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1. Introduction

The construction of integers out of natural numbers is one of the best-known examples of
group completion. While addition on the natural numbers is unital, associative and com-
mutative, it does not have inverse elements. In contrast, the set of integers with addition
is an abelian group. This construction is just a particular case of the group completion of
a commutative monoid. We can also construct group completions of topological monoids.
The set of path-connected components of a topological monoid is a monoid. If it is a
group, we say that the topological monoid is grouplike. If a map of topological monoids is
a group completion, it induces an ordinary group completion on the sets of path-connected
components. The orthogonal group O(Rn), consisting of isometries on Rn, is a prominent
example of a grouplike topological monoid. Its set of path-connected components is a
group with two elements {1,−1}.

Constructing group completions of topological monoids will be one of our main goals.
Group completion is usually dependent on the commutativity of a monoid. However,
note that the orthogonal group O(Rn) is not commutative while {1,−1} is. This suggests
that one could impose a condition weaker than commutativity on topological monoids to
construct group completions. The commutativity of topological monoids is indeed often
too restrictive. A common and better type of topological space is an E∞ space, which has
a multiplication that is commutative up to homotopy. See [May72] and [May77] for a good
exposition of these spaces. Group completions of monoids have been studied extensively,
for example, in [BP72], [May74], [Qui94] and [BM05]. Instead of changing the notion of
commutativity, it will be more convenient to replace the category of topological spaces
with a type of functor category and consider commutative monoids here. The category
we use is that of orthogonal spaces TopV . This approach will be similar to that of Steffen
Sagave and Christian Schlichtkrull in [SS13].

An orthogonal space is a continuous functor from the category V to the category of
(compactly generated weak Hausdorff) topological spaces Top, where V consists of all
finite-dimensional standard inner product spaces Rn as objects and all isometric embed-
dings as morphisms. An orthogonal space is also called a V-space. Many useful results
about V-spaces are found in [Lin13], [SS19] and [Sch18]. One of the motivating examples
is the V-space defined by orthogonal groups O : Rn 7→ O(Rn). Some other examples of
V-spaces are Vk : Rn 7→ Vk(Rn), where Vk(Rn) is the Stiefel manifold consisting of or-
thonormal k-frames in Rn, and Grk : Rn 7→ Grk(Rn), where Grk(Rn) is the Grassmannian
consisting of k-dimensional linear subspaces of Rn. The notion of (commutative) monoids
in sets or topological spaces can be generalized to V-spaces. These (commutative) monoids
are called (commutative) V-space monoids. The V-space O has a multiplication that makes
it a commutative V-space monoid.

We can turn a V-space into a topological space using a functor known as the homo-
topy colimit. This is a ‘fattened up’ colimit that preserves more information about a
V-space. The homotopy colimit of a commutative V-space monoid is an E∞-space. There
are various definitions of homotopy colimits, all weakly equivalent to each other. We give

2



examples of the V-spaces mentioned above. The topological spaces Vk(R∞), consisting of
orthonormal k-frames in R∞, and Grk(R∞), consisting of k-dimensional linear subspaces
of R∞, are homotopy colimits of Vk and Grk. The infinite orthogonal group O(R∞), con-
sisting of isometries that act non-trivially on a finite subspace of R∞ and are the identity
everywhere else, is a homotopy colimit of O. Another example is the additive Grassman-
nian. It is a commutative V-space monoid Gr : n 7→ Gr(Rn), where Gr(Rn) consists of all
linear subspaces of Rn. Its homotopy colimit is the topological monoid Gr(R∞) consist-
ing of all finite-dimensional linear subspaces of R∞. Multiplication is defined using the
direct sum, and this multiplication is not commutative. The corresponding set of path-
connected components is the monoid N≥0 of natural numbers, which is commutative. The
strict commutativity of topological monoids is indeed not necessary. We can construct a
morphism from Gr to some other commutative V-space monoid that will then realize the
group completion N≥0 → Z.

To construct group completions for all commutative V-space monoids, we use model
structures on categories. A category with a model structure is a model category. Daniel
Quillen introduced these in [Qui67, Chapter 1]. In a model category, every object X has
what is known as a fibrant replacementX → X̂. We will construct a model structure called
the group completion model structure on the category of commutative V-space monoids
CTopV , where the fibrant replacement is the group completion of every commutative V-
space monoid. We express this as the following theorem, where the subscripts of CTopV

denote the model structure and BF is a variation of the classifying space of a topological
monoid. This theorem is the analogue of [SS13, Theorem 1.3].

Theorem 1.1. A morphism of commutative V-space monoids M → N is a weak equiva-
lence in CTopV

gp if and only if the induced map

BF(hocolimV M)→ BF(hocolimV N)

is a weak homotopy equivalence. The fibrant objects in CTopV
gp are those objects that are

fibrant in CTopV
pos and grouplike. A fibrant replacement M → M̂ in CTopV

gp is a group
completion.

Conventions

We will assume that all categories are locally small, that is, all Hom-classes C (X,Y ),
with X and Y objects in a category C , are sets. Therefore a category C is small if and
only if its class of objects ObC is a set. The category of all topological spaces is denoted
as S. The more convenient category of compactly generated weak Hausdorff topological
spaces is denoted as Top. Unless specified, the term space will refer to an object in Top.
Other notable categories are the category Set of sets, sSet of simplicial sets and sTop
of simplicial spaces. Morphisms in these categories will be referred to as maps. When
necessary, we will specify if a map is continuous or simplicial.

There are definitions where a given morphism or natural transformation comes with
the condition that it must fit in a certain commutative diagram. We will not write out
these diagrams but provide a reference where they can be found. These conditions imply
that every sensible diagram that one expects to be commutative is commutative. Some
examples are the ‘coherence axioms’ mentioned in Definition 2.2 that are given in [Mac78].
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2. The category of K-spaces

While V-spaces will be our primary focus, we also need functor categories over other
small categories like N , with ObN = Z≥0, and the simplex category ∆. Therefore this
chapter will be dedicated to constructing K-spaces, which are continuous functors from a
small category K to the category of topological spaces. While topological spaces play an
essential role, it turns out that it is not very convenient to work with the category of all
topological space S. The category S is, in particular, not a closed symmetric monoidal
category. Therefore we will start by defining what symmetric monoidal categories are and
when such a category is closed. This is followed by an introduction to the category Top,
which is a closed subcategory of S. With this convenient category, we can rigorously define
K-spaces.

2.1. Monoidal categories

Given categories C and D , let [D ,C ] denote the functor category. A functor D → C is
called a diagram if D is small. A category C is (co)complete if for all small categories
D and all diagrams F : D → C the (co)limit of F exists. It is bicomplete if it is both
complete and cocomplete. There exists a functor

c : C → [D ,C ]

that sends an object X ∈ ObC to the constant functor cX : d 7→ X. If C is (co)complete,
then the (co)limit is right (left) adjoint to c.

[D ,C ] C [D ,C ]
colim

c
⊥

c

lim
⊥

Proposition 2.1 ([Mac78, Section V.3]). If C is a (co)complete category and D a cate-
gory, then [D ,C ] is (co)complete.

If C is (co)complete, then (co)limits are defined level-wise: Let G : E → [D ,C ] be a
diagram and let the evaluation functor evd : [D ,C ] → C be defined by evd(F ) = F (d),
then we have limG : d 7→ lim(evd ◦G) and colimG : d 7→ colim(evd ◦G).

Definition 2.2 ([Mac78]). A monoidal category (C ,⊗, 1) is a category C together with
a functor (−) ⊗ (−) : C × C → C , called the tensor product, an object 1 ∈ ObC , called
the identity object, and natural isomorphisms a, l and r, called the associator, left unitor
and right unitor respectively, with components of the form

aX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z)
lX : 1⊗X → X

rX : X ⊗ 1→ X
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satisfying ‘coherence axioms’ given in [Mac78, Section VII.1].
A symmetric monoidal category is a monoidal category with an additional natural

isomorphism b, called the symmetry isomorphism, with components of the form

bX,Y : X ⊗ Y → Y ⊗X

satisfying ‘coherence axioms’ given in [Mac78, Section VII.7].
A permutative category is a symmetric monoidal category where a, l and r are identities.

In this case, the coherence axioms in [Mac78, Section VII.1] are automatically satisfied.

Definition 2.3. A symmetric monoidal category (C ,⊗, 1) is closed if for every X ∈ ObC
the functor (−) ⊗ X : C → C has a right adjoint [X,−] : C → C . The object [X,Y ] is
the internal hom of the objects X and Y .

Definition 2.4 ([Mac78]). A monoid in a monoidal category (C ,⊗, 1) is an object M ∈
ObC together with morphisms uM : 1→M and µM :M ⊗M →M , called the unit and
multiplication respectively, satisfying conditions given in [Mac78, Section VII.3]. If C is
symmetric then a monoid is commutative if µM ◦ bM,M = µM .

A morphism of monoids is a morphism f ∈ C (M,N), with M and N monoids, such
that f ◦µM = µN ◦ (f ⊕f) and f ◦uM = uN . Let Mon(C ) denote the category of monoids
and morphisms of monoids in C and let CC denote the full subcategory of commutative
monoids in Mon(C ).

A typical example of a tensor product is the (cartesian) product of two objects, given
that such products exist. In a complete category, these certainly exist. Many examples of
symmetric monoidal categories are of this form.

Proposition 2.5. Let C be a complete category, with product × and terminal object ∗,
then (C ,×, ∗) is a symmetric monoidal category.

Proof. The required natural isomorphisms follow directly from the universal property of
finite products.

Example 2.6. The category Set of sets is bicomplete. Let D be a small category and
F : D → Set a diagram. Its limit is

limF =

{
(xd)d ∈

∏
d∈ObD

F (d)

∣∣∣∣∣ ∀f ∈ D(d0, d1) : xd1 = F (f)(xd0)

}
,

which is a subset of the cartesian product
∏

d∈ObD F (d). Its colimit is

colimF =

( ∐
d∈ObD

F (d)

)
/ ∼,

which is a quotient of the disjoint union
∐

d∈ObD F (d), where the equivalence relation
∼ is generated by the relation, x ∼ y if there exists morphism f ∈ D(d0, d1) such that
y = F (f)(x), for x ∈ F (d0), y ∈ F (d1). Thus (Set,×, ∗), with × the cartesian product
and ∗ the singleton set, is a symmetric monoidal category. Let X, Y and Z be sets and let
[X,Y ] = Set(X,Y ), then the bijection Set(X × Y,Z) ∼= Set(X, [Y,Z]) makes Set closed.
Monoids in Set are ordinary monoids, and morphisms of monoids in Set are monoid
homomorphisms.
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Example 2.7. LetCat be the category of small categories and functors. Then (Cat,×,1),
with 1 the trivial category containing a single object and morphism, is a closed symmetric
monoidal category as mentioned in [Mac78, Section VII.7]. The internal-hom of small
categories D and C is the functor category [D ,C ], justifying this notation.

Example 2.8. The category S of all topological spaces is bicomplete. A limit is con-
structed by taking the limit in Set and giving it the subspace topology via the inclusion
limF ⊆

∏
d F (d). Similarly, a colimit is constructed by taking the colimit in Set and

giving it the quotient topology via the quotient map
∐

d F (d) → colimF . Thus (S,×, ∗)
is a symmetric monoidal category. However, it is not closed by [Bor94, Proposition 7.1.2].

Example 2.9. Let ∆ be the simplex category, with objects finite ordered sets [p] =
{0, . . . , p} and morphisms order-preserving maps. For a category C we let sC = [∆op,C ]
denote the category of simplicial objects in C . The category sSet = [∆op,Set] of simplicial
sets is bicomplete by Proposition 2.1. Thus it is also a symmetric monoidal category. It
is also closed: Given simplicial sets K and L the internal-hom is the simplicial set [K,L]
with set of p-simplices [K,L]p = sSet(K×∆[p], L), as shown in [Hov99, Section 3.1] after
Remark 3.1.7. The internal-hom [K,L] is usually called the mapping space and denoted
as Map(K,L).

Example 2.10. Let V be the category with the standard inner product spaces Rn as
objects, for all n ∈ Z≥0, and the isometric embeddings as morphisms. The canonical
isomorphism Rn ⊕ Rm ∼= Rn+m makes the direct sum a functor (−) ⊕ (−) : V × V → V.
The triple (V,⊕,R0) is a permutative category.

We introduce monoidal functors between monoidal categories. They prove to be useful
since they preserve monoids.

Definition 2.11. Amonoidal functor (D ,⊗D , 1D)→ (C ,⊗C , 1C ), of monoidal categories,
is a functor F : D → C , with a natural transformation with components of the form

F (X)⊗C F (Y )→ F (X ⊗D Y )

and a morphism 1C → F (1D), satisfying conditions given in [Mac78, Section XI.2]. If
these are isomorphisms, F is strong, and if they are identities, F is strict.

2.2. Topological spaces

The category S not being closed is a problem, and we wish to replace it with a suitable
subcategory of spaces that is a bicomplete closed symmetric monoidal category. Before
moving on to this subcategory we mention the following definition. An inclusion is an
injective continuous map i : A ↪→ B such that for every open U ⊂ A there exists some
open V ⊂ B with U = i−1(V ). It is closed if i(A) is closed in B and it is a closed T1
inclusion if every point in B\i(A) is closed in B.

Definition 2.12. Let A ∈ ObS be a topological space. A subset S of A is compactly
closed if for every compact Hausdorff space C and every map f : C → A, the preimage
f−1(S) is closed in C. The topological space A is compactly generated if every compactly
closed subset is closed.

Definition 2.13. Let A ∈ ObS be a topological space. It is weak Hausdorff if for every
compact Hausdorff space C and every map f : C → A the image f(C) is closed in A.
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The category Top is the full subcategory of S with objects the compactly generated
weak Hausdorff spaces. In weak Hausdorff spaces, all points are closed. Hence in Top,
every closed inclusion is a closed T1 inclusion. the category Top is, like S, bicomplete. A
proof of this is given in Appendix A [Sch18]. We provide a short explanation.

Consider the full subcategory S0 of S, with objects the compactly generated spaces.
Let A ∈ ObS. Keeping the underlying set of A the same but changing its topology
to include all compactly closed subsets as closed subsets defines a functor cg : S→ S0

(discussion after [Sch18, Proposition A.2]). If A is compactly generated, then there exists
a suitable equivalence relation ∼ on A that defines a functor h : S0 → Top, that sends A
to a quotient space A/ ∼ that is compactly generated weak Hausdorff ([Sch18, Proposition
A.10]). If A is compactly generated, then cg(A) = A. If A is weak Hausdorff then cg(A) is
as well ([Sch18, Proposition A.4(viii)]). If A is compactly generated weak Hausdorff, then
h(A) ∼= A (discussion after [Sch18, Proposition A.10]).

Let F : D → Top be a diagram in Top. Then F is a diagram in S. In S, we can
take the limit and colimit, which we denote by limS(F ) and colimS(F ). It turns out that
cg(limS(F )) and h(colimS(F )) are the limit and colimit of F in Top (discussions after
[Sch18, Proposition A.2, Proposition A.10]). For the limit and colimit in Top, we write

limF = cg(limS(F )), (2.1)

colimF = h(colimS(F )). (2.2)

We remark that limS(F ) is weak Hausdorff and colimS(F ) is compactly generated. Hence
these (co)limits are indeed spaces in Top.

We focus our attention on Top: A space will always be a compactly generated weak
Hausdorff space, and (co)limits of diagrams in spaces will always be taken in Top as in
(2.1) and (2.2) unless stated differently. In particular, the product of spaces X and Y is
X × Y = cg(X ×S Y ), where ×S denotes the cartesian product with the typical product
topology, which is in general not compactly generated. Coproducts are the same in Top
and S since coproducts of weak Hausdorff spaces are weak Hausdorff in S unlike general
colimits ([Sch18, Propositions A.4(vi), A.5(iv)]).

BecauseTop is bicomplete, it is also a symmetric monoidal category. We can endow the
Hom-sets Top(A,B) with the compact-open topology generated by a subbasis consisting
of the subsets W (C,U) = {f ∈ Top(A,B) | f(C) ⊆ U}, with C a compact Hausdorff
subset of A and U an open subset of B. Let C(A,B) denote Top(A,B) with the compact-
open topology. This space is, in general, not compactly generated. The mapping space is
defined as BA = cg(C(A,B)). By [Sch18, Theorem A.23(i)] the spaces C(A,B) and BA

are weak Hausdorff and by [Sch18, Theorem A.23(ii)] we get a natural bijection

Top(A×B,C) ∼= Top(A,CB), (2.3)

for all spaces A,B,C ∈ ObTop. Thus (Top,×, ∗) is a closed symmetric monoidal cate-
gory, with the internal-hom [A,B] = BA. We usually implicitly assume that Top(A,B)
is equipped with the topology of the mapping space BA and refer to it as a Hom-space.
Then [Sch18, Theorem A.23(ii)] even implies that (2.3) is a homeomorphism. Finally, note
that by Proposition 2.1, the category sTop = [∆op,Top] of simplicial spaces is bicomplete
and, therefore, a symmetric monoidal category.

2.3. Enriched categories

To construct K-spaces, we must define categories enriched over Top. The Hom-sets and
composition maps in a category are objects and morphisms in the category (Set,×, ∗). The
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previous chapter shows that category Top is equipped with Hom-spaces and continuous
composition maps. Such a category is enriched over Top. Later on in Section 7.1, we
generalize this to categories enriched over some closed symmetric monoidal category E ,
equipped with Hom-objects and composition morphisms in E satisfying axioms similar to
those of an ordinary category. From this point of view, an ordinary category is a category
enriched over (Set,×, ∗).

In a bicomplete category C taking the (co)product of copies of an object X ∈ ObC
over some set S as

XS =
∏
s∈S

X, X × S =
∐
s∈S

X.

defines functors C ×Setop → C and C ×Set→ C known as the cotensor and tensor over
Set respectively. It is not hard to see that we have the following natural bijections

C (X × S, Y ) ∼= Set(S,C (X,Y )) ∼= C (X,Y S),

In Section 7.1 these cotensor and tensor will also be generalized over more general closed
symmetric monoidal categories. However, this chapter is restricted to categories enriched,
tensored and cotensored over Top.

Definition 2.14. A category C is a Top-category if for all X,Y, Z ∈ ObC the Hom-sets
C (X,Y ) have a topology such that the composition map

C (Y,Z)× C (X,Y )→ C (X,Z)

is continuous. A functor F : D → C , of Top-categories D and C is continuous if the
maps D(d0, d1)→ C (F (d0), F (d1)) are continuous, for all d0, d1 ∈ ObD .

Definition 2.15. A category C is enriched, tensored and cotensored over Top if there
exist functors

Map : C op × C → Top, (−)× (−) : C ×Top→ C , (−)(−) : C ×Topop → C ,

called the enrichment, tensor and cotensor over Top respectively, such that we have
natural bijections

C (X ×A, Y ) ∼= Top(A,Map(X,Y )) ∼= C (X,Y A), (2.4)

for X,Y ∈ ObC , A ∈ ObTop, and natural isomorphisms

(X ×A)×B ∼= X × (A×B), (2.5)

X × ∗ ∼= X, (2.6)

for X ∈ ObC and ∗, A,B ∈ ObTop, that satisfy ‘coherence axioms’ given in [Hov99,
Definition 4.1.6].

If C is enriched, tensored and cotensored over Top then C is a Top-category. The
underling set of Map(X,Y ) is Top(∗,Map(X,Y )) ∼= C (X×∗, Y ) ∼= C (X,Y ). The identity
map Map(X,Y ) → Map(X,Y ) corresponds by (2.4) to a map X × Map(X,Y ) → Y .
Together with the map Y ×Map(Y,Z)→ Z we obtain X×(Map(X,Y )×Map(Y,Z))→ Z
after applying (2.5). After applying the symmetry isomorphism in Top, this corresponds
by (2.4) to the composition map Map(Y,Z)×Map(X,Y )→ Map(X,Z), which must now
be continuous. We usually write C (X,Y ) instead of Map(X,Y ) to denote the Hom-spaces,
leaving the topology implicit.
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Example 2.16. In (Top,×, ∗), let the tensor be the tensor product and the enrichment
and cotensor be the internal-hom. Then Top is enriched, tensored and cotensored over
itself. The bijections (2.4) follow from (2.3) by one application of the symmetry isomor-
phism in (Top,×, ∗). The natural isomorphisms (2.5) and (2.6) are the associator and
right unitor in (Top,×, ∗)

Example 2.17. The category V is a Top-category. The Hom-set V(Rn,Rm) inherits
the subspace topology from Matm,n(R) ∼= Rm×n. The continuity of matrix multiplication
makes the composition in V continuous. The direct sum ⊕ in V is continuous. For this
we need to check that all maps V(Rn,Rm)× V(Rk,Rl)→ V(Rn+k,Rm+l) are continuous.
This is the case because the assignment

(A,B) 7→
(
A 0

0 B

)
is continuous for all matrices A and B.

2.4. The category of K-spaces
We can generalize Top valued diagrams using topologically enriched category theory.
These constructions are K-spaces.

Definition 2.18. An index category is a small Top-category K. A K-space is a continuous
functor K → Top. Let TopK denote the full subcategory of K-spaces in [K,Top].

