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0 Introduction

Let (K, v) be a valued field and denote its value group by Γ.
In [16], Maclane introduced the concept of key polynomials in order to understand

extensions of v to the field K(x). The idea is that for a given valuation µ on K(x),
a key polynomial ϕ ∈ K[x], allows us to augment µ; to obtain a ν with µ ≤ ν, such
that µ(ϕ) < ν(ϕ). He then showed how to obtain µ as a certain “limit” of a sequence of
augmentations when Γ is discrete and rank one. This work was motivated by a conjecture
of Ore, who believed a description like this would lead to algorithms for prime ideal
decomposition in number fields. MacLane solved the conjecture by finding an algorithm
to compute all extensions of v to the field K[x]/(g) defined by an irreducible polynomial
g ∈ K[x] [15]. His ideas were later re-interpreted as a factorization algorithm over the
completion Kv.

Decades down the line, still in the discrete rank one case, J. Montes introduced
certain residual polynomial operators which led to the design of a practical algorithm
following the exact pattern Ore had foreseen [11].

In [26], [28] and [27], Vaquié introduced limit key polynomials and limit augmen-
tations, allowing him to drop the “discrete rank one” assumption, leading to a full
generalization of MacLane’s result on extensions of v to K(x). However, to generalize
MacLane’s algorithm [15] to henselian fields of arbitrary rank is still an open problem.

The aim of this thesis is to present Vaquié’s theory of key polynomials, use it to
describe the best known algorithm for factoring polynomials over henselian fields, and
explore how existence of defect currently obstructs its termination in the general case.
We also obtain an algorithm to compute splitting fields of separable defectless polyno-
mials.

To read this thesis, one only needs to know some abstract algebra and basics of
Galois theory.

Those more inclined towards algebraic geometry might also find the theory presented
here relevant; MacLane’s results were independently generalized by Novacoski and Spi-
vakovsky in [23] and Decaup, Mahboub and Spivakovsky in [9], in order to attack local
uniformization in positive characteristic, a crucial step in their programme to prove reso-
lution of singularities. These authors introduce certain abstract key polynomials, which
do kind of the “opposite” of key polynomials; an abstract key polynomial ϕ ∈ K[x] allows
us to truncate µ to obtain a valuation ν ≤ µ. Nevertheless, abstract key polynomials
and key polynomials are intimately linked, see [22] and [1] for comparison theorems.

Mixing the “bottom up” approach of key polynomials with the “top down” approach
of abstract key polynomials has recently led to a better understanding of the defect of
extensions of (not necessarily discrete, nor henselian) rank one valued fields [21].

Another program to prove local uniformization is due to Teissier who considers de-
formations of spectra of certain graded rings [25].

What all these approaches have in common is their use of the graded ring, Gµ,
associated to µ. It is an important and useful object in its own right. It has been shown
in [6] that Gµ is isomorphic to the semigroup ring kµ[t

Γµ ], where kµ is the residue field
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of µ, with a certain twisted multiplication. Moreover, in [21], that Gµ ∼= Gµh as graded

rings, where µh is the extension of µ to Kh[x]. Hence, Gµ considers the value group,
residue field and henselization of µ simultaneously.

For our purposes, we mainly look at images of f ∈ K[x] under the initial term map-
ping inµ : K[x] −→ Gµ. Key polynomials are the ϕ ∈ K[x] such that inµ(ϕ) is a prime
element, and satisfy some additional properties. We will see that Gµ possesses unique
factorization for homogeneous elements, which leads to certain residual polynomial op-
erators R : K[x] −→ κ[y] where κ is a finite extension of the residue field k of (K, v).
These operators allow us to find the prime factorization over the “smaller field” κ instead
of working with the whole of Gµ. They make the polynomial factorization algorithm we
present here constructive and enable its implementation on a computer.

In our proof of termination, however, we follow the philosophy of avoiding the
specifics of these operators wherever possible. Namely, we exploit that the set of
monic irreducible polynomials over K, Irr(K), forms an ultrametric space when (K, v)
is henselian. We then use that the ultrametric structure is intimately linked to Vaquié’s
characterization of defectless polynomials as key polynomials of inductive valuations.

Since every valued field (K, v) embeds into an algebraic extension (Kh, vh) that is
henselian and immediate, it may be possible to find the factorization of g ∈ K[x] over
Kh working only within K. This is accomplished in [3], currently under the severe
restriction deg(g) < char(k), where k is the residue field of (K, v). One direction for
future work is to try and mirror the well-known approach of representing an element of
Q by its minimal polynomial over Q and a high precision complex approximation, to
perform computations in Kh. Another is to relax the conditions we are forced to impose
on (K, v) to guarantee termination of our algorithms.

If g ∈ K[x] is defectless, there exists a sequence of choices such that the algorithm
terminates. However, since it is an open problem to control the “quality” of these choices
via the constructive methods of residual polynomial operators, we are forced to assume
in our proof that the worst possible choices are made. Under the assumption that
every strictly increasing infinite sequence in Γ is not bounded, we show that in finitely
many steps a “good enough” approximation ϕ ∈ Irr(K) to an irreducible factor of g
is constructed regardless of the choices made. This leads to a polynomial factorization
algorithm for defectless, monic, square-free (not necessarily separable) g ∈ K[x].

It is an object of ongoing research to drop the “defectless assumption”. The solution
would be to modify these algorithms to handle limit augmentations. The main obstacle
is that there exist examples, even in the discrete rank one case (with p = char(k) > 0 and
K not perfect), where it is impossible to distinguish between an ordinary augmentation
and a limit augmentation in finitely many steps by current methods.

Finally, we give an algorithm to find the splitting field of separable g ∈ K[x], which
uses the polynomial factorization as a subroutine. The idea is to replace an irreducible
factor of g ∈ K[x] by a sufficiently good approximation to it. This operation does not
change the splitting field thanks to Krasner’s lemma. We point out that running the
polynomial factorization algorithm over the splitting field allows one to approximate
the roots of g to arbitrary precision. Such approximations can be used in particular to
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explicitly describe Galois groups of polynomials over local fields, which was the initial
motivation for this project.

0.1 Overview

In Section 1, we give basic definitions and results about valuations on an arbitrary
field K and their extensions to the polynomial ring K[x]. We then describe valuations
µ on K[x] in terms of data associated to the extension µ/v, where v is the restricion
of µ to K. We introducte the set T of all extensions of v to K[x] that take values in
the divisible hull ΓQ of Γ = v(K×). The set T parametrizes the equivalence classes of
commensurable extensions of v to K[x] and has a natural partial ordering.

All valuations on K[x] with non-trivial support are maximal elements of T , while
valuations strictly below such maximal elements are precisely the residue-transcendental
extensions of v to K[x]. We observe that for each F ∈ Irr(K), there is at least one
valuation ν ∈ T with support FK[x]. We think of all the µ ∈ T with µ ≤ ν as
“approaching” the irreducible polynomial F .

In Section 2, we introduce the graded ring Gµ of a valuation µ on K[x]. The ring
Gµ comes equipped with a natural mapping inµ : K[x] −→ Gµ whose image is the set of
homogeneous elements of Gµ. A key polynomial is an element of K[x] whose image in Gµ
is a prime element and satisfies some additional properties. The set of key polynomials
for a valuation µ on K[x] is denoted KP(µ). A key polynomial ϕ ∈ KP(µ) allow us to
augment µ to a valuation ν with µ < ν by prescribing the value ν takes on a ϕ.

Next, we turn to the study of algebraic properties of the ring Gµ. The main property
of interest for us, is that the ring Gµ has unique factorization for homogeneous elements.
Another important property is that if KP(µ) ̸= ∅, the ring Gµ is a polynomial ring;
Gµ = G0µ[Y ], where G0µ is the subring of Gµ generated by all the units and Y is the image
of a key polynomial of minimal degree.

A characterization of units of Gµ then leads to the definition of certain residual
polynomial operators R : K[x] −→ κ[y] where κ ⊂ G0µ is a finite extension of the residue
field k of (K, v). Crucially, these operators allows us to find the prime factorization inµ(f)
in practice; they reduce the problem of working with Gµ to working with a polynomial
ring over a finite extension of the residue field. Moreover, these operators also help us
determine the whole of KP(µ).

The algebraic structure of Gµ is related to the structure of the partially ordered set T
via tangent directions. Namely, if µ < ν are two valuations in T , the tangent direction
t(µ, ν) ⊂ K[x], defined purely in terms of the values µ and ν take onK[x], consists of key
polynomials. The set of key polynomials, KP(µ), is the union of all tangent directions
t(µ, ν) where µ < ν.

We spend the rest of this section reviewing the definitions and basic properties of
augmentations and state some consequences of a celebrated structure theorem for val-
uations on K[x]. In order to state our results in full generality, we introduce limit key
polynomials KP∞(µ) and limit augmentations. The structure theorem implies the every
µ ∈ T that is residue-transcendental or has non-trivial support is the end node of a finite
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sequence of augmentations (each augmentation being either ordinary or limit)

v −→ µ0 −→ µ1 −→ . . . −→ µr −→ µr+1 = µ.

where µ0 is always some especially easy to describe “depth-zero” extension of v to K[x].
Imposing certain technical conditions on these chains of augmentations ensures that
they are almost unique for a given µ ∈ T . The resulting chains are called MLV chains.
Their existence provides the theoretical basis for working with valuations on K[x] on
a computer. Inductive valuations are defined as valuations that admit an MLV chain
where all the augmentations are ordinary.

In Section 3 we start with an overview of Newton polygons. These polygons display
information about algebraic relationships in Gµ that could otherwise be difficult to write
down concisely. They are also important for computational purposes; if µ −→ ν is an
ordinary augmentation, then the value ν(f) can be straightforwardly calculated from
the Newton polygon of f . We then define principal Newton polygons, which are well
behaved with respect to products of polynomials leading to a sufficient criterion for a
g ∈ K[x] to be reducible.

We continue with an overview of the henselian property. A valued field (K, v) is
henselian if v extends uniquely to the algebraic closure of K. We make precise how
every valued field (K, v) embeds into a “smallest” henselian field extension (K, v) ⊂
(Kh, vh) called the henselization. We note that extensions of v to a finite simple extension
K[x]/(F ) where F ∈ Irr(K) are in bijection with the irreducible factors of F over the
henselization Kh.

Assuming from now that (K, v) is henselian, each F ∈ Irr(K) is identified with the
unique element vF ∈ T given by

vF (g) = v(g(θ)), for all g ∈ K[x],

where θ is any root of g in an algebraic closure K of K and v is the unique extension
of v to K. We present a certain “generalisation of Hensel’s lemma” that completely
characterizes the relation inµ(ϕ) | inµ(F ), where ϕ ∈ KP(µ) and F ∈ Irr(K) in terms
of tangent directions. The theorem also shows that some important algebraic invariants
can be read off from the Newton polygon Nµ,ϕ(F ). One important consequence of the
generalisation of Hensel’s lemma is that for all F ∈ Irr(K) the image of F in the graded
ring, inµ(F ) ∈ Gµ is either a unit or a prime power.

Next, we show that the set of monic irreducible polynomials over a henselian field
forms an ultrametric space. The distance function u : Irr(K)×Irr(K) −→ ΓQ∞, u(F,G) =
vF (G)/deg(G) is given by a classical formula that involves only the resultant and the
valuation v. We now view a g ∈ K[x] as the set of its distinct monic irreducible factors
and introduce a certain constant, r(g) ∈ ΓQ, called the radius of separation. It has the
following property. A ϕ ∈ Irr(K) that is closer than r(g) to some irreducible factor
of g, is closest to a unique irreducible factor of g. The radius of separation satisfies
r(g) ≤ kras(g), where kras(g) is Krasner’s constant of g. We also derive an effective
bound on Krasner’s constant of monic, separable g ∈ K[x].
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Finally, we consider the (henselian) defect of a finite extension of valued fields and
define defectless polynomials. These polynomials turn out to be precisely the key poly-
nomials of inductive valuations. Another characterization of defectless polynomials is
by using certain sets of weighted values which are related to the ultrametric u. This
has consequences for how close a ϕ ∈ Irr(K) “can get” to a defectless F ∈ Irr(K) if
deg(ϕ) < deg(F ). Namely there exists a constant δ(F ) ∈ ΓQ such that u(F, ϕ) > δ(F )
implies deg(ϕ) ≥ deg(F ).

In Section 4, we prove some technical results on how types (µ, ϕ), µ residue-
transcendental and ϕ and ϕ ∈ KP(µ), “see” some irreducible factors G ∈ Irr(K) of
a square-free polynomial g ∈ K[x] via the relation inµ(ϕ) | inµ(G).

We then show how a list of types that sees all the irreducible factors of g can be
“refined” by performing ordinary augmentations. The motivation being that after a
finite number of strict refinements, we will reach a list of types where each type sees a
unique irreducible factor of g.

We then give algorithms based on these results to factorize monic, square-free g ∈
K[x]. These “factorizations” are up to a quality parameter γ ∈ ΓQ, which can be taken
to be arbitrarily large. A pivotal role in these algorithms is played by residual polynomial
operators, whose computation facilitates the refinement steps.

Next, we state the best known conditions under which these algorithms can be imple-
mented. We then prove termination for square-free g ∈ K[x] whose irreducible factors are
defectless, subject to the following condition. We require that the value group Γ := Γv

contains no infinite strictly increasing bounded sequences. We also show that when this
condition is satisfied, every separable polynomial is defectless. We conclude by giving
an algorithm to find the splitting field of separable g ∈ K[x].
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1 Valuations and their extensions

1.1 Basic definitions and results about valuations

Let (G,+, 0) be an abelian group and ≤ a binary relation on G such that for all a, b, c ∈ G

(1) a ≤ a (reflexive)
(2) a ≤ b and b ≤ a implies a = b (antisymmetric)
(3) a ≤ b and b ≤ c implies a ≤ c (transitive)
(4) a ≤ b or b ≤ a (total)
(5) a ≤ b implies a+ c ≤ b+ c (addition invariant).

We say that ≤ is an ordering on G, and that (G,≤) is an ordered abelian group.
We say G is an ordered abelian group when it is clear from context which ordering ≤ on
G we are considering. For a, b ∈ G we write a < b when a ≤ b and a ̸= b.

It is easy to show, by adding a strictly positive element to itself, that ordered abelian
groups are torsion-free.

Let G be an ordered abelian group and consider the set G ∪ {∞}, where ∞ is a
symbol. We extend the group law and ordering on G via the rules ∞ + a = a +∞ =
∞ +∞ = ∞, a ≤ ∞ for all a ∈ G. We use the notation G∞ := G ∪ {∞}. All a ∈ G
satisfy a <∞, so ∞ is the unique maximal element of G∞.

In this thesis ring means commutative ring with unity 1 ̸= 0. If R is a field, we
denote the set of all monic irreducible polynomials over R by Irr(R).

Definition 1.1. Let R be a ring and G an ordered abelian group. A valuation on R
with values in G is a mapping ν : R −→ G∞ with the following properties.

(1) ν(ab) = ν(a) + ν(b) for all a, b ∈ R.
(2) ν(a+ b) ≥ min{ν(a), ν(b)} for all a, b ∈ R.
(3) ν(1) = 0 and ν(0) =∞.

The set supp(ν) := {a ∈ R | ν(a) = ∞} is called the support of ν. The value
group of ν is the subgroup of G generated by {ν(a) | a ∈ R\supp(ν)}, and is denoted
by Γν .

It is easy to see that the support of ν is a prime ideal of R.
Let (G,≤), (H,≤′) be two ordered abelian groups. We say that a group homomor-

phism f : G −→ H is order-preserving if for all a, b ∈ G we have a ≤ b =⇒ f(a) ≤′

f(b).

Definition 1.2. Let ν1, ν2 be two valuations on a ring R. We say that ν1 is equivalent
to ν2, and write ν1 ∼ ν2, if there exists an order-preserving isomorphism ι : Γν1 −→ Γν2

of their value groups such that

Γν1∞ Γν2∞

R

∼
ι

ν1 ν2
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commutes, where
∼
ι is the extension of ι to a mapping Γ1∞ −→ Γ2∞ that has ∞ 7→ ∞.

