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1 Introduction

This thesis is about fundamental groups of topological groups, a notion of topological space and group that
occurs naturally in, for example, the Euclidean topology on the real numbers. As known from basic analysis,
the operations of addition, subtraction, multiplication and division are continuous operations on the real
numbers, so that the additive and multiplicative groups of the real numbers become topological groups. Like
other structures, topological groups come with naturally defined subs and morphisms.

The notion of fundamental group requires a base point. In the case of topological groups, there is an
obvious choice for the base point, namely the identity element of the underlying group. This is not just an
’obvious choice’ but actually gives rise to correspondence between the group operation on the fundamental
group and the group operation of the underlying group. The identity element as base point is a necessary
condition for this observation.

One of the main results is that the fundamental group of a topological group, as defined above, is abelian.
Thus, any topological space with non-abelian fundamental group cannot be equipped with a topological group
structure. Put more precisely, if X is a topological space, and there does not exist an x ∈ X such that the
fundamental group of X with base point x is abelian, then X cannot be a topological group. In this thesis,
several proofs of this statement will be discussed, each from a different angle, offering different insights.

The notion of covering map is viable in the context of topological groups. In such a case, a covering group
is the result. If a topological group is ’nice’, then any cover of it can be given a covering group structure. As
known from topology and group theory, the kernel of a covering group is a discrete normal subgroup. This
means that the kernel of a covering group is a central subgroup, as will be discussed.

Besides the real numbers, matrix groups are other important examples of topological groups. This thesis
focuses on the real matrix groups. The real invertible n × n matrices form a topological group when given
the usual Euclidean topology, for any n ∈ Z>0. This matrix group has interesting subgroups, such as the set
of matrices with positive determinant and the orthogonal matrices, which are sub-topological groups when
given the subspace topology.

A main result is that the Gram-Schmidt algorithm defines a so-called ’deformation retraction’ from the
real invertible n × n matrices to the orthogonal n × n matrices. This allows us to relate their fundamental
groups. The Spin Cover is such an application, which will be discussed in the final section.

2 Topological Groups

A topological group is a topological space and a group such that the two structures are compatible.

2.1 Definitions

Definition. Let G be a set, T a topology on G and m a group operation on G. Then (G,T,m) is a
paratopological group if m is continuous with respect to the product topology of T on G×G.

Definition. A paratopological group (G,T,m) is a topological group if the inversion map i : G → G, g 7→
g−1 is continuous.

The structure of topological group is ’nice’ in the sense that it has naturally defined subs, as follows.

Lemma 2.1. Let (G,T,m) be a topological group and H ⊆ G a subgroup. Then H equipped with the subspace
topology of T is a topological group.

Proof. By definition of subspace topology, the restriction to H × H of the continuous map m, which is
the group operation on H by definition of subgroup, is continuous. The restriction of the inversion map
i : G→ G to H is a bijection H → H by definition of subgroup. By the same argument, this restriction of i
is continuous. So H equipped with the subspace topology of T is a topological group.

This defines a sub:

Definition. Let (G,T,m) be a topological group. A sub-topological group of (G,T,m) is a subgroup H
equipped with the subspace topology of T .
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2.2 Examples

1. Let TE be the Euclidean topology on R. Then (R, TE ,+) is a topological group, since addition and
taking negatives are continuous.

2. (R×, TE , ·) is also a topological group, since multiplication and division are continuous operations.

3. Let (G,m) be a group. Equip G with the discrete topology DG. Then (G,DG,m) is a topological
group. To see this, note that G×G is also discrete, and a map from any discrete topological space is
continuous.

4. Let (G,m) be a group. Equip G with the chaotic topology CG. Then (G,CG,m) is a topological group,
since any map to a chaotic topological space is continuous.

5. Let Rn×n be the set of n× n-matrices over R. Equip this with the Euclidean topology on Rn2

. Then
GLn(R) := {A ∈ Rn×n : det(A) ∈ R×} with the subspace topology and the matrix multiplication is a
topological group. This is an example of a matrix group. Matrix groups will be discussed in Section 7.

6. Proposition: Let (G,T,m) be a paratopological group, and suppose T contains a singleton. Then (G,T )
is discrete.
Proof. Let A = {a} ∈ T . As m is continuous,

m−1(A) = m−1{a} =
⋃
g∈G
{(g, g−1a)} =

⋃
g∈G
{g} × {g−1a} (1)

is open in G × G. An open in G × G is a union of the form
⋃
i∈I Ui × Vi where Ui, Vi ∈ T . Since for

all g 6= h ∈ G we have g−1a 6= h−1a, m−1(A) is a union of pairs (a, b) such that for every a there is a
unique b and vice versa. So for all g ∈ G we have {g} ∈ T . We conclude that T is the discrete topology
on G.

7. Consider V4 = {e, a, b, c} the Kleinian group. Then (V4, {V4, ∅, 〈a〉, {b, c}}, ·) is a topological group.
Note that there is no open singleton in the topology.
Proof. We have

·−1〈a〉 = {(e, a), (a, e), (b, c), (c, b), (a, a), (b, b), (c, c), (e, e)} = 〈a〉2 ∪ {b, c}2 (2)

and

·−1{b, c} = {(e, b), (e, c), (a, b), (a, c), (b, e), (c, e), (b, a), (c, a)} = 〈a〉 × {b, c} ∪ {b, c} × 〈a〉 (3)

and these are both open in V4× V4. Moreover, the inversion i equals idV4
, which is continuous as well.

8. This is an example of a paratopological group that is not a topological group. This example was
suggested to me by H.W. Lenstra.
Consider Q× with the following topology: a subset X ⊆ Q× is open if and only if

∀x ∈ X : ∃m ∈ Z>0 : (x+mZ)\{0} = {x+mz : z ∈ Z, x+mz 6= 0} ⊆ X (4)

Then Q× with this topology and the standard multiplication is a paratopological group and not a
topological group.
Proof.

• First we need to show that (4) actually defines a topology on Q×. So let I be a set, and (Xi)i∈I
a collection of open sets in this context. Then

∀i ∈ I, x ∈ Xi : ∃mx ∈ Z>0 : (x+mxZ)\{0} ⊆ Xi (5)

Let x ∈
⋃
i∈I Xi. Then there exists j ∈ I such that x ∈ Xj . Xj is open, so there exists mx ∈ Z>0

such that (x+mxZ)\{0} ⊆ Xj ⊆
⋃
i∈I Xi. So

⋃
i∈I Xi is open.
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Now suppose I is finite. Let y ∈
⋂
i∈I Xi. For all i ∈ I, letmi ∈ Z>0 such that (y+miZ)\{0} ⊆ Xi.

Let m be a common multiple of the (finitely many!) mi. So for all i ∈ I there exists ai ∈ Z such
that m = aimi. Since for all i ∈ I, mi > 0, also ai > 0 for all i ∈ I. Now for all i ∈ I we have
that (y + aimiZ)\{0} = (y + mZ)\{0} ⊆ (y + miZ)\{0} ⊆ Xi, so (y + mZ)\{0} ⊆

⋂
i∈I Xi. So⋂

i∈I Xi is open. Also ∅ and Q× clearly satisfy (4). So (4) defines a topology on Q×.

• Next, we need to show that the multiplication · is continuous with respect to (4). To do this, note
that for an open X ⊆ Q× we can write

X =
⋃
x∈X

(x+mxZ)\{0} (6)

by (4). So

{(x+mZ)\{0}|x ∈ Q×,m ∈ Z} (7)

is a base of the topology. The continuity of a map only needs to be checked on a base by Lemma
A.1 . So, let a ∈ Z>0 and b = r

s ∈ Q×, where r, s ∈ Z (and nonzero). We need to show that

·−1((aZ + b)\{0}) = {(c, c−1(ax+ b) : c ∈ Q×, x ∈ Z, ax+ b 6= 0} (8)

is open in Q× ×Q×.
Let (c, d) ∈ ·−1((aZ + b)\{0}). Then there exists x ∈ Z such that d = c−1(ax + b). Write c = p

q
with p, q ∈ Z6=0. Then we have

(c, d) =

(
p

q
,
q

p

(
ax+

r

s

))
=

(
p

q
,
axq

p
+
qr

ps

)
=

(
p

q
,
axqs+ qr

ps

)
(9)

Let z ∈ Z. Then(
p

q
+ apsz

)(
axqs+ qr

ps

)
= ax+ b+ a2xqsz + aqrz = a(x+ axqsz + qrz) + b ∈ (aZ + b)\{0}

(10)

Moreover, we have for all y ∈ Z(
p

q
+ apsz

)(
axqs+ qr

ps
+ aqy

)
= ax+ b+ a2xqsz + aqrz + apy + a2pszqy (11)

= a(x+ axqsz + qrz + py + apszqy) + b ∈ (aZ + b)\{0} (12)

meaning that there exist α, β ∈ Z such that for all y, z ∈ Z, (c+ αz, d+ βy) ∈ ·−1((aZ + b)\{0}),
or

((c+ αZ)× (d+ βZ))\{(0, 0)} ⊆ ·−1((aZ + b)\{0}) (13)

Since (c, d) was arbitrary, we conclude⋃
(c,d)∈·−1((aZ+b)\{0}

((c+ αcZ)× (d+ βdZ))\{(0, 0)} ⊆ ·−1((aZ + b)\{0}) (14)

where the αc and βd are chosen suitably, as shown in (13). Since the other inclusion is obviously
true, we conclude equality in (14), meaning ·−1((aZ + b)\{0}) is open in Q× × Q×. So · is
continuous.

