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Abstract

Order and Chaos is a 2-player board game on a 6 × 6 board where we have two players: Order
and Chaos. Order starts and has to make a row of 5, by playing 2 symbols. Chaos has to
prevent that, by playing the same 2 symbols. This thesis consists of two main parts. In the
first part we determine a winning strategy for Order, by setting up a lemma, using Monte-Carlo
Treesearch and using brute force Depth-First search. In the second part we examine variants of
the game, where we slightly change the rules. In the first variant Chaos starts instead of Order.
This version has turned out to be winning for Order. In the second variant, Order only wins by
creating a row of 5, while a row of 6 is not winning anymore for Order. We can prove that this
version is winning for Chaos. The last version we examine, is the variant where Chaos starts and
Order does not win with a row of 6. This game is winning for Order.
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1 Introduction

Order and Chaos is a board game for two players. It is a variant of tic-tac-toe and it was invented
by Stephen Sniderman. He introduced this game in Games magazine in 1981 [1]. Order and
Chaos is played on a 6× 6 board with 6 fields in length and 6 fields in height. Both players have
a different goal. Order’s goal is to make a row of 5 consecutive identical symbols, and Chaos’
goal is to have a full board without a consecutive row of 5 symbols. Every move, both Order
and Chaos are able to fill an empty field with either an X or an O. The first player to do a move
is Order. This is the classic version of the game. However, it is easy to make some adjustments
to this game, so there are variants with slight rule changes.

The board we will be playing on, looks as in (1). In every empty field, the players are permitted
to place either X or O.

. (1)

Until now, people have only proved this game to be winning for Order [8], but no specific winning
strategy has been constructed and other versions of the game have not been studied. We only
know the fact that there exists a winning strategy and that a computer is able to play along
this strategy using a script. The gap that we have right now, is that no human, but only the
computer is able to generate a winning strategy. Our aim is to determine a winning strategy
that is playable for humans and is winning. Furthermore, this game has never been defined in
a mathematical way. To do some proper analysis on this game, we need definitions and specific
notation.

This is an interesting topic to do research on. Therefore, in the second section, we define Order
and Chaos in a mathematical way, so that we can set up some strategies, lemmas and conditions.
We will need these in the third chapter, where we set up a lemma that allows us to reduce the
size of the problem from a 6 × 6 to a 4 × 4 board. This lemma has already been used in other
research, but it has not been rigorously proved yet. An example of research is Daniël van Gent’s
work on Order versus Chaos. This has not been published, but it provided a great basis for this
thesis. After finishing the proof of this lemma, we have determined a strategy using Monte-Carlo
Treesearch, which we will validate afterwards using Depth-First search.

In the fourth section, our aim is to analyse variants of this game. We can modify this game
by, for example, changing the size of the board, adding more players or adding more symbols.
There are many more features of this game that can be adjusted. We have chosen to study the
problem what happens when Chaos starts instead of Order, what happens when a row of 6 is
not winning for Order and lastly a combination of both, where Chaos starts and Order does not
win with a row of 6. Finally, we will provide a strategy for the winning players and prove that
these strategies are winning.
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2 Definitions and notation

Order and Chaos is a game that is played on a 6 × 6 board. We have two players, Order and
Chaos. Order’s goal is to make a row of length 5 and Chaos’ goal is to prevent that from hap-
pening. Both players can pick X and O for their move. This means that one move they can
play O and the next move X. This is the classic version of Order and Chaos. Order and Chaos
is a 2-player, perfect information game that belongs to the class of combinatorial games. More
precisely, it is an impartial game, as both players can make the same moves, and it is also finite,
since one player can never skip a move and we will always reach an end state [7].
Of course we will study this classic game, but it may also be interesting to look how strategies
change as we change the rules, the board or the amount of symbols. In order to do this, we need
clear definitions. We will provide these next.

Definition 2.1. We define OvCn×m(`, s, p) an Order versus Chaos game as follows:

For n ≤ m, the parameters n and m are the length and width of the board, respectively. Without
loss of generality, we can say that, if m < n, OvCm×n(`, s, p) is the same as OvCn×m(`, s, p) if
we make a rotation of 90◦. That means that if m < n, we can swap the values (nnew = m and
mnew = n) and we get an equivalent game OvCnnew×mnew

(`, s, p).
We let s be the amount of symbols a player can choose from . By S− we define a set of symbols of
size s without the blank symbol ‘�’. Then, we also define S = S−∪{�}. Order wins if there is a
row with a length at least ` of one identical symbol s ∈ S−. Note that ` ≤ min(n,m). Only then
we can make horizontal, vertical and diagnoal lines. We define the board B = (bij)ij ∈ Sn×m as
a matrix with element bij ∈ S, 1 ≤ i ≤ n, 1 ≤ j ≤ m. Lastly, p is the player (Order or Chaos)
that begins the game.

Notation 2.1. Let n ∈ N≥1, we say [n] = {1, . . . , n}. When n = 0, we say [n] = {0}.