Note that if ν1 ∼ ν2, then supp(ν1) = supp(ν2). We identify equivalent valuations
unless stated otherwise.

Definition 1.3. Let R be a ring S ⊂ R a subring. A valuation ν on R restricts to a
valuation µ := ν|S on S. We say that ν is an extension of µ and use the notation ν/µ.

We have supp(µ) ⊂ supp(ν) and Γµ ⊂ Γν in this case.
Let R be a ring and ν a valuation on R. The quotient ring R/ supp(ν) is a domain

because the support is a prime ideal. We have canonical ring homomorphisms

R↠ R/ supp(ν) ↪→ Frac(R/ supp(ν)). (1)

Denote K := Frac(R/ supp(ν)) and for a ∈ R write a for the image of a in K. Let ν be
the mapping given by

ν(a) = ν(a), ν
(a
b

)
= ν(a)− ν(b), for all a,b ∈ K,b ̸= 0

The mapping ν is a valuation with supp(ν) = {0} (since K is a field) and Γν = Γν .
Observe that the composition Eq. (1) is injective if and only if supp(ν) = {0}. In

this case, we have R ↪→ K and ν/ν is an extension of valuations. In particular if R is a
field, we have R = K and ν = ν.

If K is an arbitrary field and ν a valuation on K, the valuation ring of ν is defined
to be Oν := {a ∈ K | ν(a) ≥ 0} and the maximal ideal of ν is defined to be mν :=
{a ∈ K | ν(a) > 0}. It is easy to show using the definition, that Oν ⊂ K is a local ring
whose maximal ideal is mν . The residue field of ν is kν := Oν/mν .

Definition 1.4. In general, if ν is a valuation on a ring R, we define the valuation
ring, maximal ideal and residue field of ν to be the corresponding objects for the induced
valuation ν on K := Frac(R/ supp(ν)). We abuse notation, following conventions in the
literature, and write Oν := Oν , mν := mν and kν := kν for these objects respectively.

Remark 1.5. In this thesis we will only consider valuations on a field or a polynomial
ring over a field.

In this case equivalence of valuations can be characterized in terms of support and
valuation rings.

Lemma 1.6. Let K be a field and K[x] the polynomial ring over K. The following hold.

(1) If v1, v2 are two valuations on K, then v1 ∼ v2 if and only if Ov1 = Ov2 .
(2) If ν1, ν2 are two valuations on K[x], then ν1 ∼ ν2 if and only if supp(ν1) = supp(ν2)

and Oν1 = Oν2 .

Proof. (1) [10, Proposition 2.1.3].
(2) By considering an order-preserving isomorphism as in Definition 1.2, the condition

ν1 ∼ ν2 implies that for all f, g ∈ K[x], we have ν1(f) ≥ ν1(g) ⇐⇒ ν2(f) ≥ ν2(g). We
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already know that supp(ν1) = supp(ν2) =: p by definiton of equivalence. Let f ,g ∈
K[x]/p, g ̸= 0, then clearly f/g ∈ Oν1 := Oν1 if and only if ν1(f) ≥ ν1(g) if and only if
f/g ∈ Oν2 .

Conversely, ν1 and ν2 are valuations on the same field. As ν1 ∼ ν2 by Item (1)
of Lemma 1.6, there exists an order preserving isomorphism ι : Γν1 −→ Γν2 as in
Definition 1.2. Since Γνi = Γνi for i = 1, 2, by composing with K[x] ↠ K[x]/p ↪→
Frac(K[x]/p), where p := supp(ν1) = supp(ν2), we observe that ι is an order-preserving
isomorphism as in Definition 1.2 for the pair ν1, ν2 as well, and hence ν1 ∼ ν2.

Remark 1.7. Note that (2) is clearly valid for arbitrary rings R, not just those of the
form R = K[x].

We recall some definitions and results about valuations on fields.
Let K be a field and v a valuation on K, then we say that (K, v) is a valued field.

Note that the function, v(0) =∞ and v(a) = 0 for all non-zero a ∈ K, is a valuation on
K with value group Γv = {0}.

We say that a valuation v on a field K is trivial if Γv is the trivial group.
It is clear that all trivial valuations on K are equivalent and given as above. The

corresponding statement does not hold if Γv is not the trivial group.
Let (K, v) be a valued field. It is easy to see that each non-zero a ∈ K satisfies

a ∈ Ov or 1/a ∈ Ov. This implies K = Frac(Ov).

Definition 1.8. We say that a subring O of a field K is a valuation ring of K if
each non-zero a ∈ K satisfies a ∈ O or 1/a ∈ O.

Clearly, the valuation ring of v is a valuation ring of K. The following proposition
collects some well-known facts about valuation rings, proofs can be found in any standard
reference.

Proposition 1.9. Let K be a field and O ⊂ K a valuation ring of K. The following
hold.

(1) O is a local ring.
(2) O is integrally closed.
(3) There exists a valuation v on K such that O = Ov.

The next proposition shows that, up to equivalence, valuations and valuation rings
are essentially the same objects.

Proposition 1.10. Let K be a field. The mapping v 7→ Ov is a bijection

{v is a valuation on K}/ ∼ ←→ {O | O is a valuation ring of K}.

Proof. The mapping is well-defined and injective by Lemma 1.6, and surjective by
Item (3) of Proposition 1.9.
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We now want to show that each (non-trivial) valuation on a subfield K ⊂ L can be
extended to a (non-trivial) valuation on L. This follows from the well-known Chevalley’s
theorem.

Theorem 1.11. [10, Theorem 3.1.1] Let L be a field, R ⊂ L a subring, and p ⊂ R a
prime ideal. Then there exists a valuation ring O of L that satisfies

R ⊂ O and m ∩R = p,

where m is the maximal ideal of O.

Definition 1.12. If (L,w) and (K, v) are valued fields such that L/K is a field extension
and w|K = v, we say (L,w) is an extension of (K, v). We use the notation (K, v) ⊂
(L,w).

Note that (L,w) being an extension of (K, v) is equivalent to Ow ∩K = Ov.

Proposition 1.13. Let (K, v) be a valued field and L/K a field extension, then there
exists a valuation w on L such that w|K = v. Moreover, if v is non-trivial, then w is
non-trivial.

Proof. By applying Theorem 1.11 with R = Ov and p = mv, we obtain a valuation ring O
of L with K∩O = Ov. Let w : L −→ L×/O×∞ be the canonical valuation of (L,O); the
valuation constructed in proof of [10, Proposition 2.1.12]. Since the canonical valuation
of (K,Ov) is equivalent to v, we get an order preserving isomorphism Γv

∼−→ K×/O×
v ,

which induces an order preserving injection Γv ↪→ L×/O×, hence w|K = v.
If Γv is not trivial, then {0} ⊊ Γv ⊂ Γw, so Γw is not trivial either.

Definition 1.14. We define the ramification index, e(w/v), and residue degree,
f(w/v), of the extension w/v as

e(w/v) = (Γw : Γv), f(w/v) = [kw : kv].

If e(w/v) or f(w/v) are not finite, we denote e(w/v) =∞ and f(w/v) =∞, respectively.
If e(w/v) = f(w/v) = 1, we say that w/v is immediate.

Remark 1.15. The above quantities are clearly multiplicative in towers.

We will now define the notions of rank and rational rank, and finish this section by
stating the well-known Abhyankar’s inequality Theorem 1.23, that relates some invari-
ants of an extension of valued fields.

LetG be an abelian group (not necessarily torsion-free), we define the divisible hull of G
to be GQ := G⊗Z Q.

The divisible hull is a Q−vector space in an obvious way and this vector space
structure is unique.

Definition 1.16. The rational rank of G, denoted rr(G), is defined to be dimQ(GQ).
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Observe that the rational rank of G coincides with the maximal number (finite or
infinite) of elements of G that are linearly independent over Z. In particular, if G is
finitely generated, it has finite rational rank.

Note that in general, we have rr(G) = 0 if and only if G is a torsion group.
Now assume that G is torsion-free, then the natural homomorphism g 7→ g ⊗ 1 is

injective, so G ⊂ GQ via this map, which justifies the name “divisible hull” in our
context. It is easy to check that each element of GQ is of the form g ⊗ 1

n where n > 0 is
a positive integer. So, we may think of elements of GQ as fractions with numerators in
G and denominators in N that follow usual rules for addition and equality.

The divisible hull of a torsion-free abelian group G is the smallest divisible group
containing G in the following sense.

Proposition 1.17. If H is a divisible group that is torsion-free and i : G ↪→ H is an
injective homomorphism, then there exists a unique injective homomorphism GQ ↪→ H
such that i coincides with the composition

G ↪→ GQ ↪→ H.

Proof. Since H is divisible and torsion-free, for each positive integer n and each h ∈ H
there is a unique element y ∈ H that satisfies ny = h. We use the notation h

n := y.
Recall that each element of GQ can be written g ⊗ 1

m for g ∈ G,m ∈ N.
Denote i1 : G ↪→ GQ, g 7→ g⊗ 1 and let i2 : GQ −→ H be the mapping g⊗ 1

n 7→
i(g)
n .

Clearly i2 is a well defined injective homomorphism and we have i2 ◦ i1 = i. Uniqueness
of i2 follows by the universal property of tensor product.

The next result shows that taking the divisible hull of an ordered abelian group
behaves well with respect to extensions of orderings.

Proposition 1.18. Let (G,≤) be an ordered abelian group and let GQ := G⊗Z Q be its
divisible hull, then there exists a unique extension of the ordering ≤ to GQ.

Proof. Recall that each element of GQ can be written g ⊗ 1
m for g ∈ G,m ∈ N.

It is easy to check that the binary relation ≤1 on GQ given by

g ⊗ 1

m
≤1 g

′ ⊗ 1

n
⇐⇒ ng ≤ mg′

does not depend on the representations of g⊗ 1
m and g′⊗ 1

n . Moreover, ≤1 is an ordering
on GQ that coincides with ≤ on G, where G is viewed as a subgroup of GQ via the
inclusion g 7→ g ⊗ 1 and the inclusion is order preserving.

If ≤2 is another extension of ≤ to GQ, clearly

g ⊗ 1

m
≤2 g

′ ⊗ 1

n
⇐⇒ ng ⊗ 1 ≤2 mg

′ ⊗ 1⇐⇒ ng ≤ mg′

so ≤2 coincides with ≤1.

11



So there is no danger of confusion when speaking of “the ordered-abelian group” GQ
for a given (G,≤).

Let (G,≤) be an ordered abelian group. We say that a subgroup H ⊂ G is convex
if it contains each interval whose endpoints lie in H. In other words H is convex if and
only if for all a, b ∈ H, we have {a ≤ g ≤ b | g ∈ G} =: [a, b]G ⊂ H. Denote by Conv(G)
the set of all proper convex subgroups of G. It is easy to show that this set is totally
ordered by inclusion.

Recall that two totally ordered sets (S,≤), (T,≤′) are order isomorphic if there
exists a bijective mapping f : S −→ T such that for all s, s′ ∈ S, we have s ≤ s′ =⇒
f(s) ≤′ f(s′). The order type of (S,≤) is its order isomorphisms class.

Definition 1.19. The rank of G, denoted rk(G), is defined to be the order type of
Conv(G).

If G has finitely many proper convex subgroups, say n, we say that G is of rank
n and write rk(G) = n. This terminology is justified, because all totally ordered sets
of cardinality n are order isomorphic. The corresponding statement does not hold for
infinite totally ordered sets.

Proposition 1.20. [10, Proposition 3.4.1] If G has finite rational rank, then G is of
finite rank and we have

rk(G) ≤ rr(G).

Remark 1.21. The inequality in the above result actually holds without any assump-
tions, but in this general case it is a more subtle statement about ordinals which we do
not need for our purposes.

Definition 1.22. The rank and rational rank of a valuation are defined to be the rank
and rational rank of its value group, respectively.

The final result of this chapter implies that for an extension of valued fields, the
transcendence degree of the induced residue field extension and “size increase” of the
value group are controlled by the transcendence degree of the extension.

Theorem 1.23. [10, Theorem 3.4.3] Let (K, v) ⊂ (L,w) be an extension of valued
fields, then

tr. deg(kw/kv) + rr(Γw/Γv) ≤ tr.deg(L/K).

1.2 Valuations on a polynomial ring

For a valuation µ on K[x], denote the restriction of µ to K by v.

Theorem 1.24. Every valuation µ on K[x] is of exactly one of the following types.

� Non-trivial support; supp(µ) = FK[x] for some F ∈ Irr(K), Γµ/Γv is a torsion
group and the extension kµ/kv is algebraic.
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� Value-transcendental; supp(µ) = 0, Γµ/Γv is not a torsion group and the ex-
tension kµ/kv is algebraic.

� Residue-transcendental; supp(µ) = 0, Γµ/Γv is a torsion group and the exten-
sion kµ/kv is transcendental.

� Valuation-algebraic; supp(µ) = 0, Γµ/Γv is a torsion group and the extension
kµ/kv is algebraic.

Proof. Observe that apriori µ could fall into one of 23 mutually exclusive cases according
to supp(µ) not/being trivial, Γµ/Γv not/being torsion and kµ/kv not/being algebraic.

Recall that µ is a valuation on L := Frac(K[x]/ supp(µ)) that extends v and satisfies
Γµ = Γµ. The result will follow by applying Theorem 1.23 to the extension (K, v) ⊂
(L, µ).

Suppose supp(µ) is non-trivial, then L/K is a (finite) algebraic extension, so tr.deg(L/K) =
0 and we deduce that rr(Γµ/Γv) = tr. deg(kµ/kv) = 0 by Theorem 1.23, which is equiv-
alent to kµ/kv algebraic and Γµ/Γv torsion; this eliminates 3 of the 8 cases.

If supp(µ) is trivial, we have L = K(x) so that tr.deg(L/K) = 1, and we obtain
tr. deg(kµ/kv)+ rr(Γµ/Γv) ≤ 1 by Theorem 1.23. Hence, it cannot happen that kµ/kv is
transcendental and simultaneously Γµ/Γv is not torsion; this excludes the final case not
found on our list and completes the proof.

Valuations on K[x] with Γµ/Γv a torsion group are sometimes called commensu-
rable in the literature.

Let (K, v) be a valued field and Λ an ordered abelian group. Let T = T (Λ) be the
set of all valuations

µ : K[x] −→ Λ∞

whose restriction to K is v.
The set T admits a partial ordering. For µ, ν ∈ T define

µ ≤ ν if and only if µ(f) ≤ ν(f) for all f ∈ K[x].

We write µ < ν, when µ ≤ ν and µ ̸= ν.
Abuse notation and denote the value group of v by Γ := Γv.

Remark 1.25. In this thesis we will only consider the case Λ = ΓQ. From now on we
denote T (ΓQ) simply by T .

Proposition 1.26. Let µ be a valuation on K[x] that extends v such that Γµ/Γ is a
torsion group. Then, µ is equivalent to an element of T . Moreover, for all µ, µ′ ∈ T

µ ∼ µ′ ⇐⇒ µ = µ′.

Proof. Let µ be a valuation on K[x] with Γµ/Γ a torsion group, then for each γ ∈ Γµ

there exists some non-zero n ∈ Z depending on γ such that nγ ∈ Γ. It is easy to verify
that i : Γµ −→ ΓQ given by γ 7→ nγ⊗ 1

n is an injective order preserving homomorphism,
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so the composition
∼
i ◦ µ is an element of T , where

∼
i is the extension of i to a mapping

Γµ∞ −→ ΓQ∞ that has ∞ 7→ ∞. We have µ ∼
∼
i ◦ µ by construction.

We only need to show (=⇒).
Let µ, µ′ ∈ T , suppose µ ∼ µ′ and let ι : Γµ −→ Γµ′ be an order preserving isomor-

phism as in Definition 1.2. Since µ and µ′ agree with v on K, the restriction of ι to Γ
is the identity, let us show that this implies ι is the identity. Since ΓQ/Γ is torsion and
Γµ ⊂ ΓQ, the group Γµ/Γ is torsion too, so for each γ ∈ Γµ there exists some non-zero
n ∈ Z depending on γ such that nγ ∈ Γ. Hence nι(γ) = ι(nγ) = nγ, which implies
n(ι(γ)− γ) = 0 from which the desired claim follows because ΓQ is torsion-free.

