and the Adams operations that we then used to give a proof that those power of
two could actually only be either 1, 2, 4 or 8, which tells us in particular that there exists no
more finite dimensional real division algebra beyond the Cayley octonions.

Once Hopf’s theorem is proven, there can be another way to prove the 1,2,4,8 theorem which
involves characteristic classes of vector bundles, in particular Stiefel-Whitney classes, instead of
K-theory. The British Mathematician J.F. Adams, for instance, proved the theorem first using
characteristic classes in [1] and later with the use of K-theory [2].

It is also possible to prove the theorem using methods from K-theory without stating first
that the dimension has to be a power of two. However, in this case, one still has to prove at
some point that the dimension of a real division algebra has to be at least even, when greater
than one. In this thesis, the choice was made to incorporate Hopf’s theorem in order to give a
better look at the historical steps that were made in the solving of this problem.

An equivalent statement can be given about normed algebras over the real numbers (see [6]
and [16]), the proof of it being done using this time analysis and operator theory instead of
algebraic topology.



Appendix

Singular homology

Definition. Let v0, ..., vp be points in Rn with n positive integer. We define their convex hull
as the following set: {

[v0, ..., vp] =∑p
i=0 λivi | λi ≥ 0,

∑p
i=0 λi = 1 ⊂ Rn

}
Take now the standard basis (e0, ..., ep) of Rp+1:

Definition. We define the standard p-simplex as the space:

∆p = [e0, ..., ep]

Definition. Let v0, ..., vp be points in Rn. We can define the following continuous map between
complex hulls:

< v0, ..., vp >: ∆p → [v0, ..., vp],

p∑
i=0

λiei 7→
p∑
i=0

λivi

The previous map is an example of a so-called singular p-simplex in Rn. For X a general
topological space, a singular p-simplex in X is defined as follows:

Definition. Let X be a topological space and p a positive integer. A singular p-simplex in X is
a continuous map σ : ∆p → X.

Notation. We denote by Σp(X) the set of p-simplices in X.

Definition. Let X be a topological space and p a positive integer. We define the group of
singular p-chains Cp(X) as the free abelian group on Σp(X):

Cp(X) = ZΣp(X).

Definition. Let p ≥ 1. We then can define a group homomorphism

∂ : Cp(X)→ Cp−1(X), σ 7→
p∑
i=0

(−1)iσ◦ < e0, ..., êi, ..., ep >

where < e0, ..., êi, ..., ep >: ∆p−1∆p is the map defined by e0 7→ e0, ..., ei−1 7→ ei−1, ei 7→
ei+1, ..., ep−1 7→ ep

This map has the following property:

Proposition. Let ∂ be defined as above. Then ∂ ◦ ∂ = 0

This proposition can be easily verified by writing out the ∂’s.

Definition. Let σ ∈ Cp(X) be a singular p-chain. We say that σ is a cycle if ∂σ = 0.

Using this map, we are now able to define the p-singular homology group of a topological
space:



Definition. Let X be a topological space and p ≥ 1. Define

Zp(X) = Ker(∂ : Cp(X)→ Cp−1(X)) and Bp(X) = Im(∂ : Cp+1(X)→ Cp(X))

. Then the singular homology group of X is given by:

Hp(X) = Zp(X)�Bp(X)

This quotient is well-defined since the previous proposition gives us that Bp(X) ⊆ Zp(X)

Definition. Let X be a topological space and G an Abelian group. We define the singular
p-cochains with coefficients in G Cp(X,G) as the dual group Hom(Cp(X), G) of the p-singular
chain group Cp(X)).

Definition. The coboundary map δ : Cp(X,G)→ Cp+1(X,G) is given by the dual of the map
∂ : Cp+1(X) → Cp(X). Thus, for a map ϕ ∈ Cp(X,G), its coboundary ϕ is given by the
composition:

Cp+1(X)
∂−→ Cp(X)

ϕ−→ G

For a p+ 1-simplex σ : ∆p+1 → X, we thus get that:

δϕ(σ) =

p+1∑
i=0

ϕ(σ|[v1,...,v̂i,...,vp+1])

Because ∂ ◦ ∂ = 0 and δ is the dual of ∂, we also have that δ ◦ δ. Hence, we can define a new
group in the same way as we defined the homology group:

Definition. Let X be a topological space and G an Abelian group. Define

Zp(X) = Ker(δ : Cp(X)→ Cp+1(X)) and Bp(X) = Im(δ : Cp−1(X)→ Cp(X))

. Then the singular cohomology group of X with coefficients in G is given by:

Hp(X,G) = Zp(X)�Bp(X)

We can now give the definition of the cap product _, which is for instance used in the
Poincaré duality theorem:

Definition. Let X be a topological space and R a coefficient ring. Let k, l be positive integers
with k ≥ l. We can define an R-bilinear cap product:

_: Ck(X,R)× Cl(X,R)→ Ck−l(X,R), (σ, ϕ) 7→ ϕ(σ|[v0,...,vl])σ|[vl,...,vk],

where σ : ∆k → X and ϕ ∈ Cl(X,R).

This cap product induces a cap product in homology and cohomology by using the formula
∂(σ _ ϕ) = (−1)l(∂σ _ ϕ− σ _ δϕ) which can be checked by writing out the different terms.
Because ∂(σ _ ϕ) = ±(∂σ _ ϕ − σ _ δϕ), we have that the cap product of a chain and a
cochain is again a chain.
Moreover, if ∂σ = 0, then ∂(σ _ ϕ) = ±σ _ δϕ and if δϕ = 0, then ∂(σ _ ϕ) = ±∂σ _ ϕ,
hence the cap product of a cycle and a coboundary is a boundary and the cap product of a
boundary and a cocycle is again a boundary.
This yields an induced cap product

Hk(X,R)×H l(X,R)→ Hk−l(X,R),

which is R-linear in each variable.



Topological manifolds

Definition. Let X be a topological space, n a positive integer and I an index set. An n-
dimensional atlas for X is a set:

A = {(Ui, hi, Vi) |mi ∈ I}

such that for every i ∈ I:

• Ui is an open subset of X and X =
⋃
i∈I

Ui

• Vi is an open subset of Rn

• hi : Ui → Vi is a homeomorphism.

This enables us to give the definition of a topological n-dimensional manifold.

Definition. Let X be a topological space. An n-dimensional topological manifold is a pair
(X,A) where A is an n-dimensional atlas for X.

In this thesis, since we only deal with compact connected topological spaces, we will define
orientable topological manifolds as follows:

Definition. Let M be an n-dimensional topological manifold. We say that M is orientable if
the n-th singular homology group Hn(M) is isomorphic to Z.

This definition is usually given as a theorem for compact connected topological manifolds and
is therefore not the usual definition of an oriented topological manifold, which normally involves
local homology (see for instance the definition in Hatcher’s book about Algebraic Topology [8]).
However, it is a sufficient definition here.
Since the homology group Hn(M) as in the previous definition is then given by the integers, only
two orientations on the manifold can be possible, namely the one given by the negative integers
and the one given by the positive ones.

Definition. Let M be a n-dimensional topological manifold. We say that M is oriented if M is
an orientable manifold with a chosen orientation fixed on it.
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