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1 Introduction

This master thesis is meant to be a collection of many aspects revolving around Enigma, a brand which includes
various encipherment machines. The concepts for the machine were all invented and used before and during
World War II. Although there is much information on the subject, the information seems to be very fragmented.
Many bits and pieces of information seem to be spread over many articles, publications, books, and websites.
Therefore, this thesis aims to collect the main concepts, information and stories about Enigma supported by
worked-out examples and extensive explanations.

Starting in 1917, the main concept of the Enigma machine, which is the rotor construction, was invented by
four di↵erent men from four di↵erent countries within three years. However, the only one who was financially
successful, was the German Arthur Scherbius. Together with E. Richard Ritter, he founded the company
Scherbius and Ritter. After their concept was denied by the Imperial German Navy and the Foreign O�ce,
they transferred their patent rights for the rotor concept to the Gewerkschaft Securitas. They made their first
machine in 1923. Other than the Enigma machines used during World War II, this Enigma machine printed out
the outcome resulting in a heavy and big machine. The machine also had some other flaws, which made it less
dependable. From there on, the Enigma machine was innovated multiple times. Over the years, this resulted in
a lot of di↵erent versions of the machine. We will discuss this in Section 4. The initial versions were not made
for the purpose of war; they were made for commercial purposes.

However, the collection of information described in this thesis is not near to completion. As already mentioned,
and as will be discussed in Section 4, there are many di↵erent types and versions of Enigma. Therefore, for the
main concepts, this thesis focusses on Enigma I, which is the machine used by the German Army and German
Air Force during World War II.

For this version of Enigma, Sections 2 and 3 will elaborately explain the mechanism inside the machine, sup-
ported by examples. To fully understand all these processes, we also have programmed this version of the
machine in the programming language Python, which can be found in Appendix B.

A strength of the concept of Enigma, is the security of the mechanism. There are many variables influencing
this. This is reflected by the number of settings a machine can start in. Section 5 contains a formula for finding
the number of settings based on the variables that can be chosen. In addition, a program in Python is provided
that gives the amount of starting settings based on the entered variables.

Lastly, this thesis will not only focus on the complexity of the concept of the Enigma, but will also focus on
several events and techniques used to break the code. These will be discussed in Section 6 and the corresponding
appendices.

When it comes to sources, many were used. Especially, where it came to getting an understanding of the mech-
anism of the Enigma I machine. To prevent the text from continuous interruptions, the text will not contain
direct citations or references to sources. Therefore, all sources are listed at the end of every chapter.

Sources: [9], [10], [18], [22], [17].
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2 The machine

When one looks at an Enigma machine, one can distinguish four di↵erent components. In Figure 1, they are
marked in red, green, orange and blue:

Figure 1: Enigma machine

Source: https://drenigma.org/2018/03/26/how-many-enigma-machines-are-there-left/

Despite of the fact that it looks like a typewriter, it is nothing like that. An Enigma machine can encipher and
decipher messages. In this chapter, we are going to track and explain the path a certain letter will travel until
it becomes enciphered. The keyboard is marked in orange and works just as a normal keyboard, containing
all 26 letters of the alphabet. Before a letter is enciphered, it needs to pass through a couple of stations, like
the plugboard (marked in blue) and the rotors (marked in red). The enciphered letter will eventually light
up on the lampboard (marked in green). A letter will pass the stations in the following order:

Figure 2: Stations of the Enigma machine
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What happens at these stations, will be explained in the following paragraphs.

2.1 Plugboard

A station that the letter passes twice, is the plugboard. The plugboard looks as follows:

Figure 3: Enigma plugboard

Source: https://nl.m.wikipedia.org/wiki/Bestand:Enigma-plugboard.jpg

The plugboard has a plug for every letter of the alphabet, which can be connected to each other by a cable. In
this way one may create pairs of letters, as each letter can only be connected to exactly one other letter. If a
letter is connected to another letter on the plugboard, the incoming letter gets switched to the letter that it is
connected to. Say, for example, we connect A and B with a cable, then if an A enters the plugboard, it comes
out as a B. Following the same argument, if a B enters the plugboard, it becomes an A. Another possibility
is that a letter is not connected on the plugboard, which means that the letter will remain itself after passing
through the plugboard.
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2.2 Rotors

After passing through the plugboard, we arrive at the rotors. If we open the machine, we will see the following:

Figure 4: Enigma rotors

Source: https://www.ciphermachinesandcryptology.com/nl/enigmatech.htm

On the left, marked in yellow, we see what is called the reflector. On the right we see three rotors next to
each other, which are marked in purple. In this machine, there is only place for three rotors. For simplicity, we
refer to the left space where a rotor can be placed as L, to the middle space as M, and to the right space as R.

2.2.1 Rotor

When taking a rotor out of the machine, it will look as follows:

Figure 5: Inside of a rotor 1

Source:

https://www.flickr.com/photos/duanewessels/7063367271

Figure 6: Inside of a rotor 2

Source: https://hackaday.com/2019/08/06/espionage-
on-display-as-gchq-hosts-a-temporary-

exhibit/topsecret-enigma-rotor/

Each rotor has 26 pin contacts and 26 plate contacts. When two rotors are next to each other, every pin contact
of the left rotor touches a plate contact of the right rotor. The plate contacts of the most left rotor will be
connected to the pin contacts of the reflector. The pin contacts of the most right rotor will be connected to the
plate contacts of what is called the entry disc. The entry disc only is the entry towards the rotor construction.
It is fixed in the machine and has no mixed up wiring. The reflector and entry disc will respectively look as
follows:
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Figure 7: Reflector Figure 8: Entry disc

Source: https://www.ciphermachinesandcryptology.com/en/enigmatech.htm

How a letter is passed on to the next rotor is as follows. Within the rotor there are 26 cables that randomly
connect a pin contact to a plate contact. This can equivalently be interpreted as one letter being randomly
connected to another letter, which in fact can also be itself. This internal wiring, which is fixed, is di↵erent
for every rotor. Lastly, all rotors have what is called an alphabet ring. As the rotors can be rotated by the
user, the alphabet ring is meant for showing the user in which configuration the rotors are as one letter can be
seen through the rotor window (marked in red in Figure 1). The alphabet ring does also influence the stepping
mechanism described in Section 2.3. One can rotate the alphabet ring separately from the internal wiring, so
the alphabet ring can be set as well. This will be more elaborately discussed in Section 2.3 and 2.6.

2.2.2 Reflector

Within the reflector, which is fixed inside of the machine, all 26 pin contacts are connected in pairs. When the
electric current leaves the rotor that is in the position most left, it enters the reflector through a pin contact.
Through the internal wiring, it gets sent to the connected pin contact. From there on, the electric current goes
back through the three rotors. Within the reflector, it is not possible for a pin contact to be connected to
itself. This would result in a letter that gets enciphered as itself, which may result in complete messages being
enciphered as itself. Beside, it will not be electrically possible, as the two electric currents cannot pass through
one wire in opposite directions.
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2.3 The Stepping Mechanism

One of the elements which makes the Enigma machine so complicated, is the stepping mechanism. The stepping
mechanism is completely mechanical, so no electricity is needed. The stepping mechanism makes the rotors
rotate during every key press, which results in every letter being enciphered in a di↵erent setting. Before we
discuss further details of the stepping of the rotors, we have to take a look at the rotors. Every rotor has an
alphabet ring, which shows you in which configuration the rotors are if you look through the rotor windows.
The alphabet ring has another ring that is attached to it which has a small notch, called the notched ring.
The notched ring and alphabet ring can not rotate separately as they are stuck together. However, these two
attached rings can be rotated separately from the internal wiring of the rotor. A rotor looks as follows:

Figure 9: Notch Figure 10: Ratchet

Source: https://www.ciphermachinesandcryptology.com/en/enigmatech.htm

Circled in blue, you see the notch. The red arrow points at what is called the ratchet. When all the rotors
are out of the Enigma machine, it looks as follows:

Figure 11: Enigma pawls

Source: https://commons.wikimedia.org/wiki/File:EnigmaStepping.jpg

Circled in orange, we see what are called the pawls. In Figure 11, the three pawls can be seen (the third one
on the right is not as visible as the left and the middle pawl). When you press a key, the pawls will lift up. The
end of the pawl will fit into the ratchet, which will cause the rotor to make one step. However, this does not
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happen with all the rotors. Say we look at three rotors next to each other. So, one rotor is in space L, one is in
space M, and the last rotor is in space R. The pawl will always reach the ratchet of the rotor in space R, which
means that this rotor will always step. This is di↵erent for the rotors in spaces L and M. The notched rings of
the rotors in spaces M and R will withhold the pawl from fitting into the ratchets of rotors in spaces L and M
respectively, and therefore respectively withhold the rotors in spaces L and M from stepping. However, there is
a way that the rotors in spaces L and M can step. The rotor in space M can step when the notch of the rotor
in space R is perfectly lined up with the middle paw. Then the pawl can fit in the ratchet of the rotor in space
M, which makes this rotor step. This is analogous for the rotor in space L.

The position of the notch of a rotor is mostly indicated by the letter that is presented in the rotor window. For
example, if the notch of a rotor in space R is on E, this makes the rotor in space M step if the rotor in space
R steps from E to F. It is also important to know, that the rotors turn before enciphering a letter. So, the first
letter is not enciphered in the start settings.

2.3.1 Double Stepping

Occasionally it occurs that the rotor in the middle steps two consecutive times, this is called double stepping.
This happens when a certain combination of events occur. Suppose, the rotor in space R (Figure 4) is in notch
position, meaning that during the next key press the rotor in space M will advance. Suppose, after that key
press, the rotor in space M is in notch position. The pawl will fit in the ratchet of the rotor in space L, but
also fits in the notch of the rotor in space M. As the pawl lifts, the rotor in space L advances and the pawl also
pushes the rotor in space M, as a result of which the latter advances one step. Now, the rotor in space M has
stepped two consecutive times. In other words, it made a double step. So, the rotor in space L advances one
step at the same time the rotor in space M steps the second step of the double step.

To clarify double stepping, we give an example. Say we place a rotor called III in space L, a rotor called II in
space M, and a rotor called I in space R. Say we put the rotors in the setting IDN. Rotor II has a notch on E,
so rotor III can only advance when rotor II steps from E to F. Say that rotor I has a notch on Q, so rotor II
advances when rotor I steps from Q to R. We get the following settings, when pressing the keys:

I D N ! I D O ! I D P ! I D Q ! I E R ! J F S ! J F T ! · · ·

We see that after the fourth and fifth key press, the middle rotor will step. Before the fourth key press rotor I
is in setting Q, which means rotor II will advance during the next key press. After the fourth key press rotor
II is in setting E, which means that rotor III will advance during the next key press, as the notch of rotor II is
on E.

2.4 No letter can be encoded as itself and letter pairs

A special and necessary characteristic of the Enigma machine is that no letter can ever be enciphered as itself.
This is established by the reflector, which, as we already know, always connects one pin contact to another pin
contact and never to same contact. The reflector sends the letter that arrived to another letter and after that,
it travels back through the three rotors. It is not possible that the path back crosses the path we traveled to
the reflector. Otherwise we would not have ended up in the reflector where we originally did. This results in
the fact that in a certain setting, two letters will always form a pair. Say that, for example, in a certain setting
we press A and B lights up. In the same setting, if we press B, A will light up, as we travel the same way from
A to B but backwards. So, when one encodes the letter I, and it is for example encoded as the letter J, when
we encode J in the exact same settings, we get the letter I back.
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2.5 Example without ring setting

We will now consider a simple example with only 6 letters in an alphabet. We will look at the reflector and
rotors in two dimensions, as if they are folded out. We get the following rotors, which in Figure 12 are all in
position A (which is displayed in the little square, functioning as the rotor window), and reflector:

Figure 12: Example rotors

Suppose the rotors have the notch on the following position:

• Rotor I on position C (but this is not relevant),

• Rotor II on position E, and

• Rotor III on position A.

We thus have the following settings:

• Rotor order (from left to right): I - II - III

• Rotor settings: A D F

• Plugboard settings: AB/CD/EF

Before any key is pressed, we have the following starting position:

Figure 13: Example starting position
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The first letter will be enciphered following this position:

Figure 14: Example settings for enciphering the first letter

The second letter will be enciphered following this position:

Figure 15: Example settings for enciphering the second letter
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The third letter will be enciphered following this position:

Figure 16: Example settings for enciphering the third letter

In this way, the message A B D will be enciphered to E A B. In this example, you can clearly see that in a
certain setting, a letter can not be enciphered as itself, and that all the letters are divided into pairs of two in
a certain setting. We also see an example of double stepping.
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2.6 Ring settings

One thing we have not discussed yet, is the ring setting of a rotor. Up until now, we assumed that the internal
wiring of a rotor was stuck to the alphabet ring. However, it is possible to rotate the internal wiring relative to
the alphabet ring when setting the rotors in the given settings. When the encoding starts, the internal wiring
and the alphabet ring rotate as a whole; they are stuck together. If we look at the rotor, we see the following:

Figure 17: Enigma dot on rotor

Source: https://www.ciphermachinesandcryptology.com/en/enigmatech.htm

Circled in red is a little dot. How this dot is lined up with the alphabet ring, will determine the ring setting.
Say the dot is lined up with A on the alphabet ring, then the ring setting for this rotor will be 1 (or A). If
the dot lines up with Q, the ring setting will be 17 (or Q). So in the example discussed in Section 2.5, all ring
settings were 1.

To make it more clearly, we take a look at rotor I from the previous example:

Figure 18: Example rotor with dot

The orange dot will indicate the ring setting, so now the rotor is in ring setting 1. Say we want the rotor to be
in ring setting 4 (or D), then we line the orange dot up with D on the alphabet ring:

14



Figure 19: Example rotor in ring setting 4 (D)

If we set the rotor to setting A in the rotor window, we will get the following:

Figure 20: Example rotor in ring setting 4 (D) and setting A

Due to the colors given to the wires, it is easy to see that the internal wiring is completely di↵erent than the
wiring we started with. Although, the window setting is the same, namely A. This adds to the complexity of
the Enigma machine.

In the next paragraph we will show an example which includes ring settings.

15



2.7 Example with ring setting

We will use the same rotors as in the previous example. We will get the following situation:

Figure 21: Example rotors including a dot

The rotors will have the notch on the following position:

• Rotor I on position C (but this is not relevant),

• Rotor II on position E, and

• Rotor III on position A.

We have the following settings:

• Rotor order (from left to right): I - II - III

• Rotor settings: A D F

• Plugboard settings: AB/CD/EF

• Ring settings: 3 - 5 - 2

When put in the the right ring settings, the rotors look as follows:

Figure 22: Example rotors in given ring setting
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Then we put them in the right rotor setting:

Figure 23: Example rotors in correct rotor setting and ring setting

Before any key is pressed, we have the following starting position:

Figure 24: Starting position

The first letter will be enciphered following this position:

Figure 25: Setting for enciphering the first letter
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The second letter will be enciphered following this position:

Figure 26: Setting for enciphering the second letter

The third letter will be enciphered following this position:

Figure 27: Setting for enciphering the third letter

In this way, the message A B D will be enciphered to C F B.

Sources: [30], [27], [29], [5], [15], [14], [13], [20], [28], [19], [24]
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3 Enigma expressed in permutations

In Section 2, we discussed the entire machine. However, since an encoding is nothing but a permutation of the
alphabet, we can express this process through permutations.

If we look at the Enigma machine itself, we know that a letter that enters the machine through a tap on the
keyboard, always comes out of the machine as another letter. If this were not the case, this would have been a
security risk, as then it would be statistically possible to encipher every letter of a message to itself. When we
encipher a letter, it is enciphered in the settings we get after pressing the key on the keyboard. So, the rotors
turn before enciphering a letter.

As the Enigma machine can completely be expressed through permutations, it is also bijective function as all
permutations are bijective. The entire alphabet is mapped back to the alphabet and exists completely out of
pairs, since no letter is mapped to no or two or more letters. So, this results in a permutation that completely
exists out of cycles of length two.

For simplicity, we replace the letters by numbers. So A corresponds to 0, B corresponds to 1, C to 2 and so on.
We use the notation A = {0, 1, 2, . . . , 24, 25} for the set of letters.

So, if we were to formally express the Enigma machine through a permutation, we have a permutation

E : A ! A
such that

8x 2 A 9y 2 A, y 6= x with E(x) = y ^ E(y) = x.

However, as already mentioned in Section 2, the Enigma machine exists of three main elements: the plugboard,
the rotors, and the reflector. These elements can all be individually expressed through permutations, after which
they can be composed to equal the permutation E, representing the entire Enigma machine. All elements, also
referred to as stations in Section 2, will be discussed independently.

3.1 Plugboard

In the plugboard, two letters get switched when they are connected by a cable. So, within the plugboard, either
two letters are mapped to each other or a letter is mapped to itself. Thus, the plugboard can be defined as
a bijective function with the possibility of letters being mapped to themselves. The number of letters being
mapped to themselves, depends on the number of cables used. Say, we use 0  c  13 cables, then 2c letters
are part of a pair and 26� 2c letters are mapped to themselves.

So, if we were to formally express the plugboard through a permutation, we have a permutation

P : A ! A
of the form

(b1b2)(b3b4) · · · (b2c�1b2c)(a1)(a2) · · · (a26�2c).

It holds that P 2 = I with I the identity map I = (1)(2) · · · (25)(26). P is fixed during encoding.

3.2 Reflector

After passing through the rotors, a letter arrives at the reflector. The concept is the same as that of the plug-
board, but the letters are permanently connected and a letter can not be mapped to itself. So, the reflector can
also be seen as a bijective function.

So, if we were to formally express the reflector through a permutation, we have a permutation

F : A ! A
of the form

(h1h2)(h3h4) · · · (h25h26).

Consequently, F 2 = I with I the identity map I = (1)(2) · · · (25)(26). F is fixed during encoding.
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3.3 Rotors

The permutations associated with the rotors are a bit more complicated than the ones before, since we have to
take the initial setting and the ring setting into account. Also, the rotors step, and double stepping occurs.