Definition 2.2. Let (i, j) ∈ [n] × [m], and sL = bij ∈ S− be given. Then, we define the
lengths L→((i, j)), L↑((i, j)), L↗((i, j)), L↘((i, j)) of the horizontal, vertical, ascending diagonal
and descending diagonal consecutive row respectively as follows:

1) We say, that L→((i, j)) = `L if there exist y ∈ [m] and k ∈ [`L] with j = y + k − 1 and
y + `L − 1 ≤ m, such that:

- bi,y = bi,y+1 = . . . = bi,y+`L−1 = sL.

- When y 6= m, bi,y+`L 6= sL.

- When y 6= 1, bi,y−1 6= sL.

The extensions of this row are

- bi,y−1, if y 6= 1,

- bi,y+`L , if y 6= m.

2) We say, that L↑((i, j)) = `L if there exist x ∈ [n] and k ∈ [`L] with i = x + k − 1 and
x + `L − 1 ≤ n, such that

- bx,j = bx+1,j = . . . = bx+`L−1,j = sL.

- When x 6= n, bx+`L,j 6= sL.

- When x 6= 1, bx−1,j 6= sL.
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The extensions of this row are

- bx−1,j , if x 6= 1,

- bx+`L,j , if x 6= n.

3) We say, that L↘((i, j)) = `L if there exist x ∈ [n], and k ∈ [`L] with i = x + k − 1,
j = x+ a+ k− 1, x+ `L− 1 ≤ n, x+ a ≥ 1 and x+ a+ `L− 1 ≤ m for a = j − i such that

- bx,x+a = bx+1,x+a+1 = . . . = bx+`L−1,x+a+`L−1 = sL.

- When x 6= 1 and x + a 6= 1, bx−1,x+a−1 6= sL.

- When x + `L − 1 6= n and x + a + `L − 1 6= m, bx+`L,x+a+`L 6= sL.

The extensions of this row are

- bx−1,x+a−1, if x 6= 1 and x + a 6= 1,

- bx+`L,x+a+`L , if x + `L − 1 6= n and x + a + `L − 1 6= m.

4) We say, that L↗((i, j)) = `L if there exist x ∈ [n] and k ∈ [`L] with i = x − k + 1,
j = m − x − a + k − 1, x − `L + 1 ≥ 1, m − x − a ≥ 1 and m − x − a + `L − 1 ≤ m for
a = m− j − i such that

- bx,m−x−a = bx−1,m−x−a+1 = . . . = bx−`L+1,m−x−a+`L−1 = sL.

- When x 6= n and m− x− a 6= 1, bx+1,m−x−a−1 6= sL.

- When x− `L + 1 6= 1 and m− x− a + `L − 1 6= m, bx−`L,m−x−a+`L 6= sL.

The extensions of this row are

- bx+1,m−x−a−1, if x 6= n and m− x− a 6= 1,

- bx−`L,m−x−a+`L if x− `L + 1 6= 1 and m− x− a + `L − 1 6= n.

Definition 2.3. Let (i, j) ∈ [n]× [m], then the longest consecutive row is defined by

L((i, j)) = max
x∈{→,↑,↗,↘}

{Lx((i, j))}.

Notation 2.2. Let (i, j) ∈ [n]× [m]. We say that (i, j) are the coordinates of bij .

Notation 2.3. Let A ⊂ [n] × [m]. For the board B we say that B|A are the elements bij with
(i, j) ∈ A.

Notation 2.4. Let (i, j) ∈ [n]× [m], then

- bi• = (bi,1, bi,2, . . . , bi,m).

- b•j = (b1,j , b2,j , . . . , bn,j)
>.

- b↘(i,j) = (bi−k,j−k, bi−k+1,j−k+1, . . . , bi+l,j+l)
>, for k = min(i, j) and l = min(n− i,m−j).

- b↗(i,j) = (bi+k,j−k, bi+k−1,j−k+1, . . . , bi−l,j+l)
>, for k = min(n− i, j) and l = min(i,m−j).

Notation 2.5. Let A ⊂ [n] × [m], then bi•|A is the longest vector of consecutive elements bij
such that (i, j) ∈ A. This is symmetric for b•j , b↘(i,j) and b↗(i,j).
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Notation 2.6. For a vector v ∈ Sm and a symbol s ∈ S−, we take 1s(v) componentwise.

Example 2.1. Consider

X O
X X O X

X O
X X

O X
O O

.

Then 1X(b↘(1,1)) = 1X(X,X,X,�,X,O) = (1, 1, 1, 0, 1, 0).

Notation 2.7.
⇀
1 ∈ Sm is the vector consisting of ones.

Definition 2.4. Let (i, j) ∈ [n]× [m]. Choose A = {x1, . . . , y1}×{x2, . . . y2} with y1−x1+1 = `
and y2 − x2 + 1 = `. We define the horizontal, vertical, ascending diagonal and descending
diagonal open lines of s ∈ S− as P→((i, j), s), P↑((i, j), s), P↗((i, j), s), P↘((i, j), s) respectively
as follows:

P→((i, j), s) =

{
1s(bi•|A)

⇀
1 , if 1s′(bi•|A)

⇀
1 = 0, for all s′ ∈ S−\{s},

0, otherwise;

P↑((i, j), s) =

{
1s(b•j |A)>

⇀
1 , if 1s′(b•j |A)>

⇀
1 , for all s′ ∈ S−\{s},

0, otherwise;

P↘((i, j), s) =


1s(b↘(i,j)|A)>

⇀
1 , if (i, j) = (x1 + k, x2 + k) for 0 ≤ k ≤ `− 1 and

1s′(b↘(i,j)|A)>
⇀
1 = 0, for all s′ ∈ S−\{s},

0, otherwise;

P↗((i, j), s) =


1s(b↗(i,j)|A)>

⇀
1 , if (i, j) = (y1 − k, x2 + k) for 0 ≤ k ≤ `− 1 and

1s′(b↗(i,j)|A)>
⇀
1 = 0, for all s′ ∈ S−\{s},

0, otherwise.

