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Abstract

In survival analysis, a competing risk model is a statistical method used to analyze time-to-event

data in situations where multiple events of interest may occur and compete for occurrence. The

events are considered ‘competing’ because the occurrence of one event prevents the occurrence of

other events. Traditional survival analysis focuses on a single event of interest, such as death due to

a particular cause. However, in real-world scenarios, there can be multiple events that individuals

in a study population might experience. These events can have different causes. For example, in

a study involving cancer patients, the events of interest could be death from cancer, death from

other causes, and disease recurrence.

In survival analysis, a cure model is a statistical model used when a proportion of the study

population is considered ‘cured’, meaning they will never experience the event of interest. This

concept is particularly important when studying diseases with a good prognosis. A notable example

is paediatric oncology, where patients may be considered cured if they experience long event-free

survival.

Despite the growing recognition of the significance of considering cured fractions in statistical

analysis, there remains limited research on the theoretical aspects of combining competing risks

and cure models. The integration of these two approaches has not been extensively studied until

now.

This research aims to fill the existing gap in the field by focusing on the concept of identifiability.

First, a general model that involves two competing events and cause-specific cure for both events

is considered. The main objective is to identify the model parameters, particularly the dependence

relationship between the two cure status indicators. A logistic model to estimate cure probabilities

and a semi-parametric Cox model to assess cause-specific hazards (or subdistribution hazards)

are employed. The results demonstrated that, under appropriate assumptions, certain parameters

can be effectively identified. However, it is also revealed that the model becomes unidentifiable

without these specific assumptions. It is further shown that the models previously proposed in the

literature can be seen as special cases of this general model.

The thesis presents a novel estimation procedure for the general model, utilizing the EM (Expectation-

Maximization) algorithm. The flexibility of this procedure allows it to be applied to special cases

of the model. Two simulation studies were conducted to investigate the performance of the esti-

mation procedure and to study the practical identifiability properties of the model for cure and

competing risks. The results showed good performance for most parameters of the model.

In conclusion, this thesis provides valuable insights into the practical identifiability of parameters
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through both theoretical and simulation-based analyses. This research significantly contributes to

a better understanding of competing risks and cure models. The understanding of these statistical

methods enables more accurate analysis of patient outcomes and treatment effects in diverse clinical

and non-clinical contexts. Ultimately, this research positively impacts the field, facilitating better

decision-making and improving overall outcomes for patients and individuals in various settings.
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Chapter 1

Introduction

The treatment of cancer has improved greatly over the past decades. This results in more and more

patients who experience long relapse-free survival. Some patients will never experience the event

of interest during their lifetime, i.e. they can be considered ‘cured’. Cure is nowadays identified in

several cancers, for example, breast cancer (Rutqvist et al., 1984), colon cancer (Sargent et al., 2009)

and childhood leukaemia (Bleyer, 1990). This highlights the importance of considering a fraction

of cured patients when analysing and interpreting clinical trial results and raises the need for more

sophisticated statistical methods: the cure model. Cure models were developed to incorporate a

cured fraction of patients in the traditional survival models. These models give insight into, not

only the life-prolonging effects of treatment but also the – possibly – curative effects of treatment.

Therefore allowing for a disentangled interpretation of the effect of the treatment under study

(Paoletti and Asselain, 2010; Yilmaz et al., 2013).

Competing risk models are crucial in clinical studies for a comprehensive analysis of patient out-

comes. Competing risks arise when individuals may experience multiple potential outcomes or

events, and the occurrence of one event prevents the occurrence of other events of interest. This

phenomenon is particularly relevant in the field of cancer research, where patients may experience

various competing risks such as disease recurrence, development of secondary malignancies, and

death from unrelated causes (Koller et al., 2012). Failing to account for competing risks can lead

to biased estimates of event probabilities and hinder the accurate evaluation of treatment effects.

For example, if a patient dies from a related cause before experiencing disease recurrence, ignoring

competing risks may overestimate the probability of recurrence. In clinical trials, this can have

significant implications for assessing the efficacy of interventions and making informed treatment

decisions (Van Walraven and McAlister, 2016).

This establishes the relevance of considering both the possibility of cure and several competing risks

when performing a statistical analysis. However, the extension of competing risks to cure models,

or vice versa, has not been thoroughly studied from a theoretical perspective. Several researchers

have worked in this particular domain (Chen et al., 2020; Nicolaie et al., 2019; Zhang et al.,

2019; Choi et al., 2015, 2017). Nonetheless, a significant gap exists in terms of a solid theoretical

foundation supporting the work. Furthermore, both frameworks present fundamental problems

with identifiability. This emphasizes the relevance of theoretical research into the identifiability

problems presented by these two frameworks.
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Identifiability refers to the ability to uniquely determine the parameters of a model based on

the observed data. It implies that the data provide enough information to distinguish one set

of parameter values from another. In other words, an identifiable model ensures that different

parameter values lead to different distributions or patterns of data, allowing us to estimate the

true underlying parameters accurately.

Moreover, it is a fundamental property of a statistical model and is essential for valid statistical

inference and interpretation. If a model is not identifiable, it means that multiple sets of parameter

values can produce the same observed data patterns, making it impossible to determine the true

parameter values solely based on the data.

In a more mathematical manner, identifiability can be defined as follows. Let F = {fθ | θ ∈ Θ}
denote a statistical model where Θ is a (possibly infinite dimensional) parameter space. The

model is called identifiable if two almost everywhere equal elements from the model have the same

parameters. This can be formulated as:

fθ = fθ′ P− a.e. =⇒ θ = θ̃ for all θ, θ̃ ∈ Θ.

As mentioned before, taking both cure and competing risks into account is highly relevant in

certain – clinical and non-clinical – settings. This thesis aims to delve into the extension of the

cure model to incorporate competing risks, with a special focus on the identifiability aspect. We

will define a generalized model with a cause-specific notion of cure. Several models discussed in

the methodological literature will become special cases of this generalized model.

The thesis is structured as follows. First, in Chapter 2, the basic tools from survival analysis are

introduced and a background is given to the identifiability problems arising in competing risks

analysis and cure analysis. In Chapter 3 several extensions of the cure model to incorporate

competing risks are given. It is investigated whether these extended models are identifiable or

not. After having studied the identifiability problems from a theoretical perspective, the practical

identifiability problems are investigated. This starts with an estimation procedure of these different

models which is given in Chapter 4. In Chapter 5 a simulation study is performed to investigate

the finite sample performance of the proposed methodology. The thesis ends with a discussion in

Chapter 6.
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Chapter 2

Basics of Survival Analysis

Survival analysis is the statistical field concerned with the analysis of time-to event-data. Since

time is needed to observe the event of interest, survival data is characterized by the presence of

censored observations. Censoring occurs when the exact time to event for an individual is not

observed. In this project, solely right censoring is considered. Right censoring occurs when the

exact time to the event of interest is not observed up to the end of the study period. If the event of

interest is the recurrence of a tumour, for example, some patients may still be under observation

at the end of the study without experiencing the event of interest or they may have left the study

before. It is then only known that up to that time the tumour has not yet recurred, but the

exact time of recurrence is unknown. This can, for example, happen when a patient moves away

and drops out of a clinical trial or because the study ends. In this thesis, it is assumed that

censoring is not related to the occurrence of the event of interest, i.e. the censoring mechanism is

non-informative. Informative censoring will not be further discussed.

Let C and T denote the random variables indicating the censoring time and the lifetime (or time-

to-event of interest) respectively. The follow-up time is then given by T ∗ = min(T,C). Censoring

occurs thus when C < T , i.e. the time until censoring was smaller than the time-to-event. In

addition to the follow-up time T ∗, we observe the status δ := 1(T ∗ = T ). The random variable

δ indicates whether the event was observed (δ = 1) or censored (δ = 0). The data structure for

the i-th subject is thus given by (Ti, δi). If we also consider a covariate vector Z, the data can be

represented as follows: (Ti, δi,Zi).

The other types of censoring data are left-censored data (it occurs when the event of interest has

occurred or started before the data collection began) and interval-censored data (it only specifies

the time within a certain interval where the event occurred). These other types of censoring will

not be discussed in this thesis.

In this chapter, we will first introduce the basic functions used in survival analysis. These include

the survival function, hazard rate and cumulative hazard function. Then it will be shown how the

likelihood is constructed for survival data. The non-parametric Kaplan-Meier estimator for the

survival function and the semi-parametric Cox regression proportional hazard model for regression

of survival data are introduced. Furthermore, the concept of competing risks and the standard

cure model will be presented.
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2.1 The basic functions

In this section, the basic functions from survival analysis are introduced. We will present standard

identities and introduce the intuition behind the concepts.

The survival function S(t) represents the probability of surviving up to a certain time t ≥ 0. It is

defined as:

S(t) := P(T > t) = 1− P(T ≤ t) = 1− F (t) = 1−
∫ t

0

f(u)du =

∫ ∞

t

f(u)du, (2.1)

where F denotes the cumulative distribution function of T . We assume throughout this thesis that

T is a continuous random variable with a probability density function f . This in turn implies that:

f(t) = −∂S(t)
∂t

. (2.2)

If T is a continuous random variable, the survival function is a continuous and decreasing function

with the property that S(0) = 1 and S(t) ≥ 0 for all t ≥ 0. That is, the probability of being alive

at the beginning of the study is one and the probability of surviving up to any time is at least zero.

A proper survival function has the property that the probability of surviving forever is zero, i.e.

limt→∞ S(t) = 0. Indicating that all individuals under study will eventually experience the event

of interest.

The hazard rate λ(t) is the next fundamental quantity in survival analysis. It is defined as:

λ(t) := lim
dt→0

P(t ≤ T < t+ dt | T ≥ t)
dt

, (2.3)

and expresses the instantaneous rate of occurrence of the event, given that the individual has

survived up to time t. Furthermore, if T is a continuous random variable, the hazard rate can be

written in terms of the density and survival function in the following manner:

λ(t) =
f(t)

S(t)
. (2.4)

Closely linked to the hazard rate is the cumulative hazard function. It is defined as:

Λ(t) :=

∫ t

0

λ(u)du. (2.5)

Combining this with formula (2.2), it can be seen that:

S(t) = exp{−Λ(t)}. (2.6)

Note that the cumulative hazard is not a probability. It is merely a measure of the accumulated

risk of experiencing the event. A high cumulative hazard indicates a low probability of survival

and vice versa.
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2.2 The likelihood for survival data

In the presence of right-censoring, the likelihood function needs to be constructed with a bit more

care, since we have two types of observations: (T ∗ = t, δ = 1) and (T ∗ = t, δ = 1). These

correspond, respectively, to the events: {T = t, C > t} and {C = t, T > t}. These two different

types of observations also have different contributions to the likelihood.

Throughout this thesis, we will sometimes write P(T = t) for a continuous random variable T ,

indicating the density evaluated at a specific point t. Although this is an abuse of notation, it

eases interpretation and ought not to lead to confusion.

Now assume that the data is right-censored and that the censoring is independent of the survival

time T and non-informative, that is, the distribution of the censoring times C does not depend

on the parameters of the lifetime distribution. Independence between T and C will be assumed

throughout the thesis. The likelihood for a censored and uncensored observation are, respectively,

given by:

L0(θ) = f(t) and L1(θ) = S(t),

where θ denotes the set of all relevant parameters. Note that we are ignoring multiplicative terms

that depend on the censoring distribution (P(C > T ) and P(C = t) respectively) because they do

not provide any information and do not affect the maximization of the likelihood. An uncensored

observation thus contributes to the likelihood by means of the density, while a censored observation

contributes through the survival function. This coincides with the intuition that at the moment

of censoring all we know is that the event time is larger than the observed censoring time. Then,

for the independent pairs (Ti, δi) of random variables, the likelihood can be written as:

L(θ) =
n∏

i=1

f(ti)
δiS(ti)

1−δi =

n∏
i=1

λ(ti)
δiS(ti) =

n∏
i=1

λ(ti)
δi exp{−Λ(ti)}, (2.7)

where the identities given in (2.4) and (2.6) were used. These likelihoods will be further developed

when considering competing risks and cure models.

2.3 Kaplan-Meier estimator of the survival function

The functions presented in Section 2.1 can be estimated using parametric or non-parametric meth-

ods. For example, a flexible parametric model for the estimation of the survival function is given

by the Weibull model:

S(t) = exp
{
−(λt)k

}
,

where λ, k > 0 are, respectively, the scale and shape parameters. Note that when k = 1 the Weibull

distribution reduces to an exponential distribution. The Weibull model for survival is one of the

most used parametric models. Although the model is flexible, misspecification of the statistical

model is a fatal pitfall. Therefore, we will focus on non-parametric and semi-parametric methods

in this thesis.
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2.3.1 Non-parametric estimation of survival functions

Let t1 < t2 < ... < tm denote the time points at which an event was observed. Furthermore, define

dj to be the number of observed events on tj and nj the number of subjects at risk on tj . Then

the Kaplan-Meier estimator (Kaplan and Meier, 1958) of the survival function given by:

Ŝ(t) =
∏

j:tj≤t

(
1− dj

nj

)
. (2.8)

This estimator is also known as the product-limit estimator and is widely used in practice. It is

a stepwise function with jumps at the time points at which we observe an event. In the absence

of censored observations, this estimator reduces to the complement of the empirical distribution

function. The variance of the estimator for a given time point t can be estimated by Greenwood’s

formula:

τ̂(t) = Ŝ2(t)
∑

j:tj≤t

dj
nj(nj − dj)

. (2.9)

2.4 Semi-parametric Proportional Hazards regression Model

To consider the effect of covariates, some form of regression model is required. In this thesis,

we will focus on Cox proportional hazards regression model (Cox, 1972). This method is widely

used in survival analysis and medical applications to model the effects of covariates on survival

probabilities. It gives a straightforward interpretation of the relative risk of covariates and is easily

implemented using the survival library (Therneau et al., 2021) in R software environment (R

Core Team, 2022).

The data consists of the triples (T ∗
i , δi,Zi) for i ∈ {1, 2, ..., n}. Here T ∗

i , δi and Zi ∈ X are,

respectively, the follow-up time, the status indicator and the vector of covariates of the i-th subject,

where X the covariate space. The effect of the covariates is modelled as follows:

λ(t | Z) = λ0(t) exp
{
β⊤Z

}
. (2.10)

Here λ0(t) denotes the baseline hazard and β is a vector of regression parameters. The baseline

hazard corresponds to the hazard rate of subjects with all covariates equal to zero and is left

unspecified. An expression for the survival function in the Cox model can be derived:

S(t | Z) = exp

{
−
∫ t

0

λ(u | Z) du
}

= exp

{
−
∫ t

0

λ0(t) exp
{
β⊤Z

}
du

}

=

(
exp

{
−
∫ t

0

λ0(t) du

})exp{β⊤Z}

= S0(t)
exp{β⊤Z},

(2.11)

where S0(t) denotes the baseline survival function. It can be interpreted as the survival function

for those individuals with covariates all equal to zero. Moreover, an expression for the density in

10



the Cox model can be derived. It is given by:

f(t | Z) = λ(t | Z)S(t | Z). (2.12)

Note that for two subjects with covariates Z1 and Z2 the ratio of hazard rates is given by:

λ(t | Z1)

λ(t | Z2)
=
λ0(t) exp

{
β⊤Z1

}
λ0(t) exp{β⊤Z2}

= exp
{
β⊤(Z1 − Z2)

}
. (2.13)

This is a constant with respect to time. More specifically, it is the relative risk of an individual

with covariates Z1 experiencing the event compared to an individual with covariates Z2. For this

reason, the Cox model is often called the proportional hazards (PH) model or Cox proportional

hazards model. So the relative risk is constant, i.e. it does not change over time. This is a crucial

assumption of the model. A violation can lead to misleading conclusions. The proportional hazards

assumption can be assessed through visual assessment of the Kaplan-Meier curves, log {− log } plots
and testing of scaled Schoenfeld residuals. Literature on the PH assumption and on methods for

assessing is vast – see for example Barlow and Prentice (1988), Therneau et al. (1990) or Schoenfeld

(1982).

2.5 Competing risks

Competing risks data consists of subjects who are at risk for multiple types of events, denoted

by k = 1, 2, ...,K. Competing events are characterized by the fact that their occurrence precludes

any other event. Let D denote the random variable indicating which of the competing events

occurred first. The term ‘competing risks indicator’ will be used to denote D, contrasting with

the previously introduced status indicator. For example, in the case of a cancer study, one can

consider local recurrence of the tumour and distant metastasis as competing events. A concise

treatment of the theory and applications of competing risks is given by Putter et al. (2007) and a

more extensive treatment can be found in Crowder (2001) and Crowder (2012).

In this section, the historic approach of potential survival times to competing risks is explained.

This approach has a fatal identifiability problem as shown by Tsiatis (1975). Afterwards, two

different hazard functions for competing risks are introduced: the cause-specific hazard and the

subdistribution hazard. Both are observable from the data. These hazard functions have differ-

ent interpretations and, therefore, serve different purposes. This aspect is discussed in the last

subsection.

2.5.1 Historic approach

Historic approaches considered competing risks as a multivariate failure time model. Any individual

would have a failure time distribution for each of the competing events. The first event that occurs

is observed, and all others are latent variables. That is, if we have an uncensored observation, we

only observe the actual survival time T = min{T1, T2, ..., TK}, D = k if T = Tk indicating which

event was observed with D = 0 if the observation was censored. The unobserved Ti can be referred

to as potential survival times, as they would have potentially occurred. Censoring is assumed to

be independent of the competing events.
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The joint distribution is given by:

S̄(t1, t2, ..., tK) = P(T1 > t1, T2 > t2, ..., TK > tk) (2.14)

The marginal survival function is given by Sk(t) = P(Tk > t) = S̄(0, ..., 0, t, 0, ..., 0). A major

problem with this approach is identifiability. It was shown by Cox (1959) and Tsiatis (1975) that

without extra assumptions on the dependence structure, the joint distribution is not uniquely

identifiable. Tsiatis (1975) showed that for any joint distribution of competing events, one can find

a joint distribution function with independently distributed competing events such that they both

lead to the same cumulative incidence function, i.e. are indistinguishable just based on the observed

data. As one is generally interested in unravelling the distribution of events which are dependently

distributed. This causes identifiability problems. The joint distribution and marginal distributions

of the competing events are therefore not identifiable. In addition, the independence of survival

times cannot be tested. In order to overcome this problem, the focus shifted to estimating two

alternative hazard functions: the cause-specific hazard and the subdistribution hazard which will

be introduced in the next section.

2.5.2 Two different hazard functions

For any of the competing events we can define the cause-specific hazard :

λk(t) := lim
dt→0

P(t ≤ T < t+ dt,D = k | T ≥ t)
dt

. (2.15)

It expresses the instantaneous rate of occurrence of a particular event in individuals who have

not experienced any event. The cause-specific hazard can be uniquely determined from the data.

Moreover, any quantity based on the cause-specific hazard can be uniquely determined from the

data. We can therefore define our functions in a competing risk setting based on the cause-specific

hazard. First, the cause-specific cumulative hazard is given by:

Λk(t) =

∫ t

0

λk(u) du. (2.16)

Next, define:

Sk(t) = exp{−Λk(t)}. (2.17)

Since the Sk’s are based on the cause-specific hazard, they can be estimated, but we cannot interpret

them as marginal survival functions. The quantity Sk can be interpreted as a marginal survival

function if the competing event time distributions and the censoring distribution are independent.

Next, define:

S(t) = exp

{
−

K∑
k=1

Λk(t)

}
. (2.18)

This function has a survival probability interpretation. It is the probability of not having experi-

enced any of the K events at time t. With these functions, we can define the cumulative incidence

12



function (CIF):

Ik(t) := P(T ≤ t, D = k) =

∫ t

0

λk(u)S(u)du. (2.19)

The cumulative incidence function expresses the probability of having experienced an event of

cause k before time t. We note that limt→∞ Ik(t) = P(D = k) ≤ 1. This indicates that Ik(t)

is not a proper probability distribution. In the literature, the cumulative incidence function is

therefore often called the sub-distribution function. It can be estimated non-parametrically. Define

the following quantities:

λ̂k(tj) =
dkj
nj

and Ŝ(t) =
∏

j:tj≤t

(
1−

K∑
k=1

λ̂k(tj)

)
, (2.20)

where dkj is the number of observed events of type k at time tj . Then the estimator for the

cumulative incidence function of cause k at time t is given by:

Îk(t) =
∑

j:tj≤t

λ̂k(tj)Ŝ(tj−1). (2.21)

The hazard rate that exhibits a one-to-one relationship with the cause-specific cumulative incidence

is known as the subdistribution hazard introduced by Fine and Gray (1999). It is defined by:

λsdk (t) := lim
dt→0

P(t ≤ T < t+ dt,D = k | T ≥ t ∪ (T < t ∩D ̸= k))

dt
. (2.22)

It expresses the instantaneous rate of occurrence of a particular event in individuals who have not

experienced an event of that type. So we are considering the rate of the event in individuals who

have either not experienced any event or have experienced any of the other competing events.

This approach considers individuals still at risk for an event of cause k after they experience the

competing event j. A possible explanation is that the subdistribution only considers risk k and

does not want any information about the occurrence of other competing events. Unlike the cause-

specific hazard, the risk set in the subdistribution hazard decreases at each time point when there

is an occurrence of failure from any other cause.