As we saw in Figure 4, we have three spaces where a rotor can be placed: L, M and R. Say T is a finite collection
of rotors. Let {�L, �M , �R} ⇢ T a choice of three di↵erent rotors. Rotor �L is placed in space L, rotor �M is
placed in space M, and rotor �R is placed in space R.

We have to define the rotation of the rotors, as we have to rotate them in the correct position and as they rotate
every time a letter on the keyboard is tapped. If we, for example, look at Figures 24 and 25, we see that the
rotors rotate upwards. In other words, they rotate to the back. So, say d represents the rotation, then

d =

✓
0 1 2 · · · 23 24 25
1 2 3 · · · 24 25 0

◆
= (0 1 2 . . . 24 25).

Now we have defined a one step rotation, we look at the internal wiring of the rotors. Every rotor has internal
wiring that connects 26 plates to 26 contacts. One can see this as connecting all 26 letters to the alphabet to
the 26 letters of the alphabet. In other words, the internal wiring of a rotor is a permutation. We will define
the internal wiring of any rotor as follows:

Definition 1. For a rotor �, with � 2 T , the internal wiring of � is represented by a permutation

f� : A ! A

which maps the alphabet to the alphabet.

If we rotate rotor � n times, we would get the permutation

d
�n � f� � dn.

Notice that since the rotor has made one full rotation after 26 steps, we have to work with modulo 26. For
x 2 Z it holds that (x mod 26) 2 A. This corresponds to the numbers we replaced the letters with. So, we get

d
�(n mod 26) � f� � d(n mod 26)

.

3.3.1 Setting the rotors

Next, we have to set rotor � in the correct ring setting and initial setting. We define the settings below.

Definition 2. Say s� represents the given ring setting of rotor � 2 {�L, �M , �R} with s� 2 A.

However, this is not the amount of steps a rotor needs to advance to be in the given ring setting.

Lemma 1. We define r� to be the number of steps rotor � 2 {�L, �M , �R} has to advance to be in the given ring
setting. It holds that

r� = 26� s�.

Proof. Since the rotors rotate to the back, and the ring setting represents the number of advancements of the
internal wiring to the front, rotor � has to step 26� s� times to be in the correct ring setting. In this way, we
line up the orange dot, that has been introduced in previous examples, with the correct letter on the alphabet
ring.

To visualize this proof, we will consider the following example
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Figure 28: Example ring setting

In Figure 28, a rotor is being set from ring setting 0 (corresponding to A) to ring setting 1 (corresponding to
B). One can see that the colored internal wiring has stepped on step downwards. However, the rotors rotate up-
wards instead of downwards. Therefore, in this example we have to step upwards five times, which corresponds
to stepping 6 � 1 times. If we translate this to the complete 26 letter alphabet, we will get that the number
of steps that the rotor needs to make to be in the given ring setting, is equal to r� = 26�s� with � 2 {�L, �M , �R}.

So, after setting rotor � in the given ring setting, � 2 {�L, �M , �R}, we get the following permutation

d
�(r� mod 26) � f� � d(r� mod 26)

.

Next, we have to set the rotor in the given initial setting. To make the given letter show through the window
at the top of the machine, the rotor has to rotate as a whole.

Definition 3. We define q� to be the given initial position of rotor � 2 {�L, �M , �R} with q� 2 A.

So, rotor � as a whole has to step q� times to be in the given initial position.

Thus, setting rotor �, with � 2 {�L, �M , �R}, in the given ring setting and initial position, gives the following
permutation:

d
�((r�+q�) mod 26) � f� � d((r�+q�) mod 26)

.

3.3.2 Including the stepping mechanism

Next, we will consider the stepping mechanism of the rotors. Other than the regular stepping of the rotors, we
also have to take double stepping of rotor �M into account.

We first start with the rotor �R. This rotor steps with every key press. Say we press n keys on the keyboard,
then the right rotor will rotate n times. If we were to express this through a permutation, we get

R(n) := d
�((r�R+q�R+n) mod 26) � f�R � d((r�R+q�R+n) mod 26) (1)

Now, we have to consider the more complicated cases. To do so, we first have to define some things.

Definition 4. The notch letter is the letter X such that the rotor on its left advances if the rotor steps from
X to the next letter in the window.

The notch letter of a rotor is known. Its position determines the number of steps it takes till the rotor on the
left steps for the first time.

Definition 5. Define by �� the number of steps rotor �, with � 2 {�L, �M , �R}, has to advance from the initially
set letter to the letter after the notch letter.

Clearly, 1  ��  26. Note that after ��R steps, rotor �M has stepped due to the position of the notch of rotor
�R for the first time. Also note that the notch position of rotor �L is irrelevant, since there is no rotor on its
left.

We will first look at rotor �M .
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Theorem 2. The number of steps that rotor �M has advanced after n � 1 key presses, is equal to

k2(n) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

0, n < ��R and ��M 6= 1

1, n < ��R and ��M = 1

1 +
j
n���R

26

k
+
l
n�x+1
650

m
, 1  ��R  n and ��M 6= 1

j
n�1
26

k
+
l

n
650

m
, ��R = 1 and ��M = 1

3 +
j
n���R

26

k
+
j
n���R

�625

650

k
, 2  ��R  n and ��M = 1

(2)

with

x =

8
><

>:

2, if ��M = 2 and ��R = 1

��R + 1, if ��M = 2 and ��R 6= 1

��R + 26 · ��M � 51, if ��M � 3

. (3)

Proof. Notice that n � 1 and that 1  ��  26. Also keep into account that, as described before, rotor �M steps
as a consequence of two di↵erent situations. One situation being that rotor �R is in notch position (so when
�R advances one step from this position, then �M advances one step). The other situation is that the notch of
rotor �M is lined up for the rotor �L to advance one step, thus causing �M to step simultaneously with �L. In
other words, if rotor �M is in notch position. We will consider five di↵erent cases.

1. n < ��R and ��M 6= 1

In this case, �M has not stepped due to �R as n < ��R . Also, because of that, �M cannot get into the position
to step due to its own notch being in the correct position. In addition, �M is not in notch position because it
holds that ��M 6= 1. So, in this case, rotor �M has advanced zero times after n key presses.

2. n < ��R and ��M = 1

As ��M = 1, rotor �M advances one step as we start in the middle of double stepping and n � 1. So, �M steps
due to itself being in notch position. However, it is not possible for �M to step another time as a consequence
of �R being in notch position, as n < ��R . So, rotor �M only steps once.

3. 1  ��R  n and ��M 6= 1

For this case, we have that ��M 6= 1. When ��M = 1 , we have special cases that we will discuss later on. We
know that, as rotor �R has advanced at least ��R steps, that rotor �M has at least advanced one step. Also, we
know that in the remaining (n � ��R) steps, rotor �M steps every 26 times. So the amount of steps rotor �M

has advanced due to rotation of rotor �R, is

1 +
j
n� ��R

26

k
.

However, we did not take double stepping into account. As explained before, this may occur as a consequence
of the notch position of rotor �M , causing rotor �L to step, which in turn forces rotor �M to step a second time.
Double stepping occurs once every 650 steps. We explain this by showing a simplified example with the first
six letters of the alphabet.

Say the notch letters of both rotors �M and �R are A. So, the rotor on its left advances if the rotor steps from
A to B in the window. Say we start with letters A, F, and A showing through the windows from left to right.
We get the following:
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Figure 29: Example stepping mechanism

After two key presses, we immediately see that rotor �M stepped two consecutive times. After these two steps,
rotor �R has to step five times to end up at the letter after the notch letter. Then, we let rotor �R rotate enough
complete cycles to make F shows up in the middle again. We know that with these settings, double stepping
occurs when F shows in the middle and A shows on the right. So, we have to take five extra steps to end up in
this situation. We can easily translate this to 26 letters. Then, we get 2+ 25+ 23⇥ 26+ 25 = 650. So a double
step of the middle rotor happens every 650 key presses.

However, in Figure 29 we start at the situation that double stepping occurs after two key presses. This is not
always the case. So, we denote by x the number of key presses up to and including rotor �M stepping for the
first time due to its notch being in the position to make rotor �L advance.

So, the number of times rotor �M advances due to its notch being in the position to make rotor �L advance, is
equal to

l
n� x+ 1

650

m
.

As we just mentioned, x is the number of key presses one has to do up to and including the first time rotor �M
has advanced two consecutive times. So, when n � x, (n� x) is the amount of steps left after double stepping
occurred for the first time. We divide by 650 as double stepping occurs every 650 key presses. So, for every 650
extra key presses after double stepping occurred once, one will be added because we are rounding up. However,
if n = x, the number of steps rotor �M advances due to itself being in notch position would be equal to zero, but
it should be equal to one. So, therefore, in the denominator we have to add +1. As the first double stepping

always occurs in the first 650 steps, it holds that x  650 and thus
l
n�x+1
650

m
� 0. So, when n < x, it holds that

l
n�x+1
650

m
= 0.

So, the number of steps of rotor �M makes when 1  ��R  n and ��M 6= 1 is equal to

1 +
j
n� ��R

26

k
+
l
n� x+ 1

650

m
.

For the specification of x, we have to consider four cases. We again use a simplified example with six letters to
support the di↵erent cases described.

1. ��M = 2 and ��R = 1
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When ��M = 2 and ��R = 1, we are in the position for rotor �M to step twice. In the simplified example, for
rotor �M the letter F should show through the window. For rotor �R it would mean that the letter A shows
through the window. To make sure the double stepping occurred, we have to step two times. Therefore, in this
case, x = 2.

2. ��M = 2 and ��R 6= 1

When ��M = 2 and ��R 6= 1, rotor �M is in the correct position to double step, but rotor �R is not yet in the
correct position. The right position of rotor �R is obtained when the notch letter is in the right position, so
after (��R � 1) steps. Then we are in the correct position to double step, which takes two more steps of the
rotor on the right. Therefore, in this case, x = (��R � 1)+ 2 = ��R +1. The following simplified example shows
what occurs.

Figure 30: Example stepping mechanism

3. ��M � 3

We first have to determine how many steps the rotor �R on the right has to step to get the correct situation
for double stepping to occur. We explain this again on the basis of the simplified example we have been using.
Say we have the following:

Figure 31: Example stepping mechanism

We start with C, C, C in the windows. First, we step such that rotor �R ends up at the letter after the notch
letter. Stepping to this, rotor �M also has advanced one step. After that, we have to make sure rotor �M steps
to the correct position to double step. So, in this case rotor �M has stepped once and we have to end up two
letters before the letter after the notch letter. In other words, in the example rotor �M has stepped from C to
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D, and for double stepping to occur, rotor �M has to end up at F. To do so, rotor �M has to step (��M � 3)
times. To do so, (��M � 3) · 6 keys have to be pressed on the keyboard. Now rotor �M is in the correct position
to double step. However, rotor �R is on B, which is the letter after the notch letter. So we have to step 5 more
times to end up at the notch letter, and thus the correct position to double step. After that, we have to double
step, through two key presses. If we translate this to 26 letters, we get

x = ��R + (��M � 3) · 26 + 25 + 2 = ��R + 26 · ��M � 51,

which is positive as ��M � 3.

So, we obtain Equation 3 for x.

4. ��R = 1 and ��M = 1

This case is a special case, which can only occur as a starting position. In this case, both rotors �M and �R

are in notch position. When we press a key at the keyboard, all three rotors will simultaneously rotate. As �R
always rotate, we say that the rotation of rotor �M was due to it being in notch position and not due to the
step of rotor �R. So, rotor �M stepping due to rotor �R every 26 from now on, and due to the notch position of
itself every 650 steps. So we get

j
n� 1

26

k
+
l

n

650

m
.

The first step of �M is taken into account in
l

n
650

m
, as for n = 1 it holds that

l
n

650

m
= 1.

5. 2  ��R  n and ��M = 1

First, we know that since 2  ��R  n, that rotor �M has stepped at least one time due to rotor �R being in
notch position. After these ��R steps, rotor �M advances every 26 times due to rotor �R being in the notch
position. So, as in a previous case, the number of steps rotor �M advances due to rotor �R being in the notch
position, is equal to

1 +
j
n� ��R

26

k
. (4)

We also have to consider the steps �M advances due to itself being in notch position. In this case, we know
that �M steps after one key press since ��M = 1. This step is not due to �R being in notch position. Therefore,
we o�cially are not in a case of double stepping, but it was the way the settings were chosen, that made �M

step. Therefore, the first case of double stepping is not in 650 key presses. So, we have to find the number of
steps we need to advance to reach our first o�cial case of double stepping. To explain this, we make use of a
simplified example that we used before:
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Figure 32: Example stepping mechanism

In this example, we have ��R = 3 and ��M = 1. We see that in the first step, both rotors �M and �L advance.
Then, the the next time that rotor �M advances because of its notch being in the correct position, is after
��R + 4 · 6 + 1 key presses. If we translate this to the 26 letter alphabet, we get a case of double stepping after
��R + 24 · 26 + 1 = ��R + 625 key presses. So, during this process, rotor �M stepped two times due to its own
notch begin in the correct position. After the first case of double stepping, double stepping occurs every 650
key presses. So, the number of steps rotor �M advances due to its own notch being in notch position, is equal
to

2 +
j
n� (��R + 625)

650

k

which is equal to

2 +
j
n� ��R � 625

650

k
. (5)

Adding up Equations 4 and 5, we get

1 +
j
n� ��R

26

k
+ 2 +

j
n� ��R � 625

650

k
= 3 +

j
n� ��R

26

k
+
j
n� ��R � 625

650

k
(6)

So, we find the �M advanced after n key presses, is as in Equation 2.

Therefore, we can express the rotation of rotor �M , through the following permutation

M(n) := d
�((r�M +q�M +k2(n)) mod 26) � f�M � d((r�M +q�M +k2(n)) mod 26) (7)

Finally, the number of steps the rotor �L steps is derived analogously. For every case we distinguished, when
rotor �M stepped due to itself being in the notch position. Every time this happens, rotor �L steps as well since
the pawl will fit the ratchet of both rotors �L and �M . The number of steps �M advances due to its own notch
being in notch position, has been described for every case. So we get the following:
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Corollary 2.1. The number of steps that the left rotor advances after n � 1 key presses, is equal to

k2(n) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

0, n < ��R and ��M 6= 1

1, n < ��R and ��M = 1

l
n�x+1
650

m
, 1  ��R  n and ��M 6= 1

l
n

650

m
, ��R = 1 and ��M = 1

2 +
j
n���R

�625

650

k
, 2  ��R  n and ��M = 1

(8)

with

x =

8
><

>:

2, if ��M = 2 and ��R = 1

��R + 1, if ��M = 2 and ��R 6= 1

��R + 26 · ��M � 51, if ��M � 3

.

Proof. The number of steps rotor �L advances is equal to the number of times rotor �M steps due to itself being
in the notch position. This has been indicated for every case in the proof of Theorem 2. So, we find Equation
8 with the same x (Equation 3) as defined in Theorem 2.

As a consequence, we can express the rotation of rotor �L through the following permutation

L(n) := d
�((r�L+q�L+k1(n)) mod 26) � f�L � d((r�L+q�L+k1(n)) mod 26) (9)

So, if we express going through all three rotors in one permutation, we get

Q(n) = L(n) � M(n) � R(n)

= d
�((r�L+q�L+k1(n)) mod 26) � f�L � d((r�L+q�L+k1(n)�r�M �q�M �k2(n)) mod 26) � f�M

� d((r�M +q�M +k2(n)�r�R�q�R�n) mod 26) � f�R � d((r�R+q�R+n) mod 26)
.

For the permutation representing the Enigma I machine, we may conclude the following

Theorem 3. Let r�i , q�i with i 2 {L,M,R} be given, as well as ��i , i 2 {M,R}. Then

E(n) = P
�1 � Q

�1(n) � F � Q(n) � P (10)

with

Q(n) = L(n) � M(n) � R(n)

where R(n), M(n), and L(n) are given by Equations 1, 7, and 9 respectively.
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4 Di↵erent versions of Enigma

There is not one type of Enigma machine. Over time, many versions and types have been created and used.
Sometimes, only minor changes were made, as a result of which a new version of Enigma machine would be
similar to the previous version. However, other times there would be major changes in design and concept.

It all started with Die Handelsmaschine, produced by the company Scherbius and Ritter in 1923. It was the
first ever cipher machine being sold under the Enigma brand. Other than the more advanced versions of the
machine, this version had a built in typewriter. This made the machine very big and heavy. Besides, the
machine had four rotors that were permanently placed in the machine, and lacked a plugboard and reflector.
Because of lacking a reflector, the current was not returned and went through the wheels only once in a specific
direction. Therefore, to decrypt messages, the current had to be reversed. This could be done by a handle
on the machine. However, the machine turned out to not be reliable at all times and had to be improved.
This is when Die Schreibende Enigma came out. This version was very similar to Die Handelsmaschine, and it
still printed the result directly. Its successor, Enigma H29, was the last version of Enigma that printed on paper.

During the process of improving the printing Enigma machines, Enigma A was produced and introduced in 1924.
This was the first ever version having a lampboard instead of a printing mechanism, which made the machine
much smaller and more a↵ordable. Enigma B was the successor of Enigma A. In comparison to Enigma A, it had
automatic advancing rotors, three cipher wheels that could move and also could be removed, a fixed reflector, a
letter ring that could be moved for ring settings, and some other small details. After Enigma B, Enigma C was
developed, which was very similar to Enigma B. Enigma C had a special version, called Funkschlüssel C. Other
than the Enigma C, which just had 26 letters, Funkschlüssel C had 29 letters, the 26 letters of the alphabet
and Ä, Ö and Ü. However, it is not possible to have an odd amount of letters. Therefore, the letter X stayed
unencrypted at all times. Some other small changes were made as well.

After Enigma C, the much more improved Enigma D came out. In the Enigma D machine the rotors could be
removed and the order of the rotors could be changed. Also, the reflector became settable. It could be rotated
into 26 di↵erent positions. Because of the settable reflector, an extra window was added on the left of the rotor
windows. Through this window, the setting of the reflector could be seen. About a year after Enigma D was
introduced, Enigma K was developed in 1927. However, Enigma K was more or less identical to Enigma D,
since there were no major di↵erences between the two types.