Note that A can differ every value! We always let A such that the value is maximized under the
given restrictions.

Definition 2.5. For a point (i, j) ∈ [n] × [m] and symbol s ∈ S−, we define the maximum
feasible line as

P ((i, j), s) = max
x∈{→,↑,↘,↗}

Px((i, j), s).
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Example 2.2. For OvC6×6(5, 2,O) we have the following board:

X O
X X O X

X O
X X

O X
O O

.

Then we have L((1, 1)) = L↘((1, 1)) = 3, P ((1, 1),X) = P↘((1, 1),X) = 4, L((1, 6)) =
L↗((1, 6)) = 3 and P ((1, 6),O) = P→((1, 6),O) = 1.

Definition 2.6. We say B is in order, if there exists a (i, j) ∈ [n]× [m] with a row L((i, j)) ≥ `.

Definition 2.7. We say B is chaotic, if for all (i, j) ∈ [n] × [m], we have bij 6= � and B is not
in order.

Order wins if he manages to create an in order board, while Chaos wins if he can create a chaotic
board. We call B unstable if B is neither in order nor chaotic, hence there are still empty fields.
The game starts with an empty board E = (eij)ij , with eij = � for all (i, j) ∈ [n]× [m].

Definition 2.8. We describe the set of empty fields M as

M = {(i, j) ∈ [n]× [m] | bij = �}.

Example 2.3. An Order versus Chaos game OvC6×6(5, 2, O) with S = {X,O} always begins
with board E:

E = .

Example 2.4. This board is in order:

O X
X O

X O X
X
O X

O

.

Here we see that we have a descending diagonal line of 5 consecutive X’s, hence L((1, 2)) =
L↘((1, 2)) = 5 = `. In this case, Order wins the game.
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Example 2.5. This is an example of a chaotic board:

O X O O X O
O X O X O O
X X O O O X
X O X X X O
O X O X O X
O O X X X O

.

Here we see that for all (i, j) ∈ [6]× [6], L((i, j)) < 5 and bij 6= �, hence Chaos wins this game.

Definition 2.9. Let B be stable. We describe a move MB : M × S− → Sn×m defined by
MB((i, j), s) = B′ = (b′ij)ij , and

b′ab =

{
bab if (a, b) 6= (i, j),

s if (a, b) = (i, j).

Example 2.6. Let B =

X

, then MB((3, 4),X) =

X
X

.

Definition 2.10. Let A ⊂ [n]× [m]. S|A| is the set of possible partition boards A.

Definition 2.11. A strategy is described as T : Sn×m →M× S−.

This means that the player looks at the board, and reacts to the condition the board is in. The
output elements are coordinates and a symbol. Note that a move is not the same as a strategy.
There is a move assigned to each board.

Definition 2.12. Let A ⊂ [n]× [m]. The map p : Sn×m → S|A| defined by p(B) = B|A, is called
a priority function.

Definition 2.13. Let T : Sn×m →M×S− be a strategy, A1 ⊂ [n]× [m] and A2 = [n]× [m]\A1.
We say that T seperates into T1 : S|A1| → M× S− and T2 : S|A2| → M× S− if there exists a
priority function p, and a function f : Sn×m →M×S− called a transition function, such that

T (B) =


T1(B|A1

) if p(B) = B|A1
and B|A1

unstable,

T2(B|A2
) if p(B) = B|A2

and B|A2
unstable,

f(B) otherwise.

We use the notation T = T1 ∪ T2. The function f gives us the strategy if p(B) = B|A1
, but BA1

is stable or if p outputs someting different than B|A1
or B|A2, and if p(B) = B|A2

, but BA2
is

stable or if p outputs someting different than B|A1
or B|A2

.
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3 Classic game

In this section, we want to find a winning strategy for the classic Order and Chaos game. The
rules are as follows: we play on a 6 × 6 board, Order begins, both players can choose between
symbols X and O; Order wins if there is a row of length 5 or longer and Chaos wins if the board
is full and there is no row of length 5 or longer. In [8] it was shown by computer that Order has
a winning strategy. We prove this rigorously by setting up a lemma in section 3.1, using Monte
Carlo Treesearch in section 3.2, analysing the outcome of Monte Carlo Treesearch in section 3.3
and checking it using a brute force search alogrithm in section 3.4. In this section we will go
these methods in further detail and show how we got the result.

3.1 Lemma

A 6× 6 board is big to work with, so we want to reduce the size of this problem. To do so, we
decided to split the board into two parts: the middle part and the border. The following lemma
allows us to reduce the size of the problem.

Lemma 3.1. If OvCn×n(n, 2, p) is winning for Order, then OvC(n+2)×(n+2)(n + 1, s, p) is also
winning for Order.