The subdistribution hazard can be written as:

λsdk (t) = −∂ log (1− Ik(t))
∂t

. (2.23)

2.5.3 Two different modelling approaches

In the previous section, two hazard functions were proposed with each a different interpretation.

Dependent on the goal of the study one of the two ought to be chosen wisely. A different modelling

approach can be attributed to each hazard. The direct modelling of the subdistribution hazard

was first proposed by Fine and Gray (1999). Interchanging the different modelling purposes and

different interpretations of the hazard is a common pitfall among applied researchers. For an

accurate and comprehensible discussion of the differences, the reader is referred to Austin and

Fine (2017)
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When the cause-specific hazards are modelled, each hazard is analyzed separately by treating

individuals failing from other causes as censored observations. The cause-specific hazard ratio

represents the relative change in the rate of occurrence of the event of interest in subjects who

have not experienced any events yet. This rate is a measure of the frequency with which events

happen and not a measure of the incidence of the event.

On the other hand, the subdistribution hazard function accounts for the competing risks and

estimates the cumulative incidence function of the event of interest, taking into account the presence

of competing risks. This analysis does not treat individuals failing from other causes as censored

observations. The subdistribution hazard is used to determine factors associated with the incidence

of a given event, and it assumes that the occurrence of competing events affects the hazard of the

event of interest. The subdistribution hazard can also be interpreted as the hazard rate of the event

of interest among a hypothetical population in which the competing risks have been eliminated. It

is thus a measure of the incidence of the particular event (Austin et al., 2021; Putter et al., 2020).

2.6 Introduction to cure models

In this section, we will briefly introduce the standard cure model, i.e. the cure model without

the presence of competing risks. In Section 2.1 the survival function was introduced, and it

was mentioned that it is proper if limt→∞ S(t) = 0. Nonetheless, if certain patients are not

susceptible to the event of interest, they will never experience it. This could, for example, happen

when a patient is immune to a certain disease under study. That patient will never experience

the disease. The survival time is therefore infinite, resulting in a survival function that is not

proper. The limiting value of the survival function of the whole population is then given by:

limt→∞ S(t) = α > 0, where α ∈ (0, 1] is the fraction of ‘cured’ individuals.

The cure model starts from the assumption that at baseline any individual is either cured or sus-

ceptible to the event of interest. An individual is cured if he is immune to the event of interest

and will never experience the event (T = ∞). It is thus from onset determined whether one can

or cannot experience the event. The population is therefore classified into two groups: cured and

susceptible, i.e. a mixture with a relative size equal to α and 1 − α. The model following this

approach, the mixture cure model, has been introduced by Boag (1949) and Berkson and Gage

(1952). The works of Farewel (1977, 1982) have further developed these models in a parametric

fashion. Later, extensions to semi-parametric and non-parametric models were provided. A com-

prehensible review of the cure model can be found in Amico and Van Keilegom (2018). Legrand

and Betrand (2019) give an overview of the model with a focus on the application to oncology. At

last, a general and comprehensive overview of cure models and their extensions is given by Peng

and Yu (2021).

2.6.1 The mixture cure model

Let X, Z and B denote two covariate vectors and the cure status (i.e. B = 1 indicating cure and

B = 0 indicating susceptible) respectively. If we observe an uncensored event, we know that that

person is uncured. This is not the case for a censored observation. If we observe a censored event,

we know that that individual has not experienced the event yet, but we do not know whether he

will eventually experience the event. That individual can thus either be cured or still susceptible.
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This can be put in a more mathematical formulation as follows:

{δ = 1} =⇒ {B = 0} and {δ = 0} =⇒ {B = 0} ∨ {B = 1}. (2.24)

This implies that cure status is only partially observed as we cannot observe the cure status for

censored observations. We can therefore construct a probability distribution for the cure status

indicator B. Let π(X) = P(B = 1 | X) denote the probability of being cured at baseline given

the covariates X. Since cured individuals will never experience the event of interest, their survival

time is infinite, i.e. T = ∞. This implies that their probability to survive up to and including

a time t ≥ 0 equals one, that is P(T ≥ t | B = 1,Z) = 1. The survival function of the mixture

population S(t | X,Z) = P(T > t | X,Z), can then be written as follows:

S(t | X,Z) = π(X) + (1− π(X))Su(t | Z). (2.25)

Here Su(t | Z) = P(T ≥ t | B = 0,Z) denotes the survival functions of the uncured pa-

tients. As discussed before, in the presence of a cure fraction, the traditional survival function

of the whole population is not a proper survival function. This can be seen from the fact that

limt→∞ S(t | X,Z) = π(X). In other words, if we could wait for an infinite amount of time, only

the cured fraction of the population would have survived. Contrary, the survival function for the

susceptible patients is a proper survival function, that is, limt→∞ Su(t) = 0. If an individual is

uncured, he will eventually experience the event of interest.

Furthermore, note that the sets of covariates X and Z can be different. This coincides with the

intuition that the risk factors associated with the long- and short-term effects do not have to be

the same. The incidence and latency are, respectively, modelled with a logistic regression model

and a proportional hazards model. In this thesis, we focus exclusively on these models due to their

common practical use. However, one has the option to select other models for the incidence and

latency in general. For simplicity, in the rest of this work, it is assumed that these sets of covariates

coincide.

2.6.2 Identifiability of the cure model

The identifiability of cure models was systematically studied by Li et al. (2001) and later by Hanin

and Huang (2014). An important condition for the model to be identifiable is the existence of a

cure threshold τ > 0 defined as an upper bound of survival time of uncured individuals:

τ := inf{s > 0 : P(s < T <∞) = 0}. (2.26)

This definition implies that:

{T > τ} =⇒ {T =∞}. (2.27)

This means that if somebody survives up to the cure threshold, it is, almost surely, known that he

is cured. To ensure identifiability, the mere presence of a cure threshold is not enough. It is also

necessary to observe this cure threshold in the data. In other words, the duration of the study

follow-up period must be bigger than the cure threshold, i.e. P(C > τ). After the cure threshold

τ we almost surely do not observe any event.
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This assumption can be checked from the data – or at least made plausible – by looking at the

Kaplan-Meier estimate of the survival probability. The estimate is characterized by a plateau in the

survival probability which contains a significant amount of censored observations. This plateau

indicates that no events are occurring after a certain point in time, and suggests the existence

of a cure threshold. The practical implication: clinical trials investigating diseases with good

prognoses ought to have sufficient follow-up to observe the cure threshold. Additionally, you need

some practical e.g. medical knowledge that supports such an assumption. Some statistical tests

have been developed for testing for sufficient follow-up (Maller and Zhou, 1996), the presence of a

cure fraction (Zhao et al., 2009; Hsu and Todem, 2016) and the proportional hazards assumption for

the uncured individuals (Peng and Taylor, 2017; Wileyto et al., 2013). For identifiability results

for the standard cure model, the reader is referred to Hanin and Huang (2014) and Parsa and

Van Keilegom (2023).

Remark. Hanin and Huang (2014) use a different definition of identifiability. It contrasts with

our notion of ‘almost sure’ identifiability as introduced in Chapter 1. Therefore some explanations

are provided. Let S(t | X,Z) as defined in (2.25) and define S̃(t | X,Z) in a similar way. Then

the mixture cure model is identifiable (Hanin and Huang, 2014) if for all X,Z ∈ X and t > 0:

S(t | X,Z) = S̃(t | X,Z) =⇒ π(X) = π̃(X) and Su(t | Z) = S̃u(t | Z). (2.28)

Note that our definition of ‘almost sure’ identifiability is stronger. The definition in Hanin and

Huang (2014) relies on the identifiability of the models chosen for π and Su to uniquely identify

the parameters. If a model is identifiable in the ‘almost sure’ sense, then the parameters can be

uniquely determined from the data.

2.7 Cure in the presence of competing risks

The literature on cure in the presence of competing risks is scarce. Few methodological papers have

been published on this subject. Each is motivated by different practical applications. Throughout

these papers, different definitions of cure in the presence of competing events are used all motivated

by the application at hand. In a setting where a subject can experience multiple events, it is not

immediately clear what cure means.

In this section, we outline the different definitions of cure in a competing risk setting. The moti-

vating applications are highlighted and – in some cases – an introduction to the induced model is

given.

2.7.1 Cure as immunity to the risk of interest

Here, cure is defined as being insusceptible to only the risk of interest. So being cured means that

an individual will never experience the event of interest, and can experience any of the competing

events. This perspective is proposed by Basu and Tiwari (2010) and has not gained much attention

in the literature. It is motivated by the application to breast cancer data from the ‘Surveillance,

Epidemiology, and End Results’ program of the US National Cancer Institute. The data contains

information on primary (and possibly secondary) cancers, as well as cause-of-death information

for non-survivors. As the prognosis for breast cancer has improved greatly over the past decades
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a significant part of the patients are still alive at the end of the follow-up. We can consider those

patients as cured. However, cured patients are still susceptible to death due to secondary cancer

or death due to other reasons. Among those patients, an individual cannot be cured.

The model proposed by Basu and Tiwari (2010) models the subdistribution hazard directly and uses

a Bayesian estimation procedure. As identifiability is less of a problem in the Bayesian framework,

details about this model are not further provided.

2.7.2 Cure as immunity to all risks

Cure can also be defined as being not susceptible to any of the competing risks. In that case, being

cured precludes the of occurrence events of all types. We will refer to this perspective as complete

cure. If we, for example, consider the case of osteosarcoma, cure entails being insusceptible to local

recurrence, distant metastasis and death due to cancer. It truly means that the patient will never

experience anything related to the original sarcoma. Several methodological articles (Choi et al.,

2015, 2017; Chen et al., 2020) adhere to this view on cure in a competing risk setting.

2.7.3 Cure as immunity to a subset of the risks

In a more general view, cure can be defined as being insusceptible to a subset of the competing

risks. This means that a cured individual can experience some of the events, while it is immune

to others. This approach is discussed by Zhang et al. (2019) and motivated by credit scoring of

online consumer loans. The mixture cure model without competing was already applied to credit

scoring loans by Tong et al. (2014). For credit scoring purposes, the time-to-default is measured

and ongoing loans can be considered as right-censored. Since most people will not default during

the loans’ lifetime, it is appropriate to use a cure mode, where being cured means not going into

default.

The extension to competing risks is motivated by prepayments. Prepayment is a different endpoint

of the study and precludes defaulting. According to the authors, there may exist a group of people

who will never default nor prepay and a sub-population of the loans who are immune to defaulting

but can prepay. Here the structure of the cure mixture model is not always evident and thus a

more flexible interpretation of cure is needed. The authors deal with this problem by estimating

four models. These are given by:

(Model A) All individuals are susceptible to both competing events. This coincides with the

classical competing risk model without cure.

(Model B) A sub-population is cured of event 1, and all individuals are susceptible to event 2.

(Model C) A sub-population is cured of event 2, and all individuals are susceptible to event 1.

(Model D) A sub-population is cured of both risks and the others are not cured of any of the

risks. This coincides with the complete cure model introduced above.

The authors only consider these fixed cases but do not consider the general case in which the

population consists of a subpopulation that is cured for event 1 but not for event 2, a subpopulation

that is cured for event 2 but not for event 1, a subpopulation that is cured for both and a last one

who is cured for none.
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The authors used model-selection based on the AIC scores (where the model with the lowest AIC

was selected) to find the cure structure. This approach does not provide a measure of certainty

about the different cure models, i.e. it merely gives an indication which of the models fits the data

better. It is illustrative for the question at hand: can we recover the subset of risks for which one

can be cured from the data? We will return to this question – and to this specific example – later.
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Chapter 3

Identifiability of the cure model

with competing risks

In the previous chapter, several definitions of cure in a competing risk framework were introduced.

These different definitions yield a different mathematical structure of the cure model. The main

goal of this chapter is to investigate in which settings and under which assumptions the cure model

in the presence of competing risks is identifiable. The identification of the cure fractions is here of

particular interest.

First, the concept of cure structure will be discussed. This concept captures the specification of

cure in a setting where competing risks are present. Then, it will be shown that – under the

assumption of independent potential survival times – both the distribution of the survival times

and the cure fractions are identifiable. Several particular cases of cure structures are highlighted

under independence. Next, the assumption of independence will be dropped and it will be shown

that neither the distribution of the potential survival times nor the cure fractions are identifiable

under a general cure structure. Finally, it is proven that if the cure occurs simultaneously for all

competing events, the cause-specific hazards, the sub-distribution hazards and the Vertical model

are identifiable.

3.1 The cure structure

The cure structure was already discussed in the previous chapters, although a formal definition

was omitted. It refers to the division of competing risks into two subsets: those for who one can

be cured and those for who one is always susceptible. Within this framework, if an individual is

cured of any of the events for which that individual can be cured, it will be cured of all the events

in that subset. For example, for the definition of complete cure presented in Section 2.7.2, this

classification is clear: an individual can be cured of all competing events simultaneously, while

there is no event for which a subject remains susceptible once cured.

In this thesis, we will focus on a model with two competing risks, i.e. K = 2. This implies that

there are four, 2K = 4, possible cure structures for an individual. Those are given by:

1. An individual is cured of all competing events simultaneously, i.e. complete cure.
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2. An individual is only cured of competing event one.

3. An individual is only cured of competing event two.

4. An individual is not cured at all.

A priori it is not always evident for which risks an individual is cured and for which ones it is

not. This can be illustrated by the breast cancer example Basu and Tiwari (2010) presented in

Section 2.7.1. The authors consider death due to three competing risks: breast cancer-related,

another type of cancer-related and death not cancer-related. The authors define that a patient is

cured if one does not die due to breast cancer. In this context, cure is regarded as immunity to the

competing event of interest. Consequently, a patient cannot be cured of secondary cancers that

arise due to primary cancer. Secondary malignancies are also often considered as part of the events

from which one is cured if a patient is cured of the original cancer. Therefore, we could consider

a cure structure where one is cured of death due to cancer and death due to secondary cancers

simultaneously. This highlights the ambiguity of the definition of cure in the presence of competing

risks. We will therefore allow for an individual to belong to one of these four categories and not

make any assumptions about the cure structure. At the population level, the cure structure can

therefore be a mixture of the four discussed before. This extends the model presented by Zhang

et al. (2019).

In this chapter, we will investigate whether it is possible to recover the cure structure from the

data. We introduce random variables related to the cure structure. The cure status for each

competing risk is denoted by Bernoulli random variables Bi (i = 1, 2) where Bi = 1 indicates that

a patient is cured of risk i. We will be using a logistic model to estimate the cure probabilities for

each competing event and do not assume independence of B1 and B2. For a fixed covariate value

x ∈ X , the joint distribution of the two variables B1 and B2 can be characterized by the following

:

p0,0(x) = P(B1 = 0, B2 = 0 | X = x),

p0,1(x) = P(B1 = 0, B2 = 1 | X = x),

p1,0(x) = P(B1 = 1, B2 = 0 | X = x),

p1,1(x) = P(B1 = 1, B2 = 1 | X = x),

(3.1)

with the property that p0,0(x) + p0,1(x) + p1,0(x) + p1,1(x) = 1 for all x ∈ X . The quantities

defined in (3.1) provide the cure chances given some covariates x. These can be modelled using

logistic regression. To enhance the interpretability, we will model the cure status of the second risk

conditional on the cure status of the first competing event. In this framework, it will be easier to

see the dependence between two cure status random variables, e.g. if there is no dependence then

π1
2 = π0

2 . Define the following (conditional) cure probabilities:

π1(x) := P(B1 = 1 | x) = eγ1x

1 + eγ1x
,

π1
2(x) := P(B2 = 1 | B1 = 1, x) =

eγ
1
2x

1 + eγ
1
2x
,

π0
2(x) := P(B2 = 1 | B1 = 0, x) =

eγ
0
2x

1 + eγ
0
2x
,

(3.2)

where x denotes the vector of covariates related to the incidence and the γ’s the vectors of logistic
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regression coefficient – including an intercept. From (3.2) one can easily see how being cured of

risk 1 affects being cured of risk 2. Hereinafter, the dependence of the probabilities defined in (3.2)

on the covariates x will be omitted from the notation. The different cure structures that were

introduced earlier in Section 2.7, can all be captured in terms of π defined in (3.2). In the case of

complete cure, we have that case we have that π1
2 = 1 and π0

2 = 0. Since an individual is either

cured of all risks or susceptible to all risks. If we consider the cure structure where one is cured of

only the event of interest (Section 2.7.1), we have that π1
2 = π0

2 = 0. The question of recovering

the cure structure thus boils down to identifying the (conditional) cure status probabilities. If the

cure status probabilities are not identifiable, the cure structure cannot be recovered from the data.

The latency submodel will be modelled by a Cox proportional hazard (PH) model on the cause-

specific hazards or subdistribution hazards. In the case of independent survival times, we will

model the cause-specific hazards. Here the marginal survival and hazard functions coincide with

the cause-specific counterparts. The survival time for event k can then be written as:

Sk(t | Bk = 0, x) = exp

{
−
∫ t

0

λ0k(u) exp
{
β⊤
k x
}
du

}
, (3.3)

where βk is the vector with regression coefficients for risk k of the Cox model and λ0k is the base-

line cause-specific hazard. This is the probability of surviving up to time t for event k for all

individuals uncured of the respective event. The likelihood for this model consists of the product

of the following quantities: L0(θ), L1(θ) and L2(θ) where θ denotes the set of all relevant param-

eters. L0(θ), L1(θ) and L2(θ) provide the contribution of a censored observation, an uncensored

observation of type 1 and an uncensored observation of type 2 respectively.

The general likelihood contributions can be computed by conditioning on the cure status. The

contribution of a censored observation is given by the probability that an individual survives up

to the particular time t:

L0(θ) = P(T > t)

= P(T > t | B1 = 0, B2 = 0, θ)P(B1 = 0, B2 = 0 | θ)

+ P(T1 > t | B1 = 0, B2 = 1, θ)P(B1 = 0, B2 = 1 | θ)

+ P(T2 > t | B1 = 1, B2 = 0, θ)P(B1 = 1, B2 = 0 | θ)

+ P(B1 = 1, B2 = 1 | θ)

= (1− π1)(1− π0
2) · P(T > t | B1 = 0, B2 = 0, θ)

+ (1− π1)π0
2 · P(T1 > t | B1 = 0, B2 = 1, θ)

+ π1(1− π1
2) · P(T2 > t | B1 = 1, B2 = 0, θ)

+ π1π
1
2 ,

(3.4)

where T1 and T2 denote the potential survival times for, respectively, competing events 1 and 2.
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The likelihood that an individual experiences an event at time t from event 1 is given by:

L1(θ) = P(T1 = t | T2 > t,B1 = 0, B2 = 0, θ)P(T2 > t | B1 = 0, B2 = 0, θ)P(B1 = 0, B2 = 0 | θ)

+ P(T1 = t | B1 = 0, B2 = 1, θ)P(B1 = 0, B2 = 1 | θ)

= (1− π1)(1− π0
2) · P(T1 = t | B1 = 0, B2 = 0, θ)P(T2 > t | B1 = 0, B2 = 0, θ)

+ (1− π1)π0
2 · P(T1 = t | B1 = 0, B2 = 1, θ).

(3.5)

A similar expression can be derived for the likelihood that an individual experiences an event of

type 2 at time t. These are the general likelihood contributions. Under more specific models for

the latency – as presented later in this chapter – these expressions will be specified. In the next

section, we will consider a model where the potential survival times of the uncured individuals are

assumed to be independently distributed.

3.2 Identifiability for independent survival times

In this section, we will conjecture – and partially prove – that under the assumption of independence

of the potential survival times for the uncured, the cure structure is identifiable. The independence

assumption means that if B1 = B2 = 0, then T1 and T2 are independent. As the proof is incomplete,

part of the theorem is presented as a conjecture. The model introduced in this section will be coined

the competing risks cure model. The next chapter will be devoted to the estimation of this model.

Consider a setting with K = 2 competing risks where the cure structure is a priori unknown.

Furthermore, assume that the following holds:

(A1) (i) β⊤
1 x and β⊤

2 x do not contain an intercept.

(ii) The matrix Var(X) has full rank.

(A2) (i) The potential survival times for the uncured individuals T1 and T2 are independent.

(ii) Two different cure thresholds τ1 and τ2 exist for event 1 and 2 respectively such that

τ1 < τ2 and:

P(τ1 < T1 <∞) = P(τ2 < T2 <∞) = 0 and P(C > τ2) > 0.

Here (A1) ensures the identifiability of the Cox model while (A2) ensures the identifiability of

the cure structure and the survival functions.

In Section 2.6.2 the existence of a cure threshold in the absence of competing risks was discussed.

In the presence of competing risks, there are multiple cure thresholds whose existence needs to be

validated from the data to ensure identifiability. In addition, the cure thresholds must be apart

as stated in the assumption, that is τ1 < τ2. This implies the presence of some uncensored events

between the cure thresholds τ1 and τ2.

