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Index of Notation

Topology and measures

bd(X) Boundary of X

B(Z) Fiberwise boundary of Z; {(T, x) ∈ Rm+n : x ∈ bd(ZT )}

cl(X), X Topological closure of X

C(Z) Fiberwise closure of Z; {(T, x) ∈ Rm+n : x ∈ cl(ZT )}

Lj,Volj j-dimensional Lebesgue measure

Hj j-dimensional Hausdorff measure

dim(X) O-minimal dimension of X; maximal dimension of a cell contained in X

dimH(X) Hausdorff dimension of X; inf{j ∈ R>0 : Hj(X) = 0}

Bk(c, r) Closed ball in Rk with center c and radius r

Sk−1(c, r) (k − 1)-sphere in Rk with center c and radius r; the boundary of Bk(c, r)

D(c, r) Open disk in C with center c and radius r

Linear Algebra

AI Subspace of Rn spanned by standard basis vectors (ei)i∈I

d(Λ) Determinant of a lattice Λ in Rn; absolute value of the determinant of a matrix
representing any basis of Λ

πI Projection Rn → R|I| sending (x1, x2, . . . , xn) to (xi)i∈I

πk, k ∈ Z>0 Projection Rn → Rn−k removing the last k coordinates

πW Orthogonal projection onto a subspace W of Rn; usually W = AI

Vj(X) Sum of the volumes Volj(πAI
(X)) for all I ⊆ {1, 2, . . . , n} of cardinality j

V ′
j (X) Supremum of the volume Volj(π(X)) as π varies over the orthogonal projections

on j-dimensional subspaces of Rn

Simplicial complexes

[a0, a1, . . . , ap] p-simplex with vertices a0, a1, . . . , ap in Rn with n ≥ p

ṡ Interior of simplex s



ba(s) Barycenter of simplex s; arithmetic mean of the vertices of s

ba(K) Barycentric subdivision of complex K

|K| Polyhedron spanned by complex K; union of simplices in K

Kp Set of p-simplices of complex K

Chp(K) p-th chain group of K; free abelian group generated by oriented p-simplices of K

δp Boundary homomorphism Chp(K) → Chp−1(K)

Bp(K) Set of p-boundaries of K; im(δp+1)

Zp(K) Set of p-chains of K; ker(δp)

Hp(K) p-th homology group of K; Zp(K)/Bp(K)

bi(K) i-th Betti number of K; rank of Hp(K). Later also defined for several types of
semialgebraic sets

Miscellaneous

2X Power set of X

Reali(σ,Rn) {x ∈ Rn : sign(P (x)) = σ(P ) for all P in the domain of σ}

Realit(σ) {x ∈ Reali(σ,Rn) : |x| ≤ 1
t
, |P (x)| ≥ t for all P ∈ σ−1({−1, 1})}

dZ Maximal degree of polynomials in a semialgebraic description of Z over R

pZ Number of polynomials in a semialgebraic description of Z over R



Introduction

Lattices are commonly seen discrete sets in Rn: Let (v1, v2, . . . , vn) be a basis of the vec-
tor space Rn. The lattice Λ ⊂ Rn with the same basis consists of all points of the form∑n

i=1 aivi with integer coefficients ai. A lattice splits Rn into copies of the ’fundamental
parallelepiped’ with sides v1, v2, . . . , vn, and hence has a covolume d(Λ) = | det(vi)1≤i≤n|.
So when we have a bounded, measurable set X ⊆ Rn, it makes sense to divide the volume
Voln(X) by d(Λ) to get an estimate for the number of lattice points contained in X.

If X has a reasonably regular shape, this estimate usually is not too far off. But what
is the error? For the case Λ = Zn we have a classical result by Davenport [5]. If X is
closed, and we have some positive integer h such that each line parallel to a coordinate
axis intersects X, as well as the projections of X to all coordinate subspaces, in at most h
disjoint intervals, then we have

|Voln(X)− |X ∩ Zn|| ≤
n−1∑
j=0

hjVj(X)

where Vj(X) is the sum of the volumes of the projections of X on all j-dimensional coor-
dinate subspaces of Rn, and V0(X) = 1. While this is a nice result, it is relatively specific,
and may be hard to use: Finding such an h can be difficult. Furthermore, we want to
consider X that are not closed as well as other lattices Λ than Zn.

There exist a variety of bounds like this which also hold up for other lattices, but a lot
of these are restricted in their use: Either the conditions on the sets are specific or hard
to verify, similar to Davenport’s Lemma, or the bound is only nontrivial if the volume is
large compared to the diameter. In 2013, Fabrizio Barroero and Martin Widmer released
a paper ([1]) proposing a generalization fixing these problems. Their generalization applies
not to single sets X ⊆ Rn, but to sets Z ⊆ Rn+m, which we consider as parametrized
families of bounded sets ZT = {x ∈ Rn : (T, x) ∈ Z}. It does not apply to all such families,
but only those that are contained in some o-minimal structure over R.

O-minimal structures are collections of sets that contain certain basic sets and are closed
under logical definitions: The essential example of such a structure is that of all semial-
gebraic sets, which are sets defined by polynomial equations and inequalities. In fact, as
mentioned in the preface of [6], the study of o-minimal structures started out with the
observation that a lot of properties of semialgebraic sets follow from a few basic axioms.
Although the subject originated in model theory, these structures have since been used in
a variety of fields, including real algebraic and real analytic geometry, as well as number
theory.

When expanding our view to more general lattices Λ, we also need to use the successive
minima of Λ to formulate the dependence of the error bound on the lattice: The successive
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minima of Λ are the values λ1, λ2, . . . , λn ∈ R>0 such that each λi is the minimal value
λ for which there exists i linearly independent elements of Λ of (Euclidean) norm at most λ.

The Barroero-Widmer theorem (Theorem BW-1.3) states that if Z ⊆ Rm+n is contained
in an o-minimal structure and the ZT are bounded, then there exists a constant cZ ∈ R
depending only on Z such that for each lattice Λ in Rn and each T ∈ Rm we have∣∣∣∣Voln(ZT )d(Λ)

− |ZT ∩ Λ|
∣∣∣∣ ≤ cZ

n∑
j=0

Vj(ZT )∏j
i=1 λi

where the λi are the successive minima of Λ. This bound is optimal to some extent:
Barroero and Widmer give an example right after the theorem [1][p. 5, Theorem 1.3]
where there is a lower bound of the same form. However, their proof does not give any
bounds on the size of the constant cZ . In this thesis, we will prove the following result:

Theorem 0.1. If Z is semialgebraic, then

cZ ≤ p
O(n4)
Z max(dZ , 2)

O(n(n3+mn)3)

where pZ is the number of polynomials involved in defining Z, and dZ is the maximum of
their degrees.

To prove this, we will need to dive into a variety of topics: The o-minimal structures
themselves, as well as some basic geometry of numbers, measure theory, and linear algebra
to prove the Barroero-Widmer theorem. These topics, along with a proof of Davenport’s
lemma (Lemma 1.3), are in chapter 1. Chapter 2 contains a proof of the Barroero-Widmer
theorem, which is adapted in such a way that we get an initial upper bound for the con-
stant cZ . However, this bound still involves two unknown constants that are based on the
number of connected components of certain sets occurring in the proof.

To bound these constants, we restrict ourselves to the case where Z is semialgebraic.
In chapter 3 we will investigate a variety of ways to decompose semialgebraic sets into
simpler sets, as well as a way of describing these sets, mostly following [2]. This leads to
two key results: One helps to generate these descriptions for more complicated sets, while
the other bounds the number of connected components of a set based on such a description.
In the final chapter we then use these results to describe the various sets occurring in the
proof of the Barroero-Widmer theorem and bound the two unknown constants from our
earlier upper bound, and thus obtain the final bound in Theorem 0.1.
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1 Theoretical background

1.1 Davenport’s Lemma

The main result we will be covering concerns a generalization of Davenport’s Lemma [5],
so we will first take a look at the original lemma. Before we get to the lemma itself, we
need some notation.

Definition 1.1. Let n ∈ N, and let I be a nonempty subset of {1, 2, . . . , n}. We define AI
as the subspace of Rn spanned by the standard basis vectors (ei)i∈I , and πAI

: Rn → Rn

as the orthogonal projection onto this subspace.

Definition 1.2. Let n ∈ N, and let X ⊆ Rn be compact. Then we define Vj(X) for each
1 ≤ j ≤ n as the sum of the volumes of the πAI

(X) for all I ⊆ {1, 2, . . . , n} with |I| = j.
We also define V0(X) = 1 by convention.

With this basis we can get to the actual lemma.

Lemma 1.3. Let X ⊆ Rn be compact, and let h ∈ N be given such that for each nonempty
subset I ⊆ {1, 2, . . . , n}, each line parallel to a coordinate axis intersects πAI

in a set of
points that consists of at most h intervals.
Then

||X ∩ Zn| − Voln(X)| ≤
n−1∑
j=0

hn−jVj(X).

Proof. We follow Davenport’s proof as given in [5]. Suppose X and h satisfy the conditions
of the lemma. As X is compact, each of the πAI

(X) with I ⊆ {1, 2, . . . , n} nonempty has a
measurable characteristic function. We will write f(xi1 , xi2 , . . . , xij) for the characteristic
function of πAI

(X) when I = {i1, i2, . . . , ij} and i1 < i2 < . . . < ij. Furthermore, we know
that the measure of each πAI

(X) is given by integrating this characteristic function over
all the xij ; as X is compact, we can also take finite integration bounds here.

Similarly |X ∩ Zn| is given by the repeated summation
∑

x1,x2,...,xn
f(x1, x2, . . . , xn) where

the xi vary over the integers. As A is compact there are only finitely many non-zero
terms. In particular, given that these characteristic functions are bounded, we can inter-
change these integrals and summations as needed. With this notation, we can rewrite the
conclusion of the lemma as∣∣∣∣∣

∫
dx1

∫
dx2 . . .

∫
f(x1, . . . , xn)dxn −

∑
x1,x2,...,xn

f(x1, x2, . . . , xn)

∣∣∣∣∣
≤

n−1∑
j=0

hn−j
∑

i1<i2<...<ij

∫
dxi1

∫
dxi2 . . .

∫
f(xi1 , xi2 , . . . , xij)dxij
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with the integral on the right being taken as 1 when j = 0. We proceed the proof
by induction on n. For n = 1 the only term on the right is h, while the difference
|
∫
f(x1)dx1 −

∑
x1
f(x1)| will be at most the number of intervals X consists of, which by

assumption is at most h. So for n = 1 we are done.

Now suppose the lemma holds for n = m − 1. For any c ∈ R we have that the inter-
section X ∩ {x1 = c}, seen as a subset of Rm−1, satisfies the conditions of the lemma, so
by the induction hypothesis we get∣∣∣∣∣

∫
dx2

∫
dx3 . . .

∫
dxmf(x1, x2, . . . , xm)−

∑
x2,x3,...,xm

f(x1, x2, . . . , xm)

∣∣∣∣∣
≤

m−2∑
r=0

hm−1−r
∑

2≤i1<i2<...<ir

∫
dxi1

∫
dxi2 . . .

∫
f(x1, xi1 , xi2 , . . . , xir)dxir

for every real value x1. Integrating this with respect to x1 and passing the integral through
the absolute value and the summations, we find the inequality∣∣∣∣∣

∫
dx1

∫
dx2 . . .

∫
dxmf(x1, x2, . . . , xm)−

∑
x2,x3,...,xm

∫
f(x1, x2, . . . , xm)dx1

∣∣∣∣∣
≤

m−2∑
r=0

hm−1−r
∑

2≤i1<i2<...<ir

∫
dx1

∫
dxi1 . . .

∫
f(x1, xi1 , xi2 , . . . , xir)dxir .

Writing j = r + 1 and defining (k1, k2, . . . , kj) = (1, i1, . . . , ir) the right-hand side of this
becomes

m−1∑
j=1

hm−j
∑

1=k1<k2<...<kj

∫
dxk1

∫
dxk2 . . .

∫
f(xk1 , xk2 , . . . , xkj)dxkj .

If instead of fixing the first variable we fix the otherm−1 variables, the n = 1 case provides
us with the inequality∣∣∣∣∣

∫
f(x1, x2, . . . , xm)dx1 −

∑
x1

f(x1, x2, . . . , xm)

∣∣∣∣∣ ≤ hf(x2, x3, . . . , xm).

Summing this over x2, x3, . . . , xm, we find that∣∣∣∣∣ ∑
x2,x3,...,xm

∫
f(x1, x2, . . . , xm)dx1 −

∑
x1,x2,...,xm

f(x1, x2, . . . , xm)

∣∣∣∣∣ ≤ h
∑

x2,x3,...,xm

f(x2, x3, . . . , xm)

4



which by the result for n = m− 1 is itself at most

h

∫
dx2

∫
dx3 . . .

∫
f(x2, x3, . . . , xm)dxm

+h
m−2∑
j=0

hm−1−j
∑

2≤i1<i2<...<ij

∫
dxi1

∫
dxi2 . . .

∫
f(x2, x3, . . . , xm)dxij .

These two terms combine to get

m−1∑
j=0

hm−j
∑

2≤i1<i2<...<ij

∫
dxi1

∫
dxi2 . . .

∫
f(x2, x3, . . . , xm)dxij

as the first term is the summation term for j = m − 1. Combining the two inequalities
gives ∣∣∣∣∣

∫
dx1

∫
dx2 . . .

∫
dxmf(x1, x2, . . . , xm)−

∑
x1,x2,x3,...,xm

f(x1, x2, . . . , xm)

∣∣∣∣∣
≤

m−1∑
j=1

hm−j
∑

1=i1<i2<...<ij

∫
dxi1

∫
dxi2 . . .

∫
f(xi1 , xi2 , . . . , xij)dxij

+
m−1∑
j=0

hm−j
∑

2≤i1<i2<...<ij

∫
dxi1

∫
dxi2 . . .

∫
f(x2, x3, . . . , xm)dxij .

The left-hand side is what we were looking for. The right-hand side is as well, as the first
summation consists of all the terms where 1 is part of the sequence (i1, i2, . . . , ij), while
the second consists of the term with j = 0 and the terms with i1 ≥ 2. Hence the lemma
holds for n = m as well, completing the proof.

1.2 Semialgebraic sets

The basic objects of study in real algebraic geometry are algebraic sets, which are the zero
sets of ideals of polynomials over R. However, we will focus on a larger collection of sets:
The semialgebraic sets.

Definition 1.4. A set S ⊆ Rn is semialgebraic if it can be written as a finite union
⋃m
i=1 Si,

where the Si are all of the form

{x ∈ Rn : f1(x) = f2(x) = . . . = fk(x) = 0, g1(x) > 0, g2(x) > 0, . . . , gℓ(x) > 0}

for some polynomials f1, f2, . . . , fk, g1, g2, . . . , gℓ ∈ R[x1, x2, . . . , xn].
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It is not hard to see that these sets form a Boolean algebra.
We can make the relation with algebraic sets more explicit: We can replace every inequality
gi(x) > 0 with the statement ∃c ∈ R : c2gi(x)− 1 = 0, as this equation is equivalent with
gi(x) =

1
c2
> 0. If we do this for all inequalities, we find that semialgebraic sets are finite

unions of sets of the form

{x ∈ Rn : ∃c ∈ Rm : f1(x, c) = f2(x, c) = . . . = fk(x, c) = 0}

for some m ≥ 0 and polynomials f1, f2, . . . , fk ∈ R[x1, x2, . . . , xn, c1, c2, . . . , cm]. This
means that semialgebraic sets can be obtained from algebraic sets by projecting certain
coordinates away. This begs the question: Are all coordinate projections of algebraic sets
semialgebraic? As semialgebraic sets are coordinate projections of algebraic sets and alge-
braic sets are semialgebraic, this is equivalent to the question “Are coordinate projections
of semialgebraic sets semialgebraic?”. The answer is yes, as shown in [9]:

Theorem 1.5 (Tarski-Seidenberg). If πk : Rn → Rn−k is the projection removing the last
k coordinates, and S is a semialgebraic set, then πk(S) is also semialgebraic.