An index category K is discrete if all its Hom-spaces are discrete. In this case TopK =
[K,Top]. Equipping the Hom-sets of a category with discrete topologies makes it a Top-
category. Hence any diagram D → Top can be interpreted as a D-space with D discrete.
If K and L are index categories then so are Kop and K × L. Let X and Y be K- and
Kop-spaces respectively. Given k ∈ ObK we often write Xk = X(k). Given ϕ ∈ K(k, l),
x ∈ Xk and y ∈ Yl we write ϕ∗x = X(ϕ)(x) and ϕ∗y = Y (ϕ)(y). By the continuity of
a K-space X we have continuous maps K(k, l) → Top(Xk, Xl) and by (2.3) we then get
continuous evaluation maps K(k, l) ×Xk → Xl. Therefore a diagram X : K → Top is a
K-space if and only if the evaluation maps are continuous. We list some examples.

Example 2.19. The continuity of the composition K(k, l)×K(n, k)→ K(n, l) of an index
category K implies that K(n,−) : k → K(n, k) defines a K space. Similarly K(−, n) :
k → K(k, n) defines a Kop-space and K(−,−) : (k, l) 7→ K(k, l) is a Kop × K-space. We
sometimes write K to indicate the Kop ×K-space K(−,−) instead of the index category.

Example 2.20. Let A be a space andX a K-space. The evaluation map K(k, l)×Xk → Xl

immediately shows that the functors A×X and X ×A defined level-wise by (A×X)k =
A×Xk and (X×A)k = Xk×A are K-spaces. By (2.3) we obtain a map (Xk)

A×A→ Xk.
By taking the tensor product with K(k, l) and composing it with the evaluation map, we
obtain a map K(k, l)× (Xk)

A×A→ Xl. Applying (2.3) once more shows that the functor
XA defined level-wise by (XA)k = (Xk)

A is a K-space.

Example 2.21. Consider a K-spaceX and an L-space Y . Then the functor (X,Y ) defined
level-wise by (X×Y )(k,l) = Xk×Yl is a K×L-space. Let L = K, then the diagonal functor
d : K → K×K, k 7→ (k, k) is a continuous functor. Thus X × Y = (X,Y ) ◦ d is a K-space
with (X × Y )k = Xk × Yk.
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Example 2.22. The category N with ObN = Z≥0 equipped with a single morphism
n→ m for all n ≤ m is a discrete index category. Note that an N -space X is precisely a
sequence X0 → X1 → X2 → . . . of spaces.

Example 2.23. The category I with Ob I = {n = {1, . . . , n} | n ∈ Z≥0}, where 0 denotes
the empty set, equipped with the injections is a discrete index category. There exists a
continuous functor N → I sending n to n and n → m to n ⊆ m. This functor can be
viewed as an inclusion. For an I-space X we write Xn instead of X(n) or Xn.

Example 2.24. As shown in Example 2.17, the small category V is an index category.
There exists a continuous functor N → V sending n to Rn and n→ m to

Rn → Rm, (x1, . . . , xn) 7→ (x1, . . . , xn, 0 . . . , 0).

This functor can be viewed as an inclusion. Hence we sometimes write n instead of Rn.
We write V(n,m) instead of V(Rn,Rm) and, for a V-space X, we write Xn instead of
X(Rn) for example. Via this inclusion, we can interpret a V-space as an N -space.

Example 2.25. The simplex category ∆, given in Example 2.9, is a discrete index cate-
gory. Thus ∆op-spaces are precisely simplicial spaces and Top∆op

= sTop. The category
Top∆ = [∆,Top] is the category of cosimplicial spaces. An important cosimplicial space
is ∆• : [p] 7→ ∆p where ∆p is the standard topological p-simplex. [Dug08, Chapter 3] gives
a good introduction to simplicial spaces and ∆•.

Example 2.26. The trivial category 1 with a single object and morphism is a discrete
index category. We have Top1 ∼= [1,Top] ∼= Top. Therefore any space can be viewed
as a 1-space and any K-space can be viewed as a K × 1- or 1op×K-space, where 1op is
of course equal to 1. Let X be a K-space and A be a space. Via the unique continuous
functor K → 1, the space A defines a constant K-space. Then the definitions for X × A
in Example 2.20 and Example 2.21 coincide.

Since Top is cocomplete and constant diagrams in [K,Top] are certainly K-spaces we
get the adjunction

colim : TopK Top : c.⊥ (2.7)

We finish this chapter by showing that the category TopK is bicomplete and enriched,
tensored and cotensored. This will imply that (TopK,×, ∗) is a symmetric monoidal
category. However, a different tensor product, called the boxproduct, will be of greater
interest. This will be discussed in the next chapter.

Theorem 2.27. Let K be an index category. The category TopK is bicomplete.

Proof. We will show that (co)limits can be taken in the underlying functor category
[K,Top]. Let D be a small category and F : D → TopK a diagram. Then colimF
is a functor in [K,Top] defined by

colimF : k 7→ colim(evk ◦F ).

Fix k, l ∈ ObK. For every d ∈ ObD we have a continuous map K(k, l)× F (d)k → F (d)l.
These maps are components of a natural transformation K(k, l) × F (−)k → F (−)l that
can also be written as K(k, l) × (evk ◦F ) → (evk ◦F ). For a diagram G : D → Top and
a space A we have colim(A × G) ∼= A × colimG, since Top is closed by (2.3). Therefore
taking the colimit of the natural transformation induces a continuous map

K(k, l)× (colimF )k → (colimF )l.

10



Thus colimF is a K-space. The isomorphism lim(A × G) ∼= A × limG is immediate for
limits. The rest of the argument is the same.

Theorem 2.28 ([Bor94, Propositions 6.3.1, 6.5.7]). Let K be an index category. The
category TopK is enriched, tensored and cotensored over Top.
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3. Constructions on K-spaces

Having defined K-spaces, we need to construct a variety of tools. First is the homotopy
colimit. It is one of our main functors sending V-spaces to spaces. It is more favourable
than the colimit since it preserves weak equivalences. Next is the box product. It gives the
category TopK a structure of a closed symmetric monoidal category. Later on, we will see
that this product relates nicely to the symmetric monoidal category (Top,×, ∗) via the
homotopy colimit. Constructing these tools requires us to build up more enriched category
theory. Using this, we also obtain the geometric realization. We finish by returning to V
and listing interesting examples of V-spaces.

3.1. Enriched coends

In this section, we consider continuous diagrams of the formK → TopL for index categories
K and L. If such a diagram is continuous it is equivalent to a K × L-space, which is just
a K-space if L is the terminal category. The colimit of a diagram of parallel morphisms
X ⇒ Y is called a coequalizer. Coends are a type of coequalizer dependent on a diagram
of the form Dop×D → TopL. There are many important constructions that can be made
with this.

Definition 3.1. Let F : Dop × D → TopL be a diagram. A morphism f ∈ D(d0, d1)
induces two morphisms F (idd1 , f) : F (d1, d0) → F (d1, d1) and F (f, idd0) : F (d1, d0) →
F (d0, d0). These induce parallel morphisms∐

d0,d1∈ObD
D(d0, d1)× F (d1, d0)

∐
d∈ObD

F (d, d).

Its coequalizer is the coend of F and is denoted as∫ d∈D

F (d, d).

This definition uses the enrichment and tensor over Set, motivating us to generalize
to Top. Let K and L be index categories and note that TopL is bicomplete, enriched,
tensored and cotensored over Top. A diagram X : K → TopL is continuous if and only if
the evaluation morphisms K(k, l)×Xk → Xl are in Mor(TopL). Let Z : Kop×K → TopL

be a continuous diagram. For k1 ∈ ObK the map k 7→ (k1, k) defines a continuous functor
K → Kop × K. Then Z(k1,−) is continuous and K(k0, k1) × Z(k1, k0) → Z(k1, k1) is in
Mor(TopL). Similarly K(k0, k1)× Z(k1, k0)→ Z(k0, k0) is in Mor(TopL).

Definition 3.2. Let K and L be index categories and Z : Kop×K → TopL be a continuous
diagram. Consider the parallel morphisms∐

k0,k1∈ObK
K(k0, k1)× Z(k1, k0)

∐
k∈ObK

Z(k, k). (3.1)

12



Its coequalizer is the enriched coend of Z and is denoted as∫ k∈K
Z(k, k).

Given a set S and a space A, the space
∐

s∈S A is homeomorphic to S × A when S
is given the discrete topology. Thus Definition 3.1 is a particular case of Definition 3.2,
where D is viewed as a discrete index category.

Definition 3.3. LetK and L be index categories andX : K → TopL and Y : Kop → TopL

be continuous diagrams. The tensor product of Y and X over K is the enriched coend

Y ⊗K X =

∫ k∈K
Yk ×Xk.

When L = 1, this tensor product is equivalent to [HV92, Definition 2.3] after taking
the functor h. In [HV92], a K-space X is called a ‘left K-module’ since morphisms in K
have a type of action on the spaces Xk. This motivates the notation and the use of the
term tensor product over K. It should be noted that this product is not a tensor product in
the sense of Definition 2.2. The subscript makes sure to differentiate ⊗K from a monoidal
tensor product.

Proposition 3.4. Let X and Y be K- and Kop-spaces respectively. Let K denote the
discrete index category with the same underlying category as K. We have

colimX ∼= ∗ ⊗K X, (3.2)

Y ⊗K X ∼= X ⊗Kop Y. (3.3)

Proof. Equation (3.2) is the dual of [Mac78, Theorem V.2.2]. Equation (3.3) is a conse-
quence of using the symmetry isomorphism.

A continuous functor K → TopL is equivalent to an L×K-space. The tensor product
over K of an L ×Kop-space Y and an L ×K-space X is the L-space defined as

Y ⊗K X : l 7→ Yl ⊗K Xl.

We can even construct the tensor product of an L × Kop-space Y and an M×K-space
X over K. The projections prL : L ×M → L and prM : L ×M → M are continuous
functors. Let

Y ⊗K X = (Y ◦ (prL ×Kop))⊗K (Y ◦ (prM ×K)).

Then this is the L ×M-space with

Y ⊗K X : (l,m) 7→ Yl ⊗K Xm.

By setting L =M = 1, we return to the case in [HV92].

3.2. The realization

The geometric realization is a functor sending either simplicial sets or simplicial spaces to
spaces and is denoted as | − |. It is a vital tool to relate the homotopy theory of these
categories. For convenience, we call it the realization. There are many ways to construct
this functor. One way is to use a tensor product over the simplex category ∆.
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Definition 3.5. Recall the cosimplicial space ∆• : [p] 7→ ∆p, where ∆p is the standard
topological p-simplex. The realization of a simplicial space K is the space

|K| = K ⊗∆ ∆•.

To take the realization of a simplicial set K, we first endow every set of p-simplices Kp

with the discrete topology. The realization of a K ×∆op-space (or simplicial K-space) X
is the K-space

|X| = X ⊗∆ ∆•.

Note that |X|k = |Xk|. These realizations define functors sTop→ Top, sSet→ Top and
[∆op,TopK]→ TopK, all denoted by | − |.

The realization | − | : sSet → Top has a right adjoint functor Sing : Top → sSet
called the singular complex functor which is defined by Singp(A) = Top(∆p, A) as shown
in [Hov99, Section 3.1] after Remark 3.1.7. While the realization of simplicial spaces is
useful, it has a disadvantage: It does not preserve weak equivalences. For this reason, we
introduce the fat realization.

Definition 3.6. Consider the subcategory ∆F ⊂ ∆ having the same objects, but only
the injective maps, and inheriting the discrete topology of ∆. The fat realization of a
simplicial space K is the space

||K|| = K ⊗∆F∆•,

where we interpret ∆• as a ∆F-space and K as a (∆F)op-space via the inclusion ∆F⊂ ∆.

Later, we will see that the fat realization does preserve weak equivalences.

3.3. The homotopy colimit

A homotopy H : Sn× [0, 1]→ A, usually written as Ht(x) = H(x, t), corresponds by (2.3)
to a path in Top(Sn, A). Let Top∗ be the category of based spaces and let (A, a) be a
based space. A based homotopy H : Sn×[0, 1]→ A corresponds to a path in Top∗(S

n, A).
Therefore the n-th homotopy group πn(A, a) can be defined as the set of path-connected
components π0(Top∗(S

n, A)).

Definition 3.7. A continuous map f : A → B is a weak homotopy equivalence if the
induced maps πn(A, a)→ πn(B, f(a)) are bijections for all n ≥ 0 and a ∈ A.

Definition 3.8. A morphism of K-spaces f : X → Y is a level equivalence if all compo-
nents fn are weak homotopy equivalences.

In the adjunction (2.7), the functor c sends weak homotopy equivalences to level equiv-
alences. The colimit does not do the converse in general. [Dug08, Example 2.1] shows this
in the case K = {1 ← 0 → 2}. For this reason, we introduce the homotopy colimit that
does send level equivalences to weak homotopy equivalences. We discuss this in Section 5.2.
[Dug08, Section 2] gives some examples of homotopy colimits. The homotopy colimit can
be defined in several ways up to weak homotopy equivalences. We follow the approach of
[SS19, Section 2.1], which is derived from the definition given in [HV92, Section 3]. For
this, we need the bar construction.
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Definition 3.9. Let X and Y be K- and Kop-spaces respectively. The bar construction
B(Y,K, X) is the realization of the simplicial space B•(Y,K, X) whose space of p-simplices
is

Bp(Y,K, X) =
∐

k0,...kp∈ObK
Ykp ×K(kp−1, kp)× · · · × K(k0, k1)×Xk0 .

The boundaries are induced by the composition in K, and the evaluation maps

Ykp ×K(kp−1, kp)→ Ykp−1 and K(k0, k1)×Xk0 → Xk1 .

The degeneracies are induced by the maps ∗ → K(ki, ki), i = 0, . . . , p.

Peeking under the hood shows us that the underlying sets are

Bp(Y,K, X) = {(y;ϕp, . . . , ϕ1;x) | ϕn ∈ MorK, t(ϕn) = s(ϕn+1), x ∈ Xs(ϕ1), y ∈ Yt(ϕp)}.

Here t and s are the functions that send a morphism to its domain and codomain, respec-
tively. The boundaries and degeneracies can be expressed as

di(y;ϕp, . . . , ϕ1;x) =


(y;ϕp, . . . , ϕ2;ϕ1∗(x)) , i = 0

(y;ϕp, . . . , ϕi+1ϕi, . . . , ϕ1;x) , 0 < i < p

(ϕ∗p(y);ϕp−1, . . . , ϕ1;x) , i = p

si(y;ϕp, . . . , ϕ1;x) = (y;ϕp, . . . , id, ϕi, . . . , ϕ1;x).

Definition 3.9 can be generalized to the case where X and Y areM×K- and L×Kop-
spaces respectively. In that case Bp(Y,K, X) and B(Y,K, X) are L ×M-spaces and

B(Y,K, X) : (l,m) 7→ B(Yl,K, Xm).

Let F : K → L be a continuous functor of index categories. Given K-, L-, Kop-,
Lop-spaces X,X ′, Y, Y ′ respectively, and natural transformations α : X → X ′ ◦ F and
β : Y → Y ′ ◦ F we get an induced map

B(Y,K, X)→ B(Y ′,L, X ′). (3.4)

On the space of p-simplices, this map is (y;ϕp, . . . , ϕ1;x) 7→ (β(y);F (ϕp), . . . , F (ϕ1);α(x))
which commutes with boundaries and degeneracies.

Definition 3.10. The homotopy colimit of a K-space X is the space

hocolimKX = B(∗,K, X)

also denoted as XhK. A morphism of K-spaces f : X → Y induces a map f∗ : XhK → YhK,
as a special case of the map (3.4). This defines a functor hocolimK : TopK → Top. The
classifying space of an index category K is the space BK = B(∗,K, ∗) = ∗hK.

We mention some useful properties of the bar construction and homotopy colimit.

Proposition 3.11 ([HV92, Proposition 3.1(1)]). Let W be an Lop-space, Y be an L×Kop-
space, X be a K ×Mop-space and Z be anM-space. We have

B(Y,K, X)⊗M Z ∼= B(Y,K, X ⊗M Z),

W ⊗L B(Y,K, X) ∼= B(W ⊗L Y,K, X).
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Corollary 3.12. The homotopy colimit preserves colimits.

Proof. Let F : D → TopK be a diagram. We can interpret it as an K × D-space by
equipping D with the discrete topology. Then

(colimF )hK ∼= B(∗,K, F ⊗Dop ∗)
∼= B(∗,K, F )⊗Dop ∗
∼= colim(FhK)

by Proposition 3.4 and Proposition 3.11.

Lemma 3.13. The homotopy colimit preserves tensors.

Proof. The realization preserves tensors since it preserves finite products by [Hov99,
Lemma 3.1.8]. Since tensors of simplicial spaces are constructed level-wise, the result
follows.

Lemma 3.14. If K has an initial or terminal object, then BK is contractible.

Proof. If K has an initial object there exists an adjunction 1 K.⊥ As a consequence
of [Seg68, Proposition 2.1], this induces a homotopy equivalence ∗ ≃ BK. For a terminal
object, the proof is dual.

Given a K-space X, the bar resolution is the K-space X := B(K,K, X). It is used to
construct a natural transformation from the homotopy colimit to the colimit. For every
k ∈ ObK and p ≥ 0 there exists a map

ϵk,p : Bp(K(−, k),K, X)→ Xk

(f, ϕp, . . . , ϕ1, x) 7→ (fϕp · · ·ϕ1)∗(x)

which is continuous since it is an iterated evaluation map. Let cX be the simplicial K-
space defined by (cX)k,p = Xk. Note that the realization of cX is just X. The maps ϵk,p
are natural in both k and p and therefore define a morphism of simplicial K-spaces. Its
realization

ϵ : X → X

is called the evaluation. It is natural in X.

Proposition 3.15. Let X be a K-space. There exists an isomorphism hocolimKX ∼=
colimX that is natural in X.

Proof. Consider the following chain of isomorphisms

colimX ∼= ∗ ⊗K B(K,K, X)
∼= B(∗ ⊗K K,K, X)
∼= B(colimk K(−, k),K, X)
∼= B(∗,K, X)

= hocolimKX.

The first and third isomorphisms come from equation (3.2). The second uses [HV92,
Proposition 3.1(1)], which is natural inX. Since colimits are constructed level-wise we have
(colimk K(−, k))l = colimk K(l, k). By the adjunction (2.7) and the Yoneda lemma ([Kel05,
Section 1.9]) we have bijections Top(colimK(k,−), A) ∼= TopK(K(k,−), cA) ∼= Top(∗, A)
natural in A. Thus colimK(k,−) ∼= ∗ by the corollary in [Mac78, Section III.2]. Since
equations (3.2) is natural in X, the isomorphism hocolimKX ∼= colimX is natural in
X.
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Taking the colimit of the evaluation ϵ and composing with the isomorphism in Propo-
sition 3.15, we get a map

π : hocolimKX → colimX,

called the projection, that is natural in X.

3.4. The box product

The boxproduct is defined as a left Kan extension. Let F : K → L be a continuous functor
of index categories. This induces a functor F ∗ : TopL → TopK. The left Kan extension
LanF is the left adjoint of this functor if it exists. Let X be an K-space. A pair (Y, t)
consisting of an L-space and a morphism of K-spaces t : X → F ∗Y fits in the diagram:

K Top

L
F

X

Y
t (3.5)

This diagram is, in general, not commutative. A universal pair (Y, t) is also known as the
left Kan extension.

Definition 3.16. Let F : K → L be a continuous functor of index categories and X a
K-space. The left Kan extension of X along F , if it exists, is a pair (LanF X, t) that fits in
(3.5) such that for any other pair (Y, t′) that fits in (3.5) there exists a unique morphism
s : Y → LanF X such that F ∗(s) ◦ t = t′. The morphism t is often left implicit.

By the universal property of a left Kan extension, it is unique up to unique isomorphism
if it exists.

Proposition 3.17 ([Kel05, Proposition 4.33, (4.25)]). Let F : K → L and X be given as
in Definition 3.16. Then the left Kan extension of X along F exists and is an L-space
defined by (LanF X)(l) = L(F (−), l)⊗K X.

For the remainder of this section, we fix a symmetric monoidal index category (K,⊕, 0)
whose tensor product (−)⊕ (−) : K ×K → K is continuous.

Definition 3.18. Let X and Y be K-spaces and let (X,Y ) denote the K×K-space defined
by (X,Y )k,l = Xk×Yl. The box product X⊠Y is the left Kan extension of (X,Y ) along ⊕.
This K-space is unique up to unique isomorphism. Proposition 3.17 shows that it exists
and that it can be written out as

X ⊠ Y (k) = K(−⊕−, k)⊗K×K (X,Y ).

The box product fits in the following diagram:

K ×K Top

K
⊕

(X,Y )

X⊠Y

(3.6)

By the universal property of the left Kan extension, there is a one-to-one correspondence
between morphisms of K-spaces X ⊠ Y → Z and morphisms of K × K-spaces (X,Y ) →
Z(−⊕−). Hence the former morphism is entirely determined by the maps

X(k)× Y (l)→ Z(k ⊕ l).
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The identity on X ⊠ Y induces maps

X(k)× Y (l)→ (X ⊠ Y )(k ⊕ l)

that are precisely the components of the morphism of K-space in (3.6).

Theorem 3.19 ([Day70, Theorem 3.3], [Sch18, Theorem C.10, Remark C.12]). The triple
(TopK,⊠,K(0,−)) is a closed symmetric monoidal category.

A monoid in the category of K-spaces with respect to ⊠ is called a K-space monoid
and CTopK denotes the category of commutative K-space monoids.