For simplicity, we consider only one set of covariates x ∈ X for both the incidence and latency

submodels. The proof can be easily extended to the general case where the covariates for the

incidence and latency submodels differ.
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For this model, there are again three different types of contributions to the likelihood:

L0(θ) = π1π
1
2 + π1(1− π1

2)S2(t) + (1− π1)π0
2S1(t) + (1− π1)(1− π0

2)S(t),

L1(θ) = f1(t)
{
(1− π1)π0

2 + (1− π1)(1− π0
2)S2(t)

}
,

L2(θ) = f2(t)
{
π1(1− π1

2) + (1− π1)(1− π0
2)S1(t)

}
,

(3.6)

where S(t) = S1(t)S2(t).

As mentioned, the full statement is divided into two parts, as it is only partially proven. We start

with a theorem for the identifiability of a subset of the parameters.

Theorem 1. Under assumptions (A1)-(A2) the parameters of the logistic model related to π1

and π1
2, the coefficients of the Cox model related to the second event, i.e. β2 and the baseline hazard

of the second event on (τ1, τ2] can be identified.

Proof. Suppose that L(θ) = L(θ̃) almost surely and consider the contribution of the censored

observations: L0(θ) = L0(θ̃). The contribution under this model is given in (3.6). Let t > τ2, then

we only need to consider π1, π
1
2 > 0. Since, if π1π

1
2 = 0 holds almost surely, then for the different

likelihoods to be equal almost everywhere, it must hold that π̃1π̃
1
2 = 0. So we just need to consider

π1, π
1
2 > 0. Now, by assumption, the probability of surviving after t for any of the susceptible

(to any competing event) individuals is zero. Hence, the contribution given in (3.6) reduces to

π1π
1
2 . This implies that we can identify the fraction of individuals who are insusceptible to all

events. Since L0(θ) = L0(θ̃) reduces to π1π
1
2 = π̃1π̃

1
2 , where π̃1 and π̃1

2 refer to the respective cure

probabilities induced by the logistic regression parameters from θ̃.

Next, if we consider t ∈ (τ1, τ2], equality of the likelihood contributions reduces to:

π1π
1
2 + π1(1− π1

2)S2(t) = π̃1π̃
1
2 + π̃1(1− π̃1

2)S̃2(t)

= π1π
1
2 + π̃1(1− π̃1

2)S̃2(t).
(3.7)

This implies that π1(1 − π1
2)S2(t) = π̃1(1 − π̃1

2)S̃2(t) for all t ∈ (τ1, τ2]. The dependence on

the covariates was omitted from the notation, but clearly, both the survival and the cure status

probabilities depend on the covariates. Equation (3.7) can be rewritten introducing the covariates

x:
S2(t|x)
S̃2(t|x)

=
π̃1(x)(1− π̃1

2(x))

π1(x)(1− π1
2(x))

=: c(x). (3.8)

Since the fraction of cure probabilities is independent of t, the fraction of survival probabilities

must also be constant with respect to t. Let S0
k(t) denote the baseline survival for event k = 1, 2.

Then Equation (3.8) can be rewritten as:

S0
2(t)

exp{β2x}

S̃0
2(t)

exp{β̃2x} = c(x). (3.9)

This implies that:

exp{β2x} logS0
2(t) = log c(x) + exp

{
β̃2x

}
log S̃0

2(t). (3.10)

As this equality holds almost everywhere, we can fix a specific value x′ of x for which the equality

holds. This value can be plugged into the equation above and then we can divide both quantities.
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This yields:

exp{β2x}
exp{β2x′}

=
exp{β2x} logS0

2(t)

exp{β2x′} logS0
2(t)

=
log c(x) + exp

{
β̃2x

}
log S̃0

2(t)

log c(x′) + exp
{
β̃2x′

}
log S̃0

2(t)
.

(3.11)

This equation can be solved for log S̃0
2(t) to find that:

log S̃0
2(t) ·

[
exp
{
β̃2x

}
− exp{β2x}

exp{β2x′}
exp
{
β̃2x

′
}]

=

[
exp{β2x}
exp{β2x′}

log c(x′)− log c(x)

]
. (3.12)

Note that S0
2(t) ̸≡ c for some constant c > 0 for all t ∈ (τ1, τ2] as limt→τ2 S

0
2(t) = 0. The same

holds for S̃0
2(t). This remark together with the fact that the right-hand side of Equation (3.12)

does not depend on t, we can conclude that both expressions within the square brackets are equal

to zero. This implies that:

exp
{
β̃2x

}
exp
{
β̃2x′

} =
exp{β2x}
exp{β2x′}

and
exp{β2x}
exp{β2x′}

log c(x′) = log c(x). (3.13)

From the first equation, it can be derived that:

exp
{
β̃2(x− x′)

}
= exp{β2(x− x′)} =⇒ β̃2(x− x′) = β2(x− x′). (3.14)

This holds for almost every x ∈ X . Together with the assumption that Var(X) has full rank, we

can conclude that β2 = β̃2. This equality can be plugged into Equation (3.9) to find that:

log
S0
2(t)

S̃0
2(t)

=
log c(x)

exp{β2x}
. (3.15)

As the left-hand side of the equation depends only on the time t and the right-hand side only on

the covariates x, it is implied that both are equal to some constant η. Unfortunately, it is not

evident that η = 0 as this would imply that S0
2(t) = S̃0

2(t) for all t ∈ (τ1, τ2]. It can be shown that

S0
2 and S̃0

2 are the same on (τ1, τ2]. This yields partial identifiability of the baseline survival for

the second event. Consider the likelihood contribution of an event of type 2 observed in (τ1, τ2].

Equality of the likelihoods on this interval yields:

π1(1− π1
2)f2(t) = π̃1(1− π̃1

2)f̃2(t). (3.16)

This equation can be rewritten as:

f2(t|x)
f̃2(t|x)

=
π̃1(x)(1− π̃1

2(x))

π1(x)(1− π1
2(x))

= c(x). (3.17)
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where c(x) is the same as in Equation (3.8). As a consequence:

f2(t|x)
f̃2(t|x)

=
S2(t|x)
S̃2(t|x)

. (3.18)

Equation (2.12) yields the following:

λ2(t|x)S2(t|x)
λ̃2(t|x)S̃2(t|x)

=
S2(t|x)
S̃2(t|x)

=⇒ λ2(t|x)
λ̃2(t|x)

= 1 a.e. (3.19)

This shows that λ2(t|x) = λ̃2(t|x) almost everywhere for t ∈ (τ1, τ2]. Since it also holds for almost

every x ∈ X , it identifies the baseline hazard for event 2 on the interval (τ1, τ2].

Furthermore, it shows that c(x) = 1 almost everywhere. Equation (3.17) implies that π̃1(x)(1 −
π̃1
2(x)) = π̃1(x)(1− π̃1

2(x)) almost everywhere. Combining this with the fact that π1π
1
2 = π̃1π̃

1
2 a.e.

shows that both π1 and π1
2 are identified.

Remark. The proof of Theorem 1 silently depends on Lemma 4 introduced in Section 3.2.1.

From Theorem 1, it can be concluded that a subset of the parameters is identifiable. Full identifi-

ability would e.g. follow from identification of λ02(t) on (0, τ2].

Lemma 2. Under the same assumptions as in Theorem 1, if λ02 were identified, then all parameters

of the model would be identifiable.

Proof. Suppose that L(θ) = L(θ̃) almost surely. It follows (from Theorem 1 and the additional

assumption) that λ02, β2, π1 and π1
2 have been identified. So it remains to show that we can identify

λ01, β1 and π0
2 .

Contributions of an uncensored observation of event 2 on [t, τ1) given in (3.6) can be written as:

f2(t)
{
π1(1− π1

2) + (1− π1)(1− π0
2)S1(t)

}
= f̃2(t)

{
π̃1(1− π̃1

2) + (1− π̃1)(1− π̃0
2)S̃1(t)

}
= f2(t)

{
π1(1− π1

2) + (1− π1)(1− π̃0
2)S̃1(t)

}
.
(3.20)

Simplification and rewriting yields the following equation:

S1(t|x)
S̃1(t|x)

=
(1− π1(x))(1− π̃0

2)

(1− π1(x))(1− π0
2)

=: d(x). (3.21)

Now the proof of identifiability of S2 from the proof of Theorem 1 can be followed. These are

explained in steps (3.8) – (3.15). It follows that λ01 and β1 are identified and it can be shown that

d(x) = 1 almost surely, and thus yields identifiability of π0
2 by Equation (3.21).

Imposing proper parametric assumptions on the potential survival times would, according to this

lemma, be sufficient to identify the survival times, and from there, the cure structure. We will not

impose any parametric restriction on the baseline hazards. Therefore, for the remaining parame-

ters, we transform our claim into a conjecture.

Conjecture 3. Suppose that τ1 < τ2 and X ∈ X contains a continuous covariate, then the model

is identifiable.
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To justify the use of only continuous covariates in Conjecture 3 we could construct a counterexample

for a binary covariate. From (3.20) and t→ 0 follows:

c :=
(1− π1

2(x)) ·
π1(x)

1−π1(x)
+ (1− π0

2(x))

(1− π1
2(x)) ·

π1(x)
1−π1(x)

+ (1− π̃0
2(x))

=
ψ(x) + 1− π0

2(x)

ψ(x) + 1− π̃0
2(x)

a.e (3.22)

for some constant c ∈ R and a function ψ(x) = (1 − π1
2(x)) · π1(x)/(1− π1(x)). Recall that the

cure probabilities are modelled by a logistic regression model. So we can write:

ψ(x) =
eγ1x

1 + eγ
1
2x
, 1− π0

2(x) =
1

1 + eγ
0
2x

and 1− π̃0
2(x) =

1

1 + eγ̃
0
2x
. (3.23)

Equation (3.22) holds for almost every x ∈ X . For a binary covariate, we can construct a coun-

terexample where it holds almost everywhere but γ02 ̸= γ̃02 . Though Equation (3.22) does not seem

satisfiable if π0
2(x) ̸= π̃0

2(x) a.s. if x is a continuous covariate. By taking the derivative of the

right-hand side of Equation (3.22), setting it equal to zero and solving it for π0
2 , may lead to the

conclusion that π0
2(x) = π̃0

2(x) almost surely. Unfortunately, due to the logistic form of the π’s,

equations are lengthy and hard to handle. Identification of π0
2 , similar to Lemma 2, leads to the

identifiability of all parameters in the model. For the time being, we can only conclude that more

research is necessary to round up the general proof.

In the next two subsections, identifiability is proven for two specific choices of cure structures:

complete cure and cure for only the event of interest. Both cure structures have been outlined in

Section 2.7.

3.2.1 The case of complete cure

First, we consider the case of complete cure. This cure structure has also been used by Zhang

et al. (2019). We have discussed the models illustrated in the article in Section 2.7.3. Model D

considers the case of complete cure while Model B and C coincide with the perspective that cure

can only happen for the event of interest. The authors assumed independence of the potential

survival times but left the problem of identifiability open. We will show that the parameters are

indeed identifiable.

In case of complete cure, we only need a single cure status indicator for all competing events

simultaneously:

π(x) := P(B1 = B2 = 1 | x) = P(B = 1 | x), (3.24)

where B is the random variable denoting whether an individual is immune to all competing events

and x are the covariates related to the incidence. Furthermore, we assume that the following

conditions hold:

(B1) (i) β⊤
1 x and β⊤

2 x do not contain an intercept.

(ii) The matrix Var(X) has full rank.

(B2) (i) There exists a threshold τ <∞ such that P(τ < Tk <∞) = 0 for all t ≥ τ and k = 1, 2,

and P(C > τ | x) ∈ (0, 1).

(ii) There e xists a proper cure fraction π(x) ∈ (0, 1) for all x ∈ X .
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In order to prove the next theorem, we must first prove a lemma. To show that the model with

complete cure and independent survival times is identifiable, several suitably chosen subsets of the

sample space are chosen. The parameters of the model can be identified over these subsets which

must have positive measures.

Lemma 4. The following subsets of the sample space have positive measure: (T > τ, δ = 0),

(T ≤ τ, δ = 0) and (T ≤ τ, δ = 1).

Proof. First, consider the case where T > τ and δ = 0. Note that:

P(T > τ, δ = 0 | x) = P(C > τ,B = 1 | x)

= π(x)P(C > τ | x)

> 0.

(3.25)

Suppose that T ≤ τ and δ = 0. Then we have that:

P(T ≤ τ, δ = 0 | x) = P(C ≤ τ, T1 > C, T2 > C, ..., TK > C | x)

≥ P(C ≤ τ,B = 1 | x)

= π(x)P(C ≤ τ | x)

> 0.

(3.26)

The inequality in the second line holds since:

{B = 1} = {T1 = T2 = ... = TK =∞} ⊂ {T1 > C, T2 > C, ..., TK > C}.

Now consider T ≤ τ and δ = 1 and denote M := min{T1, T2, ..., TK}. Then we can compute:

P(T ≤ τ, δ = 1 | x) = P(M ≤ τ,M ≤ C | x)

≥ P(M ≤ τ, C ≥ τ | x)

= P(M ≤ τ | x)P(C ≥ τ | x)

= (1− π(x))P(C ≥ τ | x)

> 0.

(3.27)

The last equality follows from the fact that if one of the potential survival times is finite, the

individual will be cured. This can be seen here:

P(M ≤ τ | x) = P(∃ i : Ti ≤ τ)

= 1− P(∀ i : Ti > τ)

= 1− P(T1 = T2 = ... = TK =∞)

= 1− π(x).

(3.28)

This shows that all three of the chosen subsets of the sample space have positive measures. In

the proof, independence of potential survival times was not used, although it was assumed in
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this section. Therefore, the lemma holds in a general setting where the survival times are not

independent.

For the case of complete cure, the cure statuses are given by π0
2 = 0 and π1

2 = 1. Later, it will be

shown that in a setting of complete cure, the cause-specific hazards and cure fraction are always

identifiable also without assuming independence of the potential survival times. This will be proven

in Section 3.4.1. Note that the cause-specific hazards equal the normal hazard rates if the survival

times are independent. Identifiability in this setting may follow as a consequence. A formal proof

of the theorem will be provided. The likelihood contributions given in (3.6) reduce for this (nested)

model to:

L0(θ) = π + (1− π)S(t),

L1(θ) = (1− π)f1(t)S2(t),

L2(θ) = (1− π)f2(t)S1(t).

(3.29)

Theorem 5. If π0
2 = 0 and π1

2 = 1, the survival times are independent and a cure threshold τ for

both events exists, the model is identifiable.

Proof. Assume that L(θ) = L(θ̃) holds almost surely. It in particular holds that L0(θ) = L0(θ̃),

that is:

π + (1− π)S(t) = π̃ + (1− π̃)S̃(t). (3.30)

Since (B2) (i) implies that S(t) = S1(t)S2(t) = 0 for all t ≥ τ , equation (3.30) reduces to π = π̃.

This subset of the sample space can be considered due to Lemma 4. By identifiability of the logistic

model, this shows that the cure fraction has been identified.

Now we consider equality of the likelihood contributions L1(θ) = L1(θ̃) and L1(θ) = L1(θ̃) a.s.

Since π has been identified, 1−π is known as well. The equalities of these likelihood contributions

imply, respectively, that:

f1(t)S2(t) = f̃1(t)S̃2(t) and f2(t)S1(t) = f̃2(t)S̃2(t). (3.31)

Both equality’s can be rewritten and identity (2.4) applied, to find that:

f1(t)

f̃1(t)
=
S̃2(t)

S2(t)
=
λ̃2(t)f̃2(t)

λ2(t)f2(t)
and

f2(t)

f̃2(t)
=
S̃1(t)

S1(t)
=
λ̃1(t)f̃1(t)

λ1(t)f1(t)
. (3.32)

Mutual substitution yields:
λ̃1(t)

λ1(t)
= 1 and

λ̃2(t)

λ2(t)
= 1. (3.33)

It follows that both λ1(t) = λ̃1(t) and λ2(t) = λ̃2(t) almost surely. By identifiability of the

Cox model, the hazards for both events have been identified. Therefore, the whole model is

identifiable.

Therefore, in the case of complete cure, the model is identifiable. In the next section, we discuss

the case when cure happens only to the event of interest.
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3.2.2 Cure only for event of interest

If we have prior knowledge that cure only happens for the event of interest, we can also identify the

survival times and cure fraction. Let event 1 be the event of interest. As noted, this case induces

the cure statuses to equal π0
2 = 0 and π1

2 = 0. The likelihood contributions are given by:

L0(θ) = S2(t)
{
π1 + (1− π1)S1(t)

}
,

L1(θ) = (1− π1)f1(t)S2(t),

L2(θ) = f2(t)
{
π1 + (1− π1)S1(t)

}
.

(3.34)

Previously, we considered two cure thresholds τ1 and τ2. In this setup, a finite τ2 does not exist,

as one is never cured of the second competing event. We thus make the following assumptions:

(C1) (i) β⊤
1 x and β⊤

2 x do not contain an intercept.

(ii) The matrix Var(X) has full rank.

(C2) (i) There exists a τ1 <∞ such that P(τ1 < T1 <∞) = 0 and P(C > τ1 | x) ∈ (0, 1).

(ii) There exists a proper cure fraction π1(x) ∈ (0, 1) for all x ∈ X .

Theorem 6. If π0
2 = 0 and π1

2 = 0, the survival times are independent and assumptions (C1)

and (C2) hold, then the model is identifiable.

Proof. Assume that L(θ) = L(θ̃) holds almost surely. It follows from the first and third equality

of (3.34) that:

S2(t|x)
S̃2(t|x)

=
π̃1(x) + (1− π̃1(x))S̃1(t|x)
π1(x) + (1− π1(x))S1(t|x)

and
f2(t|x)
f̃2(t|x)

=
π̃1(x) + (1− π̃1(x))S̃1(t|x)
π1(x) + (1− π1(x))S1(t|x)

. (3.35)

As a consequence,

S2(t|x)
S̃2(t|x)

=
f2(t|x)
f̃2(t|x)

=
λ2(t|x)
λ̃2(t|x)

S2(t|x)
S̃2(t|x)

.

(3.36)

This shows that λ(t|x) = λ̃(t|x) almost surely. Together with the identifiability of the Cox model,

it identifies both λ02(t) and β2, implying that f2(t|x) has been identified. So from the likelihood

equality of an observed event of type 2, we find that:

π1(x) + (1− π1(x))S1(t|x) = π̃1(x) + (1− π̃1(x))S̃1(t|x). (3.37)

Now let t → τ1, then we have that limt→τ1 S1(t|x) = limt→τ1 S̃1(t|x) = 0. As a consequence,

Equation (3.37) reduces to π1(x) = π̃1(x) almost surely, i.e. the cure fraction has been identified.

Now it follows from:

(1− π1(x))f1(t|x)S2(t|x) = (1− π1(x))f̃1(t|x)S2(t|x) =⇒ f1(t|x) = f̃1(t|x), (3.38)
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that also f1(t|x) has been identified. This implies that λ01(t) and β1 are also identified by the

identifiability of the Cox model.

3.3 Non-identifiability in a general setting

In this section, we will show that the cure model – including the cure structure – is not identifiable

in a setting with less restrictive assumptions. Under weaker assumptions, we can find a proxy model

for which the likelihood resembles the one from the original model. This proxy model is given by a

cure model with a complete cure structure and independent survival times. As mentioned before,

there is a general non-identifiability problem when competing risks are present (Tsiatis (1975)).

Our results are similar to Tsiatis (1975): without cure, the proxy models coincide.

Consider two competing risks for which an individual can be cured separately. To each competing

risk a potential survival time T1 and T2 can be associated. These are the survival times for those

who are only susceptible to their respective risks. As noted in Section (2.5.1) the potential survival

times T1 and T2 are not observed. Only the actual survival time T = min (T1, T2) is observed in

the case of an uncensored observation.

Since the potential survival times are not independent, we cannot model the hazard directly. We

will therefore model the cause-specific hazards conditional on the cure status. The cause-specific

hazard (and other related functions) need to be redefined in the context of cure. For example, we

can define a hazard function on the whole population, but it is more interesting to restrict it to the

uncured subpopulation. These definitions are the same as in Nicolaie et al. (2019). First, define

the conditional (on the cure statuses) total hazard as follows:

λ•(t) := lim
dt→0

P(t ≤ T < t+ dt | T ≥ t, B1 = B2 = 0)

dt
(3.39)

This is the hazard rate for all susceptible individuals. The immune individuals would never expe-

rience the event, implying a constant hazard of zero. This would not properly define a survival

function. Furthermore, we introduce the conditional cause-specific hazard rate:

λ∗k(t) := lim
dt→0

P(t ≤ T < t+ dt,D = k | T ≥ t, Bk = 0)

dt
. (3.40)

Using (3.40), we can define the function:

S∗
k(t) := exp

{
−
∫ t

0

λ∗k(u) du

}
. (3.41)

We emphasize that this function – in general – does not define a proper survival function. It only

does so under the assumption that the competing risks have independent follow-up. Furthermore,

we can define a corresponding density as:

f∗k (t) := λ∗k(t)S
∗
k(t). (3.42)
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The likelihood contributions are then given by:

L1(θ) = f∗1 (t)
{
(1− π1)π0

2 + (1− π1)(1− π0
2)S

∗
2 (t)

}
,

L2(θ) = f∗2 (t)
{
π1(1− π1

2) + (1− π1)(1− π0
2)S

∗
1 (t)

}
,

L0(θ) = π1π
1
2 + π1(1− π1

2)S
∗
2 (t) + (1− π1)π0

2S
∗
1 (t) + (1− π1)(1− π0

2)S
∗
1 (t)S

∗
2 (t).