Proof. Suppose that OvCn×n(n, 2, p) is winning for Order. That means that on a board B1 ∈
Sn×n, Order can win by playing strategy T1 with move F := M((i, j), s) if T1(B1) = ((i, j), s)
for an empty board B1. At the end of the game, there exists (i, j) ∈ [n]× [m], with L((i, j)) = n.

Now consider board B ∈ S(n+2)×(n+2). This board can be partitioned into A1 t A2, with
A1 := {2, . . . , n + 1}2 and A2 := {1, . . . , n + 2}2\A1. This means that A1 ∈ Sn×n is equivalent
to an n × n board, and A2 is the border around it. We define mirroring with m : A2 → A2 as
follows

(i, j) 7→


(n + 1− i, j) if i ∈ {1, n + 2} and j 6∈ {1, n + 2}
(i, n + 1− j) if i 6∈ {1, n + 2} and j ∈ {1, n + 2}
(n + 1− i, n + 1− j) if i, j ∈ {1, n + 2}.

This means that m((i, j)) gives the coordinates, on the exact opposite fields on the border of the
board.

Now we have the following priority function

p(B) =

{
B|A2

if there exists (i, j) ∈ A2 with bij 6= � and bm(i,j) = �,

B|A1
otherwise.

We describe strategy T2 as follows: we only play T2, if there exists a (i, j) ∈ A2 with bij = s ∈ S−

and bm(i,j) = �. Our strategy in that case is, that T2(B) = (m(i, j), s′) for s′ ∈ S−\{s}.

We claim that T := T1 ∪ T2 with transition function ‘Bring the board in order’ is a winning
strategy for OvC(n+2)×(n+2)(n− 1, 2, p). In the next part we will show that this is winning.

In the beginning we have two possibilities: Order starts, or Order does not start. If Order
is the starting player, he makes the first move F on B|A1 . From this moment on, we can use

10



the same strategy for both cases. Order reacts on the move Chaos makes. Again we have two
possibilities

1) Chaos plays move M((i, j), s) with (i, j) ∈ A1.

2) Chaos plays move M((i, j), s) with (i, j) ∈ A2.

If 1) happens, we just play our strategy T1, and if 2) happens, we play T2. We know that A2 is
the border of a square, so |A2| is even. Order only plays on A2 if Chaos has played there the
previous turn. This means that Order will always be the last player that plays there, so there
will never be a transition function going from A2 to A1.

After a finite number of turns, for the resulting board B it holds that B|A1
is stable. Suppose that

Order has not yet won. Since Order has played along T1, there is a point (i, j) ∈ {2, . . . , n+ 1}2
with L((i, j)) = n restricted on B|A1

and sL = bij . Now it is Chaos’ turn. Let (a, b) an extension
of row L((i, j)), then (a, b) ∈ A2 and we have two possibilities (direct consequence of playing
T2), namely:

1) bab = bm(a,b) = �.

2) bab = s, bm(a,b) = s′ ∈ S−\{s} or other way around.

In the case of 2), we already know that Order has won, because, restricted on B, L((i, j)) = n+1.
For case 1) note that Chaos could have made a move on (a, b) or m(a, b) since the last observation.
This means we have to define the following transition function

f(B) =

{
((a, b), sL), if bab = �;

(m(a, b), sL), if b(m(a,b)) = �.

Note that restricted on B, L((i, j)) = n + 1. Order wins, and OvC(n+2)×(n+2)(n + 1, 2, p) is
winning for Order. �

Example 3.1.

B = .

Here we see that B|A1 is the white area and B|A2 is the grey area on the border. In addition to
this, some symbols placed are on B|A2 . If we mirror the corresponding coordinates, we have the
other symbol on the other side of the border. For example, the green coordinate (1, 4) mirrored is
the other green coordinate (4, 6), the blue coordinate (1, 3) mirrored is the ohter blue coordinate
(6, 3) and the yellow coordinate (6, 1) mirrored is the other yellow coordinate (1, 6).

3.2 Monte-Carlo Treesearch

By virtue of Lemma 2.1 we know that OvC6×6(5, 2,O) is winning for Order, if there is a win-
ning strategy for OvC4×4(4, 2,O). On the border of the board our strategy T2 is mirroring, as
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described in the proof of the lemma, so now we need a strategy T1 for the middle part of the
board.
To get to know a good strategy Order has to play to win, we use the Monte-Carlo treesearch
algorithm. This section is primarily based on [3] and [9]. The classic approach to game AI re-
quires either very high quality knowledge of the game, or a very long computational time. First,
we have attempted a brute force method to find a strategy. However, knowing that there are
316 different game states, it is never possible to determine an optimal solution. Monte-Carlo
treesearch has turned out to be the perfect solution to this problem.