Example 3.20. The category V is an index category by Example 2.24 and (V,⊕,R0) is
a symmetric monoidal category with (−)⊕ (−) continuous by Example 2.17. The object
R0 is initial object in V, therefore V(0,−) = ∗ is the terminal object in TopV . It follows
that (TopV ,⊠, ∗) is a closed symmetric monoidal category that is enriched, tensored and
cotensored over Top. Let M be a V-space monoid. The unit uM : ∗ → M is entirely
determined by a basepoint ∗ → M0. The multiplication µM : M ⊠M → M is entirely
determined by maps µn,m :Mn×Mm →Mn⊕m. In this context, M is commutative if and
only if the diagram

Mn ×Mm Mn⊕m

Mm ×Mn Mm⊕n

µn,m

µm,n

(3.7)

commutes, where the symmetry isomorphisms in Top and V induce the vertical maps.

3.5. Examples of V-space monoids

To better understand the category TopV , we will discuss examples of V-spaces and com-
mutative V-space monoids.

Example 3.21. Fixing some Rk we obtain the V-space V(k,−), as seen in Example 2.19.
The space V(k, n) is isomorphic to the space Vk(Rn) of orthonormal k-frames in Rn known
as the real Stiefel manifold. The space V(k, k) = O(k), in particular, is the orthogonal
group.

Example 3.22. The Grassmannian Grk(Rn) is the set consisting of all k-dimensional
linear subspaces of Rn. Consider the map V(k, n)→ Grk(Rn), ψ → imψ. The right action
from O(k) on V(k, n) by precomposition induces a bijection V(k, n)/O(k) ↔ Grk(Rn).
Thus we can endow Grk(Rn) with a topology making this bijection a homeomorphism.
Let ϕ : Rn → Rm be an isometry and V ⊆ Rn be a k-dimensional linear subspace. Then
ϕ(V ) is a k-dimensional linear subspace of Rm. Thus ϕ induces a map

Grk(ϕ) : Grk(Rn)→ Grk(Rm)

for every k ≥ 0. The continuity of ϕ∗ : V(k, n)→ V(k,m) makes Grk(ϕ) continuous. Thus
we obtain a functor

Grk : V → Top

for every k ≥ 0. The continuity of V(n,m)× V(k, n)→ V(k,m) makes

V(n,m)×Grk(Rn)→ Grk(Rm)

continuous. Therefore Grk is a V-space for every k ≥ 0.
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Example 3.23 ([Sch18, Example 2.3.6]). The assignment Rn 7→ O(n) induced by the
orthogonal group defines a V-space. Let ϕ : Rn → Rm be an isometry. We can write
Rm = imϕ⊕V , where V is the orthogonal complement of imϕ. Let φ : Rn → imϕ be the
isomorphic isometry with φ(x) = ϕ(x). For f ∈ O(n) we then set

O(ϕ)(f) = φfφ−1 ⊕ idV

which is an isometry. Thinking of ϕ as a matrix, we can consider its transpose ϕ⊤ : Rm →
Rn, which is a left inverse of ϕ since it is an isometry. Then ϕ⊤ = φ−1◦primϕ, where primϕ

is the projection. We can then write O(ϕ)(f) = ϕfϕ⊤ + prV , where + denotes pointwise
addition. Then O(ϕ) is a composite of continuous maps. Namely the composition of linear
maps and pointwise addition of linear maps. Thus we obtain a functor

O : V → Top .

The maps (ϕ, f) 7→ O(ϕ)(f) are continuous for the same reason making O a continuous
functor. Thus O is a V-space.

The V-space O is even a commutative V-space monoid. We automatically obtain a
basepoint since O(0) is a one-point space. Next, consider the composite map

µOn,m : O(n)×O(m)→ O(n⊕m)×O(n⊕m)→ O(n⊕m)

where the left map is induced by the inclusions Rn → Rn⊕Rm and Rm → Rn⊕Rm on their
respective summands, and the right map is the composition of linear maps. The maps µOn,m
form a natural transformation, which induces a multiplication µO : O⊠O → O. Together
with the basepoint, this makes O a V-space monoid. By writing µOn,m out explicitly we get

µOn,m(f, g) = (f ⊕ idm) ◦ (idn⊕g) = f ⊕ g.

Thus O is a commutative V-space monoid since the maps µOn,m make the diagram (3.7)
commute.

Note that since O(n) is a group for all Rn, the V-space O is also a monoid with respect
to the naive product ×. In this case, however, it is not commutative since the groups O(n)
are, in general, not abelian.

Example 3.24 ([Sch18, Example 2.3.12]). The additive Grassmannian is the coproduct
of all Grassmannians

Gr =
∐
k≥0

Grk .

The space Gr(Rn) =
∐

k≥0Grk(Rn) has all linear subspaces of Rn as elements.
The maps

Grk(Rn)×Grl(Rm)→ Grk+l(Rn ⊕ Rm), (V,W ) 7→ V ⊕W

induce maps µGr
n,m : Gr(Rn)×Gr(Rn)→ Gr(Rn⊕Rm) that form a natural transformation,

which induces a multiplication µGr : Gr⊠Gr → Gr. Together with the basepoint given
by the one-point space Gr(0), this makes Gr a V-space monoid. It is commutative since
the maps µGr

n,m make the diagram (3.7) commute.

Example 3.25 ([Sch18, Example 2.4.1]). The periodic Grassmannian is a V-space BOP
with values

BOP(n) =
∐
k≥0

Grk(Rn ⊕ Rn).
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Let ϕ ∈ V(n,m), ϕ2 = ϕ⊕ ϕ and V ∈ Grk(Rn ⊕ Rn), for some k ≥ 0, then

BOP(ϕ)(V ) = ϕ2(V ) + (Rm − imϕ)⊕ 0.

Since ϕ2(V ) ⊆ imϕ2 and (Rm− imϕ)⊕0 ⊆ (Rm⊕Rm− imϕ2) the summands are disjoint.
Thus dim(BOP(ϕ)(V )) = dim(V ) +m − n and BOP(ϕ)(V ) ∈ Grk+m−n(Rm ⊕ Rm). The
continuity of the maps (ϕ, V ) 7→ BOP(ϕ)(V ) follows from the continuity of the V-space
Gr((−)⊕ (−)), where (−)⊕ (−) is the composite of the diagonal d : V → V × V and the
direct sum ⊕, which are all continuous. Thus BOP is also continuous and, therefore, a
V-space.

The isomorphism

kn,m : Rn ⊕ Rn ⊕ Rm ⊕ Rm ∼= Rn ⊕ Rm ⊕ Rn ⊕ Rm,

(x, x′, y, y′) 7→ (x, y, x′, y′)

induces the map

µBOP
n,m : BOP(n)× BOP(m)→ BOP(n⊕m),

(V,W ) 7→ kn,m(V ⊕W ).

The maps µBOP
n,m form a natural transformation. Together with the basepoint given by the

one-point space BOP(0), this makes BOP a commutative V-space monoid.
For any d ∈ Z the subspaces BOPd(n) = Grd+n(Rn ⊕ Rn) ⊂ BOP(n) form a V-space

BOPd such that BOP =
∐

d∈ZBOPd. Indeed BOP(ϕ) restricts to BOPd(n)→ BOPd(m).
We say that BOP is Z-graded. We can construct a morphism of V-spaces Φ : Gr→ BOP
defined by

Φn : Gr(n)→ BOP(n), V 7→ Rn ⊕ V.

This morphism is well defined since it includes V in the second summand of Rn⊕Rn. Since
kn,m(Rn⊕V ⊕Rm⊕W ) = Rn+m⊕V ⊕W the morphism f is a morphism of commutative
V-space monoids. For any d ∈ Z≥0 the morphism Φ restricts to

Φ|d : Grd → BOPd .

We say that Φ is graded.
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4. Model categories

A model structure on a category consists of three classes of morphisms called weak equiv-
alences, fibrations and cofibrations satisfying certain axioms. A category with a model
structure is called a model category. Model categories are used to generalize homotopy
theory of topological spaces. Indeed important examples are model structures on Top.
The classical model structure on Top has weak homotopy equivalences as weak equiva-
lences and Serre fibrations as fibrations. Daniel Quillen introduced model categories in
[Qui67, Chapter 1]. A good introduction to model categories is [DS95], which also proves
that the classical model structure on Top is indeed a model structure. Other notable
examples include the Strøm model structure on Top and the classical model structure on
sSet. Proofs that these structures are indeed model structures are given by Arne Strøm
in [Str72] and Mark Hovey in [Hov99, Chapter 3], respectively. Proving that the axioms
are satisfied can be quite a challenge. We introduce Kan’s recognition theorem to aid us
in this process.

4.1. Model categories

Let C be a category and A,B ∈ ObC . The object A is a retract of B if there exist
morphisms s : A → B and r : B → A such that rs = idA. Let Arr(C ) be the arrow
category with objects the morphisms in C and morphisms pairs of morphisms (s1, s2) :
f → g such that gs1 = s2f . Let f, g ∈ MorC . The morphism f is a retract of g if it is a
retract of g as objects in Arr(C ). In this case, we have the following commutative diagram

A B A

X Y X

f g f

where the composites of the horizontal maps are the identities on A and X.
In a commutative diagram in C

A X

B Y

f

i p

g

(4.1)

the dotted arrow is called a lift, if it exists. If such a lift exists for any pair (f, g) that
makes the diagram commute, we say that i has the left lifting property (LLP) with respect
to p and p has the right lifting property (RLP) with respect to i.

If i has the LLP with respect to p as in diagram (4.1), a retract i′ of i has the LLP
with respect to p, and a retract p′ of p has the RLP with respect to i. To see this note
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that the dotted arrows induce lifts in the outer squares:

A′ A A′ X

B′ B B′ Y

i′ i

f

p

g

A X ′ X X ′

B Y ′ Y Y ′

f

i p p′

g

A lift always exists if i or p is an identity morphism. If i and i′ are composable
morphisms that have the LLP with respect to p, then so does i′i. Similarly, if p and p′

are composable morphisms that have the RLP with respect to i, then so does p′p. To see
the former case, note that in the left diagram, the LLP of i induces the dashed arrow,
allowing the LLP of i′ to induce the dotted arrow. A similar argument holds for the latter
case.

A X

B

C Y

f

i

p

i′

g

A X

Y

B Z

f

i

p

p′

g

Definition 4.1. A model category is a category C with three classes of morphisms

(
∼−→) Weak equivalences
(↠) Fibrations
(↣) Cofibrations

each of which contains all identity morphisms and is closed under composition. A mor-
phism that is both a (co)fibration and a weak equivalence is an acyclic (co)fibration. The
following axioms must be satisfied:

MC1 The category C is bicomplete.

MC2 If f and g are morphisms in C such that gf is defined and if two of the three
morphisms f , g and gf are weak equivalences, then so is the third.

MC3 If f is a retract of g and g is a weak equivalence, a fibration or a cofibration, then
so is f .

MC4 In the commutative diagram (4.1) a lift exists if either

1. i is a cofibration and p an acyclic fibration,

2. i is an acyclic cofibration and p a fibration.

MC5 Any morphism f can be factored as f = pi such that either

1. i is a cofibration and p an acyclic fibration,

2. i is an acyclic cofibration and p a fibration.

We also say that the given classes form a model structure on C .

A class of morphisms that satisfies MC2 has the two-out-of-three property. A class of
morphisms that satisfies MC3 is closed under retracts. Since a model category is bicom-
plete, it has an initial and terminal object. We say that an object is fibrant (cofibrant) if
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the unique morphism to the terminal object (from the initial object) is a fibration (cofi-
bration). For any object X, we can use MC5.1 to factor the unique morphism to the
terminal object X → ∗ and obtain an acyclic cofibration to a fibrant object X

∼−→ X̂
called the fibrant replacement. We can take the fibrant replacement of a morphism and
choose it such that it is a fibration. Dually there exists a cofibrant replacement X̃

∼−→ X.
The remainder of this section will consist of useful tools about model categories.

Proposition 4.2 ([DS95, Proposition 3.13]). Let C be a model category.

1. The cofibrations are precisely those morphisms which have the LLP with respect to
the acyclic fibrations.

2. The acyclic cofibrations are precisely those morphisms which have the LLP with
respect to the fibrations.

3. The fibrations are precisely those morphisms which have the RLP with respect to the
acyclic cofibrations.

4. The acyclic fibrations are precisely those morphisms which have the RLP with respect
to the cofibrations.

What Proposition 4.2 shows is that the model structure is entirely pinned down by
the class of weak equivalences and either the class of fibrations or cofibrations. Because
of this, we often take these lifting properties to be the defining properties of either the
fibrations or cofibrations. We have already seen that identity morphisms have both lifting
properties and that compositions and retracts preserve lifting properties.

If we have the following pushout and pullback diagrams

A C

B D

j

i i′

Z X

W Y

p′ p

q

then i′ is called the pushout of i along j and p′ is called the pullback of p along q. If i has
the LLP with respect to p, then by the universal property, so does i′. If p has the RLP
with respect to i, then by the universal property, so does p′.

A C X

B D Y

A Z X

B W Y

Together with Proposition 4.2, we obtain the following corollary.

Corollary 4.3 ([DS95, Proposition 3.14]). Pushouts of (acyclic) cofibrations are (acyclic)
cofibrations. Pullbacks of (acyclic) fibrations are (acyclic) fibrations.

Definition 4.4. A model category C is left proper if every pushout of a weak equivalence
along a cofibration is a weak equivalence.

There is an obvious dual notion of a right proper model category that we will not need.

Definition 4.5 ([Hov99, Definition 1.3.1], [Hir03, Definition 8.5.2]). A Quillen adjunction
is an adjunction

L : D C : R.⊥

between model categories D and C , such that
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1. the functor L preserves cofibrations and acyclic cofibrations,
2. the functor R preserves fibrations and acyclic fibrations.

Proposition 4.6 ([Hir03, Proposition 8.5.3]). Let (L ⊣ R) be an adjunction between model
categories. The following are equivalent:

1. The adjunction (L ⊣ R) is a Quillen adjunction.
2. The functor L preserves cofibrations and acyclic cofibrations.
3. The functor R preserves fibrations and acyclic fibrations.
4. The functor L preserves cofibrations and the functor R preserves fibrations.
5. The functor L preserves acyclic cofibrations and the functor R preserves acyclic

fibrations.

Proposition 4.7 (Ken Brown’s Lemma, [Hov99, Lemma 1.1.12]). Let (L ⊣ R) be a
Quillen adjunction. The functor L preserves weak equivalences between cofibrant objects.
The functor R preserves weak equivalences between fibrant objects.

Let C be a category and C ∈ ObC . An object in the overcategory C /C is a morphism
X → C in C . A morphism in C /C from f : X → C to g : Y → C is a morphism
h : X → Y in C such that f = gh. An object in the undercategory C/C is a morphism
C → X in C . A morphism in C/C from f : C → X to g : C → Y is a morphism
h : X → Y in C such that g = hf .

Proposition 4.8 ([Hir03, Theorem 7.6.5]). Let C be a model category and C ∈ ObC . The
overcategory C /C is a model category in which a morphism is a weak equivalence, fibration
or cofibration if the underlying morphism in C is. Similarly, the undercategory C/C is a
model category in which a morphism is a weak equivalence, fibration or cofibration if the
underlying morphism in C is.

The forgetful functor C /C → C sends X → C to its domain X. It is left adjoint to the
functor C → C /C that sends X ∈ ObC to the projection X×C → C. By Proposition 4.8,
the forgetful functor preserves weak equivalences and cofibrations, so the adjunction is a
Quillen adjunction by Proposition 4.6. Dually the forgetful functor C/C → C is right
adjoint to the functor sending X ∈ ObC to C → X

∐
C. This adjunction is also a

Quillen adjunction.

Definition 4.9. Let C , D and E be categories, with E cocomplete and let (−) × (−) :
C ×D → E be a functor. Given f ∈ C (X,Y ) and g ∈ D(A,B) the pushout product is the
morphism

f□g : X ×B
⋃

X×A

Y ×A→ Y ×B.

Let C , D and E be model categories. The functor × satisfies the pushout product property
if, given cofibrations f in C and g in D , the pushout product f□g is a cofibration in E
and f or g being acyclic implies that f□g is acyclic.

Let (C ,⊗, 1) be a monoidal category that is also a model category. We say C satisfies
the pushout product property if the tensor product ⊗ satisfies it.

4.2. Cofibrantly generated model categories

Proving that the axioms in Definition 4.1 are satisfied for three given classes of morphisms
can be very cumbersome. However, Proposition 4.2 has shown that we only need to
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consider the weak equivalences and cofibrations. The model structure is, in a sense,
generated by the weak equivalences and the cofibrations. It turns out that many model
structures are generated by weak equivalences and two sets of cofibrations. These model
categories are called cofibrantly generated model categories. Instead of directly checking
the axioms in Definition 4.1, we can check conditions on these sets of cofibrations. While
this is usually easier, one disadvantage is that not every model category is cofibrantly
generated. A consequence of working with sets is that we need some set theory to continue.

Definition 4.10. A partially ordered set or poset is a set W together with a relation ≤
that is

1. reflexive: ∀x ∈W : x ≤ x,
2. transitive: ∀x, y, z ∈W : [x ≤ y ∧ y ≤ z ⇒ x ≤ z],
3. antisymmetric: ∀x, y ∈W : [x ≤ y ∧ y ≤ x⇒ x = y].

We can view a poset W as a small category with objects the elements of W and a
unique morphism x→ y if x ≤ y.

Definition 4.11. A well-ordered set or woset is a poset (W,≤) such that for all non-empty
subsets S ⊆ W there exists an x ∈ S such that x ≤ y for all y ∈ S. An isomorphism
f : (W,≤) → (X,≤′) of wosets is a bijection f : W ↔ X such that x ≤ y implies
f(x) ≤′ f(y).

The isomorphism classes of wosets are instrumental. Since every set can be well-
ordered, these isomorphism classes can be used to ‘count’ elements. An ordinal is a
unique representative of an isomorphism class of wosets. We will not state the definition
in full detail, but it is vital to know that an ordinal λ is the woset of all lesser ordinals.
See [Dug66, Definition II.6.1] for a rigorous definition. The first ordinals are constructed
as

∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}.

Given an ordinal λ its successor ordinal is λ + 1 = λ ∪ {λ}. An ordinal that is not a
successor ordinal is a limit ordinal. For example, the woset of all finite ordinals is a limit
ordinal. For a subset S ⊆ λ of an ordinal, let sup(S) be the smallest ordinal that contains
S. For ordinals λ and β we write β ≤ λ and β < λ instead of β ⊆ λ and β ⊊ λ respectively.

We can also consider the ‘size’ or cardinality of a set, that is, its isomorphism class
in Set (An isomorphism in Set is just a bijection). A cardinal is a unique representative
of an isomorphism class of sets. It is an ordinal of greater cardinality than all its lesser
ordinals. See [Dug66, Definition II.7.5] for a rigorous definition. For a set S, let |S| be the
unique cardinal isomorphic to S.

Definition 4.12. Let C be a cocomplete category, λ an ordinal and I a class of morphisms.
A λ-sequence is a functor E : λ→ C often written as

E0 → E1 → · · · → Eβ → . . . , β < λ,

such that for all limit ordinals γ < λ the morphism colimβ<γ Eβ → Eγ is an isomorphism.
The morphism E0 → colimβ<λEβ is the composition of the λ-sequence. If every morphism
Eβ → Eβ+1, β + 1 < λ, is in I then the composition is a transfinite composition of
morphisms in I.

Definition 4.13. Let C be a cocomplete category, I a set of morphisms and ∅ the initial
object.
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1. An I-injective is a morphism that has the RLP with respect to all morphisms in I.
The class of I-injectives is denoted as I-inj.

2. An I-cofibration is a morphism that has the LLP with respect to all morphisms in
I-inj. The class of I-cofibrations is denoted as I-cof.

3. A relative I-cell complex is a transfinite composition of pushouts of morphisms in I.
The class of relative I-cell complexes is denoted as I-cell. An object X ∈ ObC is
an I-cell complex if the morphism ∅ → X is a relative I-cell complex

The lifting properties used in this definition hint at how we want to construct a model
structure. We will seek a set I such that the I-injectives become the acyclic fibrations. This
way, the I-cofibrations must be the cofibrations. A second set is used for the fibrations
and acyclic cofibrations. Note that I-inj and I-cof contain all identity morphisms and
are closed under composition and retracts. The relative I-cell complexes generalize the
concept of a CW-complex in the category Top. By [Hir03, Proposition 10.5.11], every
retract of a relative I-cell complex is an I-cofibration. These relative I-cell complexes will
then be used to factorize morphisms as in axiom MC5 in Definition 4.1. We will sketch
out how to do this. The following definition is fairly abstract. Example 4.16 shows a case
where it is necessary.

Definition 4.14. Let κ be a cardinal. An ordinal λ is κ-filtered if it is a limit ordinal
and, if S ⊆ λ and |S| ≤ κ, then sup(S) < λ.

If κ is finite, every limit ordinal is κ-filtered since the supremum of a finite subset of
a limit ordinal is finite, and a limit ordinal is infinite. A cardinal κ is itself a κ-filtered
ordinal.

Definition 4.15. Let C be a cocomplete category, I a class of morphisms and κ a cardinal.
An object X ∈ ObC is κ-small relative to I if for all κ-filtered ordinals λ and all λ-
sequences

E0 → E1 → · · · → Eβ → . . . , β < λ,

where Eβ → Eβ+1, β + 1 < λ, is in I, the map

colimβ<λ C (X,Eβ)→ C (X, colimβ<λEβ) (4.2)

is a bijection. An object in C is small relative to I if it is κ-small relative to I for some
cardinal κ. It is finite relative to I if κ is finite.