(3.43)

These expressions for the likelihood look similar to the ones from Section 3.2, but they do not

have the same interpretation. In the presence of competing risks, S∗(t) does not have a survivor

function interpretation. This is explained in Section 2.5. More details can be found in (Putter

et al., 2007).

Furthermore, it is assumed that there exist cure thresholds τ1, τ2 < ∞ such that P(T1 > τ1) =

P(T2 > τ2) = 0. This implies that:

S∗
1 (t) = 0 for all t > τ1,

S∗
2 (t) = 0 for all t > τ2.

(3.44)

Theorem 7 (Non-identifiability of the general cure structure). If the cure thresholds coincide

(τ1 = τ2) and both the cure probabilities and the cause-specific hazards are independent of the

covariates or are left unspecified (completely non-parametric), then it is not possible to:

(a) identify the parameters related to the potential survival times;

(b) identify the parameters of the logistic model related to the cure fractions.

Proof. To show that the model is not identifiable, we will construct a proxy model with net survival

functions S̃1 and S̃2 and cure structure probabilities π̃1, π̃
0
2 and π̃

1
2 for which the likelihood resembles

the likelihood of the original model. In particular, these survival functions define two independent

follow-up times and the cure structure probabilities are given by the complete cure structure.

As we took the potential survival times in the proxy model to be independent, we can write:

S̃(t) = S̃1(t)S̃2(t) = exp

{
−
∫ t

0

λ̃∗1(u) + λ̃2(u) du

}
, (3.45)

where λ̃1 and λ̃2 denote the cause-specific hazard rates in the proxy model. As the potential

survival times are independent, the cause-specific hazards equal the regular hazards.

For the proxy model to have a complete cure structure, the cure structure variables are chosen to

equal: 
π̃1 = π1π

1
2 ,

π̃0
2 = 0,

π̃1
2 = 1.

(3.46)

This ensures on the one hand that the proxy model has a complete cure structure, and on the

other hand that the fraction of people never experiencing any event is equal in both models.

We will now derive the hazards for which the likelihoods in the proxy and original model resemble

each other. The cure statuses in Equation (3.46) imply that the likelihood contribution of the
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uncensored observations in the proxy model is given by:

L0(θ̃) = π1π
1
2 + (1− π1π1

2)S̃(t). (3.47)

Assume that the likelihood contributions of the censored observations are equal, that is, L0(θ) =

L0(θ̃). Then it holds that:

(1−π1)(1−π0
2)S

∗
1 (t)S

∗
2 (t)+(1−π1)π0

2S
∗
1 (t)+π1(1−π1

2)S
∗
2 (t)+π1π

1
2 = π1π

1
2+(1−π1π1

2)S̃(t). (3.48)

From this equality, we find that the survival function in the proxy model must be given by:

S̃(t) =
1

1− π1π1
2

(
(1− π1)(1− π0

2)S
∗
1 (t)S

∗
2 (t) + (1− π1)π0

2S
∗
1 (t) + π1(1− π1

2)S
∗
2 (t)

)
. (3.49)

Since this survival is given by the formula in (3.45), we can take a logarithm and differentiate both

sides of the equation to find that:

λ̃1(t) + λ̃2(t) =
∂

∂t

[
− log

{
1

1− π1π1
2

(
(1− π1)(1− π0

2)S
∗
1 (t)S

∗
2 (t) + (1− π1)π0

2S
∗
1 (t) + π1(1− π1

2)S
∗
2 (t)

)}]
=
f∗1 (t)

{
(1− π1)π0

2 + (1− π1)(1− π0
2)S

∗
2 (t)

}
+ f∗2 (t)

{
π1(1− π1

2) + (1− π1)(1− π0
2)S

∗
1 (t)

}
(1− π1)(1− π0

2)S
∗
1 (t)S

∗
2 (t) + (1− π1)π0

2S
∗
1 (t) + π1(1− π1

2)S
∗
2 (t)

=
P(T = t,D = 1) + P(T = t,D = 2)

P(t < T <∞)
.

(3.50)

A natural choice for the hazards in the proxy model is as follows:

λ̃1(t) =
P(T = t,D = 1))

P(t ≤ T <∞)
and λ̃2(t) =

P(T = t,D = 2)

P(t ≤ T <∞)
. (3.51)

For this choice of hazards, the likelihoods of the uncensored observation are equal as well. It can

be seen that:

L1(θ̃) = (1− π1π1
2)S̃(t) · λ̃1(t)

∗
= P(t < T <∞) · P(T = t,D = 1)

P(t < T <∞)

= P(T = t,D = 1)

= L1(θ).

(3.52)

The equality denoted with ∗ follows from Equation (3.49). Analogously, we can show that for this

choice of hazards, it also holds that L2(θ) = L2(θ̃).

Remark. Although the theorem states that under general assumptions the cure structure cannot be

identified, it is possible to identify the proportion of individuals insusceptible to any of the events.

This fraction has the same interpretation under the different models.

This theorem shows that for a model with competing risks and a general cure structure, we can

always construct a model with independent competing risks and a complete cure structure. We

will illustrate this by extending an example from Tsiatis (1975) and Crowder (2012). Consider two
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competing risks distributed according to Gumbel’s first bivariate exponential distribution (Gumbel,

1960). The joint survivor function of T1 and T2 is given by:

S(t1, t2) = exp{−λ1t1 − λ2t2 − θt1t2}, (3.53)

where λ1, λ2 > 0 and 0 ≤ θ ≤ λ1λ2. Furthermore, let the cure probabilities be equal: π1 = π0
2 =

π1
2 = γ ∈ (0, 1). The cause-specific hazards for this distribution are given by:

λ1(t) = λ1 + θt and λ2(t) = λ2 + θt. (3.54)

The marginal survival function for event 1 is given by S1(t) = exp{−λ1t}. In the proxy model,

this survival function has a different form. It is given by S̃1(t) = exp
{
−λ1t− 1

2θt
2
}
. This function

already highlights the difference between the two models. Now we also include an example which

utilizes the cure probabilities. Consider the following function:

p(t) := P(T > t,B1 = 1). (3.55)

In the original model, this function can be expressed as follows:

p(t) = π1(1− π1
2)P(T > t | B1 = 1, B2 = 0) + π1π

1
2P(T > t | B1 = 1, B2 = 1)

= π1(1− π1
2)P(T2 > t) + π1π

1
2

= γ(1− γ)S2(t) + γ2.

(3.56)

Contrary, in the proxy model, this function can be expressed as follows:

p(t) = π1π
1
2 = γ2. (3.57)

The differences in S1(t) and p(t) in the original and proxy model are highlighted in Figure 3.1.

The choices of parameters are as follows γ = 1/4, λ1 = λ2 = 1 and θ = 0.25, 0.75.
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Figure 3.1: Plot of the function p(t) and the different marginal survival functions (θ = 0.25, 0.75).
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According to Theorem 7, it is in general not possible to recover the cure structure and survival

functions from the data. This has strong practical implications as we have seen through the

example above. For instance, it is imperative that one has prior knowledge of the cure structure.

If not, the practitioner has to make assumptions about the dependence structure of the survival

times, which is not realistic in many situations. We have already seen that assuming independence

of potential survival times suffices to recover the cure structure from the data. One can also make

assumptions about the cure structure for the model to be identifiable. In the next section, we will

treat several examples of complete cure models.

3.4 Identifiability for complete cure

In this section, we will show that the complete cure structure is identifiable without imposing

independence constraints on the potential survival times. Contrary to the previous parts of this

chapter, we do assume a certain form of the cure structure. This is motivated by practical reasons.

For a lot of applications of the cure model in the presence of competing risks, there is sufficient

prior knowledge that the cure structure is complete, i.e. cure happens for all competing events

simultaneously. If we consider osteosarcoma – a malignant bone tumour – there is clinical knowl-

edge or relevance indicating complete cure. The competing events for osteosarcoma are – among

others – secondary malignancy, recurrence of the osteosarcoma and death due to the tumour. It

is presumed that cure means that a patient does not experience any of these events. It, therefore,

makes sense to model the cure structure as complete and not wonder about recovering the cure

structure from the data.

We will show that assuming complete cure leads to identifiability if we model the cause-specific

hazards and the subdistribution hazards. As mentioned before, these quantities are observable

from the data and do not presume independence of the potential survival times Putter et al.

(2007). Furthermore, we will show that the Vertical model (Nicolaie et al., 2019) is identifiable

under suitable conditions.

Consider now the general case of K competing events. We pose no conditions on the dependence

structure of the potential survival times T1, T2, ..., TK . In case of complete cure, we only need to

consider one cure threshold, as explained in Section 3.2.1. The following conditions are assumed

to hold:

(D1) (i) β⊤
k x does not contain an intercept for k = 1, 2, ...,K.

(ii) The matrix Var(X) has full rank.

(D2) (i) There exists one τ < ∞ such that P(τ < Tk < ∞) = 0 for all k = 1, 2, ...,K and

P(C > τ | x) ∈ (0, 1).

(ii) There exists a proper cure fraction, that is, π(x) ∈ (0, 1) for all x ∈ X .

The assumptions posed under (D1) ensure identifiability of the Cox model. Furthermore, the

existence of a cure threshold τ is assumed. Similar to the standard case without competing risks,

there is only one cure threshold.
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3.4.1 Identifiability of the cause-specific hazard for complete cure

We consider cure in the competing risk setting and model the cause-specific hazard. The contri-

bution of an individual who experienced an event of type k is as follows:

Lk(θ) = (1− π(x)) ∂
∂u
Ik(u)|t

= (1− π(x))λk(t|x)S(t|x)

= (1− π(x))λk(t |x)) exp

{
−

K∑
k=1

∫ t

0

λk(u|x)du

}
.

(3.58)

Since a cured individual will never experience any of the competing events, the likelihood contri-

bution of a censored observation is given by:

L0(θ) = P(T > t) = π(x) + (1− π(x)) exp

{
−

K∑
k=1

∫ t

0

λk(u|x)du

}
. (3.59)

Theorem 8. Under assumptions (D1)-(D2) the parameters related to the cure fraction and the

cause-specific hazards are identifiable.

Proof. Assume that L(θ) = L(θ̃). By Lemma 4, we can consider the equality of the likelihoods over

these three subsets separately. First, we consider t > τ , then equality of the likelihood contribution

of a censored observation L0 is reduced to:

π(x) = π̃(x). (3.60)

Since exp
{
−
∑K

k=1 Λk(t|x)
}

= 0 by assumption (B2). This implies that the cure fraction is

identified as the logistic model is identifiable. Now consider the same contribution but for T ≤ τ :

π(x) + (1− π(x))S(t|x) = π̃(x) + (1− π̃(x))S̃(t|x). (3.61)

Since π has been identified, this reduces to S(t|x) = S̃(t|x), i.e. the overall survival S(t|x) has also
been identified.

Next, we consider equality of the likelihood contribution of an uncensored observation of type k,

that is:

(1− π(x))λk(t |x)S(t|x) = (1− π̃(x))λ̃k(t |x)S̃(t|x). (3.62)

Since π1 and S(t|x) have been identified, this equation reduces to:

λk(t|x) = λ̃k(t|x). (3.63)

By identifiability of the Cox model, the cause-specific baseline hazard and Cox regression coeffi-

cients are identified. Thus the model is identifiable.

So analogously to the standard competing risk model, the cause-specific hazards are observable

from the data. Now we will turn our attention to the subdistribution hazard, which is also an

observable quantity in standard competing risk modelling.
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3.4.2 Identifiability of the subdistribution hazard for complete cure

We consider cure in the competing risk setting and model the subdistribution hazard. The contri-

bution of an individual who experiences an event of type k is as follows:

Lk(θ) = P(T = t,D = k,B = 0)

= P(B = 0)P(T = t,D = k | B = 0)

= (1− π(x))λsdk (t | Z)
(
1− Ik(t)

)
= (1− π(x))λsdk (t | Z) exp

{
−
∫ t

0

λsdk (u | Z)du
}
.

(3.64)

where λsdk (t | Z) is the subdistribution hazard and Ik(t) is the cumulative incidence function of

event k. Since a cured individual will never experience any of the competing events, the likelihood

contribution of a censored observation is given by:

L0(θ) = P(T > t)

= π(x) + (1− π(x))S(t | Z)

= π(x) + (1− π(x))

(
1−

K∑
i=1

Ik(t)

)
.

(3.65)

Theorem 9. Under assumptions (B1)-(B2) the cure fraction and the subdistribution hazards are

identifiable.

Proof. Assume that L(θ) = L(θ̃) almost surely. By Lemma 4, we can consider the equality of the

likelihoods over these three subsets separately. In a similar fashion to the proof of Theorem 8, we

can identify π(x). Now consider the event (T < τ,D = k). Then we find that:

λsdk (t | Z) exp
{
−
∫ t

0

λsdk (u | Z)du
}

= λ̃sdk (t | Z) exp
{
−
∫ t

0

λ̃sdk (u | Z)du
}
. (3.66)

Integrating both sides of the equation yields:

exp

{
−
∫ t

0

λsdk (u | Z)du
}

= exp

{
−
∫ t

0

λ̃sdk (u | Z)du
}
+ C, (3.67)

for some constant C ∈ R. Note that it must hold that C = 0. Since t = 0 results in 1 = 1+C. This

implies that λsdk (u|x) = λ̃sdk (u|x), i.e. the subdistribution hazards are identified. It then follows

from the identifiability of the Cox model that the model is identified.

This shows that the subdistribution hazard is identifiable from the data as well. As mentioned, the

cause-specific hazard and subdistribution hazard are the only observable quantities in competing

risk analysis. This is thus also the case when we also take a fraction of cured patients into account

and assume that the cure structure is complete.

3.4.3 Identifiability of the Vertical model

In this section, the Vertical model is introduced (Nicolaie et al., 2019). The Vertical model starts

the analysis from a different decomposition of the joint probability. The joint probability can be
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decomposed as follows:

P(T,D) = P(D | T ) · P(T ),

where T is the survival time and D the competing risks status indicator. This is a fundamentally

different decomposition compared to the classical decomposition which conditions on the event

that is experienced. First, the follow-up time is modelled and then, conditional, on the follow-up

time, the event is modelled. This contrasts with previous models where at onset it is determined

which event will – or will not – be experienced.

The follow-up time is modelled as a whole, that is, first the time to any event is modelled. This

is done using the total hazard, given in Equation (3.39), of all events. The total hazard induces

a proper survival function for the uncured individuals and a corresponding density, i.e. Su(t|x) =
exp
{
−
∫ t

0
λ•(u|x)du

}
and fu(t|x) = − ∂

∂tSu(t|x). The total hazard is consequently modelled using

the Cox PH model to incorporate the effect of covariates. After the time to any of the events is

modelled, the incidence of the competing events is modelled. For this, the relative hazards are

modelled through a multinomial model. The conditional relative hazard of competing event k at

time t is defined as:

ρk(t) := P(D = k | T = t, Bk = 0), (3.68)

and equals the ratio of the hazard with respect to the total hazard, that is:

ρk(t) =
λ∗k(t)∑K
i=1 λ

∗
i (t)

=
λ∗k(t)

λ•(t)
. (3.69)

The relative hazard of cause k is the probability that, given that an event was experienced at

time t, the event was of type k. It is modelled using a multinomial regression model, while the

probability of cure π(x) is modelled through a logistic regression model.

There are two different types of contributions to the likelihood. Individuals who experienced an

event at time t of type k contributes:

Lk(θ) = P(T = t,D = k,B = 0)

= P(B = 0)P(T = t | B = 0)P(D = k | T = t, B = 0)

= (1− π(x))fu(t|x)ρk(t).

(3.70)

An individual who is censored at time t contributes:

L0(θ) = P(T > t)

= P(B = 0)P(T > t | B = 0) + P(B = 1)

= (1− π(x))Su(t|x) + π(x)

(3.71)

As we consider an additional model for the estimation of the relative risks, we have to make further

assumptions. Additionally to the conditions imposed under (D1)-(D2), we assume that:

(D3) The multinomial model is identifiable.

It is well-known that the multinomial model is identifiable if one of the parameters is chosen to be

equal to zero. It can be chosen arbitrarily as the estimated probabilities are not affected by it.
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Theorem 10. Under assumptions (D1)-(D3) the Vertical model is identifiable.

Proof. Assume that L(θ) = L(θ̃) almost surely. By Lemma 4, we can consider the equality of the

likelihoods over these three subsets separately. First, consider the case where T > τ and δ = 0.

On this subset, the following holds:

π(x) + (1− π(x))Su(t|x) = π̃(x) + (1− π̃(x))S̃u(t|x) (3.72)

It follows from assumption (B3) that Su(t | Z) = 0 on this part of the sample space. Therefore,

it must hold that:

π(x) = π̃(x). (3.73)

By identifiability of the logistic model, the cure fraction has been identified.

Now suppose that T ≤ τ and δ = 0. Then Equation (3.74) still holds, but since the cure fraction

has been identified, we find that:

π(x) + (1− π(x))Su(t|x) = π(x) + (1− π(x))S̃u(t|x), (3.74)

which implies that Su(t|x) = S̃u(t|x). It follows that the total hazards must be equal. By the

identifiability of the Cox model, the baseline total hazard and Cox’s regression coefficients are

identified.

Consider T ≤ τ and D = k. Then we have that:

(1− π(x))fu(t|x)ρk(t) = (1− π̃(x))f̃u(t|x)ρ̃k(t). (3.75)

Since π(x) and fu(t|x) have been identified, this equation reduces to ρk(t) = ρ̃k(t), i.e. the relative

hazards are identified. By identifiability of the multinomial model, the corresponding parameters

are identified.

Under the assumption of complete cure, three different models can be employed: cause-specific

hazards, subdistribution hazards and a Vertical approach. All three are identifiable and are thus

suited for statistical inference in practical applications.
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Chapter 4

Estimation of the competing risks

cure model

The estimation procedure of cure models depends on unobserved random variables known as the

cure statuses. Therefore, the EM (Expectation-Maximization) algorithm is commonly used to

estimate the parameters of the standard cure model. The EM algorithm effectively deals with latent

variables by iteratively approximating the maximum likelihood estimate of the model’s parameters.

In this chapter we apply the EM algorithm to address our estimation problem: estimating the

parameters of the competing risks cure model. This model is presented in Section 3.2. It takes

into account two competing events whose potential survival times are distributed independently

and no prior assumptions on the cure structure are made.

The chapter is structured as follows: first, a general introduction to the EM algorithm is given.

Then details about the E-step and M -step are provided. The chapter ends with the extension of

the estimation procedure to the complete cure model.

4.1 Introduction to the EM algorithm

The Expectation Maximization (EM) algorithm is applicable to maximum likelihood estimation

where missing data is present. It is an iterative procedure which consists of two steps: the E-

step or the expectation step and the M -step or the maximization step. The algorithm was first

introduced by Dempster et al. (1977). It has been widely used in a broad range of applications

since then. In a nutshell, the algorithm first approximates the missing values based on a set of

parameters and the observed data, and secondly optimizes the model. These steps are repeated

until convergence. To properly introduce the algorithm, a new concept needs to be introduced:

the complete (log-)likelihood.

The data can be split up into two parts: the observed data O and the latent data W . The latent

data consists of the cause-specific cure statusesW = (B1, B2) which are defined in Section 3.1. For

each subject i, the observed data consists of the follow-up time, the competing risk status indicator

and the covariates, i.e. Oi = (t′i, δi, xi). The complete likelihood is the likelihood of the observed

and latent data. In case the latent data are observed, the likelihood is given by the complete
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likelihood. The contributions of the three types of observations (censored, event 1 and event 2) to

the complete likelihood Lc(θ;O,W ) are given by:

Lc
0(θ;O,W ) = (1− π1)(1− π0

2)S1(t)S2(t)(1−B1)(1−B2) + (1− π1)π0
2S1(t)(1−B1)B2

+ π1(1− π1
2)S2(t)B1(1−B2) + π1π

1
2B1B2,

Lc
1(θ;O,W ) = (1− π1)π0

2f1(t)(1−B1)B2 + (1− π1)(1− π0
2)f1(t)S2(t)(1−B1)(1−B2),

Lc
2(θ;O,W ) = π1(1− π1

2)f2(t)B1(1−B2) + (1− π1)(1− π0
2)f2(t)S1(t)(1−B1)(1−B2).

(4.1)

The dependence on O and W will be omitted from the notation. Furthermore, to reduce the

complexity of the notation, the following indicator variables are introduced:

δ0i = 1(Di = 0),

δ1i = 1(Di = 1),

δ2i = 1(Di = 2).