• Finally, we need to show that the inversion i : Q× → Q× mapping p
q to q

p is not continuous.

Obviously, Z\{0} is open with respect to (4), we can take m = 1. However, i−1(Z\{0}) is
bounded by 1, since for any c ∈ Z\{0} we have |c| ≥ 1, so | 1c | ≤ 1. So i−1(Z\{0}) is not open
with respect to (4).
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3 Properties of Topological Groups

Let’s look at some properties of topological groups. From a group theory point of view, for any group
G and g ∈ G, we have that the left multiplication sending h ∈ G to gh, the right multiplication sending
h ∈ G to hg and the inversion map sending h ∈ G to h−1 are bijections whose inverses are h 7→ g−1h,
h 7→ hg−1 respectively the inversion map itself. If G has a structure of a topological group, these maps are
homeomorphisms.

Lemma 3.1. Let (G,T,m) be a topological group.

1. The inversion map

i : G → G
h 7→ h−1

(15)

is a homeomorphism.

2. For any g ∈ G, the left multiplication

gm : G → G
h 7→ m(g, h) = gh

(16)

is a homeomorphism.

3. For any g ∈ G, the right multiplication

mg : G → G
h 7→ m(h, g) = hg

(17)

is a homeomorphism.

Proof. 1. Since i ◦ i = idG, i is the continuous inverse of i.

2. Since g is any element of G, if gm is continuous, then its inverse g−1m is also continuous. So it suffices
to show that gm is continuous. Let gi : G → G × G be defined as gi(h) = (g, h) for all h ∈ G. Then

gm = m ◦ gi since

m(gi(h)) = m(g, h) = gh = gm(h) (18)

for all h ∈ G. Since m is continuous, it suffices to show that gi is continuous. Let cg be the constant,
hence continuous, map h 7→ g, then

gi = (cg, idG) (19)

in the notation of Lemma A.2, and since both the constant map cg and idg are continuous, so is gi.

3. Same argument as (2).

Hence, given a subset A of a topological group, the translations gA and Ag and the set A−1 of its inverses
are homeomorphic to the original set:

Corollary 3.2. Let (G,T,m) be a topological group, A ⊆ G a subset, and g ∈ G an element.

1. Let Ag = {ag : a ∈ A}. Then the right multiplication mg maps A to Ag homeomorphically.

2. Let gA = {ga : a ∈ A}. Then the left multiplication gm maps A to gA homeomorphically.

3. Let A−1 = {a−1 : a ∈ A}. Then the inversion map i : G→ G maps A to A−1 homeomorphically.

Proof. The maps gm, mg and i are homeomorphisms, so their restrictions to A are homeomorphisms onto
their image.
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This means that to show that a set A is open, closed, compact, Hausdorff, connected, path connected or
any property that is invariant under homeomorphism, it suffices to show that the translation gA or Ag has
the particular property, for any g ∈ G, or even the set of its inverses A−1.

Next, we can note that the repeated multiplication in a topological group is continuous.

Lemma 3.3. Let (G,T,m) be a topological group. Then the map

m3 : G×G×G → G
(a, b, c) 7→ abc = m(a,m(b, c)) = m(m(a, b), c)

(20)

is continuous.

Proof. By Lemma A.2,

(m, idG) : G×G×G → G×G
(a, b, c) 7→ (m(a, b), c)

(21)

is continuous, so m3 = m ◦ (m, idG) is continuous.

Repeating this argument, we get that repeated multiplication is continuous:

Corollary 3.4. Let (G,T,m) be a topological group. Then for any n ∈ Z≥2 the n-fold multiplication

mn : G×G×G× ...×G → G
(g1, g2, ..., gn) 7→ g1g2...gn

(22)

is continuous.

Proof. Induction on n. For n = 2 we have m which is continuous. Induction hypothesis: mn−1 is continuous.
We can now repeat the proof of Lemma 3.3 to see that mn is continuous.

In the case of a connected topological group, we get that any discrete normal subgroup is central, so in
particular abelian.

Proposition 3.5. Let (G,T,m) be a connected topological group, and N ⊆ G a discrete normal subgroup.
Then N is central.

Proof. Since N is normal, any n ∈ N gives rise to a well defined map

fn : G → N
g 7→ gng−1

(23)

The map

σ̃n : G → G×G×G
g 7→ (g, n, g−1)

(24)

which can be written as σ̃n = (idG, cn, i) where cn is the constant map g 7→ n, is continuous by Lemma A.2,
so by Lemma 3.3, fn = m3 ◦ σ̃n is continuous. Since G is connected, im(fn) is connected. Because N is
discrete, this means that fn is constant with image {n}. Hence, gng−1 = n for all n ∈ N and g ∈ G, so N
is central.

In particular, discrete normal subgroups of connected topological groups are abelian:

Corollary 3.6. Let (G,T,m) be a connected topological group, and N ⊆ G a discrete normal subgroup.
Then N is abelian.

The following example will be useful to study the Spin Cover, which will be discussed in Section 7.
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Example 3.7. Consider S3 as the set of unit quaternions:

β : S3 → U = {a+ bi + cj + dk ∈ H : a2 + b2 + c2 + d2 = 1}
(p, q, r, s) 7→ p+ qi + rj + sk

(25)

Now, since U closed under multiplication and taking inverses by [Schwartz, Lemma 1.2], U is a group. Hence,
through β, S3 can be given a group structure. Moreover, S3 has a natural topology defined by taking the
subspace topology of the Euclidean topology of R4. We can transfer this topology to U through β. Since the
multiplication on U is defined by multiplications and additions in R on each coordinate the multiplication
on U is continuous. A similar argument shows that division in U is contunuous, so taking inverses in U is
continuous. This means that S3 ∼= U is a topological group in this way. The subgroup

Q8 = {1,−1, i,−i, j,−j,k,−k} (26)

is not abelian, so by Corollary 3.6 Q8 is not a normal subgroup of S3 ∼= U .

3.1 (Path) Connected Component of the Identity Element is a Normal Sub-
group

It turns out that the connected and path connected components of the identity element of a topological
group are normal subgroups. We will prove this in the following steps.

Proposition 3.8. Let (G,T,m) be a topological group.

1. Let G0 be the path connected component of the identity element e ∈ G. Then G0 is a subgroup.

2. Let H0 be the connected component of e ∈ G. Then H0 is a subgroup.

Proof. (1) Consider

m|G0×G0
: G0 ×G0 → G (27)

G0 is path connected, so G0 × G0 is path connected by Lemma A.3 in the appendix. As m is continuous,
m(G0 × G0) is path connected. Furthermore m(e, e) = e ∈ G0, so m(G0 × G0) ⊆ G0 since G0 is a path
connected component. Also, the inversion i is continuous and i(e) = e, so by the same argument i(G0) ⊆ G0.
So G0 is a subgroup.
(2): same argument, replacing ’path connected’ by ’connected’, again using Lemma A.3.

Proposition 3.9. Let (G,T,m) be a topological group, let g ∈ G and let gm and mg be the left respectively
right multiplications by g, as in (16) and (17).

1. Let G0 be the path connected component of the identity element e ∈ G. Then gm en mg map G0 to the
path connected component of g homeomorphically.

2. Let H0 be the connected component of e ∈ G. Then gm and mg map H0 to the connected component
of g homeomorphically.

Proof. (1) By Lemma 3.1, mg and gm are homeomorphisms so map path connected components to path
connected components. Furthermore

mg(e) = eg = g = ge = gm(e)

so g ∈ mg(G0) = G0g and g ∈ gm(G0) = gG0.
(2): same argument.