The critical takeaway of this definition is to specify cases where, given a transfinite
composition E0 → colimE, we can factor a morphismX → colimE asX → Eβ → colimE
for some ordinal β.

Example 4.16 ([Hov99, Example 2.1.5]). A set X ∈ ObSet is small relative to MorSet.
Let λ be an |X|-filtered ordinal, E a λ sequence and consider a map f : X → colimE. For
every x ∈ X there exists an ordinal β(x) such that f(x) ∈ Eβ(x). Let S = {β(x)}x∈X . Then
S ⊆ λ and |S| ≤ |X| and therefore sup(S) < λ. Now f factors as X → Esup(S) → colimE.
Thus (4.2) is surjective. A similar result shows injectivity.

Lemma 4.17. Spaces are small relative to closed inclusions. Compact spaces are finite
relative to closed inclusions.
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Proof. Let λ be a limit ordinal and let E : λ → Top be a functor. For a limit ordinal
γ < λ we have the composite colimS

β<γ Eβ → colimβ<γ Eβ → Eγ in S. If E is a λ-sequence

in S then it is a λ-sequence in Top. The converse holds if colimS
β<γ Eβ is weak Hausdorff

for every limit ordinal γ. This is the case if every map Eβ ↪→ Eβ+1, β + 1 < λ, is a closed
inclusion. We prove this using transfinite induction. Note that colimS

β<γ Eβ = ∪β<γEβ.
Let ∪β<γ′Eβ be weak Hausdorff for ever limit ordinal γ′ < γ. Then E′ : γ → Top, with
E′

β = Eβ, β < γ and E′
γ = ∪β<γEβ, is a γ-sequence in S of closed inclusions. By [Hov99,

Proposition 2.4.2] any map h : K → E′
γ , with K compact Hausdorff, factors through some

weak Hausdorff space E′
β, β < γ. Thus imh is closed in E′

β and therefore closed in E′
γ

making it weak Hausdorff.
By [Hov99, Lemma 2.4.1], every space in S is small relative to inclusions, and by

[Hov99, Proposition 2.4.2], every compact space in S is finite relative to closed T1 in-
clusions. Any λ sequence in Top of closed inclusions is a λ-sequence in S of closed T1
inclusions. Hence the result follows.

The following definition and proposition give the final two ingredients that allow us
to factorize as in axiom MC5 in Definition 4.1. We present a sketch of the proof of
Proposition 4.19 to show why small objects and the following small object argument are
used. Full proofs are given in [Hov99] and [Hir03]. Both are generalizations of a gluing
construction given in [DS95, Chapter 7].

Definition 4.18. Let C be a cocomplete category and I a set of morphisms. The set I
permits the small object argument if all domains of morphisms in I are small relative to
I-cell.

Proposition 4.19 ([Hov99, Theorem 2.1.14],[Hir03, Proposition 10.5.16]). Let C be a
cocomplete category and I a set of morphisms that permits the small object argument.
Every morphism f ∈ MorC factorizes as f = pi such that i ∈ I-cell and p ∈ I-inj.

Proof sketch. We can choose a cardinal λ such that every domain of morphisms in I is
λ-small relative to I-cell. Let S be the set of commutative squares

Z X

W Y

j f

where j ∈ I and consider the commutative square:∐
s∈S Zs X

∐
s∈SWs Y

∐
s∈S js f

Then we can factor f = f0 as X0 → X1
f1−→ Y , with X0 = X and X1 = W ′∐

Z′ X,
where W ′ and Z ′ are the domain and codomain of

∐
s∈S js, respectively. By repeating

this process a transfinite amount of times up to λ, we factor f as X
i−→ Xλ

p−→ Y where i is
a transfinite composition of pushouts of coproducts of morphisms in I, which is in I-cell.
Consider the left commutative square

A Xλ

B Y

j p

A Xβ Xβ+1 Xλ

B Y

j p
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with j ∈ I. The top morphism factors through some Xβ because of the small object
argument, as shown in the right diagram. Then by the construction of Xβ → Xβ+1, the
dotted lift exists.

Let C be a cocomplete category and I a set of morphisms that permits the small
object argument. Factorize an I-cofibration as f = pi using Proposition 4.19. Then p is
an I-injective, so there exists a lift in the diagram

X E

Y Y

i

f p

showing that f is a retract of the relative I-cell complex i. Thus I-cof is precisely the
class of retracts of morphisms in I-cell.

We can finally define cofibrantly generated model categories and state the Recognition
Theorem.

Definition 4.20. A model category C is cofibrantly generated if there exist sets of mor-
phisms I and J such that

1. the sets I and J permit the small object argument,
2. the class of fibrations is J-inj,
3. the class of acyclic fibrations is I-inj.

The sets I and J are called generating cofibrations and generating acyclic cofibrations,
respectively. The classes of cofibrations and acyclic cofibrations are necessarily I-cof and
J-cof, respectively.

Theorem 4.21 (Recognition theorem, [Hov99, Theorem 2.1.19], [Hir03, Theorem 11.3.1]).
Let C be a bicomplete category. Let W be a class of morphisms that contains all identity
morphisms and is closed under composition, and let I and J be sets of morphisms such
that

RT1 the class W has the two-out-of-three property and is closed under retracts,
RT2 the sets I and J permit the small object argument,
RT3 J-cell ⊂W ∩ I-cof,
RT4 I-inj ⊂W ∩ J-inj,
RT5 either W ∩ I-cof ⊂ J-cof or W ∩ J-inj ⊂ I-inj.

Then C is a cofibrantly generated model category with W the weak equivalences, I the
generating cofibrations and J the generating acyclic cofibrations.

4.3. Model structures on spaces and simplicial sets

Two of the best-known model structures are the classical model structures on Top and
sSet, from this point onward, referred to as the model structures on Top or sSet. The
model structure on Top is essential since we will use it to construct various other model
structures. All these model structures will be cofibrantly generated, including those on
Top and sSet. The relevant proofs for Top and sSet, given in [Hov99], use Theorem 4.21.
Nonetheless, these proofs are still very long and complicated, and we will not state them
here. Instead, we focus on building some more machinery to help us down the road.
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Definition 4.22. A continuous map f : A → B is a Serre fibrations if it has the RLP
with respect to all inclusions Dn × {0} ↪→ Dn × [0, 1], n ≥ 0.

Let J = {Dn × {0} ↪→ Dn × [0, 1] | n ≥ 0}, then the class of Serre fibrations is J-cof.
Since all the inclusions in J are weak homotopy equivalences, this suggests that the Serre
fibrations are the fibrations in a cofibrantly generated model category. This is the model
structure on Top. Let I = {Sn ↪→ Dn+1 | n ≥ −1}.

Theorem 4.23 (Model structure on Top, [Hov99, Theorem 2.4.19, 2.4.23, 2.4.25]). The
category Top is a cofibrantly generated model category with weak equivalences, the weak
homotopy equivalences, fibrations the Serre fibrations, cofibrations those maps that have
the LLP with respect to all Serre fibrations that are weak homotopy equivalences and the
sets I and J the generating cofibrations and acyclic cofibrations respectively.

Cofibrations are retracts of relative I-cell complexes. Since the maps in I are of the
form Sn ↪→ Dn+1, we find that relative CW-complexes (see [Spa66, Section 7.6]) are cofi-
brations. Since all maps in J are strong deformation retracts, they admit retractions.
Therefore every space is fibrant. Most model categories we work with are enriched, ten-
sored and cotensored over Top. We want the tensor, here denoted as ×, to satisfy the
pushout product property. We will give a criterion from Schwede that allows us to check
this.

Definition 4.24. Let C be a model category that is enriched, tensored and cotensored
overTop. Then C is a topological model category if the tensor satisfies the pushout product
property in Definition 4.9.

Proposition 4.25 ([Sch18, Proposition B.5]). Let C be a model category that is enriched,
tensored and cotensored over Top. Let G be a set of cofibrant objects and Z a set of acyclic
cofibrations of C such that

1. the acyclic fibrations are precisely those morphisms which have the RLP with respect
to the morphisms X × i, for all X ∈ G and i ∈ I = {Sn ↪→ Dn+1 | n ≥ −1},

2. the fibrations are precisely those morphisms which have the RLP with respect to the
morphisms X × j, for all X ∈ G and j ∈ J = {Dn × {0} ↪→ Dn × [0, 1] | n ≥ 0},
and the morphisms c□i, for all c ∈ Z and i ∈ I = {Sn ↪→ Dn+1 | n ≥ −1}.

Then C is a topological model category.

Of course, the category Top must be a topological model category. We check if Top
satisfies the pushout product property as a monoidal category.

Proposition 4.26. The symmetric monoidal model category (Top,×, ∗) satisfies the
pushout product property. Therefore it is a topological model category.

Proof. This is a consequence of Proposition 4.25 when we set G = {∗} and Z = ∅, because
I and J are the generating cofibrations and acyclic cofibrations respectively. Also note
that ∅ → ∗ is an element of I, making ∗ cofibrant.

Let C be a topological model category. If g is a cofibration in Top, then (−)□g : C →
C is a functor that preserves (acyclic) cofibrations. By (2.4), the object ∅C ∼= X×∅ is the
initial object since ∅ is the initial space. So if f : X → Y is a morphism in C and g : ∅ → A
is a map, then f□g = f × A, since ∅C ∪∅C

(X × A) = X × A. Let (−) × A : C → C
denote the tensor with some space A. If A is cofibrant, this functor preserves (acyclic)
cofibrations. By definition, it must also be left adjoint to the cotensor (−)A : C → C .
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Thus if A is cofibrant, this adjunction is a Quillen adjunction. In a completely similar
fashion, the functor X × (−) : Top→ C is left adjoint to Map(X,−) : C → Top and this
adjunction is a Quillen adjunction if X is a cofibrant object in C . In Top in particular,
taking the product with a cofibrant space preserves (acyclic) cofibrations.

Definition 4.27. Let C be a cocomplete category enriched, tensored and cotensored over
Top. Let f : X → Y be a morphism in C and let inclt : X → X × [0, 1] be the morphism
induced by the tensor of X and the closed inclusion {t} ↪→ [0, 1] and the isomorphism
X ∼= X × {t}. The pushout C(f) = X × [0, 1] ∪X Y of the diagram

X Y

X × [0, 1] C(f)

f

incl1 q(f)

f ′

is called the mapping cylinder.

The constant map [0, 1] → {1} induces a retraction for all morphisms inclt. By the
universal property of the pushout, this gives rise to a retraction of q(f), which allows us
to factor f through f ′ inclt, for all t ∈ [0, 1]. The morphism c(f) = f ′ incl0 is called the
front of the mapping cylinder.

Lemma 4.28. Let C be a topological model category and f : X → Y be a morphism
between cofibrant objects. Then the front of C(f) is a cofibration.

Proof. The morphism

incl0
∐

incl1 : X
∐

X ∼= X × {0, 1}↣ X × [0, 1]

is a cofibration since {0, 1} ↣ [0, 1] is a generating cofibration and X is cofibrant. The
mapping cylinder fits in the following pushout diagram:

X ⨿X X ⨿ Y

X × [0, 1] C(f)

idX ⨿f

incl0 ⨿ incl1 c(f)⨿q(f)

f ′

Since pushouts preserve cofibrations by Corollary 4.3, the right vertical map is a cofibra-
tion. The canonical map X ↣ X

∐
Y is a cofibration by Corollary 4.3 since it is a pushout

of ∅↣ Y along ∅↣ X. Its composition with c(f)
∐
q(f) is the front of C(f), which must

now be a cofibration.

A morphism f : X → Y , in a topological model category, is an h-cofibration if it has
the homotopy extension property, that is, given a morphism g : Y → Z and a homotopy
H : X × [0, 1] → Z, with H0 = gf , there exists a homotopy H ′ : Y × [0, 1] → Z, with
H ′

0 = g and H ′ ◦ (f × [0, 1]) = H. This is equivalent to saying that there exists a lift in
every commutative diagram

X × [0, 1] ∪X×{0} Y × {0} Z

Y × [0, 1] ∗

f□ incl0
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with ∗ the terminal object. This is again equivalent to saying that the pushout product
f□ incl0 admits a retraction h. This way, one can see that the functor W × (−) preserves
h-cofibrations for every object W . In Top, an h-cofibration is also called a Hurewicz
cofibration. They are all closed inclusions by [Sch18, Proposition A.31].

One might wonder if a different model structure on Top exists that uses homotopy
equivalences as weak equivalences instead of weak homotopy equivalences. The Strøm
model structure is just that. Recall that a homotopy equivalence is a map f : A→ B that
has a homotopy inverse g, that is, there exists a map g : B → A such that gf and fg are
homotopic to idA and idB. Homotopy equivalences are weak homotopy equivalences. A
Hurewicz fibration is a map f : A → B that has the RLP with respect to all inclusions
E × {0} ↪→ E × [0, 1]. A Hurewicz fibration is a Serre fibration.

Theorem 4.29 (Strøm model structure on Top, [Str72, Theorem 3], [MP11, Theorem
17.1.1]). The category Top is a model category with weak equivalences, the homotopy
equivalences, fibrations the Hurewicz fibrations and cofibrations the Hurewicz cofibrations.

We will implicitly assume that Top has the classical model structure, so let Tops

denote the category of spaces with the Strøm model structure. The identity functor
Tops → Top preserves weak equivalences, fibrations and acyclic fibration. Since the
identity is right adjoint to itself, this adjunction is a Quillen adjunction. Therefore the
identity functor Top→ Tops preserves cofibrations and acyclic cofibrations. Interestingly
the Strøm model structure on S is not cofibrantly generated as proven in [Rap18].

We finish this chapter with the model structure on sSet. A simplicial map f : K → L
is a weak equivalence if the realization |f | is a weak homotopy equivalence. The map f is
a level-wise injection if fp is an injection for every p ≥ 0. The standard n-simplex is the
simplicial set ∆[n] = ∆(−, n). The boundary ∂∆[n] ⊂ ∆[n] is the smallest subcomplex
that contains all injections di : [n − 1] → [n], with 0 ≤ i ≤ n. It is the subcomplex
where ∂∆[n]p ⊆ ∆(p, n) contains the non surjective maps [p] → [n]. The k-th horn
Λn
k ⊂ ∆[n] is the smallest subcomplex that contains all injections di : [n − 1] → [n],

with 0 ≤ i ≤ n, i ̸= k. It is the subcomplex where (Λn
k)p ⊆ ∂∆[n]p contains the maps

[p] → [n] that do not have k ∈ [n] in their image. Let I ′ = {∂∆[n] ↪→ ∆[n] | n ≥ 0} and
J ′ = {Λn

k ↪→ ∆[n] | n > 0, 0 ≤ k ≤ n}.
The realization of ∆[n] is the standard topological n-simplex ∆n = |∆[n]|. We can

choose a homeomorphism to Dn such that the realization of ∂∆[n] ↪→ ∆[n] is homeomor-
phic to Sn−1 ↪→ Dn. We can also choose a homeomorphism to Dn−1 × [0, 1] such that
Λn
k ↪→ ∆[n] is homeomorphic to Dn−1 × {0} ↪→ Dn−1 × [0, 1]. See [GJ09, Section I.2] and

[Hov99, Section 3.2] for more details.

Definition 4.30. A simplicial map f : K → L is a Kan fibration if it is in J ′-inj.

Theorem 4.31 (Model structure on sSet, [Hov99, Theorem 3.6.5]). The category sSet is
a cofibrantly generated model category with weak equivalences, fibrations the Kan fibrations,
cofibrations those maps that have the LLP with respect to all Kan fibrations that are weak
equivalences and the sets I ′ and J ′ the generating cofibrations and acyclic cofibrations
respectively.

By [GJ09, Theorem 11.3], the cofibrations are precisely the level-wise injections, mak-
ing every simplicial set cofibrant. The realization preserves weak equivalences and gen-
erating (acyclic) cofibrations. Since it is left adjoint, it preserves colimits and, therefore,
(acyclic) cofibrations. We get the following Quillen adjunction.
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Theorem 4.32 ([Hov99, Theorem 3.6.7]). The adjunction

| − | : sSet Top : Sing .⊥

is a Quillen adjunction.
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5. Model structures on V-spaces

We are ready to construct model structures on the category of V-spaces. As the previous
chapter shows, fibrations or cofibrations are usually defined using lifting properties. There-
fore we will usually leave one of these classes implicit. The generating (acyclic) cofibrations
are also often left implicit. Since it is usually clear from the context which morphisms play
the role of weak equivalences, fibrations and cofibrations, Theorem 4.23 can be stated as:
The weak homotopy equivalences and Serre fibrations are part of a cofibrantly generated
model structure on Top.

We start by constructing the (absolute) level model structure and the positive level
model structure. These are used to construct the (absolute) V-model structure and positive
V-model structure. This last model structure will later be lifted to a model structure on the
category CTopV of commutative V-space monoids. Here ‘positivity’ is a requirement. The
level model structures presented in this chapter are also necessary for TopN . Therefore
we will start by considering a general index category K. Let (K,⊕, 0) be a symmetric
monoidal index category, whose tensor product is continuous, such that K(k, l) is cofibrant
and {idk} → K(k, k) is a cofibration, for all k, l ∈ ObK. Let K+ ⊂ K denote the full
subcategory with ObK+ = ObK− {0}. Discrete spaces are cofibrant since we can attach
each point using a pushout of ∅ → ∗ transfinitely. We can choose which point we attach
first arbitrarily. Therefore the inclusion of a basepoint in a discrete space is a cofibration.
Thus if K is discrete, the cofibrancy assumptions are automatically satisfied. For V the
space V(n,m) is cofibrant for all n,m ≥ 0 by [Sch18, Proposition 1.1.19]. The special
orthogonal group SO(n) is the path-connected component of O(n) containing the identity.
As shown in [Hat02, Proposition 3D.1], it is a CW-complex constructed by attaching
cells to the identity idRn . Therefore {idRn} ↣ SO(n) is a cofibration. The other path-
connected component O(n)−SO(n) is homeomorphic to SO(n) and, therefore, cofibrant.
Thus the inclusion {idRn} → O(n) is a cofibration.

5.1. The level model structures

The level equivalences from Definition 3.8 will be accompanied by level fibrations to form
a model structure. Proving this will invoke the recognition theorem (Theorem 4.21).

Definition 5.1. A morphism of K-spaces f : X → Y is a level fibration (level cofibration)
if all components fk : Xk → Yk are Serre fibrations (cofibrations).

The cofibrations in TopK must then be those morphisms that have the LLP with
respect to level acyclic fibrations. The term cofibration is used for both the level model
structure on TopK and the model structure on Top. We will specify whether we are in
Top or TopK if it is not clear from the context. While cofibrations in TopK are level
cofibrations, the converse is not true.

The following adjunction is used to define the generating (acyclic) cofibrations. Given
k ∈ ObK the evaluation functor evk : TopK → Top is defined by evk(X) = Xk and is
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right adjoint to the free functor Fk defined by FkA = K(k,−)×A.

Fk : Top TopK : evk .⊥ (5.1)

To see this, consider the chain of bijections

TopK(FkA,X) ∼= TopK(K(k,−), XA) ∼= Top(∗, (Xk)
A) ∼= Top(A,Xk)

induced by (2.15), the Yoneda lemma ([Kel05, Section 1.9]) and (2.3). Consider the sets
FI = {Fki | k ∈ ObK, i ∈ I} and FJ = {Fkj | k ∈ ObK, j ∈ J} in TopK and let
Wlev denote the class of level equivalences. For every k, l ∈ K the composite functor
evl ◦Fk : Top → Top sends a space A to K(k, l) × A. Since K(k, l) is cofibrant, this
composite functor preserves (acyclic) cofibrations. Therefore, the morphisms in FI and
FJ are level cofibrations.

Lemma 5.2. Retracts of relative FI- and FJ-cell complexes are level cofibrations

Proof. By [Hir03, Proposition 10.3.4], the class of cofibrations in a model category must
be closed under pushouts, transfinite compositions and retracts. Evaluating a retract of a
relative FI- or FJ-cell complex gives a retract of a transfinite composition of pushouts of
cofibrations in Top, which must be a cofibration.

The following proposition will ensure that FI and FJ permit the small object argu-
ment. Later we use this proposition for spaces other than codomains in I and J .

Proposition 5.3. Let A be a space. Then FkA is small relative to the sets FI and FJ .

Proof. By Lemma 4.17, there exists a cardinal κ such that A is κ-small relative to closed
inclusion. Let λ be a κ-filtered ordinal and consider a λ-sequence E : λ → TopV written
as

E0 → E1 → · · · → Eβ → . . . ,

where Eβ → Eβ+1, β+1 < λ, is in FI-cell. For every k ∈ ObK the functor E−,k : λ→ Top
is a λ-sequence

E0,k → E1,k → · · · → Eβ,k → . . .

in Top. The maps Eβ,k → Eβ+1,k, β+1 < λ, are cofibrations by Lemma 5.2 and therefore
closed inclusions by [Hov99, Corollary 2.4.6]. Thus E−,k is a λ-sequence in Top of closed
inclusions. Using adjointness of (5.1) and the fact that A is κ-small relative to closed
inclusions, we find a chain of bijections

colimTopV(FkA,E) = colimβ<λTop
V(FkA,Eβ)

∼= colimβ<λTop(A,Eβ,k)
∼= Top(A, colimβ<λ(Eβ,k))

= Top(A, (colimE)k) ∼= TopV(FkA, colimE).