Then, around 1927-1929, Enigma I was developed, the Enigma machine the German Army and Air Force used.
It was based on the Enigma D version, but with a fixed reflector and the first ever plugboard. The machine first
had three di↵erent rotors one could choose from, but to improve the strength of the machine, two more rotors
were supplied in 1938. In 1934 the German Navy introduced a similar machine known as M3. A di↵erence with
Enigma I is, that the numbers on the rotor rings were replaced by letters. To be able to communicate with the
German Army and Air Force, this machine had the same five rotors as Enigma I. In 1939 three extra rotors
were added, which were exclusively used for the German Navy. Then, in 1942, the German Navy decided to
start using Enigma M4, produced mainly for the U-boats. This machine had place for an extra rotor between
the reflector and the most left rotor. This fourth rotor could not be interchanged with other rotors and did not
rotate while enciphering.

The types of Enigma discussed above are just a selection of many more types that existed and were used.
However, only Enigma I is being discussed in this thesis.

Sources: [9], [18], [10], [11], [12], [1], [2], [3], [4], [6], [7], [8]

28



5 Number of starting settings

One thing that makes Enigma so complicated to break, is the number of di↵erent settings it has. Therefore, in
this paragraph we discuss the amount of starting settings in which the machine can be set up. The number of
settings consists of the combination of di↵erent elements of the machine.

First of all, there is a specific amount of rotors to choose from, say n. Three need to be chosen, since the machine
fits three rotors. Furthermore, the order of the rotors matters and a particular rotor can only be chosen once.
Therefore, if there are n rotors to choose from, there are n!

(n�3)! possible rotor orders.

Second, the plugboard settings need to be considered. At the front of the machine, there are 26 sockets, one for
every letter. A choice would be to not use any cables and thus not to pair up any letters. However, it is also
possible to pair up every letter by using 13 cables, as every cable connects two letters and every letter can only
be connected once on the plugboard. Say c is the amount of cables that we use, then 2 · c letters will be paired

up, resulting in c pairs. So, there are

✓
26
2 · c

◆
= 26!

(26�2·c)!·(2·c)! possibilities for choosing 2 · c out of 26 letters.

Now, these 2 · c letters need to be paired up. Start by plugging the first cable in a random socket. Then there
are 2 · c � 1 options left to put the other end of the cable in. For the next cable this process can be repeated.
One end of a cable is plugged in a random socket that is not used yet, which leaves 2 · c� 3 options to put the
other end of the cable in, since one cable is fully plugged in and from one cable just one end is plugged in. This
can be repeated until two unused plugs are left, which we obviously connect. So we get:

(2 · c� 1)⇥ (2 · c� 3)⇥ (2 · c� 5)⇥ · · · ·⇥3⇥ 1 =
(2 · c)!

(2 · c)⇥ (2 · c� 2)⇥ (2 · c� 4)⇥ · · · ·⇥4⇥ 2
=

2 · c
c!⇥ 2c

.

Third, there are the settings of the individual rotors, which are a fixed given in this machine. For every rotor,
there are 26 ways to rotate the internal wiring of the rotor relative to the machine. Since the machine fits three
rotors, this gives 263 = 17, 576 possible combinations. However, the outer ring of the rotor also needs to be con-
sidered. Even though the outer ring has nothing to do with the internal wiring of the rotor, the ring does have a
notch. It does matter where these notches are positioned because this a↵ects when the rotors will advance a step.
However, the position of the notch only matters for the middle rotor and the rotor on the right. So, for the mid-
dle and left rotor, each has 26 ways to set the ring position. This gives 26⇥26 = 676 possibilities to set the rings.

Lastly, we have to combine all these possibilities by multiplication. We get:

n!

(n� 3)!
⇥ 26!

(26� 2 · c)! · (2 · c)! ⇥ (2 · c� 1)⇥ (2 · c� 3)⇥ · · ·⇥ 3⇥ 1⇥ 17576⇥ 676.

This can also be found by the following Python program in Appendix A, where the variables can be changed.
In Appendix B one can find a programmed version of the Enigma I machine.

Sources: [16], [23], [25]
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6 How Enigma was broken

Enigma has a long history. It played a significant role in World War II. Although much physical fighting was
going on, there also was a fight that was not to be known or seen by many. It was the fight to break the Enigma.

6.1 Providing secret information — November 1931

It all started on 1 November 1931. A man called Hans Thilo Schmidt handed over the Enigma manuals to the
French Secret Service. He first had sent a letter to the French Deuxième Bureau, a security service in France,
saying that he had access to manuals for coding machines that the Germans had been using since June 1930.
Schmidt worked at the Cipher O�ce. At this o�ce, ciphers for the German Armed Forces were created. To earn
extra money, Schmidt wanted to sell the documents to Lemoine, who was a secret agent at Deuxième Bureau.

On 8 November 1931, they decided to meet again. During this meeting, an extra person was attending. Next to
Schmidt and Lemoine, coding expert Bertrand also attended the meeting. Schmidt brought the manuals that
were used by the Germans, which explained how to use the Enigma machine. These manuals were top secret.
To not make it obvious that the documents were missing from the o�ce, they were photographed by Bertrand.
After this meeting, Schmidt became a spy for the Deuxième Bureau.

After looking into the documents that Schmidt provided, the French and British concluded that the documents
did not make it possible to break Enigma. To try and break the cipher, Bertrand wanted to share the documents
with the Poles. Long before the first meeting between Schmidt and the French Secret Service, the Poles had
mentioned that they were unable to read the code used by the German Army.

6.2 A mistake made by the Germans — January 1929

However, about two years before Bertrand went to Warsaw with the documents, on the last Sunday of January
1929, a box had been sent to Poland by the Germans. The German embassy wanted it back as soon as possible,
since it had been sent to Poland by accident. However, the Poles decided to open the box and found a commer-
cial Enigma machine. The Polish General Sta↵’s Cipher Bureau called two engineers to examine it. Danilewicz
and Palluth took the Saturday night and Sunday to do so. On Monday, the Enigma machine was returned to
Germany. As far as known, no one ever realized that it had been opened. This finding probably led the Poles
to attempt to break Enigma. However, the Poles were not successful in breaking the cipher either. What the
Poles did not know, was that the internal wiring of the rotors of the commercial Enigma were not the same as
the internal wiring of the rotors for the Enigma machine used by the German Army. This was the reason that
the code could not be broken at that moment.

In January 1929, Ciȩżki, head of the German section of the Cipher Bureau, set up a cryptology course and
interviewed students to follow the course. Rejewski, Zygalski and Różycki were employed by the Cipher Bureau.
By December 1931, when Bertrand came to Warsaw with the photographs, students were already working on
simple ciphers at the Poznań army command post.

6.3 A new attempt — December 1931 - December 1932

Major Gwido Langer, Head of the Cipher Bureau Warsaw, was handed the photographs by Bertrand. This was
of value to the Poles, as it revealed that the German Army had adapted the commercial Enigma (which they
already inspected when the Germans accidentally sent it to them). However, it was not enough to read Enigma
messages. They could not even be read, when setting instructions were sent to Warsaw. Three lists of Enigma
settings were handed over, and yet the Poles were unable to reconstruct an Enigma machine.

In 1938, the Deuxième bureau sta↵ concluded that the documents that Schmidt had provided would not lead
to breaking Enigma, so they came up with a plan. They wanted to make the Germans believe that they had
broken Enigma. They hoped that the Germans might be tempted to use a di↵erent cipher that was easier to
break. When the plan was told to Langer, he persuaded Bertrand not to go on with the plan. He said that the
Poles would soon be able to share more about their research. However, in fact, the Poles had already broken
the Enigma and had already been reading messages for five years, that is since December 1932.
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They managed to do so, after Rejewski had been asked by Ciȩżki to put in extra hours in secret. He worked
on the Enigma cipher and was given the documents from Schmidt. Rejewski first had to construct a replica
of the Enigma machine. He did this through formulas that could work out the internal wiring, but he needed
the settings used to do so. To his luck, the settings of October and September 1932 were delivered by Schmidt.
However, the formulas developed to determine the internal wiring were not producing the correct answer. This
was because Rejewski assumed that the wiring within the entry disc was random, as in the commercial Enigma.
After he found out that this was not the case, he figured out the wiring of two rotors. After having determined
these settings, he could figure out the wiring of the third wheel and reflector. Beside his own e↵orts, Rejewski
also had help from the Germans themselves. They included an example in the Enigma manuals delivered by
Schmidt. This example consisted of a sample message and the enciphering of the message, using given settings
that were also included. Which formulas were used is explained in Appendix C.

6.4 Unexpected help — 1933 - 1937

After the Poles found out how the Enigma machine worked, replicas of the machine needed to be made. When
these were ready, Różycki, Zygalski, and Rejewski tried to read the messages. They were, unexpectedly, helped
by the Germans themselves. The message setting, which are the letters showing through the rotor windows,
had to be enciphered two consecutive times and then sent at the beginning of each message. However, this
turned out to be a huge mistake of the Germans. The sending procedure went as follows:

German sending procedure:

1. Set the machine in the correct settings according to the setting list of that day.

2. The person sending, chooses a message setting. Say that this is IMD.

3. Turn the wheels into the initial position, also known as the Grundstellung, which was indicated on the
setting list. Say for a particular day it is ZIF.

4. Encipher the message setting twice, say the letters AEG LXO light up. These six letters are known as
the indicator.

5. Put the indicator at the beginning of the message.

6. Set the wheels to the message setting, so IMD.

7. Now you can encipher the message.

The fact that the message setting had to be enciphered twice, enabled Różycki, Zygalski, and Rejewski to find
new patterns, which in their turn enabled them to break Enigma. The patterns could be seen as fingerprints.
A certain fingerprint could only be produced if the Enigma machine was set in a particular way. All the
codebreakers had to do, was to produce a list of all possible fingerprints together with wheel positions which
could produce that particular fingerprint. This method was called the Characteristics method and is further
explained and analyzed in Appendix D.1.

6.5 A new procedure and decoding tools — 1938

These patterns also helped with creating new methods to break the Enigma cipher, when the operating pro-
cedure of Enigma itself was changed. On 15 September 1938, there was a crucial change in the enciphering
procedure. Now, senders had to choose their own initial position, which they had to send unenciphered before
double encipherment of the message setting. Within weeks, there were two new tools to decode messages: the
Bomby (plural for Bomba) and the Perforated sheets. Both worked because the double encipherment of the
message setting was still part of the sending procedure. The Bomby are further explained in Appendix D.2.

After coming up with the concept of the Bomby, six Bomby were made available for the cryptographers. In
November 1938, Enigma messages were broken. It took less than two hours to find the settings. However, the
Bomby only worked when not too many plugs were used. This was still the case in the autumn of 1938 when
only five up to eight cables were used. After a while, the Germans increased the number of cables. The Bomby
became redundant at that moment and had to be adapted.

The second tool created, the so-called perforated sheets, was designed by Zygalski. He exploited the fact that
there was a limited number of indicators with special characteristics. To be more specific, indicators that had
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the first and fourth, the second and fifth or the third and sixth letters in common. These were referred to as
females. Females could not occur for a substantial number of initial settings. If a female indicator was spotted,
certain settings could be ruled out. The more females were found, the more initial settings one could eliminate.
They found females until enough settings were eliminated and only a few possible settings were left. These
remaining were tested manually.

To perform this procedure, sheets were used, which functioned as a catalogue. If a female indicator was possible
at a certain initial setting, a hole was punched. The relevant sheets regarding a certain day’s female indicators,
were stacked on top of each other and placed on a table that lit up. Any place light came through represented
a wheel position, ring settings and wheel order that could have produced the female indicators. These settings
had to be tested manually. The plugboard settings were ignored by the Poles who were making the sheets. If
a female indicator was produced without the plugboard cables in a certain setting, it could also be produced
with the plugboard cables set. The only di↵erence would be that the female letters were di↵erent.

However, the production of the sheets was slow. Then, on 15 December 1938, the Germans added two rotors.
The amount of possible wheel orders went from six to sixty. This made the production of the sheets impossible
on a short term and there was no time to quickly adjust the Bomby.

6.6 Additional rotors and cables — December 1938

Not even a month later, at the beginning of 1939, the Germans changed their operating procedure again. Now
7 up until 10 cables had to be used on the plugboard. This made the Bomby less e↵ective. However, the wiring
of the two new wheels fortunately were figured out quickly. Nevertheless, messages could only be read when
the new rotors were not used.

6.7 The Poles share information with the English and French — 1939

On 24/25 July 1939, Dilly Knox, a senior British cryptographer, Alastair Denniston, head of Britain’s Govern-
ment Code and Cipher School, Gustave Bertrand and Henri Braquenié, who were French cipher experts, were
told that the Poles had broken the Enigma cipher. The British and the French both received a replica of the
Enigma machine and were explained how to produce sheets.

But the general Enigma cipher was not the only one used. A twenty-year-old undergraduate from St. John’s
College Cambridge, named Harry Hinsley, was the chosen one to solve one of the most important keys used
during the war: the Enigma cipher used by the German Navy. To help break the Enigma cipher, and to get
students to join the school’s new o�ce at Bletchley Park, (under)graduates were approached by Denniston to
join. Hinsley was invited to an interview at the Foreign O�ce but was not directly told what his future job
consisted of. He was o↵ered a civilian post at the Foreign O�ce during the interview. Hinsley saw this as an
opportunity and accepted the o↵er. Only later, he was told by a tutor what his work really was going to consist
of. Hinsley worked in the Naval intelligence hut, also referred to as Hut 4. He was asked to help and discover
as much on the messages as possible. To do so, he had access to the following information about the messages:
the date, the time of origin, the time of interception, the radio frequency used, and sometimes they knew where
the message came from.

Although the British cryptographers were struggling to break the Enigma, there was a breakthrough. Peter
Twinn, a twenty-three-year-old Oxford graduate, was given an enciphered Enigma message with matching Ger-
man text and the corresponding settings upon his arrival at Broadway, the location of the Government Code
and Cipher School before it moved to Bletchley Park, in 1939. An obstacle that was holding up Twinn, who
worked together with Knox, was that he could not manage to reconstruct the Enigma machine. However, this
changed in July 1939. In Poland, the Poles shared their information on the Enigma machine, which included the
wiring of multiple parts of the machine. Knox was a part of this meeting, and when he arrived home, he shared
this information with Twinn. Since Twinn had an enciphered message, together with the matching German
text and the corresponding settings, a few messages could be read. However, the two were not yet able to work
out new settings, which meant that no recent messages could be read. In fact, no one was able to until the set
of perforated sheets was complete and produced.

In the middle of December 1939, the first set of perforated sheets was ready. However, there was a problem.
The Poles made a mistake when they passed on the information to the British codebreakers when it came to
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the turnover positions of the two new wheels.

In the beginning of 1940, Polish codebreakers were not allowed to travel to London, so their British colleagues
had to visit them in France whenever they wanted to meet. Alan Turing, a British codebreaker did, and he
visited the Poles to discuss the Enigma machine. However, at the time of the visit, Turing had already invented
something to break the cipher. He invented an electro-mechanical machine, referred to as the Bombe, which
could determine the wheel setting and plugboard settings used to encipher a message.

6.8 A remastered invention — 1940

The British Bombe consisted of multiple Enigma machines that were wired together. The machine was able to
go through each wheel setting and test whether it could be rejected or not. It di↵ered from the Polish Bomba,
as it was not based on a twice enciphered initial message setting. For creating the Bombe, Turing tried to find
a systematic way to conclude whether a certain setting was possible or not. The few that were not rejected,
could be tested manually. A more detailed description of the Bombe is given in Appendix E.

However, the Bombe needed a crib to make it function. A crib is a piece of text that was guessed to match
a piece of cipher text. This created pairs of letters. The Bombe was then able to test for which settings it
would be possible or impossible to create these pairs of letters. Since the British cryptographers were reading
the messages since January 1940, due to the success of the perforated sheets, coming up with cribs did not take
much e↵ort.

On 18 March 1940, the first Bombe was installed at Bletchley Park. However, the results were disappointing. It
failed to do its job. Then Gordon Welchman came up with a suggestion that would make Turing’s prototype at
least twice as powerful. Also, Turing himself had another improvement. The Bombe was updated and became
known under a new name: the Spider. The Spider was used to break Air Force Enigma.

Richard Pendered was asked to check whether the Spider worked. He started in the summer of 1940. The Spider
was checking for possible solutions. When it stopped, the corresponding settings had to be tested manually on
a replica Enigma machine. They knew the settings were correct, when German text started to appear on paper.
After days of trying and failing, the Spider worked. The first one was installed at Bletchley Park on August 8,
1940.

6.9 Naval Enigma breakthrough — 1940

In February 1940, there was the first breakthrough when it came to making an attempt to read Naval Enigma.
However, this was not due to the cryptographers at Bletchley Park. It had something to do with the U-boat
U-33. It carried information about the ciphers on board. U-33 was on the surface when a ship passed it.
Although they thought they had not been noticed, a crew member of the British HMS Gleaner thought he
heard something that sounded like a diesel engine. They decided to investigate it and started to approach the
U-boat. In a final attempt to escape, the U-boat started a rapidly decline. However, while doing this, the depth
charges started exploding. This made the U-boat dive as deep as possible and hit the see bed. This caused a
leak in the U-boat, and water started coming in. Therefore, the crew decided to blow up the tanks which made
the U-boat starting to float again. When they finally reached the surface, everyone was ordered to abandon the
U-boat, after which they blew up the U-boat from the inside. However, when it came to Enigma material on
board, not everything was destroyed by the explosion. A couple of crew members had Enigma wheels in their
pockets, which they needed to throw into the sea as soon as they left the U-boat. One crew member failed to do
so and, once the crew was rescued, the British found the wheels in his pockets and took them. In total, there
were three wheels of which two were only used in the Naval Enigma machine.