3.2.1 What is Monte-Carlo Treesearch?

Monte-Carlo treesearch (MCTS) is a best-first search technique combined with stochastic simu-
lations. MCTS builds a tree from the root node, which is the empty board in our case. Every
simulation, it adds nodes to the tree. In the beginning, the MCTS does not know anything, but
it is a self-learning algorithm. That means, that the algorithm starts by playing random moves,
gets an outcome, learns from it and with that extra knowledge, it is supposed to get a better
result next time. The algorithm does a pre-specified amount of simulations and the goal is to
gain enough information to obtain a satisfactory result.
The general idea of this algorithm is to only visit nodes in the tree that have a promising out-
come. This means that we cut off a big portion of the tree, because the algorithm tends not to
go to a node without a promising outcome.
The following mechanism makes sure that we only build promising game states:

Selection

Given board B ∈ Sn×m, we can make different boards B1, . . . , Bn by one single move. In the
continuation of this section, a node in the search tree is a board of Sn×m in a specific state.
Every node i has some statistics, namely

- vi: value of node i;

- ni: visit count of node i;

- rt,j : result of game t (0 if lost, 1 if won) for player j, if he made the last move to reach this
state;

- Ri,j =
∑
t
rt,j : cumulative score of node i, where player j did the last move to reach node

i, of all the simulations.

We compute the value of node i by vi =
Ri,j

ni
. Here we see that vi is the fraction of games won

from node i.

We want to visit the board that leads to the best result (exploitation), but we also do not
want to miss out on good moves we have not discovered yet (exploration). The most popular
solution for this is the one we have used. It is called Upper Confidence Bounds applied to Trees
(UCT). To explain this, let

I =

n⋃
i=1

Bi

12



be the set of reachable states from board B. We select a child B′ that satisfies

B′ ∈ arg max
i∈I

(
vi + C

√
ln(nB)

ni

)
where C is a constant. The only restricion we have is that vi ∈ [0, 1]. This is handled by the way
we have computed vi, namely it is the fraction of games won from node i. In this manner, we do
not only look at the value vi, but using nB and ni, we also take into account whether a node has
been visited a lot. It may occur that a node has value 0, because it has only been visited once.
Because a path was chosen deterministicaly, this might still be a very promising node. Now, we
see in our formula that the longer the node has not been chosen, the more likely this node will
be chosen next time.

All in all, the term vi takes care of the exploitation, while the term C
√

ln(nB)
ni

makes sure we

also do some exploration. The bigger C, the more likely the algorithm is to explore new states.

Expansion

After some amount of moves, we will see that if we do a certain move, this resulting state has not
been saved as a node in the tree, hence it does not have a value. When we see this happening,
we will always select this state, no matter how promising the other nodes are, and save it in the
tree. In this manner, we reduce the chances that we miss a good strategy. We also save memory
by not playing all the unknown nodes and, because we only add one leaf, the quality of play
reduces only slightly.

Play-out

After the expansion, we play random moves or semi-random moves until we reach a board that
is either in order or chaotic. In order to make semi-random moves, we already need a simulation
strategy. We do not have this, so we just use fully random moves. This might cause the
simulations to take a bit longer, because we will need more simulations to get to a satisfactory
result.

Backpropagation

At some point, we come to an end state and the values rt,1 and rt,2 are computed. This result
is propagated from the end state, through all the previously visited nodes, all the way back to
the root. When we visit a node i, we update Ri,j , vi and add 1 to ni. Now every node we have
visited has an updated and more correct value of how promising this node is.

Example

Figure 1 shows us an example of MCTS. The numbers of the nodes are the values, written as
fractions. First, we see that the algorithm selects the nodes according to the selection mechanism.
Then we see that it comes across a state with no value ( 0

0 ). From that point on, it simulates
until the end, the white player loses and the grey player wins. These values are backpropagated
all the way up to the root node. In this way, the values are updated and are a bit more accurate
than they were before.

13



Figure 1: Monte-Carlo Treesearch in action.

3.2.2 Implementation

We implement a script based on [6] in Python. We select C =
√

2 and we will make 5000 itera-
tions per move. After these 5000, the program prints the board that has been visited the most.
That means that this is a node with a very high change of winning, as it has the highest value.
After this move has been made, it is Chaos’ turn and it repeats. The program does this until an
end state has been reached.

After performing MCTS, we have analysed the moves that almost maximize our chances of
winning. Out of the 200 simulations we have done, Order wins 199 and Chaos only 1. This
still is not sufficient to claim that Order always wins, because MCTS does deterministic moves.
It gets pretty close to an always winning strategy. In the continuation of this section we will
analyse the strategy based on MCTS and verify that this is a winning strategy.

3.3 Analysing strategy on 4× 4 board

From analysis of MCTS, we observed a pattern, that became our first strategy T1 for OvC4×4(4, 2,O).
The strategy is as follows for 4× 4 board B1 = (bij)ij with (i, j) ∈ {1, 2, 3, 4}2.

3.3.1 First strategy

This first strategy has to be followed in the given order. If the first step is not possible, continue
to the second and so on.

1. For a board B1 that is empty:

T1(B1) = ((2, 2),X).

2. For a board B1 with (i, j) ∈M and s ∈ S− such that P ((i, j), s) = 3:

T1(B1) = ((i, j), s).

14



3. For a board B1 with (i, j) ∈M such that for two elements x, y ∈
{→, ↑,↗,↘}, x 6= y and for s ∈ S− we have Px((i, j), s) = Py((i, j), s) = 2:

T1(B1) = ((i, j), s).

4. For a board B1 we define the set of moves such that we do not intersect other existing lines
as

C1 = {((i, j), s) ∈M× S− : for s′ ∈ S−\{s}, we have P ((i, j), s′) = 0}.