As the coordinate order is not relevant here, it follows that all projections of semialgebraic
sets are semialgebraic: We will use this result in the next subsection.

1.3 O-minimal structures

This subsection is based loosely on [1, Section 3] and [6]. A structure on R is a sequence
(Dn)n∈N where each Dn is a family of subsets of Rn which essentially is ’closed under
defining sets with logical formulas’. That is, suppose we have a first-order formula Φ in a
language that only has constants for the elements of the various Di, and as predicates only
has the ∈ symbol and equality. Then if (x1, x2, . . . , xn) are the free variables of Φ, the set
{(x1, x2, . . . , xn) ∈ Rn : Φ(x1, . . . , xn)} is in Dn.

Definition 1.6. A structure on R is a sequence D = (Dn)n∈N, with Dn ⊆ 2R
n
, satisfying:

(1): Dn is a Boolean algebra for all n. In other words, eachDn is closed under complements,
binary unions and binary intersections.
(2): If A ∈ Dn, then A× R ∈ Dn+1 and R× A ∈ Dn+1

(3): {(x1, x2, . . . , xn) : xi = xj} ∈ Dn for all 1 ≤ i < j ≤ n.
(4): If π : Rn+1 → Rn is the projection deleting the last coordinate, then for all A ∈ Dn+1

we have π(A) ∈ Dn.

If D is a structure, we call any set X that belongs to Dn for some n ≥ 1 definable in D,
referring to the interpretation mentioned before. While structures are a useful concept,
they are too basic for our purposes: We want to keep the ordered field structure of R. On
the other hand we do not want every set to be definable, as we would prefer pathological
cases like the Cantor set to be excluded. This leads to the definition of o-minimal structures
expanding (R, <,+, ·).
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Definition 1.7. An o-minimal structure expanding the ordered field (R, <,+, ·) is a struc-
ture D on R satisfying the following further axioms:
(5): {(x1, x2) : x1 < x2} ∈ D2

(6): {(x1, x2, x3) : x3 = x1 + x2} ∈ D3

(7): {(x1, x2, x3) : x3 = x1 · x2} ∈ D3

(8): D1 consists of all finite unions of points and open intervals.

We will soon see that any o-minimal structure expanding (R, <,+, ·) already contains all
semialgebraic sets. First we need to get some basic administration out of the way.

Remark 1.8. Let D = (Dn)n∈N be an arbitrary o-minimal structure expanding the ordered
field (R, <,+, ·). From now on, we call a set X ⊆ Rn definable if it is definable in D.

We derive the following basic facts quite easily:

Lemma 1.9. (i) If A ∈ Dm, B ∈ Dn, then A×B ∈ Dm+n.

(ii) If A ∈ Dn, and σ is a permutation of n coordinates, then σ(A) ∈ Dn.

(iii) If A ∈ Dn, and π : Rn → Rm is any projection omitting n − m coordinates, then
π(A) ∈ Dm.

(iv) If A ∈ Dm+n and T ∈ Rm, then the fiber AT = {x ∈ Rn, (T, x) ∈ A} is definable.

(v) All semialgebraic sets are definable.

Proof. (i) follows from axioms (1) and (2) as A×B = (A× Rn) ∩ (Rm ×B).
For (ii) we note that σ(A) is the projection on the first n coordinates of the intersection of
Rn×A with {(x, y) ∈ R2n : xi = yσi for i = 1, . . . , n}, so it is definable by (3) and (4). For
(iii), note that we can simply use (ii) to make the first m coordinates those that we want
to preserve, after which (4) allows projecting the extra coordinates away. For (iv) we note
AT = A ∩ ({T} × Rn), and use (1) and (2).
Finally, for (v) we first observe that all finite unions and intersections of definable sets are
definable since binary unions and intersections are. From this it follows that if for any
polynomial f ∈ R[x1, x2, . . . , xn] the sets {x ∈ Rn : f(x) = 0} and {x ∈ Rn : f(x) > 0}
are definable, all semialgebraic sets are. As the graphs of addition and multiplication are
definable in R3, by using (ii) and (2) it follows that (the graphs of) any binary sums and
binary products of variables are definable in every Rn. We can extend this to all finite
sums and finite products of variables: This just requires introducing some helper variables
and then projecting them away. For example, the set
{(x1, x2, . . . , xn) ∈ Rn : x1 + x2 + · · ·+ xk = xk+1} is definable as it is the projection of

{(x1, x2, . . . , xn+k−2) ∈ Rn+k−2 : xn+1 = x1 + x2, xn+2 = xn+1 + x3, . . . ,

xn+k−2 = xn+k−3 + xk−1, xk+1 = xn+k−2 + xk}

7



on the first n coordinates, and we can do something similar for products. (8) gives that
constants are definable, so multiplication by constants is also possible and hence the graph
Γ(f) = {(x, y) ∈ Rn+1 : y = f(x)} of any polynomial f is definable. The sets we were
looking for are then simply the projections of {(x, y, z) ∈ Rn+2 : y = f(x), z = 0, y ∗ z},
where ∗ is either = or >, on the first n coordinates.

Corollary 1.10. The semialgebraic sets over R form the smallest o-minimal structure
expanding (R, <,+, ·).

Proof. By the Tarski-Seidenberg theorem projections of semialgebraic sets are semial-
gebraic, and the other axioms of o-minimal structures expanding (R, <,+, ·) are easily
checked. So the semialgebraic sets form an o-minimal structure expanding (R, <,+, ·). By
(v) of Lemma 1.9 we see that they are contained in every such structure, so the semialge-
braic sets form the smallest one.

We can also define endomorphisms of vector spaces, as the set {(Ψ, x, y) : Ψ ∈ End(Rn), x, y ∈
Rn, y = Ψ(x)} is definable: Let M be the matrix such that Ψ(x) = MΨx for all x ∈ Rn.
Then write MΨ as an element of Rn2

by writing it as (MΨ,11,MΨ,12, . . . ,MΨ,nn), and y =
Ψ(x) is equivalent to the statement that for all i = 1, 2, . . . , n we have yi =

∑n
j=1MΨ,ijxj.

Now the set we wanted to define can simply been written as {(M,x, y) ∈ Rn2+2n : yi =∑n
j=1Mijxj for i = 1, . . . , n}, which is definable as we have just described it in polynomial

equations.

In the proof of Lemma 1.9 we mentioned that the graphs of all polynomials are defin-
able. Functions with definable graphs are generally useful (for example, we can use them
in logical formulas to define definable sets), so we get the following definition.

Definition 1.11. Let X be a definable set. A function f : X → Rm is called definable if
its graph Γ(f) = {(x, y) : x ∈ X, y ∈ Rm : y = f(x)} is a definable set.

For any definable X define C(X) as the set of definable continuous functions from X to
R (under the Euclidean topology). Next define C∞(X) as C(X) ∪ {∞,−∞}, where the
latter two are seen as constant functions to the extended reals R∪{∞,−∞}. For functions
f, g ∈ C∞(X) where f(x) < g(x) for all x ∈ X (also written f < g) we define the function
interval (f, g)X as the set of points between the function graphs:

(f, g)X = {(x, r) ∈ X × R : f(x) < r < g(x)}.

This function interval is a definable set. By looking at functions in C∞(X) rather than
C(X) we include unbounded intervals, allowing us to decompose the cylinder X × R
above X: Let f1, f2, . . . , fn ∈ C(X) satisfy f1 < f2 < . . . < fn. Then we can par-
tition X × R into the graphs Γ(f1),Γ(f2), . . . ,Γ(fn) along with the function intervals
(−∞, f1)X , (f1, f2)X , . . . , (fn,∞)X . This decomposition is what leads to the definition
of cells.
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Definition 1.12. For any sequence (i1, i2, . . . , in) of zeroes and ones, a (i1, i2, . . . , in)-cell
is a subset of Rn obtained through the following recursion:

(i) A (0)-cell is a singleton {r} ⊂ R, and a (1)-cell is a nonempty open interval
(a, b) ⊆ R.

(ii) An (i1, i2, . . . , in, 0)-cell is the graph Γ(f) of a function f ∈ C(X), where X is an
(i1, i2, . . . , in)-cell, and an (i1, i2, . . . , in, 1)-cell is a function interval (f, g)X with
f, g ∈ C∞(X), f < g, and X an (i1, i2, . . . , in)-cell.

In general, we callX ⊆ Rn a cell if it is an (i1, i2, . . . , in)-cell for some sequence (i1, i2, . . . , in).

Cells are a particularly nice kind of definable sets. For example, we have the following
[6][p. 51,Prop. 2.9 + p.59,ex. 7]

Lemma 1.13. Cells are connected sets under the Euclidean topology.

If we apply the observation we just made about decompositions to the situation where X
is an (i1, i2, . . . , in)-cell, we find that
{Γ(f1),Γ(f2), . . . ,Γ(fn), (−∞, f1)X , (f1, f2)X , . . . , (fn,∞)X} is a partition of the cylinder
X × R into cells. This leads to the following definition.

Definition 1.14. A cylindrical decomposition (also known as a cell decomposition, or just
a decomposition) of Rn is a partition of Rn into finitely many cells, such that for any
projection πk obtained by removing the last k coordinates for some 1 ≤ k ≤ n − 1, the
projections πk(C) of the cells in the decomposition form a decomposition of Rk.

This is the higher-dimensional analogue of the partition of X×R we just had. For example,
a decomposition of R is simply a partition of R into finitely many points (which are
graphs of functions from the single point space R0 to R) and the intervals that remain
after removing these points (which correspond to the function intervals in that partition).
Moving up further dimensions we find stacks of cells decomposing the cylinder C × R for
each cell C of a decomposition one level lower.
One of the main features of cell decompositions is the cell decomposition theorem [6, p. 52].
The main portion of it we will be using is the following result:

Proposition 1.15. For every definable set X ⊆ Rn there exists a decomposition of Rn in
which X is a finite union of cells.

The full result allows for simultaneous decomposition of any finite number of definable sets,
as well as partitioning the domain of a definable function such that it becomes continuous
on each cell. We now define the dimension of a definable set.

Definition 1.16. We define the dimension dim(X) of a definable set X ⊆ Rn as the
maximal d such that there exist i1, i2, . . . , in ∈ {0, 1} with

∑n
j=1 ij = d such that X

contains an (i1, i2, . . . , in)-cell. We also define dim(∅) = −∞.
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We have a couple of relevant results on dimension here.

Proposition 1.17. Let X ⊆ Rm, Y ⊆ Rn be definable. Then the following results hold:

(i) If there exists a definable bijection X → Y , then dimX = dimY .

(ii) If dim(X) = 0, then X is finite.

(iii) dim(bd(X)) < m, where bd(X) is the boundary of X in the Euclidean topology.

Proof. For part (i), refer to [6][p. 64, Proposition 1.3(ii)]. To get part (ii), take a cell
decomposition of X. As dim(X) = 0 that decomposition can only contain (0, 0, . . . , 0)-
cells, which are single points. As there are only finitely many cells in a decomposition, this
implies X is finite. For part (iii), refer to [6][p. 68, Corollary 1.10].

By definition, cell decompositions are preserved under projections that remove coordinates
from the end. However, moving to fibers also preserves decompositions: [6, p. 60, Propo-
sition 3.5]

Proposition 1.18. Let π : Rm+n → Rm be the projection to the first m coordinates, and
let C be a cell in Rm+n. Then for every T ∈ Rm the fiber CT is a cell in Rn. Furthermore,
given a decomposition of Rm+n, the fibers CT of all cells in this decomposition form a
decomposition of Rn.

We will mainly need this to get a uniform bound:

Corollary 1.19. For each definable family Z ⊆ Rm+n there is an integer MZ such that
for each T ∈ Rm the fiber ZT can be partitioned into at most MZ cells. In particular each
fiber ZT has at most MZ connected components.

Proof. By Proposition 1.15 we can decompose Rm+n so that Z is partitioned into cells,
and by Proposition 1.18 there exist decompositions of Rn with the same number of cells
partitioning the ZT . Hence we can take MZ to be the number of cells in an arbitrary
decomposition of Rm+n partitioning Z. The last statement then follows as cells are con-
nected.

There is one further fact about definable sets we will need: The existence of definable
choice functions.

Proposition 1.20. If Z ⊆ Rm+n is definable, and π : Rm+n → Rm is the projection on
the first m coordinates, there is a definable function f : π(Z) → Rn such that Γ(f) ⊆ Z.

That is, we can simultaneously choose an element from each fiber ZT in a definable way.

Proof. We construct such an f by induction on n. Let n = 1 and let T ⊆ Rm be arbitrary.
If ZT has a minimum, we take

f(T ) = min(ZT ). (1)
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Otherwise ZT is infinite. As ZT is a definable subset of R and hence is a finite union of open
intervals and points, ZT being infinite implies it contains an open interval. Let (uT , vT ) be
the interval closest to −∞, that is, let uT = inf(ZT ) and vT = sup(x ∈ R : (uT , x) ⊆ ZT ).
We have four cases depending on whether u or v are actually in R:

f(T ) =



0 uT = −∞, vT = ∞
vT − 1 uT = −∞, vT ∈ R
uT + 1 uT ∈ R, vT = ∞

uT + vT
2

uT , vT ∈ R

(2)

(3)

(4)

(5)

Clearly these cases cover all potential situations, and each gives a point f(T ) ∈ ZT , so
we have defined a choice function f . To show f is definable we note that the statement
’y = f(T )’ is equivalent to

(y ∈ ZT ∧ ∀z : (z < y =⇒ z /∈ ZT )) Case (1)

∨∀z : (z ∈ ZT ∧ y = 0) Case (2)

∨∀z : ((z < y + 1 =⇒ z ∈ ZT ) ∧ (z > y + 1 =⇒ ∃x : x < z ∧ x /∈ ZT )) Case (3)

∨∀z : (z ∈ ZT ⇐⇒ z > y − 1) Case (4)

∨ (∃uT ∀z : ((z ≤ uT ∧ z /∈ ZT ) ∨ (uT < z ∧ z < 2y − uT ∧ z ∈ ZT )

∨(∃x : 2y − uT < x ∧ x < z ∧ x /∈ ZT )) Case (5)

The specific formulation was chosen to minimize the number of quantifiers by avoiding ref-
erences to uT and vT where possible, as this helps improve the bound later. This equivalent
formulation uses only polynomial equations and inequalities as well as statements of the
form ’x ∈ ZT ’ in its atomic formulas. Therefore Γ(f) = {(T, y) ∈ Rm+n : T ∈ π(Z), y =
f(T )} is definable.

Now suppose n = k + 1 for some k ∈ Z≥1. Let π1 : Rm+k+1 → Rm+k be the projection
omitting the last coordinate, and let π′ : Rm+k → Rm be the projection omitting the last
k coordinates. Note that π = π′ ◦π1, and that π1(Z) is definable as Z is. By the induction
hypothesis we have constructed choice functions fk assigning each T ∈ π′(π1(Z)) = π(Z)
a point in π′(π1(Z))T ⊆ Rk and f1 assigning each point (T, x1, . . . , xk) ∈ π1(Z) a point
in Z(T,x1,...,xk). Then we define fk+1 : π(Z) → Rk+1 as fk+1(T ) = (fk(T ), f1(T, fk(T )). As
T ∈ π(Z) = π′(π1(Z)) and fk(T ) ∈ π′(π1(Z))T , we see that (T, fk(T )) ∈ π1(Z), so fk+1

is well-defined and the point (T, fk+1(T )) indeed lies in Z. Furthermore, fk+1 is clearly
definable as fk and f1 are, completing the induction.

