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Overview

The main purpose of this thesis is to state and prove a Tannaka duality type result for unital
quantales. Our approach is to show that the category SupLat of sup-lattices has enough
structure, namely that of a closed tensor category, and that unital quantales are monoid
objects in SupLat. Using this, our theorem follows from a much more general theorem in
enriched category theory.

In Chapter 1, we will introduce tensor categories and some basic properties and notions, as
well as show that SupLat is a closed tensor category. Chapter 2 will cover some enriched
category theory that we will need later. Finally, Chapter 3 introduces monoid objects in
tensor categories, and shows that unital quantales are monoids in SupLat. Furthermore,
we state a general Tannaka duality theorem and derive our main theorem from it, as well
as some corollaries.
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Chapter 1

Tensor Categories

In mathematics, one often works with categories that allow one to construct from two objects
a third one, in a way that behaves nicely. Consider for example Veck, the category of vector
spaces over a field k. Here we can take the tensor product − ⊗ −, and this construction
behaves nicely in the sense that we have isomorphisms

V1 ⊗ (V2 ⊗ V3)
∼−→ (V1 ⊗ V2)⊗ V3, v1 ⊗ (v2 ⊗ v3) 7→ (v1 ⊗ v2)⊗ v3

and
V1 ⊗ V2

∼−→ V2 ⊗ V1, v1 ⊗ v2 7→ v2 ⊗ v1,

as well as
k ⊗ V

∼−→ V, a⊗ v 7→ av and V ⊗ k
∼−→ V, v ⊗ a 7→ av.

Recall that a commutative monoid is a set M together with an operation · : M ×M → M
and an element 1 ∈ M such that for all l,m, n ∈ M we have l · (m · n) = (l ·m) · n and
m · n = n ·m, as well as 1 ·m = m · 1 = m. Comparing this with our earlier observations
about Veck, it follows that the tensor product turns the set of isomorphism classes of k-
vector spaces into a commutative monoid, with identity element k.

By replacing the equalities in the definition of a commutative monoid by isomorphisms,
one can “categorify” the notion of a commutative monoid. However, we need to be careful
about choosing these isomorphisms. As is standard in category theory, they need to be nat-
ural. Furthermore, some coherency conditions need to be imposed to ensure our categories
behave nicely.

1.1 The Definition

Let C be a category and ⊗ : C × C → C a functor. Then we have functors

F1 := −⊗ (−⊗−) and F2 := (−⊗−)⊗−

5



An associativity constraint is an isomorphism of functors ϕ : F1 → F2 such that for all
objects W,X, Y, Z in C the diagram

W ⊗ (X ⊗ (Y ⊗ Z))

W ⊗ ((X ⊗ Y )⊗ Z) (W ⊗X)⊗ (Y ⊗ Z)

(W ⊗ (X ⊗ Y ))⊗ Z ((W ⊗X)⊗ Y )⊗ Z

ϕW,X,Y ⊗ZidW⊗ϕX,Y,Z

ϕW,X⊗Y,Z ϕW⊗X,Y,Z

ϕW,X,Y ⊗idZ

commutes.

Similarly, we have functors G1 and G2 that send a pair (X,Y ) ∈ C × C to X ⊗ Y and
Y ⊗X respectively. A commutativity constraint is an isomorphism of functors ψ : G1 → G2

such that for all objects X,Y in C we have ψY,X ◦ ψX,Y = idX⊗Y .

An associativity constraint ϕ and a commutativity constraint are said to be compatible
if for all objects X,Y, Z in C the diagram

(X ⊗ Y )⊗ Z Z ⊗ (X ⊗ Y ) (Z ⊗X)⊗ Y

X ⊗ (Y ⊗ Z) X ⊗ (Z ⊗ Y ) (X ⊗ Z)⊗ Y

ψX⊗Y,Z ϕZ,X,Y

ϕX,Y,Z

idX⊗ψY,Z ϕX,Z,Y

ψX,Z⊗idY

commutes.

An identity object is a pair (1, i) consisting of an object 1 of C and an isomorphism
i : 1 ⊗ 1 → 1 such that the functor C → C given by X 7→ 1 ⊗ X is an equivalence of
categories.

We are now ready to state the definition of a tensor category.

Definition 1.1. A tensor category is a tuple (C,⊗, ϕ, ψ,1, i) consisting of a category C with
a functor ⊗ : C × C → C, compatible constraints ϕ and ψ, and an identity object (1, i).

The connection between tensor categories and commutative monoids becomes even more
evident when one considers the following equivalent definition of the identity element of
a commutative monoid M . Namely, an element 1 ∈ M such that 1 · 1 = 1 and the map
M →M given by m 7→ 1 ·m is a bijection.
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1.1.1 Examples

As suggested at the start of this chapter, the category Veck of vector spaces over a field k is
a tensor category. The associativity and commutativity constraints are the obvious maps,
and are clearly compatible. An identity object is (k, i) where

i : k ⊗ k → k, a⊗ b 7→ 1⊗ ab.

Another example is the category Repk(G) of representations ofG over k, with tensor product
given by

(V, ρ)⊗ (V ′, ρ′) = (V ⊗ V ′, ρ⊗ ρ′).

An identity object is (g 7→ idk, i), where i is as above.

1.2 Tensor Functors

Given this notion of a category with some additional structure, we should of course consider
functors between them that respect this structure.

Definition 1.2. Let (C,⊗) and (C′,⊗′) be tensor categories. A functor F : C → C′ together
with an isomorphism of functors

cX,Y : F (X)⊗ F (Y ) → F (X ⊗ Y )

is called a tensor functor if the diagrams

(F (X)⊗ F (Y ))⊗ F (Z) F (X ⊗ Y )⊗ F (Z) F ((X ⊗ Y )⊗ Z)

F (X)⊗ (F (Y )⊗ F (Z)) F (X)⊗ F (Y ⊗ Z) F (X ⊗ (Y ⊗ Z))

cX,Y ⊗idF (Z) cX⊗Y,Z

idF (X)⊗cY,Z

ϕ′
F (X),F (Y ),F (Z)

cX,Y ⊗Z

F (ϕX,Y,Z)

and

F (X)⊗ F (Y ) F (X ⊗ Y )

F (Y )⊗ F (X) F (Y ⊗X)

cX,Y

ψ′
F (X),F (Y ) F (ψX,Y )

cY,X

commute for all X,Y, Z ∈ Ob(C), and whenever (1, i) is a identity object of C then
(F (1), F (i)) is an identity object of C′. A tensor functor that is also an equivalence of
categories is called a tensor equivalence.
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1.3 Basic Properties

This section will list and prove a few basic, but nontrivial, properties of tensor categories.

1.3.1 Identity Objects

Recall that in the definition of a (commutative) monoid, the identity element is not assumed
to be unique. However, uniqueness easily follows. Given identity elements 1 and 1′, we have

1 = 1 · 1′ = 1′.

It turns out that the identity object of a tensor category is essentially unique as well. To
be precise, we have the following

Proposition 1.3. Let C be a tensor category, and suppose (1, i) and (1′, i′) are identity
objects. Then there is a unique isomorphism ι : 1

∼−→ 1′ such that the diagram

1⊗ 1 1

1′ ⊗ 1′ 1′

i

ι⊗ι ι

i′

commutes.