Now we can conclude these subgroups are normal:

Corollary 3.10. The subgroups G0 en H0 as in Propositions 3.8 and 3.9 are normal.
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Proof. Distinct (path)connected components are disjoint, and for all g ∈ G we have g ∈ gG0 ∩ G0g and
g ∈ H0g ∩ gH0, so we have gG0 = G0g and gH0 = H0g for all g ∈ G. This is exactly to say that G0 and H0

are normal.

Remark 3.11. By Lemma 2.1, G0 and H0 are normal sub-topological groups of G.

Corollary 3.12. The connected component of the identity element of a topological group is a closed normal
subgroup.

Proof. Connected components are closed. By Corollary 3.10 the connected component of the identity element
is a normal subgroup.

4 The Morphisms

A morphism of topological groups is a continuous group homomorphism.

Definition. Let G,H be topological groups. A map f : G→ H is a topological group homomorphism if f
is a group homomorphism and f is continuous.

Definition. Let G,H be topological groups. A map f : G → H is a topological group isomorphism if f is
a topological group homomorphism and there exists a topological group homomorphism g : H → G such
that g ◦ f = idG and f ◦ g = idH . If G,H are topological groups such that there exists a topological group
isomorphism between them, then G,H are isomorphic.

Remark 4.1. A topological group isomorphism is thus a homeomorphism and a group isomorphism.

Remark 4.2. In order to show that a map f : G → H between topological groups is a topological group
isomorphism, it is not necessary to show both homeomorphism and group isomorphism, since one of the
two already gives bijectivity. Hence, if you have homeomorphism, then group homomorphism is enough.
Conversely, if you have group isomorphism, continuity and openness (or closedness) is enough.

Proposition 4.3. Let G,H,K be topological groups and f : G→ H,g : H → K topological group homomor-
phisms. Then g ◦ f : G→ K is a topological group homomorphism.

Proof. Since f and g are continuous, so is g◦f . Also, since f and g are group homomorphisms, so is g◦f .

So, as with continuous maps and homomorphisms, compositions of topological group homomorphisms
are topological group homomorphisms.

Lemma 4.4. Let G be an abelian topological group. Then the inversion map i : G → G is a topological
group isomorphism.

Proof. By Lemma 3.1 i is a homeomorphism. Moreover,

i(gh) = (gh)−1 = h−1g−1 = g−1h−1 = i(g)i(h) (28)

since G is abelian. Finally, i is a group isomorphism by Remark 4.2.

Proposition 4.5. Let G be a topological group. Then any conjugation map σh : G → G, g 7→ hgh−1 is a
topological group isomorphism.

Proof. A conjugation map σh is an inner automorphism of the group G, so in particular a group isomorphism.
Moreover, σh is the composition of hm and mh−1 :

g hm7−→ hg
mh−17−→ hgh−1 (29)

so a homeomorphism by Lemma 3.1.

Let’s look at kernels:

Definition. Let G,H be topological groups and f : G → H a topological group homomorphism. The
kernel of f , denoted ker(f), is the kernel of the group homomorphism f .

Remark 4.6. By Lemma 2.1, ker(f) and im(f) are sub-topological groups of G respectively H. Moreover,
ker(f) is a normal sub-topological group of G.

9



5 The Fundamental Group of a Topological Group

The notion of fundamental group of a topological space requires a choice of base point. In the case of a
topological group (G,T,m), there is a natural base point, namely the identity element e of the group (G,m).
This leads to the following definition.

Definition. Let (G,T,m) be a topological group. The fundamental group of (G,T,m) is π1((G,T ), e) where
e is the identity element of (G,m).

Notation. When T and m are clear, we usually say the fundamental group of G, denoted π1(G).

Notation. For a loop γ with base point e, we write [γ] for the class of γ in π1(G).

It is not immediately clear that the identity element e is an interesting choice for the base point for the
fundamental group. The following lemma will make this more clear.

Lemma 5.1. Let (G,T,m) be a topological group with identity element e. Let α, β, γ, δ : [0, 1]→ G be loops
with base point e, such that α is path homotopic to β and γ is path homotopic to δ. Then the pointwise
multiplications α · γ = m ◦ (α, γ) mapping s ∈ [0, 1] to α(s)γ(s) = m(α(s), γ(s)) and β · δ mapping s ∈ [0, 1]
to β(s)δ(s) are path homotopic.

Proof. First note that since m is continuous and also (α, β) and (γ, δ) are continuous by Lemma A.2,
α · γ = m ◦ (α, γ) and β · δ = m ◦ (β, δ) are actually paths (meaning they are continuous) with base
point e, so path homotopy makes sense here. Let A : [0, 1]2 → G be a path homotopy from α to β and
B : [0, 1]2 → G a path homotopy from γ to δ. Then the pointwise multiplication C : [0, 1]2 → G mapping
(s, t) to m(A(s, t), B(s, t)) = A(s, t)B(s, t) is a path homotopy from α · γ to β · δ, since

C(s, 0) = A(s, 0)B(s, 0) = α(s)γ(s) (30)

C(s, 1) = A(s, 1)B(s, 1) = β(s)δ(s) (31)

C(0, t) = A(0, t)B(0, t) = ee = e (32)

C(1, t) = A(1, t)B(1, t) = ee = e (33)

and C is continuous by the same argument as in the beginning of this proof, so C is a path homotopy from
α · γ to β · δ.

Alternative proof using fundamental groups. We need to show that if [α] = [β] and [γ] = [δ] then [α · γ] =
[β · δ]. Note

[α · γ] = [m ◦ (α, γ)] = m∗[(α, γ)] (34)

and by the same argument [β · δ] = m∗[(β, δ)]. Since [α] = [β] and [γ] = [δ] we get [(α, γ)] = [(β, δ)]. Also
m∗ : π1(G×G)→ π1(G) is well defined, so

[α · γ] = m∗[(α, γ)] = m∗[(β, δ)] = [β · δ] (35)

completing the proof.

Remark 5.2. In the first (direct) proof, the base point being e is very important, as (32) and (33) would
not necessarily hold for a different base point. However, e is not used in the second proof. This is because
this proof generalizes to the case m∗ : π1(G×G, (g, g))→ π1(G, g2) for any g ∈ G. But this only defines an
operation if g = e, hence the choice of e for the base point.

Let (G,T,m) be a topological group. Consider m∗ : π1(G×G)→ π1(G). By [Fulton, Exercise 12.9] we
have

π1(G×G) ∼= π1(G)× π1(G) (36)

canonically, where [(α, β)] corresponds to ([α], [β]). This gives

m∗ : π1(G)× π1(G)→ π1(G) (37)
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defined by m∗([α], [β]) = m∗[(α, β)] = [α · β]. On the other hand, denote by

� : π1(G)× π1(G)→ π1(G) (38)

the group operation on π1(G), defined by concatenation. These turn out to be the same.

Proposition 5.3. Let (G,T,m) be a topological group with inversion i : G→ G and identity element e.

1. Let � be the group operation of π1(G). Then m∗ = �.

2. Let ι : π1(G)→ π1(G) be the inversion map in π1(G). Then i∗ = ι.

Proof. 1. We need to show that if γ, δ are two loops with base point e, then there exists a path homotopy
from γ · δ (with the notation of Lemma 5.1) to the concatenation γ � δ.
Let E be the constant loop with image {e}. Then [E] is the identity element of π1(G), so [γ�E] = [γ]
and [E � δ] = [δ]. By Lemma 5.1 we get

[(γ � E) · (E � δ)] = [γ · δ] (39)

On the other hand,

(γ � E) · (E � δ)(s) =

{
γ(2s)e = γ(2s) s ≤ 1

2
eδ(2s− 1) = δ(2s− 1) s ≥ 1

2

(40)

= (γ � δ)(s) (41)

so [γ · δ] = [(γ � E) · (E � δ)] = [γ � δ] (= [γ]� [δ]), which proves the result.

2. Let γ be a loop with base point e. On the one hand, we have

ι[γ]� [γ] = [E] (42)

On the other hand

(i ◦ γ) · γ = m ◦ (i ◦ γ, γ) = E (43)

so ι[γ]� [γ] = [E] = m∗(i∗([γ]), [γ]) = i∗([γ]) · [γ]
(1)
= i∗([γ])� [γ] by part 1. So i∗ is the inversion map

in π1(G), and therefore equal to ι.

Remark 5.4. This is quite interesting: it relates the group operation on a topological group to the group
operation on its fundamental group. This has the following consequence:

5.1 The Fundamental Group is Abelian

The fundamental group of a topological group turns out to be abelian. This is a fundamental result, we will
discuss various proofs.

Theorem 5.5. Let (G,T,m) be a topological group with identity element e. Then its fundamental group
π1(G) is an abelian group.