Therefore the set T parametrizes the equivalence classes of commensurable extensions
of v to K[x]. Moreover, the notions “equivalent” and “equal” coincide within this set.

Remark 1.27. In [14] a certain universal ordered group extension Γ ↪→ RI
lex is con-

structed, where I is an ordered set that depends on Conv(Γ), and the study of T (RI
lex)

in [2] leads to a parametrization of all valuations on K[x] whose restriction to K is
equivalent to v.

Recall that an element ν of a partially ordered set T is a maximal element of T if
whenever ν ≤ µ for some µ ∈ T , then µ = ν.

Lemma 1.28. Let ν ∈ T , then

ν has non-trivial support =⇒ ν is a maximal element of T .

Proof. Let µ, ν ∈ T , suppose ν has non-trivial support and ν ≤ µ. Since non-zero
prime ideals of K[x] are maximal, we have supp(µ) = supp(ν) =: p and hence, the
valuations ν, µ are extensions of v to the algebraic extension L := Frac(K[x]/p) that
satisfy ν(α) ≤ µ(α) for all α ∈ L. This shows Oν ⊂ Oµ and we deduce Oν = Oµ

by [10, Lemma 3.2.8] (the valuation rings Oµ,Oν lie over Ov). This shows, µ ∼ ν, which
implies µ = ν by Proposition 1.26 and hence µ = ν as required.

The non-maximal elements can be characterized as follows.

Theorem 1.29. Let µ ∈ T . The following are equivalent.

(1) µ is not a maximal element of T .
(2) µ is residue-transcendental.

Proof. A µ ∈ T is a maximal element of T if and only if µ is valuation-algebraic or µ
has non-trivial support by [20, Theorem 2.3] and Theorem 2.8. Hence a µ ∈ T is not a
maximal element of T if and only if µ is residue-transcendental by Theorem 1.24 using
the fact that Γµ/Γv is a torsion group.

Remark 1.30. Combining Theorem 1.29 with Proposition 1.26 shows that the residue-
transcendental extensions of v to K[x] “are” precisely the non-maximal elements of T .
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2 New valuations from a given one

2.1 Rings graded by ordered abelian groups

Let (G,≤) be an ordered abelian group.
If a ring R is a direct sum of additive subgroups Rg which satisfy RgRh ⊂ Rg+h for all

g, h ∈ G, then R is a G−graded ring and the direct sum decomposition R =
⊕

g∈GRg

is called a grading of R by G. If an r ∈ R is contained in some Rg it is called a
homogeneous element. The subgroup R0 is clearly a subring of R.

Each non-zero homogeneous element r ∈ Rg is a homogeneous element of grade
g, which we denote by gr(r) = g.

Since the Rg are abelian groups, we have 0 ∈ Rg for all g ∈ G; hence the grade of
the homogeneous element 0 is not defined.

If r, s ∈ R are two homogeneous elements, their product is a homogeneous element,
and if rs ̸= 0, we have gr(rs) = gr(r)+gr(s). The direct sum decomposition of R implies
that every element r ∈ R is uniquely a sum r =

∑
g∈G rg where rg ∈ Rg and rg = 0 for

all but finitely many g ∈ G. In this case each non-zero rg is called the homogeneous
component of r of grade g.

The following construction is a source of examples of G−graded rings. Suppose that
for each g ∈ G, we are have an abelian group Rg such that R0 is a ring and for each pair
g, h ∈ G we have maps Rg × Rh −→ Rg+h that are associative and R0−bilinear. Then,
the abelian group

R =
⊕
g∈G

Rg

has a natural multiplication operation given by( ∑
g1∈G

rg1

)( ∑
g2∈G

sg2

)
:=

∑
g3∈G

( ∑
g1+g2=g3

rg1sg2

)
(2)

which makes R into a ring, graded by G in the obvious way.

Remark 2.1. All definitions and results above depend on the structure of G as a com-
mutative monoid, not on the ordering ≤.

2.2 Graded ring of a valuation on a polynomial ring and key polyno-
mials

Let µ be a valuation on K[x]. For each γ ∈ Γµ, consider the abelian groups

Pγ := {f ∈ K[x] | µ(f) ≥ γ} ⊃ P+
γ := {f ∈ K[x] | µ(f) > γ}.

and let Gµ be the abelian group

Gµ =
⊕
γ∈Γµ

Pγ/P+
γ .
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Denote ∆µ = P0/P+
0 and note that ∆µ is a ring with multiplication given by

(f + P+
0 )(g + P+

0 ) = fg + P+
0 .

By “extending the multiplication” in the obvious way:

(f + P+
γ )(g + P+

δ ) = fg + P+
γ+δ

we obtain associative ∆µ−bilinear maps Pγ/P+
γ × Pδ/P+

δ −→ Pγ+δ/P+
γ+δ for each pair

γ, δ ∈ Γµ which makes Gµ into a ring with multiplication as in Eq. (2), graded by Γµ in
the obvious way.

Definition 2.2. We say that Gµ is the graded ring of µ.

The ring Gµ comes naturally equipped with an initial term mapping

inµ : K[x] −→ Gµ, inµ(f) =

{
0 if f ∈ supp(µ)

f + P+
µ(f) otherwise

Clearly f ∈ K[x] satisfies f ∈ supp(µ) if and only if inµ(f) = 0. Therefore the set of
non-zero homogeneous elements of Gµ is

H(Gµ) = {inµ(f) | f ∈ K[x]\supp(µ)}.

If t ∈ H(Gµ), the grade of t is gr(t) = µ(f) for any f ∈ K[x] such that inµ(f) = t.

Lemma 2.3. The mapping inµ has the following properties for all f, g ∈ K[x].

(1) inµ(f) inµ(g) = inµ(fg).
(2) If f, g ∈ K[x]\supp(µ), then inµ(f) = inµ(g) if and only if µ(f−g) > µ(f) = µ(g).
(3) If µ(f) > µ(g), then inµ(f + g) = inµ(g).
(4) If µ(f) = µ(g) = µ(f + g), then inµ(f + g) = inµ(f) + inµ(g).

Proof. Follows by definition inµ and the defining properties of a valuation.

Remark 2.4. The ring Gµ is an integral domain; indeed by the multiplicative property
of inµ there are no non-zero homogeneous zero divisors, so the corresponding statement
holds for inhomogeneous elements by considering st = 0 for s, t ∈ Gµ expressed as a sum
of their homogeneous components.

Actually, if G is an ordered abelian group and R is a G−graded ring, then every
homogeneous component of a zero divisor is a zero divisor [24, Corollary 3.4].

Definition 2.5. Let f, g ∈ K[x]. We say that f is µ−equivalent to g if inµ(f) = inµ(g).
We write f ∼µ g in this case.

It is easy to see that the relation ∼µ is an equivalence relation on K[x].

Definition 2.6. A ϕ ∈ K[x] is a key polynomial for µ if all the following hold.

16



� ϕ is µ−irreducible; the homogeneous element inµ(ϕ) is prime.
� ϕ is µ−minimal; if inµ(ϕ) | inµ(f) and f ̸= 0, then deg(ϕ) ≤ deg(f).
� ϕ is monic.

The set of key polynomials for µ is denoted KP(µ). The equivalence relation ∼µ

restricts to an equivalence relation on the set KP(µ). For all ϕ ∈ KP(µ), we denote its
class by

[ϕ]µ = {Q ∈ KP(µ) | ϕ ∼µ Q}.

Since all Q ∈ [ϕ]µ are µ−minimal, all polynomials in [ϕ]µ have the same degree.
Let ϕ ∈ K[x] be a non-zero polynomial, then for each f ∈ K[x] there exist uniquely

determined a0, . . . , ar ∈ K[x] with deg(ai) < deg(ϕ) for every i, 0 ≤ i ≤ r, such that

f = a0 + a1ϕ+ · · ·+ arϕ
r. (3)

The expression is called the ϕ−expansion of f .

Lemma 2.7. Let µ be a valuation on K[x], then the following hold.

(1) Key polynomials are irreducible; that is KP(µ) ⊂ Irr(K).
(2) If KP(µ) is non-empty, then µ has trivial support.
(3) Let ϕ ∈ KP(µ), then for every f, g ∈ K[x] with deg(f) < deg(ϕ) and deg(g) <

deg(ϕ), if fg = qϕ+ r is the ϕ−expansion of fg, then µ(fg) = µ(r) ≤ µ(qϕ).

Proof. (1)If fg = ϕ ∈ KP(µ) for f, g ∈ K[x] of strictly lower degree, then inµ(ϕ) ∤ inµ(f)
and inµ(ϕ) ∤ inµ(g) because ϕ is µ−minimal. This contradicts that inµ(ϕ) is a prime
element.

(2)If ϕ ∈ KP(µ) and supp(µ) = (G) for some G ∈ Irr(K), then G ̸= ϕ because
inµ(G) = 0 is not a prime element. Hence, ϕ,G are co-prime so there exist non-zero
a, b ∈ K[x] such that aG+ bϕ = 1 and we may assume b ̸∈ supp(µ), because supp(µ) is
a proper ideal. Hence ∞ = µ(aG) > µ(bϕ), so inµ(1) = inµ(aG + bϕ) = inµ(bϕ), which
implies inµ(ϕ) is a unit, contradiction. Hence supp(µ) = {0}.

(3) [19, Lemma 2.6 (1)]

The existence of key polynomials is characterized as follows.

Theorem 2.8. [19, Theorem 4.4] Let µ be a valuation on K[x]. The following are
equivalent.

(1) KP(µ) = ∅.
(2) Each non-zero homogeneous element of Gµ is a unit.
(3) µ has non-trivial support, or it is valuation-algebraic.

Definition 2.9. If KP(µ) ̸= ∅, we define the degree of µ as deg(µ) = min{deg(Q) | Q ∈
KP(µ)}. A ϕ ∈ KP(µ) that satisfies deg(ϕ) = deg(µ) is said to be a key polynomial
of minimal degree for µ.

If supp(µ) = GK[x] for some G ∈ Irr(K), we define deg(µ) = deg(G).
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By Theorem 2.8, these definitions are independent.

Definition 2.10. Let µ be a valuation on K[x] and let ϕ ∈ K[x]\K. The map defined
by

µϕ(f) = min
0≤i≤r

{µ(aiϕi)}

for f in K[x] as in Eq. (3) is called the truncation of µ by ϕ.

The map µϕ is not always a valuation, but it is useful for characterizing the property
of being µ−minimal.

Lemma 2.11. [19, Proposition 2.3 (2)] A polynomial ϕ ∈ K[x]\K is µ−minimal if
and only if µ = µϕ.

The next result introduces an important numerical invariant of a valuation µ admit-
ting key polynomials.

Theorem 2.12. [19, Theorem 3.9] Let ϕ ∈ KP(µ), then each monic f ∈ K[x] satisfies

µ(f)

deg(f)
≤ µ(ϕ)

deg(ϕ)
=: wt(µ)

and equality holds if and only if f is µ−minimal.

Proof. This slight reformulation of [19, Theorem 3.9], follows immediately by noting that
all ϕ ∈ KP(µ) are monic and µ−minimal.

Remark 2.13. In particular µ(ϕ) = µ(ϕ′) for all ϕ, ϕ′ ∈ KP(µ) with deg(ϕ) = deg(ϕ′).

2.3 Structure of the graded ring

Throughout this section let µ be a valuation on K[x] with KP(µ) ̸= ∅. The main result
of [19] implies that homogeneous elements of Gµ possess unique factorization.

Theorem 2.14. Each non-zero, non-unit homogeneous element of Gµ is a product of
homogeneous prime elements.

Proof. By Theorem 2.8 and Theorem 1.24, µ is either value-transcendental or residue-
transcendental. If µ is value-transcendental, the theorem follows by [19, Lemma 4.1] and
[19, Theorem 4.2]. If µ is residue-transcendental, it follows from [19, Theorem 6.8].

Remark 2.15. Since the factors are prime elements, the factorization is unique up to
multiplication by units and re-ordering the factors.

The proof of Theorem 2.14, also shows the following.

Theorem 2.16. [2, cf. Theorem 2.5] Let t ∈ Gµ be a homogeneous prime element, then
there exists a ϕ ∈ KP(µ) and a homogeneous unit u ∈ Gµ such that

t = u · inµ(ϕ).
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Remark 2.17. Hence, key polynomials are precisely the monic polynomials of minimal
degree whose initial terms generate the principal homogeneous prime ideals of Gµ.

An essential role in the proof of Theorem 2.14 is played by key polynomials of minimal
degree. These key polynomials satisfy a stronger version of Item (3) of Lemma 2.7, below.

Theorem 2.18. [19, Theorem 3.2] Let ϕ ∈ KP(µ) and suppose that deg(ϕ) = deg(µ).
Then for every f, g ∈ K[x] with deg(f) < deg(ϕ) and deg(g) < deg(ϕ), if fg = qϕ+ r is
the ϕ−expansion of fg, then

µ(fg) = µ(r) < µ(qϕ).

Before we present some consequences of Theorem 2.18 for the structure of Gµ, we
will show that each homogeneous element admits a “minimal expression” by discarding
some terms of a ϕ−expansion according to their µ−value.

Definition 2.19. Let ϕ ∈ KP(µ). For f ∈ K[x] with ϕ−expansion f = a0 + · · ·+ arϕ
r,

we define

Sµ,ϕ(f) = {i | 0 ≤ i ≤ r, µ(f) = µ(aiϕ
i)}.

Lemma 2.20. Let f in K[x] and ϕ ∈ KP(µ). Then,

inµ(f) = inµ

(∑
i∈S

aiϕ
i

)
=

∑
i∈S

inµ(aiϕ
i)

where S = Sµ,ϕ(f).

Proof. By Lemma 2.11, we have min
0≤i≤r

{µ(aiϕi)} = µ(f), so µ(
∑

i ̸∈S aiϕ
i) > µ(f), which

gives the first equality. The second equality follows by Item (4) of Lemma 2.3.

Lemma 2.21. [19, Lemma 2.10] Let ϕ ∈ KP(µ) and suppose f, g ∈ K[x] satisfy
inµ(f) = inµ(g), then Sµ,ϕ(f) = Sµ,ϕ(g). Moreover, inµ(ai) = inµ(bi) for all i ∈ Sµ,ϕ(f),
where f = a0 + · · ·+ arϕ

r and g = b0 + · · ·+ bsϕ
s are the ϕ−expansions of f and g.

We will now show that the ring Gµ is a polynomial ring. Denote n = deg(µ) and let
G0µ ⊂ Gµ be the additive subgroup generated by the set

{inµ(f) | f ∈ K[x], deg(f) < n}.

Theorem 2.22. [22, Proposition 4.2] The subgroup G0µ is a subring of Gµ and if ϕ is a
key polynomial of minimal degree for µ, then the element Y := inµ(ϕ) is transcendental
over G0µ and Gµ = G0µ[Y ].

Proof. In order to show that G0µ is a ring, we only need to show it is closed under
multiplication, because it is already a subgroup. Denote n = deg(µ). It is enough to
show that for all f, g ∈ K[x] with deg(f) < n and deg(g) < n, we have inµ(f) inµ(g) ∈ G0µ.
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Let ϕ ∈ KP(µ) be a key polynomial of minimal degree deg(ϕ) = n, let f, g ∈ K[x]
be such that deg(f) < n,deg(g) < n and consider the ϕ−expansion fg = qϕ + r. By
Theorem 2.18, we deduce that µ(r) < µ(qϕ) and hence inµ(fg) = inµ(r) ∈ G0µ.

Denote Y := inµ(ϕ), to show G0µ[Y ] = Gµ it is enough to show that every homogeneous
element of Gµ belongs to G0µ[Y ], which follows at once by Lemma 2.20.

Suppose that Y satisfies an algebraic equation

t0 + t1Y + · · ·+ tnY
n = 0 (4)

where ti ∈ G0µ. We can assume ti = 0 or ti = inµ(fi) with deg(fi) < n and µ(fi) < ∞.
Let

f =
n∑

i=0

fiϕ
i.

By the assumption on the ti’s, Lemma 2.20 and the fact that µϕ = µ we obtain

0 =
∑

i∈Sµ,ϕ(f)

tiY
i = inµ

( ∑
i∈Sµ,ϕ(f)

fiϕ
i

)
= inµ(f)

which shows that ti = 0 for all 0 ≤ i ≤ n.