We will prove this shortly. First, let us make the following observation. As the functor F
that is given on objects by X 7→ 1 ⊗ X is an equivalence of categories, we can define a
natural isomorphism lX : 1⊗X → X by requiring that FlX equals

1⊗ (1⊗X) (1⊗ 1)⊗X 1⊗X
ϕ1,1,X i⊗idX

We will call lX the left unit constraint. We also have a right unit constraint rX : X⊗1 → X
given by rX := lX ◦ ψX,1.

Proof of Proposition 1.3 (Sketch). Let lX , rX and l′X , r
′
X be the left and right unit con-

straints associated to (1, i) and (1′, i′) respectively. We take ι to be the isomorphism

1 1′ ⊗ 1 1′(l′1)
−1 r1′

One can show that ι ◦ i = i′ ◦ (ι⊗ ι). For this and uniqueness, see [2, Prop. 2.2.6].
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1.3.2 Strictness

As one may have realized themselves by now, the associativity and commutativity con-
straints, as well as the many diagrams that need to be verified, make the theory of tensor
categories quite cumbersome to work with. One case in which all these difficulties fade away
is the case when one works with a strict tensor category

Definition 1.4. A tensor category (C,⊗, ϕ, ψ,1, i) is called strict if for all X,Y, Z ∈ Ob(C)
we have

• X ⊗ (Y ⊗ Z) = (X ⊗ Y )⊗ Z

• X ⊗ Y = Y ⊗X

• 1⊗X = X

and the associativity, commutativity and (left) unit constraints are the identity.

The following theorem says that for many purposes, we may assume that we are working
with a strict tensor category.

Theorem 1.5 (MacLane Strictness). Let C be a tensor category. Then there is a strict
tensor category Cstr and a tensor equivalence C ∼= Cstr.

Proof. See [2, Thm. 2.8.5].

1.3.3 Coherence

Given a tensor category C and objects X1, . . . , Xn ∈ Ob(C), one can tensor them in many
different ways. Namely by ordering the Xi differently, by parenthesizing the products
differently and by inserting instances of 1. Thankfully, one can always write down an
isomorphism between two such products by using the associativity, commutativity and unit
constraints. However, on first glance, it seems that there may be more than one such
isomorphism. For example, taking n = 3, we have isomorphisms

X1 ⊗ (X2 ⊗X3) (X1 ⊗X2)⊗X3 X3 ⊗ (X1 ⊗X2) (X3 ⊗X1)⊗X2

ϕX1,X2,X3
ψX1⊗X2,X3

ϕX3,X1,X2

and

X1 ⊗ (X2 ⊗X3) X1 ⊗ (X3 ⊗X2) (X1 ⊗X3)⊗X2 (X3 ⊗X1)⊗X2

idX1
⊗ψX2,X3

ϕX1,X3,X2
ψX1,X3

⊗idX2

However, these are the same since ϕ and ψ are compatible.

It turns out that for any n, if f and g are isomorphisms that consist of associativity,
commutativity and unit constraints, then f = g. Hence we can safely identify all such
products and write things like ⊗

i

Xi

without any confusion.
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1.4 The Internal Hom

Recall the following well-known theorem from commutative algebra

Theorem 1.6 (Tensor-Hom Adjunction). Let R be a commutative ring1 and M an R-
module. Then the functors −⊗RM and HomR(M,−) from R-mod to itself form an adjoint
pair, with the former being a left-adjoint to the latter.

This means that for R-modules L,M and N , we have a bijection

ΦL,N : HomR(L⊗RM,N) → HomR(L,HomR(M,N))

that is natural in L and N . As a consequence, fixingM and N , we find that Φ is an isomor-
phism of functors HomR(− ⊗R M,N) =: F → HomR(−,HomR(M,N)). We say that F is
respresented by HomR(M,N), the set of R-linear maps M → N regarded as an R-module
via the rule (rf)(m) = rf(m) for r ∈ R and m ∈M . Note that HomR(M,N) can hence be
viewed as a “Hom-object” inside of the category R-mod itself.

Let C be a tensor category. Motivated by the above, we make the following definition

Definition 1.7. Let Y, Z ∈ Ob(C) and let F be the contravariant functor that sends an
object2 X of C to Hom(X ⊗ Y, Z). If F is representable, then we write Hom(Y, Z) for the
representing object and call it the internal Hom. We call C closed if it has all internal homs.

Of course, just as in the case of R-mod, we have an adjunction

−⊗X ⊣ Hom(X,−),

for X ∈ Ob(C). For X,Y ∈ Ob(C), let

evX,Y : Hom(X,Y )⊗X → Y

be the map corresponding to idHom(X,Y ) under this adjunction. This map can be used to
obtain two simple results.

Lemma 1.8. Let I be a set and let (Xi)i∈I and (Yi)i∈I be objects of a closed tensor category
C. Then there is a canonical morphism⊗

i∈I
Hom(Xi, Yi) → Hom

(⊗
i∈I

Xi,
⊗
i∈I

Yi

)
.

Proof. By coherence, we can take the morphism corresponding to

1If one wishes to stay true to the motivating example in the beginning of this chapter, simply take R to
be a field k.

2On morphisms, it is given by (f : X ′ → X) 7→ − ◦ (f ⊗ idY ).
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(⊗
i∈I Hom(Xi, Yi)

)
⊗
(⊗

i∈I Xi

)
⊗

i∈I(Hom(Xi, Yi)⊗Xi)

⊗
i∈I Yi

∼=

⊗
evXi,Yi

Lemma 1.9. Let X,Y, Z be objects of a closed tensor category C. Then there is a canonical
morphism

Hom(Y,Z)⊗Hom(X,Y ) → Hom(X,Z).

Proof. Take the morphism corresponding to

(Hom(Y, Z)⊗Hom(X,Y ))⊗X

Hom(Y,Z)⊗ (Hom(X,Y ))⊗X)

Hom(Y,Z)⊗ Y

Z

ϕ−1
Hom(Y,Z),Hom(X,Y ),X

idHom(Y,Z)⊗evX,Y

evY,Z

1.5 Duals

In algebra, one often encounters the notion of dual objects. Sticking to our familiar example,
vector spaces, one has associated to a vector space V its dual space V̂ := Homk(V, k).
Furthermore, a linear map f : V →W induces a linear map

f̂ : Ŵ → V̂ , g 7→ g ◦ f.

Taking this as motivation, we make the following definition

Definition 1.10. Let C be a tensor category and X ∈ Ob(C). Let 1 be its identity object.
We call

X̂ := Hom(X,1)

the dual of X.
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For any X ∈ Ob(C), we have a map

evX := evX,1 : X̂ ⊗X → 1

Given a morphism f : X → X ′, there is a unique morphism f̂ : X ′ → X making the diagram

X̂ ′ ⊗X X̂ ⊗X

X̂ ′ ⊗X ′ 1

f̂⊗idX

id
X̂′⊗f evX

evX′

commute. Hence, −̂ is a contravariant functor.

Lemma 1.11. Let I be a set and let (Xi)i∈I be objects of C. Then there is a canonical
morphism ⊗

i∈I
X̂i →

⊗̂
i∈I

Xi.