In particular, the proof provides a recursive construction of a formula for such a choice func-
tion. The 1-dimensional case gives a formula of the form

∨
1≤i≤5Φ1,k(T, y), with Φ1,k(T, y)

the part corresponding to case (k). The general case then follows by picking each coordi-
nate xi in turn from πn−i(Z)(T,x1,...,xi−1), which is 1-dimensional, until we finally choose from
Z(T,x1,...,xn−1). Writing Φi,k(T, y) for the 5 parts of the formula corresponding to the choice
of the i-th coordinate, we find that y = f(T ) is equivalent to

∧
1≤i≤n

∨
1≤k≤5Φi,k(T, y).
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1.4 Geometry of numbers

This section is a fast and very basic introduction to the geometry of numbers. A more
thorough explanation can be found in a variety of sources, e.g. [3]. Geometry of numbers
is an area of mathematics primarily concerned with lattice points in Rn, so we should first
recall the definition of lattices.

Definition 1.21. A (full) lattice in Rn is an additive group Λ of the form

Λ = Zv1 + Zv2 + . . .+ Zvn

with {v1, v2, . . . , vn} forming a basis of Rn. We call {v1, v2, . . . , vn} a basis of Λ and define
the determinant d(Λ) = | det(v1, v2, . . . , vn)|.

This determinant is equal to the volume of a fundamental parallelepiped
P = {x ∈ Rn : ∃α1, α2, . . . , αn ∈ [0, 1) : x =

∑n
i=1 αivi}, and is independent of the choice

of basis. Furthermore, it is quite clear that a fundamental parallelepiped is a full system
of representatives for the quotient Rn/Λ, in other words, it contains one element of each
equivalence class. For this reason we also call d(Λ) the covolume Voln(Rn/Λ) of Λ.

We often want to count the number of lattice points in some subset of Rn. For this a
particular kind of structured set is useful:

Definition 1.22. A central symmetric convex body in Rn is a closed bounded convex
subset K of Rn that is symmetric around 0 and has 0 as an interior point.

Let K be a central symmetric convex body. As 0 is an interior point of K, K contains some
open ball around 0. Scaling K with λ ∈ R>0, it follows that each point in Rn is contained
in λK for certain λ ∈ R>0. It is not hard to prove that the set of λ for which this holds
is in fact an interval of the form [λx,K ,∞) for some positive real λx,K . In particular this
allows us to define the following:

Definition 1.23. Let Λ be a lattice and let K be a central symmetric convex body, both
in Rn. For each 1 ≤ i ≤ n, we define the i-th successive minimum of Λ with respect to K
as the minimal λi ∈ R>0 such that λiK contains i linearly independent points of Λ If K is
not specified, we take K to be the closed unit ball.

To see that the successive minima are well-defined, first note we can list the set of lattice
points in increasing order of the λx,K as Λ is discrete and K closed and bounded. We
can then simply go through the list and create a set n of linearly independent points by
repeatedly picking the first lattice point on the list that is linearly independent of the pre-
vious ones; this produces a linearly independent sequence of lattice points (x1, x2, . . . , xn)
which have minimal λxi,K at each stage, meaning that λi = λxi,K for all i. The best-known
application of successive minima is probably Minkowski’s Second Convex Body Theorem.
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Theorem 1.24 (Minkowski’s Second Convex Body Theorem). Let Λ be a lattice in Rn,
let K be a central symmetric convex body in Rn, and let λ1, λ2, . . . , λn be the successive
minima of Λ with respect to K. Then

2n

n!
Voln(Rn/Λ) ≤ Vol(K) ·

n∏
i=1

λi ≤ 2nVoln(Rn/Λ).

This is proven in chapter 8 of [3], with the actual theorem being Theorem V on page 218.
Though the sequence (x1, x2, . . . , xn) of points we constructed while showing the successive
minima are well-defined is linearly independent, it does not have to be a basis for Λ. In
the case where K is the closed unit disk, we can get somewhat close:

Lemma 1.25. Let Λ be a lattice in Rn with successive minima λ1, λ2, . . . , λn (with re-
gards to the closed unit ball), and let |.| be the Euclidean norm. Then there exists a basis
v1, v2, . . . , vn of Λ such that |vi| ≤ iλi for i = 1, . . . , n.

This is in fact a weaker form of [3, Lemma 8,p. 135], which gives us that there is a basis
with |v1| = λ1 and |vi| ≤ i

2
λi for i = 2, . . . , n.

1.5 Measure Theory

Besides the usual j-dimensional Lebesgue measure, which we denote as Volj (or as Lj in
the case of a Lebesgue integral), the proof of Theorem BW-1.3 also uses the j-dimensional
Hausdorff measure Hj. We will give a brief introduction, omitting some proofs. For a more
detailed introduction, see for instance [7][Chapter 2].

Definition 1.26. Let A ⊆ Rn, and let j ∈ R≥0. For any δ ∈ R≥0, define

Hj
δ(A) = νj inf

{
∞∑
i=1

diam(Ci)
j : A ⊆

∞⋃
i=1

Ci, diam(Ci) ≤ δ

}

where the Ci are allowed to vary along all subsets of Rn of diameter at most δ, and νj
is a normalization constant. We define the (normalized) j-dimensional Hausdorff measure
Hj(A) as limδ→0Hj

δ(A).

Let Kj be the j-dimensional hypercube {
∑j

i=1 µiei : 0 ≤ µ1, µ2, . . . , µj ≤ 1} with the
ei the standard basis vectors in Rn. The normalization constant νj is chosen such that
Hj(Kj) = 1 = Volj(Kj): This implies νj is the n-dimensional Lebesgue measure of the n-
dimensional ball with diameter 1, and ensures Hj and Volj agree on all measurable subsets
of Rj. In particular we have the following result:

Proposition 1.27. Let 1 ≤ j ≤ n, and let A ⊆ Rn be j-Hausdorff measurable. Suppose
ϕ ∈ End(Rn) has operator norm c. Then Hj(ϕ(A)) ≤ cHj(A). In particular, if ϕ is an
orthogonal projection we have Hj(ϕ(A)) ≤ Hj(A), and if ϕ ∈ On(R) we have Hj(ϕ(A)) =
Hj(A).
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Proof. The first part follows from [7][p. 97, Theorem 2.8] by noting that linear endomor-
phisms are Lipschitz continuous with Lipschitz constant equal to their operator norm. The
first special case follows as orthogonal projections have operator norm 1. The other special
case follows as for ϕ ∈ On(R) both ϕ and ϕ−1 have operator norm 1.

The Hausdorff measure also induces a notion of dimension:

Definition 1.28. Let A ⊆ Rn. We define the Hausdorff dimension of A as

dimH(A) = inf{j ∈ R≥0 : Hj(A) = 0}.

The Hausdorff measure certainly cares about Hausdorff dimension: It turns out that Hj(A)
can only be a nonzero real number if j = dimH(A).

Proposition 1.29. Let A ⊆ Rn, and let dimH(A) = d. Then for all j > d we have
Hj(A) = 0, and for all j < d we have Hj(A) = ∞.

The Hausdorff dimension turns out to agree with our notion of dimension of definable sets,
as we have [1][p. 14, Proposition 5.2]:

Proposition 1.30. Let A ⊆ Rn be a nonempty definable set. Then dim(A) = dimH(A).
If A is also bounded and d = dim(A), then A is j-Hausdorff measurable for all d ≤ j ≤ n,
and Hd(A) <∞.

This immediately leads to the following lemma:

Lemma 1.31. If A ⊆ Rn is definable, then Voln(bd(A)) = 0.

Proof. If A is empty, this is trivial. Otherwise we know from Proposition 1.17 that
dim(bd(A)) < n, so by Proposition 1.30 dimH(bd(A)) < n. By Proposition 1.29 this
means that Voln(bd(A)) = Hn(bd(A)) = 0.
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2 The Barroero-Widmer Theorem

Recall that πAI
is the orthogonal projection on the coordinate space AI generated by the

standard basis vectors (ei)i∈I , and Vj(ZT ) is the sum of the volumes of the πAI
(ZT ) with

|I| = j. The main result in this thesis is about the following theorem by Barroero and
Widmer [1, Theorem 1.3]:

Theorem BW-1.3. Fix an o-minimal structure D. Let m and n be positive integers, let
Λ ⊂ Rn be a lattice with successive minima λ1, . . . , λn, and let Z ⊆ Rm+n be a definable
family of which the fibers ZT are bounded for all T ∈ Rm. Then there exists a constant
cZ ∈ R depending only on Z such that∣∣∣∣|ZT ∩ Λ| − Voln(ZT )

d(Λ)

∣∣∣∣ ≤ cZ

n−1∑
j=0

Vj(ZT )∏j
i=1 λi

.

Our goal in this thesis is bounding the constant cZ in this theorem in the case where D is
the family of semialgebraic sets. We will first look at the proof to see where this constant
arises. We will see that in several lemmas we need the assumption that the fibers ZT are
all compact. As the theorem itself assumes they are bounded, we only need the additional
assumption that they are closed. So for now assume the ZT are closed; we will deal with
the general case at the end.

We start with [1][Lemma 4.1]. This lemma involves a definition based on Davenport’s
lemma (Lemma 1.3), which BW-1.3 generalizes.

Definition 2.1. Let X ⊆ Rn and let h be a positive integer. Then h is a Davenport
constant for X if for every nonempty I ⊆ {1, 2, . . . , n} the intersection of any line parallel
to a coordinate axis and πAI

(X) can be expressed as a union of at most h disjoint intervals.

That is, h is a Davenport constant for X if it satisfies the main condition of Davenport’s
lemma. We can now formulate the lemma.

Lemma BW-4.1. Let Z ⊆ Rm+n be a definable family. There exists a natural number MZ

depending only on Z such that for every T ∈ Rm and endomorphism ψ of Rn the number
MZ is a Davenport constant for ψ(ZT ).

Proof. As a consequence of the fact noted below Corollary 1.10 the set V = {(ψ, T, x, y) ∈
Rn2+2n+m : x = ψ(y), y ∈ ZT} is definable, so its projection W = {(ψ, T, x) ∈ Rn2+m+n :
x ∈ ψ(ZT )} is definable as well, as the formula x ∈ ψ(ZT ) is equivalent to

∃(y1, y2, . . . , yn) ∈ Rn : (T, y1, y2, . . . , yn) ∈ Z, xi =
n∑
j=1

ψijyj for i = 1, 2, . . . , n.

For I a nonempty subset of {1, 2, . . . , n}, let π′
AI

be the endomorphism of Rn2+m+n send-
ing (ψ, T, x) to (ψ, T, πAI

(x)). A line in AI parallel to a coordinate axis is determined by
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the |I|−1 values of the constant coordinates, so we will write it as (ℓi)i∈I\{i0} for some i0 ∈ I.

For each choice of I and i0 ∈ I, now define

BI,i0 = {((ℓi)i∈I\{i0}, ψ, T, x) ∈ Rn2+m+n+|I|−1 : (ψ, T, x) ∈ π′
AI
(W ), ℓi = xi for i ∈ I \{i0}}.

These are clearly definable sets, and a fiber BI,i0
(ℓi),ψ,T

is exactly the intersection of the line

(ℓi)i∈I\{i0} parallel to ei0 in AI with π
′
AI
(W )ψ,T = πAI

(Wψ,T ) = πAI
(ψ(ZT )). In fact, all of

these fibers can be viewed in a single context.

Lemma 2.2. Each fiber BI,i0
(ℓi),ψ,T

is homeomorphic to some fiber W(ϕ,T,x1,...,xn−1) of W .

Proof of Lemma 2.2. Let F = BI,i0
(ℓi),ψ,T

be given, and define j = |I|. Let σ ∈ Sn such that

σ(I) = {n−j+1, n−j+2, . . . , n} and in particular σ(i0) = n. Let ϕσ be the endomorphism
of Rn that sends ei to eσ(i) for each standard basis vector ei.

Let y = (y1, y2, . . . , yn) ∈ F , and let z = (z1, z2, . . . , zn) such that z = ϕσ(y). As
y ∈ (πAI

◦ ψ)(ZT ), it follows that z ∈ (ϕσ ◦ πAI
◦ ψ)(ZT ), and hence z ∈ W(ϕσ◦πAI

◦ψ,T ).
Furthermore, as y lies in the image of πAI

, we have yi = 0 for all i /∈ I. Hence zi = 0 for all
i ≤ n−j. As yi = ℓi for all i ∈ I \{i0}, we also have zi = ℓσ−1(i) for all n−j+1 ≤ i ≤ n−1.

Clearly ϕσ is continuous, as it is just a coordinate permutation, and invertible as it has
inverse ϕσ−1 . So ϕσ induces a homeomorphism between BI,i0

(ℓi),ψ,T
and its image G. By our

earlier discussion, G is a subset of

H =

{
z = (z1, z2, . . . , zn) ∈ Rn

∣∣∣∣ z ∈ W(ϕσ◦πAI
◦ψ,T ), zi = 0 for all i ≤ n− j

zi = ℓσ−1(i) for all n− j + 1 ≤ i ≤ n− 1

}
.

We first prove G = H. As all zi with 1 ≤ i ≤ n − 1 are already predetermined, we just
need to prove each value of zn ∈ R occurs in ϕσ(F ). But clearly for any choice of zn ∈ R
there is a point y in F with yi0 = zn, and that point has ϕσ(y)n = zn.

So F is homeomorphic to H. But H is clearly itself homeomorphic to the fiber
W(ϕσ◦πAI

◦ψ,T,x1,x2,...,xn−1) satisfying xi = 0 for i ≤ n − j and xi = ℓσ−1(i) as all coordinates
in H except the last one are already predetermined. Hence F is homeomorphic to a fiber
W(ϕ,T,x1,...,xn−1) of W .

We continue with the proof of Lemma BW-4.1. Using Corollary 1.19 we can find a uniform
bound MZ for the number of connected components of all fibers W(ϕ,T,x1,...,xn−1). As each

BI,i0
(ℓi),ψ,T

is homeomorphic to some fiber of that form, each BI,i0
(ℓi),ψ,T

has at most MZ con-
nected components. This implies that any line parallel to a coordinate axis in AI intersects
πAI

(ψ(ZT )) in at most MZ disjoint intervals for any nonempty I ⊆ {1, 2, . . . , n}, so MZ is
a Davenport constant for ψ(ZT ) for all T ∈ Rm.
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We now follow chapter 2 from [1]. Here we find three lemmas that in combination form
a chain of inequalities, starting with the Davenport constant we just got from Lemma
BW-4.1. Using Lemma 1.25 we get a basis (v1, v2, . . . , vn) of Λ such that |vi| ≤ iλi for
i = 1, . . . , n. Let Ψ be the endomorphism of Rn sending this basis to the standard basis.
With this basis and endomorphism now given, we can formulate the lemmas.

Lemma BW-2.1. Let C ⊆ Rn be a compact set, and let h be a Davenport constant for
Ψ(C). Then ∣∣∣∣|C ∩ Λ| − Voln(C)

d(Λ)

∣∣∣∣ ≤ n−1∑
j=0

hn−jVj(Ψ(C)).

Proof. Clearly Ψ(C ∩ Λ) = Ψ(C) ∩ Zn and Voln(Ψ(C)) = | det(Ψ)|Voln(C). As Ψ−1 is
represented by the matrix with columns v1, v2, . . . , vn, clearly | det(Ψ)| = 1

| det(Ψ−1)| =
1

d(Λ)
.