(4.2)

These quantities are equal to 1 if the subject is censored, experienced an event of type 1 or

experienced an event of type 2, respectively. The complete log-likelihood is then given by:

ℓc(θ;O,W ) = δ0 logLc
0(θ) + δ1 logLc

1(θ) + δ2 logLc
2(θ), (4.3)

where θ is the vector of all parameters. This log-likelihood contrasts the observed log-likelihood

which is given by taking the logarithm of the appropriate contributions given in (3.43). This yields:

ℓ(θ;O) = δ0 logL0(θ) + δ1 logL1(θ) + δ2 logL2(θ). (4.4)

Now that the complete log-likelihood has been introduced, we can proceed to the actual EM

algorithm. Let θ̂ denote the current estimates of the parameters. After initialization, the algorithm

repeats the following two steps:

E-step. Calculate the conditional expectation of the complete log-likelihood:

Q(θ | θ̂) := EW |θ̂,O[ℓ
c(θ | O,W )].

M -step. Choose θ̂new ∈ arg max θ∈ΩQ(θ | θ̂), that is

Q(θ̂new | θ̂) ≥ Q(θ | θ̂) (4.5)

for all θ ∈ Ω.

The steps are repeated until convergence. The algorithm is considered to have converged if the

difference in Euclidean distance between successive parameter estimates is relatively small. It

was proven by Dempster et al. (1977) that – under suitable regularity conditions – the algorithm

converges to the maximum likelihood estimate.

For the estimation problem addressed here, we need to find an expression of the conditional expec-

tation of the complete log-likelihood and maximize this expression with respect to the parameters.

The coming two sections will be devoted to these two tasks respectively.
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4.2 E -step

The E-step calculates the conditional expectation of the parameters with respect to the unobserved

cure statuses given the observed data and the current estimates of the parameters. In this section,

we will compute the expressions for these conditional expectations. Throughout this chapter, we

will – as above – use the term current. This refers to the estimates or knowledge at hand in the

given iteration. We will refrain from explicitly registering the number of the current iteration

throughout this chapter.

This section will be split up into two subsections. First, we define the weights which are used –

and updated – in each iteration. These weights coincide with the conditional expectations of the

cure statuses. Then we will express the conditional expectation of the complete log-likelihood in

terms of these weights and the current parameter estimates.

4.2.1 Conditional expectation of the cure statuses

Before we will delve into the conditional expectation of the complete log-likelihood, we define the

following weights:

ϕ = EW |θ̂,O[B1],

ψ0 = EW |θ̂,O[B2 |B1 = 0],

ψ1 = EW |θ̂,O[B2 |B1 = 1].

(4.6)

These weights are the conditional expectations of the cure statuses with respect to the observed data

and current parameter estimates. They form the building blocks for the conditional expectation

of the complete log-likelihood – which is computed later – and can be expressed in terms of the

observed data and current parameter estimates. This section will be devoted to this task.

Quantities evaluated at the current estimates will be denoted as ·̂, to distinguish them from the

ones with respect to which is maximized. This will be omitted from the notation if it is evident that

the quantity belongs to either of the two groups. For example, ϕ, ψ0 and ψ1 are always evaluated

at the current estimates. Additionally, these estimates may depend on the covariates xi for the

i-th individual in the data. Therefore, the estimates of, e.g. π1, may be different for the different

subjects in the data. Recall that the covariates, competing risks status indicator and observed

follow-up time for individual i are denoted, by xi, δi and ti, respectively. So the weights can be

written as follows:

ϕi = EW |θ̂,O[B1] = P(B1 = 1 | xi, ti, δi, θ̂),

ψ0
i = EW |θ̂,O[B2 | B1 = 0] = P(B2 = 1 | B1 = 0, xi, ti, δi, θ̂),

ψ1
i = EW |θ̂,O[B2 | B1 = 1] = P(B2 = 1 | B1 = 1, xi, ti, δi, θ̂).

(4.7)

First, an expression for ϕi will be derived. It represents the current estimate of the probability

of being cured of event one for individual i. If δi = 1, individual i is not cured of this particular

event. It therefore holds that ϕi = 0. In the case that δi ̸= 1, individual i is either censored or the
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subject experienced an event of the other type. It can therefore be written as follows:

ϕi = P(B1 = 1 | xi, ti, δi, θ̂)

=
P(B1 = 1, T1 > ti, T2 > ti | xi, θ̂)

P(T1 > ti, T2 > ti | xi, θ̂)
1(δi = 0)

+
P(B1 = 1, T1 > ti, T2 = ti | xi, θ̂)

P(T1 > ti, T2 = ti | xi, θ̂)
1(δi = 2).

(4.8)

In the last line, two different terms are given. These will be computed separately. The first term

can be expressed as follows:

P(B1 = 1, T1 > ti, T2 > ti | xi, θ̂)
P(T1 > ti, T2 > ti | xi, θ̂)

=
P(B1 = 1, T2 > ti | xi, θ̂)

P(B1 = 1, T2 > ti | xi, θ̂) + P(B1 = 0, T1 > ti, T2 > ti | xi, θ̂)

=
P(B1 = 1, B2 = 1 | xi, θ̂) + P(B1 = 1, B2 = 0, T2 > ti | xi, θ̂){

P(B1 = B2 = 1 | xi, θ̂) + P(B1 = 1, B2 = 0, T2 > ti | xi, θ̂)

+ P(B1 = 0, T1 > ti, B2 = 1 | xi, θ̂) + P(B1 = B2 = 0, T1 > ti, T2 > ti | xi, θ̂)
}

=
π̂1π̂

1
2 + π̂1(1− π̂1

2)S2(ti)

π̂1π̂1
2 + π̂1(1− π̂1

2)S2(ti) + (1− π̂1)π̂0
2S1(ti) + (1− π̂1)(1− π̂0

2)S1(ti)S2(ti)

=

(
1 +

1− π̂1
π̂1

π̂0
2S1(ti) + (1− π̂0

2)S1(ti)S2(ti)

π̂1
2 + (1− π̂1

2)S2(ti)

)−1

.

(4.9)

The dependence of the current estimates on xi is omitted from the notation in the last lines. In

the second last step, we expressed the conditional probabilities in terms of the (logistic) estimates

of the cure probabilities. These can be computed using the following strategy:

P(B1 = B2 = 0, T1 > ti | xi, θ̂) = P(B1 = 0 | xi, θ̂) · P(B2 = 0 | B1 = 0, xi, θ̂)

· P(T1 > ti | B1 = 0, xi, θ̂) · P(T2 > ti | B2 = 0, xi, θ̂)

= π̂1π̂
0
2S1(ti)S2(ti).

(4.10)

The others follow similarly. This strategy can be used once more to compute the second term of

the quantity in (4.8). This yields:

P(B1 = 1, T1 > ti, T2 = ti | xi, θ̂)
P(T1 > ti, T2 = ti | xi, θ̂)

=
P(B1 = 1, T2 = ti | xi, θ̂)

P(B1 = 1, T2 = ti | xi, θ̂) + P(B1 = 0, T1 > ti, T2 = ti | xi, θ̂)

=
P(B1 = 1, B2 = 0, T2 = ti | xi, θ̂)

P(B1 = 1, B2 = 0, T2 = ti | xi, θ̂) + P(B1 = 0, B2 = 0, T1 > ti, T2 = ti | xi, θ̂)

=
π̂1(1− π̂1

2)f2(ti)

π̂1(1− π̂1
2)f2(ti) + (1− π̂1)(1− π̂0

2)S1(ti)f2(ti)

=

(
1 +

(1− π̂1)(1− π̂0
2)

π̂1(1− π̂1
2)

S1(ti)

)−1

.

(4.11)
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In summary, the weight ϕi is given by:

ϕi = 1(δi = 0)

(
1 +

1− π̂1
π̂1

π̂0
2S1(ti) + (1− π̂0

2)S1(ti)S2(ti)

π̂1
2 + (1− π̂1

2)S2(ti)

)−1

+ 1(δi = 2)

(
1 +

(1− π̂1)(1− π̂0
2)

π̂1(1− π̂1
2)

S1(ti)

)−1

.

(4.12)

Now it remains to compute ψ0 and ψ1. Note that both are equal to 0 if δ = 2. In that case, we

know that the patient experienced an event of type two and – thus – was not cured of this event.

In the case that δ ̸= 2, we find that:

ψ0
i = 1(δi ̸= 2)P(B2 = 1 | B1 = 0, xi, ti, δi, θ̂)

= 1(δi ̸= 2)
P(B2 = 1, T2 > ti | B1 = 0, xi, θ̂)

P(T2 > ti | B1 = 0, xi, θ̂)

= 1(δi ̸= 2)
π̂0
2

π̂0
2 + (1− π̂0

2)S2(t− i)
.

(4.13)

Since the potential survival times are independent, the events {T1 > ti} or {T1 = ti} can be ignored

– i.e. their influence on the probabilities cancel out. The weight ψ1 can be computed analogously.

Note that P(B1 = 1, δ = 1) = 0, i.e. it does not happen that {B1 = 1} and {δ = 1}. Therefore,

this yields the following expression:

ψ1
i = 1(δi = 0)

π̂1
2

π̂1
2 + (1− π̂1

2)S2(ti)
. (4.14)

These weights form one of the building blocks of the conditional expectation of the complete log-

likelihood which will be updated at each iteration of the algorithm. It now remains to find an

expression for this conditional expectation. This will be given in the next subsection.

4.2.2 The conditional expectation of the complete log-likelihood

Recall from (4.3) that ℓc(θ | O,W ) is given by three separate terms: logLc
0(θ), logLc

1(θ) and

logLc
2(θ). The conditional expectation of these three will be computed in the respective order. For

the first one, we have that:

EW |θ̂,O[logL
c
0(θ)] = EW |θ̂,O

[
(1− π1)(1− π0

2)S1(t)S2(t)(1−B1)(1−B2)

+ (1− π1)π0
2S1(t)(1−B1)B2

+ π1(1− π1
2)S2(t)B1(1−B2)

+ π1π
1
2B1B2

]
.

(4.15)

The terms (1 − B1)(1 − B2), (1 − B1)B2, B1(1 − B2) and B1B2 are Bernoulli random variables.

The expectation is therefore given by the probability of being equal to 1. The joint probability of,
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for example, B1(1−B2) being equal to 1 can be computed as follows:

P(B1(1−B2) = 1 | θ̂,O) = P(1−B2 = 1 | B1 = 1, θ̂,O)P(B1 = 1 | θ̂,O)

=
(
1− P(B2 = 1 | B1 = 1, θ̂,O)

)
P(B1 = 1 | θ̂,O)

= (1− ψ1)ϕ.

(4.16)

A similar approach can be used to compute the other probabilities. These are given by:

P(B1B2 = 1 | θ̂,O) = ϕψ1,

P((1−B1)B2 = 1 | θ̂,O) = (1− ϕ)ψ0,

P((1−B1)(1−B2) = 1 | θ̂,O) = (1− ϕ)(1− ψ0).

(4.17)

Plugging this result into (4.15) yields the following expression for the contribution of a censored

observation to the complete log-likelihood:

EW |θ̂,O[logL
c
0(θ)] = (1− ϕ)(1− ψ0) log

{
(1− π1)(1− π0

2)S1(t)S2(t)
}

+ (1− ϕ)ψ0 log
{
(1− π1)π0

2S1(t)
}

+ ϕ(1− ψ1) log
{
π1(1− π1

2)S2(t)
}
+ ϕψ1 log

{
π1π

1
2

}
= ϕ log{π1}+ (1− ϕ) log{1− π1}

+ (1− ϕ)ψ0 log{π0
2}+ (1− ϕ)(1− ψ0) log{1− π0

2}

+ ϕψ1 log{π1
2}+ ϕ(1− ψ1) log{1− π1

2}

+ (1− ϕ) log{S1(t)}

+ [(1− ϕ)(1− ψ0) + ϕ(1− ψ1)] log{S2(t)}.

(4.18)

The other two types of contributions to the complete log-likelihood can be derived in a similar

fashion. The contribution related to an observed event of type one is given can be written as:

EW |θ̂,O[logL
c
1(θ)] = (1− ϕ)ψ0 log

{
(1− π1)π0

2f1(t)
}

+ (1− ϕ)(1− ψ0) log
{
(1− π1)(1− π0

2)f2(t)S2(t)
}

= (1− ϕ) log{1− π1}

+ (1− ϕ)ψ0 log{π0
2}+ (1− ϕ)(1− ψ0) log{1− π0

2}

+ (1− ϕ) log{f1(t)}

+ (1− ϕ)(1− ψ0) log{S2(t)}.

(4.19)

The conditional expectation of the complete log-likelihood contribution of an observed event of
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type two is given by:

EW |θ̂,O[logL
c
2(θ)] = ϕ(1− ψ1) log

{
π1(1− π1

2)f2(t)
}

+ (1− ϕ)(1− ψ0) log
{
(1− π1)(1− π0

2)f2(t)S1(t)
}

= ϕ(1− ψ1) log{π1}+ (1− ϕ)(1− ψ1) log{1− π1}

+ (1− ϕ)(1− ψ0) log{1− π0
2}

+ ϕ(1− ψ1) log{1− π1
2}

+ (1− ϕ)(1− ψ1) log{S1(t)}

+ [(1− ϕ)(1− ψ0) + ϕ(1− ψ1)] log{f2(t)}.

(4.20)

Now that the three types of contributions to the complete log-likelihood are expressed in terms of

the current estimates and weights, they can be combined using the formula given in (4.3). This

yields the following expression for the conditional expectation of the complete log-likelihood of one

individual in the data:

EW |θ̂,O
[
ℓc(θ;O,W )

]
=
[
δ1ϕ+ δ2ϕ(1− ψ1)

]
log{π1}+

[
δ0(1− ϕ) + δ1(1− ϕ) + δ2(1− ϕ)(1− ψ1)

]
log{1− π1}

+
[
(δ0 + δ1)(1− ϕ)ψ0

]
log{π0

2}+
[
(δ0 + δ1 + δ2)(1− ϕ)(1− ψ0)

]
log{1− π0

2}

+
[
δ0ϕψ1

]
log{π1

2}+
[
δ0 + (δ1 + δ2)ϕ(1− ψ1)

]
log{1− π1

2}

+
[
δ0(1− ϕ) + δ1(1− ϕ) + δ2(1− ϕ)(1− ψ1)

]
log{S1(t)}+

[
δ1(1− ϕ)

]
log{λ1(t)}

+
[
(δ0 + δ2)[(1− ϕ)(1− ψ0) + ϕ(1− ψ1)] + δ1(1− ϕ)(1− ψ0)

]
log{S2(t)}

+
[
δ2[(1− ϕ)(1− ψ0) + ϕ(1− ψ1)]

]
log{λ2(t)}

= ϕ
[
δ1 + δ2(1− ψ1)

]
log{π1}+ (1− ϕ)(1− δ2ψ1) log{1− π1}

+ (δ0 + δ1)(1− ϕ)ψ0 log{π0
2}+ (1− ϕ)(1− ψ0) log{1− π0

2}

+ δ0ϕψ1 log{π1
2}+

[
δ0 + (δ1 + δ2)ϕ(1− ψ1)

]
log{1− π1

2}

+ (1− ϕ)(1− δ2ψ1) log{S1(t)}+ δ1(1− ϕ) log{λ1(t)}

+
[
(δ0 + δ2)ϕ(1− ψ1) + (1− ϕ)(1− ψ0)

]
log{S2(t)}

+ δ2
[
(1− ϕ)(1− ψ0) + ϕ(1− ψ1)

]
log{λ2(t)}.

(4.21)

This provides the contribution of each individual to the log-likelihood. The conditional expectation

of the complete log-likelihood is given by the sum of these contributions over all individuals. Now

that we have found an expression for the conditional expectation of the log-likelihood given the

observed data and current estimates, the E-step is concluded. The next step is to maximize this

conditional expectation with respect to the parameters. This is the M -step of the algorithm.

4.3 M -step

It remains to maximize the conditional expectation of the complete log-likelihood given in (4.21).

We will now take the sum of the log-likelihood contributions over all n individuals. First note from
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(4.21) that it can be written as distinct sums of functions of the parameters. This implies that

these sums can be maximized separately.

The first three sums are related to the incidence part of the model. They are of the following form:

f(π) =

n∑
i=1

ωi log{πi}+ υi log{1− πi}, (4.22)

where π = (π1, π2, ..., πn), ω = (ω1, ω2, ..., ωn) and υ = (υ1, υ2, ..., υn). The last two sums are

related to the latency and are of the following form:

g(λ) =

n∑
i=1

ωi log{S(ti)}+ δiυi log λ(t). (4.23)

We need to maximize these two types of functions. They seem similar to the log-likelihoods of

the logistic regression and weighted Cox proportional hazards model, respectively. However, they

actually differ. This difference is caused by the differing weights ω and υ and as a consequence

standard optimization techniques do not suffice. The next two subsections will be devoted to the

task of maximizing these two types of functions.

4.3.1 Maximization of the incidence

We need to maximize the following objective function:

f(π) =

n∑
i=1

ωi log{πi}+ υi log{1− πi}, (4.24)

where the πi’s are functions of the logistic form:

πi =
eγ

⊤zi

1 + eγ⊤zi
, (4.25)

and γ is a (p+1)-dimensional vector of regression coefficients and zi is the vector (1, xi,1, xi,2, ..., xi,p).

The maximization procedure is with respect to γ. Moreover, the weights ω and υ are constant

with respect to the maximization problem. We will therefore write f(γ) instead of f(π(γ)). This

maximization problem is nearly equal to the maximization problem of the standard logistic model.

In that case υi = 1−ωi. The procedure for standard logistic maximization is often called Iterative

Re-weighted Least Squares. A comprehensible introduction is given in (Friedman et al., 2017).

This procedure will be adapted to our context with different weights.

If we plug the logistic form of π back into f given in (4.24) and rewrite it, the objective function

reduces to:

f(γ) =

n∑
i=1

ωiγ
⊤zi − (υi + ωi) log{1 + eγ

⊤zi}. (4.26)

This function will be maximized by solving for the roots of its gradient. The gradient is given by:

∇f =

n∑
i=1

zi

(
ωi − (υi + ωi)

eγ
⊤zi

1 + eγ⊤zi

)
, (4.27)
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where zi is a p+1-dimensional vector ensuring that the gradient is actually a vector of the correct

dimension. The roots of this multidimensional function can be approximated numerically using

the multiroot function from the rootSolve package (Soetaert et al., 2022).

4.3.2 Maximization of the latency

Recall that the task is to maximize an objective function of the following form:

g(λ) =

n∑
i=1

ωi log{S(ti|xi)}+ υiδi log{λ(ti|xi)}, (4.28)

where λ is a vector representing the hazard. The hazard is modelled using the Cox proportional

hazards model: λ(ti|xi) = λ0(ti) exp
{
β⊤xi

}
, where β is a vector of regression coefficients of length

p. The baseline hazard λ0 is modelled non-parametrically. It has nonzero entries on all time points

on which an event was observed. Denote L the number of events and t′1, t
′
2, ..., t

′
L the time-points at

which we observed an event. Then, λ0(t
′
j) > 0 for j = 1, 2, ..., L and zero for all other time-points t.

Furthermore, let R(t) ⊆ {1, 2, ..., n} be the risk set at time t and D(t) ⊆ {1, 2, ..., n} the set of tied
observations at time t of the respective type. It can be seen from (4.21) that the log-likelihoods for

the hazards of the competing events do not depend on each other. So we can consider the event of

a fixed type for the maximization. Those who experience an event of the other type are considered

censored observations. The survival function can then be written as follows:

S(ti|xi) = [S0(ti)]
exp{β⊤xi} =

exp
−∑

t′j≤ti

λ0(t
′
j)


exp{β⊤xi}

. (4.29)

A Breslow-type method to incorporate tied observations is used. The previous results yield the

following expression for the objective function:

g(β, λ0) =

n∑
i=1

δiυi(β⊤xi + log{λ0(ti)})−
∑
t′j≤ti

ωi exp
{
β⊤xi

}
λ0(t

′
j)


=

L∑
j=1

β⊤ ·
∑

l∈D(t′j)

υlxl + log{λ0(t′j)} ·
∑

l∈D(t′j)

υl − λ0(t′j) ·
∑

l∈R(t′j)

ωl exp
{
β⊤xl

} .

(4.30)

The first sum is a sum over all individuals in the data, while the latter is a sum over all distinct

event time points. This objective function depends on both β and λ0. A partial likelihood approach

will be used to estimate β independently of the baseline hazard, and then optimize with respect

to the baseline hazard. First, we will derive a Nelson-Aalen-type estimator for the baseline hazard

which depends on β. Then, this expression is plugged back into the objective function g and it is

used to derive a partial likelihood for β.

To find the non-parametric Nelson-Aalen-type estimators for the baseline hazard, we compute the
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roots of the gradient of g with respect to λ0. The entries of the gradient are given by:

∂g(β, λ0)

∂λ0(t′j)
=

∑
l∈D(t′j)

υj

λ0,j
−

∑
l∈R(t′j)

ωl exp
{
β⊤xl

}
. (4.31)

Setting these expressions equal to zero yields a Nelson-Aalen-type estimator for the baseline hazard:

λ̂0,j =

∑
l∈D(t′j)

υj∑
l∈R(t′j)

ωl exp{β⊤xl}
. (4.32)

The partial likelihood can be found by plugging this estimator in the objective function g. This

yields the following partial likelihood for β:

L∏
j=1

exp
{
β⊤∑

l∈D(t′j)
υlxl

}
(∑

l∈R(t′j)
ωl exp{β⊤xl}

)∑
l∈D(t′

j
) υl

. (4.33)

Maximizing the partial likelihood (4.33) with respect to β is equivalent to maximizing:

L∑
j=1

β⊤
∑

l∈D(t′j)

υlxl − log

 ∑
l∈R(t′j)

ωl exp
{
β⊤xl

} ∑
l∈D(t′j)

υl

 . (4.34)

This function differs from the standard Breslow-type weighted partial likelihood. Therefore, stan-

dard functions available in R cannot be used. The standard Breslow-type estimator for the baseline

hazard would be given if ωi = υi for all i = 1, 2, ..., n. The expression (4.34) will be maximized

numerically using the nlm function in R.