Proof. Use Lemma 1.8 with Yi = 1 and use that⊗
i∈I

1 ∼= 1.

1.6 Sup-Lattices

We finish this chapter with a non-trivial example of a closed tensor category.

Definition 1.12. A sup-lattice L is a partially ordered set that has suprema of arbitrary
subsets. A morphism of sup-lattices is an order-preserving map that preserves suprema.
That is, a map f : L→ L such that

x ≤ y =⇒ f(x) ≤ f(y)

for all x, y ∈ L, and

f
( ∨
x∈S

x
)
=

∨
x∈S

f(x)

for all subsets S ⊆ L. The category SupLat consists of sup-lattices and their morphisms.

It turns out that SupLat is a closed tensor category. Unlike previous examples, this is
not a triviality, since there does not seem to be an obvious structure of a tensor category
on SupLat.
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We begin by considering a candidate for the internal hom associated to two sup-lattices
L and L′. The set Hom(L,L′) has a natural sup-lattice structure, given by

f ≤ g ⇐⇒ f(x) ≤ g(x) for all x ∈ L.

Given a subset S ⊆ Hom(L,L′), its supremum is computed pointwise, i.e.( ∨
f∈S

f
)
(x) =

∨
f∈S

f(x)

for x ∈ L. We will suggestively denote this sup-lattice by Hom(L,L′).

Next, it will prove useful to view sup-lattices in a more category theoretic light. Given
a sup-lattice L, consider the category L with the underlying set of L as the set of objects,
and for x, y ∈ L

Hom(x, y) =

{
{→}, if x ≤ y

∅, otherwise.

We can set up a dictionary between sup-lattices L and their corresponding categories L.

Let L and L′ be sup-lattices, and f : L → L′ a morphism. Then f induces an operation
F : L → L′ as follows

• On objects it is given by f ;

• A morphism x→ y is sent to the unique morphism f(x) → f(y).

Now note that the fact that f is order-preserving precisely means that F is well-defined,
and in fact a functor!

Now let us focus on suprema. By definition, given a subset S ⊆ L, the supremum of
S is defined as an element x ∈ L such that s ≤ x for all s ∈ S, and whenever y ∈ L is
an element such that s ≤ y for all s ∈ S, then x ≤ y. Translating this to the associated
category L, this precisely says that x is the colimit (or coproduct) of the objects in S, that
is ∨

s∈S
s↭

∐
s∈S

s.

Since L is skeletal, this implies that x is unique. Note that the colimit of the empty diagram
is the initial object, so we make the convention that the supremum of the empty set is the
least element.

Saying that a morphism f : L → L′ preserves suprema precisely means that the asso-
ciated functor F : L → L′ preserves all colimits.3 By Freyd’s adjoint functor theorem4, it

3Note that coequalizers are simply coproducts in L, so F preserves all colimits by a standard result in
category theory.

4See the Appendix.
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follows that F has a right adjoint F ∗ : L′ → L. Recall that right adjoints preserve limits,
so by dualizing our earlier discussion F ∗ corresponds to an order-preserving infimum pre-
serving map f∗ : L′ → L.

For a sup-lattice (L,≤), let (Lop,≤op) be the lattice with underlying set L and

x ≤op y ⇐⇒ y ≤ x

for x, y ∈ L.

Lemma 1.13. Lop is a sup-lattice.

Proof. This is equivalent to showing that L has all infima. Given a subset S ⊆ L, write

X = {x ∈ L : x ≤ s for all s ∈ S}.

Then ∧
x∈S

x =
∨
x∈X

x.

Hence, we have shown that a morphism f : L→ L′ induces a morphism f∗,op : L′op → Lop.5

Lemma 1.14. Let L and L′ be sup-lattices. Then we have an isomorphism of sup-lattices

−∗,op : Hom(L,L′) → Hom(L′op, Lop), f 7→ f∗,op

that is natural in L and L′ in the sense that

Hom(L,L′) Hom(L′op, Lop)

Hom(K,K ′) Hom(K ′op,Kop)

−∗,op

f ′◦−◦f fop◦−◦f ′op

−∗,op

commutes for all morphisms f : L→ L′ and f ′ : K → K ′.

Proof. The diagram and the fact that −∗,op is a bijection are clear from the above discus-
sion. It remains to prove that −∗,op is an isomorphism of sup-lattices, so it suffices to show
that it preserves suprema.

Let S ⊆ Hom(L,L′). Note that, for a morphism f : L → L′, the functors F and F ∗

being an adjoint pair means precisely that

f(x) ≤ y ⇐⇒ x ≤ f∗(y)

5Since morphisms of sup-lattices are not required to preserve infima, we must take opposites to obtain a
morphism.
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for x ∈ L and y ∈ L′. Using this, and the fact that f preserves suprema, we get( ∨
f∈S

f
)∗,op

(y) ≤ x⇐⇒ x ≤
( ∨
f∈S

f
)∗

(y)

⇐⇒
( ∨
f∈S

f
)
(x) ≤ y

⇐⇒
∨
f∈S

f(x) ≤ y

⇐⇒ x ≤
∨
f∈S

f∗(y)

⇐⇒
∨
f∈S

f∗,op(y) ≤ x.

This precisely says that there is a natural transformation

Hom
(( ∨

f∈S
f
)∗,op

(y),−
)
→ Hom

( ∨
f∈S

f∗,op(y),−
)
,

so by the Yoneda lemma we obtain( ∨
f∈S

f
)∗,op

(y) ≤
∨
f∈S

f∗,op(y).

By symmetry, this is in fact an equality. Since y was arbitrary, we obtain( ∨
f∈S

f
)∗,op

=
∨
f∈S

f∗,op

as desired.

Using the fact that for a morphism f : L→ L′ we have

f(x) ≤ y ⇐⇒ x ≤ f∗(y)

for all x ∈ L and y ∈ L′, we can give an explicit description of f∗.6

Lemma 1.15. Let f : L→ L′ be a morphism and y ∈ L′. Then we have

f∗(y) =
∨

f(x)≤y

x.

6Since f∗ = f∗,op as maps of sets, this yields an explicit description of f∗,op as well.

15



Proof. Since f preserves suprema, we have

f
( ∨
f(x)≤y

x
)
=

∨
f(x)≤y

f(x) ≤ y,

which implies ∨
f(x)≤y

x ≤ f∗(y).

For the reverse inequality, note that f(f∗(y)) ≤ y.

We need one more easy lemma.

Lemma 1.16. Let J,K and L be sup-lattices. Then we have a natural bijection

Hom(J,Hom(K,L)) → Hom(K,Hom(J, L)).

Proof. This follows immediately from the fact that a sup-preserving map J → Hom(K,L))
is the same thing as a bi-sup-preserving map J ×K → L.

We are now ready to define a tensor product on SupLat that realizes our candidate internal
hom.

Theorem 1.17. For K,K ′, L, L′ sup-lattices, f : K → K ′ and g : L→ L′, define

K ⊗ L = Hom(K,Lop)op

and
f ⊗ g = (g∗,op ◦ − ◦ f)∗,op.

Then we have an adjunction
−⊗ L ⊣ Hom(L,−).