As C is compact, so is Ψ(C), so we can apply Davenport’s Lemma (Lemma 1.3) to Ψ(C).
This gives∣∣∣∣|C ∩ Λ| − Voln(C)

d(Λ)

∣∣∣∣ = ||Ψ(C) ∩ Zn| − Voln(Ψ(C))| ≤
n−1∑
j=0

hn−jVj(Ψ(C))

as required.

Lemma BW-2.2. Suppose C ⊆ Rn is compact. Then for j = 1, . . . , n− 1 we have

Vj(Ψ(C)) ≤
∑

I⊆{1,2,...,n},|I|=j

2j · Volj(CI)

Bj ·
∏j

i=1 λi

where Bj is the volume of the j-dimensional unit ball and CI is the orthogonal projection
of C to the subspace of Rn spanned by (vi)i∈I .

Proof. For each I ⊆ {1, 2, . . . , n}, let ΛI be the sublattice of Λ spanned by (vi)i∈I , and let
WI be the subspace of Rn spanned by those same vectors. The orthogonal projection of
Ψ(C) to the subspace AI of Rn spanned by the standard basis vectors (ei)i∈I is Ψ(CI).
Using a similar argument as in the proof of Lemma BW-2.1 we find that Volj(Ψ(CI)) =
Volj(C

I)

d(ΛI)
. As clearly the successive minima of ΛI (with respect to an orthonormal basis of

WI) are at least those of Λ, Minkowski’s Second Theorem (Theorem 1.24) gives us that

d(ΛI) ≥ Bj

2j

∏j
i=1 λi. So we have

Vj(Ψ(C)) =
∑

I⊆{1,2,...,n}
|I|=j

Volj(Ψ(CI)) =
∑

I⊆{1,2,...,n}
|I|=j

Volj(C
I)

d(ΛI)
≤

∑
I⊆{1,2,...,n}

|I|=j

2j · Volj(CI)

Bj ·
∏j

i=1 λi

finishing the proof.
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Lemma BW-2.4. Suppose C ⊆ Rn is compact. Then for any j ∈ {1, 2, . . . , n − 1} and
I ⊆ {1, 2, . . . , n} with |I| = j we have

Volj(C
I) ≤

(
j3/2

n!2n

Bn

)j
V ′
j (C)

where V ′
j (C) is the supremum of the volumes of the orthogonal projections of C on all

j-dimensional subspaces of Rn.

Note that this supremum is finite because C is compact.

Proof. Let j, I be as in the lemma, and write I for the complement of I in {1, 2, . . . , n}.
For i = 1, 2, . . . , n, let v′i be the i-th row of the matrix of Ψ. As Ψ ◦ Ψ−1 is the identity
matrix, it is clear that the v′i form a basis of Rn such that vi · v′j is the Kronecker delta δij
for all i, j ∈ {1, 2, . . . , n}. This basis also induces the basis (v′i)i∈I for W

⊥
I
.

Let ĈI be the orthogonal projection of C on W⊥
I
, and let π be the linear map WI → W⊥

I

sending each point inWI to its orthogonal projection onW⊥
I
. If x, y ∈ WI , then x−y ∈ WI .

If we also have π(x) = π(y), then x− y ∈ ker(π) ⊆ WI . But then x− y ∈ WI ∩WI = {0},
so x = y, which means π is injective. As WI and W⊥

I
both have dimension j, we can

pick orthonormal bases (w1, w2, . . . , wj) for WI and (z1, z2, . . . , zj) for W⊥
I
; then we can

represent π using a j × j matrix with respect to these bases, which is invertible as π is
injective.

For each x ∈ CI we have that x = z + y with z ∈ C, y ∈ WI , and π(x) = x + y′ for

some y′ ∈ WI . Hence π(x) = z + (y + y′) lies in ĈI , so π(CI) ⊆ ĈI . By definition

Volj(ĈI) ≤ V ′
j (C), so we want to bound the volume of CI in terms of the volume of ĈI .

As we just proved CI ⊆ π−1(ĈI), we want to bound the determinant of the matrix repre-
senting π−1.

Let x ∈ WI , and write x =
∑

i∈I aivi. As x− π(x) ∈ WI , we have that (x− π(x)) · v′i = 0
for all i ∈ I. Hence ai = x · v′i = π(x) · v′i for all i ∈ I, and we have

|x| ≤
∑
i∈I

|ai||vi| ≤
∑
i∈I

|π(x)||v′i||vi|. (6)

Now fix an i with 1 ≤ i ≤ n, and use Gram-Schmidt orthonormalization to construct
an orthonormal basis (u1, u2, . . . , un) of Rn such that the (vk)k ̸=i are linear combinations
vk =

∑n−1
ℓ=1 ξkℓuℓ of the first n − 1 basis elements. By definition v′i is

1
det(Ψ−1)

= 1
d(Λ)

times

the vector of cofactors Mki, where M is the matrix corresponding to Ψ−1. Writing
uk = (uk1, uk2, . . . , ukn), we get(

vkm
)
1≤k,m≤n,k ̸=i =

(
ξkℓ
)
k ̸=i,1≤ℓ≤n−1

·
(
uℓm
)
1≤ℓ≤n−1,1≤m≤n .
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Hence each Mki is equal to det
(
ξkℓ
)
k ̸=i,1≤ℓ≤n−1

times the corresponding cofactor Nkn, with

N the matrix with columns u1, u2, . . . , un. By using Hadamard’s inequality and the fact
that the ξkℓ are the coefficients of the vk with respect to an orthonormal basis, it is clear
that

det
(
ξkℓ
)
k ̸=i,1≤ℓ≤n−1

≤
∏
k ̸=i

√√√√n−1∑
ℓ=1

ξ2kℓ =
∏
k ̸=i

|vk|.

As ((Nkn)1≤k≤n) = det(N)−1un = un because the uk are an orthonormal basis and hence
N is an orthogonal matrix, it follows that

|v′i| =
1

d(Λ)
· |((Mki)1≤k≤n)| ≤

1

d(Λ)
·
∏
k ̸=i

|vk| · |((Nkn)1≤k≤n)| =
∏

k ̸=i |vk|
d(Λ)

.

Using this inequality, our assumption that |vk| ≤ kλk for all 1 ≤ k ≤ n, and Minkowski’s
Second Theorem (Theorem 1.24) we get

|vi||v′i| ≤
∏n

k=1 |vk|
d(Λ)

≤ n!
∏n

k=1 λk
d(Λ)

≤ n!2n

Bn

for all 1 ≤ i ≤ n. Combining this with inequality (6) gives |x| ≤ j n!2
n

Bn
· |π(x)|. As x

was arbitrary, this means the operator norm of π−1 is at most j n!2
n

Bn
. Now write π−1 as a

matrix (aik)1≤i,k≤j with respect to the orthonormal bases (wi)1≤i≤j and (zi)1≤i≤j we defined
earlier. Clearly the operator norm of π−1 bounds the |aik| from above, so using Hadamard’s
inequality we find that

| det(π−1)| ≤
j∏
i=1

√√√√ j∑
k=1

a2ik ≤
j∏
i=1

√
j ·
(
j
n!2n

Bn

)2

=

(
j3/2 · n!2

n

Bn

)j
.

Hence

Volj(C
I) ≤ Volj(π

−1(ĈI)) ≤
(
j3/2 · n!2

n

Bn

)j
Volj(ĈI) ≤

(
j3/2 · n!2

n

Bn

)j
V ′
j (C)

completing the proof.

Combining lemmas BW-2.1, BW-2.2 and BW-2.4 in our situation with the fact that MZ

is a Davenport constant for all Ψ(ZT ), we find that∣∣∣∣|ZT ∩ Λ| − Voln(ZT )

d(Λ)

∣∣∣∣ ≤ n−1∑
j=0

Mn−j
Z VjΨ(ZT ) ≤

n−1∑
j=0

Mn−j
Z

∑
I⊆{1,2,...,n},|I|=j

2j · Volj(ZI
T )

Bj ·
∏j

i=1 λi

≤
n−1∑
j=0

Mn−j
Z

∑
I⊆{1,2,...,n},|I|=j

2j ·
(
j3/2 n!2

n

Bn

)j
V ′
j (ZT )

Bj ·
∏j

i=1 λi
=

n−1∑
j=0

Mn−j
Z

(
n

j

)2j ·
(
j3/2 n!2

n

Bn

)j
V ′
j (ZT )

Bj ·
∏j

i=1 λi
.
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This is close to the result in the theorem, but we want the Vj(ZT ) rather than the V ′
j (ZT ) in

that summation. To solve this we have the next proposition, which is the main innovation
of [1]. Note that we use cl(ZT ) for the (topological) closure of ZT .

Proposition BW-6.1. Let Z ⊆ Rm+n be a definable family such that the fibers ZT are
bounded, and let j be an integer with 0 ≤ j ≤ n − 1. Then there exists a constant BZ

depending only on Z such that V ′
j (cl(ZT )) ≤ BZVj(ZT ) for all T ∈ Rm.

Proof. Clearly BZ = 1 works when j = 0 or Z = ∅, so assume 1 ≤ j ≤ n − 1 and Z is
nonempty. For any I ⊆ {1, 2, . . . , n} with |I| = j, let AI be the subspace of Rn generated
by the standard basis vectors (ei)i∈I , and let πAI

be the orthogonal projection Rn → AI . As
this projection is continuous, Lemma 1.31 implies Volj(πAI

(cl(ZT ))) = Volj(cl(πAI
(ZT ))) =

Volj(πAI
(ZT )). As this holds for all choices of I, we also have Vj(cl(ZT )) = Vj(ZT ). Hence

the inequality we want to prove is equivalent to V ′
j (cl(ZT )) ≤ BZVj(cl(ZT )), so we can

without loss of generality assume that all the ZT are closed. In that case we need to prove
V ′
j (ZT ) ≤ BZVj(ZT ) for all T ∈ Rm.

Let On(R) be the orthogonal group. By identifying a ϕ ∈ On(R) with the coefficients
of the matrix representing ϕ in terms of the standard basis, we can view On(R) as a subset
of Rn2

.

Lemma 2.3. There exists a definable set Z ′
j ⊆ Rn2+m+n such that

(i) dim(Z ′
j,(ϕ,T )) ≤ j for all (ϕ, T ) ∈ Rn2+m.

(ii) Z ′
j,(ϕ,T ) ⊆ ZT for all (ϕ, T ) ∈ Rn2+m.

(iii) V ′
j (ZT ) ≤ supϕ∈On(R) Hj(Z ′

j,(ϕ,T )) for all T ∈ Rm.

Proof. We will construct a Z ′
j satisfying these requirements. Define

S = {(ϕ, T, y) ∈ Rn2+m+n : ϕ ∈ On(R), y ∈ ϕ(ZT )}.

This is simply the set W from the proof of Proposition BW-4.1, except that we add the
restriction that ϕ is orthogonal. Since this can be expressed in

(
n
2

)
quadratic equations

in the coefficients of ϕ, we see that S is definable. By definition S(ϕ,T ) = ϕ(ZT ) for each

(ϕ, T ) ∈ On(R)× Rm, so S(ϕ,T ) ⊆ ϕ(ZT ) for all (ϕ, T ) ∈ Rn2+m.

Let πn−j be the projection Rn2+m+n → Rn2+m+j omitting the last n − j coordinates.
By Proposition 1.20 we can construct a definable function fj : πn−j(S) → Rn−j such
that the graph Γ(fj) of fj is contained in S. This immediately implies Γ(fj)(ϕ,T ) ⊆
S(ϕ,T ) ⊆ ϕ(ZT ) for each (ϕ, T ) ∈ Rn2+m. Furthermore, by definition of fj the projec-
tion πn−j|Γ(fj) is a definable bijection from Γ(fj) to πn−j(S), and it induces definable
bijections Γ(fj)(ϕ,T ) → πn−j(S)(ϕ,T ). This implies by Proposition 1.17, part (i), that

dim(Γ(fj)(ϕ,T )) = dim(πn−j(S)(ϕ,T )) for all (ϕ, T ) ∈ Rn2+m. We now define

Z ′
j = {(ϕ, T, x) ∈ Rn2+m+n : ϕ ∈ On(R), ϕ(x) ∈ Γ(fj)(ϕ,T )}.
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Parts (i) and (ii) of the lemma follow pretty easily: For each (ϕ, T ) ∈ Rn2+m we have

ϕ(Z ′
j,(ϕ,T )) = Γ(fj)(ϕ,T ) ⊆ ϕ(ZT )

and hence Z ′
j,(ϕ,T ) ⊆ ZT as well. Now note that πn−j(S)(ϕ,T ) ⊆ Rj. Hence the equality

ϕ(Z ′
j,(ϕ,T )) = Γ(fj)(ϕ,T ) implies as each ϕ ∈ On(R) is bijective and definable that

dim(Z ′
j,(ϕ,T )) = dim(Γ(fj)(ϕ,T )) = dim(πn−j(S)(ϕ,T )) ≤ j

for all (ϕ, T ) ∈ On(R) × Rm. For other choices of ϕ ∈ Rn2
we find that Z ′

j,(ϕ,T ) is empty
and hence has dimension −∞ < j.

To prove part (iii), we first need the following lemma:

Lemma 2.4. Let X ⊆ Rp+n be definable, such that the fibers Xa ⊆ Rn are bounded and
have dimension at most j ≥ 1. Then there exist positive real constants EI only dependent
on X such that

Hj(Xa) ≤
∑

I⊆{1,2,...,n}
|I|=j

EI Volj(πI(Xa))

where πI is the projection Rn → Rj sending (x1, x2, . . . , xn) to (xi)i∈I .

Proof. If dim(Xa) ≤ 0 we have Hj(Xa) = 0, in which case the result is always true. For
any a with dim(Xa) ≥ 1 we get from [1][p. 15-16, Prop. 5.6 and Thm 5.7] that

Hj(Xa) ≤
∑

I⊆{1,2,...,n}
|I|=j

∫
Rj

|π−1
I (y) ∩Xa|dLjy.

So what remains to be proven is that each of these Lebesgue integrals is at most EI Volj(Xa)
for some constant EI . Let R

I = {(a, y, x) ∈ Rp+j+n : (a, x) ∈ X, y = πI(x)}. By Corollary
1.19 there exists an EI such that each fiber RI

a,y has at most EI connected components.

As RI
(a,y) = π−1

I (y) ∩ Xa, when dim(Ra,y) ≤ 0 this implies |π−1
I (y) ∩ Xa| ≤ EI by part

(ii) of Proposition 1.17. As πI |Xa is definable, by [6][p. 56, Corollary 1.6(ii)] we find that
PI = {y ∈ Rj : dim(π−1

I (y) ∩Xa) ≥ 1} is definable and dim(PI) ≤ dim(Xa) − 1 ≤ j − 1.
Hence PI has measure 0, which means

Hj(Xa) ≤
∑

I⊆{1,2,...,n}
|I|=j

∫
Rj

|π−1
I (y) ∩Xa|dLjy =

∑
I⊆{1,2,...,n}

|I|=j

∫
πI(Xa)\PI

|π−1
I (y) ∩Xa|dLjy

≤
∑

I⊆{1,2,...,n}
|I|=j

∫
πI(Xa)\PI

EIdLjy =
∑

I⊆{1,2,...,n}
|I|=j

EI Volj(πI(Xa)\PI) =
∑

I⊆{1,2,...,n}
|I|=j

EI Volj(πI(Xa)).
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Now let T ∈ Rm be arbitrary, let U be any j-dimensional subspace of Rn, and let
(u1, u2, . . . , uj) be an orthonormal basis for U . Then let ϕ ∈ On(R) such that ϕ(ui) = ei for
each 1 ≤ i ≤ j. Define πU as the orthogonal projection of Rn on U and π̃ as the orthogonal
projection on the span of the standard basis vectors (ei)1≤i≤j. Clearly ϕ ◦ πU = π̃ ◦ ϕ.
As U and ϕ(U) are j-dimensional, Volj and Hj agree on their subsets. As ϕ ∈ On(R),
Proposition 1.27 implies that

Volj(πU(ZT )) = Volj(ϕ ◦ πU(ZT )) = Volj(π̃ ◦ ϕ(ZT )) = Volj(π̃(S(ϕ,T ))).