5.1.1 Direct Proof

Let γ, δ be loops with base point e and let E be the constant loop with base point e. By (40) in the proof
of Proposition 5.3 we have (γ � E) · (E � δ) = γ � δ. Similarly,

(E � γ) · (δ � E)(s) =

{
eδ(2s) = δ(2s) s ≤ 1

2
γ(2s− 1)e = γ(2s− 1) s ≥ 1

2

(44)

= (δ � γ)(s) (45)

so (E � γ) · (δ � E) = δ � γ. Hence,

[γ � δ] = [γ]� [δ] = ([E]� [γ])� ([δ]� [E]) = [E � γ]� [δ � E] = [(E � γ) · (δ � E)] = [δ � γ] (46)

11



5.1.2 Proof using Hilton-Eckmann Argument

This proof uses the Hilton-Eckmann Argument [Eckmann/Hilton]:

Proposition 5.6 (Hilton-Eckmann Argument). Let X be a set equipped with two binary operations m1,m2,
such that

1. m1 and m2 both have identity elements e1 and e2 respectively.

2. For all a, b, c, d ∈ X we have

m2(m1(a, b),m1(c, d)) = m1(m2(a, c),m2(b, d)) (47)

Then m1 = m2 and they are commutative and associative.

Proof. First note that e1 = e2:

e1 = m1(e1, e1) = m1(m2(e2, e1),m2(e1, e2)) = m2(m1(e2, e1),m1(e1, e2)) = m2(e2, e2) = e2 (48)

So we can write e = e1 = e2. Let a, b ∈ X:

m1(a, b) = m1(m2(a, e),m2(e, b)) = m2(m1(a, e),m1(e, b)) = m2(a, b) (49)

so m1 = m2. Write m = m1 = m2. For commutativity,

m(a, b) = m(m(e, a),m(b, e)) = m(m(e, b),m(a, e)) = m(b, a) (50)

and for associativity, let c ∈ X,

m(m(a, b), c) = m(m(a, b),m(e, c)) = m(m(a, e),m(b, c)) = m(a,m(b, c)) (51)

which finishes the proof.

Now we need to show that the two Hilton-Eckmann conditions hold for m∗ and �.

1. Identities: � has an identity, since it is a group operation. Moreover, if E is the constant loop with
image e, then [E] is the identity for m∗, since for any loop γ with base point e we have (γ · E)(s) =
γ(s)E(s) = γ(s)e = γ(s) and (E · γ) = E(s)γ(s) = eγ(s) = γ(s).

2. Interchange: let [α], [β], [γ], [δ] ∈ π1(G). Then

((α · β)� (γ · δ))(s) =

{
α(2s)β(2s) s ≤ 1

2
γ(2s− 1)δ(2s− 1) s ≥ 1

2

= (α� γ) · (β � δ)(s) (52)

so not only ([α] · [β]) � ([γ] · [δ]) = ([α] � [γ]) · ([β] � [δ]), but this is even an equality on the level of
loops.

So the pair (m∗,�) satisfies the Hilton-Eckmann conditions, hence are the same, commutative and associa-
tive. In particular, � is commutative, which was to be shown.

Remark 5.7. This proof also proves the first part of Proposition 5.3.

5.1.3 Proof Sketch using Category Theory

This will be a sketch of the proof. In this section, denote by Grp the category of groups, Top the category
of topological spaces and Set the category of sets.
Let C be a category, and X an object of C. Then we obtain two functors hX , h

X : C → Set sending an
object T to Hom(X,T ) respectively Hom(T,X) in Set, and sending a morphism f : T → U to the map that
composes with f from the appropriate side.
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Definition. Let X be an object of a category C. Then X is a group object if one of the following conditions
is satisfied:

1. There exists a functor h̃X : C → Grp such that the diagram

Grp

h̃X ↗
y

C hX−→ Set

(53)

commutes, where Grp→ Set is the forgetful functor.

2. There exists a functor h̃X : C → Grp such that the diagram

Grp

h̃X ↗
y

C hX

−→ Set

(54)

commutes, where Grp→ Set is the forgetful functor.

Proposition 5.8. A group object in Top is precisely a topological group.

Remark 5.9. This is the reason we do not discuss paratopological groups.

Sketch proof. Let (G,T,m) be a topological group with identity element e and let X be a topological space.
Let f, g : X → G be continuous maps. By Lemma A.2, (f, g) : X → G × G is continuous, so m ◦ (f, g) is
continuous. This gives a map

mX : HomTop(X,G)×HomTop(X,G) → HomTop(X,G)
(f, g) 7→ m ◦ (f, g)

(55)

The verification that (HomTop(X,G),mX) is a group is left to the reader. It now easily follows that for any
topological space S and continuous map c : S → X, the implied map c∗ defined by composition from the
right by c is a group homomorphism.
For the other implication, we will use Yoneda’s Lemma:

Lemma 5.10 (Yoneda). Let C be a category, X an object of C and hX : C → Set the functor as in (54).
Then for any functor F : C → Set there exists a functorial bijection

HomFun(hX ,F)
∼−→ F(X) (56)

Proof: see [Etingof, p183-184].

Example 5.11. For F = hY for some object Y of C, we get

HomFun(hX , hY )
∼−→ hY (X) = HomC(X,Y ) (57)

Now let G be a group object in Top. Then for every topological space X there exists a group operation
mX : HomTop(X,G) × HomTop(X,G) → HomTop(X,G) and for every continuous map c : S → X the
induced map c∗ : HomTop(X,G)→ HomTop(S,G) sending φ to φ ◦ c is a group homomorphism.
We apply (57) to HomFun(hG×G, hG) to obtain a continuous map G ×G → G. For any topological spaces
X,Y and any continuous map f : Y → X the diagram

HomTop(X,G×G) = HomTop(X,G)×HomTop(X,G) = hG×G(X)
mX−−→ hG(X) = HomTop(X,G)

(f, f)∗

y y f∗
HomTop(Y,G×G) = HomTop(Y,G)×HomTop(Y,G) = hG×G(Y )

mY−−→ hG(Y ) = HomTop(Y,G)

(58)

commutes since f∗ : hG(X)→ hG(Y ) is a group homomorphism. So this indeed gives a functorial morphism
hG×G → hG, which by Yoneda’s Lemma can be identified with a continuous map m : G×G→ G.
Again, the map m is indeed a group operation, with continuous inversion i : G→ G.
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The next statement can be proved using the Hilton Eckmann Argument:

Proposition 5.12. The group objects in Grp are exactly the abelian groups.

Sketch proof. Let G be a group object in Grp. Then the multiplication on G and the induced multiplication
on G through Yoneda’s Lemma satisfy the Hilton-Eckmann conditions, so are the same and commutative.
On the other hand, if G is an abelian group, G is a group so any Hom(H,G) is a group.

Finally, the functor π1 sending a based topological group to its fundamental group sends group objects
to group objects, so topological groups to abelian groups.

6 Covering Groups

The notion of covering maps in topology can be transferred to the case of topological groups in a compatible
way, given some conditions. The main result that shows this uses the Existence and Uniqueness of Lifts
theorems, a powerful tool in algebraic topology.

6.1 The Existence and Uniqueness of Lifts Theorems

The Existence and Uniqueness of Lifts theorems [Fulton, Lemma 11.5 and Proposition 13.5] provide a useful
way to create continuous maps between topological spaces and determine them uniquely up to a choice in a
fiber.

Theorem 6.1 (Uniqueness of Lifts). Let X,Y, Z be topological spaces, with Z connected. Let p : Y → X be
a covering map and q : Z → X a continuous map.

Y

f ↗ g

y p
Z

q−→ X

(59)

Suppose f, g : Z → Y are continuous and q = p ◦ g = p ◦ f , and suppose there exists z ∈ Z such that
f(z) = g(z). Then f = g.

Proof. See [Fulton, Lemma 11.5].

Theorem 6.2 (Existence of Lifts). Let X,Y, Z be topological spaces, with Z connected and locally path
connected. Let x ∈ X, y ∈ Y , z ∈ Z and let p : Y → X be a covering map and q : Z → X a continuous map,
such that p(y) = q(z) = x. Suppose q∗(π1(Z, z)) ⊆ p∗(π1(Y, y)) in π1(X,x). Then there exists a continuous
map f : Z → Y such that f(z) = y and p ◦ f = q.

Proof. See [Fulton, Proposition 13.5].

6.2 The Theorem of the Covering Group

The Theorem of the Covering Group states that if we have a covering map from a ’nice’ topological space
into a topological group then we can transfer the topological group structure. The precise statement of the
theorem is as follows.