The above theorem shows that every element of Gµ is a polynomial in Y := inµ(ϕ)
with coefficients in G0µ and that this expression is unique for a fixed choice of ϕ ∈ KP(µ)
of minimal degree.

Definition 2.23. For non-zero f ∈ K[x], we define the µ − degree degµ(f) ∈ N as
the degree of inµ(f) as a polynomial in Y := inµ(ϕ) with coefficients in G0µ, for some
ϕ ∈ KP(µ) of minimal degree.

The quantity degµ(f) does not depend on the choice of key polynomial of minimal
degree, even though the coefficients of inµ(f) might.

Note that in general, we have max(Sµ,ϕ(f)) = degµ(f).
The homogeneous units are completely characterized as follows.

Lemma 2.24. [19, Proposition 3.5] Let f ∈ K[x] be non-zero, then the homogeneous
element inµ(f) is a unit if and only if degµ(f) = 0.

Therefore G0µ is the subring of Gµ generated by the set of homogeneous units.

Remark 2.25. By [24, Lemma 5.1], every unit of Gµ is a homogeneous element, so by
Lemma 2.24, G0µ is the subring of Gµ generated by all the units of Gµ. Moreover, the
relation “is associate to” preserves (in)homogeneity of elements.

Definition 2.26. For any valuation µ on K[x], let Γ0
µ ⊂ Γµ be the subgroup of grades

of all homogeneous units in Gµ. The relative ramification index of µ is defined as

e = e(µ) = (Γµ : Γ0
µ).
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If µ is residue-transcendental, Γµ/Γv is a torsion group, so (Γµ : Γ0
µ) is finite. We

have Γ0
µ = {µ(a) | a ∈ K[x], 0 ≤ deg(a) < deg(µ)} by Lemma 2.24 and Γµ = ⟨Γ0

µ, µ(ϕ)⟩
where ϕ ∈ KP(µ) is a key polynomial of minimal degree by Lemma 2.11. Hence e := e(µ)
is the least positive integer such that eµ(ϕ) ∈ Γ0

µ.

2.4 Residual polynomial operators

Let µ be a residue-transcendental valuation on K[x] and ϕ ∈ KP(µ) a key polynomial
of minimal degree. Denote Y := inµ(ϕ), then the non-zero coefficients of inµ(f) ∈ G0µ[Y ]
are homogeneous units by Lemma 2.24. The irreducible factorization of inµ(f) ∈ G0µ[Y ]
is the prime factorization of inµ(f) by Theorem 2.14.

The aim of this section is to show that this factorization can be found over a “small”
subfield of Gµ which is crucial for computational applications.

Denote by v the restriction of µ to K and observe that there is a canonical injection
kv ↪→ ∆µ where ∆µ = P0/P+

0 is the grade 0 part of Gµ.

Definition 2.27. We define κµ to be the relative algebraic closure of kv in ∆µ.

Clearly, κµ is a field because because kv is. We denote κ := κµ when µ is clear from
context.

Lemma 2.28. The field κµ is contained in G0µ, satisfies κ×µ = ∆×
µ and is explicitly given

by κµ := {inµ(a) | a ∈ K[x], 0 ≤ deg(a) < degµ, µ(a) = 0} ∪ {0}.

Proof. Since κµ is a field and all units of Gµ are contained in G0µ by Remark 2.25, we have
κµ ⊂ G0µ. The explicit description shows κ×µ = ∆×

µ , see equation (9) in [19, Section 3,
p.11].

Let f ∈ K[x] be a non-zero polynomial and denote

S = Sµ,ϕ(f), ℓ0 = min(S), ℓ = max(S), lcµ(f) = inµ(aℓ)

Note that ℓ0 is the order with which the prime element Y divides inµ(f) ∈ G0µ[Y ] and
ℓ = degµ(f). Let e be the relative ramification index of µ.

Lemma 2.29. The positive integer e divides (i− ℓ0) for all i ∈ S. Hence,

inµ(f) = Y ℓ0P (Y e)

for a unique polynomial P ∈ G0µ[X], where X is an indeterminate. The polynomial P
has a non-zero constant term and is of degree d := (ℓ− ℓ0)/e.

Proof. Let f = a0 + · · ·+ aℓϕ
ℓ be the ϕ−expansion of f . Recall that for all i, j ∈ S, we

have µ(aiϕ
i) = µ(ajϕ

j).
Denote γ = µ(ϕ) and let i ∈ S, then (i− ℓ0)γ = µ(aℓ0)−µ(ai), so (i− ℓ0)γ ∈ Γ0

µ and
hence e | (i− ℓ0).
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For each i ∈ S, denote j = (i− ℓ0)/e and let X = Y e, we deduce

inµ(f) =
∑
i∈S

inµ(ai)Y
i = Y ℓ0

∑
i∈S

inµ(ai)Y
je

= Y ℓ0
∑
i∈S

inµ(ai)X
j

= Y ℓ0P (X).

It is clear that P0 ̸= 0, because P0 = inµ(aℓ0). Clearly degX(P ) := (ℓ − ℓ0)/e. All
coefficients of P are in G0µ, because the set of non-zero coefficients of P is precisely the
set of non-zero coefficients of inµ(f) ∈ G0µ[Y ], by construction. The uniqueness of P
follows by Theorem 2.22, clearly Y transcendental means Y e is transcendental too.

We will now perform a change of variable to obtain a polynomial with coefficients in
the field κµ. The idea is to divide the polynomial P in the above lemma by a suitable
unit.

Theorem 2.30. Let u be a unit of Gµ with gr(u) = gr(Y e). There there exists a unique
polynomial R ∈ κ[y], where y is an indeterminate, such that

inµ(f) = lcµ(f)Y
ℓ0udR

(
Y e

u

)
. (5)

The polynomial R is monic and has a non-zero constant term.

Proof. We have inµ(f) = Y ℓ0P (Y e) for a unique P ∈ G0µ[X] by Lemma 2.29. For each
i ∈ S denote j = (i−ℓ0)/e and recall that d := (ℓ−ℓ0)/e = degX(P ) and lcµ(f) = inµ(aℓ).
Let u ∈ Gµ be an arbitrary unit, then

P (Y e)

ud
=

∑
i∈S

inµ(ai)Y
je

ud
=

∑
i∈S

inµ(ai)u
j−dY je

uj

=
∑
i∈S

inµ(ai)u
j−d

(
Y e

u

)j

. (6)

Denote γ = µ(ϕ) = gr(Y ), since gr(Y e) = eγ ∈ Γ0
µ, there exists a unit u ∈ Gµ with

gr(u) = gr(Y e). We claim that this condition ensures that for all i ∈ S,

gr(inµ(ai)u
j−d inµ(aℓ)

−1) = 0.

Since ℓ, i ∈ S, we have

gr(inµ(ai) inµ(aℓ)
−1) = µ(ai)− µ(aℓ) = (ℓ− i)γ

and from gr(u) = gr(Y e) we obtain

gr(uj−d) =

(
i− ℓ0
e
− ℓ− ℓ0

e

)
eγ = −(ℓ− i)γ
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which proves the claim. Denote y := Y e/u and observe that

R =
P (Y e)

ud lcµ(f)
=

∑
i∈S

inµ(ai)u
j−d inµ(aℓ)

−1yj (7)

belongs to κ[y], satisfies Eq. (5) and is monic with a non-zero constant term by con-
struction. The uniqueness of R follows by Theorem 2.22, clearly Y transcendental over
G0µ implies y = Y e

u is transcendental over κ ⊂ G0µ.

Definition 2.31. For a given non-zero f ∈ K[x], we define the residual polynomial
of f corresponding to the choice of ϕ ∈ KP(µ) of minimal degree and a homogeneous
unit u ∈ Gµ of grade eµ(ϕ) to be the unique polynomial satisfying Eq. (5) and denote it
Rµ,ϕ,u(f).

Remark 2.32. Denote R(f) := Rµ,ϕ,u(f), suppressing the dependence on the choice
(ϕ, u). By Eq. (5), inµ(f) is a unit times a power of the prime Y times R(f), so
in particular the homogeneous prime factors of inµ(f) that are not associate to Y are
precisely the prime factors of R(f). Hence up to multiplication by a unit, the prime
factorization of inµ(f) is inµ(f) ∼unit Y

ℓ0ψn1
1 ·· · ··ψ

nk
k where R(f) = ψn1

1 ·. . . · · ·ψ
nk
k , ψi ∈

Irr(κ) is the irreducible factorization of R(f) ∈ κ[y].

Let us parametrize the coefficients of the residual polynomial. We know by Lemma 2.29
that each i ∈ S satisfies e | (i− ℓ0), so it is of the form i = ej+ ℓ0 for a unique 0 ≤ j ≤ d.
For each 0 ≤ j ≤ d, we define ℓj = ej + ℓ0. Clearly, ℓ0 and ℓd = ℓ belong to S, but this
is not necessarily true for an arbitrary j. For each 0 ≤ j ≤ d, define the j−th residual
coefficient of f to be

ζj =

{
inµ(aℓj )u

j−d inµ(aℓ)
−1 if ℓj ∈ S

0 otherwise

and by Eq. (7) we immediately deduce

R(f) = ζ0 + ζ1y + · · ·+ ζd−1y
d−1 + yd.

Assigning a non-zero f ∈ K[x] its residual polynomial with respect to the fixed choice
(µ, ϕ, u) determines a residual polynomial operator:

R : K[x] −→ κ[y],

if we agree that R(0) = 0.

Proposition 2.33. For all f, g ∈ K[x], we have

R(fg) = R(f)R(g).

Proof. It is clear that lcµ(fg) = lcµ(f) lcµ(g). We have ℓ0(fg) = ℓ0(f) + ℓ0(g) be-
cause ℓ0(fg) is the order with which the prime Y divides inµ(fg). Finally, d(fg) =
degµ(fg)/e = degµ(f)/e + degµ(g)/e = d(f) + d(g). Hence, R(fg) = R(f)R(g) follows
by Eq. (5).
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The next results shows that any choice of residual polynomial operator allows us to
completely characterize key polynomials for µ.

Theorem 2.34. [19, Props. 6.3, 6.6] Let µ be a residue-transcendental valuation, let
ϕ ∈ KP (µ) be a key polynomial of minimal degree n := deg(µ), u ∈ Gµ a homogeneous
unit of grade eµ(ϕ) and R := Rµ,ϕ,u the residual polynomial operator corresponding to
these choices.

A monic Q ∈ K[x] is a key polynomial for µ if and only if either

� deg(Q) = n and inµ(ϕ) = inµ(Q); or
� deg(Q) = endeg(R(Q)) and R(Q) ∈ κ[y] is irreducible.

Moreover, for all Q,Q′ ∈ KP(µ), we have

inµ(Q) | inµ(Q′)⇐⇒ inµ(Q) = inµ(Q
′)⇐⇒ R(Q) = R(Q′)

and if these equivalent conditions hold, then deg(Q) = deg(Q′).

It is easy to construct a Q ∈ KP(µ) with a prescribed ψ ∈ Irr(κ)\{y} as shown
in [19, Corollary 5.6]. We deduce a bijection

KP(µ)/ ∼µ−→ κ[y], [Q]µ 7→

{
y if inµ(Q) = inµ(ϕ)

R(Q) otherwise
(8)

which depends on Y = inµ(ϕ) and the unit u. The variation of R(Q) with respect to a
different choice of unit and key polynomial of minimal degree is exhaustively discussed
in [19, Section 5].

Remark 2.35. We wish to stress that each choice (ϕ, u) as in Theorem 2.34 completely
determines the set KP(µ).

2.5 Tangent directions

Let (K, v) be a valued field, denote Γ := Γv and recall that T = {µ : K[x] −→ ΓQ∞ |
µ is a valuation and µ|K = v}.

If µ, ν ∈ T satisfy µ ≤ ν, we define the map

Gµ −→ Gν , inµ(f) 7→

{
inν(f) if µ(f) = ν(f)

0 if µ(f) < ν(f).

It is easy to check that Gµ −→ Gν is a ring homomorphism that is injective if and only
if µ = ν.

Definition 2.36. For µ, ν ∈ T that satisfy µ < ν, let t(µ, ν) be the set of all monic
polynomials ϕ ∈ K[x] of minimal degree such that µ(ϕ) < ν(ϕ). We say that t(µ, ν) is
the tangent direction of µ determined by ν.
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Clearly t(µ, ν) is non-empty, all ϕ ∈ t(µ, ν) have the same degree and t(µ, ν) ⊂
K[x]\K.

Lemma 2.37. [21, Lemma 2.6] Every ϕ ∈ t(µ, ν) is a key polynomial for µ and
t(µ, ν) = [ϕ]µ. Moreover for all non-zero f ∈ K[x], we have

µ(f) < ν(f)⇐⇒ inµ(ϕ) | inµ(f).

So tangent directions and µ−equivalence classes of key polynomials are the same
thing. Moreover, if we have some valuation ν strictly above µ, that realises [ϕ]µ, the
relation “inµ(ϕ) | inµ(f)” can be checked solely from the values of ν.

Proposition 2.38. Let µ ∈ T , then

KP(µ) =
⋃

ν∈T , µ<ν

t(µ, ν).

Proof. By Theorem 2.8, a µ ∈ T is maximal if and only if KP(µ) = ∅.
By Theorem 1.29 the non-maximal elements are precisely the residue-transcendental

valuations. So if µ is non-maximal, we have t(µ, ν) ⊂ KP(µ) for all ν ∈ T with µ < ν
by Lemma 2.37.

Conversely, a ϕ ∈ KP(µ) determines a certain valuation vϕ : K[x]/(ϕ) −→ ΓQ∞
on the field Kϕ := K[x]/(ϕ) that extends v, [19, Proposition 2.12]. Composing vϕ
with the canonical surjection K[x] ↠ K[x]/(ϕ) gives an νϕ ∈ T with support (ϕ) that
satisfies µ < νϕ and µ(f) = νϕ(f) for all f ∈ K[x] with deg(f) < deg(ϕ). Since
µ(ϕ) < νϕ(ϕ) =∞, we have ϕ ∈ t(µ, νϕ) by definition of tangent direction.

Remark 2.39. The union in the above result is far from being disjoint; note that if
µ, ν1, ν2 ∈ T satisfy µ < ν1 < ν2 then ϕ ∈ t(µ, ν1) =⇒ ϕ ∈ t(µ, ν2) and hence
t(µ, ν1) = t(µ, ν2) because these tangent directions are non-disjoint µ-equivalence classes
by Lemma 2.37.

The following lemma characterizes when a given key polynomial determines a given
tangent direction.

Lemma 2.40. [21, Lemma 2.7] Let µ ∈ T and let ϕ ∈ KP(µ). For each ν ∈ T with
µ < ν, we have

t(µ, ν) = [ϕ]µ ⇐⇒ µ(ϕ) < ν(ϕ).

2.6 Depth zero valuations and ordinary augmentations

It is easy to check that for each γ ∈ ΓQ∞ and each a ∈ K, the depth-zero valuation
ν = [v;x− a, γ] that acts on (x− a)−expansions as

ν

( ∑
0≤i≤r

ai(x− a)i
)

= min
0≤i≤r

{v(ai) + iγ}
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is a valuation on K[x] with ν(x−a) = γ and satisfies ν ∈ T . Moreover, ν has non-trivial
support if and only if γ < ∞. In this case (x − a) ∈ KP(ν) is a key polynomial of
minimal degree. If γ =∞, then ν is the unique ν ∈ T with support (x− a)K[x].

Lemma 2.41. Let µ ∈ T and γ ∈ ΓQ∞. If ϕ ∈ KP(µ) and γ > µ(ϕ), then the map ν
acting on ϕ−expansions as

ν

( ∑
0≤i≤r

aiϕ
i

)
= min

0≤i≤r
{µ(ai) + iγ}.

is a valuation on K[x] that satisfies ν ∈ T and µ < ν.

Proof. The arguments of Maclane in the rank one case [16, Theorem 3.1], work in general.
The only more recent reference seems to be [22, Corollary 2.4].

Definition 2.42. The valuation ν above is called the ordinary augmentation of µ
with respect to ϕ and γ. We denote it by ν = [µ;ϕ, γ].