So
V ′
j (ZT ) = sup

U
(Volj(πU(ZT ))) ≤ sup

ϕ∈On(R)
(Volj(π̃(S(ϕ,T )).

Now fix ϕ ∈ On(R). For any A ⊆ Rn2+m+n we have that
πn−j(A)(ϕ,T ) = {(x1, x2, . . . , xj)|∃xj+1, xj+2, . . . , xn : (ϕ, T, x1, x2, . . . , xn) ∈ A} while π̃(A(ϕ,T )) =
{(x1, x2, . . . , xj, 0, 0, . . . , 0) ∈ Rn|∃xj+1, xj+2, . . . , xn : (ϕ, T, x1, x2, . . . , xn) ∈ A}. So as
we have already shown that πn−j(S)(ϕ,T ) = πn−j(Γ(fj))(ϕ,T ), it follows that π̃(S(ϕ,T )) =
π̃(Γ(fj)(ϕ,T )). So by using Proposition 1.27 we find

Volj(π̃(S(ϕ,T )) = Volj(π̃(Γ(fj)(ϕ,T ))) = Hj(π̃(Γ(fj)(ϕ,T ))) ≤ Hj(Γ(fj)(ϕ,T ))

as the j-dimensional Lebesgue and Hausdorff measures agree on Rj. As Z ′
j,(ϕ,T ) = ϕ(Γ(fj)(ϕ,T ))

and ϕ ∈ On(R), we have Hj(Γ(fj)(ϕ,T )) = Hj(Z ′
j,(ϕ,T )). Hence we have

V ′
j (ZT ) ≤ sup

ϕ∈On(R)
(Volj(π̃(S(ϕ,T )) ≤ sup

ϕ∈On(R)
Hj(Z ′

j,(ϕ,T ))

which is exactly (iii), finishing the proof of Lemma 2.3.

Now let Z ′
j as in Lemma 2.3 be given. For each I ⊆ {1, 2, . . . , n}, define the projection

πI : Rn → Rj sending (x1, x2, . . . , xn) to (xi)i∈I . As the ZT are bounded, properties (i) and
(ii) of Lemma 2.3 imply that we can use Lemma 2.4 on Z ′

j. This shows that there exist
constants EI such that

Hj(Z ′
j,(ϕ,T )) ≤

∑
I⊆{1,2,...,n}

|I|=j

EI Volj(πI(Z
′
j,(ϕ,T )))

for every (ϕ, T ) ∈ Rn2+m. Define BZ as the maximum of the EI as I varies over the
nonempty proper subsets of {1, 2, . . . , n}. It is clear that Volj(πAI

(Z ′
j,(ϕ,T ))) = Volj(πI(Z

′
j,(ϕ,T )))

for all (ϕ, T ) ∈ Rn2+m, so we have

V ′
j (ZT ) ≤ sup

ϕ∈On(R)
Hj(Z ′

j,(ϕ,T )) ≤ sup
ϕ∈On(R)

∑
I⊆{1,2,...,n}

|I|=j

EI Volj(πI(Z
′
j,(ϕ,T )))

≤ sup
ϕ∈On(R)

BZ

∑
I⊆{1,2,...,n}

|I|=j

Volj(πAI
(Z ′

j,(ϕ,T ))) = sup
ϕ∈On(R)

BZVj(Z
′
j,(ϕ,T ))
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≤ sup
ϕ∈On(R)

BZVj(ZT ) = BZVj(ZT )

for all T ∈ Rm, finishing the proof of Proposition BW-6.1.

We assumed earlier that the ZT are all closed, so cl(ZT ) = ZT for all T . Hence we can use
this proposition to make the last links in our inequality chain, which gives∣∣∣∣|ZT ∩ Λ| − Voln(ZT )

d(Λ)

∣∣∣∣ ≤ n−1∑
j=0

Mn−j
Z

(
n

j

)2j ·
(
j3/2 n!2

n

Bn

)j
V ′
j (ZT )

Bj ·
∏j

i=1 λi

≤
n−1∑
j=0

Mn−j
Z

(
n

j

)2j ·
(
j3/2 n!2

n

Bn

)j
BZVj(ZT )

Bj ·
∏j

i=1 λi
≤ cZ

n−1∑
j=0

Vj(ZT )∏j
i=1 λi

where

cZ = max
0≤j≤n−1

Mn−j
Z

(
n

j

)(
j3/2 · n!2n+1

)j
BZ

Bj ·Bj
n

(7)

proving the theorem. However, this was all under the assumption that the fibers ZT were
closed. If they are not closed, then we need to look at what we will call the ‘fiberwise
closure’ and the ‘fiberwise boundary’, which are respectively the sets

C(Z) = {(T, x) : T ∈ Rm, x ∈ cl(ZT )},
B(Z) = {(T, x) : T ∈ Rm, x ∈ bd(ZT )}.

In the o-minimal context these are definable sets with closed fibers, so the proof does apply
to C(Z) and B(Z). Combining this with Lemma 1.31 giving us that Voln(bd(ZT )) = 0
and hence Voln(cl(ZT )) = Voln(ZT ), we get that∣∣∣∣|ZT ∩ Λ| − Voln(ZT )

d(Λ)

∣∣∣∣ ≤ ∣∣∣∣| cl(ZT ) ∩ Λ| − Voln(ZT )

d(Λ)

∣∣∣∣+ | bd(ZT ) ∩ Λ|

=

∣∣∣∣| cl(ZT ) ∩ Λ| − Voln(cl(ZT ))

d(Λ)

∣∣∣∣+ ∣∣∣∣| bd(ZT ) ∩ Λ| − Voln(bd(ZT ))

d(Λ)

∣∣∣∣
≤ cC(Z)

n−1∑
j=0

Vj(cl(ZT ))∏j
i=1 λi

+ cB(Z)

n−1∑
j=0

Vj(bd(ZT ))∏j
i=1 λi

≤ (cC(Z) + cB(Z))
n−1∑
j=0

Vj(ZT )∏j
i=1 λi

so the constant cZ = cC(Z) + cB(Z) will do in that case, finishing the proof of Theorem
BW-1.3.

While this proof gives us a formula for the constant cZ , it is not quite complete: We
still need to find MZ and BZ in order to actually calculate cZ . Furthermore, we need to
know whether Z is fiberwise closed, and in the case it is not, we would need a method to
calculate the same bounds for the fiberwise closure and fiberwise boundary of Z. By look-
ing at the proofs of Lemma BW-4.1 and Lemma BW-6.1 to find out where these constants
come from, it is clear that we need information on the number of connected components
of various sets related to Z: The set W in the former lemma, the sets RI in the latter.
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3 Decomposing semialgebraic sets

3.1 Cell decomposition

To be able to bound the constants MZ and BZ appearing in our bound for cZ , we need
information on the structure of certain definable sets. However, it turns out this gets too
complicated for general o-minimal structures. Because of this we restrict our view to the
o-minimal structure of semialgebraic sets. We already know that as the semialgebraic sets
form an o-minimal structure, we have cell decompositions for them. We will look at a
construction for them in the semialgebraic case, as well as how we can find decompositions
with additional structure. The general concept of this first construction is from [4], though
the proof has been adapted from [2][Chapter 5.1].

Definition 3.1. Let P ⊆ R[X1, X2, . . . , Xn] and let S ⊆ Rn. We call P sign invariant on
S if sign(P (x)) is the same for all x ∈ S. We also call S a P-invariant set in this case, and
call a cell decomposition of Rn P-invariant if each cell in the decomposition is P-invariant.

We will prove the following:

Theorem 3.2. Let P ⊆ R[X1, X2, . . . , Xn] be finite. Then there exists a P-invariant cell
decomposition of Rn.

Proof. We construct a decomposition by induction on n. To do so, we first need that the
roots of a polynomial vary continuously in terms of the coefficients. The specific statement
we need is [2][p. 178, Theorem 5.12]; the proof can be found there.

Proposition 3.3 (Continuity of roots). Let P ∈ R[X1, . . . , Xn], and let S be a semialge-
braic subset of Rn−1 such that the degree of P (x′, Xn) is constant for x′ varying over S.
Let x ∈ S be arbitrary, and let z1, z2, . . . , zk be the roots of P (x,Xn) in C with respective
multiplicities µ1, µ2, . . . , µk. Fix r > 0 such that the disks D(zi, r) of radius r around the
zi in C are disjoint. Then there exists a open neighborhood U of x in S such that for each
x′ ∈ U , the roots of P (x′, Xn) in each disk D(zi, r) have total multiplicity µi.

The idea of the proof is to first observe it is enough to check it for monic P , then prove
it for (Xn − z)µ and show that the coefficients of the coprime factors vary continuously in
terms of those of the product.

Definition 3.4. Let P ⊆ R[X1, X2, . . . , Xn] and S ⊆ Rn−1. We call P delineable over S
if for any P,Q ∈ P the following three quantities remain constant as x varies over S:

(i) The Xn-degree of P (x,Xn),

(ii) The number of distinct roots of P (x,Xn) in C,

(iii) The Xn-degree of gcd(P (x,Xn), Q(x,Xn)).

To get a cell decomposition of Rn that is P-invariant, the key is finding a set of projection
polynomials ProjXn

(P) such that if a cell S ⊆ Rn−1 is ProjXn
(P)-invariant, then P is

delineable over S. We then apply the following proposition.
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Proposition 3.5. Let S be a semialgebraically connected region in Rn−1, and let P be a
finite set of polynomials in R[X1, X2, . . . , Xn] that is delineable over S. Let P ′ be the subset
of P consisting of all polynomials that are not identically 0 on S × R. Then there exist
continuous semialgebraic functions ζ1, ζ2, . . . , ζm : S → R such that for each x ∈ S the roots
of
∏

P∈P ′ P (x,Xn) in R are ζ1(x) < ζ2(x) < . . . < ζm(x). Furthermore, the multiplicity of
ζi(x) as a root of any P ∈ P ′ is the same for all x ∈ S.

Proof. We prove the theorem for |P ′| = 2; the result for |P ′| = 1 follows by taking
Q = P ′ ∪ {1}, and for other values of |P ′| we get the theorem by repeatedly replacing
P,Q ∈ P ′ with PQ. So let P,Q ∈ R[X1, X2, . . . , Xn] be two polynomials that are not
identically 0 on S×R. Let x ∈ S be arbitrary, and let z1, z2, . . . , zk be the distinct roots of
PQ(x,Xn) in C with respective multiplicities µ1, µ2, . . . , µk as roots of P and ν1, ν2, . . . , νk
as roots of Q. Let r > 0 be such that the disks D(zi, r) are disjoint.

Note that the coefficients of P (x′, Xn) and Q(x′, Xn) vary continuously with x′. As the
degrees of P (x,Xn) and Q(x,Xn), as well as their numbers of distinct roots in C, do not
depend on x, we can use continuity of roots (Proposition 3.3). This gives us that there is
a neighborhood U of x such that for any x′ in U each disk D(zi, r) contains a single root
pi of P (x

′, Xn) with multiplicity µi and a single root qi of Q(x
′, Xn) of multiplicity νi. The

degree of the gcd of P (x,Xn) and Q(x,Xn) is
∑k

i=1min(µi, νi) and remains constant on S.
So whenever min(µi, νi) > 0 it must hold that pi = qi and the multiplicity of pi as a root
of gcd(P (x′, Xn), Q(x

′, Xn)) is min(µi, νi). In particular PQ(x′, Xn) has exactly one root
ri in each D(zi, r) for all x

′ ∈ U .

If zi ∈ R, then also ri ∈ R, as otherwise its conjugate ri would be another root of
PQ(x′, Xn) in the same disk. Similarly, if zi /∈ R we must have ri /∈ R, as the disk
D(zi, r) would otherwise intersect D(zi, r). So the number of roots of PQ(x′, Xn) in R,
as well as their relative order and multiplicity, is constant as x′ varies over U . As S is
semialgebraically connected this implies that these quantities are constant over S as well.

Hence the functions ζi : S → R mapping x′ ∈ S to the i-th smallest root of PQ(x′, Xn) in
R are well-defined, and the roots they map to have constant multiplicity as roots of P and
Q. As y = ζi(x) is equivalent to the formula

x ∈ S ∧ ∃X1, X2, . . . , Xk : X1 < X2 < . . . < Xk ∧
k∧
j=1

PQ(x,Xj) = 0 ∧ y = Xi,

the functions ζi are semialgebraic (as we have just shown it to be definable in the structure
of semialgebraic sets), and by repeating the above argument for arbitrarily small r it follows
that they are continuous.

We use Proposition 3.5 to split the cylinder S×R into the graphs of the ζi and the sectors
into which the cylinder is divided by these graphs. These are by definition cells, and as a
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polynomial can only change sign at one of its roots, it follows that each of the cells is P-
invariant. So if we have such a projection operator, we can reduce the problem of creating a
P-invariant decomposition of Rn to creating a ProjXn

(P)-invariant decomposition of Rn−1.
To find one, we need the following definition.

Definition 3.6. Let P,Q ∈ R[X] with deg(P ) = p, deg(Q) = q, and let j be an in-
teger such that 0 ≤ j ≤ min(p, q). Let Mj be the matrix corresponding to the lin-
ear map mj : Rp+q−2j → Rp+q−j sending (uq−j−1, uq−j−2, . . . , u0, vp−j−1, vp−j−2, . . . , v0) to
(ap+q−j−1, . . . , a0) such that

p+q−j−1∑
i=0

aiX
i = P (X) ·

q−j−1∑
i=0

uiX
i +Q(X) ·

p−j−1∑
i=0

viX
i.

Then we define the j-th principal subresultant coefficient sj(P,Q) to be the determinant
of the matrix formed by the first p+ q − 2j rows of Mj.

Concretely mj takes any pair U, V ∈ R[X] with deg(U) < q − j and deg(V ) < p − j
and sends the coefficient vector of the pair (U, V ) to that of PU + QV , which by the
polynomial version of Bézout’s identity implies that the kernel of mj is non-trivial if and
only if deg(gcd(P,Q)) > j. So clearly deg(gcd(P,Q)) > j implies that si(P,Q) = 0 for all
i ≤ j. As proven in [8, p. 261, Lemma 7.7.8], the converse also holds. Hence we have the
following proposition.

Proposition 3.7. Let P,Q ∈ R[X] be two nonzero polynomials. Then deg(gcd(P,Q)) is
equal to the minimal j such that sj(P,Q) ̸= 0.

We also have the following basic result on the number of distinct roots of a P ∈ R[X] in
C:

Lemma 3.8. Let P ∈ R[X] be nonzero. Then the number of distinct roots of P in C is
deg(P )− deg(gcd(P, P ′)).

Proof. Write P = a
∏k

i=1(X − zi)
µi , with the zi the distinct roots of P in C. Then

P ′ = a
∑k

i=1 µi(X − zi)
µi−1

∏
j ̸=i(X − zj)

µj , so clearly gcd(P, P ′) =
∏k

i=1(X − zi)
µi−1 has

degree deg(P )− k.

With this, we can construct the projection set required.