4.4 Extending the estimation procedure

The estimation procedure explained above is – among others – designed to estimate the parameters

related to the cure structure: π1, π
0
2 and π1

2 . We have also discussed models where the cure

structure parameters were a priori fixed: complete cure and cure for the event of interest. In order

to estimate these models the estimation procedure needs to be adjusted. This section discusses

how the algorithm can be adjusted or modified to accommodate different models.

4.4.1 estimation procedure for complete cure

The simpler model constructed in Section 3.4 is now considered for two competing events, i.e.

K = 2. This model assumes a complete cure structure but does not assume the independence

of potential survival times. Therefore, the marginal survival functions are not used since they do

not have a survival function interpretation in this setting. We, therefore, reintroduce the quantity

S∗
k(t) = exp

{
−
∫ t

0
λk(u)du

}
, where λk(t) is the cause-specific hazard. Furthermore, recall that

since cure happens simultaneously, we considered a single cure status B. Define:

ϕ := EW |θ̂,O[B] = P(B = 1 | xi, ti, δi, θ̂). (4.35)
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Under this model, ϕ can be expressed as:

ϕ = 1(δi = 0)
P(B = 1 | xi, θ̂)

P(B = 1 | xi, θ̂) + P(B = 0 | xi, θ̂)P(min{T1, T2} > ti | xi, θ̂)

= 1(δi = 0)
π

π + (1− π)S(ti)
.

(4.36)

Moreover, note that the likelihood differs under this simplified model. The observed likelihood is

specified in (3.29). The contributions to the complete log-likelihood are given by:

logLc
0(θ) = log

{
πB + (1− π)S(t)(1−B)

}
,

logLc
1(θ) = log

{
(1− π)λ1(t)S(t)(1−B)

}
,

logLc
2(θ) = log

{
(1− π)λ2(t)S(t)(1−B)

}
.

(4.37)

Since these quantities differ from the ones considered above, the conditional expectation of the

complete log-likelihood changes. This is the equivalent of (4.21) and it is given by:

EW |θ̂,O[ℓ
c(θ;O,W )] = δ0ϕ log{π}+ δ0(1− ϕ) log{1− π}

+ δ1(1− ϕ) log{(1− π)λ1(t)S(t)}

+ δ2(1− ϕ) log{(1− π)λ2(t)S(t)}

= δ0ϕ log{π}+ (1− ϕ) log{1− π}

+ (1− ϕ)
[
log{S1(t) + δ1 log{λ1(t)}

]
+ (1− ϕ)

[
log{S2(t) + δ2 log{λ2(t)}

]
.

(4.38)

Note that it is of a simpler form than (4.21). The maximization procedure, therefore, does not need

to change, but we can use a standard weighted Cox maximization procedure to find the optimum

of the sums related to the latency. The maximization procedure for the parameters related to the

incidence does not change. This can be done using the coxph function from the survival package

(Therneau et al., 1990). Additionally, the weights in the EM algorithm need to be adjusted. These

are specified by the formula for the conditional expectation of the log-likelihood in (4.38).
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Chapter 5

A simulation experiment

In Chapter 3 the theoretical identifiability properties of the cure model in a setting with competing

risks were studied. In this chapter, we will investigate whether these parameters are also identifiable

in practice. The estimation procedure from the previous chapter will be used to estimate the

parameters of the model in several simulated settings. It was partly shown and partly conjectured

that – in the case of independent potential survival times – the cure structure and the time-to-event

distributions were identifiable. It will be investigated whether this is also the case in practice.

This chapter illustrates two simulation studies. First, a general overview of the data generation

procedure for each simulation study is given. Then the results are presented

5.1 Generating competing risks cure data

In this section, we elaborate on the general structure of the data generation process for the com-

peting risks cure model. For the different simulation studies, a different data generation process

is required. The specifications will therefore be given per study in the upcoming sections. In

broad terms, the data generation process is as follows. First, the cure probability π1 for event 1

is computed. This probability depends on the covariates through the logistic function. Given this

probability, the cure status for event 1 is generated B1 ∼ Ber(π1). Then, given the cure status of

event 1, the cure status for event 2 is determined. This can be done in several ways dependent on

the goal of the study. For example, the cure statuses can be chosen a priori or can be generated

using either B2 ∼ Ber(π0
2) or B2 ∼ Ber(π1

2). Then the potential survival times are generated using

a Cox-Weibull model. At last, the follow-up time is computed by taking the minimum of the poten-

tial survival times and a censoring time. The censoring time is generated uniformly C ∼ U [0, tmax]

and independently of the other random variables.

The potential survival times are generated using the inverse probability transformation method.

The survival times T1 and T2 are both distributed according to the Cox model with Weibull baseline

survival distributions with parameters, respectively, denoted by (α1, κ1) and (α2, κ2). The baseline

hazard functions of these distributions are given by:

λ01(t) = α1κ1t
κ1−1 and λ02(t) = α2κ2t

κ2−1. (5.1)
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Lemma 11. Let U ∼ U(0, 1), x ∈ X a vector of covariates and T bee given by:

T =

(
− logU

α exp{β⊤x}

)1/κ

, (5.2)

with α, κ > 0 and β ∈ Rp. Then T is distributed according to the Cox model with regression

coefficients β and a Weibull baseline survival distribution with parameters (α, κ).

Proof. The complement of the cumulative distribution function of T can be derived from the

distribution of U . It is given by:

P(T > t | x) = P

((
− logU

α exp{β⊤x}

)1/κ

> t

)
= P

(
logU < −αtκ exp

{
β⊤x

})
= P

(
U < (exp{−αtκ})exp{β

⊤x})
= (exp{−αtκ})exp{β

⊤x} .

(5.3)

Note that αtκ =
∫ t

0
ακuκ−1du, i.e. it is the cumulative hazard of the Weibull distribution according

to the parametrization given in (5.1). This implies that P(T > t | x) = S0(t)
exp{β⊤x} with S0 the

baseline survival function of the Weibull distribution with the correct parameters. Thus T has the

specified distribution according to (2.11).

Note that the Cox-Weibull distribution of the potential survival times does not meet the cure

threshold condition. For this assumption to be satisfied, the survival times are truncated at the

99% quantile of the Weibull distributions. The respective cure thresholds τ1 and τ2 are given by:

τk =

(
log 100

αk

)1/κk

for k = 1, 2. (5.4)

This truncation leads to a positive probability of seeing equal time-to-events. In order to reduce

this probability, the included covariate is chosen to be exponentially distributed. A positive co-

variate with positive Cox regression coefficients leads to accelerated time-to-event and thus a lower

probability of seeing equal event times. In the simulation study, only one covariate will be included.

Details for this choice are provided in Section 5.2.2.

Independent and dependent potential survival times will be simulated. Simulating independent

survival times is straightforward, while some more work is required for the simulation of dependent

survival times. The approach from Beyersmann et al. (2009) is adopted and can be summarized

as follows:

1. Choose the cause-specific hazards λ1(t|x) and λ2(t|x) dependent on the covariates.

2. Simulate actual survival time T from the distribution specified by the all-cause hazard

λ1(t|x) + λ2(t|x).

3. Decide whether event 1 occurred at time T based on a binomial experiment with success

probability λ1(t|x)/
(
λ1(t|x) + λ2(t|x)

)
, otherwise event 2 occurred.
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4. Simulate censoring time C.

This completes the overview of the data generation process for competing risks cure data. In the

next section details about the data generation procedure for this simulation study are given.

5.2 Simulation study I

In this simulation study, we study the performance of the estimation procedure for a general cure

structure. We investigate whether the estimation procedure proposed in Chapter 4 is able to

properly estimate the parameters of the competing risks cure model described in Section 3.2. It

was claimed that the parameters related to the cure structure were identifiable. We will investigate

with a simulation study whether this is indeed plausible.

The section is structured as follows. First, we describe the data generation process and motivate

the choice of the parameters in the simulation study. After that, we investigate the characteristics

of the simulated data for the chosen parameters. Then we present the results of the simulation.

To evaluate the results of the simulations study bias, variance and mean square error (MSE) are

presented.

5.2.1 Set-up of the study and data generation

The procedure for generating the data has been discussed before. The parameters that ought to

be chosen are:

• (α1, κ1): shape and rate parameter of the Weibull distribution for the baseline survival of

event 1;

• (α2, κ2): shape and rate parameter of the Weibull distribution for the baseline survival of

event 2;

• β1: regression coefficients of the Cox model for event 1;

• β2: regression coefficients of the Cox model for event 2;

• γ1: regression coefficients of the logistic model for cure probability of event 1;

• γ0
2 : regression coefficients of the logistic model for cure probability of event 2 conditional on

uncure for event 1;

• γ1
2 : regression coefficients of the logistic model for cure probability of event 2 conditional on

cure for event 1;

• tmax: end-of-study time.

A note of caution in the choice of the parameters is required since it is not immediately evident

what data characteristics they lead to due to the complexity of the model and data-generation

process. There are some aspects that we need to take into account when choosing the parameters.

First of all, the four subgroups – as explained in Section 3.1 – must contain approximately the

same amount of subjects. Enough events of both types must be present in each subgroup. With

respect to the cure thresholds, there needs to be time in between them and they need to be of

the following order: τ1 < τ2. In addition, some events of type 2 must occur after τ1 and enough

censored observations should be present after τ2.
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For an optimal setting of the simulation experiment, three different sets of parameters (Table 5.1)

which meet the requirements above discussed are chosen through trial and error. Each scenario

is simulated with three different sample sizes: n = 500, 1000, 2500 and with a fixed end-of-study

time: tmax = 2.

Parameters Scenario 1 Scenario 2 Scenario 3

(α1, κ1) (20, 15) (8,1) (6, 7.5)

(α2, κ2) (2, 2.5) (3,1) (3, 2.5)

β1 0.5 0.5 2

β2 1 0.5 0.25

γ1 (0.25, -0.5) (0.25, -1) (-0.5, 1)

γ0
2 (1, -0.5) (1, -0.5) (0, 1)

γ1
2 (-0.5, 0.5) (-0.5, 0.5) (0, -1)

Table 5.1: Three parameter scenarios used in the simulation study.

Since the gamma parameters consist of two components, we will write γ1 = (γ10 , γ11), to indicate

the entry related to the intercept and the regression coefficient, respectively. The simulated data

is complex and it is not immediately evident how the data looks by looking at the parameters. In

the next section we, therefore, provide some characteristics about the data corresponding to three

choices of parameters.

An overview of the data-generating procedure for the above-described model can be found in

Algorithm 1.
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Algorithm 1 Simulate time-to-event data according to the competing risks cure model

1: set end-of-study time: tmax = 2

2: for i = 1, 2, ..., n do

3: generate covariates: xi ∼ exp(1)

4: compute cure probability: π1(xi)

5: generate cure status: B1 ∼ Ber
(
π1(xi)

)
6: if B1 = 1 then

7: compute cure probability: π1
2(xi)

8: generate cure status: B2 ∼ Ber
(
π1
2(xi)

)
9: else

10: compute cure probability: π1(xi)

11: generate cure status: B2 ∼ Ber
(
π0
2(xi)

)
12: end if

13: generate survival probability: U1,i, U2,i ∼ U(0, 1) and censoring time: Ci ∼ U[0, tmax]

14: compute potential survival times:

T1,i ←

(
− logU1,i

α1 exp
{
β⊤
1 xi

})1/κ1

and T2,i ←

(
− logU2,i

α2 exp
{
β⊤
2 xi

})1/κ2

15: if T1,i > τ1 then

16: truncate survival time: T1,i ← τ1

17: end if

18: if T2,i > τ2 then

19: truncate survival time: T2,i ← τ2

20: end if

21: if B1 = B2 = 0 then

22: set follow-up time: T ∗
i ← min{Ci, T1,i, T2,i}

23: else if B1 = 0 and B2 = 1 then

24: set follow-up time: T ∗
i ← min{Ci, T1,i}

25: else if B1 = 1 and B2 = 0 then

26: set follow-up time: T ∗
i ← min{Ci, T2,i}

27: else if B1 = 1 and B2 = 1 then

28: set follow-up time: T ∗
i ← Ci

29: end if

30: if T ∗
i = T1,i then

31: set competing risks status indicator: di ← 1

32: else if T ∗
i = T2,i then

33: set competing risks status indicator: di ← 2

34: else

35: set competing risks status indicator: di ← 0

36: end if

37: end for

38: return competing risks survival data: (T ∗
i , di, xi) for i = 1, 2, ..., n
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5.2.2 Data characteristics

The following statistics for each simulation experiment are included:

• Subgroup sizes: the four subgroups are presented in Section 3.1 (as percentages of the

whole population);

• Events in subgroups: number and type of events in the uncured subgroups;

• Cure thresholds: observed cure thresholds for both events;

• Events after τ1: number of events of type 2 after τ1;

• Censoring rate: number of censored observations.

The number of observations (censored/uncensored) is presented as a percentage with respect to

the whole population. The characteristics are simulated with a population size of N = 1000 and

Monte-Carlo replicates of M = 10.000. The relative group sizes are given in Figure 5.1.

1
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S
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Cured for 1

Cured for 2

Cured for both

Not cured

Figure 5.1: Three stacked bar charts of the relative group sizes (in percentages) for each scenario.

In Table 5.2 the relative group sizes are shown along with the 95% confidence intervals. The

percentage of observations for each competing event and each group are shown in Table 5.3. Note

that all groups contain a substantial amount of observations. This is crucial for obtaining proper

results in the simulated examples, as mentioned above.

Not cured Cured for event 1 Cured for event 2 Cured for both events

1 22.2% (22.1% - 22.3%) 23.5% (23.4% - 23.6%) 33.3% (33,2% - 33.4%) 20.9% (20.8% - 21.0%)

2 30.7% (30.6% - 30.8%) 14.3% (14.2% - 14.3%) 33.7% (33.6% - 33.8%) 21.4% (21.3% - 21.4%)

3 14.9% (14.8% - 15.0%) 43.3% (43.2% - 43.4%) 26.0% (25.9% - 26.0%) 15.8% (15.7% - 15.9%)

Table 5.2: Relative sizes for the four different cure status groups with 95%-confidence intervals for
each of the three scenarios in Table 5.1.
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Not cured Cured for event 1 Cured for event 2

Event 1 Event 2 Event 2 Event 1

1 1.3% (1.2% - 1.4%) 16.7% (16.6% - 16.8%) 17.2% (17.1% - 17.3%) 20.5% (20.4% - 20.6%)

2 21.7% (21.6% - 21.8%) 8.1% (8.1% - 8.3%) 12.6% (12.5% - 12.7%) 34.4% (34.3% - 34.5%)

3 3.3% (3.2% - 3.4%) 7.9% (7.8% - 8.0%) 32.6% (32.5% - 32.7%) 18.0% (17.8% - 18.1%)

Table 5.3: Percentage of observations per event in the respective groups with respect to the total
population size with 95%-confidence intervals for each of the three scenarios in Table 5.1.

The relative group sizes can also be seen in the (simulated) survival plots (Figure 5.2) for the

three scenarios. The plots are from one simulation (M = 1) with sample size n = 50.000 and

are indicative of the courses of the survival curves over time. Due to the large sample size, the

approximation with the theoretical survival curves is good.
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Figure 5.2: Simulated survival curves for the three scenarios.

Since the survival times were truncated at the 99%-quantile of the baseline distribution, there is a

positive probability for two survival times to be equal at the truncation point. In order to reduce

this probability, the regression coefficients for the latency were chosen positive. The covariate

follows an exponential distribution and – thus – has an accelerating effect on the time-to-event.

This can be seen in the plot where there are extremely small jumps around the theoretical quantiles.

Moreover, this leads to observed cure thresholds which are lower than their (baseline) theoretical

counterparts. This can be seen in Table 5.4 where the average simulated observed cure thresholds

are shown.
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τ1 τ2

1 0.901 (CI: 0.900 - 0.901, true: 0.907) 1.245 (CI: 1.239 - 1.251, true: 1.396)

2 0.518 (CI: 0.514 - 0.522, true: 0.576) 1.118 (CI: 1.104 - 1.132, true: 1.535)

3 0.925 (CI: 0.922 - 0.926, true: 0.965) 1.142 (CI: 1.139 - 1.145, true: 1.187)

Table 5.4: Estimated cure thresholds along with theoretical value and 95%-confidence intervals for
each of the three scenarios in Table 5.1.

The two cure thresholds are sufficiently apart in time from each other and this is enough to satisfy

the condition stated in Theorem 1. To ensure this condition, it must also be checked that there are

uncensored observations of event 2 in between these two cure thresholds. The average percentage of

observations of event 2 between the two cure thresholds are shown in Table 5.5 (a). In Table 5.5 (b),

the censoring rate for each scenario is shown. In addition the percentage of censored observations

after the last cure threshold τ2 in the plateau is illustrated in Table 5.5 (c).

Events of type 2

1 2.0% (1.9% - 2.2%)

2 2.2% (2.1% - 2.3%)

3 1.7% (1.6% - 1.7%)

(a)

Censoring rate

1 44.2% (44.1% - 44.3%)

2 25.1% (25.0% - 25.2%)

3 38.3% (38.1% - 38.4%)

(b)

Observations after τ2

1 6.7% (6.7% - 6.8%)

2 9.4% (9.2% - 9.6%)

3 7.9% (7.8% - 8.0%)

(c)

Table 5.5: (a) Number of events of type two observed in between the two cure thresholds, (b)
censoring rate and (c) percentage of (censored) observation after the last cure threshold with 95%
confidence interval for each of the three scenarios in Table 5.1

5.2.3 Results

In this section, the simulation results for each scenario are presented (see Table 5.6 – 5.8). Bias,

variance and mean square error (MSE) are reported for each parameter, together with the true

and average estimated value.
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5.3 Simulation study II

The second simulation study investigates the estimation performance when the ‘complete cure’

assumption is made. Complete cure means that when a patient is cured for an arbitrary event, he

is simultaneously cured for all events. In Section 3.4.1 it was shown that the cure probabilities and

cause-specific hazards are identifiable even without the assumption of independent survival times.

The goal of this simulation study is to show that the parameters are also in practice identifiable

via the estimation procedure described in Section 4.4.1.

Recall that there is one cure status indicator for all risks simultaneously. Therefore only the inci-

dence parameter γ needs to be estimated. This is the vector with regression coefficients (including

an intercept) for the probability of being cured for all events conditional on the covariates. It is

introduced in Section 3.4. The parameters that ought to be chosen are the following:

• α1: shape parameter of the Weibull distribution for the baseline survival of event 1;

• α2: shape parameter of the Weibull distribution for the baseline survival of event 2;

• κ: rate parameter of the Weibull distribution for the baseline survival of both events;

• β1: regression coefficients of the Cox model for event 1;

• β2: regression coefficients of the Cox model for event 2;

• γ: regression coefficients of the logistic model for cure probability of both events;

• tmax: end-of-study time.

We will consider two scenarios and three sample sizes n = 500, 100, 2500. Similar to the previous

simulation study, the end-of-study time will be fixed: tmax = 2. The two parameter scenarios are

chosen as:

Parameters Scenario 1 Scenario 2

α1 4 5

α2 5 7.5

κ 1.2 2.5

β1 0.5 -0.5

β2 -0.25 0.25

γ (0,-0.5) (-0.25 ,0)

Table 5.9: Parameter scenarios used in the simulation study.

The data generation process is different from Simulation Study I. This is partly due to the fact

that the survival times are generated dependently. The approach from Beyersmann et al. (2009) is

used (see Section 5.1). The shape parameters are chosen to be equal in both scenarios. Therefore,

the all-cause hazard simplifies to:

λ1(t|x) + λ2(t|x) =
(
α1 exp

{
β⊤
1 x
}
+ α2 exp

{
β⊤
2 x
})
κtκ−1. (5.5)

This implies that the actual survival time can be simulated using the inverse transform method

proved in Lemma 11. Since the all-cause hazard also follows a Weibull distribution. The probability
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for experiencing event 1 at the simulated actual survival time t is then given by:

λ1(t|x)
λ1(t|x) + λ2(t|x)

=
α1 exp

{
β⊤
1 x
}

α1 exp
{
β⊤
1 x
}
+ α2 exp

{
β⊤
2 x
} =

α1

α1 + α2 exp{(β2 − β1)⊤x}
. (5.6)

The data generation procedure for the complete cure model with dependent potential survival

times is summarized in Algorithm 2.