Proof. Let J,K and L be sup-lattices. By Lemma 1.14, we have isomorphisms

Hom(J,Hom(K,L)) ∼= Hom(J,Hom(Lop,Kop))
∼= Hom(Lop,Hom(J,Kop))
∼= Hom(Hom(J,Kop)op, L)

= Hom(J ⊗K,L).

Since these isomorphisms are natural, the diagram

Hom(J ⊗K,L) Hom(J,Hom(K,L))

Hom(J ′ ⊗K,L′) Hom(J ′,Hom(K,L′))

∼=

g◦−◦(f⊗idK) (g◦−)◦−◦f
∼=
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commutes for all sup-preserving maps f : J ′ → J and g : L→ L′.

This leads us to the main result of this section

Theorem 1.18. (SupLat,⊗) is a closed tensor category.

The proof will take up the remainder of this section. The matter of internal homs has
already been settled (by construction). Hence, it remains to give compatible associativity
and commutativity constraints, as well as an identity object.

Lemma 1.19. Let J,K and L be sup-lattices. Then we have

J ⊗ (K ⊗ L) ∼= (J ⊗K)⊗ L

and
K ⊗ L ∼= L⊗K.

Furthermore, these isomorphisms are natural.

Proof. By Theorem 1.17, we have

J ⊗ (K ⊗ L) = Hom(J, (Hom(K,Lop)op)op)op

∼= Hom(J,Hom(K,Lop))op

∼= Hom(J ⊗K,Lop)op

= (J ⊗K)⊗ L.

For the second statement, applying Lemma 1.14 yields

K ⊗ L = Hom(K,Lop)op

∼= Hom((Lop)op,Kop)op

∼= Hom(L,Kop)op

= L⊗K.

Naturality follows from Theorem 1.17 and Lemma 1.14 as well.

It is straightforward, albeit tedious, to show that these natural isomorphisms form a com-
patible pair of constraints.

Now we will turn to the matter of identity objects

Lemma 1.20. Let ⊤ := {0, 1} with the obvious ordering. Then (⊤, i) is an identity object,
where

i : ⊤⊗⊤ ∼−→ ⊤, f 7→ f(1).
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Proof. Let L be a sup-lattice, and consider L ⊗ ⊤ = Hom(L,⊤op)op. For a morphism
f : L → ⊤op, we look at the set f−1(1). Since f sends the least element of L (that is, the
supremum of the empty set) to 1, it is non-empty. Using that L is a sup-lattice, we can set

ΦL(f) :=
∨

x∈f−1(1)

x.

We now claim that ΦL is an isomorphism of sup-lattices L ⊗ ⊤ → L. To show this, let
S ⊆ L⊗⊤ be a subset. Then we have

A :=
( ∨
f∈S

f
)−1

(1) =
{
x ∈ L :

( ∨
f∈S

f
)
(x) = 1

}
=

{
x ∈ L :

∧
f∈S

f(x) = 1
}

= {x ∈ L : f(x) = 1 for some f ∈ S}.

Hence, it follows that

ΦL

( ∨
f∈S

f
)
=

∨
x∈A

x =
∨
f∈S

( ∨
x∈f−1(1)

x
)
=

∨
f∈S

ΦL(f),

so ΦL is a morphism of sup-lattices. Note that the map

ΨL : L→ L⊗⊤, x 7→

[
y 7→

{
1, y ≤ x

0, otherwise

]

is an inverse of ΦL on the level of sets. Hence, we conclude that ΦL is an isomorphism as
claimed.

Next, we will show that ΦL is natural in L. Let f : L → L′ be a morphism. Then we
need to show that the diagram

Hom(L,⊤op)op L⊗⊤ L

Hom(L′,⊤op)op L′ ⊗⊤ L′

(−◦f)∗,op

ΦL

f⊗id⊤ f

ΦL′

commutes. To this end, let g : L→ ⊤op be a morphism. By Lemma 1.15 we have

(− ◦ f)∗(g) =
∨

g′◦f≤g
g′ =: h.

Note that h is the unique morphism L′ → ⊤op such that∨
x∈h−1(1)

x =
∨

x∈g−1(1)

f(x),
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so it follows that
(ΦL′ ◦ (− ◦ f)∗,op)(g) =

∨
x∈g−1(1)

f(x).

Now since f preserves suprema, we get

(f ◦ ΦL)(g) = f
( ∨
x∈g−1(1)

x
)
=

∨
x∈g−1(1)

f(x),

so f ◦ ΦL = ΦL′ ◦ (− ◦ f)∗,op as desired. We conclude that the ΦL induce a natural iso-
morphism between the functor F given by L 7→ L⊗⊤ and the identity functor, so F is an
equivalence of categories.

Finally, note that ⊤ ⊗ ⊤ = Hom(⊤,⊤op)op consists of two maps. Namely, one, say f ,
with with 1 7→ 0 and one, say g, with 1 7→ 1. The only nontrivial relation is f ≤ g. Now i
is clearly an isomorphism.

This proves Theorem 1.18. As a final remark, we will compute duals in SupLat.

Proposition 1.21. Let L be a sup-lattice. Then

L̂ ∼= Lop.

Proof. We have an isomorphism ϕ : ⊤ → ⊤op given by 0 7→ 1 and 1 7→ 0. By Lemma 1.20,
we have an isomorphism

L L⊗⊤ L⊗⊤op∼= idL⊗ϕ

Hence by Lemma 1.14, this induces an isomorphism

L̂ = Hom(L,⊤) = (L⊗⊤op)op Lop∼=

1.6.1 Rigidity

Many types of Tannaka duality theorems, to be discussed later, require the tensor category
one works with to be rigid. In this subsection we will define this notion and show that
SupLat is not rigid, and hence that these theorems are not available in our case.

We will split the definition of rigidity in two, and start with the following definition

Definition 1.22. Let C be a tensor category. Then C is called ∗-autonomous if there is a
fully faithful functor

−∗ : Cop → C
such that there is a natural isomorphism

Hom(X ⊗ Y, Z∗) ∼= Hom(X, (Y ⊗ Z)∗).
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It turns out that SupLat is a ∗-autonomous category.

Theorem 1.23. SupLat is a ∗-autonomous category.

Proof. We know that SupLat is a tensor category (see Theorem 1.18). In Lemma 1.14, we
proved that the functor given by L 7→ Lop and f 7→ f∗,op is contravariant and fully faithful.

Given sup-lattices J,K and L, we have natural isomorphisms

Hom(J ⊗K,Lop) ∼= Hom(J,Hom(K,Lop)) ∼= Hom(J, (K ⊗ L)op)

by Theorem 1.17.

We can now state the definition of rigidity.

Definition 1.24. A tensor category C is called rigid if it is ∗-autonomous and we have a
natural isomorphism

(X ⊗ Y )∗ ∼= X∗ ⊗ Y ∗.

Unfortunately, SupLat fails to satisfy this last condition, as we will show

Theorem 1.25. SupLat is not rigid.

We prove this by contradiction. Suppose SupLat is rigid. Then for any sup-lattice L we
have

Hom(L,L) = (L⊗ Lop)op = Lop ⊗ L = L⊗ Lop = Hom(L,L)op.