These three wheels gave the British cryptographers, including Alan Turing, an opportunity to work on the
Naval Enigma machine. This machine had the feature to choose three out of eight wheels, instead of choosing
three out of five wheels, which was the case in the Air Force and Army Enigma. After 1 May 1937, the Naval
Enigma stopped with this procedure. From then on, the operators could no longer choose their own message
setting. Now, they had to choose a three-letter group from a book, say for example IOP. They then needed to
encipher this on the Enigma machine that was put into the Grundstellung, which is also known as the initial
setting, of the day. Say that the initial setting would be ERT and say the letters lighting up on the machine
were MLD. Then MLD would be the message setting for the message. So, the machine had to be set in the
message setting (MLD) before starting to encipher the message. This was safer since people would not use
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the same or predictable message setting every day. A more detailed description of Naval Enigma is given in
Appendix F.

However, the sender had to communicate the settings to the receiver without it being picked up by the enemy.
The Germans came up with the following procedure. Other than picking the three-letter group (also referred to
as a trigram) IOP out of the book, another trigram also had to be selected by the operator, say QAZ. These
had to be written above each other. The first trigram had a random letter that was added in the front, and the
second had a random letter added in the back. It would for example look like this:

C Q A Z

I O P B

The next step was to pair letters from the same column, which were referred to as bigrams. These bigrams
were transformed through something called a bigram table. In a bigram table, every possible pair of letters was
matched to a replacement of another pair of letters. So maybe CI corresponded with UX in the bigram table,
and therefore replaced by UX. The same was done for all four bigrams. One could get something like this:

U N W V

X F S Y

Then they would systematically change the position of the letters as follows:

U X N F

W S V Y

This was put in the beginning of the message without being enciphered. To find the settings, the receiver would
do the same steps but in reversed order:

C Q A Z

I O P B

Then the receiver would look at the first three letters of the second line. He would put his machine in the initial
setting that was stated the codebook, in this case ERT, and would then type out IOP. He would then get the
letters MLD, he puts his wheels in this order, and started to decipher the message.

6.10 Mistakes — 1939 - 1940

Alan Turing thought he figured out the system by the end of 1939. It was based on message settings and
indicators of only seven messages that were given to the British cryptographers by the Poles in July 1939.
The Poles were already able to read some of the messages of May 1937, after the indicating system had been
changed. They were able to do so, because the Germans made two mistakes.

The first mistake the Germans made was that they did not change the wheel orders and ring settings. The
second mistake was that one of the torpedo boats was still allowed to use the old system, which was already
broken by the codebreakers.

However, although Turing did understand the system, he could not manage to break the messages. He needed
the bigram tables the Germans were using to do so. The only way to obtain these, was to capture them. On 26
April 1940, at the Norwegian coast, Enigma documents were captured from a German trawler. This ship was
sailing under the Dutch flag and pretended to be a fisher boat. The crew from the British destroyer boarded
the boat and hoped to find the Enigma documents, but the Germans managed to throw two bags with the
most important codebooks overboard. However, one of the bags did not have enough weight to sink and kept
floating. The British got the bag out of the ocean and the documents turned out to be invaluable. Because
of this action, the Naval Enigma cipher was broken between 22 and 27 April 1940. The first Naval Enigma
message was read on 11 May 1940. As can be noticed by looking at the dates, there was a delay in decrypting
the messages. This was the case because the plugboard settings for 23 and 24 April were overlooked in the
beginning. When they were found and the codes for these days were broken, their paired days (22 April /25
April) were broken as well since wheel orders and ring settings were only changed every two days. However, the
delay meant that the messages were not up to date anymore. But breaking the messages was helpful for the
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cryptographers. For example, it made Alan Turing realize how the indicator system worked.

This gave the British the opportunity to find a way to break recent Naval Enigma messages. After guessing
the way the indicator system worked, Turing invented a procedure called Banburismus. This method made
use of one of the weaknesses of the Naval Enigma system. This was that the trigrams were all typed out in
the same wheel position, namely the initial position. Banburismus was meant to eliminate many possible wheel
orders. After performing the procedure, only a manageable number of wheel orders should remain. These could
be tested on the Bombe.

However, the bigram tables were needed to use Banburismus, and these were not available to the codebreakers.
Fortunately, there was a way to figure these out without them having to be captured. After an Enigma setting
for a message was worked out, open spaces in the bigram tables could be worked out. The message settings
were worked out by using an so-called Eins catalogue which is explained further in Appendix F. There were
nine bigram tables. To reconstruct even one, one needed around three days of message settings. The code-
breakers almost completed the message settings of April 1940 and because of this they were able to try to use
Banburismus for the first time. However, it failed the first time.

6.11 New bigram tables — July 1940

After the cryptographers kept trying, in November 1940 Banburismus finally helped to break Naval Enigma
settings. But they were very unlucky: the Germans introduced a new set of bigram tables on July 1. So, for all
messages after July 1, new bigram tables had to be constructed. They basically had to start all over. The only
di↵erence was that they knew they could break messages, if codebooks could be captured.

In the beginning of May 1940, another change had occurred. The Germans stopped enciphering their message
setting twice when it came to the Army and Air Force Enigma cipher. The change the Germans made, removed
a weak spot in the encipherment. The double enciphering of the message setting was the reason the British
codebreakers were able to read many messages that were sent over the last seven years. So, this was another
major setback.

Rees, a math pupil, and Herivel, a mathematician, were ordered to test possible solutions that remained after
using the perforated sheets. After that, they had to figure out the plugboard settings. This process took ex-
ceptionally long, and Herivel felt that there had to be a quicker way. In fact, there was. The idea he came up
with, was revolutionary for breaking Enigma.

6.12 Techniques and mistakes

Herivel thought of the procedure that took place even before enciphering a text. Before using an Enigma ma-
chine, the wheels and ring settings had to be set in the settings of that day. Herivel imagined that an operator
would first put the wheels in the Enigma machine, and after that would set the wheels in the correct ring
settings. So, for each wheel, someone would do the following. Say the ring setting for example would be ERT:
for the left wheel, the ring setting, in this case E, had to be lined up with the red dot on the catch. The catch
served as a marker but was mainly meant to fix the ring relative to the core position. Herivel thought that
fixing the settings would be done easiest when the catch and the ring were near the top. If the operator was
lazy, he would not change the wheels anymore. Then they would use the letters showing through the windows
as the initial position for the first message. Then, the initial position, which was given unenciphered at the
beginning of a message, would be the same or nearly the same as the ring settings. If this was the case for all
the first messages from each operator each day, the initial settings were expected to be quite similar. If many
senders would in fact do this, then the British cryptographers could graph them and look for clusters. This did
not work immediately, but it was one of the only hopes the cryptographers had after the indicator system was
changed. Eventually, one day the method started to work. The technique became known as the Herivel Tip.

However, the Herivel Tip was not enough to break Enigma quickly. Fortunately, the Germans made other
mistakes as well. They used message settings that were easy or obvious, which are known as cillis. Cillis are
named after the first obvious message setting found by the British. They helped to determine the wheel order
of the Enigma machine. Cillis are further explained in Appendix G.

May 22 1940 was the first time since the Germans changed their indicator systems, that the British were able to
read an Air Force Enigma message. The message read was a message from 20 May. The Enigma network that
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they broke, was referred to as ‘Red’. Breaking into Red was particularly important. The codebreakers wanted
to use the Bombe to break the Enigma messages. To do so, they needed cribs to use the Bombe. However, cribs
were usually found when they were able to read Enigma messages. The cillis and Herivel Tip made sure that
Air Force Enigma messages could be read during the installation of the Bombes and contributed to being able
to read the messages after the machines were installed. Therefore, these two factors contributed to breaking
Red Enigma. The messages remained broken from 22 May 1940 until the end of the war.

It was important to break Naval Enigma code. Only then the cryptographers would know the location of all the
U-boats in the Atlantic. They then could redirect the convoys to prevent them to be attacked by wolf packs,
which were groups of U-boats that worked together.

In August 1940, the Spider Bombe was invented by Alan Turing. It was used to break Air Force Enigma, and
the codebreakers hoped it could also break Naval Enigma. Another concept that might break Naval Enigma,
was to use something called the Wild Cat Scheme. The cryptographers would send out something random in
Morse code on the frequency which the U-boats were using. By sending these messages, they tried to provoke
a reply from the Germans. If this reply would be predictable, they would have a possible crib.

On 12 March 1941, Enigma documents for Home Waters network were handed to Turing and Peter Twinn. It
contained the inner and outer settings, and the plugboard settings. When the documents reached the British
cryptographers, they were overdue, as they were for February, and it was already March. However, the docu-
ments were extremely helpful. On the same day the cryptographers received the documents, they managed to
read a message from February. This helped to reconstruct the bigram tables. Thus, they could take another go
when it came to the Banburismus procedure.

So, by the end of March, also due to delays, the bigram tables were almost complete. Now the cryptographers
had another chance to try out the Banburismus procedure. But it did not work immediately. This was partially
due to dummy messages consisting of strings of consonants. This resulted in no March messages being broken
and only eight days of April, but these were only read by 10 May.

6.13 Breaking the code — 1941

After the Krebs’, which was a German trawler, codebooks were captured in March 1941, Enigma messages were
read. They were given to the codebreakers at the Naval Intelligence at Bletchley Park. The cryptographers also
investigated the message tra�c and thought it did not reveal anything at all. But the Germans were about to
invade Norway, which caused there to be more wireless activity than before. Hinsley also found that the Ger-
man Navy had two radio networks: one for communication with crew in the Baltic and one for communicating
with crew outside the Baltic. In addition, he noticed that messages to the people at the Baltic were also re-
peated on other frequencies. This indicated a shift in areas, in particular a shift from the Baltic Sea to Skagerrak.

The Enigma messages were broken too slowly to have an impact on the battles fought at sea, but the decrypts
did show something else. There were trawlers that had to go to isolated spots north of Iceland to see what
the weather looked like. These ships had to have a Naval Enigma machine and codebooks onboard. These
were not used to report the weather; however, they did receive messages confirming that the weather reports
came through. So, the British decided to go after these trawlers. One day, when they approached the ship
called München, they started to fire at them hoping the German crew would panic and leave the boat without
destroying the codebooks. The Germans did as they were told and threw the machine and current codebooks
overboard in a weighted bag. However, from the captain’s cabin, containing the safe with the codebooks the
Germans were not currently using, they were able to get a couple of codebooks, which turned out to be im-
portant. The documents arrived at Bletchley Park three days later. They contained information the British
cryptographers needed. The documents contained the inner settings for June 1941, and two sheets of outer
settings. This meant that the messages sent in June could be broken.

Around 9 May, two warships had a U-boat in sight, namely U-110. The crew of the warships decided to start
firing their guns at the U-boat. This had the wished e↵ect as the crew of the U-boat started to leap overboard as
the U-boat was sinking. Since the German crew was panicking and leapt overboard as quickly as possible, they
did not get rid of the Enigma machine and codebooks. However, unlike what the German crew was thinking,
the U-boat was in fact not sinking at all.

After the German crew leapt overboard, the British crew had to board the U-boat to capture the codebooks
and other useful documents. Beside the documents, they also found an Enigma machine. This operation be-
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came known as Operation Primrose and probably was one of the most important events since some extremely
important documents were captured. The Naval Enigma settings for June 1941 were most important because it
made reading the current U-boat messages possible for the first time. This was an important improvement since
before this capture, this took approximately ten days. After capturing the June settings, this was reduced to
around six hours. The documents captured from the U-110 also were important for being able to read O�zier
messages, which was important for being able to read the Naval Enigma messages.

However, the Germans got suspicious when none of the prisoners could tell them, whether the U-boat had sunk.
Fortunately, the codes used by the German prisoners was already broken, so the warning of the Germans about
the fact that there was a chance that the British captured Enigma documents, was probably intercepted by the
British. However, after a while, prisoners stated they did see the U-boat sink. The secret of Enigma therefore
was not compromised.

6.14 The introduction of new bigram tables — June 1941

Nevertheless, the capture of the codebooks from U-110 and München did not break the Naval Enigma entirely.
On 15 June 1941, the Germans started to use a new set of bigram tables. The cryptographers could still
read the messages of June, as they still had the documents from München, but this was not the case for the
messages after June. Therefore, they needed a month of settings to construct the new bigram tables. To do
this, there were two options. The British either had to capture the settings for July or capture the bigram tables.

The idea was to capture another weathership, but the British feared this might raise suspicion with the Ger-
mans. If they got suspicious, the Germans might change their enciphering procedure. This would be risky as
Air Force Enigma would also be in danger. The only hope was that, with the cribs of June, the new bigram
tables could be reconstructed. However, they decided to risk it, and went after Lauenburg. Their strategy was
the same as with prior captured. They tried to scare the crew to make sure they would abandon the ship. It
worked, because after firing at the boat, the crew immediately left the boat. However, the British did not find
codebooks as they were probably burnt or thrown overboard. However, they found charts, signaling papers,
and three sheets of paper. These turned out to be the plugboard settings and inner settings, so the wheel order
and settings. So, throughout July, the British cryptographers could read the Naval Enigma messages within
hours again.

6.15 Finally broken — August 1941

For August and September, the plan was to also capture documents, but this was not successful. However,
after the first week of August 1941, the codebreakers did manage to read all the Naval Enigma messages until
the end of the war, except for two days. After July, it took around fifty hours to read the Naval Enigma messages.

To read the messages, two strategies could be used. The strategy that cryptographers preferred was using a
combination of Banburismus and the Bombe. Banburismus ruled out wheel orders, and then, based on a menu
derived from a crib or information that was gathered during the Banburismus procedure, these could be tested.

There was also the possibility that Banburismus would not work. In that case, the cryptographers could use a
crib in combination with the Bombe. Then the menu that was produced by a crib was run on all possible wheel
orders. This took longer, but could have been worse since the Germans made a mistake again. They created
rules when it came to the wheel order. The first rule was that wheels 6, 7 or 8 always had to be one of the
wheels installed in the Enigma machine, which already eliminated sixty possible wheel settings. The second rule
stated that a wheel could not stay at the same place in the Enigma machine on two consecutive days. These
rules reduced the amount of wheel orders that needed to be tested to 105, which would take the Bombe 35 hours.

The cribs cryptographers used to try to break Naval Enigma originated from messages reporting the weather.
These were always on the same time and on the same frequency. Besides, they also included a particular sign
at the beginning of the message which usually existed out of three letters. If stereotypical words were used in
the beginning of the message, it was easy to come up with a matching crib. However, the Germans sometimes
added dummy letters to confuse the people that were trying to break the code. In that case, the cribster had
to find out how to line up the crib with the cipher text.

To do this, the cryptographers made use of a weakness of Enigma again. A letter could never be enciphered as
itself, so if a letter in the crib and the enciphered message lined up above each other, it would be incorrect. For
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example:

Crib: G E R M A N

Cipher text: K G R X S T H I M

Two letters lining up was called a crash. To prevent this, the crib would be slid to the right until there were
no crashes. For the example this would be two letters to the right:

Crib: G E R M A N

Cipher text: K G R X S T H I M

So, this would likely be the correct position. If they found the correct position, cryptographers would produce
the menu, which would make it possible for the Bombe to give the wheel settings and the plugboard settings.

There also was a variant of Naval Enigma, which was only used by o�cers. The messages would be enciphered
twice. These kinds of messages were broken only once, when the settings were captured from U-110 in June
1941. However, in July 1941, new settings were introduced, and the British cryptographers had to start all over
again. To break what was called O�zier Naval Enigma, they needed a crib and then use the Bombe. However,
the cryptographers feared that the messages could not be broken regularly, since it was unlikely that there were
stereotypical messages to work out a crib with. But at the end, they managed to find a crib and break the
O�zier Naval Enigma.

1 June 1941 was a turning point. The codebreakers could break Naval Enigma almost as fast as the Germans
could read it. However, they had to pay attention to the fact that they could not sink every ship they knew
the whereabouts of. If they would do so, this probably would raise suspicions with the Germans.

When capturing U-boat U-570, the British found documents. They contained plain German texts with their
matching enciphered texts and a couple of settings. Germany was worried that their code might be compro-
mised, although they were still very much convinced of the safety oftheir system. This was also the case, because
they had a procedure which they referred to as the keyword procedure. They thought that this procedure
made it almost impossible for the enemy to read their messages.

The keyword procedure worked as follows: say the key is INDIGO.

The first letter, in this case I, the ninth letter of the alphabet, corresponded to the addition to the wheel order.
Say the initial wheel order was 1/8/5, then nine was added every setting. Since there were only eight rotors
available, we would get the wheel order 2/1/6 ((1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! 8 ! 1 ! 2)/(8 ! 1 ! 2 !
3 ! 4 ! 5 ! 6 ! 7 ! 8 ! 1)/(5 ! 6 ! 7 ! 8 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6)).

The second, third, and fourth letter, in this example N, D, and I, indicated the addition to the ring settings.
So, the corresponding numbers to the letters, in this case 14, 4 and 9, were added to the given ring settings. So
ZUS for instance became NYB.

The fifth letter, in this case G, was for the addition the plugboard settings. So, plugboard setting K-L became
R-S.

This trick would only have worked if the British cryptographers would have used trial and error. However, when
a correct crib was found and the Bombe was used, this was not a problem at all.

The Germans sometimes were remarkably close to finding out that their Naval Enigma was compromised. How-
ever, Maertens, the head of the German Navy’s Communication Service, could not believe this.

The sinking of two ships raised suspicion in the Germans. Admiral Kurt Fick thought that it must be treason
or that the cipher was not secret enough. However, no one was to blame, since everyone followed the rules while
enciphering the messages. In Fick’s words he cipher was superior compared to other countries. Besides, Fick
also indicated that there was no sign in the messages of the British that the Germans could read, since they
had enciphered the British cipher.
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6.16 Other forms of encipherment

Smaller ships and U-boats without Enigma machines and small German ships sailing along the Norwegian coasts
used another form of encipherment called Reservehandfahren (RHV). The British cryptographers also tried
to break this cipher, since this cipher was particularly important for Naval Enigma.