Thus FkA is κ-small relative to FI. The argument for FJ is entirely similar.

Substituting the domains in I and J for A shows that FI and FJ permit the small
object argument. If A is compact, it is finite relative to closed inclusions by Lemma 4.17.
Since every limit ordinal is κ-filtered, if κ is finite, there would be no restriction on the
limit ordinal λ. In this case, FkA is finite relative to FI and FJ . The domains in I and
J are compact, so this would be a slightly altered way to show that FI and FJ permit
the small object argument. We now check the remaining conditions in Theorem 4.21.
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Theorem 5.4 (Level model structure onTopK). The level equivalences and level fibrations
are part of a cofibrantly generated model structure on TopK.

Proof. We will show that the data consisting of Wlev, FI and FJ satisfies Theorem 4.21.
The category TopK is bicomplete by Theorem 2.27, and all identity morphisms are level
equivalences. The two-out-of-three property and closedness under retracts of Wlev follow
from analogous properties in Top. Thus RT1 is satisfied. The class Wlev is, in particular,
closed under composition. RT2 is satisfied by substituting the domains of I and J in
Proposition 5.3.

Let Fnj ∈ FJ and p : X → Y be a morphism of V-spaces and consider the commutative
square on the left.

FnA X

FnB Y

Fkj p

A Xn

B Yn

j pn

This square is adjoint to the right commutative square. A lift exists in the left square if
and only if a lift exists in the right square. One can see that FJ-inj is exactly the class of
level fibrations. Replacing j ∈ J with i ∈ I shows that FI-inj is precisely the class of level
acyclic fibrations. Hence RT4 and RT5 follow from the equality FI-inj = Wlev ∩ FJ-inj.
The class of cofibrations is FI-cof.

Since FI-inj ⊂ FJ-inj we have FJ-cell ⊂ FJ-cof ⊂ FI-cof. Since the functors evl ◦Fk

preserve acyclic cofibrations, the morphisms in FJ are level cofibrations that are level
equivalences. By [Hir03, Proposition 10.3.4], the class of acyclic cofibrations in a model
category must be closed under pushouts and transfinite compositions. Evaluating a relative
FJ-cell complex gives a transfinite composition of pushouts of acyclic cofibrations in Top,
which must be an acyclic cofibration. Thus RT3 is satisfied since FJ-cell ⊂Wlev.

Since evk clearly preserves (acyclic) fibrations, the adjunction (Fk ⊣ evk), (5.1), is
a Quillen adjunction. The evaluation functors even preserve cofibrations. Retracts of
level cofibrations are level cofibrations. By Theorem 5.4, the cofibrations in TopK are
precisely the retracts of relative FI-cell complexes. The result follows from Lemma 5.2.
The constant functor c : Top → TopK clearly preserves (acyclic) fibrations, hence the
adjunction (colim ⊣ c), (2.7), is a Quillen adjunction.

Proposition 5.5. The level model structure on TopK is topological.

Proof. The continuous map i : ∅ → ∗ is an element in I and, therefore, a cofibrantion.
Thus Fki : ∅ → K(k,−) is a cofibration in TopK making K(k,−) cofibrant for every
k ∈ ObK. Let G = {K(k,−) | k ∈ ObK} and Z = ∅. Then Proposition 4.25 shows that
the level model structure is topological.

Proposition 5.6 ([Sch18, Proposition 1.4.12(iii)]). The boxproduct of TopK satisfies the
pushout product property.

The positive level model structure on TopV is a variation of the (absolute) level model
structures where we do not impose any conditions on the components in degree 0. This
means that the component f0 of a morphism f : X → Y does not have to be a weak
equivalence or a fibration for f to be one. In a general K, the object 0 is, of course, just
the identity object.

Definition 5.7. A morphism of K-spaces f : X → Y is a positive level equivalence
(positive level fibration) if all components fk : Xk → Yk, k ∈ ObK+, are weak homotopy
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equivalences (Serre fibrations). It is a positive cofibration if it has the LLP with respect
to all positive level fibrations that are also positive level equivalences.

Let FI+ = {Fki | k ∈ ObK+, i ∈ I} and FJ+ = {Fkj | k ∈ ObK+, j ∈ J} in
TopK and let W+

lev denote the class of positive level equivalences. Since FI+ ⊂ FI and
FJ+ ⊂ FJ , these sets permit the small object argument. Proving that the data consisting
of W+

lev, FI
+ and FJ+ satisfies Theorem 4.21 is done in the same manner as was done in

Theorem 5.4.

Theorem 5.8 (Positive level model structure on TopK). The positive level equivalences
and positive level fibrations are part of a cofibrantly generated model structure on TopK.

When considering the positive level model structure, the functors evk and c also pre-
serve (acyclic) fibration. Thus the adjunctions (Fk ⊣ evk), k ∈ K+, from(5.1), and
(colim ⊣ c), from (2.7), are also Quillen adjunctions when TopK is equipped with the
positive level model structure.

Proposition 5.9. The positive level model structure on TopV is topological.

Proof. Let G = {K(k,−) | k ∈ ObK+} and Z = ∅. Then Proposition 4.25 shows that the
level model structure is topological.

5.2. Motivating the homotopy colimit

Before defining the V-model structure on TopV , we look at some properties of the homo-
topy colimit. Since (2.7) is a Quillen adjunction, we now know that the colimit preserves
(acyclic) cofibrations. By Ken Brown’s lemma (Proposition 4.7), it preserves weak equiv-
alences between cofibrant objects. However, as mentioned in Section 3.3 and [Dug08,
Section 2], the colimit does not preserve weak equivalences in general. This is one moti-
vating property that the homotopy colimit has. For this reason, we consider the following
class of morphisms.

Definition 5.10. A morphism of K-spaces f : X → Y is a K-equivalence if the map
hocolimK f is a weak homotopy equivalence.

When working with cofibrant objects using the colimit is fine. Therefore another
motivating property of the homotopy colimit is that it is weakly equivalent to the ordinary
colimit for cofibrant objects. These properties can be stated as the following theorems.

Theorem 5.11. Level equivalences are K-equivalences.

Proof. Since {idk} → K(k, k) is a cofibration it is an h-cofibration. Taking the prod-
uct with any space preserves h-cofibrations, and coproducts also preserve h-cofibrations.
Therefore si(Bp−1(∗,K, X)) ↪→ Bp(∗,K, X) is an h-cofibration making B•(∗,K, X) ‘good’
in the sense of [Seg74, Definition A.4]. Then by the proof of [Lew82, Corollary 2.4(b)],
‘good’ implies ‘proper’ in the sense of [May72, Definition 11.2] in that the maps⋃

0≤i≤p

si(Bp−1(∗,K, X)) ↪→ Bp(∗,K, X)

are h-cofibrations for all p ≥ 0. [Lew82, Corollary 2.4(b)] makes use of Lillig’s union
theorem found in [Die08, Theorem 5.4.5]. A level equivalence of K-spaces X → Y induces
a level equivalence of simplicial spaces B•(∗,K, X) → B•(∗,K, Y ). Then by [May74,
Theorem A.4] the realization XhK → YhK is a weak homotopy equivalence. Here we need
to apply the glueing lemma for h-cofibrations and weak homotopy equivalences, [Sch18,
Proposition B.6], instead of the one for h-cofibrations and homotopy equivalences.
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Theorem 5.12. If X is a cofibrant K-space in the level model structure, then the projection

π : hocolimKX → colimX

is a weak homotopy equivalence.

Proof. The K-space X is level-wise cofibrant, because evk preserves cofibrations. Since
every space K(k, l) is cofibrant and every map {idk} → K(k, k) is a cofibration, an argu-
ment, analogous to the proof for [SS19, Lemma 3.6], implies that the bar resolution X is
cofibrant. By [HV92, Proposition 3.1(5)] the evaluation ϵ : X → X is a level equivalence.
Since (colim ⊣ c) is a Quillen adjunction and ϵ is a level equivalence between cofibrant
objects, the map colim(ϵ) ∼= π is a weak homotopy equivalence.

In the case that K is discrete and ‘well structured’ in the sense of [SS12, Definitions 5.2],
the K-equivalences are the weak equivalences of a cofibrantly generated model structure on
TopK as shown in [SS12, Proposition 6.16]. Important examples are the categories N , in
Example 2.22, and I, in Example 2.23. We will not go into this discrete case, but we note
that the construction of this model structure is very similar to the upcoming construction
of the absolute and positive V-model structure.

5.3. The V-model structure

From this point onward, we will focus on the index category V. The model structures
to be built are particular cases of the construction given in [Lin13, Section 15]. The V-
equivalences are the weak equivalences in the V-model structure on TopV . This model
structure has the same cofibrations as the level model structure. The V-model structure
is constructed by ‘adding more weak equivalences’ to the level model structure. The
fibrations are defined as follows.

Definition 5.13. A morphism of V-spaces f : X → Y is a V-fibration if it is a level
fibration and if Xn → Xm ×Ym Yn is a weak homotopy equivalence for every isometry
Rn → Rm in V.

Since the V-model structure has the same cofibrations as the level model structure, it
will also have the same acyclic fibrations. Therefore the set of generating cofibrations is
the same as well. It already permits the small object argument. The following proposition
is used for the smallness argument for the set of generating acyclic cofibrations to be built.

Proposition 5.14. The cofibrant objects in the level model structure of TopV are small
relative to all cofibrations.

Proof. By Proposition 5.3, both the domains and codomains of FI are small relative to
FI-cell. The initial object ∅ in TopV is, in particular, small relative to FI-cell. Then by
[Hir03, Corollary 10.4.9], all FI-cell complexes are small relative to FI-cell. Retracts of
objects that are small relative to FI-cell are themselves small relative to FI-cell by [Hir03,
Proposition 10.4.7]. Every cofibrant object is a retract of an FI-cell complex by [Hir03,
Corollary 11.2.2] and objects small relative to FI-cell are small relative to all cofibrations
by [Hir03, Proposition 11.2.3]. When put together this implies the result.

An isometry ϕ ∈ V(n,m) induces a morphism ϕ∗ : Fm(∗) → Fn(∗) between cofi-
brant V-spaces. It is a V-equivalence since (Fm(∗))hV ∼= V(m,−)hV ∼= B(m/V) ≃ ∗ and
(Fn(∗))hV ≃ ∗ by [HV92, (4.1)] and Lemma 3.14. Factor ϕ∗ through its mapping cylinder.

Fm(∗) c(ϕ∗)−−−→ C(ϕ∗)
p(ϕ∗)−−−→ Fn(∗).
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Here p(ϕ∗) is a level-wise homotopy equivalence and, therefore, a V-equivalence. Since
the two-out-of-three property clearly holds for V-equivalences, the front c(ϕ∗) is a V-
equivalence. It is also a cofibration by Lemma 4.28. Let K ′ = {c(ϕ∗) | ϕ ∈ MorV}. Since
the level model structure is topological, the set K ′□I is a set of cofibrations. The set of
generating acyclic cofibrations isK = FJ∪(K ′□I). LetWV be the class of V-equivalences.

Proposition 5.15 ([Lin13, Proposition 15.5]). A morphism of V-spaces is a K-injective
if and only if it is a V-fibration.

If WV , FI and K make TopV a cofibrantly generated model category, then the V-
fibrations are indeed the fibrations in this model category. An V-space X is V-fibrant if
Xn → Xm is a weak homotopy equivalence for every isometry Rn → Rm.

Theorem 5.16 (V-model structure on TopV). The V-equivalences, V-fibrations and cofi-
brations are part of a cofibrantly generated model structure on TopV .

Proof. We will show that the data consisting of WV , FI and K satisfies Theorem 4.21.
The category TopV is bicomplete. The functoriality of hocolimV means that WV contains
all identities and satisfies RT1.

The domains of FJ are cofibrant since all Fn preserve cofibrations. Let c(ϕ∗)□i ∈
K ′□I. It has the domain

X = Fm(∗)×Dn
⋃

Fm(∗)×Sn−1

C(ϕ∗)× Sn−1.

Since Fm(∗) and Sn are cofibrant and c(ϕ∗) and i are cofibrations in their respective
categories the composite Fm(Sn) ∼= Fm(∗)×Sn ↣ X is a cofibration. Hence X is cofibrant
since Fm(Sn) is. By Proposition 5.14 FJ ∪K permits the small object argument, so RT2
is satisfied.

The inclusion K-cell ⊂ FI-cof holds because K is a set of cofibrations. For every
generating cofibration we have (Fmi)hV ∼= B(m/V)×i which is a cofibration in Top. Since
hocolim preserves colimits by Corollary 3.12, it must preserve transfinite compositions of
pushouts. Therefore it preserves cofibrations. Every morphism in K is a cofibration
and a V-equivalence and is sent by hocolim to an acyclic cofibration in Top. Thus the
class K-cell is sent to acyclic cofibrations in Top because hocolim preserves colimits. In
particular, we have K-cell ⊂WV . Therefore RT3 is satisfied.

The inclusion FI-inj ⊂ K-inj also holds because K is a set of cofibrations. By The-
orem 5.11 we also have FI-inj ⊂ Wlev ⊂ WV , so RT4 is satisfied. Finally RT5 is sat-
isfied, since V-equivalence that are K-injectives are FI-injectives by [Lin13, Proposition
15.9].

The V-fibrations are level fibrations. Since acyclic V-fibrations are precisely the FI-
injectives, they are level acyclic fibrations. The evaluation functors evn then preserve
(acyclic) fibrations. Therefore the adjunction (Fn ⊣ evn),(5.1), is a Quillen adjunction
when TopV is equipped with the V-model structure.

Proposition 5.17. The V-model structure on TopV is topological.

Proof. Let G = {V(n,−) | Rn ∈ ObV} and Z = K ′. Then Proposition 4.25 shows that
the level model structure is topological.

Recall that V+ ⊂ V is the full subcategory with ObV+ = ObV − {R0}. Like the
positive level model structure, the positive V-model structure is constructed similarly to
the (absolute) V-model structure. It will have the V-equivalences as weak equivalences
and have the positive cofibrations as cofibrations. The fibrations are defined as follows.
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Definition 5.18. A morphism of V-spaces f : X → Y is a positive V-fibration if it is a
positive level fibration and if Xn → Xm×Ym Yn is a weak homotopy equivalence for every
isometry Rn → Rm in V+.

Let (K ′)+ = {c(ϕ∗) | ϕ ∈ MorV+} and let K+ = FJ+ ∪ ((K ′)+□I). Since K+ ⊂
K, this set permits the small object argument. For n > 0, the free functor Fn sends
cofibrations to positive cofibrations. Hence Fn(∗) is positive cofibrant. By Lemma 4.28,
the morphisms in (K ′)+ are positive cofibrations. Since the positive level model structure
is topological, the set (K ′)+□I is a set of positive cofibrations.

Proposition 5.19 ([Lin13, Proposition 15.5]). A morphism of V-spaces is a K+-injective
if and only if it is a positive V-fibration.

A V-space X is positive V-fibrant if Xn → Xm is a weak homotopy equivalence for
every isometry Rn → Rm in V+. Applying the proof of [MS02, Lemma 6.4] to the cat-
egory V shows that there exists a weak homotopy equivalence XhV+

∼−→ XhV . Then by
Theorem 5.11, positive level equivalences are V-equivalences. Proving that the data WV ,
FI+ and K+ satisfies Theorem 4.21 is now done in the same manner as in Theorem 5.16.

Theorem 5.20 (Positive V-model structure on TopV). The V-equivalences, positive V-
fibrations and positive cofibrations are part of a cofibrantly generated model structure on
TopV .

The adjunction (Fn ⊣ evn), n > 0, from (5.1), is a Quillen adjunction when TopV is
equipped with the positive V-model structure.

Proposition 5.21. The positive V-model structure on TopV is topological.

Proof. Let G = {V(n,−) | Rn ∈ ObV+} and Z = (K ′)+. Then Proposition 4.25 shows
that the level model structure is topological.
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6. The class of V-equivalences

The V-model structure can be defined in many different ways. Stefan Schwede gives an
alternate definition in [Sch18, Section 1.4]. The general tactic is the same: Define a
level model structure, define V-equivalences and show that the V-equivalences and the
cofibrations of the level model structure form a new model structure. Then by a slight
adjustment, one can define the positive variations. The main difference is that Schwede
avoids the use of homotopy colimits. Schwede also works in the more general setting of
global homotopy theory where model structures depend on a global family of Lie groups
F , usually the family of all Lie groups. We will assume that this family is the trivial
family Ftriv = {∗} consisting of the single trivial Lie group. Then the V-model structure
should coincide with the Ftriv-global model structure in [Sch18, Theorem 1.4.8]. The
Ftriv-level model structure in [Sch18, Proposition 1.4.3] already coincides with our level
model structure. It remains to show that the Ftriv-equivalences in [Sch18, Defintion 1.4.4]
coincide with our V-equivalences. Many results in [Sch18] implicitly use the family of all
Lie groups but can be applied to an arbitrary family enabling us to use them.

6.1. The class of Ftriv-equivalences

The following definition describes the alternative equivalence of V-spaces. It is a specific
case of [Sch18, Definition 1.4.4] where we assume that the family of Lie groups F is the
trivial one Ftriv = {∗}.

Definition 6.1. A morphism of V-spaces f : X → Y is an Ftriv-equivalence if for all
k ≥ −1 and n ≥ 0 and all commutative diagrams

Sk Xn

Dk+1 Yn

g

fn

h

there exists an isometry ϕ : Rn → Rm and a map λ : Dk+1 → Xm such that in the diagram

Sk Xn Xm

Dk+1 Yn Ym

g ϕ∗

fm

h

λ

ϕ∗

the upper triangle commutes and the lower triangle commutes up to homotopy relative to
Sk. That is, there exists a homotopy H : Dk+1 × [0, 1] → Ym with H0 = fmλ, H1 = ϕ∗h
and Ht(x) = x for all (x, t) ∈ Sk × [0, 1].

The following proposition motivates why one might consider this definition.
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Proposition 6.2 ([May99, Section 9.6]). A continuous map f : A→ B is a weak homo-
topy equivalence if and only if for all k ≥ −1 and all diagrams

Sk A

Dk+1 B

g
λ

where the outer square commutes, the dotted arrow exists such that the upper triangle
commutes and the lower triangle commutes up to a homotopy relative to Sk.

Proof. This is the equivalence of (i) and (iii) of the lemma in [May99, Section 9.6].

If the V-spaces in Definition 6.1 are constant, then the morphism f is an Ftriv-
equivalence if and only if the underlying map is a weak homotopy equivalence, by Propo-
sition 6.2. This is a property that V-equivalences have as well. The homotopy colimit of a
constant V-space cA is BV ×A which is weakly equivalent to A since BV is contractible.
Therefore a morphism of constant V-spaces is a V-equivalence if and only if its underlying
map is a weak homotopy equivalence. Proposition 6.2 also gives the following corollary.

Corollary 6.3 ([Sch18, Proposition 1.4.7(i)]). Level equivalences are Ftriv-equivalences.

6.2. The mapping telescope

The mapping telescope can be used to model the homotopy colimit. It is one piece that
bridges the gap between V-equivalences and Ftriv-equivalences. The mapping telescope of
a sequence of maps X0 → X1 → . . . is an iterated mapping cylinder. To see this, we will
also construct the truncated mapping telescope. We restate the pushout diagram for a
mapping cylinder in Top for easy reference.

X Y

X X × [0, 1] C(f)

f

incl1 q(f)

incl0

c(f)

f ′

(6.1)

Maps of the form inclt : X ↪→ X × [0.1] are closed inclusions. Pushouts preserve closed
inclusions by [Sch18, Proposition A.13]. Therefore q(f) is a closed inclusion. It is not hard
to see that the front of a mapping cylinder in Top must also be a closed inclusion. We
recall the definition of a strong deformation retract.

Definition 6.4. A strong deformation retract is an inclusion i : A ↪→ B such that there
exists a map r : B → A and a homotopy H : B× [0, 1]→ B such that ri = idA, H0 = idB,
H1 = ir and Ht(i(a)) = i(a), for all a ∈ A. The map r is called the retraction.

Strong deformation retracts are homotopy equivalences and, therefore, weak homotopy
equivalences. Maps of the form inclt : X → X × [0, 1] are strong deformation retracts.
Pushouts preserve strong deformation retract as shown in the proof of [Hov99, Proposition
2.4.9]. Therefore q(f) is a strong deformation retract.
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Definition 6.5. Let X be an N -space. It is a sequence X0
f0−→ X1

f1−→ X2
f2−→ . . . . The

mapping telescope or telescope telX of X is the coequalizer of the diagram∐
n≥0

Xn
∐
n≥0

Xn × [0, 1]

where for every n ≥ 0 the top and bottom maps are induced by the maps x 7→ (x, 1) and
x 7→ (fn(x), 0) respectively.

There is a canonical map from the telescope to the homotopy colimit over N . One
identifies

∐
n≥0Xn × {0} with B0(∗,N , X) × ∆0 and identifies

∐
n≥0Xn × [0, 1] with a

subspace of B1(∗,N , X)×∆1.