The following properties of ordinary augmentations due to Maclane were generalised
by Vaquié, see [28, Section 1.1] or [20, Proposition 2.1].

Lemma 2.43. Let ν = [µ;ϕ, γ] be an ordinary augmentation of µ. The following all
hold.

(1) ν(ϕ) = γ and t(µ, ν) = [ϕ]µ.
(2) ν has non-trivial support if and only if γ <∞.
(3) If γ =∞, the support of ν is ϕK[x].
(4) If γ <∞, then KP(ν) ̸= ∅ and ϕ ∈ KP(ν) is a key polynomial of minimal degree.
(5) deg(µ) ≤ deg(ν).

2.7 Limit augmentations

Let A be a well-ordered set without last element and C = (ρi)i∈A a family of elements of
T . The family C is a continuous family, parametrized by A, if all the following hold:

� The map i 7→ ρi is an isomorphism of totally ordered sets.
� There exists an i0 ∈ A such that for all i ≥ i0 we have deg(ρi) = deg(ρi0).

For a continuous family C, we denote by deg(C) this “stable degree” deg(ρi0).
These definitions imply that the set {ρi}i∈A is totally ordered and each ρi ∈ T is

non-maximal.
A polynomial g ∈ K[x] is said to be C−stable if there exists an i0 ∈ A such that

ρi(f) = ρi0(f) for all i ≥ i0, in this case we denote ρC(f) := ρi0(f).

Definition 2.44. A ϕ ∈ K[x] is a limit key polynomial for C if all the following hold.

� ϕ is not C−stable.
� ϕ is of minimal degree among polynomials that are not C−stable.
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� ϕ is monic.

The set of limit key polynomials for C is denoted KP∞(C). We say that C is essential
if there exists a ϕ ∈ KP∞(C) with deg(ϕ) > deg(C). If KP∞(C) = ∅, then all f ∈ K[x]
are C−stable and ρC is a valuation, ρC ∈ T , called the stable limit of the continuous
family C. Stable limits are valuation-algebraic [20, Proposition 3.1].

If KP∞(C) ̸= ∅, a limit key polynomial can be used to obtain a valuation as follows
(cf. [28, Proposition 1.22] or [22, Theorem 5.16]).

Lemma 2.45. Let C ⊂ T be a continuous family and γ ∈ ΓQ∞. If ϕ ∈ KP∞(C) and
γ > ρi(ϕ) for all i ∈ A, then the map ν acting on ϕ−expansions as

ν

( ∑
0≤i≤r

aiϕ
i

)
= min

0≤i≤r
{ρC(ai) + iγ}.

is a valuation on K[x] that satisfies ν ∈ T and ρi < ν for all i ∈ A.

Definition 2.46. The valuation ν above is called the limit augmentation of µ with
respect to C and γ. We denote it by ν = [C;ϕ, γ].

Limit augmentations satisfy the following properties, see [19, Corollary 7.13] and [21,
Section 2.4].

Lemma 2.47. Let C = (ρi)i∈A be a continuous family and ν = [C;ϕ, γ] a limit augmen-
tation. Denote imin = min(A) and µ := ρimin. The following all hold.

(1) ν(ϕ) = γ and t(µ, ν) = t(ρi, ν) for all i > imin.
(2) ν has non-trivial support if and only if γ <∞.
(3) If γ =∞, the support of ν is ϕK[x].
(4) If γ <∞, then KP(ν) ̸= ∅ and ϕ ∈ KP(ν) is a key polynomial of minimal degree.
(5) deg(ν) = deg(ϕ).

Let µ, ν ∈ T , from now on we will use the notation µ −→ ν to describe an augmen-
tation. This means that, either

ν = [µ;ϕ, γ], ϕ ∈ KP(µ), γ > µ(ϕ), or

ν = [C;ϕ, γ], ϕ ∈ KP∞(C), γ > ρi(ϕ) for all i ∈ A,

where C = (ρi)i∈A is a continuous family such that µ = ρimin where imin := min(A).

Definition 2.48. The inertia degree of an augmentation µ −→ ν is f(µ −→ ν) =
[κν : κµ]
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2.8 Chains of augmentations

Let µ ∈ T and suppose that µ is residue-transcendental (non-maximal) or that µ has
trivial support. By a celebrated theorem of Vaquié ( [28], or [20]), µ can be obtained
from v after a finite number of augmentations:

v −→ µ0 −→ µ1 −→ . . . −→ µr −→ µr+1 = µ. (9)

The initial step v −→ µ0 only has a formal purpose; it indicates that µ0 is a depth-zero
valuation. For each augmentation in Eq. (9), denote

� µn+1 = [µn;ϕn+1, γn+1] if µn −→ µn+1 is ordinary
� µn+1 = [Cn;ϕn+1, γn+1] if µn −→ µn+1 is limit.

The canonical ring homomorphisms Gµn −→ Gµn+1 induce a tower of fields

k = κµ0 −→ · · · −→ κµr+1 = κµ.

Hence, we have
[κµ : k] = f(µ0 −→ µ1) . . . f(µr −→ µ). (10)

Results in [20, Section 5.1] show that the extensions κµn+1/κµn are finite.
Unfortunately, the associated value groups do not necessarily form a chain. In order

to overcome this, some (strong) conditions need to be imposed on the chain Eq. (9).

Definition 2.49. The chain Eq. (9) is said to be a Maclane-Vaquié (MLV) chain for
µ if every augmentation in the chain satisfies:

� If µn −→ µn+1 is ordinary, then deg(µn) < deg(µn+1).
� If µn −→ µn+1 is limit, then Cn is essential, deg(µn) = deg(Cn) and ϕn ̸∈
t(µn, µn+1).

In this case, we have µ(ϕn) = γn for all n.

Theorem 2.50. [20, Theorem 4.3] If µ ∈ T is residue-transcendental or has non-trivial
support, then there exists an MLV chain for µ.

As shown in [20, Section 4], if Eq. (9) is an MLV chain for µ, the value groups satisfy

Γ−1 := Γ ⊂ Γµ0 ⊂ · · · ⊂ Γµr+1 = Γµ,

such that Γµn−1 = Γ0
µn

for all 0 ≤ n ≤ r + 1. Hence, we have

(Γµ : Γ) = e(µ0) · · · e(µr+1). (11)

Suppose that µ has non-trivial support supp(µ) = GK[x], then the ramification in-
dex e(µ/v) and residue degree f(µ/v) of the induced valuation µ on K[x]/(G) can be
computed using Eq. (11) and Eq. (10), due to the equality kµ = κµ which follows
from [20, Theorem 5.4].

Definition 2.51. A µ ∈ T is inductive if there exists an MLV chain for µ such that
all augmentations in the chain are ordinary.

Remark 2.52. It is an object of ongoing research to develop computer algorithms to
handle all MLV chains. The algorithms we will encounter in this thesis only involve
inductive valuations.
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3 Irreducible polynomials over henselian fields

3.1 Convex hulls

Let Γ be an ordered abelian group and consider the rational vector space Q × ΓQ. Let
P = (s, α) and Q = (t, β) be two points in Q×ΓQ, the segment joining P and Q is the
set

S = {P + (1− ϵ)Q | ϵ ∈ Q, 0 ≤ ϵ ≤ 1} ⊂ Q× ΓQ.

The segment joining P and Q is a single point if and only if P = Q. If s ̸= t, we define
the slope of S to be

slope(S) =
β − α
t− s

∈ ΓQ.

A subset of Q × ΓQ is convex, if it contains every segment joining a pair of points in
the subset.

Let C ⊂ Q × ΓQ be non-empty finite subset, the convex hull of C is the smallest
convex subset containing C. Clearly, the convex hull of C coincides with C if and only
if C is a single point, because the segment joining two distinct points of C is infinite and
contained in the convex hull.

In general, the border of this hull consists of finitely many chained segments joining
some of the points of C.

If all the points in C have pairwise distinct abscissas there exists a unique leftmost
point P ∈ C and a unique rightmost point Q ∈ C and we have P ̸= Q if and only if C
is not a single point. In general there exist two chains of segments on the border of the
hull joining P and Q called the upper convex hull and lower convex hull of C.

These chains of segments are determined by the condition that the lower convex hull
contains all the points in C that lie on the border of the convex hull and simultaneously
on or below the segment joining P and Q. Therefore the lower convex hull coincides
with the upper convex hull if and only if all the points in C lie on the segment joining
P and Q.

3.2 Types draw Newton polygons

For the rest of this chapter fix a valued field (K, v) and denote its value group Γ := Γv.
Recall that the set T := T (ΓQ) of all ΓQ-valued extensions of v to K[x] is partially
ordered. Moreover, for all µ ∈ T the property of being non-maximal is equivalent to
KP(µ) ̸= ∅.

Definition 3.1. A type is a pair (µ, ϕ) where µ ∈ T is non-maximal and ϕ ∈ KP(µ).

Let (µ, ϕ) be a type and f = a0 + a1ϕ + · · · + arϕ
r the ϕ−expansion of a non-zero

f ∈ K[x].
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Figure 1: Convex hull of a finite set of points with different abscissas.

Definition 3.2. The Newton polygon of f with respect to (µ, ϕ) is the lower convex
hull of the finite set

C = {(i, µ(ai)) | 0 ≤ i ≤ r, µ(ai) <∞} ⊂ Q× ΓQ.

We use the notation Nµ,ϕ(f) and agree that the Newton polygon of the zero polynomial
is the empty set.

Therefore a type (µ, ϕ) determines a Newton polygon operator

Nµ,ϕ : K[x] −→ P(Q× ΓQ).

where P(Q× ΓQ) is the power set of Q× ΓQ.
Let N := Nµ,ϕ(g) for some non-zero polynomial g ∈ K[x]. If N is a single point, we

say that N has an empty set of sides. Otherwise, N is uniquely a chain of segments
{S1, . . . , Sk} of strictly increasing slopes called the sides of N .

The vertices of N are the left and right endpoints of N and all the points of N
joining two different sides. The vertices of N are elements of C, but not every element
of C is necessarily a vertex.

The length ℓ(N) of N is defined as the abscissa of the right endpoint of N . We have

ℓ(N) = ⌊deg(f)/ deg(ϕ)⌋.

The abscissa of the left endpoint of N is equal to the order with which ϕ divides f in
K[x]. It is denoted ordϕ(f).

Clearly, for all non-zero f, g ∈ K[x] we have

ℓ(Nµ,ϕ(fg)) ≥ ℓ(Nµ,ϕ(f)) + ℓ(Nµ,ϕ(g)).

It is easy to construct examples where this inequality is strict.
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Figure 2: Newton polygon N = Nµ,ϕ(g) of g ∈ K[x]

Example 3.3. If f, g ∈ K[x] satisfy deg(f), deg(g) < deg(ϕ) and deg(fg) ≥ deg(ϕ),
the Newton polygons Nµ,ϕ(f) and Nµ,ϕ(g) are both a single point of the form (0, α) where
α is equal to µ(f) and µ(g) respectively, while Nµ,ϕ(fg) has length at least one.

Definition 3.4. For all λ ∈ ΓQ, the λ−component Sλ(N) ⊂ N is the intersection of
N with the line L of slope −λ that first touches N from below. In other words,

Sλ(N) = {(n, α) ∈ N | α+ nλ is minimal}.

The abscissas of the left and right endpoints of Sλ(N) are denoted nλ ≤ n′λ.

If N has a side S of slope −λ, then Sλ(N) = S. Otherwise Sλ(N) is a vertex of N .

Definition 3.5. We say that N is one-sided of slope −λ, if N = Sλ(N), nλ = 0, and
nλ′ > 0.

Definition 3.6. The principal Newton polygon N+
µ,ϕ(f) is the polygon formed by all

the sides of Nµ,ϕ(f) whose slope is less than −µ(ϕ). If Nµ,ϕ(f) has no sides whose slope
is less than −µ(ϕ), then N+

µ,ϕ(f) is defined to be the left endpoint of Nµ,ϕ(f).

Remark 3.7. It is easy to check that the set Sµ,ϕ(f) := {0 ≤ i ≤ r | µ(aiϕi) = µ(f)}
coincides with the set of abscissas of points in C lying on the segment Sµ(ϕ)(N), so
Newton polygons display some information about algebraic relations in the graded ring
Gµ.

In particular, the length of N+
µ,ϕ(f) is the order with which inµ(ϕ) divides inµ(f) in

Gµ. We have

ℓ(N+
µ,ϕ(f)) = min

(
Sµ,ϕ(f)

)
= ordinµ(ϕ)(inµ(f)). (12)

The next lemma shows how the values of an augmentation can be computed from
Newton polygons.
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Figure 3: λ-component of N = Nµ,ϕ(g), the line L has slope −λ and cuts the vertical
axis at (0, µλ(g)), if λ > µ(ϕ) if µλ = [µ;ϕ, λ].

Lemma 3.8. Let (µ, ϕ) be a type. For λ > µ(ϕ), let µλ = [µ;ϕ, λ]. Then, for all non-
zero f ∈ K[x], the line of slope −λ, which first touches Nµ,ϕ(f) from below, intersects
the vertical axis at a point whose ordinate is µλ(f).

Proof. This line cuts the vertical axis at the point with ordinate the common value
α + nλ, for all (n, α) ∈ Sλ(Nµ,ϕ(g)). The result follows by Remark 3.7 as µλ(f) =
min
0≤i≤r

{µ(ai) + iλ} where f = a0 + · · ·+ arϕ is the ϕ−expansion of f .

There is an addition law for Newton polygons. Consider two polygons N, N ′. If one
of these, say N ′, is a single point N ′ = {P}, then the sum N +N ′ is the ordinary vector
sumN+P inQ×ΓQ. If bothN, N

′ have a non-empty set of sides, let S1, . . . , Sk, S
′
1, . . . S

′
l

be their sides respectively. The left endpoint of the sum N + N ′ is the vector sum in
Q× ΓQ of the left endpoints of N and N ′, denote this point by P . The sides of N +N ′

are obtained as follows. Join the sides in the multiset {S1, . . . , Sk, S′
1, . . . S

′
l} to the point

P ordered by increasing slope from left to right.
This addition law is clearly commutative and associative, so it deserves its name.

Note that by construction ℓ(N +N ′) = ℓ(N) + ℓ(N ′).

Figure 4: Addition of two segments
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Principal Newton polygons behave well with respect to products, as the following
result shows.

Theorem 3.9. Let (µ, ϕ) be a type, then for all non-zero f, g ∈ K[x] we have

N+
µ,ϕ(fg) = N+

µ,ϕ(f) +N+
µ,ϕ(g).

Proof. This result is well-known, see [21, Theorem 4.1] or [8, Theorem 4.8]

By Example 3.3, the analogous statement for the entire Newton polygons is false.

Remark 3.10. One immediate consequence of Theorem 3.9, is that if the principal
polygon of a polynomial has two or more sides, this polynomial is not irreducible.

3.3 Henselization

Let (K, v) be a non-trivially valued field and fix an algebraic closure K of K, denote
Γ := Γv.

Proposition 3.11. For each extension v of v to K, the value group Γv is divisible and
satisfies Γv = ΓQ. The residue field kv is an algebraic closure of kv.

Proof. The first statement is by [10, p. 79] and the second by [10, Theorem 3.2.11]
applied to the tower K ⊂ Ksep ⊂ K where Ksep is the separable closure of K in K.

Let Ksep be the separable closure of K inside K. Fix an extension v of v to K and
consider the decomposition group

Dv/v = {σ ∈ Gal(Ksep/K) | v ◦ σ = v}.

Let Kh be the fixed field of Dv/v and define vh to be the restriction of v to Kh. Clearly,

Kh/K is a separable field extension and vh is an extension of v.

Theorem 3.12. The valuation vh extends uniquely to K and the extension (K, v) ⊂
(Kh, vh) is immediate.

Proof. Consider the tower of fields K ⊂ Kh ⊂ Ksep ⊂ K. Since K/Ksep is purely
inseparable, for all σ ∈ Aut(K/K), we have v ◦ σ = v ⇐⇒ σ ∈ Aut(K/Kh), so vh

has a unique extension to K. The extension (K, v) ⊂ (Kh, vh) is immediate, [5, Ap-
pendix: Corollary 2].