Definition 3.9. Let P ⊆ R[X1, X2, . . . , Xn]. For each P ∈ P let tk(P ) be the remainder
of the division of P by Xk

n. Consider P as a set of polynomials in Xn with coefficients in
R[X1, X2, . . . , Xn−1]. We define ProjXn

(P) as the set containing for each P,Q ∈ P :

• The nonzero coefficients of P ,

• sj(tk(P ), tk(P )
′) for each 0 ≤ j ≤ k ≤ deg(P ),

• sj(tk(P ), tℓ(Q)) for each k ≤ deg(P ), ℓ ≤ deg(Q), and j ≤ min(k, ℓ).
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Note that we can exclude all constant polynomials from the projection if we want, as they
are sign invariant over Rn−1.

Proposition 3.10. Let P ⊆ R[X1, X2, . . . , Xn]. Then if S ⊆ Rn−1 is ProjXn
(P)-invariant,

P is delineable over S.

Proof. Let P,Q ∈ P . The sign invariance of the coefficients of P and Q in S implies
that P (x,Xn) and Q(x,Xn) have constant degree when x varies over S. So if P (x,Xn) or
Q(x,Xn) is the zero polynomial for any x ∈ S, this is true for all x ∈ S, in which case the
delineability conditions are trivial. So assume neither is the zero polynomial. Let k be the
degree of P (x,Xn) and ℓ the degree of Q(x,Xn) for any x ∈ S. The number of distinct
roots of P (x,Xn) in C is k − deg(gcd(P (x,Xn),

∂
∂Xn

P (x,Xn)) by Lemma 3.8. That in

turn depends on which of the sj(P (x,Xn),
∂

∂Xn
P (x,Xn)) are 0 by Proposition 3.7, and as

each sj(tk(P (x,Xn), tk(P (x,Xn))
′) is sign invariant on S, this is independent of the choice

of x. Similarly the sign invariance of the sj(tk(P (x,Xn)), tℓ(Q(x,XN))) on S implies the
invariance of the degree of gcd(P (x,Xn), Q(x,Xn)), so P is delineable over S.

This, together with our earlier remarks, finishes the proof of Theorem 3.2.

3.2 Stratification

A problem with cell decompositions is that cell adjacency is not always nice: The boundary
of a cell might contain only part of a cell. To solve this, we take a look at sign conditions
and their realizations.

Definition 3.11. Let P ⊆ R[X1, X2, . . . , Xk] be a set of polynomials. We define a sign
condition on P as a function σ : P → {−1, 0, 1}, and a weak sign condition on P as a
function τ : P → {{−1, 0}, {0}, {0, 1}}. The weak sign condition σ corresponding to σ is
the weak sign condition defined by σ(P ) = {σ(P ), 0} for all P ∈ P .
The realization of σ on a set S ⊆ Rk is the set

Reali(σ, S) = {x ∈ S : sign(P (x)) = σ(P ) for all P ∈ P},

and similarly the realization of σ on S is the set

Reali(σ, S) = {x ∈ S : sign(P (x)) ∈ σ(P ) for all P ∈ P}.

In the univariate case, the realizations of sign conditions can be rather simple in structure,
as long as the set of polynomials is closed under taking derivatives:

Lemma 3.12 (Thom’s Lemma). Let P ⊆ R[X] be a finite set of polynomials that is closed
under taking derivatives, and let σ be a sign condition on P. Then Reali(σ,R) is either
empty, a point, or an open interval. Furthermore:

• If Reali(σ,R) is empty, then Reali(σ,R) is either empty or a point.

• If Reali(σ,R) is a point, then Reali(σ,R) is that point.
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• If Reali(σ,R) is an open interval, then Reali(σ,R) is the closure of that interval.

Proof. We induct on p = |P|. For p = 0 there is only the empty sign condition, which is
realized in the open interval R. The corresponding weak sign condition is again the empty
sign condition, and the closure of R is R, so the lemma holds when p = 0. Now let P
be of size p > 0 and assume we already have the result for sets of size p − 1. Let P be
a polynomial of maximal degree in P , let σ be a sign condition on P , and let τ be the
restriction of σ to P \ {P}. As P has maximal degree, P \ {P} is still closed under taking
non-constant derivatives. So by the induction hypothesis Reali(τ,R) is empty, a point, or
an open interval.

In the first two cases it is clear that the same holds for Reali(σ,R) ⊆ Reali(τ,R). If
Reali(τ,R) is an open interval, we know that P ′ ∈ P \ {P} has constant sign on that
interval. If that sign is 0, P is constant, in which case Reali(σ,R) is either Reali(τ,R) or
empty, and we are done. Otherwise P is either strictly increasing or strictly decreasing on
that interval, and the result follows easily.

This gives us information on the closure of sets defined by a set of univariate polynomials,
as long as that set is closed under differentiation. However, to fix our issue with cell
boundaries, we have to look at multivariate polynomials as well. So we first generalize
Thom’s Lemma to cylinders of a cell decomposition.

Definition 3.13. Let P ∈ R[X1, X2, . . . , Xk]. We call P quasi-monic in Xk if when writing
P as

P (X1, X2, . . . , Xk) =
d∑
i=0

Pi(X1, X2, . . . , Xk−1)X
i
k

the leading coefficient Pd(X1, X2, . . . , Xk−1) is a constant.

From this point onward we will use S as an alternate notation for the (topological) closure
of S.

Proposition 3.14 (Generalized Thom’s Lemma). Let P ⊆ R[X1, . . . , Xk] be a finite set
of polynomials that is closed under differentiation with respect to Xk and is quasi-monic
in Xk. Let S and S ′ be semialgebraically connected subsets of Rk−1 with S ′ ⊆ S that are
both sign invariant for ProjXk

(P). Let ζ1, ζ2, . . . , ζn : S → R and ζ ′1, . . . , ζ
′
n′ : S ′ → R be

continuous functions describing the roots of the polynomials in P above respectively S and
S ′.

Then we have that

(i) Each ζi extends continuously to a ζi defined on S ∪ S ′, and the restriction of ζi |S′ is
one of the ζ ′j.

(ii) Each of the ζ ′j is a restriction ζi |S′ as in (i).
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Furthermore, let σ be a sign condition on P, and let σ be the corresponding weak sign
condition. Then

(iii) Reali(σ, S ×R) is either empty, the graph of one of the ζi, or one of the sectors into
which these graphs divide S × R.

(iv) Reali(σ, S ′×R) is the graph of a ζ ′i or the closure in S ′×R of one of the sectors into
which these graphs divide S ′ × R.

If Reali(σ, S × R) is nonempty, we also have

(v) Reali(σ, S × R) ∩ S × R = Reali(σ, S × R),

(vi) Reali(σ, S × R) ∩ S ′ × R = Reali(σ, S ′ × R).

To prove this, we are going to need two further lemmas.

Lemma 3.15. Let f : (0, 1) → R be a continuous, bounded, and semialgebraic map. Then
f has a continuous semialgebraic extension f : [0, 1) → R.

Lemma 3.16. Let S ⊆ Rk be semialgebraic, and let x ∈ S. Then there exists a continuous
semialgebraic map γ : [0, 1) → S with γ(0) = x and γ((0, 1)) ⊆ S.

Proofs of these lemmas can be found in [2][p. 104, Lemma 3.21 and Theorem 3.22]; the
core idea involves looking in a larger field obtained by adding an infinitesimal to R.

Proof of Proposition 3.14. Let ζi be arbitrary, and let x′ ∈ S ′. By definition there is a
P ∈ P such that P (x, ζi(x)) = 0 for all x ∈ S. As P is closed under differentiation and
the multiplicity of this root is constant as x varies, we can choose P such that P (x,Xk)
always has a simple root at ζi(x). As P is quasi-monic with respect to Xk, we can write
P (x,Xk) = apX

p
k + ap−1(x)X

p−1
k + . . . + a0(x). The Cauchy bound on roots gives us that

|ζi(x)| ≤ 1 + max0≤i<p

∣∣∣ai(x)ap

∣∣∣. Now consider M = 1 + max0≤i<p

∣∣∣ai(x′)ap

∣∣∣. By continuity of

roots (Proposition 3.3) we find that there is a semialgebraic open neighborhood U of x′ in
S such that |ζi(x)| ≤M + 1.

From Lemma 3.16 we know that there is a continuous γ : [0, 1) to U such that γ(0) = x′ and
γ(x) ∈ S ∩ U for all x ∈ (0, 1). As ζi ◦ γ is a continuous bounded function f : (0, 1) → R,
by Lemma 3.15 it extends continuously to a function f : [0, 1) → R. So the point (x′, f(0))
is in the closure of the graph of ζi.

For x ∈ S, define the sign condition τx which sends each polynomial Q ∈ {P, P ′, . . . , P (p)}
to the sign of Q(x, ζi(x)). By the ProjXk

(P)-invariance of S all τx must be equal, so let
τ = τx for an arbitrary x ∈ S. As each point in the graph of ζi satisfies τ , any point (x′, x′k)
in the closure of this graph must satisfy τ by continuity of ζi. Thom’s Lemma gives that
the set of x′k such that (x′, x′k) satisfies τ is either the closure of an open interval or at most
a point. As τ(P ) = 0 and P (x′, Xk) is not the zero polynomial, the former is not possible,
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so there is at most one x′k with (x′, x′k) in the closure of the graph of ζi. As (x
′, f(0)) is in

this closure, we have a unique continuous extension of ζi to x
′, and hence we have a unique

continuous extension ζi of ζi to S ∪ S ′. Furthermore, as P (x′, ζi(x
′)) = 0, the extension

agrees with a ζ ′j on S
′, proving (i).

Now let ζ ′i be given with a P ∈ P and x′ ∈ S ′ such that P (x′, Xk) has a simple root at
Xk = ζ ′i(x

′). Without loss of generality the derivative of P (x′, Xk) is positive atXk = ζ ′i(x
′),

and the same must hold in some neighborhood V of (x′, ζ ′i(x
′)) in S × R. There exists an

open interval (ζ ′i(x
′) − m, ζ ′i(x

′) + m) such that for all y in the interval, P (x′, y) < 0 if
y < ζ ′i(x

′) and P (x′, y) > 0 if y > ζ ′i(x
′), so P (x′, ζ ′i(x

′) −m′)P (x′, ζ ′i(x
′) +m′) < 0 for all

0 < m′ < m.

Let U be the set of all u ∈ S such that P (u, ζ ′i(x
′) − m)P (u, ζ ′i(x

′) + m) < 0 and such
that the derivative of P (u, y) is positive for all y ∈ [ζ ′i(x

′) − m, ζ ′i(x
′) + m]. Then U is

semialgebraic, open, and contains x′. The Intermediate Value Theorem then implies that
P (u,Xk) has a simple root in (ζ ′i(x

′) − m, ζ ′i(x
′) + m) for all u ∈ U , and the function ξ

mapping u ∈ U to this root is continuous. U ∩ S must be nonempty since x′ ∈ S, so ξ
must extend continuously to a ζj on S and ζj |S′= ζ ′i, proving (ii).

Now (iii) and (iv) follow pretty easily: By ProjXk
(P)-invariance of S and S ′ the real-

izations must be unions of cells, which are exactly the graphs and sectors described. Let
x ∈ S be arbitrary. Thom’s Lemma gives us that the realization of σ in {x}×R is empty,
a point, or an open interval. As at least one polynomial has a root at each graph of a ζi,
this implies that Reali(σ, S×R) is either empty, a graph ζi, or a single sector. Similarly we
find that Reali(σ, S ′ × R) is empty, the graph of a ζ ′i, or the closure of a sector in S ′ × R.

This leaves the last two items. (v) follows as the closure of a graph is simply that graph,
and the closure of a sector in S × R is the union of that sector with its bounding graphs.
For (vi), note that if σ is realized on S ×R in a graph ζi, then clearly both sides are equal
to the ζ ′i it extends to on S ′. If σ is realized on a sector in S × R, then Reali(σ, S ′ × R)
is the closed sector bounded by the extensions of the bounding graphs of that sector to
S ′. Clearly Reali(σ, S × R)∩S ′ ×R cannot be just a graph, as Reali(σ, S ′ × R) contains a
sector, so it must be the same closed sector Reali(σ, S ′ × R).

This allows us to augment our cell decompositions in a way that the boundary of each cell
consists of cells.

Definition 3.17. Let P∗ = (Pi)1≤i≤k be a sequence of sets of nonzero polynomials
Pi ⊆ R[X1, X2 . . . , Xi]. We call P∗ a stratifying family for P ⊆ R[X1, X2, . . . , Xk] if

• P ⊆ Pk,

• Pi is quasi-monic with regards to Xi, and is closed under taking Xi-derivatives for
i = 1, 2, . . . , k,
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• ProjXi+1
(Pi+1) ⊆ Pi for i = 1, 2, . . . , k − 1.

In general, if P∗ satisfies the latter two conditions we call P∗ a stratifying family.

Proposition 3.18. Let P∗ be a stratifying family for P, and let Si be the family of
nonempty semialgebraic sets that are the realizations of sign conditions on

⋃
j≤iPj in Ri.

Then the Si are the layers of a P-invariant cell decomposition of Rk, of which the closure
of each cell is a union of that cell with cells of lower dimension.

Proof. We use induction on k. The case k = 0 is trivial. Now suppose the proposition
holds for k−1. Then Sk−1 is a ProjXk

(Pk)-invariant decomposition of Rk−1, so by following
the proof of Theorem 1.14 we can extend this to a Pk-invariant decomposition of Rk. In
this decomposition each element of Sk will be a union of cells; to prove the first part of
this proposition, it is enough to show that each element of Sk is a single cell.

Let σ be a sign condition on
⋃
j≤k Pj with C = Reali(σ,Rk) ∈ Sk. As C is nonempty,

the restriction of σ to
⋃
j≤k−1Pj has a nonempty realization C ′ ∈ Sk−1, and C ⊆ C ′ × R.

By the induction hypothesis C ′ is a cell, and Pk is delineable over C ′. Let ζ1, ζ2, . . . , ζm be
the functions delineating the roots of polynomials in Pk in C ′ × R as in Proposition 3.5.

The cells of our decomposition making up C ′ × R are the graphs of the ζi and the sectors
into which these graphs divide C ′ ×R. C is a union of some of these cells, and we need to
prove it is just a single cell. Let x ∈ C ′ be arbitrary. The cells divide {x}×R into the points
(x, ζi(x)) and the open intervals between them. By Thom’s Lemma Reali(σ, {x}×R) must
be a point or an open interval.

If Reali(σ, {x} × R) is a point, then C is the graph of some ζi. If Reali(σ, {x} × R) is
an open interval, then C must contain a sector. If the graph of ζi is one of the graphs
bounding this sector, then there is some P ∈ Pk that has no roots in this sector, while
it is 0 on the graph of ζi. Hence the graph of ζi is not part of C. That means that C
cannot contain multiple adjacent sectors either, so C is a single sector. In either case C is a
single cell of this decomposition, which finishes the proof of the first part of the proposition.

To continue with the statement about the closure, let π1 be the projection Rk → Rk−1 ob-
tained by omitting the last coordinate. Then as π1(C) = C ′ we find that π1(C) is contained
in C ′, so C ⊆ C ′ × R. By the induction hypothesis C ′ is a union of C ′ with cells of lower
dimension. Let D be one of these lower-dimensional cells. Using the Generalized Thom’s
Lemma we find that C intersects the cylinder D×R in Reali(σ,D×R), which is a union of
cells. Let E be such a cell. If E is a graph, we have dim(E) = dim(D) < dim(C ′) ≤ dim(C).
If E is a sector, then dim(E) = dim(D)+1 < dim(C ′)+1, and as E is part of the boundary
of C, C must also be a sector, so dim(C) = dim(C ′)+1. So E has lower dimension than C.