Definition 6.6. Let X be an N -space. It is a sequence X0
f0−→ X1

f1−→ X2
f2−→ . . . . For

n ≥ 0 we construct the n-th truncated mapping telescope or n-th truncated telescope telnX
of X inductively. Let tel0 = X0 and i0 = idX0 . The n-th truncated mapping telescope of
X, with n > 0, is the pushout of the diagram

Xn−1 C(fn−1)

teln−1X telnX

c(fn−1)

in−1 q (6.2)

where in−1 is a closed inclusion. The right vertical map denoted by q is a closed inclusion
by [Sch18, Proposition A.13]. The composite in = q ◦ q(fn−1) : Xn → telnX is a new
closed inclusion.

The top map in (6.2) is the front of a mapping telescope and, therefore, a closed
inclusion. Again by [Sch18, Proposition A.13], the bottom map teln−1X ↪→ telnX must
also be a closed inclusion. For an N -space X, we now have a sequence of closed inclusions

tel0X ↪→ tel1X ↪→ tel2X ↪→ . . .

which is another N -space tel(−)X. This assignment is a functor from TopN to itself.
The colimit of the N -space tel(−)X is the union of all truncated telescopes, which is
homeomorphic to the telescope of X. Therefore we might as well set colim(tel(−)X) =
telX.

Using induction we show that all the maps in in Definition 6.6 are strong deformation
retracts that admit retractions rn : telnX → Xn such that fn−1rn−1 = rn| teln−1X. We
use the following pushout diagram:

Xn−1 C(fn−1)

teln−1X telnX

Xn

c(fn−1)

in−1
p

rn−1

fn−1rn−1

rn

Let r0 = idX0 . Let p be the retraction of the strong deformation retract q(fn−1). Then
fn−1 factors through C(fn−1) as fn−1 = p ◦ c(fn−1). If rn−1 is the retraction of the strong
deformation retract in−1, then the maps fn−1rn−1 and p, together with the universal
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property of the above diagram, induce a map rn : telnX → Xn such that fn−1rn−1 =
rn|teln−1 X and p = rnq. Since in−1 is a strong deformation retract, so is q, and therefore
so is in = q ◦ q(fn−1) being a composite of strong deformation retracts. Its retraction is
the retraction of q composed with p. This must be rn by the uniqueness of the universal
property. In particular, all in and rn are weak homotopy equivalences.

We get the following commutative diagram:

tel0X tel1X tel2X . . .

X0 X1 X2 . . .

∼r0 ∼r1 ∼r2 (6.3)

Thus the morphism of N -spaces r : tel(−)X → X with components rn, n ≥ 0, is a level
equivalence.

6.3. A comparison of equivalences

Recall from Example 2.24 that we view N as a subcategory of V by sending a morphism
n → m to the isometry defined by (x1, . . . , xn) 7→ (x1, . . . , xn, 0 . . . , 0). This way, we can
view Rn as a linear subspace of Rm by mapping it onto the first n summands. We note
that the functor chosen as the inclusion N ⊂ V was chosen mostly for notation and that
there is no preferred functor N → V. Nonetheless, we interpret V-spaces as N -spaces via
this inclusion. When X is a V-space, we can use a functor F : N → V to construct the
telescope tel(X ◦ F ). If F is the inclusion N ⊂ V, we simply write telX.

A functor N → N is an ascending sequence of non-negative integers

n0 ≤ n1 ≤ n2 ≤ n3 ≤ . . . .

Such a sequence is called an exhaustive sequence in N if for every n ∈ ObN there exists
some m ∈ ObN such that n ≤ nm. The composite of a functor N → N with the inclusion
N ⊂ V is a sequence of inclusions

Rn0 ⊂ Rn1 ⊂ Rn2 ⊂ . . . .

Such a sequence is called an exhaustive sequence in V if the functorN → N is an exhaustive
sequence in N . A sequence of inclusions is exhaustive precisely when every Rn ∈ ObV
admits an isometric embedding in some Rnm . The exhaustive sequences F : N → N ⊂ V
are analogous to those defined in [Sch18, Definition 1.1.6]. Thus we can use the following
result.

Lemma 6.7 ([Sch18, Proposition 1.4.5]). Let f : X → Y be a morphism of V-spaces. It
is an Ftriv-equivalence if and only if for all exhaustive sequences F : N → N ⊂ V the
induced maps tel(X ◦ F )→ tel(Y ◦ F ) are weak homotopy equivalences.

Lemma 6.7 concerns itself with all possible exhaustive sequences. It turns out that we
only need an arbitrary one. Since this might as well be the inclusion N ⊂ V, we get the
following corollary. Its proof is analogous to the proof of [Sch18, Propositions 1.4.5, 1.1.7].

Corollary 6.8 ([Sch18, Propositions 1.4.5, 1.1.7]). Let f : X → Y be a morphism of
V-spaces. It is a Ftriv-equivalence if and only if the induced map telX → telY is a weak
homotopy equivalence.
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Corollary 6.9. If f : X → Y is a level equivalence of V-spaces, the induced map telX →
telY is a weak homotopy equivalence.

This corollary also holds for N -spaces. Via the continuous functor V → N ,Rn 7→ n we
can interpret an N -space as a V-space. Then a morphism of N -spaces is a level equivalence
of N -spaces if and only if it is a level equivalence of V-spaces.

Lemma 6.10 ([Dug08, Corollary 14.11]). Let X be an N -space that is level-wise cofibrant.
That is, all spaces Xn are cofibrant in Top. Then there exists a chain of natural weak
homotopy equivalences telX

∼←− h(X)
∼−→ XhN .

Proof. Consider the morphism of N -spaces (6.3). Since r is a level equivalence, it must
be an N -equivalence by Theorem 5.11. Thus the induced map

r∗ : (tel(−)X)hN → XhN

is a weak homotopy equivalence.
Since X is level-wise cofibrant, every front c(fn−1) : Xn−1 → C(fn−1), n > 0, is a

cofibration by Lemma 4.28. Then every closed inclusion teln−1X → telnX,n > 0, is a
pushout of a cofibration and, therefore, a cofibration itself. Since tel0X = X0 is cofibrant
the N -space tel(−)X is cofibrant in TopN by [Dug08, Example 14.9]. Hence the projection

π : (tel(−)X)hN → colim(tel(−)X) = telX

is a weak homotopy equivalence by Theorem 5.12.

[DI04, Theorem A.7] tells us that the homotopy colimits of an N -space and its level-
wise cofibrant replacement are weakly equivalent. If X is an level-wise cofibrant N -space
then so is tel(−)X. We also know that level equivalences in TopN induce weak homotopy
equivalences on the telescope. Thus the assumption in Lemma 6.10 that X is level-wise
cofibrant is redundant.

Corollary 6.11. Let X be an N -space. Then there exists a chain of natural weak homo-
topy equivalences telX

∼←− h(X)
∼−→ XhN .

Let X now be a V-space. The inclusion N ⊂ V induces a natural map XhN → XhV .
The final step in showing that the Ftriv-equivalences are precisely the V-equivalences is to
show that this map is a weak equivalence.

Lemma 6.12. Let X be a V-space. The map XhN → XhV is a weak homotopy equivalence.

Proof. We can apply the proof of [Lin13, Proposition 9.4]. We only need to show that
the Vop-space B(∗,N ,V) is level-wise contractible. Evaluated at Rn this is the space
B(∗,N ,V(n,−)) = V(n,−)hN . The V-space V(n,−) ∼= Fn(∗) is clearly cofibrant. The
space V(n, 0) is cofibrant and the maps V(n,m)→ V(n,m+1), induced by the inclusions
Rm ⊂ Rm+1, are cofibrations by [Sch18, Proposition 1.1.19]. Then V(n,−) is cofibrant as
an N -space by [Dug08, Example 14.9]. Therefore by Theorem 5.12 we have V(n,−)hN ≃
colimm∈ObN V(n,m) ∼= V(n,∞), where V(n,∞) is the space containing all isometries
Rn → R∞. This space is contractible by [May77, Lemma I.1.3].

Theorem 6.13. Let f : X → Y be a morphism of V-spaces. Then f is a Ftriv-equivalence
if and only if it is a V-equivalence.

44



Proof. Corollary 6.11 and Lemma 6.12 provide chains of weak homotopy equivalences that
fit in the commutative diagram:

telX h(X) XhN XhV

telY h(Y ) YhN YhV

π
∼ ∼

r∗
∼

π
∼ ∼

r∗
∼

By the two-out-of-three property, any vertical map is a weak homotopy equivalence if and
only if any other vertical map is. This, in particular, holds for the outer vertical maps.
Corollary 6.8 then finishes the proof.
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7. Commutative monoids

We are nearly ready to lift the positive V-model structure to commutative V-space monoids.
[SS00, Theorem 4.1] gives a criterion to lift a model structure on a symmetric monoidal
category C to the category of monoids Mon(C ). This can be used to lift the V-model
structure to the category of V-space monoids Mon(TopV). One needs a stronger criterion
to lift a model structure to commutative monoids. This is given by [Whi17, Theorem
3.2]. Unfortunately, the absolute V-model structure does not satisfy the hypothesis in
this theorem and cannot be lifted to CTopV . This is because not all acyclic cofibrations
in the absolute V-model structure are ‘symmetrizable’. [Sch18, Theorem 2.1.13] and the
discussion thereafter give more details on this. It is the positive V-model structure that
we must use.

There is a complication, however. If M is a commutative V-space monoid and A is a
space, then the tensor M × A is not a commutative V-space monoid in general. Thus we
would need to redefine the tensor for CTopV . This tensor is not very nice to work with,
and it is more convenient to consider a simplicial tensor. For this reason, we would like
to generalize the notion of enriched, tensored and cotensored categories and topological
model categories.

7.1. More on enriched categories

In enriched category theory, Hom-sets are replaced by Hom-objects in a monoidal category.
In Section 2.3, we have already seen the case where this monoidal category is (Top,×, ∗).
Enriched category theory is a generalization of ordinary category theory since this is just
Set-enriched category theory. Enriched category theory will allow us to generalize the
notion of a topological model category, given in Definition 4.24, to an E -model category
for some category E . The following definition specifies what properties the category E
must have.

Definition 7.1. A closed symmetric monoidal category (E ,⊗, 1) that is also a model
category is amonoidal model category if the tensor product ⊗ satisfies the pushout product
property in Definition 4.9 and if for every cofibrant object X the morphism X⊗ 1̃→ X⊗1,
induced by the cofibrant replacement 1̃

∼−→ 1, is a weak equivalence.

Example 7.2. Since the terminal object ∗ is cofibrant in Top and the pushout product
property holds by Proposition 4.26, we find that (Top,×, ∗) is a monoidal model category.

Theorem 7.3 ([Hov99, Proposition 4.2.8]). The category (sSet,×, ∗) is a monoidal model
category with a cofibrant terminal object.

A category is based if it contains an object, called the zero object, that is both initial
and terminal. If E has a terminal object ∗, we write E∗ = ∗/E for the category under the
terminal object. It is a based category with zero object the identity on ∗. We often write
(X,x) for an object x : ∗ → X in E∗.
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Let (E ,⊗, ∗) be a monoidal model category whose terminal object ∗ is the identity
object. Then E∗ is a based model category by Proposition 4.8. Let x : ∗ → X and
y : ∗ → Y be objects in E∗. Let

f = (X ⊗ y) + (x⊗ Y ) : (X ⊗ ∗)
∐

(∗ ⊗ Y )→ X ⊗ Y.

This induces a morphism f ′ : X
∐
Y

∼=−→ (X⊗∗)
∐
(∗⊗Y )

f−→ X⊗Y where the isomorphism
is the coproduct of the right unitor at X and left unitor at Y . Let X ∧ Y be the pushout
in the following diagram:

X
∐
Y X ⊗ Y

∗ X ∧ Y

f ′

Then let the smash product (X,x)∧(Y, y) be the pushout of f ′ along X
∐
Y → ∗, which is

the bottom map in the diagram above. The smash product ∧ defines a functor E∗× E∗ →
E∗.

Theorem 7.4 ([Hov99, Proposition 4.2.9]). Let (E ,⊗, ∗) be a monoidal model category
whose terminal object ∗ is the identity object and is cofibrant. Then (E∗,∧, ∗

∐
∗) is a

monoidal model category.

Corollary 7.5 ([Hov99, Corollary 4.2.10]). The category (sSet∗,∧, ∗
∐
∗) is a monoidal

model category.

With the categories sSet and sSet∗ set up, we now look at enriched, tensored and
cotensored categories. While these properties can be defined separately, we will follow
the conventions in [Hov99] and define them together in Definition 7.10. The following
definition will give an alternate definition of an enriched category that allows us to define
enriched functors. To distinguish these from Definition 7.10, we call these E -categories
and E -functors for some monoidal category E . We will see that a category being enriched,
tensored and cotensored over E as in Definition 7.10 will imply that it is an E -category.

Definition 7.6. Let (E ,⊗, 1) be a monoidal category. An E -category C consists of a
class of objects ObC , a Hom-object Map(X,Y ) ∈ ObE for every pair of objects in C ,
composition morphisms Map(Y,Z) ⊗ Map(X,Y ) → Map(X,Z) in E for every triple of
objects in C and identity morphisms 1→ Map(X,X) in E for every object in C , satisfying
associativity and unity conditions given in [Bor94, Definition 6.2.1].

An E -functor F : D → C between E -categories consists of a function F : ObD →
ObC and morphisms F : D(X,Y ) → C (FX,FY ) in E for every pair of objects in D
compatible with composition and identity morphisms as given in [Bor94, Definition 6.2.3].

Example 7.7. Consider (Set,×, ∗). Then (locally small) categories and functors are
precisely Set-categories and Set-functors.

Example 7.8. Consider (Top,×, ∗). Then Definition 2.14 coincides with Definition 7.6,
and continuous functors are precisely Top-functors.

Example 7.9 ([Bor94, Proposition 6.2.6]). Let (E ,⊗, 1) be a closed symmetric monoidal
category. Then the internal-hom [−,−] makes E itself an E -category. This holds in
particular for monoidal model categories.
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The following definition is a particular case of Hovey’s ‘adjunction of two variables’
given in [Hov99, Definition 4.1.12]. Defining enrichments, tensors and cotensors this way
will make it easier to prove that certain tensors have the pushout product property.

Definition 7.10. Let (E ,⊗, 1) be a closed symmetric monoidal category and C a category.
Then C is enriched, tensored and cotensored over E if there exist functors

Map : C op × C → E , (−)× (−) : C × E → C , (−)(−) : C × E op → C ,

called the enrichment, tensor and cotensor respectively, such that we have natural bijec-
tions

C (X ×K,Y ) ∼= E (K,Map(X,Y )) ∼= C (X,Y K), (7.1)

for X,Y ∈ ObC ,K ∈ ObE , and natural isomorphisms

(X ×K)× L ∼= X × (K ⊗ L), (7.2)

X × 1 ∼= X, (7.3)

for X ∈ ObC ,K, L ∈ ObE , that satisfy ‘coherence axioms’ given in [Hov99, Definition
4.1.6]. The tensor and cotensor are sometimes called the copower and power, respectively.

In [Hov99] such a category C would be a ‘right E -module’ [Hov99, Definition 4.1.6]
where × is an ‘adjunction of two variables’ [Hov99, Definition 4.1.12] and E is closed
symmetric. Using (7.1), one could equivalently use natural isomorphisms (XL)K ∼= XK⊕L

and X1 ∼= X, with corresponding ‘coherence axioms’, instead of those used in (7.2) and
(7.3).

If C is enriched, tensored and cotensored over E the enrichment Map(−.−) makes C
an E -category. The identity morphism Map(X,Y ) → Map(X,Y ) corresponds by (7.1)
to a morphism X × Map(X,Y ) → Y . Together with a morphism Y × Map(Y,Z) →
Z we obtain X × (Map(X,Y ) ⊗ Map(Y,Z)) → Z after applying (7.2). After applying
the symmetry isomorphism in E this corresponds by (7.1) to a composition morphism
Map(Y,Z)⊗Map(X,Y )→ Map(X,Z) in E . For X ∈ ObC the isomorphism X × 1 ∼= X
in (7.3) corresponds by (7.1) to an identity morphism 1→ Map(X,X).

Let C be enriched, tensored and cotensored over E and consider the natural bijections
C (X × K,Y ) ∼= E (K,Map(X,Y )) ∼= C (X,Y K). If we fix two out of the three objects
X, Y and K, we can invoke the Yoneda lemma ([Mac78, Section III.2]) to show that the
enrichment, tensor and cotensor determine each other uniquely up to isomorphism.

Example 7.11. In a bicomplete category C , the Hom-set and (co)product provide the
necessary enrichment and (co)power over Set as

Map(X,Y ) = C (X,Y ), X × S =
∐
s∈S

X, XS =
∏
s∈S

X.

Example 7.12. Consider (Top,×, ∗). Then Definition 2.15 coincides with Definition 7.10.

Example 7.13 ([Bor94, Proposition 6.5.3]). Let (E ,⊗, 1) be a closed symmetric monoidal
category. Then E is enriched, tensored and cotensored over itself with the monoidal
product (−) × (−) the tensor and the internal-hom [−,−] the enrichment and cotensor.
This holds in particular for monoidal model categories.

We focus on the monoidal model categories sSet and sSet∗ of simplicial and pointed
simplicial sets. Given simplicial sets K and L the internal-hom in sSet is the simplicial
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set [K,L] with set of p-simplices [K,L]p = sSet(K×∆[p], L), as shown in [Hov99, Section
3.1] after Remark 3.1.7. If C is enriched, tensored and cotensored over sSet we obtain
natural bijections

C (X ×K,Y ) ∼= sSet(K,Map(X,Y )) ∼= C (X,Y K).

FixX and Y and letK = ∆[p]. The bijections above induce the isomorphisms of simplicial
sets

Map(X,Y ) ∼= [∗,Map(X,Y )] ∼= sSet(∆[−],Map(X,Y ))
∼= C (X ×∆[−], Y )

∼= C (X,Y ∆[−]),

where the first isomorphism comes from the adjunction of the monoidal product and
internal-hom in sSet induced by the terminal object ∗. Thus given the tensor or cotensor,
we can explicitly construct the enrichment. A completely analogous argument holds for
the pointed simplicial sets.

Definition 7.14. Let C be a model category enriched, tensored and cotensored over a
monoidal model category (E ,⊗, 1). Then C is an E -model category if the tensor satisfies
the pushout product property in Definition 4.9 and if for every cofibrant object X in C
the morphism X × 1̃ → X × 1, induced by the cofibrant replacement 1̃

∼−→ 1, is a weak
equivalence.

Example 7.15. Topological model categories as in Definition 4.24 are precisely Top-
model categories since the terminal object ∗ in Top is cofibrant. The category of pointed
spaces (Top∗,∧, ∗

∐
∗) is a monoidal model category by Theorem 7.4. We define pointed

topological model categories to be Top∗-model categories.

Example 7.16. A monoidal model category C is a C -model category.

Topological model categories have played an essential role in the previous chapters.
Definition 7.14 now allows us to define the simplicial variants.

Definition 7.17. Simplicial model categories are sSet-model categories and pointed sim-
plicial model categories are sSet∗-model categories.

Theorem 7.18 ([Hov99, Proposition 4.2.19]). If C is a simplicial model category, then
C∗ is a pointed simplicial model category.

If C is a based category, then C ∼= C∗. Thus if a simplicial model category C is based,
with zero object 0, then it is also a pointed simplicial model category. It is valuable to see
how the enrichment, tensor and cotensor are constructed over sSet∗. Let X,Y ∈ ObC
and (K, k) ∈ Ob sSet∗ and let Map(X,Y ), X ×K and XK denote the enrichment, tensor
and cotensor over sSet. Since C is based Map(X,Y ) comes equipped with a basepoint
in Map0(X,Y ) ∼= C (X,Y ) which uniquely sends X to Y via the zero object 0. As a
pointed simplicial set, Map(X,Y ) also provides the enrichment over sSet∗. The tensor
and cotensor over sSet∗, denoted as X × (K, k) and X(K,k), are the pushout and pullback

X × ∗ X ×K

0 X × (K, k)

X×k
X(K,k) XK

0 X∗

Xk
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respectively.
The category TopV with the positive V-model structure is a simplicial model category.

Let X and Y be V-spaces and K a simplicial set. Define the tensor and cotensor as

(X ×K)n = Xn × |K| and (Y K)n = Y
|K|
n . Then define the enrichment as Mapp(X,Y ) =

TopV(X ×∆[p], Y ).

Theorem 7.19. The category TopV with the positive V-model structure is a simplicial
model category.

Proof. LetX ∈ ObTopV ,K, L ∈ Ob sSet. We have |K|×|L| ∼= |K×L| by [Hov99, Lemma
3.1.8] and | ∗ | ∼= ∗ since the realization of a constant simplicial space is homeomorphic to
the underlying space. Thus we have (X ×K)× L ∼= X × (K × L) and X × ∗ ∼= X, since
TopV is topological by Proposition 5.21. Note that the simplicial tensor and cotensor
are just the topological tensor and cotensor after applying the realization. Therefore the
functor (−) × K : TopV → TopV is left adjoint. Then TopV is enriched, tensored and
cotensored over sSet by [GJ09, Lemma I.2.4]. The terminal simplicial set ∗ is cofibrant
by Theorem 7.3. Therefore we only need to check the pushout product property for the
tensor. Let f ∈ MorTopV and i ∈ Mor sSet. Then f□i = f□|i|. Since the realization
preserves (acyclic) cofibrations by Theorem 4.32, the pushout product property is satisfied
since TopV is again topological by Proposition 5.21.