RHV was broken in June 1941 for the first time due to the codebooks that were captured from U-110. However,
this was not the only thing that was the cause of the break. The Germans made another error. If you want to
encipher following RHV, the plain text had to be fitted in a cage, which is a shape drawn on paper. This shape
changed every month. A cage made sure every letter of the unenciphered text would become part of a vertical
bigram after which these bigrams were replaced by other bigrams based on bigram tables for RHV. The bigram
tables and shape of the cage were changed occasionally, but not monthly. The changes were staggered so one of
the elements was always known to the cryptographers. This helped to regularly break the cipher. The content
of the messages was important, since messages sent with Naval Enigma were often repeated over RHV. From
these texts, the cryptographers could get cribs to help breaking Naval Enigma.

The same held for Werftschlüssel, which was broken in 1940 and the broken messages were used as cribs.

6.17 Another flaw in the system — 1941

The Germans tried to be as secure as possible, also when it came to the bigram tables. There were nine sets
of bigram tables in total, and each day one set was chosen. The chosen set of tables was communicated to the
crews by lists which indicated which set to use. The codebreakers at Bletchley did not have these lists, so they
had to figure everything out themselves.

In May 1941, the bigram tables and Kenngruppenbuch were captured from U-110. Joan Clarke, one of the
cryptographers working on the Naval Enigma, and the rest of the Hut 8 crew found out something useful. The
Germans were supposed to make up random message indicators. However, it turned out that they were not.
The Germans tended to choose the trigrams in the Kenngruppenbuch that were at the top or near the top of
the columns. There was also preference for certain columns. There were 733 columns, which obviously did not
fit on one page. The telegraphists preferred to choose from the column in the middle of the book. So, if the
cryptographers at Bletchley looked at the di↵erent bigram tables, they looked at which table transformed the
indicator letters to one of the favorite trigrams. This set of tables was usually the bigram table that was used.
The Germans must have realized that their telegraphists were not as random and therefore enforced a new rule.
One could only use one trigram once ever. The trick found by Joan Clarke could not be used anymore, but the
German system had flaws that were spotted by new recruits.

Jack Good, a mathematics scholar from Cambridge, found a flaw in the German system. The Germans had to
add a dummy letter to the trigrams, and he wondered whether this choice was random, or whether there was
a certain preference towards certain letters. From broken messages, he found out that certain letters were used
more frequently than others. If this was the case, the same trick as Clarke had invented, could be used. They
applied all the bigram tables and found out which letters were popular dummy letters. Later, this became an
important part of the Banburismus procedure.

On 29 November 1941, the Germans replaced the bigram tables. This meant that there was not enough in-
formation to carry out the Banburismus procedure. However, the cryptographers were still able to use cribs
and the Bombe. Banburismus took around 300 messages to work, where the Bombe only took one if the crib
matched. But Bombes took a long time. Luckily, the cryptographers at Bletchley had access to 15 Bombes, so
this did not take this long in practice.

The sta↵ of Naval Enigma Hut 8 also wanted to recreate the bigram tables again. To do so, they wanted to have
access to codebooks. Therefore, the British captured another trawler, called Föhn, and found Enigma settings,
a set of bigram tables, five Enigma wheels and an Enigma machine. They could start breaking the codes again.
Due to the capture of these documents, the Naval Enigma used by surface ships and U-boats in the Arctic was
broken every day for the rest of the war. This saved countless of lives.

The inner settings of the Naval Enigma machine took at least 48 hours to break. After they were broken,
the messages from two days could be read quickly, as the inner settings were only changed every two days.
If the inner settings were known, the rest of the settings were deduced quickly. To find these inner settings,
Banburismus was used. This reduced the amount of wheel orders that had to be tested on the Bombe.
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6.18 The fourth wheel — February 1942

On 1 February 1942, the Germans introduced a new Enigma wheel for the Enigma machines used on the U-boats
in the Arctic. The Germans called it Triton, while the British called it Shark. This fourth wheel was placed left
of the other three wheels in the machine and could be set into 26 positions. Unlike the other three wheels, this
wheel could not turn and was not interchangeable with the other wheels. This was advantageous for the British
codebreakers as there were only 26 times as many options to check. If it would have been interchangeable, there
would be 3,024 (8 ⇥ 7 ⇥ 6 ⇥ 5) options to check. However, breaking the codes would take a lot more time. If
the cryptographers wanted to work out the settings in 24 hours, they would have needed 85 Bombes, Bletchley
only had 12 at the end of 1941 and the Naval Enigma department had to share these with the Army and Air
Force departments.

The wiring of the fourth wheel was found out easily. The wheel was already part of the Enigma machine since
December 1941, but they put it in position A with ringsetting Z. So, in this way the machine functioned as
a regular three-wheel Enigma machine, but the Germans made mistakes again. One German telegraphist put
the ring in setting B by accident. After that, he communicated to the receiver of the message that he put the
ringsetting of the fourth wheel in position B by accident. This gave the British cryptographers the opportunity
to find out the wiring of the extra wheel.

The cribs used for breaking messages was found with the help of weather reports and weather codebooks. How-
ever, this codebook was replaced by a newer version on 20 January 1942. The cryptographers found cribs here
and there, but it was impossible to use Banburismus because this only worked if there were pairs of messages
which had the same settings. Since the fourth wheel of the Enigma machine could be placed in so many ways,
this would hardly be the case, so there were not enough pairs to perform Banburismus.

The British worried over the fact that the Germans might get suspicious because suddenly, after they changed
their systems, the Allies got less successful. However, Naval Cipher Number 3, which was a cipher used by
the British, American and Canadian Navies in the Atlantic communication, was broken by the Germans in
February 1942. Many more U-boats were successful in sinking Allied ships, so the Germans thought this was
the case because they had broken the code. In this way, the Germans did not get suspicious when their success
grew right after changing their Enigma cipher machine.

In the meantime, the Americans were trying to make a Bombe that could break the Naval Enigma messages that
were enciphered on a four-wheel Enigma machine. In May 1943, the first two prototypes were ready. To break
Enigma, documents from U-559 were recovered. These were important documents, as they were an updated ver-
sion of the weather codebook, which were used to create cribs. However, the documents did not result in breaking
the Enigma messages. It was only useful for cribs, which was not enough for four-wheel Enigma messages unless
there would be a substantial number of three-wheel Bombes or if there would be a new four-wheel Bombe model.

On 13 December 1942, there was a breakthrough when it came to the four-wheel Enigma cipher. It was broken
because of another mistake made by the Germans. When the British cryptographers finally managed to break a
four-wheel Enigma message, they found out that for short messages the Germans would still use the three-wheel
Enigma machine. This meant that the cribs from the weather reports could indeed be used to break the codes,
and that this could be done by three-wheel Bombes. For other longer messages, the setting of the fourth wheel
was quite easy to work out if the other settings were already known.

On 17 February 1943, documents from U-205 were captured. The British crew found books, including Naval
Enigma bigram tables and the U-boat’s short signal book. However, both had already been in British hands
because of earlier captures.

6.19 Delays in the process

On 10 March 1943, there was an Enigma black out. The Germans introduced a new short weather report code-
book, so the codebreakers were not able to get cribs out of the weather code books, which was the technique
they had been using since mid-December 1942 to break Shark. On 19 March, the British codebreakers managed
to break into Shark again by using the short signal code books. They created a new method for coming up
with cribs which could be used in combination with the Bombes again. This procedure went as follows: say a
short message was intercepted. The cryptographers would investigate the information available, so the position,
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course, speed and messages from the previous day to guess what the commander was trying to say. They could
translate this information into the short code, which would then function as a crib. The first half of 1943, the
Bombe took about 24-72 hours to break the code.

There was also a little setback when it came to breaking Dolphin, also called Home Waters Naval Enigma. On 1
March 1943, the Germans changed the bigram tables again which made the Banburismus procedure impossible
to use. However, by this time, Bletchley had access to 70 Bombes, and this was enough to use the crib and
Bombe method. After three weeks the new bigram tables were constructed again.

But there was still a delay in breaking messages, in particular the O�zier messages were hard to break since the
entire messages were enciphered twice. The settings for this procedure were as follows: the wheel order and ring
settings were the same as the regular settings but the plugboard settings were di↵erent. These settings were
chosen from a certain list that would change every month. There were 26 settings on the list and each of them
had a letter of the alphabet corresponding to it. The Germans communicated these settings to the receiver by
sending them a name of which the first letter was the same as the letters corresponding to the chosen settings.
So, say that, for example, the settings corresponded to the letter P were chosen. Then the message would be
enciphered in the settings corresponding to P and for instance ”O�zier Paula”, which was not enciphered, was
put in front of the message. Then this enciphered message was enciphered again, but then in the ‘normal’
settings of that day.

But the O�zier settings were not broken regularly yet. The capture from U-110 did show the British code-
breakers the system the Germans used, but this was not enough to break the cipher. Besides, the settings of
June, which were captured, were running out as June passed. As mentioned before, cribs could be used to break
O�zier Enigma with the Bombe, but the alignment of the cribs was exceedingly di�cult. Although the wheel
order was known, it took a lot of time on the Bombe. This was especially a problem in 1941 and1942, when
the codebreakers did not have access to many Bombes. So, they had to find a faster way.

6.20 The influence of having information

The French Deuxième Bureau had a profound influence on breaking Enigma. They basically helped to let the
Allies master breaking Enigma for at least the first two years of war. Towards the end of the war, it became
known that the British had been reading the German messages. Nevertheless, the German Naval Communica-
tions Department was still in denial and said this could not be the case.

When it came to reading the Shark messages, Dolphin had to be broken first, as these would deliver cribs for
Shark to be broken. So, it was important Dolphin was broken as quickly as possible. At the end of June 1943,
the codebreakers decided not to use the long Banburismus procedure anymore, but solely work with available
cribs and Bombes. But there was another setback. On 1 July 1943, a new fourth wheel, Gamma, and a new
reflector, Caesar, were introduced by the Germans for Shark. These could replace the original fourth wheel,
Beta, and reflector, Bruno. The messages could not be broken, but Pendered came to the rescue. He used a
version of the rodding procedure to find out the wiring of the new fourth wheel and reflector. A windfall was
that the Germans only changed the combination of fourth wheel and reflector once a month, so only once per
month there would be a delay in breaking the messages. At the same time, the Germans still believed that
someone needed all the codebooks to break Enigma.

The British had also managed to capture documents from U-505, which arrived at Bletchley Park on 20 June
1944. The documents held information on O�zier and regular Enigma settings for June, short weather code-
books, new versions of the bigram tables and short signal books, and some sort of address book to give their
(U-boat) position on the grid in code. Because of these documents, after breaking the messages, the British
codebreakers also almost directly understood where the U-boats were on the grid.

The Americans also worked out strategies and information that made breaking Shark and Dolphin faster. There
were not as many wheel orders to check since Germans did not use the same wheel order in six months. Also,
the Americans found out that when the wheel on the left was for instance wheel 2, then there would be an
eighty percent chance the next day wheel 6, 7 or 8 was in this place. Besides, more Bombes became available.
In the beginning of 1944, the British had access to 182 three- and four-wheel Bombes in Britain and America
combined. This was an excessively significant di↵erence with 1941, when only twelve were available.

Breaking the Enigma shortened the war by approximately two years.
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A Program to find the number of starting settings

1 # This code i s wr i t t en by Inge Dekkers .
2 # In t h i s Python program , we look at the amount o f p o s s i b l e s t a r t i n g s e t t i n g s o f an

Enigma I machine .
3 # This i s the enigma machine used by the German Army and Air Force .
4

5 from math import f a c t o r i a l
6 import sys
7

8 # AMOUNT OF ROTOR ORDERS
9

10 # Input o f the number o f r o t o r s
11 number o f ro to r s = in t ( input ( ”The amount o f r o t o r s we can choose from : ” ) )
12 n = number o f ro to r s
13

14 # The machine needs at l e a s t 3 i n s e r t e d ro to r s , so at l e a s t th ree r o t o r s are needed to
choose from .

15 i f number o f ro to r s < 3 :
16 pr in t ( ”This input i s not va l i d . ” )
17 sys . e x i t ( )
18

19 # Calcu l a t i on o f the amount o f o rde r s three r o t o r s can be put in .
20 de f r o t o r o r d e r ( x ) :
21 order amount = x ⇤ (x�1) ⇤ (x�2)
22 re turn order amount
23

24 pr in t ( ”The amount o f r o t o r o rde r s i s : ” , r o t o r o r d e r (n) )
25

26 # AMOUNT OF PLUGBOARD SETTINGS
27

28 # Input o f the number o f r o t o r s
29 number o f cab le s = in t ( input ( ”The amount o f plugboard cab l e s we use : ” ) )
30 c = number o f cab le s
31

32 # We cannot have more than 13 cab le s , s i n c e we have 26 l e t t e r s .
33 # We do not have to use any cab l e s .
34 i f ( number o f cab le s < 0) or ( number o f cab le s > 13) :
35 pr in t ( ”This input i s not va l i d ” )
36 sys . e x i t ( )
37

38 de f p l ugboa rd s e t t i n g s ( x ) :
39 # We choose 2⇤x so cke t s o f 26 to connect in pa i r s .
40 s o cke t s = in t ( f a c t o r i a l (26) /( f a c t o r i a l (26 � 2⇤x ) ⇤ f a c t o r i a l (2⇤x ) ) )
41 i = 2⇤x � 1 # There are 2⇤x par tne r s a v a i l a b l e f o r the f i r s t socke t .
42 pa i r s = 1
43 whi le i > 0 :
44 pa i r s = pa i r s ⇤ i # Mult ip ly ing combinat ions
45 i = i � 2 # In every s tep there are two opt ions l e s s .
46 amount plugboard = socke t s ⇤ pa i r s # Combined by mu l t i p l i c a t i o n
47 re turn amount plugboard
48

49 pr in t ( ”The amount o f r o t o r s e t t i n g s i s : ” , p l ugboa rd s e t t i n g s ( c ) )
50

51 # AMOUNT OF SETTINGS OF A SINGLE ROTOR
52

53 w i r i n g s e t t i n g = 26⇤26⇤26 # In t e r n a l w i r ing
54 no t ch s e t t i n g = 26⇤26 # Notch po s i t i o n
55 r o t o r s e t t i n g = w i r i n g s e t t i n g ⇤ no t ch s e t t i n g # Combined by mu l t i p l i c a t i o n
56 pr in t ( ”The amount o f s e t t i n g s o f the r o t o r s i s : ” , r o t o r s e t t i n g )
57

58

59 # FINAL AMOUNT OF SETTINGS
60

61 s e t t i n g s = ro t o r o r d e r (n) ⇤ p lugboa rd s e t t i n g s ( c ) ⇤ r o t o r s e t t i n g # Combining a l l
e lements
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62

63 pr in t ( ”The amount o f s e t t i n g s i s : ” , r o t o r o r d e r (n) , ”⇤” , p l ugboa rd s e t t i n g s ( c ) , ”⇤” ,
r o t o r s e t t i n g , ”=” , f ’ { s e t t i n g s : , } ’ )
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B Programmed version of Enigma I

In the code below, an Enigma I machine is programmed in the programming language Python.

1 # This code i s wr i t t en by Inge Dekkers .
2 # This code r ep r e s en t s Enigma I , which i s the enigma machine used by the German Army

and Air Force .
3 # The program has f i v e r o t o r s to choose from .
4

5 #The input o f the p lugboa rd s e t t i ng s
6 plug1 , plug2 = input ( ”The f i r s t plugboard s e t t i n g / pa i r with spaces and c a p i t a l s : ” ) .

s p l i t ( )
7 plug3 , plug4 = input ( ”The second plugboard s e t t i n g / pa i r with spaces and c a p i t a l s : ” ) .

s p l i t ( )
8 plug5 , plug6 = input ( ”The th i rd plugboard s e t t i n g / pa i r with spaces and c a p i t a l s : ” ) .

s p l i t ( )
9 plug7 , plug8 = input ( ”The four th plugboard s e t t i n g / pa i r with spaces and c a p i t a l s : ” ) .

s p l i t ( )
10 plug9 , plug10 = input ( ”The f i f t h plugboard s e t t i n g / pa i r with spaces and c a p i t a l s : ” ) .

s p l i t ( )
11 plug11 , plug12 = input ( ”The s i x th plugboard s e t t i n g / pa i r with spaces and c a p i t a l s : ” ) .

s p l i t ( )
12 plug13 , plug14 = input ( ”The seventh plugboard s e t t i n g / pa i r with spaces and c a p i t a l s : ” )

. s p l i t ( )
13 plug15 , plug16 = input ( ”The e ighth plugboard s e t t i n g / pa i r with spaces and c a p i t a l s : ” ) .

s p l i t ( )
14 plug17 , plug18 = input ( ”The ninth plugboard s e t t i n g / pa i r with spaces and c a p i t a l s : ” ) .

s p l i t ( )
15 plug19 , plug20 = input ( ”The tenth plugboard s e t t i n g / pa i r with spaces and c a p i t a l s : ” ) .

s p l i t ( )
16

17 #This makes an array to save the matching a s c i i numbers o f the plugboard s e t t i n g s .
18 plug = ( ord ( plug1 ) , ord ( plug2 ) , ord ( plug3 ) , ord ( plug4 ) , ord ( plug5 ) , ord ( plug6 ) , ord (

plug7 ) , ord ( plug8 ) , ord ( plug9 ) ,
19 ord ( plug10 ) , ord ( plug11 ) , ord ( plug12 ) , ord ( plug13 ) , ord ( plug14 ) , ord ( plug15 ) , ord (

plug16 ) , ord ( plug17 ) , ord ( plug18 ) ,
20 ord ( plug19 ) , ord ( plug20 ) )
21

22 #This i s the plugboard funct ion , where two connected l e t t e r s are switched .
23 de f plugboard (p) :
24 f o r i in range (0 , 19 , 2) :
25 i f p == plug [ i ] :
26 p = plug [ i + 1 ]
27 e l i f p == plug [ i + 1 ] :
28 p = plug [ i ]
29 re turn p
30

31 #Array d i f f e r e n c e s f o r r e f l e c t o r pa i r s AY, BR, CU, DH, EQ, FS , GL, IP , JX, KN, MO, TZ
and VW

32 d i f f e r e n c e r e f l e c t o r = (24 , 16 , 18 , 4 , 12 , 13 , 5 , �4, 7 , 14 , 3 , �5, 2 , �3, �2, �7, �12,
�16, �13, 6 , �18, 1 , �1, �14, �24, �6)

33

34 #Re f l e c t o r funct ion , two l e t t e r s are switched based on d i f f e r e n c e s between the a s c i i
va lue s .