By using the Generalized Thom’s Lemma again we find that C∩C ′×R = Reali(σ,C ′×R).
If C is a graph, this is just C, and if C is a sector, then this is the union of C with the graphs
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that bound it, which each have dimension dim(C) − 1. As C is the union of C ∩ C ′ × R
with all the intersections C ∩D × R, this finishes the proof.

Theorem 3.19. Let S be a semialgebraic set defined by sign conditions on polynomials in
the finite set P ⊆ R[X1, X2, . . . , Xk]. Then there exists a linear automorphism u : Rk → Rk

and a stratifying family P∗ for {P ◦ u : P ∈ P}.

Proof. We use induction on k. For k = 1 we take P1 as the closure of P under taking
derivatives of nonconstant polynomials. This clearly gives a stratifying family for P , so we
can just take the identity morphism for u. Now suppose the result holds for k − 1. We
first prove that there is a linear automorphism that makes P quasi-monic.

Let v be an linear automorphism of the type (x1, x2, . . . , xk) 7→ (x1+a1xk, x2+a2xk, . . . , xk),
and let P ∈ P be arbitrary. Define Ph as the homogeneous polynomial that is the sum
of all monomials of P of degree deg(P ). Then P ◦ v = Ph(a1, a2, . . . , ak−1, 1)X

deg(P )
k + Q

where Q has Xk-degree lower than deg(P ). Let R =
∏

P∈P Ph. If we can choose the ai
such that R(a1, a2, . . . , ak−1, 1) is nonzero, then all the P ◦ v are quasi-monic in Xk. But
we can do this: As the nonzero homogeneous polynomial R cannot be divisible by the
inhomogeneous factor Xk−1, R(X1, X2, . . . , Xk−1, 1) is not the zero polynomial, so it does
not vanish everywhere.

So let v be a linear automorphism such that the P ◦ v are quasi-monic for P ∈ P . Let
Pk be the closure of the P ◦ v under taking nonzero derivatives with respect to Xk. By
the induction hypothesis we have a linear automorphism w and a stratifying family Q∗ for
{Q ◦ w : Q ∈ ProjXk

(Pk)}. Define w × e : Rk → Rk as the linear automorphism given by
(x1, x2, . . . , xk−1, xk) 7→ (w(x1, x2, . . . , xk−1), xk). Then taking Pi = Qi for all 1 ≤ i ≤ k−1
and u = (w × e) ◦ v gives an automorphism and stratifying family for {P ◦ u : P ∈ P} as
required.

We now continue by showing that we have a homeomorphism from any closed and bounded
semialgebraic set to a simplicial complex, which simplifies the structure even further.

Definition 3.20. For any non-negative integers p ≤ q, let a0, a1, . . . , ap be a set of p + 1
points in Rq that are affinely independent, that is, such that the ai − a0 are linearly
independent. Define the p-simplex s = [a0, a1, . . . , ap] as the p-dimensional set{

p∑
i=0

λiai :

p∑
i=0

λi = 1, λi ∈ R≥0 for all 0 ≤ i ≤ p

}
.

The ai are called the vertices of s. A face of s is any simplex with as its vertices a subset
of the ai; this includes the empty set, which is a simplex of dimension −1. We write f ⪯ s
if f is a face of s. We define the open simplex ṡ as the interior of s, which is{

p∑
i=0

λiai :

p∑
i=0

λi = 1, λi ∈ R>0 for all 0 ≤ i ≤ p

}
.
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The barycenter ba(s) of s is the arithmetic mean
∑p

i=0
xp
p+1

of its vertices, and is clearly

contained in ṡ. A simplicial complex K ⊆ Rk is a finite set of simplices in Rk that is closed
under taking faces, for which every two simplices in it intersect in a common face (which
may be the empty face).
The barycentric subdivision ba(K) of a simplicial complex K is the complex that consists
of all simplices of the form [ba(s0), ba(s1), . . . , ba(sp)] with s0 ≺ s1 ≺ . . . ≺ sp. Finally,
we define the polyhedron |K| spanned by K as the union of the simplices in K; note that
|ba(K)| = |K|.

Note that simplicial complexes are semialgebraic. In fact, the polynomials defining a
simplex are linear. We will now show that closed and bounded semialgebraic sets can be
triangulated: That is, they are homeomorphic to the polyhedron of a simplicial complex.

Theorem 3.21 (Triangulation). Let S ⊆ Rk be a closed and bounded semialgebraic set,
and let S1, . . . , Sm be semialgebraic subsets of S. Then there exists a simplicial complex K
and a semialgebraic homeomorphism f : |K| → S such that each Si is a union of images
of open simplices of K.

Proof. We use induction on k. For k = 1 we have that S is a disjoint union of the semial-
gebraic sets

⋂m
i=1 S

′
i with S

′
i ∈ {Si, S \ Si} for all i. Each of these intersections is a disjoint

union of points and open intervals, so we can also write S as a disjoint union of points
and open intervals. Now let K be the set consisting of the closures of these open inter-
vals and the singleton sets containing these points. We will proveK is a simplicial complex.

As S is closed and bounded, each of these intervals has two boundary points in R, and the
boundary points must be among the points included in the singletons. As we wrote S as a
disjoint union of the open intervals and points, the closures of the open intervals intersect
in at most a point, and if they do said point must be in one of the singletons. Hence K is a
simplicial complex. By definition |K| = S, so the identity map |K| → S is a triangulation
of S. Furthermore, each of the

⋂m
i=1 S

′
i is a union of open simplices of K, so the same holds

for each Si.

Now suppose that k > 1 and that the theorem holds for k − 1. We know that we can
make a linear change of variables such that S and the Si are unions of strata with respect
to a stratifying set of polynomials P . Taking the appropriate cylindrical decomposition, we
find that Rk−1 decomposes into cells Ci with continuous functions ζi,j : Ci → R describing
the roots of P above Ci. Let πk be the projection of Rk to Rk−1 forgetting the last co-
ordinate. As S is closed and bounded, so is πk(S), and πk(S) is the union of some of the Ci.

By the induction hypothesis we have a simpicial complex K and a homeomorphism f :
|K| → πk(S) such that each cell Ci ⊆ πk(S) is a union of images of open simplices of K.
So the cylinders Ci × R above these cells also split into cylinders f(ṡ) × R for simplices
s ∈ K. We will triangulate each cell above an f(ṡ) that lies in S individually; as each Si
is a union of such cells, the second part of the theorem will follow directly.
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We now first triangulate the parts S ∩ f(ṡ) × R with complexes Ls. Let s ∈ K be a
simplex [a0, a1, . . . , ap], and let ζ : f(ṡ) → R be one of the root functions such that the
graph of ζ lies in S. Using the Generalized Thom’s Lemma we can continuously extend
ζ to a function ζ defined on the closure of f(ṡ), which is f(s). Now define the new sim-
plex sζ = [b0, . . . , bp] with bi = (ai, ζ(ai)) and add this simplex and its faces to Ls. We
define the homeomorphism gζ from sζ to the graph of ζ by gζ(

∑p
i=0 λibi) = (y, ζ(y)) with

y = f(
∑p

i=0 λiai). Clearly this restricts to a homeomorphism from ṡζ to the graph of ζ.

Let ζ ′ : f(ṡ) → R be a different root function of which the graph is contained in S.
We do not want sζ = sζ′ , which means that we need to prove that one of the bi is differ-
ent from the corresponding b′i in sζ′ . This means proving ζ(ai) ̸= ζ ′(ai) for some i, but
unfortunately this does not have to be true. To solve this problem we replace K by the
barycentric subdivision ba(K). Each of the p-simplices in this subdivision that has part of
ṡ as its interior has ba(s) as a vertex, and as ba(s) ∈ ṡ we have ζ(ba(s)) = ζ(ba(s)), which
does differ for each ζ.

Of course the cells of the decomposition that are part of S do not need to just be graphs
of root functions ζ. As S is bounded, we have no unbounded cells, so all that remains are
the sectors between consecutive root functions on the same cylinder. So let ζ < ζ ′ be two
consecutive root functions above ṡ such that the sector between them is part of S. The
sector P between sζ = [b0, b1, . . . , bp] and sζ′ = [b′0, b

′
1, . . . , b

′
p] can be written as

P =

p⋃
i=0

∣∣[b0, b1, . . . , bi, b′i, b′i+1, . . . , b
′
p]
∣∣

(where we can ignore any cases where bi = b′i, as they occur as faces of other simplices
in this decomposition anyway). Taking all these simplices and their faces as part of our
complex Ks, what remains is defining our homeomorphism from P to the sector between
ζ and ζ ′. As S is closed, the graphs of ζ and ζ ′ are in S as well, so we have gζ and gζ′
already defined. Let x =

∑p
i=0 λiai ∈ s, y = f(x), and let µ, ν ≥ 0 with µ + ν = 1. We

define gP (y, µgζ(y) + νgζ′(y)) = (y, µζ(y) + νζ ′(y)); this agrees with gζ and gζ′ on sζ and

sζ′ , so this all glues together to a homeomorphism gs : |Ls| → S ∩ f(ṡ)× R

What remains is proving that the Ls and gs just defined can be glued together to form a
single simplicial complex and homeomorphism. For this we need to check that two sim-
plices can only intersect in a face, and that the homeomorphisms gs agree on intersections
of simplices. It is enough to check this for adjacent cylinders, which are always of the form
g(ṡ)×R and g(ṫ)×R with t a face of s. If ξ is a root function g(ṫ) → R, then tξ intersecting
|Ls| implies that tξ is in Ls. Indeed, the Generalized Thom’s Lemma gives us that there is
a root function ζ : g(ṫ) → R for which ζ restricts to ξ on g(ṫ), so tξ is a face of sζ and gt
and gs agree on tξ.
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That leaves the sectors; we know that the sectors themselves behave nicely, but as the
decomposition of sectors into simplices is dependent on a choice of vertex order, the sim-
plices might not be defined in the same way on the intersection. As K has finitely many
vertices, we can define some total order on the vertices of K and order the vertices of each
simplex of K according to that order. This forces the decompositions of sectors to agree
on intersections, so the homeomorphisms combine to the triangulation we wanted.

3.3 Algebraic Topology

One of our goals is estimating the number of connected components of certain semialgebraic
sets. In the context of semialgebraic sets it is more natural to look at semialgebraic
connected components instead, but as we will be looking over R, these are the same.

Definition 3.22. A semialgebraic set S is semialgebraically connected if it cannot be
written as a union of two nonempty disjoint semialgebraic open subsets of S.

Proposition 3.23. A semialgebraic set S ⊆ Rn is semialgebraically connected if and only
if it is connected.

Proof. If S is connected, then S is not a union of any two nonempty disjoint open subsets
of S, let alone open semialgebraic subsets, so then S is semialgebraically connected as well.
For the other direction, suppose S = O1 ∪ O2 with O1 and O2 open and disjoint. Let C
be a cell decomposition of Rn that is S-invariant, and let C be an arbitrary cell of the
decomposition. C is the disjoint union of C ∩ O1 and C ∩ O2, which are both open in C.
As each cell is connected by Lemma 1.13 C ∩ O1 or C ∩ O2 must be empty. Hence O1

and O2 are both unions of cells, which are semialgebraic. So if S is disconnected, it is also
semialgebraically disconnected, completing the proof.

We now need to introduce some elements of algebraic topology. We first introduce sim-
plicial homology, as this will allow us to define homology for certain semialgebraic sets
later. Let K be a simplicial complex. We write Kp for the set of p-simplices of K. Let
S = {a0, a1, . . . , ap} be the vertices of some p-simplex s. Any total ordering on S is uniquely
described by writing the vertices in ascending order. Call two such orderings equivalent
if the corresponding ascending sequences differ by an even permutation. We define an
oriented p-simplex as a p-simplex paired with an equivalence class of this relation, and
write s = [a0, . . . , ap] for the oriented p-simplex that corresponds to the regular simplex
s = [a0, . . . , ap] paired with the equivalence class of the ordering with a0 < a1 < . . . < ap,
and −s for the oriented p-simplex [a1, a0, a2, . . . , ap].

The p-th chain group of K, Chp(K), is then defined as the free abelian group generated by
the oriented p-simplices of K. As Kp is finite these have finite rank, and Chp(K) = 0 when
Kp = ∅. We also define Chp(K) as 0 for negative integers p. We then define the boundary
of a p-simplex as

δp([a0, . . . , ap]) =

p∑
i=0

(−1)i[a0, . . . , ai−1, âi, ai+1, . . . , ap]
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with âi meaning ai is omitted. This induces boundary homomorphisms δp : Chp(K) →
Chp−1(K) by setting δp(

∑k
i=1 nisi) =

∑k
i=1 niδp(si) for all ni ∈ Z, si ∈ Kp. Now note that

for all p we have

δp−1(δp([a0, . . . , an])) =

p∑
i=0

(−1)iδp−1([a0, . . . , ai−1, âi, ai+1, . . . , ap]).

By definition of δp−1 this becomes a double summation of terms of the form
(−1)k[a0, . . . , âi, . . . , âj, . . . , ap], where k = i+ j if the second removed vertex preceeds the
first one in the original sequence, and k = i+j−1 otherwise. Each [a0, . . . , âi, . . . , âj, . . . , ap]
appears twice, once with ai removed first and once with aj removed first, so we find that
the summation is 0. So δp−1 ◦ δp is 0 on all oriented p-simplices, which means it is the zero
map. This means that the (Chp(K), δp) form a chain complex.

We define the subgroups Bp(K) = im(δp+1), whose elements are called p-boundaries,
and Zp(K) = ker(δp), whose elements are called p-cycles. It is quite easy to show that
δp ◦ δp+1 = 0 for all p, so each p-boundary is a p-cycle, which means we can define the p-th
homology group Hp(K) = Zp(K)/Bp(K). We define the p-th Betti number of K, written
bp(K), as the rank of Hp(K).

The Betti numbers provide information on topological properties of |K|. We care pri-
marily about the following result.

Proposition 3.24. Let K be a nonempty simplicial complex. Then b0(K) is the number
of connected components of |K|.

This is usually proven through cohomology, see for example [2][p. 216, Proposition 6.5]. We
will base our homology for semialgebraic sets on simplicial homology, which allows us to use
the 0-th homology group to find the number of connected components of semialgebraic sets.
Let S be a closed and bounded semialgebraic set. By Theorem 3.21 S is homeomorphic to
|K| for some simplicial complex K, so we make the following definition.

Definition 3.25. Let S ⊂ Rn be a closed and bounded semialgebraic set, and K a sim-
plicial complex such that |K| is homeomorphic to S. Then we define the homology groups
of S as Hp(S) = Hp(K) for all p ∈ Z.

This is well-defined, as we have the following result from algebraic topology:

Proposition 3.26. Let K,L be semialgebraically homeomorphic simplicial complexes in
Rk. Then Hp(K) is isomorphic to Hp(L) for all p ∈ Z.

This is for instance proven in [2][p. 225, Theorem 6.21]. While this gives us a homology for
semialgebraic sets that are both closed and bounded, we want to define it for more general
collections of sets. To do so, we first generalize this proposition.
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Definition 3.27. Let S, T ⊆ Rk be two semialgebraic sets, and let f, g : S → T be two
continuous maps. A semialgebraic homotopy from f to g is a semialgebraic continuous map
F : S × [0, 1] → T such that F (x, 0) = f(x) and F (x, 1) = g(x) for all x ∈ S. This gives
an equivalence relation on the continuous maps from S to T , which we denote f ∼ g. We
call S and T semialgebraically homotopy equivalent if there exist semialgebraic continuous
maps f : S → T and g : T → S such that f ◦ g ∼ IdT , g ◦ f ∼ IdS: this is an equivalence
relation on the semialgebraic subsets of Rk.