Theorem 6.3 (Covering Group). Let (G,T,m) be a topological group. Let p : (G′, T ′) → (G,T ) be a
covering map where (G′, T ′) is connected and locally path connected. Let e ∈ G be the identity element and
e′ ∈ G′ such that p(e′) = e. Then there exists a unique map m′ : G′ × G′ → G′ such that (G′, T ′,m′) is a
topological group with identity element e′ and p a group homomorphism.
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Proof. Consider the diagram

G′ ×G′ − → G′

(p, p)

y y p
G×G m−→ G

(60)

where (p, p) is the map that sends (x, y) to (p(x), p(y)). This map is continuous by Lemma A.2 in the
appendix. So the map m ◦ (p, p) is now a continuous map from a connected and locally path connected
(Lemma A.3) space into G. On the level of fundamental groups this leads to the following diagram:

π1(G′, e′)y p∗
π1(G′ ×G′, (e′, e′)) (m◦(p,p))∗−−−−−−−→ π1(G, e)

(61)

Now the Existence of Lifts Theorem states that if

(m ◦ (p, p))∗(π1(G′ ×G′, (e′, e′))) ⊆ p∗(π1(G′, e′)) (62)

then there exists a continuous map m′ : G′ × G′ → G′ such that p ◦ m′ = m ◦ (p, p). The Uniqueness of
Lifts Theorem states that in this case there exists a unique continuous map m′ : G′ × G′ → G′ such that
p ◦m′ = m ◦ (p, p) and m′(e′, e′) = e′. So we need to show (62), we do this in the following steps:

1. We have (m ◦ (p, p))∗ = m∗ ◦ (p, p)∗.

2. By (36), π1(G′ ×G′, (e′, e′)) ∼= π1(G′, e′)× π1(G′, e′).

3. This gives

(m ◦ (p, p))∗(π1(G′ ×G′, (e′, e′))) = m∗((p, p)∗(π1(G′ ×G′, (e′, e′)))) (63)

= m∗(p∗(π1(G′, e′))× p∗(π1(G′, e′))) (64)

4. Since p∗ is a group homomorphism, p∗(π1(G′, e′)) is a subgroup of π1(G, e).

5. Denote by � the group operation of π1(G, e). By Proposition 5.3, we have m∗ = �. Since � is a group
operation, the statement follows.

By Existence and Uniqueness of Lifts, it follows that there is a unique continuous map m′ : G′ × G′ → G′

such that m ◦ (p, p) = p ◦m′ and m′(e′, e′) = e′.
From now on, denote m′(a, b) = ab. The map p has a ’homomorphism property’ (note that we can’t say
that p is a homomorphism yet, because we did not yet show that (G′,m′) is a group):

p(a)p(b) = m(p(a), p(b)) = p(m′(a, b)) = p(ab) (65)

for all a, b ∈ G′.
We now need to show that (G′,m′) is a group, in other words m′ is associative, e′ is the identity element
with respect to m′ and there exist inverses with respect to m′.

• Associative: we need to show that the maps

G′ ×G′ ×G′ → G′, (a, b, c) 7→ a(bc) (66)

G′ ×G′ ×G′ → G′, (a, b, c) 7→ (ab)c (67)

are the same. Since (e′, e′, e′) is mapped to e′ by both maps, the statement again follows from the
Uniqueness of Lifts Theorem, applied to the diagram

G′ ×G′ ×G′

(a,b,c)7→a(bc)

(a,b,c)7→(ab)c
− → G′

(p, p, p)

y y p
G×G×G (g,h,k)7→ghk−−−−−−−−→ G

(68)
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because indeed p(a)p(b)p(c) = p(a(bc)) = p((ab)c) by homomorphism property of p. Here, G′×G′×G′
is connected and locally path connected by Lemma A.3.

• e′ is the identity element: follows from Uniqueness of Lifts applied to the diagram

G′

idG′ ,m
′
e′ , e′m

′ ↗
y p

G′
p−→ G

(69)

where we compare the identity on G′ with the maps m′e′ = a 7→ m′(a, e′) and e′m
′ = a 7→ m′(e′, a).

These are continuous since (for example)

a
ie′7−→ (a, e′)

m′7−→ ae′ (70)

and ie′ is continuous by the proof of Lemma 3.1. By the same argument, also a 7→ m′(e′, a) is
continuous.
All three maps map e′ to e′, so by Uniqueness of Lifts they are the same, so e′ is indeed the identity
element of (G′,m′).

• Inverses: the inversion map i : G → G mapping g ∈ G to its inverse g−1 is continuous, so we can
consider the following diagram of continuous maps:

G′ − i′−→ G′

p

y y p
G

i−→ G

(71)

By Proposition 5.3, we have

i∗(p∗(π1(G′, e′))) ⊆ p∗(π1(G′, e′)) (72)

so by Existence and Uniqueness of Lifts there exists a unique continuous map i′ : G′ → G′ making this
diagram commutative and sending e′ to e′.
To show that this map i′ is indeed the inversion map with respect to m′, we must show that the maps
a 7→ m′(a, i′(a)) and a 7→ m′(i′(a), a) equal the ’null-map’ a 7→ e′. To show that these are continuous,
let d : G′ → G′×G′ be the ’diagonal’ map that sends g to (g, g). Then d is continuous by Lemma A.2,
first part with f = g = idG′ . Now we have

a
d7−→ (a, a)

(id,i′)7−→ (a, i′(a))
m′7−→ ai′(a) (73)

so a 7→ m′(a, i′(a)) is continuous, and by the same argument so is a 7→ m′(i′(a), a). We can now apply
Uniqueness of Lifts to

G′

a 7→ e′

a 7→ m′(i′(a), a)
a 7→ m′(a, i′(a))
−−−−−−−−−−−−−−→ G′

p

y y p
G

g 7→e−−−→ G

(74)

Noting that m′(e′, i′(e′)) = m′(e′, e′) = e′ = m′(i′(e′), e′)) gives the result.

So m′ is a group operation, making (G′,m′) into a group. In particular, the ’homomorphism property’ (65)
of p now means p is a group homomorphism, which finishes the proof.
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6.3 Properties of Covering Groups

The Theorem of the Covering Group gives rise to a notion of ’covering group’.

Definition. Let (G,T,m) be a topological group. A covering group of (G,T,m) is a topological group

(G′, T ′,m′) together with a covering map p : G′ → G that is a group homomorphism as well.

Covering groups have discrete kernels:

Lemma 6.4. Let p : G′ → G be a covering group. Then ker(p) is a discrete normal subgroup of G′.

Proof. Since p is a group homomorphism, its kernel is a normal subgroup. Also, by definition of covering
space, the fibers of a covering space are discrete, so in particular ker(p) is discrete.

Is the converse also true? That is, if we have a topological group homomorphism p : G′ → G, surjective
and ker(p) is discrete, is p then a covering group? The answer is no:

Example 6.5. Let V4 = {e, a, b, c} be the Kleinian group with identity element e and C = {1, σ} the order
2 group, where σ has order 2. Equip V4 with the discrete topology and C with the chaotic topology. Define

f : V4 → C
e, b 7→ 1
a, c 7→ σ

(75)

f is exactly the homomorphism with kernel 〈b〉 and f is continuous as a map to a chaotic topological space.
So, f is a topological group homomorphism. Since V4 is discrete, ker(f) = 〈b〉 is discrete. f is also surjective.
Now we will show that f is not a covering map. Since C is chaotic, there is only one open neighborhood of
any point in C, namely C itself. Now

f−1(C) = 〈a〉 ∪ {b, c} = 〈b〉 ∪ {a, c} = 〈c〉 ∪ {a, b} (76)

f |〈b〉 and f |{a,c} are not injective so cannot be homeomorphisms. On the other hand, the inverse of the
restriction of f to any of the four other size 2 sets is not constant, so not continuous. Hence, f is not a
covering map.

If G′ is connected, then ker(p) is central:

Corollary 6.6. Let p : G′ → G be a covering group with G′ connected. Then ker(p) is central.

Proof. Follows directly from Proposition 3.5 and Lemma 6.4.

Central subgroups are abelian:

Corollary 6.7. Let p : G′ → G be a covering group with G′ connected. Then ker(p) is abelian.

Moreover, this is yet another proof for the fact that the fundamental group of G is abelian, where this
time G is assumed to be nice, which means that there exists a universal cover u : G̃ → G. This already
follows from Theorem 5.5, but the proofs given below offer some extra insight.

Corollary 6.8. Let G be a nice topological group. Then π1(G) is abelian.