Note that that it may be possible that P ((i, j), s) = 0. Then we place s in an empty row!

4.1 Define the set of moves that make the longest feasible line as

C2 ∈ arg max
((x,y),z)∈C1

{P ((x, y), z)}.

4.2 We then define the strategy:

T1(B1) = arg min
((i,j),s)∈C2

{i + 4j}.

5. For a board B1 such that C1 = ∅, we don’t want to intersect the longest line there is, so
we define

C3 = {((i, j), s) ∈M× S− : P ((i, j), s) < max
((x,y),z)∈M×S−

P ((x, y), z)}.

5.1 Define the set of moves that make the longest feasible line as

C4 ∈ arg max
((x,y),z)∈C3

{P ((x, y), z)}.

5.2 We then define the strategy:

T1(B1) = arg min
((i,j),s)∈C4

{i + 4j}.

Here we have our first general strategy for every possible state a board can be in. The following
step is to show that this strategy is always winning.

3.4 Checking strategy

The next step is to verify that the above defined strategy is indeed a winning strategy for Order.
We check this by a brute force method.

3.4.1 Brute force search

Brute force searching builds a tree of states. We use Depth-First search, see [4] and [5]. We start
with board B1, with b22 = X. This was the first move F . Chaos plays every possible move and
Order plays the move as defined by T1. The result gets evaluated by Algorithm 1 below, since
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we need to check whether every reaction on every possible move is correct and does not lead to
a winning result for Chaos. The algorithm we use to check whether our strategy is winning, is
as follows:

Algorithm 1 Brute force verifying

1: procedure DFS(B) . B is a board
2: if B is in order then . Winning for Order
3: return True
4: end if
5: if B is chaotic then . Winning for Chaos
6: return False
7: end if
8: for B′ a child of B do . Do this for every state reachable from B
9: B′ ← orders-move(B′)

10: result← DFS(B′)
11: if result=True then . Winning for Order, so continue
12: continue
13: end if
14: if result=False then . Winning for Chaos, abort
15: return False
16: end if
17: end for
18: return True
19: end procedure

3.4.2 Result

There are 180690 different ways to reach a stable board and in only 7 of those, Chaos is able to
win. Even though the strategy we have analysed is 99.996% accurate, it still is not a winning
strategy. This means that we need to adapt our strategy T1.

3.5 Adjustment strategy

First we tried to adjust our analysed strategy. However, every change we tried, only resulted
in more losing states. Finally, we decided to make case distinctions for 6 boards. This solves
our problem and then Order always wins. We verified this by using the same brute force search
method as in Algorithm 1.
The red symbol is the move prescribed by T1, and the green symbol is the move that Order has
to make to win.
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1. B1 =

O O O
X X O X
O X
O

,

2. B1 =

O
X X X O

O
O O

,

3. B1 =

X X
O X X
O

,

4. B1 =

O O O O
X X

,

5. B1 =

X O
O X O
O
O X

,

6. B1 =

X
O X
O O
X X O

.

When we apply these adaptations to our strategy, there is no possible way that Chaos can win
when playing our strategy T1. We will explain what happens in these cases.

In cases 1 and 5, we see that instead of not breaking a line, one should make a line of 3. In case
1 this yields P ((2, 5),O) = 3 and the following happens after doing this move.

O O
X X O X
O X
O

→

O O
X X O X
O X X
O

→

O O O
X X O X
O X X
O

→

O X O O
X X O X
O X X
O

→

O X O O
X X O X
O X X
O X

.

We see that Order will always win, if he does this move and then continues following strategy
T1. In case 5 this happens:

X O
O X
O
O X

→

X O
O X
O O
O X

→

X O
O X O
O O
O X

→

X O
O X O
O O
O X X

→

X O
O X O
O O O
O X X

→

X O
O X O
O O O X
O X X

→

X O O
O X O
O O O X
O X X

.

Again, we see that Order will always win. If Chaos makes another move than the one done here,
he automatically loses, because then Order is able to create a row of 4.

In cases 2 and 6, we see that it is better to create an extra line of 2, instead of making a line of
3. This is reasonable, because now, we do not rely on only one line, and we can make better use
of the moves Chaos makes.

In cases 3 and 4, T1 prescribes a move too far left. However, by playing on b14, Order is
able to win, no matter what move Chaos makes afterwards.

After having identified the flaws in our strategy and having fixed them by adding these 6 indi-
vidual cases, we have obtained our final strategy T1 for Order for OvC4×4(4, 2,O) on the board
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B1, namely:

Let B1 exceptions = {B′1, B′2, B′3, B′4, B′5, B′6}, with

B′1 =

O
X X O X
O X
O

,

B′2 =

O
X X X O

O

,

B′3 =
O X X
O

,

B′4 =

O O
X X

,

B′5 =

X O
O X
O
O

,

B′6 =
O X
O
X X O

.

We add one note to the strategy in section 3.3.1, namely

1. If B1 ∈ B1 exceptions

T1(B1) =



((1, 4),O), if B1 = B′1;

((4, 2),O), if B2 = B′2;

((1, 4),X), if B3 = B′3;

((1, 4),O), if B4 = B′4;

((4, 4),X), if B5 = B′5;

((3, 4),O), if B6 = B′6.