Now let us fix some terminology. Let L be a sup-lattice and let 0 and 1 be its smallest and
biggest elements, respectively. Then an element x ∈ L is called an atom if x ̸= 0 and if
y ∈ L is not 0 then x ≤ y. Dually, a coatom is an x ∈ L with x ̸= 1 and such that y ≤ x
whenever y ̸= 1.

Obviously, if x ∈ L is an atom then x is a coatom in Lop. Hence, for any sup-lattice
L, we find that Hom(L,L) has as many atoms as coatoms. Now let L be the sup-lattice
given by

1

x1 x2 x3

0
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Consider a sup-preserving map f : L→ L. Then f(0) = 0, and

f(x1) ∨ f(x2) = f(x1) ∨ f(x3) = f(x2) ∨ f(x3) = f(1).

Hence, f is completely determined by its values at x1, x2 and x3, so we can identify f with
the triple (f(x1), f(x2), f(x3)). Now it is not very hard to see that Hom(L,L) has precisely
9 coatoms, namely (xi, 1, 1) and its permutations.

Note that (xi, xi, 0) and its permutations are 9 atoms. However, (x1, x2, x3) is also an
atom, so SupLat is not rigid.
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Chapter 2

Enriched Category Theory

The purpose of this rather technical chapter is to provide the setup to the main theorem of
this thesis. we will collect some basic definitions and results from enriched category theory.
For a complete treatment, see [6]. Those already familiar with enriched category theory
may skip this chapter.

In ordinary category theory, given a category C and two objects X,Y ∈ Ob(C), we have a
set, or class, HomC(X,Y ) of arrows X → Y . However, it often turns out that this hom-set
carries additional structure. This leads to the notion of enriched category theory, where
hom-sets are replaced with hom-objects in some suitable category.

2.1 V -Enriched Categories

Definition 2.1. Let V be a tensor category. A V -enriched category, or V -category, C
consists of

• a collection Ob(C) of objects;

• for each ordered pair (X,Y ) of objects in C, a hom-object Hom(X,Y ) in V ;

• for each ordered triple (X,Y, Z) of objects in C, a composition morphism

◦X,Y,Z : Hom(Y,Z)⊗Hom(X,Y ) → Hom(X,Z);

• for each object X in C a morphism jX : 1 → Hom(X,X), called the identity element;

such that the diagrams
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Hom(Y,Z)⊗ (Hom(X,Y )⊗Hom(W,X)) (Hom(Y,Z)⊗Hom(X,Y ))⊗Hom(W,X)

Hom(X,Z)⊗Hom(W,X)

Hom(Y, Z)⊗Hom(W,Y ) Hom(W,Z)

ϕ

idHom(Y,Z)⊗◦W,X,Y

◦X,Y,Z⊗idHom(W,X)

◦W,X,Z

◦W,Y,Z

and

Hom(Y, Y )⊗Hom(X,Y ) Hom(X,Y ) Hom(X,Y )⊗Hom(X,X)

1⊗Hom(X,Y ) Hom(X,Y )⊗ 1

◦X,Y,Y ◦X,X,Y

jY ⊗idHom(X,Y ) idHom(X,Y )⊗jX

commute for all W,X, Y, Z ∈ Ob(C).

Proposition 2.2. Let V be a closed tensor category. Then V is enriched in itself.

Proof: (Sketch). In Lemma 1.9 we constructed the composition morphisms. Given X ∈
Ob(V ), take jX : 1 → Hom(X,X) to be the map corresponding to lX : 1⊗X → X.

Given V -categories C and D, we have a V -category C ⊗ D with

Ob(C ⊗ D) = Ob(C)×Ob(D) and Hom((c, d), (c′, d′)) = Hom(c, d)⊗Hom(c′, d′),

Furthermore, the opposite category Cop can be given the structure of a V -category. See [6,
p. 12] for more details.

2.1.1 Examples

We give some examples of enriched categories that turn op naturally.

• A category enriched in (Set,×) is a locally small category.

• A one object category enriched over (Ab,⊗) is a ring. A general Ab-enriched category
is called a ringoid. Notice the similarity to groupoids.

• In higher category theory, a category enriched over (Cat,×) is a 2-category.
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2.2 V -Enriched Functors

Of course, having defined V -categories, we need to have a proper notion of morphisms
between them.

Definition 2.3. Let V be a tensor category and let C and D be V -enriched categories. A
V -enriched functor, or simply V -functor, F : C → D consists of

• a mapping Ob(F ) : Ob(C) → Ob(D);

• for each ordered pair (X,Y ) of objects in C, a morphism

FX,Y : Hom(X,Y ) → Hom(FX,FY )

in V ;

such that the diagrams

Hom(Y,Z)⊗Hom(X,Y ) Hom(X,Z)

Hom(FY, FZ)⊗Hom(FX,FY ) Hom(FX,FZ)

◦X,Y,Z

FY,Z⊗FX,Y FX,Z

◦FX,FY,FZ

and

1

Hom(X,X) Hom(FX,FX)

jX
jFX

FX,X

commute for all X,Y, Z ∈ Ob(C).

2.2.1 Examples

We will continue with some of the examples from the previous section.

• A Set-functor is simply a functor.

• An Ab-functor between two one object Ab-categories is a ring homomorphism.

2.3 Ends and Enriched Ends

After defining V -categories and V -functors, the obvious next step is figuring out a notion of
enriched natural transformations, i.e. morphisms between V -functors. It is not very hard
to define such a notion, see [6, p. 9] for example. The problem with this is that it once
again leaves us with merely a set, or class, of such natural transformations. This is not in
line with the spirit of enriched category theory.

It turns out that the most natural way to define hom-objects corresponding to a pair of
V -functors is in terms of ends, a certain categorical construction.
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2.3.1 Ordinary Ends

We will first define ends in ordinary category theory. Consider a functor

F : Cop × C → D.

A wedge e : w → F consists of a w ∈ Ob(D) and morphisms eX : w → F (X,X) indexed by
Ob(C) such that, given a morphism f : X → Y , the diagram

w F (X,X)

F (Y, Y ) F (X,Y )

eY

eX

F (idX ,f)

F (f,idY )

commutes for all X,Y ∈ Ob(C).

Given a wedge e : w → F and a morphism f : v → w, it is easy to see that ef : v → F
given by (ef)X = (eX ◦ f) is a wedge.

An end of F , denoted
∫
X∈C F (X,X), is a universal wedge. That is, a wedge

e :

∫
X∈C

F (X,X) → F

such that given another wedge e′ : w′ → F , there is a unique morphism f : w′ →
∫
X∈C F (X,X)

such that e′ = ef .

2.3.2 Enriched Ends

We now turn to enriched ends. The setup is similar as above. Let V be a closed tensor
category and C a V -category. Consider a V -functor

F : Cop ⊗ C → V.

As F is contravariant in the first argument, we have a morphism

Hom(X,Y ) → Hom(F (Y,Z), F (X,Z))

for all X,Y, Z ∈ Ob(C). This corresponds to a unique morphism

ρX,Y,Z : Hom(X,Y )⊗ F (Y, Z) → F (X,Z).