To evaluate the performance of the estimation procedure, the bias, variance and mean square

error are computed. Instead of the marginal probabilities on fixed time points, we will estimate

the cumulative incidence function for both competing events and compare this to the theoretical

value of the cumulative incidence function. The cumulative incidence function for event 1 can be

computed as follows:

I1(t) =

∫ t

0

λ01(du)S0(u)du

=

∫ t

0

α1κu
κ−1 exp

{
−
∫ u

0

(α1 + α2)κv
κ−1dv

}
du

=

∫ t

0

α1κu
κ−1 exp {− (α1 + α2)u

κ} du

=
α1

α1 + α2

(
1− e−(α1+α2)t

κ
)
.

(5.7)

The cumulative incidence function for event 2 can be computed analogously.
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Algorithm 2 Simulate time-to-event data for the complete cure

1: set end-of-study time: tmax = 2

2: for i = 1, 2, ..., n do

3: generate covariates: xi ∼ exp(1)

4: compute cure probability: π(xi)

5: generate cure status: B ∼ Ber
(
π(xi)

)
6: generate censoring time: Ci ∼ U[0, tmax]

7: if B = 0 then

8: generate survival probability: Ui ∼ U(0, 1)

9: compute actual survival time:

Ti ←

(
− logUi

α1 exp
{
β⊤
1 xi

}
+ α2 exp

{
β⊤
2 xi

})1/κ

10: generate status for event 1:

δ1i ∼ Ber

(
α1

α1 + α2 exp{(β2 − β1)⊤xi}

)
11: if δ1i = 1 then

12: if Ti > τ1 then

13: truncate survival time: Ti ← τ1

14: end if

15: set follow-up time: T ∗
i ← min{Ci, Ti}

16: if T ∗
i = Ti then

17: set competing risks indicator: di ← 1

18: else

19: set competing risks indicator: di ← 0

20: end if

21: else

22: if Ti > τ2 then

23: truncate survival time: Ti ← τ2

24: end if

25: set follow-up time: T ∗
i ← min{Ci, Ti}

26: if T ∗
i = Ti then

27: set competing risks indicator: di ← 2

28: else

29: set competing risks indicator: di ← 0

30: end if

31: end if

32: else

33: set follow-up time: T ∗
i ← Ci

34: set competing risks indicator: di ← 0

35: end if

36: end for

37: return competing risks survival data: (T ∗
i , di, xi) for i = 1, 2, ..., n
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5.3.1 Data characteristics

The data is relatively simple compared to the simulated data from the previous simulation study.

Nevertheless, some descriptive statistics are given to better comprehend the simulated data. The

following simulated data characteristics are presented: censoring rate, cure threshold and percent-

age of censoring in the tail. The procedure for obtaining these characteristics is identical to the

previous simulation study.

First, the (theoretical) cumulative incidences (5.3) for each event per scenario can be computed

using (5.7).
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Figure 5.3: Cumulative incidence functions per event for each scenario.

It can be seen from the behaviour of the cumulative incidence functions that the probability of

experiencing an event levels off after around 0.6 for the first scenario and around 0.8 for the second.

This can also be seen from the simulated cure thresholds. These are given in Table 5.10 (a). The

censoring rate and percentage of observations in the tail are given in Table 5.10 (b) – (c).

τ

1 0.687 (CI: 0.680 - 0.693)

2 0.750 (CI: 0.747 - 0.753)

(a)

Censoring rate

1 42.5% (42.4% - 42.6%)

2 52.7% (52.6% - 52.8%)

(b)

Observations after τ

1 25.3% (25.1% - 25.5%)

2 27.5% (27.4% - 27.6%)

(c)

Table 5.10: (a) The cure threshold, (b) censoring rate and (c) percentage of (censored) observation
after the cure threshold along with 95% confidence interval per scenario.
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5.3.2 Results

Bias, variance and mean squared error are presented for each parameter and for the two estimated

cumulative incidence functions at fixed time points. Results show that the estimation procedure

is rather robust. The only exception is the γ1 coefficient for the first combination of parameters.

n γ0 γ1 β1 β2 I1(1/4) I1(1/2) I2(1/4) I2(1/2)

500 True 0 -0.5 0.5 -0.25 0.364 0.444 0.455 0.555

Average -0.049 0.006 0.5 -0.259 0.366 0.449 0.461 0.565

Bias -0.049 0.506 0.000 -0.009 0.003 0.005 0.006 0.01

Variance 0.000 0.000 0.001 0.012 0.002 0.003 0.004 0.003

MSE 0.003 0.256 0.001 0.012 0.002 0.003 0.004 0.003

n γ0 γ1 β1 β2 I1(1/4) I1(1/2) I2(1/4) I2(1/2)

1000 True 0 -0.5 0.5 -0.25 0.364 0.444 0.455 0.555

Average -0.049 0.006 0.5 -0.254 0.366 0.446 0.46 0.562

Bias -0.049 0.506 0.000 -0.004 0.003 0.003 0.005 0.007

Variance 0.000 0.000 0.000 0.006 0.001 0.001 0.002 0.001

MSE 0.003 0.256 0.000 0.006 0.001 0.001 0.002 0.002

n γ0 γ1 β1 β2 I1(1/4) I1(1/2) I2(1/4) I2(1/2)

2500 True 0 -0.5 0.5 -0.25 0.364 0.444 0.455 0.555

Average -0.049 0.006 0.499 -0.246 0.368 0.449 0.455 0.555

Bias -0.049 0.506 -0.001 0.004 0.005 0.005 0.000 0.000

Variance 0.000 0.000 0.000 0.003 0.000 0.001 0.001 0.001

MSE 0.002 0.256 0.000 0.003 0.000 0.001 0.001 0.001

Table 5.11: Simulation results (study II) for scenario 1.
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n γ0 γ1 β1 β2 I1(1/4) I1(1/2) I2(1/4) I2(1/2)

500 True -0.25 0 -0.5 0.25 0.129 0.399 0.194 0.599

Average -0.174 0.01 -0.528 0.252 0.134 0.412 0.195 0.603

Bias 0.076 0.01 -0.028 0.002 0.004 0.013 0.001 0.004

Variance 0.001 0.000 0.036 0.001 0.002 0.005 0.001 0.004

MSE 0.007 0.000 0.037 0.001 0.002 0.005 0.001 0.004

n γ0 γ1 β1 β2 I1(1/4) I1(1/2) I2(1/4) I2(1/2)

1000 True -0.25 0 -0.5 0.25 0.129 0.399 0.194 0.599

Average -0.175 0.01 -0.515 0.25 0.133 0.407 0.194 0.601

Bias 0.075 0.01 -0.015 0.000 0.004 0.008 0.000 0.002

Variance 0.000 0.000 0.016 0.000 0.001 0.002 0.000 0.002

MSE 0.006 0.000 0.017 0.000 0.001 0.002 0.000 0.002

n γ0 γ1 β1 β2 I1(1/4) I1(1/2) I2(1/4) I2(1/2)

2500 True -0.25 0 -0.5 0.25 0.129 0.399 0.194 0.599

Average -0.175 0.01 -0.504 0.251 0.129 0.401 0.194 0.601

Bias 0.075 0.01 -0.004 0.001 0.000 0.002 0.000 0.002

Variance 0.000 0.000 0.006 0.000 0.000 0.001 0.000 0.001

MSE 0.006 0.000 0.006 0.000 0.000 0.001 0.000 0.001

Table 5.12: Simulation results (study II) for scenario 2.
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Chapter 6

Discussion

In this thesis, identifiability problems which arise when modelling both cure and competing risks

have been studied. First theoretical aspects have been investigated where the concept of a cure

structure was defined. An estimation procedure is developed to estimate the parameters of the

different models. Then, the practical identifiability properties of a specific selection of the models

were studied in two simulation studies.

The notion of cure was not properly defined in the context of competing risks. To capture the

concept of cure when an individual can fail from multiple events, we defined the cure structure.

The cure structure allows for different individuals to be cured from different subsets of competing

events and can be represented through the (conditional) cure probabilities π1, π
0
2 and π1

2 , where

π1, π
0
2 and π1

2 are, respectively, the probability of being cured for event 1, event 2 conditional on

not being cured for event 1 and event 2 conditional on being cured for event 1. Specific choices of

cure structure in the literature become special cases of this generalized notion.

Identifiability of the cure competing risks model with independent potential survival times was

partly proven (Theorem 1) and partly claimed (Conjecture 3). From a theoretical perspective, the

claim seems plausible. However, the simulations may contradict our theoretical intuitions. Simu-

lation Study I showed that under this model there are practical identifiability problems with the

parameters related to the incidence. Particularly, the identification of the parameters π0
2 appeared

to be quite hard. Is this π0
2 parameter not identifiable or do we have practical identification prob-

lems possibly related to the estimation procedure? These contradictory statements require further

research from both theoretical and practical perspective.

Special attention was paid to the complete cure structure. The complete cure structure is of

great practical importance since it is most often used in (clinical) practice. It was proven that

the parameters related to the incidence and latency are identifiable in several cases, e.g. when

the potential survival times are independent (Theorem 5), and also when the survival times are

dependent. In the latter situation, both the subdistribution hazard (Theorem 9) and the cause-

specific hazard (Theorem 8) can be uniquely determined from the data. Some of the identification

problems still open in the literature (Choi et al., 2015; Zhang et al., 2019) have been addressed

and solved by this thesis. In a simulation study, the estimation procedure developed in this work

based on the EM algorithm was able to estimate the model parameters in two different settings.
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This simulation study is limited to two suitably chosen sets of parameters, one covariate and two

competing events. It should be investigated how the estimation procedure performs when a more

general competing events model is studied, with more covariates included in the model and other

less suitably chosen sets of parameters.

Furthermore, some models were identifiable under strict assumptions. It was shown (Theorem 7)

that in general – without the suitable conditions – the parameter related to the cure structure

and latency of the uncured were not identifiable. These assumptions are thus necessary, but can

sometimes be very restrictive. For example, assuming independence of potential survival times

is in many applications, not a realistic assumption. Although the practical evaluation of these

assumptions is feasible, it is not always unambiguous. It can be difficult to make a distinction

between a plateau in the survival or a very flat tail of the distribution. Misspecification is therefore

lurking in the background. It should be investigated how robust the estimation procedures are.

This is relevant for further research.

This thesis does not contain a practical application. It would be of great value to apply the

theory and estimation procedure developed in this thesis to real-life data. Since identifiability for

a general cure structure only holds for independent potential survival times, it might be hard to

find a suitable data set. Clinical data often contains competing events that are not independent.

The data used by Zhang et al. (2019) might be a good option. It would also allow for a comparison

between the estimation procedure developed in this thesis and the one from Zhang et al. (2019)’s

paper.

In conclusion, this thesis shed light on the identifiability of the parameters in the context of both

theoretical and simulation-based analyses. This research contributes to a better understanding

of statistical methods for handling competing risks and cure models. Results from this work are

beneficial in clinical and non-clinical settings.
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Appendix

This appendix contains all the code used during the project. Most of it was used in the simulation

experiments. It is presented in the following fashion. First, the code with all general functions

is given. These remain the same across the different simulation experiments. Then the code for

the two different simulation studies is given. As these comprise estimation procedures for three

different models and thus differ substantially, although their structure may seem identical. The

code will also be published on GitHub in the nearby future.

General functions

1 ### General functions ###

2

3 # This file contains the general functions required for the simulation studies.

4

5 # Load the required packages

6 library(rootSolve)

7

8

9 # Function which prints a message using shell echo.

10 # Useful for printing messages from inside mclapply when running in Rstudio.

11 message_parallel <- function (...){

12 system(sprintf(’echo "\n%s\n"’, paste0 (..., collapse="")))

13 }

14

15

16 # Risk and tie set functions

17 risk.set <- function(times , t) which(times >= t)

18 ties.set <- function(times , t) which(times == t)

19

20

21 # Function for baseline survival for all observed time points.

22 baseline_survival <- function(bh, times){

23

24 # Compute the baseline survival

25 unique_times <- unique(times)

26 surv <- exp(-sum(bh[which(times <= times)]))

27

28 return(surv)

29 }

30

31

32 # Function computes baseline survival for specific choice.
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33 baseline_survival_timepoint <- function(bh, times , t){

34

35 # Compute baseline survival for specific time point t.

36 unique_times <- unique(times)

37 surv <- exp(-sum(bh[which(times <= t)]))

38

39 return(surv)

40 }

41

42

43 # Compute survival probabilities per individual.

44 survival_pred <- function(bh, times , status , cov , beta){

45

46 times <- as.vector(times)

47 unique_event_times <- unique(times[status == 1])

48 baseline_survival <- rep(NA, length(times))

49

50 # Compute survival probabilities per time point.

51 bh_unique_times=bh[match(unique_event_times ,times)]

52 for(i in 1: length(times)){

53 baseline_survival[i] <- exp(-sum(bh_unique_times[which(unique_event_times <=

times[i])]))

54 }

55

56 # Compute the individual survival probabilities based on observed covariates.

57 survival <- baseline_survival ^(exp( cov %*% beta))

58 max_obs <- max(times[which(status ==1)])

59 survival[which(times >max_obs)] <- 0

60 return(survival)

61 }

62

63

64 # Estimated cumulative incidence function from cause -specific hazard for 2 events.

65 CIF <- function(t, times , status , bh1 , bh2){

66

67 # Define the all -cause baseline hazard.

68 times <- as.vector(times)

69 unique_event_times <- unique(times[status != 0])

70 all_cause_surv <- rep(NA, length(times))

71 bh <- bh1 + bh2

72

73 # Only on the unique time points

74 bh_unique_times <- bh[match(unique_event_times ,times)]

75

76 for(i in 1: length(times)){

77 all_cause_surv[i] <- exp(-sum(bh_unique_times[which(unique_event_times < times[

i])]))

78 }

79

80 # Compute both the cumulative incidence functions.

81 p_k1 <- (bh1*all_cause_surv)

82 p_k2 <- (bh2*all_cause_surv)

83 cif1 <- sum(p_k1[times <= t])

84 cif2 <- sum(p_k2[times <= t])

85

86 return(list(cif1 = cif1 ,
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87 cif2 = cif2))

88 }

89

90

91 # Partial log -likelihood with different weights for the Cox model

92 logpart <- function(beta , times , status , cov , weights1 , weights2){

93

94 # Define the uncensored event times

95 unique_event_times <- unique(times[which(status != 0)])

96 n.event <- length(unique_event_times)

97

98 # Compute the risk and ties set for each uncensored event timepoint

99 rs <- lapply(as.matrix(unique_event_times), risk.set , times = times)

100 ts <- lapply(as.matrix(unique_event_times), ties.set , times = times)

101

102 # create variable to store values of the loglikelihood

103 a <- b <- c <- NA

104 temp <- vector ()

105 cov <- as.matrix(cov)

106 weights1 <- as.vector(weights1)

107 for(i in 1:n.event){

108 a <- sum((( weights1 * cov) %*% beta)[ts[[i]]])

109 b <- sum(( weights2 * exp(cov %*% beta))[rs[[i]]])

110 c <- sum(weights1[ts[[i]]])

111

112 temp[i] <- a -c*log(b)

113 }

114

115 return(-sum(temp))

116 }

117

118

119

120 # Wrapper function for the computation of cox coefficients

121 weighted_partial <- function(beta_est , times , status , cov , weights1 , weights2){

122

123 # Maximize the log partial likelihood

124 suppressWarnings ({

125 max <- nlm(p = beta_est , f = logpart , cov = cov , times = times ,

126 status = status , weights1 = weights1 , weights2 = weights2)

127 })

128

129 return(list(beta = max$estimate))
130 }

131

132

133

134 # Define the derivative of the log -likelihood function of the cure statuses

135 dloglik <- function(gamma , cov , weights1 , weights2) {

136 cov <- cbind(rep(1, nrow(cov)), cov)

137 eta <- cov %*% gamma

138 dloglik <- t(cov) %*% (weights1 - (weights1 + weights2) * exp(eta)/(1 + exp(eta))

)

139 return(-dloglik)

140 }

141
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142

143 # Wrapper function for the optimization of the cure statuses

144 weighted_IRLS <- function(times , cov , weights1 , weights2 , gamma_init){

145

146 # Find the roots of the score function

147 gamma <- multiroot(f=dloglik , start=gamma_init ,

148 cov=cov , weights1 = weights1 , weights2 = weights2)$root
149

150 # Return the estimated gamma coefficients

151 return(list(gamma = gamma))

152 }

153

154

155

156 # Computes the (NA -type) estimator of the baseline hazard with different weights

157 baseline_hazard <- function(times , status , cov , beta , weights1 , weights2) {

158

159 # Initialize an empty vector to store the baseline hazard

160 hazard <- rep(0, length(times))

161

162 # Compute the baseline hazard for each unique event time

163 for (i in 1: length(times)) {

164

165 if(status[i] != 0){

166

167 # Compute the number of events and weights at the current time

168 numerator <- sum(( status*weights1 )[times == times[i]])

169 denominator <- sum(( weights2*exp(cov %*% beta) )[times >= times[i]])

170

171 # Compute the baseline hazard at the current time

172 hazard[i] <- numerator / denominator

173

174 }

175 }

176

177 # Return the baseline hazard at eacht time point

178 return(hazard)

179 }
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Code for Simulation Study I

1 ### Simulation study I ###

2

3

4 # Load the required packages.

5 library(parallel)

6 library(survival)

7 library(rootSolve)

8

9

10 # Function computes the three cure probabilities based on gamma estimates.

11 cure_pred <- function(cov , gamma1 , gamma20 , gamma21){

12

13 # Design matrix

14 x <- cbind(rep(1, nrow(cov)), cov)

15

16 # Compute the (conditional) cure probabilities per individual.

17 pi1 <- plogis(x %*% gamma1)

18 pi20 <- plogis(x %*% gamma20)

19 pi21 <- plogis(x %*% gamma21)

20

21 return(list(pi1 = pi1 , pi20 = pi20 , pi21 = pi21))

22 }

23

24

25 # Function computes the conditional expectations based on current estimates

26 # in the EM algorithm.

27 EM_weights <- function(status , surv1 , surv2 , cure){

28

29 # Denote the estimated cure proportions (vector of size n).

30 pi1 <- cure$pi1
31 pi20 <- cure$pi20
32 pi21 <- cure$pi21
33

34 # Compute the updated weights.

35 phi <- as.numeric(status == 0) / (1 + (1-pi1)/pi1 * (pi20*surv1 + (1-pi20)*surv1*

surv2) / (pi21 + (1-pi21)*surv2) ) +

36 as.numeric(status == 2) / (1 + (1-pi1)*(1-pi20)*surv1/(pi1*(1-pi21)))

37 psi0 <- as.numeric(status != 2)* pi20 / (pi20 + (1-pi20)*surv2)

38 psi1 <- as.numeric(status != 2)* pi21 / (pi21 + (1-pi21)*surv2)

39

40 # Might create NaN; due to 0/0.

41 phi[is.na(phi)] <- 0

42 psi0[is.na(psi0)] <- 0

43 psi1[is.na(psi1)] <- 0

44

45 return(list(phi = phi , psi0 = psi0 , psi1 = psi1))

46 }

47

48

49 # Estimate the model parameters using the EM algorithm.

50 em <- function(times , CR_status , cov , eps , emmax){

51

52 # Define the different status indicators. (The argument status is assumed to

53 # to contain 0, 1 and 2.)

54 s0 <- as.numeric(CR_status != 0)
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55 s1 <- as.numeric(CR_status == 1)

56 s2 <- as.numeric(CR_status == 2)

57

58 # Initialize the parameters.

59 gamma1 <- gamma20 <- gamma21 <- c(0,0)

60 beta1 <- beta2 <- 0

61 bh1 <- baseline_hazard(times , s1, cov , beta1 ,

62 rep(1, length(times)), rep(1,length(times)))

63 bh2 <- baseline_hazard(times , s2, cov , beta2 ,

64 rep(1,length(times)), rep(1,length(times)))

65

66 # Keep track of the convergence of the algorithm.

67 i <- 1

68 convergence <- 100

69

70 while (convergence > eps & i < emmax){

71

72 # Compute the estimated conditional expectations given the current estimates.

73 cure <- cure_pred(cov , gamma1 , gamma20 , gamma21)

74 surv1 <- survival_pred(bh1 , times , s1 , cov , beta1)

75 surv2 <- survival_pred(bh2 , times , s2 , cov , beta2)

76 cond_exp <- EM_weights(CR_status , surv1 , surv2 , cure)

77 phi <- cond_exp$phi
78 psi0 <- cond_exp$psi0
79 psi1 <- cond_exp$psi1
80

81

82 # Define the different weights for each part of the model.

83 wp1 <- phi*( 1-s0 + s2*(1-psi1) )

84 wp1C <- (1-phi)*( 1-s0 + s1 + s2*(1-psi0) )

85 wp21 <- (1-s0)*phi*psi1

86 wp21C <- phi*( (1-s0)*(1-psi1) + s2*(1-psi1) )

87 wp20 <- (1-phi)*psi0*( 1-s0 + s1 )

88 wp20C <- (1-phi)*(1-psi0)*( 1-s0 + s1 + s2 )

89 wS1 <- (1-s0)*(1-phi) + s1*(1-phi) + s2*(1-phi)*(1-psi0)

90 wL1 <- s1*(1-phi)

91 wS2 <- (1-s0)*( phi*(1-psi1) + (1-phi)*(1-psi0) ) + s1*(1-phi)*(1-psi0) +

92 s2*( (1-phi)*(1-psi0) + phi*(1-psi1) )

93 wL2 <- s2*(phi*(1-psi1) + (1-phi)*(1-psi0))

94

95

96 # Store the old parameters before updating them.