We say that (Kh, vh) is the henselization of (K, v) inside K determined by v. The
valued field (Kh, vh) has the following universal property.

Proposition 3.13. [5, Appendix: Proposition 13] If (L,w) is an extension of (K, v)
such that w extends uniquely to K, then there exists a unique K−embedding i : Kh ↪→ L
such that i(Ovh) = Ow ∩ i(Kh) and i|K = idK .
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Therefore the henselization of a valued field is unique up to valuation preserving
K−isomorphism.

Definition 3.14. We say that a valued field (K, v) is henselian if v extends uniquely
to K.

Proposition 3.15. For a valued field (K, v), the following are equivalent.

(1) (K, v) is henselian.
(2) (Kh, vh) = (K, v).
(3) v extends uniquely to every finite separable extension of K.

Proof. (1) =⇒ (2) =⇒ (3) is clear. Let us show (3) =⇒ (1). Since Ksep is the com-
positum of all finite separable extensions v extends uniquely to Ksep and hence to K
because K/Ksep is purely inseparable; [10, Corollary 3.2.10].

The property of being henselian is hereditary; if (K, v) ⊂ (L,w) is an algebraic
extension of valued fields and (K, v) is henselian, then so is (L,w).

The extensions of v to finite simple extensions ofK are determined by how irreducible
polynomials over K factor over Kh.

Theorem 3.16. [21, Section 3] Let (K, v) be a valued field and let F ∈ Irr(K). The
extensions of v to the field K[x]/(F ) are in bijection with the distinct irreducible factors
of F over Kh.

3.4 A generalisation of Hensel’s lemma

For the rest of this chapter, assume that (K, v) is a non-trivially valued henselian field.
Denote Γ := Γv and recall that T := T (ΓQ) is the set of ΓQ−valued extensions of v to
K[x]. By Theorem 3.16, there is a bijection

Irr(K)←→ {ν ∈ T | supp(ν) is non-trivial }

that sends an F ∈ Irr(K) to the unique element vF ∈ T with support FK[x]. Each vF
is a maximal element in T by Lemma 1.28

Let v be the unique extension of v to a fixed algebraic closureK ofK. We can assume
that v is ΓQ−valued by Proposition 3.11, so we deduce that vF equals the composition

K[x] ↠ K[x]/(F )
v−→ ΓQ∞

by Proposition 1.26. Let F ∈ Irr(K) and denote by Z(F ) the multiset of its roots in K.
By the henselian property, we have

vF (g) = v(g(θ)), for all g ∈ K[x] and all θ ∈ Z(F )

These valuations are related to each other and the resultant as follows.
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Lemma 3.17. For all F,G ∈ Irr(K), we have

vG(F )

deg(F )
=

v
(
Res(F,G)

)
deg(F ) deg(G)

=
vF (G)

deg(G)

where Res is the resultant.

Proof. Denote Z(F ), Z(G) the multisets of roots of F and G respectively. By definition,
we have

Res(F,G) =
∏

θ∈Z(F )

G(θ) = ±
∏

α∈Z(G)

F (α).

Fix θ ∈ Z(F ) and α ∈ Z(G), then as v(G(θ)) and v(F (α)) do not depend on the choice
of θ and α by the henselian property, we obtain

v(Res(F,G)) = deg(F )vF (G) = deg(G)vG(F ).

Finally, as Res(F,G) ∈ K[x], we can replace v by v in the above equality.

The next result is the main result of this chapter.

Theorem 3.18. [21, Theorem 4.4] Let µ ∈ T and ϕ ∈ KP(µ), then for all F ∈ Irr(K)
we have:

inµ(ϕ) | inµ(F )⇐⇒ µ < vF and t(µ, vF ) = [ϕ]µ.

Moreover, if these conditions hold, then:

(1) Either F = ϕ or the Newton polygon Nµ,ϕ(F ) is one-sided of slope −vF (ϕ).
(2) deg(ϕ) | deg(F ), and we have ℓ = deg(F )/deg(ϕ) where ℓ is the length of Nµ,ϕ(F ).
(3) inµ(F ) = inµ(ϕ)

ℓ.

Remark 3.19. Let F ∈ Irr(K) and suppose that inµ(F ) is not a unit, then there exists
a homogeneous prime element t ∈ Gµ such that t | inµ(F ) by Theorem 2.14. There exists
a ϕ ∈ KP(µ) and a homogeneous unit u ∈ Gµ such that t = u inµ(ϕ) by Theorem 2.16.
Hence, inµ(ϕ) | inµ(F ) which shows inµ(F ) is a power of the prime inµ(ϕ) by Theo-
rem 3.18. We conclude that for each F ∈ Irr(K), either inµ(F ) is a unit or inµ(F ) is a
prime power.

This has an obvious consequence for testing irreducibility of polynomials; if inµ(g)
has two non-associate prime factors, where g ∈ K[x], then g is not irreducible.

3.5 Irreducible polynomials form an ultrametric space

Let X be a set and (Γ,≤) a totally ordered set. Let ∞ be a symbol and extend ≤ to
Γ∞ := Γ ∪ {∞} via the rule γ <∞ for all γ ∈ Γ.

Let u : X ×X −→ Γ∞ a function such that for all a, b, c ∈ X:
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(1) u(a, b) =∞⇐⇒ a = b
(2) u(a, b) = u(b, a)
(3) u(a, b) ≥ min{u(a, c), u(c, b)}.

Then u is called an ultrametric on X and (X,u) is called an ultrametric space. In
contrast to metric spaces, two points a, b ∈ X are close if u(a, b) is large.

Theorem 3.20. [4, Corollary 3.3] Let (K, v) be a henselian valued field and denote
Γ := Γv. The function u : Irr(K)× Irr(K) −→ ΓQ∞ given by

u(F,G) =
v
(
Res(F,G)

)
deg(F ) deg(G)

is an ultrametric.

Remark 3.21. It may be possible to prove this theorem in a more elementary way than
in [4] by generalising the original arguments of Krasner for the p−adic case, [12].

Remark 3.22. By Lemma 3.17, we have u(F,G) = vF (G)
deg(G) for all F,G ∈ Irr(K). In

view of Theorem 3.18, the distance u(F, ϕ), where (µ, ϕ) is a type, is the natural way to
define the quality of an approximation to vF .

The next result shows how an approximation to vF can be improved.

Lemma 3.23. Let F ∈ Irr(K) and let (µ, ϕ) be a type with inµ(ϕ) | inµ(F ). Suppose
ϕ ̸= F , denote vF (ϕ) = λ < ∞ and consider the augmentation [µ;ϕ, λ] =: µλ. We
have t(µλ, vF ) ̸= [ϕ]µλ

, and for each ϕ′ ∈ t(µλ, vF ), the type (µλ, ϕ
′) satisfies inµλ

(ϕ′) |
inµλ

(F ) and u(F, ϕ′) > u(F, ϕ).

Proof. Since λ = µλ(ϕ) = vF (ϕ), we have ϕ ̸∈ t(µλ, vF ) by definition of tangent di-
rection. Hence t(µλ, vF ) ̸= [ϕ]µλ

because tangent directions are equivalence classes
of key polynomials by Lemma 2.37. For all ϕ′ ∈ t(µλ, vF ), the type (µλ, ϕ

′) satisfies
inµλ

(ϕ′) | inµλ
(F ) by Theorem 3.18. Since ϕ ∈ KP(µλ) by Lemma 2.43, we deduce

u(F, ϕ′) =
vF (ϕ

′)

deg(ϕ′)
>

µλ(ϕ
′)

deg(ϕ′)
=

µλ(ϕ)

deg(ϕ)
= u(F, ϕ)

by Theorem 2.12.

The rest of this section is about approaching a g ∈ K[x], viewed as a set of points in
Irr(K). The following lemma shows the well-known fact: “all triangles in an ultrametric
space are isoceles”.

Lemma 3.24. Let (X,u) be an ultrametric space and a, b, c ∈ X. Then,

u(a, c) ̸= u(c, b) =⇒ min{u(a, c), u(c, b)} = u(a, b)
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Proof. We have min{u(a, c), u(c, b)} ≤ u(a, b) by the triangle inequality. Suppose that
min{u(a, c), u(c, b)} < u(a, b) and suppose without loss of generality that u(a, c) <
u(c, b). By the triangle inequality, we have

u(a, c) < min{u(a, b), u(b, c)} ≤ u(a, c)

which is a contradiction, hence min{u(a, c), u(c, b)} = u(a, b) as required.

Let (X,u) be an ultrametric space. Let S = {x1, . . . , xk} be a non-empty finite set
S ⊂ X. We define the radius of separation r(S) to be

r(S) =

{
−∞ if S is a single point

max{u(xi, xj) | i ̸= j} otherwise

Lemma 3.25. Let (X,u) be an ultrametric space. Let S = {x1, . . . , xk} be a non-empty
finite set S ⊂ X. Suppose y ∈ X satisfies r(S) < u(y, xi) for some i, then for all i ̸= j
we have u(y, xj) ≤ r(S).

Proof. The claim is vacuously true if S is a single point.
Choose any j ̸= i. By the ultrametric triangle inequality, we have

min{u(y, xi), u(xi, xj)} ≤ u(y, xj).

As u(xi, xj) < u(y, xi) by assumption, we have u(xi, xj) = u(y, xj) by Lemma 3.24 as
required.

Remark 3.26. The moral of the above lemma is that if you get closer than r(S) to S,
you are closest to a unique point of S and all other points of S are at least r(S) away.

Let g ∈ K[x] be non-constant and denote the set of its distinct irreducible factors
by F(g) := {G ∈ Irr(K) | G divides g}. Define the radius of separation of g to be
r(F(g)) and denote it r(g). In other words,

r(g) =

{
−∞ F(g) is a singleton

max{u(F,G) | F,G ∈ Irr(K), F and G divide g, F ̸= G} otherwise

Let us show how r(g) is related to Krasner’s constant. Recall that a non-constant
polynomial g ∈ K[x] is purely inseparable if g has exactly one root in an algebraic
closure. A non-constant g ∈ K[x] is separable if the number of distinct roots of g in
an algebraic closure is equal to the degree of g. It follows from these definitions that a
non-constant g ∈ K[x] is simultaneously separable and purely inseparable if and only if
deg(g) = 1. Let v be the unique extension of v to a fixed algebraic closure K of K.

Definition 3.27. Let g ∈ K[x] be non-constant, we define Krasner’s constant of g
to be

kras(g) =

{
−∞ if g is purely inseparable

max{v(θ′ − θ) | θ ̸= θ′ are roots of g in K} ∈ ΓQ otherwise
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By the henselian property, this definition does not depend on v.

Lemma 3.28. For all F,G ∈ Irr(K) with F ̸= G, we have u(F,G) ≤ kras(FG).

Proof. Let K be an algebraic closure of K and v an extension of v to K. Fix a θ ∈ Z(F )
and write Z(G) = {α1, . . . αdeg(G)}. We have

u(F,G) =
v(G(θ))

deg(G)
=

1

deg(G)

deg(G)∑
i=1

v(θ − αi) ≤ kras(FG)

because an average is bounded by the maximum of its terms.

Remark 3.29. Clearly for all non-constant h ∈ K[x], if h | g, then kras(h) ≤ kras(g).
Hence, r(g) ≤ kras(g) by the lemma above.

We conclude this section by giving a basic effective bound on Krasner’s constant of
a separable polynomial.

Lemma 3.30. Let f ∈ K[x] be a monic, separable polynomial with deg(f) ≥ 2. Write

∆ for the discriminant, let S := {v(a0)n , . . . , v(an−1)
1 }. Then,

kras(f) ≤
v(∆f )

2
− (n(n− 1)− 2)

2
min(S).

Proof. We will work inside a fixed algebraic closureK ofK, denote the unique extensions
of v to K by v.

Let f = xn + an−1x
n−1 + · · · + a0, fix some non-zero A ∈ K and let g = xn +

Aan−1x
n−1 + · · ·+Ana0. Note that f and g have the same degree and are both monic.

Moreover, α is a root of f if and only if β := Aα is a root of g. Let Z(f) = {α1, . . . , αn}
and Z(g) = {β1, . . . , βn} where βi = Aαi. We have

kras(g) = max{v(βi − βj) | i ̸= j}
= max{v(αi − αj) + v(A) | i ̸= j}
= max{v(αi − αj) | i ̸= j}+ v(A) = kras(f) + v(A).

Moreover we have

∆g =
∏
i<j

(βi − βj)2 =
∏
i<j

(Aαi −Aαj)
2

= A2
n(n−1)

2

∏
i<j

(αi − αj)
2

= An(n−1)∆f .

Let µ be the depth-zero valuation that acts on x−expansions as µ(a0+a1x+· · ·+arxr) =
min
0≤i≤r

{µ(ai)} (Gauss valuation).
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For any non-zero A ∈ K such that 0 ≤ µ(g), we have 0 ≤ v(βi) for all 1 ≤ i ≤ n
because valuation rings are integrally closed. This shows v(βi − βj) ≥ 0 for all i ̸= j.

Hence,
v(∆g)

2 ≥ kras(g), which shows

v(∆g)

2
≥ kras(f) + v(A).

Hence

n(n− 1)− 2

2
v(A) +

v(∆f )

2
≥ kras(f).

Note that

µ(g) ≥ 0⇐⇒ v(An−iai) ≥ 0 for all 0 ≤ i ≤ n− 1⇐⇒ −v(A) ≥ min(S)

and the result follows by taking any non-zero A ∈ K with v(A) = −min(S).

3.6 The defect

Let w be the unique extension of v to a finite extension L/K.

Definition 3.31. The defect of w/v is

d(w/v) =
[L : K]

e(w/v)f(w/v)
.

The characteristic exponent of (K, v) is the natural number p = char(kv) if
char(kv) > 0 and p = 1 otherwise. By a lemma of Ostrowski [13, Lemma 11.17], we have

d(w/v) = pk (13)

for some k ∈ N.
Let F ∈ Irr(K) and let vF be the valuation on K[x]/(F ) induced by vF , then by

definition
deg(F ) = d(vF /v)e(vF /v)f(vF /v).

Definition 3.32. We say that F ∈ Irr(K) is defectless if d(vF /v) = 1.

Obviously all linear F ∈ K[x] are defectless. We can find more examples using
Eq. (13). Clearly, if char(kv) = 0, then p = 1 so all F ∈ Irr(K) are defectless. If
p = char(kv) > 0, then each F ∈ Irr(K) with p ∤ deg(F ) is defectless.

Vaquié characterized the property of being defectless as follows [29], [20, Corol-
lary 6.1] or [21, Corollary 6.16].

Theorem 3.33. An F ∈ Irr(K) is defectless if and only if vF is inductive.

We will now present a related characterization of this property in terms of “weighted
values”. Fix an F ∈ K[x] and for arbitrary non-constant g ∈ K[x], define

wt(g) =
vF (g)

deg(g)
∈ ΓQ
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Remark 3.34. Observe that if g is monic and irreducible, by definition wt(g) = u(F, g).

Assume that n := deg(F ) > 1 and for each 1 < m ≤ n consider the following set

Wm = {wt(g) | g ∈ K[x], g monic, and 1 ≤ deg(g) < m}.

Clearly, W2 ⊂W3 ⊂ · · · ⊂Wn.
The following theorem is also due to Vaquié [29], see also [7, Theorem 5.7].

Theorem 3.35. An F ∈ Irr(K) with n := deg(F ) > 1 is defectless if and only if Wm

contains a maximal element for each 1 < m ≤ n.

Definition 3.36. The Okutsu bound of a defectless F ∈ Irr(K) of degree n := deg(F )
is δ(F ) = max(Wn) if n > 1 and δ(F ) = −∞ otherwise.

By Remark 3.34, we immediately get the following.

Corollary 3.37. Let F ∈ Irr(K) be a defectless polynomial, then for all ϕ ∈ Irr(K)

u(F, ϕ) > δ(F ) =⇒ deg(ϕ) ≥ deg(F ).

Even if F is not defectless, the sets Wm for each 1 < m ≤ n are bounded above by
an element of ΓQ provided F is separable.

Proposition 3.38. [4, Corollary 3.3] If F is separable, then every γ ∈ Wn satisfies
γ ≤ kras(F ).