Similarly, using the fact that F is covariant in the second argument, we get morphisms

λX,Y,Z : Hom(Y,Z)⊗ F (X,Y ) → F (X,Z).

Now, a V -wedge e : w → F consists of a w ∈ Ob(V ) and morphisms eX : w → F (X,X)
such that the diagram
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Hom(X,Y )⊗ w Hom(X,Y )⊗ F (X,X)

Hom(X,Y )⊗ F (Y, Y ) F (X,Y )

idHom(X,Y )⊗eY

idHom(X,Y )⊗eX

λX,X,Y

ρX,Y,Y

commutes for all X,Y ∈ Ob(C).

Once again, given a V -wedge e : w → F and a morphism f : v → w, it is easy to see
that ef : v → F given by (ef)X = (eX ◦ f) is a V -wedge.

A V -end of F , also denoted
∫
X∈C F (X,X), is a universal V -wedge. That is, a V -wedge

e :

∫
X∈C

F (X,X) → F

such that given another V -wedge e′ : w′ → F , there is a unique morphism

f : w′ →
∫
X∈C

F (X,X)

such that e′ = ef .

Remark. One can compute (enriched) ends in terms of equalizers. Hence, if V is complete
then enriched ends always exist.

2.4 Enriched Functor Categories

The following result will motivate the construction of V -enriched functor categories.

Proposition 2.4. Let F,G : C → D be (ordinary) functors. Then

Nat(F,G) =

∫
X∈C

Hom(FX,GX).

Proof. By definition, we have for every object X in C a map

eX :

∫
Y ∈C

Hom(FY,GY ) → Hom(FX,GX)

of sets. Hence, for every element of
∫
Y ∈C Hom(FY,GY ) we have a family of morphisms

fX : FX → GX such that for any morphism g : X → Y the diagram

F (X) G(X)

F (Y ) G(Y )

F (g)

fX

G(g)

fY
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commutes. This is precisely the definition of a natural transformation from F to G however.

With Proposition 2.4 in mind, we will define the V -category [C, V ] of V -valued V -functors
from some V -category C.

Proposition 2.5. Let V be a closed tensor category and C a V -category. We have a V -
category [C, V ] whose

• objects are V -functors C → V ;

• hom-objects are given by the V -enriched end. That is,

Nat(F,G) := Hom(F,G) =

∫
X∈C

Hom(FX,GX).

Proof: (Sketch). We will construct the composition morphisms and identity elements.

Given V -functors F,G : C → V and X ∈ Ob(C), let (eF,G)X : Nat(F,G) → Hom(FX,GX)
be the morphism corresponding to the V -wedge eF,G : Nat(F,G) → Hom(F−, G−). Now
let F,G,H : C → V be V -functors. Then one can check that the morphisms

Nat(G,H)⊗Nat(F,G) Hom(GX,HX)⊗Hom(FX,GX) Hom(FX,HX)
(eG,H)X⊗(eF,G)X ◦FX,GX,HX

form a V -wedge Nat(G,H) ⊗ Nat(F,G) → Hom(F−, H−). Hence, we get a natural mor-
phism

◦F,G,H : Nat(G,H)⊗Nat(F,G) → Nat(F,H).

Similarly, one can show that the identity elements

jFX : 1 → Hom(FX,FX)

form a V -wedge 1 → Hom(F−, F−). Hence, we get a natural morphism

jF : 1 → Nat(F, F ).

2.5 The Enriched Yoneda Lemma

Recall the Yoneda Lemma from ordinary category theory

Lemma 2.6 (Yoneda). Let C be a locally small category, X ∈ Ob(C) and F : C → Set a
functor. Then there is a natural bijection

Nat(Hom(X,−), F ) ≃ F (X).
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One can generalize this to the enriched Yoneda lemma, or V -Yoneda lemma.

Lemma 2.7 (Enriched Yoneda). Let V be a complete closed tensor category and C a V -
category. Let X ∈ Ob(C) and F : C → V a V -functor. Then there is a natural isomorphism

Nat(Hom(X,−), F ) :=

∫
Y ∈C

Hom(Hom(X,Y ), F (Y )) ≃ F (X).

Proof. See [6, section 2.4].

Taking V = Set, one recovers the ordinary Yoneda lemma.
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Chapter 3

Tannaka Duality for V -modules

Tannaka duality or Tannaka reconstruction theorems are a type of statement in represen-
tation theory. They say that in certain cases, given an object A represented on objects of
a category C, we can recover A from End(F ), where F is the forgetful functor

F : RepC(A) → C.

Here RepC(A) denotes the category of representations of A on objects of C. The first theo-
rem of this type was introduced by Tadao Tannaka, in the context of compact topological
groups1.

In this chapter, we will state and prove a very general Tannaka reconstruction theorem
for monoids in a complete closed tensor category V . Using this general theorem, we will
prove a Tannaka reconstruction theorem in the case V = SupLat.

3.1 Monoids

We recall the definition of a monoid one more time. It is a set M together with a function
µ : M ×M →M and an element 1 ∈M such that

µ ◦ (idM × µ) = µ ◦ (µ× idM )

and µ(m, 1) = µ(1,m) for all m ∈M .

We can generalize this notion to a monoid in a tensor category.

Definition 3.1. Let V be a tensor category. A monoid in V is an object M of V together
with morphisms µ : M ⊗M →M and η : 1 →M such that the diagrams

1This theorem is now known as Tannaka-Krein duality.

29



(M ⊗M)⊗M M ⊗ (M ⊗M) M ⊗M

M ⊗M M

µ⊗idM

ϕ idM⊗µ

µ

µ

and

1⊗M M ⊗M M ⊗ 1

M

η⊗idM

µ

idM⊗η

commute. A morphism of monoids is a morphism f : M →M ′ such that

f ◦ µ = µ′ ◦ (f ⊗ f) and f ◦ η = η′.

3.1.1 Examples

We will give some simple examples, and finish with monoids in SupLat.

• A monoid in (Set,×) is simply a monoid in the classical sense.

• Consider a ring R. Then multiplication in R is given by a biadditive map R×R→ R.
Hence, this corresponds to an additive map R ⊗Z R → R. Therefore, a ring is a
monoid in the tensor category (Ab,⊗Z).

• Similarly, given a field k, a monoid in (Vectk,⊗k) is a unital associative k-algebra.

• If C is a V -category, and F : C → V a V -functor, then End(F ) is a monoid in V .

Let us now turn to monoids in SupLat. It turns out that these are unital quantales, see [8].

Definition 3.2. A quantale Q is a sup-lattice with an associative operation · : Q×Q→ Q
such that

x ·
( ∨
y∈S

y
)
=

∨
y∈S

x · y and
( ∨
y∈S

y
)
· x =

∨
y∈S

y · x

for all x ∈ Q and S ⊆ Q. We will call Q unital if it has a unit element 1 for this operation.

Proposition 3.3. Let Q be a unital quantale. Then Q is a monoid in SupLat.

Proof. Note that, by definition, the map · : Q×Q→ Q preserves suprema in both arguments.
Hence, we obtain a sup-preserving map

Q 7→ Hom(Q,Q), x 7→ (y 7→ x · y).