97 par_old <- c(gamma1 ,gamma20 ,gamma21 ,beta1 ,beta2 ,bh1 ,bh2)

98

99 # Estimate the new parameters from the updated weigths.

100 gamma1 <- weighted_IRLS(times , cov , wp1 , wp1C , gamma1)$gamma
101 gamma20 <- weighted_IRLS(times , cov , wp20 , wp20C , gamma20)$gamma
102 gamma21 <- weighted_IRLS(times , cov , wp21 , wp21C , gamma21)$gamma
103 beta1 <- weighted_partial(beta1 , times , s1 , cov , wS1 , wL1)$beta
104 beta2 <- weighted_partial(beta2 , times , s2 , cov , wS2 , wL2)$beta
105 bh1 <- baseline_hazard(times , s1, cov , beta1 , wS1 , wL1)

106 bh2 <- baseline_hazard(times , s2, cov , beta2 , wS2 , wL2)

107

108 # Compute the distance to the old parameters.

109 convergence <- sum((par_old -c(gamma1 ,gamma20 ,gamma21 ,beta1 ,beta2 ,bh1 ,bh2))^2)

110 i <- i + 1
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111 }

112

113 # Estimate baseline survival for reporting the results of the simulation.

114 S1.0.25 <- baseline_survival_timepoint(bh1 , times , 0.25)

115 S1.0.50 <- baseline_survival_timepoint(bh1 , times , 0.50)

116 S1.0.75 <- baseline_survival_timepoint(bh1 , times , 0.75)

117 S2.0.25 <- baseline_survival_timepoint(bh2 , times , 0.25)

118 S2.0.50 <- baseline_survival_timepoint(bh2 , times , 0.50)

119 S2.0.75 <- baseline_survival_timepoint(bh2 , times , 0.75)

120 surv <- c(S1.0.25 , S1.0.50, S1.0.75, S2.0.25, S2.0.50 , S2 .0.75)

121

122 return(list(times1 = sort(unique(times[which(CR_status == 1)])),

123 times2 = sort(unique(times[which(CR_status == 2)])),

124 times = times ,

125 bh1 = bh1 ,

126 bh2 = bh2 ,

127 gamma1 = gamma1 ,

128 gamma20 = gamma20 ,

129 gamma21 = gamma21 ,

130 beta1 = beta1 ,

131 beta2 = beta2 ,

132 conv=convergence ,

133 it=i,

134 surv = surv))

135 }

136

137

138 # Simulate the cure competing risks data and fit the model.

139 sim_cure <- function(n, gamma1 , gamma20 , gamma21 , beta1 , beta2 , kappa1 , kappa2 ,

alpha1 , alpha2){

140

141 # Simulate the covariates and define a design matrix.

142 x0 <- rep(1, n)

143 x1 <- rexp(n, 1)

144 X <- matrix(c(x0, x1), ncol = 2)

145 Z <- matrix(c(x1), ncol = 1)

146

147 # Generate the cure status for risk 1.

148 B1 <- rbinom(n, 1, plogis(X %*% gamma1))

149

150 # Generate cure status for risk 2 conditional on risk 1.

151 B2 <- vector(length = n)

152 B2[which(B1 == 0)] <- rbinom(sum(B1 == 0), 1, plogis(X %*% gamma20)[which(B1 ==

0)])

153 B2[which(B1 == 1)] <- rbinom(sum(B1 == 1), 1, plogis(X %*% gamma21)[which(B1 ==

1)])

154

155 # Generate survival times using Cox model with Weibull baseline survival.

156 u <- runif(n)

157 v <- runif(n)

158 T1 <- (-log(u)/(alpha1*exp( Z %*% beta1 )))^(1/kappa1)

159 T2 <- (-log(v)/(alpha2*exp( Z %*% beta2 )))^(1/kappa2)

160

161 # Set the cure thresholds at the 99% quantiles (truncate the survival times).

162 tau1 <- qweibull (0.99 , kappa1 , scale=alpha1 ^(-1/kappa1))

163 tau2 <- qweibull (0.99 , kappa2 , scale=alpha2 ^(-1/kappa2))
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164 T1 <- pmin(T1 , tau1)

165 T2 <- pmin(T2 , tau2)

166 T1[which(B1 == 1)] <- 100 #cured patients have infinite survival times

167 T2[which(B2 == 1)] <- 100

168

169 # Event time and CR status indicator.

170 T <- pmin(T1, T2)

171 D <- 1 + as.numeric(T2 <= T1)

172

173 # Censoring and follow -up time (with truncation)

174 tau <- 2 #end of study

175 C <- runif(n,min(tau1 ,tau2),tau) #rexp(n, 0.1)

176 C <- pmin(C, rep(tau , n)) #truncate censoring times

177 Y <- pmin(T, C)

178 status <- as.numeric(C>=T)

179 D <- status * D

180

181 # Estimate model parameters for the simulated data using the EM algorithm.

182 result <- em(times = Y, CR_status = D, cov = Z, eps = 10^( -5), emmax = 500)

183

184 return(list(times = Y,

185 CR_status = D,

186 cov = Z,

187 cure_status1 = B1,

188 cure_status2 = B2,

189 cens_rate = cens_rate ,

190 cure_stats = cure_stats ,

191 plateau = plateau ,

192 tau1 = tau1 ,

193 tau2 = tau2 ,

194 gamma1 = result$gamma1 ,
195 gamma20 = result$gamma20 ,
196 gamma21 = result$gamma21 ,
197 beta1 = result$beta1 ,
198 beta2 = result$beta2 ,
199 conv = result$convergence ,
200 it = result$i,
201 surv = result$surv))
202 }

203

204

205 # Perform the simulation study and keep track of the results.

206 MC_cure2 <- function(X, n, gamma1 , gamma20 , gamma21 , beta1 , beta2 , kappa1 , kappa2 ,

alpha1 , alpha2){

207

208 estimates <- matrix(ncol = 14, nrow = 1)

209 colnames(estimates) <- c("gamma1 (intercept)", "gamma1 (coef)",

210 "gamma20 (intercept)", "gamma20 (coef)",

211 "gamma21 (intercept)", "gamma21 (coef)",

212 "beta1", "beta2",

213 "S1 (0.25)", "S1 (0.50)", "S1 (0.75)",

214 "S2 (0.25)", "S2 (0.50)", "S2 (0.75)")

215

216 # Perform the simulation until it converges. This usually takes 1 iteration.

217 while (error) {
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218 result <- tryCatch(sim_cure(n, gamma1 , gamma20 , gamma21 , beta1 , beta2 , kappa1 ,

kappa2 , alpha1 , alpha2),

219 error=function(e) {

220 print("ERROR")

221 return(NA)

222 },

223 warning=function(w) {

224 print("WARNING")

225 }

226 )

227 if(length(result) == 18){

228 error <- FALSE

229

230 }

231 }

232

233 #message_parallel(c("n ", n, " Iteration ", X, " Conv: ", result$it))
234

235 estimates [1,] <- c(result$gamma1 , result$gamma20 , result$gamma21 , result$beta1 ,
result$beta2 , result$surv)

236

237 return(estimates)

238 print(c("Number of errors:", N_e))

239 }

240

241

242 ##### Code for actually performing the simulations #####

243

244

245 # Parameter combination 1

246 gamma1 <- c(1/4, -1/2)

247 gamma20 <- c(1, -0.5)

248 gamma21 <- c(-0.5, 0.5)

249 beta1 <- c(1/2)

250 beta2 <- c(1)

251 kappa1 <- 15

252 kappa2 <- 2.5

253 alpha1 <- 20

254 alpha2 <- 2

255

256

257 # Parameter combination 2

258 gamma1 <- c(1/4, -1)

259 gamma20 <- c(-0.5, 0.5)

260 gamma21 <- c(1, -1)

261 beta1 <- c(0.5)

262 beta2 <- c(0.5)

263 kappa1 <- 1

264 kappa2 <- 1

265 alpha1 <- 8

266 alpha2 <- 3

267

268

269 #Parameter combination 3

270 gamma1 <- c(-1/2, 1)

271 gamma20 <- c(0, 1)
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272 gamma21 <- c(0, -1)

273 beta1 <- c(2)

274 beta2 <- c(0.25)

275 kappa1 <- 7.5

276 kappa2 <- 2.5

277 alpha1 <- 6

278 alpha2 <- 3

279

280

281 # Compute true survival probabilities.

282 surv_true <- c(exp(-alpha1*0.25^ kappa1), exp(-alpha1*0.5^ kappa1), exp(-alpha1*0.75^

kappa1),

283 exp(-alpha2*0.25^ kappa2), exp(-alpha2*0.5^ kappa2), exp(-alpha2*0.75^

kappa2))

284

285 # Set simulation size , sample size and number of cores:

286 n <- 1000

287 M <- 1000

288 cores <- system("nproc", intern=TRUE)

289 print(paste("Using ",cores , " cores"))

290

291 # THE SIMULATION

292 estimates <- mcmapply(X = 1:M, FUN = MC_cure2 ,

293 MoreArgs = list(gamma1 = gamma1 ,

294 gamma20 =gamma20 ,

295 gamma21 = gamma21 ,

296 n = n,

297 beta1=beta1 , beta2=beta2 ,

298 kappa1=kappa1 , kappa2=kappa2 ,

299 alpha1=alpha1 , alpha2=alpha2),

300 mc.cores=cores)

301

302

303 # Present the results in the correct format.

304 estimates <- t(estimates)

305 summary <- matrix(ncol = 14, nrow = 5)

306 colnames(summary) <- c("gamma1 (intercept)", "gamma1 (coef)",

307 "gamma20 (intercept)", "gamma20 (coef)",

308 "gamma21 (intercept)", "gamma21 (coef)",

309 "beta1", "beta2",

310 "S1 (0.25)", "S1 (0.50)", "S1 (0.75)",

311 "S2 (0.25)", "S2 (0.50)", "S2 (0.75)")

312 rownames(summary) <- c("True", "MC estimate", "Bias", "Variance", "MSE")

313 summary [1,] <- c(gamma1 , gamma20 , gamma21 , beta1 , beta2 ,surv_true)

314 summary [2,] <- colMeans(estimates , na.rm = TRUE)

315 summary [3,] <- colMeans(estimates , na.rm = TRUE) - c(gamma1 , gamma20 , gamma21 ,

beta1 , beta2 , surv_true)

316 summary [4,] <- colVars(estimates , na.rm = TRUE)

317 summary [5,] <- summary [4,] + (summary [3,])^2

318

319 print(paste("PARAM -COMBI 1 /// n = ", n, " /// M = ", M, "/// note: "))

320 print(summary)

82



Code for Simulation Study II

1 ### Simulation study II ###

2

3

4 # Load the required packages.

5 library(dplyr)

6 library(matrixStats)

7 library(parallel)

8 library(survival)

9

10

11 # Function computes the three cure probabilities based on gamma estimates.

12 cure_pred <- function(cov , gamma){

13

14 # Design matrix

15 x <- cbind(rep(1, nrow(cov)), cov)

16

17 # Compute the (conditional) cure probabilities per individual.

18 pi <- plogis(x %*% gamma)

19

20 return(list(pi = pi))

21 }

22

23

24 # Function computes the conditional expectations based on current estimates

25 # in the EM algorithm.

26 EM_weights <- function(status , surv1 , surv2 , cure){

27

28 # Denote the estimated cure proportions (vector of size n).

29 pi <- cure$pi
30

31 # Compute the updated weights.

32 phi <- as.numeric(status == 0)* pi / (pi + (1-pi)*surv1*surv2)

33

34 # Might create NaN; due to 0/0.

35 phi[is.na(phi)] <- 0

36

37 return(list(phi = phi))

38 }

39

40

41 # Estimate the model parameters using the EM algorithm.

42 em <- function(times , CR_status , cov , eps , emmax){

43

44 # Define the different status indicators. (The argument status is assumed to

45 # to contain 0, 1 and 2.)

46 s0 <- as.numeric(CR_status != 0)

47 s1 <- as.numeric(CR_status == 1)

48 s2 <- as.numeric(CR_status == 2)

49

50 # Initialize the parameters.

51 gamma <- c(0,0)

52 beta1 <- unname(coxph(Surv(times , s1) ~ cov)$coef)
53 beta2 <- unname(coxph(Surv(times , s2) ~ cov)$coef)
54 bh1 <- baseline_hazard(times , s1, cov , beta1 ,

55 rep(1, length(times)), rep(1,length(times)))
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56 bh2 <- baseline_hazard(times , s2, cov , beta2 ,

57 rep(1,length(times)), rep(1,length(times)))

58

59 # Keep track of the convergence of the algorithm.

60 i <- 1

61 convergence <- 100

62

63 while (convergence > eps & i < emmax){

64

65 # Compute the estimated conditional expectations given the current estimates

66 cure <- cure_pred(cov , gamma)

67 surv1 <- survival_pred(bh1 , times , s1 , cov , beta1)

68 surv2 <- survival_pred(bh2 , times , s2 , cov , beta2)

69 cond_exp <- EM_weights(CR_status , surv1 , surv2 , cure)

70 phi <- cond_exp$phi
71

72 # Store the old parameters before updating them.

73 par_old <- c(gamma ,beta1 ,beta2 ,bh1 ,bh2)

74

75 # Estimate the new parameters from the updated weigths.

76 gamma <- weighted_IRLS(times , cov , s0*(1-phi), (1-phi), gamma)$gamma
77 beta1 <- weighted_partial(beta1 , times , s1 , cov , (1-phi), (1-phi))$beta
78 beta2 <- weighted_partial(beta2 , times , s2 , cov , (1-phi), (1-phi))$beta
79 bh1 <- baseline_hazard(times , s1, cov , beta1 , (1-phi), (1-phi))

80 bh2 <- baseline_hazard(times , s2, cov , beta2 , (1-phi), (1-phi))

81

82 # Compute the distance to the old parameters.

83 convergence <- sum((par_old -c(gamma ,beta1 ,beta2 ,bh1 ,bh2))^2)

84 i <- i + 1

85 }

86

87 # Estimate cumulative incidences for reporting the results of the simulation.

88 CIF1 .0.25 <- CIF (0.25 , times , CR_status , bh1 , bh2)$cif1
89 CIF1 .0.50 <- CIF (0.75 , times , CR_status , bh1 , bh2)$cif1
90 CIF2 .0.25 <- CIF (0.25 , times , CR_status , bh1 , bh2)$cif2
91 CIF2 .0.50 <- CIF (0.75 , times , CR_status , bh1 , bh2)$cif2
92 CIF_estimate <- c(CIF1 .0.25, CIF1 .0.50, CIF2 .0.25 , CIF2 .0.50)

93

94 return(list(times1 = sort(unique(times[which(CR_status == 1)])),

95 times2 = sort(unique(times[which(CR_status == 2)])),

96 times = times ,

97 bh1 = bh1 ,

98 bh2 = bh2 ,

99 gamma = gamma ,

100 beta1 = beta1 ,

101 beta2 = beta2 ,

102 CIF = CIF_estimate ,

103 conv=convergence ,

104 it=i))

105 }

106

107

108 # Simulate the cure competing risks data and fit the model.

109 sim_cure <- function(n, gamma , beta1 , beta2 , kappa , alpha1 , alpha2){

110

111 # Simulate the covariates and define a design matrix.
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112 x0 <- rep(1, n)

113 x1 <- rexp(n)

114 X <- matrix(c(x0, x1), ncol = 2)

115 Z <- matrix(c(x1), ncol = 1)

116

117 # Generate the cure status for risk 1.

118 B <- rbinom(n, 1, plogis(X %*% gamma))

119

120 # Generate survival times using Cox model with Weibull baseline survival.

121 u <- runif(n)

122 T <- (-log(u)/(alpha1*exp( Z %*% beta1 ) + alpha2*exp( Z %*% beta2)))^(1/kappa)

123

124 #generate event status

125 D <- rep(2, n)

126 event1 <- rbinom(n, 1, alpha1/(alpha1 + alpha2*exp( Z %*% (beta2 - beta1) )))

127 D <- D - event1

128

129 # Set the cure thresholds at the 99% quantiles (truncate the survival times).

130 tau1 <- qweibull (0.99 , kappa , scale=alpha1 ^(-1/kappa))

131 tau2 <- qweibull (0.99 , kappa , scale=alpha2 ^(-1/kappa))

132 T[D == 1] <- pmin(T[D == 1], tau1)

133 T[D == 2] <- pmin(T[D == 2], tau2)

134 T[which(B == 1)] <- 100 #cured patients have infinite survival times

135

136 # Censoring and follow -up time (with truncation)

137 tau <- 2 #end of study

138 C <- runif(n, 0, tau)

139 C <- pmin(C, rep(tau , n)) #truncate censoring times

140 Y <- pmin(T, C)

141 D[Y == C] <- 0

142

143 # Estimate model parameters for the simulated data using the EM algorithm.

144 result <- em(times = Y, CR_status = D, cov = Z, eps = 10^( -8), emmax = 500)

145

146 return(list(times = Y,

147 CR_status = D,

148 cov = Z,

149 tau1 = tau1 ,

150 tau2 = tau2 ,

151 gamma = result$gamma ,
152 beta1 = result$beta1 ,
153 beta2 = result$beta2 ,
154 CIF = result$CIF ,
155 conv = result$convergence ,
156 it = result$i))
157 }

158

159

160 # Perform the simulation study and keep track of the results.

161 MC_cure2 <- function(X, n, gamma , beta1 , beta2 , kappa , alpha1 , alpha2){

162

163 estimates <- matrix(ncol = 8, nrow = 1)

164 colnames(estimates) <- c("gamma (intercept)", "gamma (coef)",

165 "beta1", "beta2",

166 "CIF1 (0.25)", "CIF1 (0.50)", "CIF2 (0.25)", "CIF2 (0.50)")

167
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168 # Store the results.

169 result <- sim_cure(n, gamma , beta1 , beta2 , kappa , alpha1 , alpha2)

170 estimates [1,] <- c(result$gamma , result$beta1 , result$beta2 , result$CIF)
171

172 return(estimates)

173 }

174

175

176 ##### Code for actually performing the simulations #####

177

178

179 # Parameter combination 1

180 gamma <- c(0, -0.5)

181 beta1 <- c(0.5)

182 beta2 <- c( -0.25)

183 kappa <- 6/5

184 alpha1 <- 4

185 alpha2 <- 5

186

187

188 # Parameter combination 2

189 gamma <- c(-1/4, 0)

190 beta1 <- c(-0.5)

191 beta2 <- c(1/4)

192 kappa <- 2.5

193 alpha1 <- 5

194 alpha2 <- 7.5

195

196

197 # Compute the theoretical values of the cumulative incidence fucntions.

198 true_CIF1 <- function(t, alpha1 , alpha2 , kappa){

199 CIF <- (alpha1/(alpha1+alpha2))*(1-exp(-(alpha1+alpha2)*t^kappa))

200 return(CIF)

201 }

202

203 true_CIF2 <- function(t, alpha1 , alpha2 , kappa){

204 CIF <- (alpha2/(alpha1+alpha2))*(1-exp(-(alpha1+alpha2)*t^kappa))

205 return(CIF)

206 }

207

208 Theor_CIF <- c(true_CIF1 (0.25 , alpha1 , alpha2 , kappa),

209 true_CIF1 (0.75 , alpha1 , alpha2 , kappa),

210 true_CIF2 (0.25 , alpha1 , alpha2 , kappa),

211 true_CIF2 (0.75 , alpha1 , alpha2 , kappa))

212

213

214 # Set simulation parameters

215 n <- 1000

216 M <- 1000

217 cores <- system("nproc", intern=TRUE)

218 print(paste("Using ",cores , " cores"))

219

220

221 # THE SIMULATION STUDY

222 estimates <- mcmapply(X = 1:M, FUN = MC_cure2 ,

223 MoreArgs = list(n = n,
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224 gamma = gamma ,

225 beta1 = beta1 ,

226 beta2 = beta2 ,

227 kappa = kappa ,

228 alpha1 = alpha1 ,

229 alpha2 = alpha2),

230 mc.cores=cores)

231

232

233 # Present the results in the correct format.

234 estimates <- t(estimates)

235 summary <- matrix(ncol = 8, nrow = 5)

236 colnames(summary) <- c("gamma (intercept)", "gamma (coef)",

237 "beta1", "beta2",

238 "CIF1 (0.25)", "CIF1 (0.50)", "CIF2 (0.25)", "CIF2 (0.50)")

239 rownames(summary) <- c("True", "MC estimate", "Bias", "Variance", "MSE")

240 summary [1,] <- c(gamma , beta1 , beta2 , Theor_CIF)

241 summary [2,] <- colMeans(estimates , na.rm = TRUE)

242 summary [3,] <- colMeans(estimates , na.rm = TRUE) - c(gamma ,beta1 ,beta2 ,Theor_CIF)

243 summary [4,] <- colVars(estimates , na.rm = TRUE)

244 summary [5,] <- summary [4,] + (summary [3,])^2

245

246 print(summary)

247 print(paste("PARAM -COMBI 1 /// n =", n, " /// M =", M))
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