Proof. Let u : G̃ → G be a universal cover. By the Theorem of the Covering Group, G̃ can be naturally
equipped with a topological group structure such that u is a group homomorphism. Let d be the identity
element of G̃ in this setting. By [Bruin, Theorem 14.1], the monodromy action of π1(G) on ker(u) is free
and transitive. Hence by Lemma B.1 the map

a : π1(G) → ker(u)
[γ] 7→ d ∗ [γ]

(77)

is a bijection, where ∗ is the monodromy action. It is now enough to show that a is a group homomorphism,
because then π1(G) is isomorphic to the abelian group ker(u). So we need to show that

d ∗ (γ � δ) = (d ∗ γ)(d ∗ δ) (78)
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for any two loops γ, δ in G with base point the identity e of G. By Lemma 5.3, γ � δ is path homotopic to
the pointwise multiplication γ · δ, so

d ∗ (γ � δ) = d ∗ (γ · δ) (79)

Let γ̃d be the path lift of γ with begin point d and let δ̃d be the path lift of δ with begin point d. Since u is
a group homomorphism, we have for all t ∈ [0, 1]

u ◦ (γ̃d · δ̃d)(t) = u(γ̃d(t)δ̃d(t)) = u(γ̃d(t))u(δ̃d(t)) (80)

so

u ◦ (γ̃d · δ̃d) = (u ◦ γ̃d) · (u ◦ δ̃d) = γ · δ (81)

so γ̃d · δ̃d is the path lift of γ · δ with begin point d. Therefore,

(d ∗ γ)(d ∗ δ) = (γ̃d)(1)(δ̃d)(1) = (γ̃d · δ̃d)(1) = d ∗ (γ · δ) (82)

Alternative proof. As in the previous proof, let u : G̃ → G be the universal covering group with identity
element d. Let

Aut(u) = {homeomorphisms f : G̃→ G̃ : u ◦ f = u} (83)

be the automorphism group of u. By [Fulton, Corollary 13.15] there is a canonical group isomorphism

ρ : π1(G)
∼−→ Aut(u) (84)

so it is enough to show that Aut(u) is isomorphic to ker(u). Define

r : ker(u) → Aut(u)
x 7→ xm

(85)

where xm is the left multiplication as in (16). This is indeed a u-homeomorphism: by Lemma 3.1 xm is a
homeomorphism and

u(xy) = u(x)u(y) = u(y) (86)

since x ∈ ker(u). Now we need to show that r is a group isomorphism.

• Homomorphism: let x, y ∈ ker(u), then

r(x)r(y) = xm ◦ ym = (z
ym7−→ yz xm7−→ xyz) = xym = r(xy) (87)

so r is a group homomorphism.

• Injective: Suppose xm = ym. Then for all z ∈ G̃ we have xz = xm(z) = ym(z) = yz, so x = y.

• Surjective: let φ ∈ Aut(u). Define x := φ(d). Now also x = xd = xm(d), so by Uniqueness of Lifts
φ = xm.

Therefore r is a group isomorphism, giving that ρ−1 ◦r is a group isomorphism ker(u)→ π1(G). Since ker(u)
is abelian, so is π1(G).

7 Matrix Groups

Important examples of topological groups are matrix groups, such as GLn(R), SOn(R), On(R), SLn(R),
Un(C), SUn(C) and GLn(C). In this section, we will consider the real matrix groups. Let’s look at some
properties of these matrix groups. First of all, since any matrix group is considered as being equipped with
the subspace topology of the Euclidean topology as explained below, any matrix group is Hausdorff.
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7.1 The Real Square Matrices with Nonzero Determinant

We first consider

GLn(R) = {A ∈ Rn×n : det(A) ∈ R×} (88)

We define a topology on GLn(R) as follows. We take the Euclidean topology on Rn2

, take a ’coordinate

bijection’ φ : Rn2 → Rn×n and transfer the topology accordingly, and finally we take the subspace topology
on GLn(R). It is easy to see that this definition does not depend on the choice of the coordinate bijection φ,

since the Euclidean topology on Rn2

comes from the Euclidean distance on Rn2

and this distance is invariant
under the action of Sn2 on the set of standard basis vectors of Rn2

. We claim that GLn(R) together with
this topology and the operation of matrix multiplication yields a topological group.

Theorem 7.1. GLn(R) with the above defined topology and matrix multiplication is a topological group.

Proof. The matrix multiplication consists of taking standard scalar products of rows and columns of the two
matrices. Since multiplication and addition in R are continuous, so is matrix multiplication. The inversion
can be computed using the cofactor matrix:

A−1 =
cof(A)

det(A)
(89)

By definition of cofactor, any entry (i, j) in cof(A) is determined by taking the determinant of A with some
entries replaced by zeros and the (i, j)-th entry by 1, so by Lemma 7.2 taking cofactor is continuous, so
taking inverse is continuous, again by Lemma 7.2, since then also 1/ det is continuous since it is nonzero on
GLn(R).

Lemma 7.2. The determinant det : GLn(R)→ R× is a continuous map.

Proof. By definition of determinant, if A = (ai,j)
n
i,j=1:

det(A) =
∑
σ∈Sn

sgn(σ)a1,σ(1)a2,σ(2)...an,σ(n) (90)

and this is continuous.

This immediately yields

Proposition 7.3. The determinant det : GLn(R)→ R× is a topological group homomorphism.

Proof. By Lemma 7.2 det is continuous. Moreover, det is multiplicative hence a group homomorphism.

Since det is continuous, surjective and R× is neither compact nor path connected, we obtain:

Proposition 7.4. GLn(R) is neither compact nor path connected.

7.2 The Real Square Matrices with Positive Determinant

Next, let’s look at the sub-topological group of GLn(R) of real square matrices with positive determinant:

GLn(R)+ := {A ∈ Rn×n : det(A) ∈ R>0} (91)

This is indeed a sub-topological group of GLn(R): for A,B ∈ Rn×n with det(A),det(B) > 0 we have
det(AB) = det(A) det(B) > 0, and det(A−1) = det(A)−1 > 0, so GLn(R)+ is closed under multiplication
and taking inverse, so by Lemma 2.1 GLn(R)+ is a sub-topological group of GLn(R). Again, since R>0 is
not compact, we obtain that GLn(R)+ is not compact. However, since R>0 is path connected, GLn(R)+

might be path connected, and this is indeed the case.

Theorem 7.5. GLn(R)+ is path connected.
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Proof. Let A ∈ GLn(R)+. Since A is invertible, the reduced row echelon form of A is the identity matrix I.
Hence, by Gauss elimination there exist elementary matrices E1, E2, ..., Ek of the form Li(λ) = I+(λ−1)Eii,
λ ∈ R×, or Mij(λ) = I + λEij , λ ∈ R×, i 6= j, where Eij is the matrix with zeros except a 1 on the (i, j)-th
entry, such that

I = E1E2...EkA (92)

For any h ∈ {1, ..., k} and t ∈ [0, 1], define

Eh(t) :=

{
I + t(λ− 1)Eii Eh = Li(λ)
I + tλEij Eh = Mij(λ)

(93)

Both t 7→ I + t(λ − 1)Eii and t 7→ I + tλEij are continuous, giving us a path γh : [0, 1] → GLn(R). Now,
by Lemma A.2 the map γh,j : [0, 1] → GLn(R) sending t to Eh(t)Ej(t) is continuous. Continuing this way,
we get that the map γ : [0, 1] → GLn(R) sending t to E1(t)E2(t)...Ek(t)A is continuous, so a path with
γ(0) = A and γ(1) = I.
We need to show that the image of γ lies in GLn(R)+, that is to say, the determinant of E1(t)E2(t)...Ek(t)A
is positive for all t ∈ [0, 1].
First, note that det(Li(λ)) = λ since the (i, i)-th coordinate is λ and the other diagonal entries are 1 and
the rest is 0. Also det(Mij(λ)) = 1 since it is a lower or upper triangular matrix with diagonal entries all
1. Now suppose one of the Eh is Li(λ) with λ < 0. Since the product of the determinants of the Ei equals

1
detA > 0, there is another Lj(µ) with µ < 0. Now we can perform elementary row operations only of the
form Mij(α) on the two corresponding rows(

A
B

)
 

(
A+B
B

)
 

(
A+B
−2A−B

)
 

(
−A

−2A−B

)
 

(
−A
−B

)
(94)

to change the sign of both of them. Therefore, we can assume that all Eh of the form Li(λ) have λ > 0.
Now we can check the determinant:

det(Eh(t)) =

{
det(I + t(λ− 1)Eii) Eh = Li(λ)

det(I + tλEij) Eh = Mij(λ)
(95)

=

{
det(I + (1− t+ tλ− 1)Eii) Eh = Li(λ)

1 Eh = Mij(λ)
(96)

=

{
t(λ− 1) + 1 Eh = Li(λ)

1 Eh = Mij(λ)
(97)

this is always positive if λ > 0. Combining everything, we obtain a path from A to I in GLn(R)+. So if
B ∈ GLn(R)+ is another matrix, we have a path from A to I and a path from B to I, so a path from I to
B, and concatenating them yields a path from A to B.