7.2. The lift to commutative monoids

Recall that (TopV ,⊠, ∗) is a closed symmetric monoidal category. We aim to lift the posi-
tive V-model structure to the category CTopV of commutative V-space monoids. Consider
the isometries

i1 : Rn → Rn ⊕ Rm, (x1, . . . , xn) 7→ (x1, . . . , xn, 0, . . . , 0),

i2 : Rm → Rn ⊕ Rm, (x1, . . . , xm) 7→ (0, . . . , 0, x1, . . . , xm).

Given V-spaces X and Y , the isometries i1 and i2 induce a morphism of V × V-spaces
(X,Y )→ (X × Y )(−⊕−) defined by

Xn × Ym
(i1,i2)−−−−→ Xn⊕m × Yn⊕m.

Let
ρX,Y : X ⊠ Y → X × Y

be the morphism of V-spaces, given by the universal property of the box product.

Theorem 7.20 ([Sch18, Theorem 1.3.2, Proposition 1.4.7]). Let X and Y be V-spaces.

1. The morphism ρX,Y : X ⊠ Y → X × Y is a V-equivalence.
2. The functor X ⊠− preserves V-equivalences.

Proof. By Theorem 6.13, the theorem can be restated using Ftriv-equivalences instead
of V-equivalences. The proof is then analogous to the proof of [Sch18, Theorem 1.3.2].
Alternatively, statement 1. is a direct corollary of its analogue in [Sch18, Theorem 1.3.2]
if one works with Schwede’s definition of a ‘global equivalence’. In that case, statement 2.
is a consequence of [Sch18, Proposition 1.4.7(xiv)].

50



Let X be a V-space. The subset Aut(X) ⊂ TopV(X,X) of isomorphisms is a group.
The symmetry isomorphism bX,X : X ⊠ X ∼= X ⊠ X induces an action of Σn on X⊠n.
Thus we get a quotient V-space X⊠n/Σn. We obtain a commutative V-space monoid

P(X) =
∐
n≥0

X⊠n/Σn.

This induces a functor P : TopV → CTopV that is left adjoint to the forgetful functor
CTopV → TopV , as shown in [Sch18, Example 2.1.5]. Along this adjunction, we lift the
positive V-model structure. This invokes the use of [Whi17, Theorem 3.2], which requires
a long list of hypotheses we will not all state here. In our case, these have all been checked
in [Sch18, Theorem 2.1.15(i)].

Definition 7.21. Let f : M → N be a morphism of commutative V-space monoids. It
is a V-equivalence (positive V-fibration) if the underlying morphism of V-spaces is a V-
equivalence (positive V-fibration). It is a cofibration if it has the LLP with respect to all
V-equivalences that are also positive V-fibrations.
Theorem 7.22 (Positive V-model structure on CTopV , [Sch18, Theorem 2.1.15], [Whi17,
Theorem 3.2]). The V-equivalences, positive V-fibrations and cofibrations are part of a
cofibrantly generated, left proper model structure on CTopV . A cofibration in CTopV

forgets to an h-cofibration in TopV .

The left properness of this model structure is necessary to construct the group comple-
tion model structure. Cofibrant commutative V-space monoids being h-cofibrant in TopV

allows us to replace a fat realization with an ordinary realization later on. The terminal
V-space ∗ ∼= V(0,−) is a commutative V-space monoid. Since it is also the identity ob-
ject with respect to the boxproduct, every commutative V-space monoid M comes with
a unique morphism ∗ → M . Therefore ∗ is a zero object making CTopV based. Let
{Ms}s∈S denote a family of commutative V-space monoids, for some set S. If S is finite,
we let ⊠s∈SMs denote the iterated boxproduct. It is equal to ∗ if S is empty. The associ-
ator makes this unique up to isomorphism. If S is infinite we let the infinite boxproduct
be ⊠s∈SMs = colimS′⊂S,S′finite(⊠s∈S′Ms). By [Sch18, Example 2.2.22] the boxproduct
⊠s∈SMs is the coproduct of the family {Ms}s∈S in CTopV .

Let M be a commutative V-space monoid then a map of sets f : S → S′ induces a
morphism f∗ : ⊠SM → ⊠S′M in CTopV as follows. First, consider the isomorphism

⊠SM ∼= ⊠s′∈S′(⊠s∈f−1(s′)M).

The f−1(j)-fold multiplication ⊠s∈f−1(s′)M → M , which is the basepoint of M if f−1(j)
is empty and the identity if it is a singleton, then induces the morphism ⊠SM → ⊠S′M .
If K is a simplicial set we write ⊠KM for the functor [p] 7→ ⊠KpM which is an object in

[∆op, CTopV ]. Since an object X in [∆op, CTopV ] is a simplicial V-space, its realization
|X| is a V-space. Alternatively, their exists an internal realization |X|in, in CTopV , of an
object X in [∆op, CTopV ], as given before [Sch18, Proposition 2.1.7]. [Sch18, Proposition
2.1.7] shows that |X| and |X|in are isomorphic as V-spaces. Therefore |X| has the structure
of a commutative V-space monoid.

We will now construct the simplicial structures on CTopV . LetM and N be commuta-

tive V-space monoids and K a simplicial set. The cotensor (NK)n = N
|K|
n in TopV comes

with the structure of a commutative V-space monoid and is taken to be the cotensor over
CTopV . Multiplication is defined by

Top(|K|, Nm)×Top(|K|, Nn)→ Top(|K|, Nn⊕m),

(f, g) 7→ µn,m ◦ (f, g),
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with µ the multiplication of N . The basepoint of N
|K|
0 is the constant map from |K| to the

basepoint of N0. Unfortunately, the tensor in TopV does not come with the structure of a
commutative monoid. In CTopV , we define the tensor as the realizationM⊗K = |⊠KM |.
The enrichment is defined as Mapp(M,N) = CTopV(M ⊗∆[p], N).

We need the following adjunctions to prove that the functors above make CTopV a
simplicial model category. If we equip the singular complex Singp(A) = Top(∆p, A) of a
space A with the compact-open topology, it defines simplicial space, and we obtain the
adjunction

| − | : [∆op,Top] Top : Sing .⊥ (7.4)

If we let Sing(X) be the simplicial V-space defined by (Singp(X))n = Singp(Xn), for any
V-space X, then we get another adjunction

| − | : [∆op,TopV ] TopV : Sing .⊥

Note that for a commutative V-space monoid M we have Singp(M) = M∆[p] which is
again a commutative V-space monoid. Therefore we finally obtain the adjunction

| − | : [∆op, CTopV ] CTopV : Sing .⊥ (7.5)

Theorem 7.23. The category CTopV with the positive V-model structure is a simplicial
model category.

Proof. LetM andN be commutative V-space monoids, and letK be a simplicial set. Since
the cotensor in CTopV is defined on the underlying category TopV we only need to show by
[GJ09, Lemma 2.4] and [Hov99, Lemma 4.2.2] that the functor (−)⊗K : CTopV → CTopV

is left adjoint to (−)K : CTopV → CTopV . We have the following chain of bijections

CTopV(⊠KpM,N∆[p]) ∼= CTopV(M,
∏
Kp

N∆[p]) ∼= CTopV(M,Top(Kp, N
∆[p])).

The left bijection follows from the fact that the boxproduct is the coproduct in CTopV .
Equipping Kp with the discrete topology gives the right bijection. We then get∏

[p]∈∆op

CTopV(⊠KpM,N∆[p]) ∼=
∏

[p]∈∆op

CTopV(M,Top(Kp, N
∆[p]))

∼= CTopV(M,
∏

[p]∈∆op

Top(Kp, N
∆[p])).

For a morphism [q]→ [p] in ∆, we get adjoint squares:

⊠KpM N∆[p]

⊠KqM N∆[q]

M Top(Kp, N
∆[p])

Top(Kq, N
∆[q]) Top(Kp, N

∆[q])

The left square is commutative if and only if the right square is. This induces a bijections

[∆op, CTopV ](⊠KM,N∆[−]) ∼= CTopV(M, [∆op,Top](K,N∆[−])).
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The result follows from the bijections

CTopV(M ⊗K,N) ∼=[∆op, CTopV ](⊠KM,N∆[−]), (7.6)

CTopV(M,Top(|K|, N)) ∼= CTopV(M, [∆op,Top](K,N∆[−])). (7.7)

Here (7.6) comes from the adjunction (7.5), and (7.7) comes from the adjunction (7.4) by
evaluating at n ≥ 0.

Theorem 7.24. The category CTopV with the positive V-model structure is a pointed
simplicial model category.

Proof. In CTopV the identity object V(0,−) ∼= ∗ is both initial and terminal. Therefore
CTopV is based and isomorphic to (CTopV)∗. Theorem 7.23 and Theorem 7.18 finish the
proof.

Let M ∈ Ob CTopV and K∗ = (K, k) ∈ Ob sSet∗. The forgetful functor CTopV →
TopV creates all limits by [Sch18, corollary 2.1.4]. Therefore the pointed simplicial coten-
sor in CTopV is defined in the underlying category TopV where pullbacks are defined
level-wise. Hence we find that (MK∗)n is the space Top∗((|K|, |k|),Mn) of basepoint
preserving maps from |K| to Mn.

Let [p] ∈ ∆ and Sp = Kp\ im(kp) be the set Kp without its basepoint. The following
diagram of commutative V-space monoids is a pushout diagram.

M ⊠KpM

∗ ⊠SpM

(kp)∗

since the boxproduct ⊠ is the coproduct in CTopV . The objects ⊠SpM will form a
simplicial object. However, we stress that the sets Sp do not form a simplicial set. A map
ϕ : [q] → [p] in ∆ induces a map ϕ∗ : Kp → Kq. The multiplications ⊠s′∈(ϕ∗)−1(s)M →
M, s ∈ Sq and the morphism ⊠s′∈(ϕ∗)−1(kp)M → ∗ determine a morphism ⊠SpM → ⊠SqM .

Thus we get an object ⊠SM in [∆op, CTopV ]. Taking the realization preserves pushouts
since it is left adjoint. We end up with the following pushout diagram:

M ⊗ ∗ M ⊗K

∗ |⊠S M |

M⊗k

Hence M ⊗K∗ = |⊠S M |.
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8. Group completions

Group completions have been defined in several different ways. May’s definition in [May74]
for H-spaces involves using homology groups. This was motivated by the work of Quillen
in [Qui94] and Barrat and Priddy in [BP72]. The map A → Ω(B(A)), where A is an
E∞-space, B is the classifying space functor, and Ω is the loop space functor, is a group
completion as shown in [May74, Theorem 1.6] and [BM05, Theorem 6.5]. Schwede gives a
definition for the group completion of commutative V-space monoids in [Sch18, Defintion
2.5.15], and this definition can also be expressed using homology groups as shown in
[Sch18, Proposition 2.5.31]. The morphism Φ : Gr → BOP defined in Example 3.25 is
a group completion in the sense of Schwede by [Sch18, Theorem 2.5.33]. After applying
the homotopy colimit and taking the set of path-connected components, we obtain the
familiar group completion N→ Z as shown in [Sch18, Examples 2.3.12, 2.4.2] and [Sch18,
Theorem 2.4.13].

Our definition of the group completion of topological monoids involves a variation of the
classifying space. This definition and the definitions of the loop and classifying spaces have
analogues in CTopV . We show that given a cofibrant commutative V-space monoidM , the
morphism M → Ω(B(M)V-fib) is a group completion. To construct group completions for
any commutative V-space monoid, we localize the positive V-model structure on CTopV .
In this localization, called the group completion model structure, the fibrant replacement is
a group completion for every commutative V-space monoid. In the final section, we look at
the augmented group completion model structure on the overcategory CTopV /T , where
T is fibrant in the group completion model structure. We will show that endowing an
overcategory with a model structure using Proposition 4.8 commutes with the localization
mentioned above.

8.1. The group completion model structure

Consider the functor π0 : Top → Set that sends a space to its set of path-connected
components. The bijections π0(A×A′) ∼= π0(A)× π0(A′) and ∗ ∼= π0(∗) make π0 a strong
monoidal functor. Let A be a topological monoid, that is, a monoid in (Top,×, ∗). Then
π0(A) is a monoid (in (Set,×, ∗)). We call A grouplike if π0(A) is a group. Let B•(A) be
the simplicial space with space of p-simplices

Bp(A) = A× · · · ×A︸ ︷︷ ︸
p times

.

Boundary maps are induced by the multiplication of A and two projections. Degeneracy
maps are induced by the unit of A. The realization B(A) = |B•(A)| is the classifying
space of A and the fat realization BF(A) = ||B•(A)|| is the fat classifying space of A. A
map of topological monoids A → A′ is a group completion of A if A′ is grouplike and
BF(A)→ BF(A′) is a weak homotopy equivalence.
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By definition, the classifying space can be written as the coend B(A) =
∫ p∈∆

Bp(A)×
∆p. Let [(a1, . . . , ap), d] be a point in B(A) represented by ((a1, . . . , ap), d) ∈ Bp(A)×∆p.
If d is a vertex in ∆p then [(a1, . . . , ap), d] = [∗, ∗], which is the basepoint of B(A) that is
also represented by (∗, ∗) ∈ B0(A)×∆0. If d is not a vertex in ∆p then there exists a path
from d to a vertex d′ in ∆p that induces a path from [(a1, . . . , ap), d] to [(a1, . . . , ap), d

′].
Thus B(A) is path-connected and π0(B(A)) ∼= ∗. An analogous result holds for BF.

Lemma 8.1. If M is a cofibrant commutative V-space monoid then the unit of MhV is an
h-cofibration.

Proof. By Theorem 7.22, the unit ∗ → M is an h-cofibration of V-spaces. Since the
homotopy colimit preserves colimits by Corollary 3.12 and tensors by Lemma 3.13, we can
argue as in [SS12, Lemma 7.7] and show that it preserves h-cofibrations. We only need to
show that the unit ∗ → BV is an h-cofibration. The isomorphisms ∗ ∼= V(0, 0)p are clearly
h-cofibrations. Therefore ∗ → Bp(∗,V, ∗) is an h-cofibration since Bp(∗,V, ∗) is a disjoint
union of V(0, 0)p and another space. Since realizations preserve colimits and tensors and
since these are determined level-wise for simplicial spaces, the map ∗ → BV must be an
h-cofibration.

If the unit of a topological monoid A is an h-cofibration, then all degeneracy maps of
B•(A) are h-cofibrations since A × (−) preserves h-cofibrations. Thus B•(A) is a ‘good’
simplicial space in the sense of [Seg74, Definition A.4]. Applying [Seg74, Proposition
A.1(iv)] we get a weak homotopy equivalence BF(A)

∼−→ B(A). Thus if the units of A
and A′ are h-cofibrations, then A → A′ is a group completion if A′ is grouplike and
B(A)→ B(A′) is a weak homotopy equivalence.

Lemma 8.2. If A → A′ is a weak homotopy equivalence between topological monoids,
then BF(A) → BF(A′) is a weak homotopy equivalence. If the units of A and A′ are
h-cofibrations, then B(A)→ B(A′) is a weak homotopy equivalence.

Proof. The fat realization is a homotopy colimit, as seen in [Seg74, Appendix A]. It,
therefore, preserves weak equivalences. The second claim follows from the weak homotopy
equivalence BF(A)

∼−→ B(A).

By combining these two lemmas, a V-equivalence M → N in CTopV induces a weak
homotopy equivalence BF(MhV)

∼−→ BF(NhV) and, if M and N are cofibrant, a weak
homotopy equivalence B(MhV)

∼−→ B(NhV).

Proposition 8.3. The homotopy colimit functor hocolimV is a monoidal functor.

Proof. The proof of [Sch09, Proposition 4.17] can be adapted for the index category V since
it has an initial object. The accompanying natural transformation has as components

µX,Y : XhV × YhV
∼=−→ (X,Y )h(V×V) → ((−⊕−)∗X ⊠ Y )h(V×V) → (X ⊠ Y )hV (8.1)

for V-spaces X and Y . Here the first map follows from [HV92, Proposition 3.1(4)]. The
second map follows from the boxproduct being constructed as a left Kan extension. The
third map is an example of (3.4).

The map µX,Y is a weak homotopy equivalence: Consider the following commutative
diagram

XhV × YhV (X,Y )h(V×V) (X ⊠ Y )hV

colimV X × colimV Y colimV×V(X,Y ) colimV(X ⊠ Y )

∼=

∼= ∼=
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where the upper composite is µX,Y and the lower right horizontal map is an isomorphism
by [BCS10, Lemma 8.8]. If X and Y are cofibrant, then X⊠Y is cofibrant by the pushout
product property given by Proposition 5.6. Hence the vertical maps are weak homotopy
equivalences by Theorem 5.12, making µX,Y a weak homotopy equivalence. For general

X and Y let X̃
∼−→ X and Ỹ

∼−→ Y be cofibrant replacements. Then by Theorem 7.20
X̃ ⊠ Ỹ

∼−→ X ⊠ Y is a V-equivalence. Thus µX,Y is a weak homotopy equivalence since
µ
X̃,Ỹ

is.
Let M be a commutative V-space monoid. The set of path-connected components

π0(MhV) is a monoid since both π0 and hocolimV are monoidal functors. The diagram

MhV ×MhV (M ⊠M)hV MhV

MhV ×MhV (M ⊠M)hV

µM,M

bMhV ,MhV (bM,M )∗

µM,M

is, in general, not commutative. Consider the additive Grassmannian Gr, for example. It
is commutative up to homotopy. Thus π0(MhV) is a commutative monoid.

Definition 8.4. A commutative V-space monoid M is grouplike if the monoid MhV is
grouplike, that is, if π0(MhV) is a group. A morphism M → N in CTopV is a group
completion if the map MhV → NhV is a group completion.

We will now construct the loop space using the simplicial 1-sphere, which, together
with the classifying space, will motivate our definition of group completion. The simplicial
1-sphere is S1 = ∆[1]/∂∆[1]. We identify ∆[1]p = ∆([p], [1]) with {0, . . . , p+1} by sending
ϕ : [p] → [1] to the cardinality of the preimage of 0 ∈ [1]. The maps in ∂∆[1]p are the
constant maps identified with 0 and p + 1 . Then S1 is the simplicial set whose set of
p-simplices S1

p can be identified with [p] = {0, . . . , p}. Boundaries di and degeneracies si
are then given by

di(k) =

{
k, if k = 0, . . . , i

k − 1, if k = i+ 1, . . . , p
dp(k) =

{
k, if k = 0, . . . , p− 1

0, else

sj(k) =

{
k, if k = 0, . . . , j

k + 1, if k = j + 1, . . . , p

for i = 0, . . . , p − 1 and j = 0, . . . , p. Note di(0) = 0 = si(0) for all p and i. Also, note
that since S1

0 = [0], there exists a unique basepoint s : ∗ → S1. Let S1
∗ = (S1, s) denote

the pointed simplicial 1-sphere. We remark that the realization |S1| is the topological 1-
sphere and |S1

∗ | = (|S1|, |s|) is the pointed topological 1-sphere. The loop space of a based
space A is the based space Ω(A) = Top∗(|S1

∗ |, A) of basepoint preserving maps from the
1-sphere to A. Note that the loop space is defined using the internal-hom of Top∗ and is,
therefore, a functor right adjoint to the functor A 7→ A ∧ |S1

∗ | defined by the suspension
of a based space A.

Let A be a topological monoid with unit a ∈ A. Again expressing the classifying space
as the coend B(A) =

∫ p∈∆
Bp(A)×∆p, we obtain a map A×|∆[1]| ∼= B1(A)×∆1 → B(A).

The subspaces A × |∂∆[1]| and a × |∆[1]| map to the basepoint of B(A). Thus our map
factors as a quotient map and a map A ∧ |S1

∗ | → B(A). The group completion map of A

ηA : A→ Ω(B(A))

is the adjoint of this map. If A is grouplike, this is a weak homotopy equivalence by [Hat14,
Lemma D.2]. If A is discrete, this will induce the ordinary group completion (in Set). Let
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f : A → A′ be a map of topological monoids whose units are h-cofibrations. Since clas-
sifying spaces are path-connected, B(f) being a weak homotopy equivalence is equivalent
to Ω(B(f)) being a weak homotopy equivalence. This is because πn(Ω(A)) ∼= πn+1(A).
Therefore if f is a group completion, we have a chain of weak homotopy equivalences
A′ ∼−→ Ω(B(A′)

∼←− Ω(B(A)). This motivates our definition of group completion.
The loop space and classifying space have analogues in CTopV . Fix a pointed simplicial

set (K, k). Then the tensor and cotensor define left and right adjoint functors, respectively,
such that

CTopV(M ⊗ (K, k), N) ∼= CTopV(M,N (K,k)).

Definition 8.5. The loop functor Ω : CTopV → CTopV is the functor defined by the
cotensor of a commutative V-space monoid with the S1

∗ . We get Ω(M) = MS1
∗ for M ∈

Ob(CTopV).

Note that (ΩM)n is the loop space Ω(Mn) of the based space Mn.

Definition 8.6. The bar construction B : CTopV → CTopV is the functor defined by
the tensor of a commutative V-space monoid with S1

∗ . We get B(M) = M ⊗ S1
∗ for

M ∈ Ob(CTopV).