2. Follow 3.3.1.

3.6 Final strategy on 6× 6 board

Since the final strategy T1 is winning for OvC4×4(4, 2,O), we can use Lemma 3.1. It provides us
with a winning strategy for OvC6×6(5, 2,O), by using our earlier described “mirroring” strategy:.
This strategy is as follows:

Let A1 = {2, 3, 4, 5}2 and A2 = B\A1. Boards B1 and B|A1
are equivalent, hence we can

use strategy T1 on B|A1
. Then we define our strategy as:

T (B) =

{
T2(B|A2

) if ∃(i, j) ∈ A2 : bij 6= � and bm(i,j) = �,

T1(B|A1
) else.

Now it has been proven that Order always wins OvC6×6(5, 2, O) by playing strategy T . �
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4 Other rules

Now we have found a strategy for the classic version of the game, it is interesting to study what
happens when we change the rules. First we examine what happens for OvC6×6(5, 2,C), when
Chaos makes the first move instead of Order. Secondly, the inovator Stephen Sniderman [2]
suggested a change of rules where Order does not win if there is a row of 6. We show that this
version is winning for Chaos. The last version we study, is the game where a row of 6 is not
winning for Order, and Chaos starts. This version turns out to be winning for Order.

4.1 Chaos starts

Note that this version only makes it easier for Order. Since Chaos does the first move, Order
can already make a row of 2 in the first move. The strategy is exactly the same as in section 3.6.
And again, using Depth-First search, we verified that this is also winning for Order.

4.2 No row of 6

Since we have a different suspected winner in this scenario, things get different. We suspect
that Chaos wins, if there is a winning player at all. Otherwise, this change of rules would make
no sense. Building on this hypothesis, we need a very different approach than in the previous
section. Lemma 3.1 does not apply and Monte-Carlo Treesearch does not give us any satisfactory
result. Hence we create a winning strategy T by hand.

Theorem 4.1. OvC6×6(5, 2,O) where Order does not win with a row of 6 is winning for Chaos.

Proof. We have a board B ∈ S6×6 with 18 different possible rows, where we can make a row of
length 5. This means that for every one of those 18 rows, we need a move to prevent that. In
(2), we see that every coordinate in Bstrategy = (b′ij)ij is paired with another coordinate.

Bstrategy =

2 3 7 7 6 1
4 11 18 13 18 5
9 17 12 17 14 10
9 11 16 13 16 10
6 15 12 15 14 3
1 5 8 8 4 2

. (2)

Definition 4.1. Let (i, j) ∈ [6]× [6] and Bstrategy = (b′ij)ij . Then we define the pairing function
f : [6]× [6]→ [6]× [6] as follows:

f(i, j) = (i′, j′) , if b′i′j′ = b′ij .

Then define strategy T for every board B = (bij)ij ∈ S6×6 by

T (B) =


(f(i, j), s), if (i, j) ∈ {(1, 1), (1, 6), (6, 1), (6, 6)} with bij = s ∈ S−

and bi′j′ = �;

(f(i, j), s′), if (i, j) ∈ [6]× [6]\{(1, 1), (1, 6), (6, 1), (6, 6)} with

bij = s ∈ S−, bi′j′ = � and s′ ∈ S−\{s}.
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Since Chaos is the second player to play, an odd number of coordinates is filled with a symbol
on Chaos’ turn. This means that, by the way we have defined our strategy, there is always a
coordinate for which one element of the pair is filled and the other is not. That shows, that our
strategy is well defined.

We will take a look at the possible lines in which Order can make a row of five. In the rest of
the proof, we explain why Order is not able to make a row of 5 in these lines.

Suppose that Order is able to make a row of 5. In the highlighted rows in 3, there is no possibility
that there could be a row of 6, so if there is a row of 5 in one of these rows, Order automatically
wins and there is no possibility of extending this line.

. (3)

A direct consequence of playing our strategy, is that Order will be the first player to place a
symbol on either b5,1 or b1,5 for the yellow line, b2,6 or b6,2 for the red line, b2,1 or b6,5 for the
green line and b1,2 or b5,6 for the blue line. Now suppose (symmetric for the other lines) that
L↘((1, 2)) = 5 of symbol sL. That means that Order has done move ((1, 2), sL) or ((5, 6), sL).
After Order has done this move, Chaos can respond by doing move ((5, 6), s′L) and ((1, 2), s′L)
with s′L ∈ S−\{sL} respectively. This means that L↘((1, 2)) < 5, which gives a contradiction.
There can be no line of 5 here.

We also have the diagonals where we can also make a row of 6, as we see in (4). Suppose that
Order makes a row of 5 in one of these lines.

. (4)

Again Order has to place a symbol on either b11 or b66 for the green line and b61 and b16 for the
blue line first. Chaos responds by placing the same symbol on the other coordinate on the other
side. Now suppose that if L↘((1, 1)) = 5, then b11 = sL, and b66 = sL. But that means that
L↘((1, 1)) = 6. This is a contradiction and Order does not win with a row of 6. This means
that there will never be a row of 5, such that Order wins on these lines.

Lastly, we have the horizontal and vertical lines. We will analyse one case, but it is symmetric
for the other ones. In (5), we see one line
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. (5)

If Order wants a row of 5 here, he needs to place symbol s on both b22 and b42. If he does move
((2, 2), s) though, Chaos immediately responds with move ((4, 2), s′) with s′ 6= s, hence Order
cannot make a row of 5 here.