By Theorem 1.17, this corresponds to a unique sup-preserving map µ : Q⊗Q → Q. Next,
let 1Q be the unit element of Q. Then there is a unique sup-preserving map η : ⊤ → Q such
that η(1) = 1Q. The diagrams are now easily verified.
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A morphism between unital quantales Q and Q′ is a sup-preserving map f : Q → Q′ such
that f(x · y) = f(x) · f(y) and f(1Q) = 1Q′ .

3.1.2 The Associated V -category

Let M be a monoid in V . We can associate a V -category BM by setting

Ob(BM) = {•} and Hom(•, •) =M,

with ◦•,•,• = µ and j• = η.

For example, let R be a ring. In section 4.1.1 we noted that R is a monoid in (Ab,⊗).
Hence, BR is a one object Ab-category, which also corresponds to a ring by section 3.1.1.

3.2 A General Tannaka Reconstruction Theorem

We now turn to one of the main theorems of this thesis. It is a Tannaka reconstruction
theorem for monoids in a complete closed tensor category V . Due to its generality, special-
izing it to a specific category V takes quite a bit of unwinding of the definitions, which we
will see later in the case of V = SupLat. On the other hand, the generality allows us to
prove the result very easily, the proof being nothing more than a repeated application of
the enriched Yoneda Lemma.

Theorem 3.4. Let V be a complete closed tensor category and M a monoid in V . Consider
the V -category

ModM := [BM,V ],

where BM is the V -category associated to M . Then we have a natural isomorphism

End(F ) ≃M

of monoids in V , where F is the “forgetful functor” ModM → V .

Proof. Write h• = Hom(•,−). Given a V -functor G : BM → V , we have

Nat(h•,M) ∼=M(•) = FM.

by the enriched Yoneda lemma (Lemma 2.7). It follows that we may identify the functors
F and Nat(h•,−). Now we have

End(F ) := Nat(F, F )
∼= Nat(Nat(h•,−),Nat(h•,−))
∼= Nat(h•, h•)
∼= Hom(•, •)
=M,

where we applied the enriched Yoneda lemma twice.
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Before moving on to V = SupLat, we consider the simplest case V = Set. In this case, a
monoid M in V is a monoid in the classical sense. The category

ModM = [BM,Set]

can be described as follows. Its objects are pairs (S, ρ), where S is a set and ρ : M → End(S)
is a morphism of monoids. A morphism f : (S, ρ) → (S′, ρ′) is a map of sets f : S → S′ such
that for any m ∈M the diagram

S S′

S S′

f

ρ(m) ρ′(m)

f

commutes. Hence, one easily sees that ModM is simply the category of sets with a left action
of M , and M -equivariant maps. Applying Theorem 3.4 immediately yields the following

Corollary 3.5. Let M be a monoid. We have an isomorphism of monoids

End(F ) ≃M,

where F : ModM → Set is the forgetful functor.

Corollary 3.6. Let G be a group. We have a group isomorphism

Aut(F ) ≃ G,

where F : ModG → Set is the forgetful functor.

Proof. As G is a group, it follows that so is End(F ). Hence,

End(F ) = Aut(F )

3.3 A Tannaka Theorem for Unital Quantales

Let us now translate Theorem 3.4 to the case V = SupLat. We already established that
monoids in V are unital quantales (Proposition 3.3). The next obvious step is thinking
about the category ModQ, given a unital quantale Q. To this end, we introduce the following
definition.

Definition 3.7. Let Q be a unital quantale. A Q-module M is a sup-lattice together with
a bi-sup-preserving map

φ : Q×M →M,

such that
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• for all q, q′ ∈ Q and m ∈M , we have

φ(q · q′,m) = φ(q, φ(q′,m));

• for all m ∈M , we have
φ(1,m) = m.

We will write φ(q,m) = qm.

The following Proposition summarizes some basic properties of Q-modules.

Proposition 3.8. Let Q be a unital quantale and M a Q-module.

1. Let 0Q and 0M be the smallest elements of Q and M respectively. Then 0Q acts as
zero, i.e.

0Qm = 0M

for all m ∈M .

2. Let S ⊆ Q and T ⊆M . Then we have∨
m∈T

∨
q∈S

qm =
( ∨
q∈S

q
)( ∨

m∈T
m
)
=

∨
q∈S

∨
m∈T

qm.

Proof. Both statements follow immediately from the fact that the map Q×M →M given
by (q,m) 7→ qm preserves suprema in both arguments. For (1), recall that the least element
equals the empty supremum.

Given Q-modules M and M ′, a sup-preserving map f : M →M ′ such that f(qm) = qf(m)
for all q ∈ Q andm ∈M is called a Q-linear map. The set HomQ(M,M ′) of Q-linear maps is
a subset of the set Hom(M,M ′) of sup-preserving maps. If we can show that HomQ(M,M ′)
is closed under the taking of suprema, then it inherits a sup-lattice structure.

Lemma 3.9. Let M and M ′ be Q-modules, and S ⊆ HomQ(M,M ′). Then
∨
f∈S f is

Q-linear.

Proof. Let q ∈ Q and m ∈M . Then( ∨
f∈S

f
)
(qm) =

∨
f∈S

f(qm) =
∨
f∈S

qf(m) = q
∨
f∈S

f(m) = q
( ∨
f∈S

f
)
(m).
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It does not take much more than this to show that the category QMod of Q-modules and
Q-linear maps is a V -category.

Returning to our initial goal, namely thinking about ModQ, we note that our choice of
names QMod and ModQ suggest a connection between these two. Indeed they are essen-
tially the same. To see this, let Q be a unital quantale and BQ its associated V -category. A
V -functor BQ→ V then amounts to choosing a sup-lattice M , and a sup-preserving map

Q = Hom(•, •) → Hom(M,M)

that respects composition and identity elements. This is precisely the data that constitutes
a Q-module however. As for morphisms, we have the following

Lemma 3.10. Let F,G : BQ→ V be V -functors. Then there is an isomorphism

Nat(F,G) ≃ HomQ(F (•), G(•)).

Proof. Let
e• : HomQ(F (•), G(•)) → Hom(F (•), G(•))

be the inclusion. Then for any f : • → • the diagram

HomQ(F (•), G(•)) Hom(F (•), G(•))

Hom(F (•), G(•)) Hom(F (•), G(•))

e•

e•

−◦Ff

Gf◦−

commutes by definition. Hence, we obtain a V -wedge

e : HomQ(F (•), G(•)) → Hom(F−, G−).

It is easy to see that e is universal however, so the result follows.

Now that we have shown that one can identify QMod and ModQ, the last step is to consider
the endomorphisms of the forgetful V -functor F : QMod → SupLat. This is done in the
next lemma.

Lemma 3.11. Let Q be a unital quantale. Let LQ be the sup-lattice consisting of families
f = (fM ) indexed over QMod, where fM : M → M is a sup-preserving map, and such that
for all Q-linear maps g : M →M ′ the diagram

M M

M ′ M ′

fM

g g

fM′
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commutes, and such that for S ⊆ LQ we have∨
f∈S

f =
( ∨
f∈S

fM

)
M∈QMod

.

Then End(F ) ∼= LQ.

Proof. Recall that

End(F ) =

∫
M∈QMod

Hom(M,M).