35 de f r e f l e c t o r ( r ) :
36 f o r i in range (65 , 91) : #This ends at 91 because range goes from 65 to 90 in t h i s

case , by d e f i n i t i o n o f range .
37 i f r == i :
38 r = r + d i f f e r e n c e r e f l e c t o r [ ( i � 65) ]
39 break
40 re turn r
41

42 #Here the user chooses the ro to r s , t h e i r order and t h e i r r i n g s e t t i n g s .
43 input X = in t ( input ( ”Most l e f t r o t o r ( in numbers ) : ” ) )
44 input Y = in t ( input ( ”Middle r o t o r ( in numbers ) : ” ) )
45 input Z = in t ( input ( ”Most r i g h t r o t o r ( in numbers ) : ” ) )
46 s e t t ing X = in t ( input ( ” Se t t i ng o f the most l e f t r o t o r : ” ) )
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47 s e t t ing Y = in t ( input ( ” Se t t i ng o f the middel r o t o r : ” ) )
48 s e t t i n g Z = in t ( input ( ” Se t t i ng o f the most r i g h t r o t o r : ” ) )
49 r ing X = in t ( input ( ”Ring s e t t i n g o f the most l e f t r o t o r : ” ) )
50 r ing Y = in t ( input ( ”Ring s e t t i n g o f the middle r o t o r : ” ) )
51 r ing Z = in t ( input ( ”Ring s e t t i n g o f the most r i g h t r o t o r : ” ) )
52

53

54 #Here va lue s are a s s i gned to the v a r i a b l e s we need in the r o t o r s .
55 s = [ 0 , 0 , 0 , 0 , 0 ] #s e t t i n g s ( showing through the window)
56 r s = [ 0 , 0 , 0 , 0 , 0 ] #r i n g s e t t i n g s
57

58 #The s e t t i n g s are put in to an array .
59 f o r i in range (1 , 6) :
60 i f input X == i :
61 s [ i � 1 ] = se t t i ng X #( i �1) i s used as an array counts from zero
62 r s [ i � 1 ] = ring X
63 i f input Y == i :
64 s [ i � 1 ] = se t t i ng Y
65 r s [ i � 1 ] = ring Y
66 i f input Z == i :
67 s [ i � 1 ] = s e t t i n g Z
68 r s [ i � 1 ] = r ing Z
69

70 s1 , s2 , s3 , s4 , s5 = s
71 rs1 , rs2 , rs3 , rs4 , r s5 = r s
72

73 #Here the r o t a t i on con s t ru c t i on s t a r t s .
74

75 de f pos i t i on X ( ) :
76 f o r i in range (1 , 6 ) : #goes from 1 up un t i l 5 by d e f i n i t i o n o f range
77 i f input X == i :
78 re turn s [ i �1]
79

80 de f pos i t i on Y ( ) :
81 f o r i in range (1 , 6 ) : #goes from 1 up un t i l 5 by d e f i n i t i o n o f range
82 i f input Y == i :
83 re turn s [ i �1]
84

85 de f po s i t i on Z ( ) :
86 f o r i in range (1 , 6 ) : #goes from 1 up un t i l 5 by d e f i n i t i o n o f range
87 i f input Z == i :
88 re turn s [ i �1]
89

90 #We only need p o s i t i o n s Y and Z because X i s the most l e f t r o t o r .
91

92 #Notch l i s t I : Q�>R, I I : E�>F, I I I : V�>W, IV : J�>K, V: Z�>A
93 n o t c h l i s t = [ 18 , 6 , 23 , 11 , 1 ]
94

95 #The notches are matched with the r o t o r s .
96 de f notch Y ( ) :
97 f o r i in range (1 , 6 ) :
98 i f input Y == i :
99 n = n o t c h l i s t [ i �1]

100 re turn n
101

102 de f notch Z ( ) :
103 f o r i in range (1 , 6 ) :
104 i f input Z == i :
105 n = n o t c h l i s t [ i �1]
106 re turn n
107

108 r o t z = po s i t i on Z ( )
109 r o t y = pos i t i on Y ( )
110 r o t x = pos i t i on X ( )
111 n z = notch Z ( )
112 n y = notch Y ( )
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113

114 v a r i a b l e l i s t = [ ]
115 v a r i a b l e l i s t . extend ( ( s1 , s2 , s3 , s4 , s5 ) )
116

117 #This i s the d e f i n i t i o n f o r the r o t a t i on mechanism .
118 de f r o t a t i on ( rot x , rot y , ro t z , n y , n z , input X , input Y , input Z ) :
119 r o t z = r o t z + 1 #Rotor Z always advances one s tep .
120 i f r o t z > 26 :
121 r o t z = r o t z � 26
122 i f r o t y == n y � 1 :
123 i f r o t z == n z :
124 r o t y = ro t y + 1
125 i f r o t y > 26 :
126 r o t y = ro t y � 26
127 r o t x = ro t x + 1
128 i f r o t x > 26 :
129 r o t x = ro t x � 26
130 e l s e :
131 r o t y = ro t y + 1
132 i f r o t y > 26 :
133 r o t y = ro t y � 26
134 r o t x = ro t x + 1
135 i f r o t x > 26 :
136 r o t x = ro t x � 26
137 e l i f r o t z == n z :
138 r o t y = ro t y + 1
139 i f r o t y > 26 :
140 r o t y = ro t y � 26
141 f o r i in range (1 , 6 ) :
142 i f input X == i :
143 v a r i a b l e l i s t [ i � 1 ] = ro t x
144 f o r i in range (1 , 6 ) :
145 i f input Y == i :
146 v a r i a b l e l i s t [ i � 1 ] = ro t y
147 f o r i in range (1 , 6 ) :
148 i f input Z == i :
149 v a r i a b l e l i s t [ i � 1 ] = r o t z
150 s1 , s2 , s3 , s4 , s5 = v a r i a b l e l i s t
151 re turn ( s1 , s2 , s3 , s4 , s5 , rot x , rot y , r o t z )
152

153 #Here we end the r o t a t i on con s t ru c t i on
154

155 #The r o t o r s
156

157 #Rotor I
158

159 #Di f f e r e n c e s AE,BK,CM,DF,EL,FG,GD,HQ, IV , JZ ,KN,LT,MO,NW,OY,PH,QX,RU, SS ,TP,UA,VI ,WB,XR,YC
, ZJ ( from r i gh t to l e f t )

160 r o t o r I l i s t = [ 4 , 9 , 10 , 2 , 7 , 1 , �3, 9 , 13 , 16 , 3 , 8 , 2 , 9 , 10 , �8, 7 , 3 , 0 , �4, �20,
�13, �21, �6, �22, �16]

161

162 de f r o t o r I ( q1 , s1 ) :
163 q1 = q1 + ( s1 � 1) � ( r s1 � 1) #entry l e t t e r ( q1 ) en t e r i ng the ro t o r c on s i d e r i n g

s e t t i n g and r i n g s e t t i n g
164 i f q1 < 65 :
165 q1 = q1 + 26
166 e l i f q1 > 90 :
167 q1 = q1 � 26
168 f o r i in range (65 , 91) :
169 i f q1 == i :
170 q1 = q1 � ( s1 � 1) + ( r s1 � 1) + r o t o r I l i s t [ ( i � 65) ] #entry l e t t e r going

through ro to r
171 i f q1 < 39 : # To keep the alphabet
172 q1 = q1 + 52
173 e l i f q1 < 65 :
174 q1 = q1 + 26
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175 i f q1 > 116 :
176 q1 = q1 � 52
177 e l i f q1 > 90 :
178 q1 = q1 � 26
179 break
180 re turn q1
181

182 #Di f f e r e n c e s AU,BW,CY,DG,EA,FD,GF,HP, IV , JZ ,KB,LE,MC,NK,OM,PT,QH,RX, SS ,TL,UR, VI ,WN,XQ,YO
, ZJ ( from l e f t to r i g h t )

183 r o t o r I r e v e r s e d l i s t = [ 20 , 21 , 22 , 3 , �4, �2, �1, 8 , 13 , 16 , �9, �7, �10, �3, �2, 4 ,
�9, 6 , 0 , �8, �3, �13, �9, �7, �10, �16]

184

185 de f r o t o r I r e v e r s e d (p1 , s1 ) :
186 p1 = p1 + ( s1 � 1) � ( r s1 � 1)
187 i f p1 < 65 :
188 p1 = p1 + 26
189 e l i f p1 > 90 :
190 p1 = p1 � 26
191 f o r i in range (65 , 91) :
192 i f p1 == i :
193 p1 = p1 � ( s1 � 1) + ( r s1 � 1) + r o t o r I r e v e r s e d l i s t [ ( i � 65) ]
194 i f p1 < 39 :
195 p1 = p1 + 52
196 e l i f p1 < 65 :
197 p1 = p1 + 26
198 i f p1 > 116 :
199 p1 = p1 � 52
200 e l i f p1 > 90 :
201 p1 = p1 � 26
202 break
203 re turn p1
204

205 #Di f f e r e n c e s AA,BJ ,CD,CK,ES , FI ,GR,HU, IX , JB ,KL,LH,MW,NT,OM,PC,QQ,RG, SZ ,TN,UP,VY,WF,XV,YO
,ZE ( from r i gh t to l e f t )

206 r o t o r I I l i s t = [ 0 , 8 , 1 , 7 , 14 , 3 , 11 , 13 , 15 , �8, 1 , �4, 10 , 6 , �2, �13, 0 , �11, 7 ,
�6, �5, 3 , �17, �2, �10, �21]

207

208 #Rotor I I
209

210 de f r o t o r I I ( q2 , s2 ) :
211 q2 = q2 + ( s2 � 1) � ( r s2 � 1)
212 i f q2 < 65 :
213 q2 = q2 + 26
214 e l i f q2 > 90 :
215 q2 = q2 � 26
216 f o r i in range (65 , 91) :
217 i f q2 == i :
218 q2 = q2 � ( s2 � 1) + ( r s2 � 1) + r o t o r I I l i s t [ ( i � 65) ]
219 i f q2 < 39 :
220 q2 = q2 + 52
221 e l i f q2 < 65 :
222 q2 = q2 + 26
223 i f q2 > 116 :
224 q2 = q2 � 52
225 e l i f q2 > 90 :
226 q2 = q2 � 26
227 break
228 re turn q2
229

230 #Di f f e r e n c e s AA,BJ ,CP,DC,EZ,FW,GR,HL, IF , JB ,KD,LK,MO,NT,OY,PU,QQ,RG,SE ,TN,UH,VX,WM,XI ,YV
, ZS ( from l e f t to r i g h t )

231 r o t o r I I r e v e r s e d l i s t = [ 0 , 8 , 13 , �1, 21 , 17 , 11 , 4 , �3, �8, �7, �1, 2 , 6 , 10 , 5 , 0 ,
�11, �14, �6, �13, 2 , �10, �15, �3, �7]

232

233 de f r o t o r I I r e v e r s e d (p2 , s2 ) :
234 p2 = p2 + ( s2 � 1) � ( r s2 � 1)
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235 i f p2 < 65 :
236 p2 = p2 + 26
237 e l i f p2 > 90 :
238 p2 = p2 � 26
239 f o r i in range (65 , 91) :
240 i f p2 == i :
241 p2 = p2 � ( s2 � 1) + ( r s2 � 1) + r o t o r I I r e v e r s e d l i s t [ ( i � 65) ]
242 i f p2 < 39 :
243 p2 = p2 + 52
244 e l i f p2 < 65 :
245 p2 = p2 + 26
246 i f p2 > 116 :
247 p2 = p2 � 52
248 e l i f p2 > 90 :
249 p2 = p2 � 26
250 break
251 re turn p2
252

253 #Di f f e r e n c e s AB,BD,CF,DH,EJ ,FL,GC,HP, IR , JT ,KX,LV,MZ,NN,OY,PE,QI ,RW,SG,TA,UK,VM,WU,XS,YQ
,ZO ( from r i gh t to l e f t )

254 r o t o r I I I l i s t = [ 1 , 2 , 3 , 4 , 5 , 6 , �4, 8 , 9 , 10 , 13 , 10 , 13 , 0 , 10 , �11, �8, 5 , �12,
�19, �10, �9, �2, �5, �8, �11]

255

256 #Rotor I I I
257

258 de f r o t o r I I I ( q3 , s3 ) :
259 q3 = q3 + ( s3 � 1) � ( r s3 � 1)
260 i f q3 < 65 :
261 q3 = q3 + 26
262 e l i f q3 > 90 :
263 q3 = q3 � 26
264 f o r i in range (65 , 91) :
265 i f q3 == i :
266 q3 = q3 � ( s3 � 1) + ( r s3 � 1) + r o t o r I I I l i s t [ ( i � 65) ]
267 i f q3 < 39 :
268 q3 = q3 + 52
269 e l i f q3 < 65 :
270 q3 = q3 + 26
271 i f q3 > 116 :
272 q3 = q3 � 52
273 e l i f q3 > 90 :
274 q3 = q3 � 26
275 break
276 re turn q3
277

278 #Di f f e r e n c e s AT,BA,CG,DB,EP,FC,GS,HD, IQ , JE ,KU,LF,MV,NN,OZ,PH,QY, RI ,SX,TJ ,UW,VL,WR,XK,YO
,ZM ( from l e f t to r i g h t )

279 r o t o r I I I r e v e r s e d l i s t = [ 19 , �1, 4 , �2, 11 , �3, 12 , �4, 8 , �5, 10 , �6, 9 , 0 , 11 , �8,
8 , �9, 5 , �10, 2 , �10, �5, �13, �10, �13]

280

281 de f r o t o r I I I r e v e r s e d (p3 , s3 ) :
282 p3 = p3 + ( s3 � 1) � ( r s3 � 1)
283 i f p3 < 65 :
284 p3 = p3 + 26
285 e l i f p3 > 90 :
286 p3 = p3 � 26
287 f o r i in range (65 , 91) :
288 i f p3 == i :
289 p3 = p3 � ( s3 � 1) + ( r s3 � 1) + r o t o r I I I r e v e r s e d l i s t [ ( i � 65) ]
290 i f p3 < 39 :
291 p3 = p3 + 52
292 e l i f p3 < 65 :
293 p3 = p3 + 26
294 i f p3 > 116 :
295 p3 = p3 � 52
296 e l i f p3 > 90 :
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297 p3 = p3 � 26
298 break
299 re turn p3
300

301 #Di f f e r e n c e s AE,BS ,CO,DV,EP,FZ ,GJ,HA, IY ,JQ,KU, LI ,MR,NH,OX,PL,QN,RF,ST,TG,UK,VD,WC,XM,YW
,ZB ( from r i gh t to l e f t )

302 r o t o r I V l i s t = [ 4 , 17 , 12 , 18 , 11 , 20 , 3 , �7, 16 , 7 , 10 , �3, 5 , �6, 9 , �4, �3, �12, 1 ,
�13, �10, �18, �20, �11, �2, �24]

303

304 #Rotor IV
305

306 de f ro to r IV (q4 , s4 ) :
307 q4 = q4 + ( s4 � 1) � ( r s4 � 1)
308 i f q4 < 65 :
309 q4 = q4 + 26
310 e l i f q4 > 90 :
311 q4 = q4 � 26
312 f o r i in range (65 , 91) :
313 i f q4 == i :
314 q4 = q4 � ( s4 � 1) + ( r s4 � 1) + r o t o r I V l i s t [ ( i � 65) ]
315 i f q4 < 39 :
316 q4 = q4 + 52
317 e l i f q4 < 65 :
318 q4 = q4 + 26
319 i f q4 > 116 :
320 q4 = q4 � 52
321 e l i f q4 > 90 :
322 q4 = q4 � 26
323 break
324 re turn q4
325

326 #Di f f e r e n c e s AH,BZ,CW,DV,EA,FR,GT,HN, IL ,JG,KU,LP,MX,NQ,OC,PE,QJ,RM,SB,TS,UK,VD,WY,XO,YI
,ZF ( from l e f t to r i g h t )

327 r o t o r IV r e v e r s e d l i s t = [ 7 , 24 , 20 , 18 , �4, 12 , 13 , 6 , 3 , �3, 10 , 4 , 11 , 3 , �12, �11,
�7, �5, �17, �1, �10, �18, 2 , �9, �16, �20]

328

329 de f r o t o r IV r ev e r s ed (p4 , s4 ) :
330 p4 = p4 + ( s4 � 1) � ( r s4 � 1)
331 i f p4 < 65 :
332 p4 = p4 + 26
333 e l i f p4 > 90 :
334 p4 = p4 � 26
335 f o r i in range (65 , 91) :
336 i f p4 == i :
337 p4 = p4 � ( s4 � 1) + ( r s4 � 1) + r o t o r IV r e v e r s e d l i s t [ ( i � 65) ]
338 i f p4 < 39 :
339 p4 = p4 + 52
340 e l i f p4 < 65 :
341 p4 = p4 + 26
342 i f p4 > 116 :
343 p4 = p4 � 52
344 e l i f p4 > 90 :
345 p4 = p4 � 26
346 break
347 re turn p4
348

349 #Di f f e r e n c e s AV,BZ,CB,DR,EG, FI ,GT,HY, IU , JP ,KS,LD,MN,NH,OL,PX,QA,RW,SM,TJ ,UQVO,WF,XE,YC,
ZK ( from r i gh t to l e f t )

350 r o t o r V l i s t = [ 21 , 24 , �1, 14 , 2 , 3 , 13 , 17 , 12 , 6 , 8 , �8, 1 , �6, �3, 8 , �16, 5 , �6,
�10, �4, �7, �17, �19, �22, �15]