Remark 7.6. GLn(R)+ is path connected and contains the identity matrix. We claim that GLn(R)+ is the
path connected component of I ∈ GLn(R). To prove the claim, let A ∈ GLn(R)+, B ∈ GLn(R)\GLn(R)+.
Then det(A) > 0 and det(B) < 0. Let γ be a path from A to B in GLn(R). Since γ is continuous, the
composite map

[0, 1]
γ→ GLn(R)

det→ R× (98)

is continuous. We have (det ◦γ)(0) > 0 and (det ◦γ)(1) < 0. By the Intermediate Value Theorem, there
exists t ∈ [0, 1] such that (det ◦γ)(t) = 0, which contradicts the fact that γ is a path in GLn(R). Hence,
γ could not have been continuous, so there does not exist a path from A to B, so GLn(R)+ is the path
connected component of I ∈ GLn(R).

Corollary 7.7. The fundamental groups of GLn(R) and GLn(R)+ coincide.

Proof. Any loop with base point I in GLn(R) does not leave GLn(R)+ by Remark 7.6, so is a loop with
base point I in GLn(R)+.
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7.3 The Kernel of the Determinant

Consider

SLn(R) := ker(det) (99)

This definition makes SLn(R) into a normal sub-topological group of GLn(R). Since SLn(R) is not discrete,
we obtain that det is not a covering map. Now, since {1} is compact and path connected, SLn(R) might be
compact or path connected. In fact, SLn(R) is path connected, but not compact for n ≥ 2.

Proposition 7.8. SLn(R) is path connected.

Proof. Let f : GLn(R)+ → SLn(R) be the map that, for any A ∈ GLn(R)+, replaces the first column A1 of
A by A1

det(A) and fixes the other columns of A. This map is well defined by linearity of det in the columns, so

continuous by Lemma 7.2. f is also surjective, since any A ∈ SLn(R) is sent to itself by f . Now, GLn(R)+

is path connected, so im(f) = SLn(R) is path connected.

Proposition 7.9. SL1(R) is compact, and SLn(R) is not compact for n ≥ 2.

Proof. SL1(R) = {1} is finite, so compact. For n ≥ 2, we do induction on n. For n = 2

det

(
a b
c d

)
= ad− bc = 1 (100)

so ad = bc+ 1 and this does not bound a, b, c, d, so SL2(R) is not bounded as a Euclidean metric subspace
of GL2(R), so not compact. For the induction step, we consider the inclusion

j : SLn(R) → SLn+1(R)

A 7→
(
A 0
0 1

)
(101)

where the zeros are the zero column and zero row of size n. Now for any A ∈ SLn(R), the formula for
the determinant of j(A) is the same as the formula of the determinant of A, so im(j) ⊆ SLn+1(R) is not
bounded by the induction hypothesis, so SLn+1(R) is not bounded, so not compact by Heine-Borel.

7.4 The Orthogonal Matrices and the Gram-Schmidt Process

Let

On(R) := {A ∈ GLn(R) : A>A = I} (102)

be the set of orthogonal n by n matrices. As for A,B ∈ On(R) we have

(AB)>AB = B>A>AB = B>IB = B>B = I (103)

and

(A−1)>A−1 = (A>)−1A−1 = (AA>)−1 = ((A>A)>)−1 = (I>)−1 = I (104)

we see that On(R) is a subgroup of GLn(R) and therefore a sub-topological group of GLn(R). Since for any
A ∈ On(R) its columns all lie on Sn−1 and On(R) is closed in GLn(R), we obtain that On(R) is compact.

Next, we will show that the well-known Gram-Schmidt algorithm [Stoll, Theorem 9.7] defines a defor-
mation retraction GS : GLn(R) → On(R). This is interesting, because if we have a deformation retraction
between topological spaces X and Y , then their fundamental groups are isomorphic: let r : X → Y be the
deformation retraction, and i : Y → X the inclusion map. Since i ◦ r is homotopic to idX , we have that
i∗ : π1(Y, y)→ π1(X, i(y)) and r∗ : π1(X, i(y))→ π1(Y, y), for some y ∈ Y , are each others inverses.

Theorem 7.10. The Gram-Schmidt algorithm determines a deformation retraction GS : GLn(R)→ On(R).
Here, we view a basis of Rn as an element of GLn(R) by placing the basis vectors as column vectors next to
each other in the matrix.
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Proof. For any A ∈ GLn(R) denote by Ai its ith column, for all i ∈ {1, ..., n}. For all i ∈ {1, ..., n}, let
fi : GLn(R)→ GLn(R) be the map that fixes Aj for j 6= i and replaces Ai by

Ai 7→ Ai −
i−1∑
j=1

〈Aj , Ai〉
〈Aj , Aj〉

Aj (105)

All the fi are well-defined and hence continuous: the fi act as performing one or more column operations of
the form Mij(λ), which as we have seen in the proof of Theorem 7.5, do not change the determinant. Let
g : GLn(R) → GLn(R) be the map that replaces Ai by 1√

〈Ai,Ai〉
Ai for all i ∈ {1, ..., n}. Since 〈Ai, Ai〉 6= 0

for all A ∈ GLn(R) and all i ∈ {1, ..., n} and 〈Ai, Ai〉 depends continuously on A, g is well-defined and
continuous. The Gram-Schmidt Theorem states that the image of

GS = g ◦ fn ◦ fn−1 ◦ ... ◦ f2 ◦ f1 (106)

which is continuous as a composition of continuous maps, is contained in On(R). And indeed, GS|On(R) =
idOn(R) so GS ◦ i = idOn(R) where i : On(R) → GLn(R) is the inclusion map. So we need to show that
i ◦GS : GLn(R)→ GLn(R) is homotopic to idGLn(R). For any i ∈ {1, ..., n}, define

Hi : [0, 1]×GLn(R) → GLn(R)

(t, (A1, ..., An)) 7→ (A1, ..., Ai−1, Ai − t
∑i−1
j=1

〈Aj ,Ai〉
〈Aj ,Aj〉Aj , Ai+1, ..., An)

(107)

Hi is continuous and well-defined by the same argument the fi are well-defined, so Hi is a homotopy from
idGLn(R) to fi. Moreover,

Hg : [0, 1]×GLn(R) → GLn(R)
(t, (A1, ..., An)) 7→ ( 1

t
√
〈Ai,Ai〉+1−t

Ai)
n
i=1

(108)

is a homotopy from idGLn(R) to g. Now we can define a homotopy from idGLn(R) to GS as follows: denote
fi(t) := Hi(t,−) and g(t) := Hg(t,−). Then the map

H : [0, 1]×GLn(R) → GLn(R)
(t, A) 7→ (g(t) ◦ fn(t) ◦ ... ◦ f2(t) ◦ f1(t))(A)

(109)

is a homotopy from idGLn(R) to GS.

Let

SOn(R) := {A ∈ On(R) : det(A) = 1} (110)

be the orientation preserving orthogonal matrices (’the special orthogonal matrices’). This is a sub-topological
group of GLn(R): by (103) and (104) and the fact that det is multiplicative, SOn(R) is a subgroup of GLn(R).

Corollary 7.11. The restricted Gram-Schmidt algorithm GS|GLn(R)+ : GLn(R)+ → SOn(R) is well-defined
and a deformation retraction.

Proof. It is enough to show well-definedness: deformation retraction follows from the same construction as
in Theorem 7.10. Again, by the proof of Theorem 7.5 the fi which act as column operations of the form
Mij(λ), do not change the determinant. Therefore, for any A ∈ GLn(R)+, we have

det((fn ◦ fn−1 ◦ ... ◦ f1)(A)) = det(A) (111)

so in particular (fn ◦ fn−1 ◦ ... ◦ f1)(A) ∈ GLn(R)+. Moreover, g multiplies every column Ai of A by
1√
〈Ai,Ai〉

and since det is linear in the columns, the determinant of g(A) is the determinant of A multiplied

by n positive numbers, so remains positive. By the Gram-Schmidt Theorem, GS(A) ∈ On(R). Hence,
GS(A) ∈ SOn(R).

Corollary 7.12. The fundamental groups of GLn(R), On(R) and SOn(R) coincide.