For M a Q-module, let eM : LQ → Hom(M,M) be the map that sends f to fM . Then eM
is sup-preserving by definition. Given a Q- linear morphism g : M →M ′, the diagram

LQ Hom(M,M)

Hom(M ′,M ′) Hom(M,M ′)

eM

eM′ g◦−

−◦g

commutes, also by definition. Hence, we obtain a V -wedge

e : LQ → Hom(F−, F−).

It is not hard to see that e is universal however, so the result follows.

In fact, we have more

Lemma 3.12. Let Q be a unital quantale. Then LQ is a unital quantale, and the isomor-
phism from the previous lemma is an isomorphism of unital quantales.

Proof. We can put an operation − · − on LQ by setting

(f · g)M = gM ◦ fM

for f, g ∈ LQ. To show this turns LQ into a quantale, let S ⊆ LQ. Then

f ·
( ∨
g∈S

g
)
=

(( ∨
g∈S

g
)
M

◦ fM
)
M

=
(( ∨

g∈S
gM

)
◦ fM

)
M

=
( ∨
g∈S

(gM ◦ fM )
)
M

=
∨
g∈S

(f · g),

and similarly for ( ∨
f∈S

f
)
· g =

∨
f∈S

(f · g).
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It is easy to see that
1 := (idM )M

turns LQ into a unital quantale, as desired. The fact that the isomorphism from the previous
lemma is an isomorphism of unital quantales is obvious.

We are now ready to state our Tannakian reconstruction theorem for unital quantales.

Theorem 3.13. Let Q be a unital quantale. We have an isomorphism of unital quantales

LQ ≃ End(F ) ≃ Q,

where F : QMod → SupLat is the forgetful functor.

Proof. This is clear from Theorem 3.4 and the above discussion.

3.3.1 Corollaries

In this subsection we derive a few quick but amusing corollaries from Theorem 3.13.

Our first corollary concerns the sup-lattice ⊤ = {0 < 1}, the identity element of the tensor
category SupLat (cf. section 1.6). Note that ⊤ is a (commutative) unital quantale with

0 · 0 = 0 · 1 = 1 · 0 = 0 and 1 · 1 = 1.

Now let us think about ⊤-modules. By Proposition 3.8 and the definition of a Q-module,
there is a unique ⊤-module structure on any sup-lattice M . Namely

0m = 0 and 1m = m

for any m ∈M . Furthermore, a sup-preserving map f : M →M ′ between two ⊤-lattices is
⊤-linear, since

f(0m) = f(0) = 0 = 0f(m) and f(1m) = f(m) = 1f(m)

for any m ∈M . Hence, a ⊤-module is nothing more than a sup-lattice. Plugging this into
Theorem 3.13, we obtain

Corollary 3.14. Let I : SupLat → SupLat be the identity functor. Then

L⊤ ≃ End(I) ≃ ⊤.

In particular, L⊤ consists of (m 7→ 0)M and (idM )M .

Proof. Clear from the above discussion.
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The next corollary requires a definition.

Definition 3.15. A unital quantale Q is called affine if

1Q =
∨
x∈Q

x.

That is, if the unit element equals the largest element.

Taking Q in Theorem 3.13 to be affine yields the following

Corollary 3.16. Let Q be an affine unital quantale and let (fM )M ∈ LQ. Then for any
Q-module M and m ∈M we have

fM (m) ≤ m.

Proof. By Theorem 3.13 we have an isomorphism of unital quantales Q ≃ LQ. Since an
isomorphism of unital quantales preserves the unit as well as suprema, it follows that LQ
is also affine. Hence ( ∨

f∈LQ

fM

)
M

=
∨
f∈LQ

f = (idM )M .

It follows that for any Q-module M we have fM ≤ idM , hence

fM (m) ≤ m

for any m ∈M .

For the final corollary we need one more notion.

Definition 3.17. A quantale Q is called idempotent if for all x ∈ Q we have

x · x = x.

It turns out that affine (unital) idempotent quantales are very special, as the following
lemma shows.

Lemma 3.18. Let Q be an affine idempotent quantale. Then we have

x · y = x ∧ y

for all x, y ∈ Q. That is, the quantale multiplication is the infimum operation.
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Proof. We wish to show that

q ≤ x and q ≤ y ⇐⇒ q ≤ x · y.

First, if q ≤ x and q ≤ y then
q = q · q ≤ x · y.

For the converse, if q ≤ x · y then

q ≤ x · y ≤ x · 1 = x,

and similarly for q ≤ y.

Taking Q in Theorem 3.13 to be affine idempotent now yields the following.

Corollary 3.19. Let Q be an affine idempotent quantale and let (fM )M , (gM )M ∈ LQ.
Then for any Q-module M and m ∈M we have

(gM ◦ fM )(m) = (fM ∧ gM )(m) =

{
fM (m), if fM (m) ≤ gM (m);

gM (m), otherwise.

Proof. By Theorem 3.13, we have an isomorphism of unital quantales LQ ≃ Q. Hence, LQ
is also affine and idempotent. By Lemma 3.18, we have

gM ◦ fM = (f · g)M = (f ∧ g)M = fM ∧ gM .

The result now follows.
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Appendix: Freyd’s Adjoint Functor
Theorem

It is a well known fact from category theory that if we have an adjoint pair of functors

C D
F

G

⊣

then F preserves all colimits and G preserves all limits. Adjoint functor theorems, popular-
ized by Peter Freyd in [12], state that under certain conditions the converse is true. That
is, if F preserves colimits then it is a left adjoint, and ifG preserves limits it is a right adjoint.

One such adjoint functor theorem is given in terms of the Solution Set Condition (SSC). A
functor G : D → C satisfies the SSC if for all X ∈ Ob(C) there is a family Yi ∈ Ob(D) and
morphisms fi : X → G(Yi) indexed by a set I, such that any morphism f : X → G(Y ) can
be written as f = G(g) ◦ fi, for some morphism g : Yi → Y .

G(Yi)

X G(Yj) G(Y )

...

fi

fj G(g)

The theorem is the following

Theorem 3.20. Let D be a locally small category that has all small limits. Then a functor
G : D → C is a right adjoint if and only if G preserves limits and satisfies the SSC.

The proof is rather involved, and involves comma categories. It turns out in the case of
sup-lattices, the SSC is always satisfied.

Lemma 3.21. Let L and L′ be sup-lattices and f : L→ L′ a sup-preserving map. Then the
associated functor F : L → L′ satisfies the SSC.
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Proof. Translating the SSC to the language of sup-lattices, we see that F satisfies the SSC
if and only if for any x ∈ L′ there is a subset S ⊆ L such that if y ∈ L satisfies f(y) ≤ x,
then y′ ≤ y for some y′ ∈ S.

Now simply take
S = {y ∈ L : f(y) ≤ x}.

Corollary 3.22. Let f : L→ L′ be a sup-preserving map. Then f is a right adjoint if and
only if f preserves infima.

Proof. Sup-lattices have all infima (limits) by Lemma 1.13. The result follows from Theorem
3.20 and Lemma 3.21.

By dualizing, we finally obtain the following.

Corollary 3.23. Let f : L → L′ be a sup-preserving map. Then f is a left adjoint, and
therefore has a right adjoint.
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