351

352 #Rotor V
353

354 de f rotor V (q5 , s5 ) :
355 q5 = q5 + ( s5 � 1) � ( r s5 � 1)
356 i f q5 < 65 :
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357 q5 = q5 + 26
358 e l i f q5 > 90 :
359 q5 = q5 � 26
360 f o r i in range (65 , 91) :
361 i f q5 == i :
362 q5 = q5 � ( s5 � 1) + ( r s5 � 1) + r o t o r V l i s t [ ( i � 65) ]
363 i f q5 < 39 :
364 q5 = q5 + 52
365 e l i f q5 < 65 :
366 q5 = q5 + 26
367 i f q5 > 116 :
368 q5 = q5 � 52
369 e l i f q5 > 90 :
370 q5 = q5 � 26
371 break
372 re turn q5
373

374 #Di f f e r e n c e AQ,BC,CY,DL,EX,FW,GE,HN, IF , JT ,KZ,LO,MS,NM,OV,PJ ,QU,RD,SK,TG,UI ,A,WR,XP,YH,
ZB

375 r o t o r V r e v e r s e d l i s t = [ 16 , 1 , 22 , 8 , 19 , 17 , �2, 6 , �3, 10 , 15 , 3 , 6 , �1, 7 , �6, 4 ,
�14, �8, �13, �12, �21, �5, �8, �17, �24]

376

377 de f r o t o r V reve r s ed (p5 , s5 ) :
378 p5 = p5 + ( s5 � 1) � ( r s5 � 1)
379 i f p5 < 65 :
380 p5 = p5 + 26
381 e l i f p5 > 90 :
382 p5 = p5 � 26
383 f o r i in range (65 , 91) :
384 i f p5 == i :
385 p5 = p5 � ( s5 � 1) + ( r s5 � 1) + r o t o r V r e v e r s e d l i s t [ ( i � 65) ]
386 i f p5 < 39 :
387 p5 = p5 + 52
388 e l i f p5 < 65 :
389 p5 = p5 + 26
390 i f p5 > 116 :
391 p5 = p5 � 52
392 e l i f p5 > 90 :
393 p5 = p5 � 26
394 break
395 re turn p5
396

397 #The next s i x f un c t i on s are f o r the ro t o r order
398

399 de f rotor X (x1 , r o t x ) :
400 t e s t 1 = input X
401 i f t e s t 1 == 1 :
402 re turn r o t o r I ( x1 , r o t x )
403 e l i f t e s t 1 == 2 :
404 re turn r o t o r I I ( x1 , r o t x )
405 e l i f t e s t 1 == 3 :
406 re turn r o t o r I I I ( x1 , r o t x )
407 e l i f t e s t 1 == 4 :
408 re turn ro to r IV (x1 , r o t x )
409 e l i f t e s t 1 == 5 :
410 re turn rotor V (x1 , r o t x )
411

412 de f r o t o r X reve r s ed ( x2 , r o t x ) :
413 t e s t 2 = input X
414 i f t e s t 2 == 1 :
415 re turn r o t o r I r e v e r s e d ( x2 , r o t x )
416 e l i f t e s t 2 == 2 :
417 re turn r o t o r I I r e v e r s e d ( x2 , r o t x )
418 e l i f t e s t 2 == 3 :
419 re turn r o t o r I I I r e v e r s e d ( x2 , r o t x )
420 e l i f t e s t 2 == 4 :
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421 re turn r o t o r IV r ev e r s ed ( x2 , r o t x )
422 e l i f t e s t 2 == 5 :
423 re turn ro t o r V reve r s ed ( x2 , r o t x )
424

425

426 de f rotor Y (x3 , r o t y ) :
427 t e s t 3 = input Y
428 i f t e s t 3 == 1 :
429 re turn r o t o r I ( x3 , r o t y )
430 e l i f t e s t 3 == 2 :
431 re turn r o t o r I I ( x3 , r o t y )
432 e l i f t e s t 3 == 3 :
433 re turn r o t o r I I I ( x3 , r o t y )
434 e l i f t e s t 3 == 4 :
435 re turn ro to r IV (x3 , r o t y )
436 e l i f t e s t 3 == 5 :
437 re turn rotor V (x3 , r o t y )
438

439 de f r o t o r Y reve r s ed ( x4 , r o t y ) :
440 t e s t 4 = input Y
441 i f t e s t 4 == 1 :
442 re turn r o t o r I r e v e r s e d ( x4 , r o t y )
443 e l i f t e s t 4 == 2 :
444 re turn r o t o r I I r e v e r s e d ( x4 , r o t y )
445 e l i f t e s t 4 == 3 :
446 re turn r o t o r I I I r e v e r s e d ( x4 , r o t y )
447 e l i f t e s t 4 == 4 :
448 re turn r o t o r IV r ev e r s ed ( x4 , r o t y )
449 e l i f t e s t 4 == 5 :
450 re turn ro t o r V reve r s ed ( x4 , r o t y )
451

452

453 de f ro to r Z ( x5 , r o t z ) :
454 t e s t 5 = input Z
455 i f t e s t 5 == 1 :
456 re turn r o t o r I ( x5 , r o t z )
457 e l i f t e s t 5 == 2 :
458 re turn r o t o r I I ( x5 , r o t z )
459 e l i f t e s t 5 == 3 :
460 re turn r o t o r I I I ( x5 , r o t z )
461 e l i f t e s t 5 == 4 :
462 re turn ro to r IV (x5 , r o t z )
463 e l i f t e s t 5 == 5 :
464 re turn rotor V (x5 , r o t z )
465

466 de f r o t o r Z r e v e r s ed ( x6 , r o t z ) :
467 t e s t 6 = input Z
468 i f t e s t 6 == 1 :
469 re turn r o t o r I r e v e r s e d ( x6 , r o t z )
470 e l i f t e s t 6 == 2 :
471 re turn r o t o r I I r e v e r s e d ( x6 , r o t z )
472 e l i f t e s t 6 == 3 :
473 re turn r o t o r I I I r e v e r s e d ( x6 , r o t z )
474 e l i f t e s t 6 == 4 :
475 re turn r o t o r IV r ev e r s ed ( x6 , r o t z )
476 e l i f t e s t 6 == 5 :
477 re turn ro t o r V reve r s ed ( x6 , r o t z )
478

479

480 #Input the text you want to code .
481 x = input ( ”The text I want to code i s ( in c a p i t a l s and without spaces ) : ” )
482

483 #Al l the s t a t i o n s combined .
484 f o r i in range ( l en (x ) ) : #len (x ) g i v e s l ength o f the s t r i n g o f t ex t
485 r o t a t i on ( rot x , rot y , ro t z , n y , n z , input X , input Y , input Z )
486 s1 , s2 , s3 , s4 , s5 , rot x , rot y , r o t z = ro t a t i on ( rot x , rot y , ro t z , n y , n z ,
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input X , input Y , input Z )
487 l = ord (x [ i ] )
488 k = plugboard ( l )
489 s = ro to r Z (k , r o t z )
490 w = rotor Y ( s , r o t y )
491 v = rotor X (w, r o t x )
492 m = r e f l e c t o r ( v )
493 z = ro to r X reve r s ed (m, r o t x )
494 o = ro to r Y reve r s ed ( z , r o t y )
495 h = ro t o r Z r e v e r s ed (o , r o t z )
496 g = plugboard (h)
497 pr in t ( chr ( g ) , end = ” ” )
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C Wheel wiring

For the Poles to construct a replica of the Enigma machine, it was necessary to find out the wiring of the
wheels. They did this using permutations. At the beginning of the war, the Germans enciphered their message
key two consecutive times and put this before the enciphered message. This resulted in pairs of letters from
which was known that the letters before enciphering were the same. These six letters, representing the dou-
bly enciphered message key, could also be expressed via six di↵erent permutations, which we name �1 up until �6.

We often use the same notation as used in Section 3. So, we have:

E(n) = the enigma machine

P = the plugboard

f�L = wiring left wheel in the Enigma machine

f�M = wiring middle wheel in the Enigma machine

f�R = wiring right wheel in the Enigma machine

F = the reflector

H = entry disc

As already explained in Sections 2 and 3, we get the following path:

P
�1 � H

�1 � f
�1
�R

� f
�1
�M

� f
�1
�L

� F � f�L � f�M � f�R � H � P.

However, for simplicity, we denote this like

P H f�R f�M f�L F f
�1
�L

f
�1
�M

f
�1
�R

H
�1

P
�1

.

We defined d to be the rotation. So, we have

d =

✓
0 1 2 · · · 23 24 25
1 2 3 · · · 24 25 0

◆
= (0 1 2 . . . 24 25).

So, for every letter of the six letters representing the enciphering of the message key we have:

�1 = P H d f�R d
�1

f�M f�L F f
�1
�L

f
�1
�M

d f
�1
�R

d
�1

H
�1

P
�1

�2 = P H d
2
f�R d

�2
f�M f�L F f

�1
�L

f
�1
�M

d
2
f
�1
�R

d
�2

H
�1

P
�1

...

�6 = P H d
6
f�R d

�6
f�M f�L F f

�1
�L

f
�1
�M

d
6
f
�1
�R

d
�6

H
�1

P
�1

Assumption 1. We assume that only the right rotor advances and the middle and left rotor do not.

We can quite safely assume this, as in only twenty-one out of twenty-six cases there will not be an advancement
of the next rotor. So, for all six permutations, there is a reoccurring sequence. For simplicity, we refer to this
reoccurring sequence as S. We now can rewrite the permutations:

�1 = P H d f�R d
�1

S d f
�1
�R

d
�1

H
�1

P
�1

�2 = P H d
2
f�R d

�2
S d

2
f
�1
�R

d
�2

H
�1

P
�1

...

�6 = P H d
6
f�R d

�6
S d

6
f
�1
�R

d
�6

H
�1

P
�1

This leaves us with six equations containing four unknown permutations: P , H, f�R , and S. First Kozaczuk
thought H was known, as he thought this would be the same as in the commercial and military Enigmas. It
turned out this was not the case. However, he thought so and thus he was left with only three unknowns. In
addition, on 9 December 1932, Kozaczuk received photos from the daily keys of September and October 1932.
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These contained the plugboard settings. So, in this case P was known. Since P and H were known, they were
transformed to the left:

H
�1

P
�1

�1 P H = d f�R d
�1

S d f
�1
�R

d
�1

H
�1

P
�1

�2 P H = d
2
f�R d

�2
S d

2
f
�1
�R

d
�2

...

H
�1

P
�1

�6 P H = d
6
f�R d

�6
S d

6
f
�1
�R

d
�6

So, on the left the permutations are known, on the right f�R and S were unknown. As d was also known, these
could also be transformed to the left. For simplicity we also rename:

U = d
�1

P
�1

�1 P H d = f�R d
�1

S d f
�1
�R

V = d
�2

P
�1

�1 P H d
2 = f�R d

�2
S d

2
f
�1
�R

...

Z = d
�6

P
�1

�1 P H d
6 = f�R d

�6
S d

6
f
�1
�R

When we multiply, we get:

UV = f�R d
�1( S d

�1
S d) d f

�1
�R

VW = f�R d
�2( S d

�1
S d) d 2

f
�1
�R

...

YZ = f�R d
�5( S d

�1
S d) d 5

f
�1
�R

When we substitute, we get:

VW = f�R d
�1

f
�1
�R

(UV) f�R d f
�1
�R

WX = f�R d
�1

f
�1
�R

(VW) f�R d f
�1
�R

XY = f�R d
�1

f
�1
�R

(WX) f�R d f
�1
�R

YZ = f�R d
�1

f
�1
�R

(XY) f�R d f
�1
�R

The question that remains, is how these expressions can be useful for finding the wiring within the wheels. We
explain by showing an example. We do not work out the beginning of the example as it is tedious. We can find
products �1�4, �2�5, and �3�6 by looking for cycles in the six letter key indicators of a certain day. From these
expressions, we can find �1 up until �6, and with P , d, and all powers of d known, we can find U up until Z. Then
by multiplying these permutations we can find UV up until YZ, from which we will only need UV, VW and WX.

The only unknown remaining is f�R d f
�1
�R

, which we need to find. Say the following UV, VW and WX are found:

UV = ( i b d a j ) ( e f g h c )
VW = ( e a h f b ) ( c g j i d )
WX = ( i e f c g ) ( b h j a d )

The first step will be to line permutations UV and VW, and permutations VW an WX up, such that the vertical
letter pairs will be identical in both pairings. Since the permutations UV, VW and WX are already known,
only f�R d f

�1
�R

is still unknown. f�R d f
�1
�R

sends a letter from for instance UV to VW, but also from VW to
WX. Both these ‘steps’ need to be identical. Therefore, the two sets of permutations need to line up such that
all pairings are identical. As an example, we look at a ten letter alphabet. Rewriting and lining up UV, VW,
and WX gives the following:

UV = ( a j i b d ) ( c e f g h )
VW = ( d c g j i ) ( e a h f b )
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VW = ( d c g j i ) ( e a h f b )
WX = ( i e f c g ) ( a d b h j )

Now, all the lined-up pairs in both situations are identical. So, f�R d f
�1
�R

can be found. For example, if in VW

we go from D to C, f�R d
�1

f
�1
�R

sends D to A, then UV will send A to J and f�R d f
�1
�R

sends J to C. So, the

connections in f�R d f
�1
�R

will include (AD) and (JC). This process will be repeated until f�R d f
�1
�R

is complete.
In this example the following is obtained:

f�R d f
�1
�R

= (a d i g f h b j c e)

Now the same can be done to find f�R , since this is the exact same situation as described above. The permu-
tation d can be placed underneath f�R d f

�1
�R

and rearranging can start. The only di↵erence is that there are
no other pairings to compare with. So, looking at the example, there would be ten possible permutations for
f�R . Which permutation is the correct one, depends on factors which can only be known when looking at the
reconstruction of the wiring in all rotors.

Source: [21]
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D Codebreaking methods invented by the Poles

D.1 The Characteristic Method

In 1936, a characteristic method for breaking the code was invented. It was used for breaking the Enigma cipher
which was used by the Armed Forces. However, it became redundant as soon as Germany changed its indicator
procedure on 15 September 1938.

The characteristic method made use of the way the Germans communicated their indicator to the receiver of
the message. The message settings, which were the letters showing through the windows just before starting
enciphering the message, were enciphered two consecutive times. So, every message started with six letters,
which were used to communicate the message settings. From these six letters, chains could be created from the
following letter pairs: first and fourth, second and fifth, and third and sixth. This could give chains of various
lengths, as the length depends on the wheel order and the initial position, which were the letters showing
through the windows just before starting enciphering the message setting.

For every wheel order, there would be a specific length of a chain that would be possible. The Poles reported
this length for every wheel order in a catalogue, which would help the British cryptographers to break the code.
So, after receiving a message, the codebreakers would construct the chains from the intercepted indicators, and
they would determine the length of it. After that, they would search in the catalogue to find out which wheel
orders could be possible with the found chain lengths. After discovering the wheel order and wheel settings,
other settings could be worked out.

The way the chains or cycles were constructed is explained in the following example:

Say the intercepted indicators were as follows:

Indicator 1: D M Q V B N

Indicator 2: V O N P U Y

The chain that could be constructed out of these indicators, would then be DVP (from the first letter from
indicator 1, to the fourth letter of indicator 1, to the first letter of indicator 2, to the fourth letter of indicator
2). If more indicators were intercepted, this chain might be expanded until no link could be found anymore.
If a chain stopped, another could be started. So, it is possible that there might be more chains for the letter
pairs formed by the first and fourth letters. The same could be done for the pair formed by the second and fifth
letters and pair forms by the third and sixth pair. For every wheel setting, around sixty indicators were needed
to create the series of chains. These were also known as characteristic cycles.
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D.2 The Polish Bomby

The Bomby, which is plural for Bomba, were used to find out which wheel order and settings could have produced
a certain indicator. Sometimes, a situation like the following situation would occur:

Indicator Initial position
Message 1 W A H W I K A A A
Message 2 D W R M W R A A G
Message 3 R A W K T W A A L

There are three indicators from which the pairs all have the same reoccurring letter. The initial positions on the
right were known, as the receiver sent these unenciphered at the beginning of the message. The initial position
does not give everything away, since the core position of the wheel is not known, the initial position only shows
what is shown through the windows. The Bomby were invented to find these wheel core settings.

A Bomba consisted out of six replica Enigma machines that were wired together. However, there were no rings
on the wheels and there was no plugboard. It was solely meant to test the wheel orders, which could only be
one wheel order at the time.

For example, say we have a specific wheel order from left to right: 2/3/1. In the six Enigma machines the
wheels were set into the exact same order. Then the wheels were individually set in such a way that the ‘dis-
tance’ between the six sets of wheels, were identical to the ‘distance’ between the wheel positions that produced
the six W’s. This distance could be figured out by looking at the initial positions corresponding to the indicators.

To define distance, we follow an example corresponding to the table above. For example, AAG is six places
removed from AAA, because the right-hand wheel has to make six steps to go from AAA to AAG in the window.
Therefore, the distance between these two positions is six.

After everything was set up and installed, the process could begin. The Bomba would test if the initial positions
could have produced the indicators. If this would be the case, there would be a chance that the Bomba had
found the correct wheel order and positions for the message setting of that day. If this was not the case, then
all the right wheels in all six Enigma machines had to be rotated one place further, so that the correct distance
was kept maintained and the same test would have been executed again. This was done until all positions were
tested or until the correct settings were found.

Source: [26]
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E The British Bombe

Too many settings are possible on the Enigma machine to test manually. To try and reduce the number of
settings that needed to be tested manually, Alan Turing invented the Bombe. This machine was used to rule
out as many plugboard settings and wheel orders as possible. To do so, the machine made logical deductions
by making use of contradictions. To start with, assumptions were made, which were tested. If a deduction was
impossible, one of the assumptions was incorrect. Then the Bombe would test the next set of assumptions un-
til impossible deductions could not be found. These sets would be tested manually on a replica Enigma machine.

Example

Say we have the following assumptions:

1. The wheel order from left to right 1/2/3.

2. One of the plugboard connections is B-L.

3. The cipher text and matching plain text are in the table below. We assume AAA is the wheel setting on
the first letter of the crib, AAB the wheel setting for the second letter of the crib etc.