Hence, Corollary 3.37 also holds with “defectless” replaced by “separable” and δ(F )
by kras(F ).

If F ∈ Irr(K) is not separable and d(vF /v) > 1, the set Wn may be unbounded in
ΓQ.

Remark 3.39. By Theorem 3.35, it is impossible to get arbitrarily close to a defectless
polynomial by a monic polynomial of strictly lower degree. In particular if (µ, ϕ) is a
type such that inµ(ϕ) | inµ(F ), then deg(ϕ) | deg(F ) by Theorem 3.18 so if additionally
u(F, ϕ) > δ(F ), we have deg(ϕ) = deg(F ) by Corollary 3.37.

4 Polynomial factorization over henselian fields

4.1 Types partition the set of irreducible factors

In this section, we think of a type (µ, ϕ) as “seeing” a certain subset of the distinct
irreducible factors of g ∈ K[x] via the relation “inµ(ϕ) | inµ(g)” in view of Theorem 3.18.
We prove some technical results that will enable us to show termination of our algorithms.

Fix a monic, non-constant g ∈ K[x] and a type (µ, ϕ). For the rest of this section
assume that g is square-free (but not necessarily separable).
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Definition 4.1. For all λ ∈ ΓQ consider the following sets.

F(g) = {G ∈ Irr(K) | G divides g}.
Fµ(g) = {G ∈ F(g) | µ < vG}.
Fµ,ϕ(g) = {G ∈ F(g) | µ < vG and t(µ, vG) = [ϕ]µ}.

Fµ,ϕ(g)(λ) = {G ∈ Fµ,ϕ(g) | vG(ϕ) = λ}.

Remark 4.2. By Theorem 3.18, we have Fµ,ϕ(g) = {G ∈ F(g) | inµ(ϕ) divides inµ(G)}.

Lemma 4.3. The following are equivalent.

(1) Fµ,ϕ(g) ̸= ∅.
(2) inµ(ϕ) | inµ(g).
(3) ℓ(N+

µ,ϕ(g)) > 0.

Proof. Since Fµ,ϕ(g) = {G ∈ F(g) | inµ(ϕ) divides inµ(G)}, inµ(ϕ) is a prime element,
and inµ(ab) = inµ(a) inµ(b) for all a, b ∈ K[x], we have (1)⇐⇒ (2).

By Eq. (12), the non-negative integer ℓ(N+
µ,ϕ(g)) is the order with which the prime

inµ(ϕ) divides inµ(g), which shows (2)⇐⇒ (3).

Definition 4.4. We say that (µ, ϕ) singles out an irreducible factor of g if Fµ,ϕ(g) =
{G} for some G ∈ Irr(K) and deg(ϕ) = deg(G).

So the above definition implies that the type (µ, ϕ) singles out an irreducible factor
of g if and only if inµ(ϕ) | inµ(G) for a unique G ∈ F(g) and ϕ satisfies the additional
condition that deg(ϕ) = deg(G).

Remark 4.5. If (µ, ϕ) singles out an irreducible factor G of g, then inµ(G) = inµ(ϕ) by
Theorem 3.18, deg(G) = deg(ϕ) and G is monic. Hence, G ∈ KP(µ). It follows from
Theorem 3.33 that if G is not defectless, then the valuation µ is not inductive; if µ is
inductive and G ∈ KP(µ) is not defectless, we have vG = [µ;G,∞], contradiction.

The property “singles out” can be completely characterized in terms of the length of
the principal polygon of g.

Proposition 4.6. The following are equivalent.

(1) (µ, ϕ) singles out an irreducible factor of g
(2) ℓ(N+

µ,ϕ(g)) = 1

Proof. By Theorem 3.18, for each G ∈ Irr(K), if inµ(ϕ) | inµ(G), then either ϕ = G
or Nµ,ϕ(G) is one sided of slope −vG(ϕ) < −µ(ϕ). In both cases, we have Nµ,ϕ(G) =
N+

µ,ϕ(G) by definition of principal Newton polygon. So, if Fµ,ϕ(g) = {G}, then ℓ(N+
µ,ϕ(g)) =

ℓ(N+
µ,ϕ(G)) = deg(G)/ deg(ϕ) where the first equality is by Theorem 3.9 and Eq. (12),

and the second equality is by Theorem 3.18. Clearly, (1) =⇒ (2).
Conversely, since ℓ(N+

µ,ϕ(g)) ≥ ℓ(N
+
µ,ϕ(FG)) ≥ 2 for F,G ∈ Fµ,ϕ(g) with F ̸= G, the

set Fµ,ϕ(g) is a one element set and hence (2) =⇒ (1).
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Proposition 4.7. Suppose that inµ(ϕ) | inµ(g) and ϕ ∤ g. Then,

Fµ,ϕ(g) =
⊔
λ

Fµ,ϕ(g)(λ)

where −λ runs over the slopes of sides of N+
µ,ϕ(g).

Proof. Let g1 ∈ K[x] be the product of all G ∈ Fµ,ϕ(g) and define g2 := g/g1. By
Theorem 3.9, we have N+

µ,ϕ(g) = N+
µ,ϕ(g1) +N+

µ,ϕ(g2). By construction inµ(ϕ) ∤ inµ(g2),
and hence ℓ(N+

µ,ϕ(g2)) = 0 which shows that N+
µ,ϕ(g2) is a single point of the form

(0, α) ∈ Q×ΓQ. Hence N
+
µ,ϕ(g) is N

+
µ,ϕ(g1) shifted vertically by α, so in particular these

two polygons have the same number of sides, length of sides and slopes of sides.
By our assumptions and Theorem 3.18, Fµ,ϕ(g) ̸= ∅, each G ∈ Fµ,ϕ(g) satisfies

Nµ,ϕ(G) = N+
µ,ϕ(G) and this polygon is one sided of slope −vG(ϕ). Hence, the set

{slope(S) | S is a side of N+
µ,ϕ(g1)} is equal to {−vG(ϕ) | G ∈ Fµ,ϕ(g)} by Theorem 3.9,

which completes the proof.

Lemma 4.8. Suppose (µ, ϕ) singles out an irreducible factor G ∈ F(g). If ϕ ̸= G, then

u(G,ϕ) =
λ

deg(ϕ)

where −λ = slope(N+
µ,ϕ(g)).

Proof. Follows immediately from Theorem 3.18 and Proposition 4.6.

We will now show how Fµ,ϕ(g)(λ) can be partitioned according to the tangent direc-
tions of the augmented valuation µλ = [µ;ϕ, λ].

Definition 4.9.

Tµ(g) = {t(µ, vG) | G ∈ Fµ(g)}.

Proposition 4.10. Suppose that inµ(ϕ) | inµ(g) and ϕ ∤ g. Let −λ be the slope of a side
of N+

µ,ϕ(g) and let µλ = [µ, ϕ, λ]. For each t ∈ Tµλ
(g) with t ̸= [ϕ]µλ

make an arbitrary

choice ϕ
′
t ∈ t, then

Fµ,ϕ(g)(λ) =
⊔

t∈Tµλ
(g), t ̸=[ϕ]µλ

F
µλ,ϕ

′
t
(g).

Proof. The LHS is contained in the RHS by Lemma 3.23.
Note that the RHS is cointained in Fµλ

(g) and each G ∈ Fµλ
(g) satisfies λ = µλ(ϕ) ≤

vG(ϕ). So for each such G, we have λ < vG(ϕ) if and only if t(µλ, vG) = [ϕ]µλ
by

Theorem 3.18. Hence each G on the RHS satisfies vG(ϕ) = λ > µ(ϕ), which shows
t(µ, vG) = [ϕ]µ by Lemma 2.40 and hence G ∈ Fµ,ϕ(g)(λ).

If (µ, ϕ1) and (µ, ϕ2) are any two types such that G ∈ Fµ,ϕ1(g) ∩ Fµ,ϕ2(g) for some
G ∈ Irr(K), we have [ϕ1]µ = t(µ, vG) = [ϕ2]µ by Theorem 3.18, so RHS is a disjoint
union because the ϕ′t come from distinct tangent directions.
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Definition 4.11. Let T = {(µ1, ϕ1), . . . , (µk, ϕk)} be a non-empty finite multi-set of
types such that for all 1 ≤ i, j ≤ k

(1) Fµi,ϕi
(g) ̸= ∅

(2) Fµi,ϕi
(g) ∩ Fµj ,ϕj

(g) ̸= ∅ if and only if i = j
(3)

⋃
Fµi,ϕi

(g) = F(g)

We say that T partitions g.

Remark 4.12. These conditions imply that the elements of the multiset T are distinct,
in other words T equals its underlying set. Moreover, |T | ≤ |F(g)| and every G ∈ F(g)
has G ∈ Fµi,ϕi

(g) for a unique index i.
For a pair of distinct types in T , it may still happen that either µi = µj or ϕi = ϕj.

Proposition 4.13. There exists a set of types that partitions g.

Proof. Choose any γ ∈ Γ := Γv that satisfies γ < min{v(θ) | θ ∈ K, g(θ) = 0} and
let µ be the depth-zero valuation µ = [v;x, γ]. Let f = a0 + a1x + · · · + arx

r be the
x−expansion of f ∈ K[x], then by construction

µ(f) = min
0≤i≤r

{v(ai) + γi} ≤ min
0≤i≤r

{vG(aixi)} ≤ vG(f)

for all G ∈ F(g). Since µ(x) = γ < v(θ) = vG(x), where θ ∈ Z(G) by construction, we
deduce t(µ, vG) = [x]µ which shows Fµ,x(g) = F(g) so the singleton {(µ, x)} partitions
g.

Remark 4.14. The values −v(θ) where θ ∈ Z(g), are the slopes of sides of the classical
Newton polygon Nv,x(g), which is easy to compute [3, Theorem 4.1].

Clearly, if T partitions g, then
⋃
Fµi,ϕi

(g) is a partition of F(g). It may happen that
two different sets of types that partition g determine the same partition of F(g).

Definition 4.15. Let X be a set and α, β be two partitions of X. We say that β is
finer than α if every element of β is a subset of some element of α. We say β is
strictly finer than α if β is finer than α and some element of β is a proper subset of
an element of α.

If T, T ′ are two sets of types that partition g, we say T ′ is (strictly) finer than T
if the corresponding statement holds for the partitions of F(g) determined by T ′ and T
respectively.

Before we state and prove the final result of this section, we introduce some notation.
For a Newton polygon N , we denote the set of slopes of its sides by

slopes(N) := {slope(S) | S is a side of N}.

Recall that for a type (µ, ϕ) and −λ ∈ slopes(N+
µ,ϕ(g)), we denote µλ := [µ;ϕ, λ].

The result below is the main result of this section. It follows at once from Proposi-
tion 4.7 and Proposition 4.10.
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Theorem 4.16. Let T be a set of types that partitions g and suppose that all (µ, ϕ) ∈ T
satisfy ϕ ∤ g. For each triple ((µ, ϕ), λ, t) where (µ, ϕ) ∈ T, −λ ∈ slopes(N+

µ,ϕ(g)) and
t ∈ Tµλ

(g)\{[ϕ]µλ
}, make an arbitrary choice ϕ′(µ,ϕ),λ,t ∈ t. Then, the multiset

T ′ = {(µλ, ϕ′(µ,ϕ),λ,t) : (µ, ϕ) ∈ T, −λ ∈ slopes(N+
µ,ϕ(g)), t ∈ Tµλ

(g)\{[ϕ]µλ
}}

partitions g and T ′ is finer than T .

Remark 4.17. Let g = G1 . . . Gk be the irreducible factorization of g, then Theorem 4.16
gives us a recipe to produce a sequence T1, T2, . . . of sets of types that partition g such
that Ti+1 is finer than Ti. Clearly, if we can ensure that Ti+1 is strictly finer than Ti
sufficiently many times in this sequence, we will reach the finest partition F(g) =

⊔
{Gi}.

Definition 4.18. Let T be a set of types that partitions g. We say that T singles out
the irreducible factors of g if the partition determined by T is the finest partition
and each (µ, ϕ) ∈ T singles out an irreducible factor of g.

4.2 An OM factorization algorithm

The aim of this section is to make the “refinement step” Theorem 4.16 constructive and
show this leads to a polynomial factorization algorithm.

Let g ∈ K[x] be monic, square-free and let T be a set of types that partitions
g. We can assume that all (µ, ϕ) ∈ T satisfy ϕ ∤ g, otherwise we can divide g by
ϕ and consider T\{(µ, ϕ)}. Let (µ, ϕ) ∈ T , then Fµ,ϕ(g) is non-empty and the set
{−vG(ϕ) | G ∈ Fµ,ϕ(g)} coincides with the set of slopes of sides of N+

µ,ϕ(g). Let −λ be
one of these slopes and consider the augmented valuation µλ = [µ;ϕ, λ]. Let e be the
relative ramification index of µλ and let u ∈ Gµλ

be a unit of grade eµλ(ϕ). Denote the
residual polynomial operator Rµλ,ϕ := Rµλ,ϕ,u suppressing its dependence on u in view
of Remark 2.35. We give a constructive version of Proposition 4.10 below.

Algorithm 1: extensions

Input:
� a non-trivially valued henselian field K := (K, v)
� a monic, square-free g ∈ K[x];
� a type (µ, ϕ) with inµ(ϕ) | inµ(g) and ϕ ∤ g
� a λ ∈ ΓQ such that −λ is the slope of a side of N+

µ,ϕ(g).

Output:

� the list of types (µλ, ϕ
′
t) where ϕ

′
t is a choice ϕ′t ∈ t for each t ∈ Tµλ

(g) with
t ̸= [ϕ]µλ

1 compute and factorize the residual polynomial Rµλ,ϕ(g) = ψn1
1 . . . ψns

s into
powers of distinct monic irreducible polynomials ψi ∈ Irr(κµλ

)
2 for each 1 ≤ i ≤ s choose ϕ′i ∈ KP(µλ) such that Rµλ,ϕ(ϕ

′
i) = ψi, Eq. (8)

3 return the list [(µλ, ϕ
′
i) | 1 ≤ i ≤ s]
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Proposition 4.19. The algorithm Algorithm 1 has the right output.

Proof. Factorize inµλ
(g) = tm0

0 tm1
1 . . . tmk

k , where ti ∈ Gµλ
are pairwise non-associate

homogeneous prime elements and ni > 0 for all 0 ≤ i ≤ k. By Eq. (5), we have

inµλ
(g) = lcµλ

(g) inµλ
(ϕ)ℓ0udRµλ,ϕ(g)

where ℓ0 = ℓ(N+
µλ,ϕ

(g)) is the order with which the prime inµλ
(ϕ) divides inµλ

(g) and
d ∈ N. Since the elements ψi ∈ Gµλ

are pairwise non-associate prime elements, we
have s = k and without loss of generality ℓ0 = n0 and mi = ni for all 1 ≤ i ≤ s. By
Eq. (8), the classes [ϕ′i] are distinct for all 1 ≤ i ≤ k. Hence, the inµλ

(ϕ′i) are pairwise
non-associate, because inµλ

(Q) | inµλ
(Q′)⇐⇒ [Q]µλ

= [Q′]µλ
for all Q,Q′ ∈ KP(µλ) by

Theorem 2.34. Hence,

inµλ
(g) ∼unit inµλ

(ϕ)ℓ0 inµλ
(ϕ′1)

n1 · · · · · inµλ
(ϕ′s)

ns

is the prime factorization of inµλ
(g).

By Theorem 3.18 a G ∈ Fµλ
(g) satisfies λ < vG if and only if t(µλ, vG) = [ϕ]µλ

if
and only if inµλ

(G) is a positive integer power of the prime inµλ
(ϕ). We deduce that

{[ϕ′i]µλ
| 1 ≤ i ≤ s} = Tµλ

(g)\[ϕ]µλ
.