From the discussion after Theorem 7.24 we know that B(M) is the realization of some
simplicial object B•(M) with Bp(M) = ⊠KpM , where Kp = S1

p\[0] = {1, . . . , p}. We
could therefore write Bp(M) =M1 ⊠ · · ·⊠Mp with Mi =M for i = 1, . . . , p. A boundary
di : Bp(M)→ Bp−1(M), i = 1, . . . , p− 1, is given by the multiplication Mi ⊠Mi+1 →Mi.
A boundary di : Bp(M) → Bp−1(M), with i = 0 or i = p, is given by the terminal map
Mi → ∗. A degeneracy si : Bp(M)→ Bp+1(M), i = 0, . . . , p, is given by a unit morphism
∗ →Mi.

Corollary 8.7. The functors B and Ω form a Quillen adjunction (B ⊣ Ω).

Proof. By Theorem 7.24, the category CTopV is a pointed simplicial model category.
Then the functor B preserves cofibrations and acyclic cofibrations by the pushout product
property since S1

∗ is cofibrant.

Let M be a commutative V-space monoid and let B(M) → B(M)V-fib be a positive
V-fibrant replacement in CTopV . The unit of the adjunction (B ⊣ Ω) is M → Ω(B(M)).
Let the derived unit be the composite morphism

ηVM :M → Ω(B(M))→ Ω(B(M)V-fib) = Γ(M).

We will show that the derived unit is a group completion if M is cofibrant. For this, we
need two lemmas.

For a based K-space X let Xh∗K = XhK/BK ∈ ObTop∗.

Lemma 8.8 ([SS13, Propositions 4.2, 4.6, 4.10, 4.12]). Let M be a cofibrant commutative
V-space monoid.

(1) There exists a space A and a chain of natural weak homotopy equivalences

B(M)hV
∼←− A ∼−→ B(MhV).

(2) There exists a weak homotopy equivalence

Ω(M)h∗V
∼−→ Ω(Mh∗V).
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(3) There exists a chain of natural weak homotopy equivalences relating Ω(B(M)V-fib)hV
and Ω(B(MhV)) such that the diagram

MhV

Ω(B(M)V-fib)hV Ω(B(MhV))

(ηVM )hV ηMhV

∼

is commutative up to homotopy, where the dotted arrow is the chain of weak homotopy
equivalences mentioned above.

(4) If M is grouplike, then ηVM is a V-equivalence.

This lemma is the TopV analogue of [SS13, Propositions 4.2, 4.6, 4.10, 4.12]. Care has
to be taken when switching from sSetI to TopI as explained in [SS13, Appendix C1], and
when switching to TopV . Various conditions in [SS13] can be dropped. We summarize
this in the proof.

Proof. The ‘flatness’ condition in [SS13, Propositions 4.2, 4.10] can be dropped since the
functor X ⊠ (−) preserves V-equivalences for all V-spaces X by Theorem 7.20, making all
maps (8.1) weak homotopy equivalence. The ‘semistability’ conditions in [SS13, Proposi-
tion 4.6] can be dropped since the map XhN → XhV is a weak homotopy equivalence for
all V-spaces X by Lemma 6.12. The ‘level-wise fibrant’ condition in [SS13, Proposition
4.6] and the fibrant replacements in [SS13, Propositions 4.6, 4.10] can be dropped since
every space is fibrant.

Lemma 8.9. Let M be a cofibrant commutative V-space monoid. Then ΩM is grouplike.

Proof. Since BV is contractible Ω(M)hV → Ω(M)h∗V induces a bijection on the sets of
path-connected components, compatible with the monoidal structures. By Lemma 8.8 (2)
the map ω : Ω(M)h∗V

∼−→ Ω(Mh∗V) is a weak homotopy equivalence. It is compati-
ble with the monoidal structures: An element in Mh∗V is represented by (ϕ,m, d)p,k
with ϕ a sequence of p + 1 composable isometries in V, m ∈ Mk and d ∈ ∆p for
some p and k. Let (ϕ,m, d)p,k and (ϕ′,m′, d′)p′,k′ represent two elements a and b in
Mh∗V , let ψ = (ϕp × id, . . . , ϕ0 × id, id×ϕ′p . . . , id×ϕ′0) and consider the multiplication
µk,k′ : Mk × Mk′ → Mk⊕k′ and µ∗M,M : Mh∗V × Mh∗V → Mh∗V . Then µM,M (a, b) =
[ψ, µk,k′(m,m

′), (d, d′)]. Now µM,M induces the maps µ(ΩM),(ΩM) and Ω(µM,M ). Let
x = [(ϕ, f, d)p,k], y = [(ϕ′, f ′, d′)p′,k′ ] ∈ Ω(M)h∗V , then ω(x) : t 7→ [(ϕ, f(t), d)p,k]. The di-
agonal map |S1

∗ | → |S1
∗ |×|S1

∗ | induces the map γ : Ω(Mh∗V)×Ω(Mh∗V)→ Ω(Mh∗V×Mh∗V).
Showing that ω is compatible with the monoidal structures comes down to showing
Ω(µM,M ) ◦ γ ◦ (ω × ω) = ω ◦ µ(ΩM),(ΩM). For every t ∈ |S1

∗ | we have

(Ω(µM,M ) ◦ γ ◦ (ω × ω))(x, y)(t) =µM,M (ω(x)(t), ω(y)(t))

=[ψ, µk,k′ ◦ (f(t), f ′(t)), (d, d′)]
=ω ◦ µΩM,ΩM (x, y)(t).

We obtain a chain of bijections

π0(Ω(M)hV) ∼= π0(Ω(M)h∗V) ∼= π0(Ω(Mh∗V)) ∼= π1(Mh∗V , {BV}).

The left and middle bijections preserve the monoidal structures induced by M . The right
bijection then defines a monoidal operation on π1(Mh∗V , {BV}). This operation takes
two loops in Mh∗V and multiplies them pointwise using µM,M . This then commutes with
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concatenation which defines the usual group operation on fundamental groups. Thus the
monoidal structure coincides with the group structure of π1(Mh∗V , {BV}) by an Eckmann-
Hilton argument making π0(Ω(M)hV) a group and making ΩM grouplike.

The following theorem gives us group completions for cofibrant objects. It is the
analogue of [SS13, Theorem 1.2].

Theorem 8.10. Let M be a cofibrant commutative V-space monoid. Then the derived
unit ηVM is a group completion.

Proof. By Lemma 8.9 the codomain Γ(M) = Ω(B(M)V-fib) of ηVM is grouplike. Let

M N Γ(M)∼ (8.2)

be a factorization of ηVM into a cofibration followed by an acyclic fibration. The right
morphism in (8.2) becomes a weak equivalence after applying BF((−)hV) by Lemma 8.2.
Since M and N are cofibrant, it suffices to check that the left morphism in (8.2) becomes
a weak homotopy equivalence after applying B((−)hV). Since classifying spaces are path-
connected, this is reduced to checking that it becomes a weak homotopy equivalence after
applying Ω(B((−)hV)). By Lemma 8.8 (3) this is equivalent to checking that B(M) →
B(N) becomes a V-equivalence after applying Ω((−)V-fib).

The remainder of this proof is completely analogous to the proof of [SS13, Proposition
4.13]. We apply B to the right map in (8.2) and compose with the counit of (B ⊣ Ω) at
B(M)V-fib to obtain

B(N)→ BΩ(B(M)V-fib)→ B(M)V-fib. (8.3)

The composite of B(M)→ B(N) and (8.3) is the positive V-fibrant replacement of B(M),
which certainly becomes a V-equivalence after applying Ω((−)V-fib). By the two-out-of-
three property we only need to check that (8.3) becomes a V-equivalence after applying
Ω((−)V-fib). The composite of this morphism and derived unit ηVN : N → Ω(B(N)V-fib)
can be identified with the composite

N → Γ(M) = Ω(B(M)V-fib)→ Ω((B(M)V-fib)V-fib)

which is a V-equivalence. The cofibrant commutative V-space monoid N is grouplike
since it is V-equivalent to Γ(M). Therefore the derived unit ηVN is a V-equivalence by
Lemma 8.8 (4). Thus by the two-out-of-three property, (8.3) becomes a V-equivalence
after applying Ω((−)V-fib).

We have constructed group completions for cofibrant objects in CTopV . To construct
group completions for all objects in CTopV , we will localize the positive V-model structure.
Informally this means that we enlarge the class of weak equivalences.

Definition 8.11. Consider the commutative V-space monoid C1 = P(F1(∗)). We factor
the derived unit ηVC1

as a cofibration ξ followed by an acyclic fibration in the positive

V-model structure on CTopV :

C1 Cgp
1 Γ(C1).

ξ ∼

Lemma 8.12 ([SS13, Lemma 5.2]). Let M be a commutative V-space monoid that is
positive V-fibrant. Then M is grouplike if and only if every morphism C1 → M extends
to a morphism Cgp

1 →M .
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By [Hir03, Theorem 17.6.3] we know that for any V-equivalence f :M
∼−→ N , between

cofibrant objects N and M , and any positive V-fibrant object W in CTopV the map f̃∗ :
Map(Ñ ,W )→ Map(M̃,W ) is a weak equivalence in sSet. Lemma 8.12 then motivates us
to adjust our model structure on CTopV so that ξ becomes a weak equivalence and fibrant
objects become grouplike. The idea of ‘adding weak equivalences’ to a model structure
can be made precise using a left Bousfield localization.

Definition 8.13 ([Hir03, Definition 3.3.1]). Let C be a simplicial model category and S
a set of morphisms in C . An object W in C is S-local if it is fibrant and if, for every
morphism g : A→ B in S, the induced map

g̃∗ : Map(B̃,W ) ↠ Map(Ã,W ), (8.4)

with g̃ : Ã ↣ B̃ a cofibrant replacement of g, is a weak equivalence of simplicial sets.
A morphism f : X → Y in C is an S-local equivalence if, after choosing a cofibrant
replacement f̃ : X̃ ↣ Ỹ of f , the induced maps

f̃∗ : Map(Ỹ ,W ) ↠ Map(X̃,W ) (8.5)

are weak equivalences of simplicial sets for all S-local objects W . The left Bousfield
localization of C with respect to S (if it exists) is a model structure on C having the same
class of cofibrations and the S-local equivalences as the weak equivalences.

The maps (8.4) and (8.5) are fibrations due to [Hov99, Lemma 4.2.2(3)]. By [Hir03,
Proposition 3.1.5], we can see that weak equivalences in a model category C must be S-
local equivalences for every set of morphisms S. If a simplicial model category is left proper,
the S-local objects are precisely the fibrant objects in the left Bousfield localizations by
[Hir03, Proposition 3.4.1]. Left Bousfield localizations do not always exist. By [Hir03,
Theorem 4.1.1], we know that they do exist if our simplicial model category C is left
proper and cellular.

We briefly explain what a cellular model category is. Cellularity is needed for the
existence of left Bousfield localizations, but we will not need it anywhere else and will
not go into full detail. All the model categories we need to be cellular are cellular, and
we will reference the corresponding proofs. A cellular model category is a cofibrantly
generated model category satisfying three additional properties that concern themselves
with compactness, smallness and effective monomorphisms. We remark that compactness
in this context is not the same as the compactness of a space, although the two concepts
are related. We refer to [Hir03, Definition 12.1.1] for the detailed definition.

Our desired model category is the left Bousfield localization of the positive V-model
structure on CTopV with respect to {ξ}. We usually write ξ-local objects and equivalences
instead of {ξ}-local objects and equivalences.

Theorem 8.14 (Group completion model structure on CTopV , [SS13, Proposition 5.3],
[Hir03, Theorem 4.1.1]). The ξ-local equivalences and cofibrations are part of a cofibrantly
generated model structure on CTopV .

Proof. The category CTopV with the positive V-model structure is left proper by Theo-
rem 7.22. [SS13, Proposition A.1] shows that CTopI is cellular. The same proof can be
applied to CTopV . Thus by [Hir03, Theorem 4.1.1], the left Bousfield localization with
respect to ξ exists and is the desired model structure.
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We now have two distinct model structures on CTopV . To differentiate these, we write
CTopV

pos and CTopV
gp for the category CTopV with the positive V-model structure and

the group completion model structure, respectively.
The following theorem is the TopV analogue of [SS13, Theorem 1.3]. This theorem ex-

plains what the weak equivalences, fibrant objects and fibrant replacements are in CTopV
gp,

and its proof is entirely analogous to the one given for [SS13, Theorem 1.3] after Lemma
5.9 which is concerned with the case sSetI . In particular, it gives us group completions
for every commutative V-space monoid.

Theorem 8.15. A morphism of commutative V-space monoids M → N is a weak equiv-
alence in CTopV

gp if and only if the induced map

BF(MhV)→ BF(NhV)

is a weak homotopy equivalence. The fibrant objects in CTopV
gp are those objects that are

fibrant in CTopV
pos and grouplike. A fibrant replacement M → M̂ in CTopV

gp is a group
completion.

We give a sketch of the proof. Lemma 8.12 can be used to show that the fibrant
objects in CTopV

gp are positive V-fibrant and grouplike. The cofibrant replacement of M
has a group completion by Theorem 8.10. It can be shown that the fibrant replacement
in CTopV

gp is V-equivalent to this group completion. The claim about weak equivalences
is then a consequence of [Hir03, Theorem 3.2.18(1)].

8.2. Augmented model structures

Let C be a category and C ∈ ObC . If S is a set of morphisms in C then let SC denote
the set of morphisms

X Y

C

f

in C /C where f ∈ S.

Proposition 8.16 ([Hir21, Theorems 1.20, 1.23, 1.24]). Let C be a cofibrantly generated
model category, with generating cofibrations I and generating acyclic cofibrations J , and
let C ∈ ObC . The model structure on C /C as given in Proposition 4.8 is cofibrantly
generated, with generating cofibrations IC and generating acyclic cofibrations JC . If C is
cellular, then so is C /C. If C is left proper, then so is C /C.

Proposition 8.17. The overcategory C /C of a simplicial model category C is a simplicial
model category.

Proof. Let f : X → C and g : Y → C be objects in C /C and K and L be simplicial
sets. Let Map(X,Y ), X ⊗ K and Y K denote the enrichment, tensor and cotensor in C
respectively. In C /C the tensor and cotensor are

f ⋆ K : X ⊗K → X → C, g ⋄K : C ×CK Y K → C,

where f ⋆K is the composite of f and the tensor of X and K → ∗, and g ⋄K the pullback
of gK along C → CK . We show that C /C(f ⋆ K, g) ∼= C /C(f, g ⋄ K) is a bijection.
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The simplicial set Map(f, g) = (C /C)(f ⋆∆[−], g) must then determine the enrichment.
Consider the left diagram, which is a morphism in C /C(f ⋆ K, g):

X ⊗K Y

X C

g

f

X Y K

XK CK

gK

fK

The adjointness of the tensor and cotensor in C uniquely determines the right diagram.

The bottom left composite of the right diagram equals the composite X
f−→ C → CK .

Therefore there exists a unique morphism X → C ×CK Y K that uniquely determines a
morphism in C /C(f, g ⋄K). Repeating this argument in reverse gives the bijection. Thus
(−) ⋆ K is left adjoint. Clearly f ⋆ ∗ ∼= f and the isomorphism (f ⋆ K) ⋆ L ∼= f ⋆ (K × L)
follows from the commutativity of the diagram:

(X ⊗K)⊗ L X ⊗ (K × L)

X ⊗K X

∼=

Therefore by [GJ09, Lemma2.4] the category C /C is enriched, tensored and cotensored
over sSet. Let ϕ : f → g and i : K → L be morphisms in C /C and sSet respectively and
let h : X → Y be the image of ϕ under the forgetful functor C /C → C . Since this functor
is left adjoint, it preserves colimits. Therefore it sends ϕ□i to h□i. The pushout product
property is satisfied since C is a simplicial model category. Thus C /C is also a simplicial
model category.

Proposition 8.18 ([Hir03, Theorem 4.1.1(4)]). The left Bousfield localization of a left
proper cellular simplicial model category C with respect to a set of morphisms S is a
simplicial model category with the same enrichment, tensor and cotensor.

Let M = CTopV , let T be a commutative V-space monoid that is fibrant in M gp and
consider the overcategory M /T . This category can now inherit either model structure
on M , so let Mpos/T and Mgp/T denote M /T with the positive V-model structure and
group completion model structure, respectively. By Proposition 8.18, the category M gp is
a simplicial model category with the same enrichment as M pos. Then by Proposition 8.17,
the categories Mpos/T and Mgp/T are simplicial model categories with the same enrich-
ments. In Theorem 8.14, we have seen that M pos is a left proper cellular model category.
Therefore Mpos/T is left proper and cellular by Proposition 8.16. Hence left Bousfield
localizations of Mpos/T exist by [Hir03, Theorem 4.1.1(1)]. Let (M /T )ξ denote the left
Bousfield localization of Mpos/T with respect to the set {ξ}T . By Proposition 8.18, the
category (M /T )ξ is a simplicial model category with the same enrichment as Mpos/T and
Mgp/T . We aim to show that the model structure on Mgp/T and (M /T )ξ are equal.
Since the cofibrations coincide, we only need to worry about the weak equivalences.

Let h : W → T be an object and ϕ : f → g a morphism in M /T . Let ϕ̃ : f̃ ↣ g̃ be a
cofibrant replacement. Then consider the simplicial map

(ϕ̃)∗ : Map(g̃, h)→ Map(f̃ , h). (8.6)

Proposition 8.19. Fibrant objects in Mgp/T are fibrant in (M /T )ξ.
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Proof. Let h :W → T be fibrant in Mgp/T and ϕ : f → g be a weak equivalence in Mgp/T .
Then the map (8.6) is an acyclic fibration in sSet by the pushout product property in
Mgp/T by [Hov99, Lemma 4.2.2]. Any morphism in {ξ}T is a weak equivalence in Mgp/T .
Therefore h is {ξ}T -local in (M /T )ξ since (8.6) is a weak equivalence if ϕ ∈ {ξ}T .

Corollary 8.20. Weak equivalences in (M /T )ξ are weak equivalences in Mgp/T .

Proof. Let ϕ : f → g be a weak equivalence in (M /T )ξ. Then (8.6) is a weak equivalence
for all fibrant objects h in (M /T )ξ. Let fgp and ggp be fibrant replacements of f and g
in Mgp/T , then they are fibrant in (M /T )ξ by Proposition 8.19. Thus the map (8.6) is
a weak equivalence if h = fgp or h = ggp. Then ϕ is a weak equivalence in Mgp/T by
[Hir03, Proposition 17.7.6(2)].

Lemma 8.21. If h :W → T is fibrant in (M /T )ξ, then W is fibrant inMgp.

Proof. The fibrant objects in (M /T )ξ are precisely the {ξ}T -local objects in Mpos/T ,
and the fibrant objects in M gp are the positive V-fibrant objects that are grouplike. The
identity on T is the terminal object in M /T . Then since h is fibrant in Mpos/T , it must
be a fibration in M pos. ThusW is positive V-fibrant since T is. By Lemma 8.12, it suffices
to show that every morphism f : C1 →W in M extends to a morphism f ′ : Cgp

1 →W .

C1 W

Cgp
1 T

f

ξ h

g

f ′
(8.7)

Let f be such a morphism. By Lemma 8.12 the morphism hf : C1 → T extends to
a morphism g : Cgp

1 → T since T is positive V-fibrant and grouplike. The unit ∗ → T is
the initial object in M /T , so hf and g are cofibrant objects in M /T since C1 and Cgp

1

are in M . Now ξ determines a cofibration ξ∗ : hf ↣ g between cofibrant objects that is
contained in {ξ}T , since gξ = hf . This, in turn, determines the acyclic fibration

ξ∗ : Map(g, h) Map(hf, h),∼

since h is {ξ}T -local. The map ∅ → ∗ is a cofibration in sSet. Therefore the lifting
property implies that (ξ∗)0 : (M /T )(g, h) → (M /T )(hf, h) must be a surjection. The
morphism hf → h induced by f , in particular, extends to a morphism g → h in M /T .
This morphism forgets to a morphism f ′ : Cgp

1 → W in M that provides a lift in (8.7).
Now f extends to f ′ along ξ making W grouplike.

Lemma 8.22 ([Hir03, Theorem 3.2.18(1)]). Let C be a left proper cellular simplicial model
category and S a set of morphisms in C . Let CS denote the left Bousfield localization and
let f̂ : X̂ → Ŷ be a fibrant replacement of f : X → Y in CS. Then f is a weak equivalence
in CS if and only if f̂ is a weak equivalence in C .

Theorem 8.23. The model structure on Mgp/T is the left Bousfield localization of Mpos/T
with respect to the set {ξ}T , that is, Mgp/T = (M /T )ξ.

Proof. Since Mgp/T and (M /T )ξ have the same classes of cofibrations, it suffices to prove
the converse of Corollary 8.20.

Let f : M → T be an object in M /T and let f → f̂ be a fibrant replacement in

(M /T )ξ, with f̂ : M̂ → T . The morphism M → M̂ is a weak equivalence in M gp by
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Corollary 8.20 and M̂ is fibrant in M gp by Lemma 8.21, hence M → M̂ is a fibrant
replacement in M gp. Let ϕ : f → g be a morphism in M /T , with f : M → T and

g : N → T , such that ϕ forgets to h : M → N . Let ϕ̂ : f̂ → ĝ be a fibrant replacement in
(M /T )ξ that forgets to ĥ : M̂ → N̂ . Then ĥ is a fibrant replacement of h in M gp.

If ϕ is a weak equivalence in Mgp/T , then h is a weak equivalence in M gp. Therefore

ĥ is a V-equivalence by Lemma 8.22 making ϕ̂ a weak equivalence in Mpos/T . Thus ϕ is
a weak equivalence in (M /T )ξ again by Lemma 8.22.
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