Relative wheel position 1 2 3 4 5 6 7
Cipher text Z Q L R X S L

Crib D E K K E R S

Deduction 1

The first deduction will be based on the third pair of letters. In this case, the cipher letter is L and the crib
letter is K. We know that for this pair, the wheel setting is AAC. We have the following situation:

Figure 33: Deduction 1 with an unknown

Now we can find out which letter is the one with the orange question mark. This can be done by putting a
replica Enigma machine in the given settings, but without a plugboard. If we type out the letter B, the letter
that will replace the orange question mark will light up. Say, this is the letter F. Then we have the following:

Figure 34: Deduction 1

We can see that F-K is a new plugboard setting, given the assumptions above, which is our first deduction.
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Deduction 2

The second deduction will be based on the fourth pair of letters. In this case, the cipher letter is R and the crib
letter is K. We know that for this pair, the wheel setting is AAD. We have the following situation:

Figure 35: Deduction 2 with an unknown

Again, we can deduce that if we type out the letter F, the letter that will replace the orange question mark will
light up. Say, this is the letter H. Then we have the following:

Figure 36: Deduction 2

We can see that H-R is a new plugboard setting, given the assumptions above, which is our second deduction.

Deduction 3

The third deduction will be based on the sixth pair of letters. In this case, the cipher letter is S and the crib
letter is R. We know that for this pair, the wheel setting is AAF. We have the following situation:

Figure 37: Deduction 3 with an unknown

Again, we can deduce that if we type out the letter H, the letter that will replace the orange question mark will
light up. Say, this is the letter I. Then we have the following:
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Figure 38: Deduction 3

We can see that I-S is a new plugboard setting, given the assumptions above, which is our third deduction.

Deduction 4

The fourth deduction will be based on the seventh pair of letters. In this case, the cipher letter is L and the
crib letter is S. We know that for this pair, the wheel setting is AAG. We have the following situation:

Figure 39: Deduction 4 with an unknown

At this point, the cryptographers were able to figure out whether the assumptions above were correct. The
same procedure as before could be executed. The replica Enigma would be set in the given settings with-
out a plugboard. In this case, the letter lighting up will tell if the assumptions are correct. This is the case
if the letter B would light up. We assumed plugboard setting B-L, so if the letter B lights up, this is not
in contradiction with the assumptions. In the case that B does not light up, it is in contradiction with the
assumptions. In this case, this set of assumptions can be ruled out and the next set of assumptions will be tested.

End example

As presented in the example, this is how the cryptographers were able to test whether a set of assumptions was
correct or not. The Bombe executed a similar procedure, but faster. It existed out of replica Enigma machines
which were wired together. However, the plugboards were left out. The machines were wired in such a way that
if a letter came out of one of the Enigma machines, it also went into the next Enigma machine as this letter.
The wheel were then set in the starting positions, corresponding to the letters out of the chain, which is the
following:

Figure 40: The chain of letters

63



So, as mentioned before, the distance between these positions had to be correct. The assumptions were then
tested. After the test was done, the wheels of all Enigma machines that were part of the Bombe, had to be
advanced one step to maintain the distance between the positions. Then the assumptions were tested again.
This was repeated for all 17,576 possible wheel settings. Afterwards, the settings that were not ruled out by
the Bombe, were tested manually. Other than shown in the picture above, cryptographers would visualize the
chain di↵erently:

Figure 41: Chain of letters as visualized by cryptographers

They referred to this as a menu. This was used to display the way the wheels of the Bombe had to be set.
Two letters are connected with each other in the menu if the Bombe can make a deduction based on the sockets
to which these two letters of the menu are connected to. The numbers in the menu represent the relative po-
sition in which the wheels are set. AAA is relative position 1, so 3, for example, represents relative position AAC.

However, the Bombe only worked when the cribs led to closures. Closures are chains that have the same
starting and ending letter. When using the Bombe, longer cribs were required than used for the example above,
but some did not break the cipher. So, Gordon Welchman came up with a alteration for the Bombe to make it
make more deductions given a cipher text and crib. Also, the cribs had not be as long as before.

The alteration of the Bombe made use of the fact that plugboard connections were two way connections. It
was not the case that if you had the plugboard connection A-B, that the current only could flow from A to B.
In fact, it could also flow from B to A. So if you had found a new plugboard connection due to a deduction,
for both letters of this connection you could look to see if they appear in your cipher text or crib. If both do
appear in either one, based on this you could make two other deductions, instead of one as we have shown in
the example above.

After Welchman suggested the alteration and it was applied, Turing also came up with an idea to alter the new
version of the Bombe. The procedure he came up with was referred to as simultaneous scanning. Where
beforehand one had to run two separate tests to see if A was connected to B or C on the plugboard, with
simultaneous scanning it could be tested whether A was connected to any letter on the plugboard in one test.
The test even kept going when a set of assumptions was not correct. If the Bombe found that for instance A
was connected to many other letters on the plugboard, this suggested an incorrect wheel order or wheel setting.
This ruled out many sets of assumptions at the same time, which made this new procedure very important.
It could also occur that the Bombe indicated that a certain letter, say J, was plugboard connected to every
other letter except for one letter. This suggested that the wheels were correctly set, but the assumed plugboard
connection was incorrect. What also could be assumed was that one point which according to the Bombe did
not connect to J on the plugboard, was in fact the letter to which J was connected on the plugboard. It was
also possible that the Bombe indicated that J was connected to just one other letter on the plugboard. This
indicated that the assumptions about the plugboard connection, wheel order and settings were correct.

Source: [26]
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F Naval Enigma

In April 1940, the British found a document explaining the indicating system of Naval Enigma. However, it
took the codebreakers up until March 1941 to master the entire system. To break the cipher, the bigram tables
had to be reconstructed, which made sure that the Banburismus procedure could be performed. This method
was the preferred method to break Home Waters Enigma until July 1943.

To send a message with the Naval Enigma cipher, the sender had to take a couple of steps. First, the person
encrypting the messages had to pick two three letter groups, also known as trigrams, out of a book. This book
was called the Kenngruppenbuch. Say that the sender picked CRI and UEY. After that, the trigrams were
extended with an extra letter. The first trigram got one extra letter in the beginning, say H, and the second
trigram got a letter added at the end, say D. This resulted in the following:

H C R I

U E Y D

The second four letter group was also known as Verfahrenkenngruppe.

Second, the wheels would be put in the initial position which was given in the setting list. Say this was
JKL. The sender of the message then took the first three letters of the second four-letter group, in this case
UEY, and typed this out on the Enigma machine. Say this lit up HCB. Then HCB would be the message setting.

Third, the Enigma machine wheels would be put into the message setting, in this case HCB, and would encipher
the message. Before communicating the enciphered message, the sender had to make it clear to the receiver how
to decrypt the message without the enemy finding out. To do this, the four vertical letter pairs, also referred to
as bigrams, mentioned above had to be transformed. So, the first of the bigrams above were transformed. How
these bigrams needed to be transformed, was described by the bigram tables that the German cryptographers
had access to. So, the following

H C R I

U E Y D

became for instance this:

U M G F

Q Z P W

with the following table:
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Figure 42: Bigram Tables

Source: https://www.ciphermachinesandcryptology.com/en/enigmaproc.htm

Lastly, the letters were repositioned as follows:

U G Q P

M F Z W

This would be the letters sent at the beginning of a message, so these letters were not enciphered.

To decode the message, the steps were basically carried out backwards; the letters were scrambled back and
were transformed with the bigram tables, then the receiver would know the initial position of the wheel, in this
case UEY. Then, he could find the message settings, in this case HCB, and decipher the enciphered text.

66



Reconstruction of the bigram tables

To reconstruct the bigram tables, first the cryptographers needed to know the settings of the day, which could
be found out in two ways. The first possibility would be that the settings of that day were captured, the second
option was that the cryptographers used cribs and Bombes to break the settings. The Bombe only worked out
the plugboard settings and the wheel order. The ring settings, initial position and message setting were worked
out manually by the codebreakers.

The reconstruction of the bigram tables was done in multiple steps. These are described below.

1. For simplicity, the same settings as used in the previous example will be used. First, the wheels would be
set in the initial position, JKL, and then the message setting, HCB, was tapped out. This would light up
UEY. The following was known:

- - - -

U E Y -

2. The cryptographers also looked at the indicator at the beginning of the message. They knew to rearrange

U G Q P

M F Z W

to this

U M G F

Q Z P W

3. So, there were three entries that were partially known:

?U & UQ / ?E & MZ / ?Y & GP

If other bigrams or partial bigrams were available, the missing information could be filled in. This was also
made possible because the bigrams were reversible. It was important that these tables were reconstructed,
as these were necessary to carry out the Banburismus procedure.

But for the bigram tables to be reconstructed, all the settings had to be known. This also included the message
setting, which was not found by the Bombe and therefore had to be found manually. To do this, the codebreak-
ers used something called the Eins Catalogue.

The catalogue consisted of 17, 576 (= 26 ⇥ 26 ⇥ 26) times the word EINS enciphered in each wheel position.
These were all alphabetically ordered in a catalogue. So, say EINS enciphers as MAUD with wheels set to JKL.
If you would see MAUD in an enciphered text, it could be possible that the sender tapped EINS with the wheels
set to JKL.

So, for every four-letter group the cryptographers had to see if it appeared in the catalogue. For example, for
the enciphered text LMAUDYHJ, first LMAU was looked up in the catalogue. If the cryptographers could
not find this, they would check the next four letters: MAUD. MAUD did appear in the catalogue with wheel
settings JKL. To produce the M the wheels had to be set to JKL. So, to produce the L, the wheels had to be
set to JKK. Afterwards, the cryptographers checked if this was the right setting, by setting the wheels to JKK
and typing out the message to see if German plain text came out.
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Banburismus

The Banburismus procedure was invoked to rule out wheel orders. There were 336 possible wheel orders, and
it took the Bombe a lot of time to go through all these options. It would be way faster if certain orders were
already ruled out and speed was important when not many Bombes were available.

In the first stage of the Banburismus procedure, the distance between message settings had to be determined.
This worked as follows:

A message always started with eight letters that were part of the indicating system. To start, the cryptog-
raphers chose two messages and paired them up if they had the first two, or at least the first letter op the
Verfahrenkenngruppe in common. So, for example a message with Verfahrenkenngruppe HPA and a message
with Verfahrenkenngruppe HPC were paired up. The cryptographers did not know the message settings of
these messages yet. However, if two Verfahrenkenngruppe had the two first letters in common, the message
settings also had the first two letters in common. This was the case because HP had to be enciphered in the
initial position to find the message setting and the initial position was the same for everyone. So, HP would
in both cases be enciphered to the same combination of letters. Because of this, the cryptographers also knew
the third letter of the Verfahrenkenngruppe was di↵erent as these were also decrypted in the same settings and
two di↵erent letters could never encrypt to the same letter. If this were the case, this would be in contradic-
tion with the mechanism of Enigma, as the letters in the Enigma machine were basically paired. What the
cryptographers did know, was that the distance between the two third letters could not be more than twenty-five.

To find the distance between these two third letters, the codebreakers first investigated the first enciphered text.
For every letter, they punched a hole in something called a Banbury Sheet. This sheet had the alphabet on
the left vertical axis. If V was the first letter of the cipher text, in the first column a hole was punched in row
V. Say the second letter was K, then a hole was punched in the second column in row K. The cryptographers
did the same thing for the cipher text of the second message, but on a di↵erent Banbury Sheet.

After the two sheets were finished, they were laid on top of each other. The sheet of the first message on the
bottom and the sheet of the second message on top. Now, the starting positions of the two messages were on
top of each other. Then, the top sheet was slid to the right one step at the time. For every step the sheet was
slid, a test was performed that will be explained later. Codebreakers did this until they could carry out the test
at each position. The positions they tested were twenty-five places to the left and right.

For every position, the cryptographers would write down the amount of lined up pairs. There was a pair if the
letter on top was the same as the letter underneath. This was easy to see as two holes in the sheets would align
in this case. If there were a lot of pairs when the sheets were in a certain position, this could mean that the
matching plain text was enciphered in the same position. Because when you type out lines on Enigma machines
that have the same wheel settings, these cipher texts tend to have more letters in common compared to when
the wheel settings are di↵erent. When the sheets had many letters in common, the message would be lined up
‘in depth’.

But finding holes that lined up, was not enough to conclude that two messages were in depth. Therefore, Turing
introduced a certain scoring system. If, for instance, five consecutive holes lined up, this scored more points
than when you had fewer consecutive holes lined up. Also, the higher the percentage of holes of the columns
lining up, the higher the score.

So, when they found the position with the best score, the distance could be written down for every pair of
messages. This gave the distance between the third letters for each pair of message settings there was. The
cryptographers could draw a chain of this. For example, say the message settings with Verfahrenkenngruppe
HPA and HPC had a distance of two. Then we would get A.C, where the dot indicates the distance between these
third two letters. Say the message settings for Verfahrenkenngruppe JKC and JKJ was eleven places, you would
get A.C..........J . This might be extended by other pairs the cryptographers found, to U....Y....A.C..........J..U
for example.

The second stage of the procedure was to determine the message settings based on the distance between the
message settings. To do this, cryptographers would make an assumption. Say that, for example, A was the
third letter of the message setting and the third letter of the corresponding Verfahrenkenngruppe was U. In the
example, U is the first letter of the chain. This would result in the following:

Third letter Verfahrenkenngruppe U* Y A C J
Third letter message setting A* B C D E F G H I J K L M N O P Q R S T U V W X Y Z
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Then, the following was assumed. Say the Verfahrenkenngruppe was PTU. If the U was tapped, the wheel
turned two places from the initial position, also referred to as +2 from initial position, and this lit up A. This
would be the third letter of the message setting.

Because of how Enigma works, you have pairs, and you can fill in some information, which is underlined in the
next table.

Third letter Verfahrenkenngruppe K/U* M Y X A C A J F
Third letter message setting A* B C D E F G H I J K L M N O P Q R S T U V W X Y Z

But looking at the letters, the assumption that was marked with a star could not be correct, as A has two
letters paired with it which is not possible.

When one assumption did not work, another one was tested. Say the same situation occurred, but it was
assumed that B lit up instead of A. If this was incorrect, the next letters of the alphabet were tried until the
cryptographers tried them all. Say they all gave a contradiction except for one and, for example, G lit up
instead of A. The chain U....Y....A.C..........J..U would then be processed as follows:

Third letter Verfahrenkenngruppe Q S J U D Y A C G L
Third letter message setting A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Say, the cryptographers also found other information from other pairs of messages:

Third letter Verfahrenkenngruppe Q S J U D Y A T C R G L
Third letter message setting A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

In the third, and final, stage of the Banburismus procedure, the cryptographers would try to find out which
wheels could be ruled out based on the turnover position of each wheel.

The information in the table above was also used to find out which one of the eight wheels was used in the wheel
positions most right in the Enigma machine. To find this out, the cryptographers had to look at the turnover
position of each of the Enigma wheels, which would be the letter on the ring showing through the window for
the neighboring wheel on its left to turn over. The following table includes this information:

Third letter Verfahrenkenngruppe Q S J U D Y A T C R G L
Third letter message setting A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

2 4 6 1 3 5
7 6
8 7

8

When we look at the chain we formed above, the J was eleven places from C. Based on this, the codebreakers
could conclude that the turnover induced by the right wheel did not happen. In these eleven spaces, the middle
letter of the Verfahrenkenngruppe did not change. So, between S and D there was no turnover of the middle
wheel. Therefore, wheels 3, 5, 6, 7 and 8 could not have been in the position on the right. With the same
principle, other wheels could be ruled out. The same could be done for the wheel in de middle, which were able
to turnover the wheel on the left.

In this way, many wheel orders could be ruled out. Besides, cryptographers always knew one of the wheels 6, 7
or 8 was used. So, if you knew ?/2/3, then the question mark always had to be 6, 7 or 8.

Now, the Bombe could figure out the correct wheel order, because of the information in the table directly above.
This was as useful as finding a crib and working this out, the only di↵erence was that in table directly above
no German plain text was represented in neither of the two lines. However, this did not matter for the Bombe.
It only needed what letter lit up when you tapped a certain key.

Source: [26]
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G Cillis

During the war, the Germans made many mistakes when it came to Enigma. Some of these mistakes were called
cillis. Cillis helped the cryptographers break Air Force Enigma on 22 May 1940 and the time after this date.

For now, we refer to the letters showing through the windows when the first letter of a message was enciphered,
as the message setting. We refer to the letters showing through the windows when the message setting was
enciphered, as the initial setting, even though the positions of the wheel cores were not known yet.

German messages were not allowed to be longer than 250 words. Therefore, if there was a message that was
longer than this maximum amount of words, it was mandatory to it split up in several parts. At one point, it
started to stand out that, say IBL was the setting of the rotors when the first part of the message was enci-
phered, IBL was used as the initial position for the next part of the message. So, the cryptographers only had
to look at the initial position that was used for the second part of the message, which was stated unenciphered
at the beginning of the message, to know in what setting the last letter of the prior part was enciphered. Then,
they could try to work out the message setting used for the first part of the message.

So, to find out the message setting, all the cryptographers had to do was to turn the wheels x places back, with
x being the number of letters of the message. However, the wheels and wheel order had a substantial impact
on this, given that the turnover positions were di↵erent for most wheels. Therefore, the message setting could
not be exactly determined, only a selection of possibilities could be made.

To find the correct message setting, the Germans helped the cryptographers by making another mistake. Knox
noticed that the Germans were using message settings that were obvious or lazy. They for instance broke up
famous sayings or used the diagonals on the keyboard, for example TGB or UJM. Choosing a message setting
like this was stated to be forbidden.

Say that the cryptographers would look at the possible message settings and found that TGB was one of the
possible message settings for the first message. Then they would look at the rotors who could make it possible
to go x places back to get TGB. This, for instance, could only be the case when rotor 1 was in the middle
and rotor 3 was on the right. The cryptographers might also have found that UJM was a possible message
setting for the second part of the message and could be established with rotors 1 and 3 on the same places as
mentioned before. Now the cryptographers were able to guess that the German sender was using the diagonals
of the Enigma keyboard. After that, the last rotor was found by trial and error.

So, cillis were used to find the wheel order and message settings. The name cillis is a combination of CIL,
the first message setting found this way, and the word silly, which is what the cryptographers thought of the
mistakes the Germans made.

Source: [26]
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