All the other horizontal and vertical rows of 5 are prevented by pairs numbered 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17 and 18. Now we have seen that there is no way that Order can make a row
of 5, if Chaos plays this strategy, hence T is winning for Chaos. �

4.3 Chaos starts, no row of 6

The last variant of Order and Chaos we will discuss is OvC6×6(5, 2,C), where Order does not
win with a row of length 6. We figured out a strategy T that is winning for Order.

Theorem 4.2. OvC6×6(5, 2,C) where Order does not win with a row of 6 is winning for Order.

We let T1 the same as defined in section 3.5, and T2 the same as defined in the proof of Lemma
3.1. Then our strategy is T = T1 ∪ T2 and this is winning for Order. In the proof we will see
why this is winning and well defined.

Proof. Since Order does not begin, he only reacts on the move Chaos makes. Note that both
|A1| = 16 and |A2| = 20 are even numbers. Order only plays on A1 if Chaos does and Order
only plays on A2 if Chaos does. Suppose that A1 is full before A2, so for all (i, j) ∈ {2, 3, 4, 5}2
we have bij 6= �. Since we have played strategy T1, we know that there is a (i, j) ∈ {2, 3, 4, 5}2
such that L((i, j)) = 4. Now look at a extenstion of L((i, j)), that is (a, b) ∈ A2. We have two
possibilities for this extension (direct consequence of playing T2), namely

1. bab = sL, bm(a,b) = s′L ∈ S−\{sL} or vice versa;

2. bab = bm(a,b) = �.

In case 1, we know that L((i, j)) = 5 and there is no possibility of making this a row of 6, hence
Order wins. In case 2, no one has won, so we continue playing. Now it is Chaos’ turn and he
can only play on A2 and we play our strategy T2. At some point, Chaos would be the first to
do move ((a, b), s) or (m(a, b), s) for a s ∈ S−, because |A2| is even. Still playing along T2, we
react by doing move (m(a, b), s′) or ((a, b), s′) respectively with s′ ∈ S−\{s}. Now we have that
either bab = sL or bm(a,b) = sL, hence L((i, j)) = 5 and there is no possibility of making this a
row of 6.

Now suppose that A2 is full before A1. Now we know for every (i, j) ∈ A2 that if bij = s ∈ S−,
we have bm(i,j) = s′ ∈ S−\{s}. After A2 is full, it is Chaos’ turn and he has to do a move in
A1. Order will continue playing T1 and at some point, also A1 is full. Because we have played
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strategy T1, there must be an (i, j) ∈ A2 with L((i, j)) = 4. Since A2 is full, we know that for
an extension (a, b) ∈ A2 of row L((i, j)) we have bab = sL. Because we have played strategy T2,
we know that bm(a,b) = s′L ∈ S−\{sL} or vice versa, which gives us that L((i, j)) = 5 and there
is no way of making this a row of 6.

We have covered both possibilities and we have seen that strategy T = T1 ∪ T2 does not need
a transition function f , and is well defined. All this combined, tells us that T = T1 ∪ T2 is a
winning strategy for Order. �
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5 Summary and further research

In this thesis, we have analysed an Order and Chaos game to find and define a winning strategy
for Order. In section 2 we have defined and introduced all definitions and notations needed to
analyse this game mathematically.

By doing research we knew that Order would win. In section 3 we used some tools to determine a
winning strategy. One of the tools was Lemma 3.1. This gave us a strategy on the border of the
board and ensured that we only had to find a strategy for OvC4×4(4, 2,O). Another tool we used,
was Monte-Carlo Treesearch for identifying a winning strategy. After studying the outcome, we
identified certain patterns, yielding a first candidate for a winning strategy. However, we had
to verify that it is winning. After some adjustments, Brute-Force search confirmed that we had
found a winning strategy T1 for Order for OvC4×4(4, 2,O). Using Lemma 3.1, we had a well
defined winning strategy T for Order for OvC6×6(5, 2,O).

Secondly, we examined the behaviour of the game when we changed the rules. The first change
of rules was that Chaos begins instead of Order. We came to the conclusion that this made it
easier for Order. Following the same strategy T as the normal version of the game was sufficient
to always get a winning result. The second change of rules was that Order would not win by
creating a row of 6. This change of rules resulted in a winning game for Chaos. We defined
a strategy and proved that this strategy is always winning for Chaos. The last change was a
combination of both, namely Chaos would start and Order does not win by creating a row of
5. For this version it was also sufficient to follow strategy T as normal, but without transition
function f .

As regards further research on this game, it would be interesting to see what happens with
different shapes and sizes of the board. We only considered a 6 × 6 board; Strategies would
probably change a lot when the board has a different size. Daniël van Gent has done some
research on n× n boards in general. He showed that OvCn×n(n− 1, 2,O) is winning for Chaos
for n ≥ 7. Other interesting things to look further into are for example adding more symbols
or adding more players. This would make the game a lot more complex and strategies would
probably change drasticaly. Lastly, it would be nice to identify a more elegant winning strategy
than the strategy we have found. It would be perfect if there is a strategy without any exceptions.
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