By the above, we can obtain a set of types T ′ that is finer than T . This leads to
an algorithm that either correctly guesses some irreducible factors of g or outputs a list
of types that singles out all the irreducible factors of g. Moreover, each type in the list
approximates its irreducible factor with quality at least γ ∈ ΓQ.
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Algorithm 2: OMalgorithm

Input:
� a non-trivially valued henselian field (K, v)
� a monic, square-free g ∈ K[x]
� a γ ∈ ΓQ

Output:

� either a non-empty list that consists of some elements of F(g) or
� a non-empty list T , of types, that singles out the irreducible factors of g, such
that each (µ, ϕ) ∈ T satisfies ϕ ̸∈ F(g) and u(Gµ,ϕ, ϕ) > γ where Gµ,ϕ ∈ F(g) is
the irreducible factor singled out by (µ, ϕ).

1 T ← an arbitrary choice of a list of types that partitions g; for example
T ← [(µ, ϕ)] as in Proposition 4.13

2 if some (µ, ϕ) ∈ T satisfies ϕ | g then
3 return the list [ϕ : (µ, ϕ) ∈ T and ϕ | g]

4 else if for all (µ, ϕ) ∈ T , we have ℓ(N+
µ,ϕ(g)) = 1 and

− slope(N+
µ,ϕ(g))

deg(ϕ) > γ then

5 return T

6 else
7 Initialise an empty list T ′ = []
8 forall (µ, ϕ) ∈ T do
9 forall S ∈ sides(N+

µ,ϕ(g)) do

10 initialise an empty list E = [], λ← − slope(S)
11 E ← extensions(µ, ϕ, λ, g)
12 append the contents of E to T ′

13 T ← T ′ and goto 2.

46



Proposition 4.20. If Algorithm 2 terminates, it has the right output.

Proof. We will go through the flow of the algorithm starting from the beginning. If 2.
and 4. are not satisfied, then the set T ′ in 13. is a set of types that partitions g by
Theorem 4.16 and Proposition 4.19. Hence, whenever we are are in 2. or 4., we can
assume the set T partitions g. If 2. is satisfied, the output is clearly correct. If 4. is
satisfied, then 2. wasn’t satisfied so all (µ, ϕ) ∈ T have ϕ ∤ g and we deduce the output
is correct by Proposition 4.6 and Lemma 4.8.

The output of the above algorithm naturally leads to the following.

Definition 4.21. Let g ∈ K[x] be a monic, square-free polynomial. Let g = G1 · · · · ·Gk

where Gi ∈ Irr(K) for all 1 ≤ i ≤ k be its factorization into irreducibles. Let γ ∈ ΓQ. A
γ-factorization of g is a multiset {ϕ1, . . . , ϕk} where ϕi ∈ Irr(K), such that, up to a
suitable re-ordering, the following hold for each 1 ≤ i ≤ k.

(1) deg(ϕi) = deg(Gi).
(2) u(Gi, ϕi) > γ.

For example the set F(g) is a γ−factorization of g for all γ ∈ ΓQ.

Remark 4.22. Clearly, if S1 is a γ−factorization of g1 and S2 is a γ−factorization of
g2, then S1 ∪ S2 (union of multisets) is a γ−factorization of g1g2.

We can compute γ−factorizations using Algorithm 2 as follows.
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Algorithm 3: OMfactorization

Input:
� a non-trivially valued henselian field K := (K, v)
� a monic, square-free g ∈ K[x]
� a γ ∈ ΓQ

Output:

� a γ−factorization of g

1 FACTORS← []
2 f ← g
3 T ← OMalgorithm(K, f, γ)
4 if f = 1 then
5 return FACTORS

6 else if T is a list of types then
7 append the contents of the list [ϕ : (µ, ϕ) ∈ T ] to FACTORS
8 return FACTORS

9 else
10 append the contents of the list T to FACTORS

11 f ← f∏
G∈T G ; divide f by the product of G ∈ T

12 goto 3.

Proposition 4.23. If Algorithm 3 terminates, it has the right output.

Proof. Suppose the algorithm is running. It follows from Algorithm 2, that if 6. is true,
Algorithm 3 immediately terminates. Suppose that Algorithm 3 terminated in 4., then
in particular 6. was never true while the algorithm was running, so the list FACTORS
consists of all the elements of F(g), which is clearly the right output.

If Algorithm 3 terminated in 6., this was preceded by some number (possibly zero) of
instances when Algorithm 2 returned some subset of F(g) and these irreducible factors
were “divided out” in 11. and subsequently stored in the list FACTORS. If there were
zero such instances, then Algorithm 3 has the right output because it is just the output
of Algorithm 2 “with the valuations dropped”. Suppose there was at least one instance
when Algorithm 2 returned a list of elements of F(g) and let h be the product of all
ϕ ∈ FACTORS immediately before 6. is checked, then fh = g. Hence, the output is
correct in this case by Remark 4.22.

4.3 Termination

Let us state the strongest known conditions under which there exist computer algorithms
performing all steps of Algorithm 2 (and hence also Algorithm 3).

Conditions 4.24. Suppose that the rational rank of Γ (and hence also the rank; Propo-
sition 1.20) is finite and we have algorithms performing the following tasks.
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� Field operations in K and k and computation of the valuation v : K× ↠ Γ.
� Computation of the residue class Ov ↠ k and a section k → Ov.
� Polynomial factorization in κ[y] for each finite extension of κ/k.

If Conditions 4.24 are satisfied, there exist algorithms performing all steps of Algorithm 2
(and hence Algorithm 3).

Indeed, we only need to perform the following tasks to carry out all steps of the
algorithm.

� Computation of Newton polygons.
� Computation of residual polynomial operators R : K[x] −→ κ[y].
� Construction of Q ∈ K[x] such that R(Q) = ψ for each ψ ∈ Irr(κ)\{y}.

All the above can be carried out for inductive valuations by recursive procedures de-
scending their MLV chains. See, [8], and for greater detail [18].

Remark 4.25. It has been recently shown that the graded ring of a residue-transcendental
µ on K[x] is isomorphic to the semigroup ring kµ[t

Γµ ] if we consider a certain twisted
multiplication on Gµ. This twisted multiplication can be made to agree with the usual
one for instance when Γ has finite rational rank [6, Theorem 1.2]. It may be possible to
exploit this isomorphism to give an alternative proof of [8, Theorem 5.16]; a result that
enables the computation of the operators R : K[x] −→ κ[y] in practice.

The following characterization of the property “discrete and rank-one” for ordered
abelian groups, will be frequently used.

Proposition 4.26. Let Γ be an ordered abelian group and assume Γ ̸= {0}. The follow-
ing are equivalent.

(1) every infinite strictly increasing sequence is unbounded
(2) Γ is discrete and rank one.

Proof. =⇒
Suppose (1) holds and Γ has no least positive element. Then, there exists a strictly

decreasing infinite sequence {xn}n≥0 ⊂ Γ with xn > 0 for all n. Thus, the sequence
{−xn}n≥0 is a strictly increasing infinite sequence bounded above by 0, contradiction.
This shows Γ has a least positive element.

Let {0} ⊊ H ⊆ Γ be a convex subgroup, we want to show H = Γ. Fix some positive
h ∈ H and note that the infinite sequence h < 2h < 3h < . . . is strictly increasing,
so for each positive g ∈ Γ there is some n ∈ N such that g ≤ nh by (1). Hence the
interval [0, nh]Γ contains g, because H is convex. For negative g ∈ Γ, we obtain g ∈ H
by applying the previous argument to −g. Hence H = Γ as required.
⇐=
It is well-known that the discrete rank one condition implies that Γ is order-isomorphic

to Z with the standard ordering. Hence (1) holds for Γ because it is clearly preserved
by order-isomorphisms.
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We say a monic, square-free polynomial g ∈ K[x] is defectless if all G ∈ F(g) are
defectless. Abuse notation and write Γ := Γv.

Proposition 4.27. If every infinite strictly increasing sequence in Γ is unbounded and
g is defectless, then Algorithm 2 terminates.

Proof. If we “guess” an exact factor of g during the flow of the algorithm, it gets detected
in 2. and the algorithm terminates. Suppose this does not happen. If (µ, ϕ) is a type
and G ∈ Irr(K) satisfies inµ(ϕ) | inµ(G) and ϕ ̸= G, then each ϕ′ ∈ t(µλ, vG) satisfies
u(G,ϕ′) > u(G,ϕ) by Lemma 3.23. Notice that for any such type, we have deg(ϕ) |
deg(G) by Theorem 3.18, which shows u(G,ϕ) = v(ResG,ϕ)

deg(G) deg(ϕ) ∈
1

deg2(G)
Γ ⊂ ΓQ. By our

assumption on sequences, 1
deg2(G)

Γ contains no strictly increasing bounded sequences.

Hence, in finitely many steps u(G,ϕ) > r(g) for some (µ, ϕ) ∈ T and some G ∈ F(g),
which shows vG(ϕ) > vF (ϕ) for all F ∈ F(g) with F ̸= G by Lemma 3.25. So if we denote
λ = vG(ϕ), we have Fµ,ϕ(g)(λ) = {G} and hence Fµλ,ϕ′(g) = {G} where ϕ′ ∈ t(µλ, vG)
is an arbitrary choice. Since g is defectless, we are guaranteed to reach u(G,ϕ′) > δ(G)
in finitely many such “improvement steps”, by our assumption on sequences. Hence
deg(ϕ′) = deg(G) by Remark 3.39 (nothing needs to be said if deg(G) = 1). Hence,
after finitely many iterations, the partition determined by T singles out the irreducible
factors of g. Moreover, the condition u(G,ϕ) > γ will hold for all (µ, ϕ) ∈ T , in finitely
many steps too, again by our assumption on sequences.

Remark 4.28. The only proof of termination of a similar algorithm, that is available
in the literature, seems to be [11, Theorem 4.8].

Proposition 4.29. If every infinite strictly increasing sequence in Γ is unbounded, then
every separable G ∈ Irr(K) is defectless.

Proof. By Proposition 4.13, there exists a type (µ0, ϕ0) such that inµ0(ϕ0) | inµ0(G) and
µ0 is a depth-zero valuation. If G = ϕ0, then vG = [µ0;G,∞] so G is defectless by
Theorem 3.33. Otherwise, we obtain a type (µ1, ϕ1) such that inµ1(ϕ1) | inµ1(G) and
u(G,ϕ1) > u(G,ϕ0) by Lemma 3.23. Continuing in this fashion, either G = ϕi ∈ KP(µi)
for some i in which case G is defectless by Theorem 3.33 or the sequence u(G,ϕi) is
infinite and strictly increasing, hence there exists a j such u(G,ϕj) > kras(F ) so for
all i ≥ j, we have deg(G) = deg(ϕi) by Proposition 3.38 and Theorem 3.18. Hence,
G ∈ KP(µi), so again G is defectless by Theorem 3.33.

Remark 4.30. By [13, Corollary 11.28], it follows that if (K, v) is a local field and
(K, v) ⊂ (L,w) is a finite extension, then d(w/v) = 1. Hence all F ∈ Irr(K) are
defectless. It follows by Proposition 4.27 that over local fields Algorithm 2 terminates
for arbitrary input polynomials.

Example 4.31. There exists a henselian valued field (K, v) whose value group Γ is
discrete and of rank one and not all F ∈ Irr(K) are defectless [13, Example 11.40].
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4.4 Computation of splitting fields

Fix an algebraic closure K of K and let v be the unique extension of v to K. We recall
Krasner’s lemma.

Theorem 4.32. [10, Theorem 4.1.7] Let α ∈ K and let G = (x− α1)(x− α2) . . . (x−
αn), α1 = α, be its minimal polynomial over K. Suppose β ∈ K satisfies

v(β − α) > max{v(αi − α) | αi ̸= α} =: kras(G).

Then K(α, β) is purely inseparable over K(β). In particular, if α is separable, then
α ∈ K(β).

Corollary 4.33. Let G ∈ Irr(K) be a separable polynomial. Suppose a ϕ ∈ Irr(K)
satisfies deg(ϕ) = deg(G) and u(G,ϕ) > kras(G). Then, ϕ is separable, and if we
denote Z(G) = {α1, . . . , αn}, Z(ϕ) = {β1, . . . , βn}, there exists a renumbering such that
K(αi) = K(βi) for all 1 ≤ i ≤ n.

Proof. Let us show that the assumption u(G,ϕ) > kras(G) implies that for each i ∈
{1, . . . , n} there exists a unique j ∈ {1, . . . , n} such that

v(βi − αj) > kras(G).

Fix an i, there exist a j as above since u(G,ϕ) is the average of v(βi−αj) where j varies
over {1, . . . , n} For a fixed i, a j as above is unique because if j′ also has this property,
we would have

v(βi − αj) > kras(G) ≥ v(αj − αj′)

and similarly

v(βi − αj′) > kras(G) ≥ v(αi − αj′).

However, this contradicts the ultrametric triangle inequality, which says

v(αi − αj′) ≥ min{v(βi − αj), v(βi − αj′)}.

Thus after renumbering we can assume that for each i we have

v(βi − αi) > kras(G).

By Theorem 4.32, we conclude αi ∈ K(βi) and hence K(βi) = K(αi) by equality of
degrees. In particular, the βi (and therefore ϕ) are separable over K.

Remark 4.34. Hence G,ϕ ∈ Irr(K) satisfying conditions of Corollary 4.33 have the
same splitting field. This implies that if g ∈ K[x] is monic, separable and {ϕ1, . . . ϕk} is
any kras(g)−factorization of g, then g and h = ϕ1 . . . ϕk have the same splitting field;
renumber the indices so that each pair (Gi, ϕi) satisfies conditions of Corollary 4.33 and
use that the splitting field of g is the compositum of the splitting fields of the Gi.

This leads to the following.
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Algorithm 4: Splitting field

Input:
� a non-trivially valued henselian field K := (K, v)
� a monic, separable g ∈ K[x]

Output:

� The splitting field of g

1 γ ← any value ≥ kras(g)
2 L← K
3 T ← OMfactorization(L, g, γ)
4 if g splits completely over L; | T | = deg(g) then
5 return L

6 else
7 choose any ϕ ∈ T with deg(ϕ) > 1
8 L← L[x]/(ϕ) and w ← vϕ, the unique extension of v to L
9 L← (L,w)

10 goto 3.

Lemma 4.35. Suppose (K, v) satisfies Conditions 4.24 and every strictly increasing
infinite sequence in Γ is unbounded, then for each separable ϕ ∈ Irr(K), the extension
field (L,w) := (K[x]/(ϕ), vϕ) satisfies Conditions 4.24.

Proof. Obviously, we could modify Algorithm 3 to simply store all the sequences of
augmentations that lead to a γ−factorization. Hence, we can assume we have access to
an MLV chain for vϕ (by storing only those augmentations µi −→ µi+1 with deg(µi) <
degi+1). Denote µ −→ vϕ, the last augmentation in such a chain and recall that vϕ =
[µ;ϕ,∞].

Let us show Conditions 4.24 hold for (L,w).
It is clear Γw has finite rational rank.
We can compute w using the fact that vϕ(f + (ϕ)) = vϕ(f) = min{µ(ai) | 0 ≤ i ≤ r}

where f = a0 + · · · + arϕ
r is the ϕ−expansion of f ̸∈ ϕK[x]. The computation of µ in

turn follows from having an MLV chain for it and Lemma 3.8.
We clearly have algorithms for field operations in L = K[x]/(F ).
Since an MLV chain provides a computation of kw, [20, Theorem 5.4], we have algo-

rithms for field operations in kw and we can compute the residue map Ow −→ kw.
The computation of a section kw −→ Ow, follows from [8, Proposition 5.11].
We have algorithms for performing polynomial factorization over all finite extensions

κ/kw, because we already assume this for k and kw/k is a finite extension.

Remark 4.36. Clearly if every strictly increasing infinite sequence in Γ is unbounded
and (K, v) ⊂ (L,w) is an arbitrary finite extension, the corresponding statement holds
for Γw as e(w/v)Γw ⊂ Γ. See also [14, Theorem 3.2].
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By Lemma 4.35, Remark 4.36 and Corollary 4.33, we immediately obtain (use Lemma 3.30
to pick γ > kras(g)) our final proposition, below.

Proposition 4.37. If every strictly increasing infinite sequence in Γ is unbounded, then
Algorithm 4 terminates and has the right output.

Compare the splitting field algorithm presented here with [17, Algorithm 6], the
starting point of this project.
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Enric Nart, and Joaquim Roé. Of limit key polynomials. Illinois Journal of Math-
ematics, 65(1):201–229, 2021.
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