Proof. This was discussed in the beginning of this section.
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7.5 Example: the Spin Cover

As an application of the material in this section we will consider the Spin Cover, as it allows us to calculate
the fundamental groups of GL3(R), GL3(R)+, O3(R) and SO3(R).

As in Example 3.7, consider S3 as the set of unit quaternions U . As in [Schwartz, Lemma 2.1], let P be
the set of pure quaternions, i.e. quaternions with real component 0, and identify P with R3 via the canonical
bijection

θ : P → R3

bi + cj + dk 7→ (b, c, d)
(112)

By [Schwartz, Lemma 2.1], for any q ∈ S3 the map

Tq : P → P
p 7→ qpq−1

(113)

is well-defined. If we consider SO3(R) as the orientation preserving isometries of P which fix the origin
through θ, then by [Schwartz, Lemma 3.1] Tq ∈ SO3(R). So the map

Ψ : U → SO3(R)
q 7→ Tq

(114)

is well-defined. Moreover, by [Schwartz, Lemmas 3.2, 3.3, 3.4], Ψ is a surjective group homomorphism with
kernel {−1, 1}.

Now we will show that Ψ is a covering map.

Lemma 7.13. The map Ψ defined above is a covering map.

Proof. Let q = a+ bi + cj + dk ∈ U .

• Continuous: the map Tq sends i ∈ P to

Tq(i) = (a+ bi + cj + dk)i(a− bi− cj− dk) = (a+ bi + cj + dk)(ai + b− ck + dj) (115)

= (a2 + b2 − c2 − d2)i + (ad+ bc+ bc+ ad)j + (−ac+ bd− ac+ bd)k (116)

Similarly,

Tq(j) = ... = (−ad+ bc+ bc− ad)i + (a2 − b2 + c2 − d2)j + (ab+ ab+ cd+ cd)k (117)

and

Tq(k) = ... = (ac+ bd+ ac+ bd)i + (−ab− ab+ cd+ cd)j + (a2 − b2 − c2 + d2)k (118)

now since i, j,k generate P and Tq is linear, these images determine Tq, giving

Tq(ti + uj + vk) = θ−1

a2 + b2 − c2 − d2 2(bc− ad) 2(ac+ bd)
2(ad+ bc) a2 − b2 + c2 − d2 2(cd− ab)
2(bd− ac) 2(ab+ cd) a2 − b2 − c2 + d2

tu
v

 (119)

This is a combination of addition and multiplication on each coordinate of the matrix and therefore
depends continuously on a, b, c, d.

• Covering map: First, Ψ is surjective. Next, {±1} acts evenly on S3: this is intuitively clear, since for
any q ∈ S3 we can pick for example the open neighborhood

Wq = {r ∈ S3 : |q − r| < 0.1} (120)

Now since |q − (−q)| = |q + q| = |2q| = 2 > 2 · 0.1 = 0.2, the neighborhood (−1)Wq of −q has empty
intersection with Wq, so {±1} acts evenly on S3. By the alternative proof of Corollary 6.8, we have
{±1} = ker(Ψ) ∼= Aut(Ψ). Now by [Fulton, Lemma 11.17] this means that Ψ is a covering map.

Now since S3 is simply connected, Ψ is a universal covering group. By [Fulton, Corollary 13.15] and
Corollary 6.8, we have π1(SO3(R)) ∼= ker(Ψ) = {±1}. Hence by Corollaries 7.7 and 7.12, we have

π1(GL3(R)) ∼= π1(GL3(R)+) ∼= π1(O3(R)) ∼= π1(SO3(R)) ∼= Z/2Z (121)
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A Some Basic Lemmas in Topology

Lemma A.1. Let X,Y be topological spaces, and B a base of Y . Then a map f : X → Y is continuous if
and only if for every U ∈ B, f−1(U) is open in X.

Proof. The ’only if’ part is clear, since B is a subset of the topology TY of Y . For the ’if’ part, let U ⊆ Y
be open, and write

U =
⋃
i∈I

Ui (122)

with Ui ∈ B for all i ∈ I. Then

f−1(U) = f−1

(⋃
i∈I

Ui

)
(123)

= {x ∈ X : f(x) ∈
⋃
i∈I

Ui} (124)

=
⋃
i∈I
{x ∈ X : f(x) ∈ Ui} (125)

=
⋃
i∈I

f−1(Ui) (126)

is a union of open sets, so open. (See also [Bruin, Exercise 7.4].)

Lemma A.2. Let W,X, Y, Z be topological spaces.

1. Let f : X → Y, g : X → Z be continuous. Then the map

(f, g) : X −→ Y × Z
x 7−→ (f(x), g(x))

(127)

is continuous.

2. Let f : W → Y, g : X → Z be continuous. Then the map

(f, g) : W ×X −→ Y × Z
(w, x) 7−→ (f(w), g(x))

(128)

is continuous.

Proof. (1): let U ⊆ Y, V ⊆ Z be open. Then

(f, g)−1(U × V ) = {x ∈ X : (f(x), g(x)) ∈ U × V } = {x ∈ X : f(x) ∈ U and g(x) ∈ V } = f−1(U) ∩ g−1(V )
(129)

is an intersection of two open sets in X so open.
(2): let U ⊆ Y, V ⊆ Z be open. Then

(f, g)−1(U × V ) = {(w, x) ∈W ×X : f(w) ∈ U and g(x) ∈ V } = f−1(U)× g−1(V ) (130)

is open in W ×X.

Lemma A.3. 1. Let X,Y be path connected topological spaces. Then X × Y is path connected.

2. Let X,Y be connected topological spaces. Then X × Y is connected.

3. Let X,Y be locally path connected spaces. Then X × Y is locally path connected.

Proof.
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1. Let (a, b), (c, d) be two points in X × Y . Since X is path connected, there exists a path γ : [0, 1]→ X
from a to c and since Y is path connected there exists a path δ : [0, 1]→ Y from b to d. Then

(γ, δ) : [0, 1] → X × Y
s 7→ (γ(s), δ(s))

(131)

is a path from (a, b) to (c, d) by Lemma A.2.

2. Let g : X × Y → {0, 1} be a continuous map. Let y ∈ Y and fy : X → X × Y be the map sending
x ∈ X to (x, y). Then fy is continuous since for all U ⊆ X,V ⊆ Y open f−1y (U × V ) equals either U if
y ∈ V or ∅ if y /∈ V . Since X is connected, the composition g ◦ fy : X → {0, 1} is a constant map for
all y ∈ Y . So for all y ∈ Y , X × {y} ⊆ g−1{0} or g−1{1}.
We could have played this game the other way around using the map yf sending y ∈ Y to (x, y) which
is continuous by the same argument. This leads to {x} × Y ⊆ g−1{0} or g−1{1}.
Suppose there exist y, z ∈ Y such that g(x, y) = 0 and g(x, z) = 1 for all x ∈ X. Contradiction, since
we then have that g is not constant on {x} × Y for any x ∈ X. Since

⋃
y∈Y X × {y} = X × Y , we

conclude that g must be constant, so X × Y is connected.

3. Let (x, y) ∈ X × Y and
⋃
i∈I Ui × Vi be an open neighborhood of (x, y), where all the Ui are open in

X and Vi are open in Y . Then there exists j ∈ I such that x ∈ Uj and y ∈ Vj . Since X is locally path
connected, there exist an open U ⊆ Uj such that x ∈ U and U is path connected. Since Y is locally
path connected, there exists an open V ⊆ Vj such that y ∈ V and V is path connected. By definition
of product topology U × V is open in X × Y and by part (1), U × V is path connected. Furthermore
(x, y) ∈ U × V ⊆

⋃
i∈I Ui × Vi, so X × Y is locally path connected.

B Some Basic Lemmas in Group Theory

Lemma B.1. 1. Let φ : G×X → X be a left-G-action on a set X that is free and transitive. Then for
all x ∈ X the map

φx : G → X
g 7→ gx

(132)

is a bijection.

2. Let φ : X ×G→ X be a right-G-action on a set X that is free and transitive. Then for all x ∈ X the
map

φx : G → X
g 7→ xg

(133)

is a bijection.

Proof. Let e be the identity element of G.

1. • Injective: suppose gx = hx for some g, h ∈ G. Then

(g−1h)x = g−1(hx) = g−1(gx) = (g−1g)x = ex = x (134)

Since φ is free, we have g−1h = e, so g = h.

• Surjective: by transitivity of φ, for any y ∈ X there exists g ∈ G such that gx = y. This is exactly
to say that φx is surjective.

2. Exactly the same proof, except that we have to consider x(gh−1) = (xg)h−1 = xh(h−1) = xe = x.
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