If f : S → T is a semialgebraic homeomorphism, then f and f−1 induce a semialgebraic
homotopy equivalence between S and T , so this is a more general definition. With the
more general definition also comes a more general proposition:

Proposition 3.28. Let S, T ⊆ Rk be closed and bounded semialgebraic sets which are
semialgebraically homotopy equivalent. Then Hp(S) is isomorphic to Hp(T ) for all p ∈ Z.

This is [2][p. 242, Theorem 6.42], and is effectively proven by showing that Hp is a functor
from the category of simplicial complexes (with as arrows continuous maps between their
polyhedra) to the category of abelian groups which sends homotopic maps to the same
group homomorphism. We mostly concern ourselves with a specific type of homotopy
equivalence:

Definition 3.29. Let U ⊆ S ⊆ Rk be two semialgebraic sets, and let U be closed. A
semialgebraic deformation retraction from S to U is a continuous semialgebraic function
γ : S × [0, 1] → S such that

• γ(s, 0) = s for all s ∈ S,

• γ(u, t) = u for all u ∈ U , t ∈ [0, 1],

• γ(s, 1) ∈ U for all s ∈ S.

Proposition 3.30. Let U ⊆ S ⊂ Rk be semialgebraic sets such that there exists a semial-
gebraic deformation retraction from S to U . Then S and U are semialgebraically homotopy
equivalent.

Proof. If γ is a semialgebraic deformation retraction from S to U , let f : S → U be the
map defined by s 7→ γ(s, 1). It is not hard to see that f , together with the inclusion map
ι : U → S, forms a semialgebraic homotopy equivalence between S and U .

We also need the following result.

Proposition 3.31. Let S ⊆ Rk, T ⊆ Rm be two semialgebraic sets, and let f : S → T be
a semialgebraic continuous function. There exists a partition of T into finitely many sets
T1, T2, . . . , Tr such that for each i ∈ {1, 2, . . . , r} and x ∈ Ti there exists a semialgebraic
homeomorphism θx : Ti × f−1(x) → f−1(Ti) such that f ◦ θx is the projection map Ti ×
f−1(x) → Ti. Furthermore, the θx can be taken such that θx(x, y) = y for all y ∈ f−1(x).
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Proof. This proposition, except for the last statement, is a weaker version of [2][p. 201, The-
orem 5.46]. To prove the last statement, first note that θ−1

x (f−1(x)) = {x}×f−1(x). Hence
by composing θ−1

x |f−1(x) with the projection to f−1(x) we find a semialgebraic homeomor-
phism ξx : f−1(x) → f−1(x). Now consider the map θ′x sending (t, y) ∈ Ti × f−1(x) to
θx(t, ξx(y)) ∈ f−1(Ti): As θx and ξx are semialgebraic homeomorphisms, so is θ′x. We find
that f(θ′x(t, y)) = f(θx(t, ξx(y))) = t for all (t, y) ∈ Ti × f−1(x) by definition of θx, so
θ′x also satisfies the requirements the proposition has on θx. As θ′x(x, y) = θx(x, ξx(y)) =
θx(θ

−1
x (y)) = y for all y ∈ f−1(x), this proves the final statement.

We will primarily use the following consequence:

Proposition 3.32. Let S ⊆ Rk be a semialgebraic set and let f : S → (0,∞) be a
continuous semialgebraic function. Then there exists a t ∈ R>0 such that for each t′ ∈ (0, t]
there exists a semialgebraic deformation retraction from S to f−1([t′,∞)).

Proof. Let T1, T2, . . . , Tr be the pieces of a decomposition of R>0 as in Proposition 3.31.
Clearly one of these Ti contains an interval of the form (0, u): Let A be this Ti, and define
t = u

2
. Then (0, t] ⊆ A. Now let t′ ∈ (0, t] be given. By Proposition 3.31 there exists a

semialgebraic homeomorphism θt′ : A × f−1(t′) → f−1(A) such that θt′(t
′, y) = y for all

y ∈ f−1(t′) and f(θt′(a, y)) = a for all (a, y) ∈ A × f−1(t′). Let π be the projection from
A× f−1(t′) to f−1(t′). We now define the following function S × [0, 1] → S:

γt′(x, s) =

{
x if f(x) ≥ t′

θt′((1− s)f(x) + st′, π(θ−1
t′ (x))) if f(x) ≤ t′

This is well-defined: If f(x) ≤ t′ then f(x) ∈ (0, t′] ⊆ A, so θ−1
t′ (x) exists, and the

cases agree when f(x) = t′, as then the second branch evaluates to θt′(t
′, π(θ−1

t′ (x))) =
θt′(θ

−1
t′ (x)) = x. It is also clear that γt′ is semialgebraic and continuous. We claim that γt′

is a deformation retraction from S to f−1([t′,∞)).

If x ∈ f−1([t′,∞)) we have f(x) ≥ t′, so γt′(x, s) = x for all s ∈ [0, 1]. If f(x) ≤ t′, then
γt′(x, 0) = θt′(f(x), π(θ

−1
t′ (x))), but θ−1

t′ (x) = (f(x), π(θ−1
t′ (x))), so this is just x. Hence

γt′(x, 0) = x for all x ∈ S. If f(x) ≤ t′ we also find that γt′(x, 1) = θt′(t
′, π(θ−1

t′ (x)) ∈
f−1(t′), so f(γt′(x, 1)) = t′. So γt′(x, 1) ∈ f−1([t′,∞)) for all x ∈ S. Hence γt′ is indeed a
deformation retraction from S to f−1([t′,∞)), completing the proof.

Using Proposition 3.32 we deduce the following result, which allows us to expand the
definition of homology to arbitrary closed semialgebraic sets:

Definition 3.33. We define Bk(0, r) as the closed ball of radius r around 0 in Rk.

Proposition 3.34. Let S ⊆ Rk be a closed semialgebraic set. Define Sr = S ∩Bk(0, r) for
all r > 0,. Then there exists a t > 0 in R such that for all t′ ≥ t there exists a semialgebraic
deformation retraction from S to St′.
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Proof. Consider the function f : S \ {0} → (0,∞) defined by f(x) = 1
|x| . This is clearly

semialgebraic and continuous, and Sr \ {0} = f−1([1
r
,∞)), so by Proposition 3.32 there

exists a t > 0 such that there exist deformation retractions from S \ {0} to St′ \ {0} for all
t′ ∈ (0, t]. If 0 /∈ S, then this is enough. If 0 ∈ S, then we also find 0 ∈ Sr for all r > 0, so
these deformation retractions can be extended to deformation retractions from S to St′ by
setting γ(0, s) = 0 for all s ∈ [0, 1].

Let S ⊆ Rk be a closed semialgebraic set. Then the Sr = S ∩ Bk(0, r) are all closed and
bounded semialgebraic sets. The existence of the semialgebraic deformation retractions
from Proposition 3.34 implies that all St′ with t′ ≥ t are homotopy equivalent to S, so
also to each other. This means that the St′ must all have isomorphic homology groups by
Proposition 3.28. As the Sr form an increasing family of subsets of S with union S of which
the homology eventually grows constant (up to isomorphism), and there exist deformation
retractions from S to each St′ with t

′ ≥ t, this motivates the following definition.

Definition 3.35. Let S ⊆ Rk be a closed semialgebraic set, and let t > 0 be such that
for any t′ ≥ t there is a semialgebraic deformation retraction from S to St′ = S ∩Bk(0, t

′).
We define the homology groups of S as Hp(S) = Hp(St).

Note that these groups are only defined up to isomorphism: If we want specific groups
instead, we can always let s be the supremum of such t, and either take the homology
groups of Ss/2 if s is finite, or those of S1 if s = ∞. We also find the expected generalization
of Proposition 3.28:

Corollary 3.36. Let T ⊆ S ⊆ Rk be closed semialgebraic sets which are semialgebraically
homotopy equivalent. Then Hp(S) is isomorphic to Hp(T ) for all p ∈ Z.

Proof. This immediately follows from Proposition 3.28 using the definition of homology
for closed semialgebraic sets: Let t, t′ ∈ R>0 be such that by definition Hp(S) = Hp(St)
and Hp(T ) = Hp(Tt′). As we have deformation retractions from S to T , from S to St and
from T to Tt′ , it follows that St and Tt′ are homotopy equivalent. Proposition 3.28 implies
that the Hp(S) = Hp(St) are isomorphic to the Hp(T ) = Hp(Tt′).

We will now define homology for realizations of sign conditions in a similar way: Let σ be a
sign condition on a finite subset P of R[X1, . . . , Xk]. If P is empty, then Reali(σ,Rk) = Rk,
which is closed and hence already has a homology, so we may assume P is nonempty. Let
Realit(σ) be the set of x = (x1, x2, . . . , xk) ∈ Rk satisfying

|x| ≤ 1

t
∧

∧
P∈σ−1(0)

P (x) = 0 ∧
∧

P∈σ−1(1)

P (x) ≥ t ∧
∧

P∈σ−1(−1)

P (x) ≤ −t.

Clearly Realit(σ) is a semialgebraic closed and bounded subset of Rk, so we have already
defined homology groups for Realit(σ).

Proposition 3.37. Let σ be a sign condition on a finite nonempty subset of R[X1, X2, . . . , Xk].
Then there exists a t ∈ R>0 such that for all t′ ∈ (0, t] there exists a semialgebraic defor-
mation retraction from Reali(σ,Rk) to Realit′(σ).
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Proof. Consider the semialgebraic continuous function f : Reali(σ,Rk) → R>0 sending
x = (x1, . . . , xk) to min( 1

|x| ,minP∈σ−1({−1,1}) |P (x1, . . . , xk)|). As P is nonempty, this is well-

defined at 0. Note that f−1([t,∞)) = Realit(σ) for all t > 0. Proposition 3.32 then gives
that there exists a t ∈ R>0 such that for any t′ ∈ (0, t] we have a semialgebraic deformation
retraction from Reali(σ,Rk) to Reali(σ,Rk) ∩ g−1([t′,∞)) = Realit′(σ) as required.

This shows the Realit(σ) are similar in nature to the St: They form an increasing family
of closed and bounded semialgebraic sets with union Reali(σ,Rk), of which the homology
grows constant up to isomorphism as t approaches 0, which all receive a deformation
retraction from Reali(σ,Rk). This motivates the following definition:

Definition 3.38. Let σ be a sign condition on a finite nonempty subset of R[X1, X2, . . . , Xk],
and let t ∈ R>0 be such that for all t′ ∈ (0, t] there exists a deformation retraction from
Reali(σ,Rk) to Realit′(σ). We define the homology groups of σ as Hp(Reali(σ,Rk)) =
Hp(Realit(σ)).

When S is either a closed semialgebraic set or the realization of a sign condition, we also
define the Betti number bi(S) as the rank of Hi(S) for all i ∈ Z. A well-known result from
algebraic topology is the Mayer-Vietoris Theorem, which in simplicial homology looks like
this:

Theorem 3.39 (Mayer-Vietoris). Let K1, K2 be two subcomplexes of a simplicial complex
K. Then there exists an exact sequence

· · · → Hn(K1 ∩K2) → Hn(K1)⊕Hn(K2) → Hn(K1 ∪K2) → Hn−1(K1 ∩K2) → · · · .

We can extract some bounds on Betti numbers from this sequence:

Proposition 3.40. Let S1, S2 be two closed semialgebraic sets. Then the following inequal-
ities hold for all i ∈ Z:

bi(S1) + bi(S2) ≤ bi(S1 ∩ S2) + bi(S1 ∪ S2),

bi(S1 ∩ S2) ≤ bi(S1) + bi(S2) + bi+1(S1 ∪ S2),

bi(S1 ∪ S2) ≤ bi(S1) + bi(S2) + bi−1(S1 ∩ S2).

Proof. It follows from the definition of the homology of a closed semialgebraic set that
we only need to prove the case where S1 and S2 are bounded. By Theorem 3.21 we can
find simplicial complexes K,K1, K2 such that K1 and K2 are subcomplexes of K, |Ki| is
homeomorphic to Si for i = 1, 2, and |K1 ∩ K2| is homeomorphic to S1 ∩ S2. So up to
isomorphism we have Hp(Si) = Hp(Ki) for i = 1, 2, Hp(S1 ∩ S2) = Hp(K1 ∩ K2), and
Hp(S1 ∪ S2) = Hp(K1 ∪ K2), so the Mayer-Vietoris sequence for K1 and K2 induces one
for S1 and S2. The exactness of this Mayer-Vietoris sequence implies that the rank of any
group in the sequence is at most the sum of that of the neighboring groups. As that is
exactly what the inequalities we want to prove express, we are done.

We will also need the Oleinik-Petrovski/Thom/Milner bound.
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Theorem 3.41. Let S ⊆ Rk be an algebraic set defined by polynomials of degree at most
d. Let b(S) be the sum of the Betti numbers of S. Then

b(S) ≤ d(2d− 1)k−1.

A proof is given in [2][p. 273, Theorem 7.25].

We are going to prove Theorem 7.32 from [2]:

Theorem 3.42. Let P ,Q ⊆ R[X1, X2, . . . , Xk] with |P| ≤ s, max{deg(P ) : P ∈ P} ≤ d
and dim(Z(Q)) = k′. For each sign condition σ for P, let bi(σ) be the i-th Betti number of
the realization Reali(σ, Z(Q)) of σ over the zero set Z(Q) = {x ∈ Rk : Q(x) = 0 for all Q ∈
Q}. Finally, let bi(Q,P) be the sum of the bi(σ). Then we have

bi(Q,P) ≤
k′−i∑
i=0

(
s

i

)
4id(2d− 1)k−1

for all i.

Proof. To prove this theorem, we first need a proposition allowing us to shift between Betti
numbers of intersections and unions. Let S1, S2, . . . , Ss be closed semialgebraic subsets of
some closed semialgebraic set T ⊆ Rk of dimension k′.

Proposition 3.43. For each 0 ≤ i ≤ k′, we have

bi

(
s⋃
j=1

Sj

)
≤

i+1∑
j=1

∑
J⊆{1,2,...,s}

|J |=j

bi+1−j

(⋂
j∈J

Sj

)
,

bi

(
s⋂
j=1

Sj

)
≤

k′−i∑
j=0

(
s

j

)
bk′(T ) +

∑
J⊆{1,2,...,s}

|J |=j

bi+j−1

(⋃
j∈J

Sj

)
.

(8)

(9)

Proof. We first prove (8) by induction on s. For s = 1 the inequality becomes bi(S1) ≤
bi(S1), which trivially holds. Now suppose the inequality holds for s−1. We use Proposition

3.40 to get bi

(⋃s
j=1 Sj

)
≤ bi

(⋃s−1
j=1 Sj

)
+ bi(Ss) + bi−1

(⋃s−1
j=1 Sj ∩ Ss

)
. Applying the

induction hypothesis to
⋃s−1
j=1 Sj gives

bi

(
s−1⋃
j=1

Sj

)
≤

i+1∑
j=1

∑
J⊆{1,2,...,s−1}

|J |=j

bi+1−j

(⋂
j∈J

Sj

)
.

Similarly, applying the induction hypothesis to
⋃s−1
j=1(Sj ∩ Ss) we find that

bi−1

(
s−1⋃
j=1

(Sj ∩ Ss)

)
≤

i∑
j=1

∑
J⊆{1,2,...,s−1}

|J |=j

bi−j

 ⋂
j∈J∪{s}

Sj

 .
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Adding these two inequalities together, then adding the term bi(Ss) (which is still missing
on the right as J is always nonempty) gives the required inequality for s.

Now we prove (9), again using induction on s. For s = 1 and i < k′ the inequality
becomes bi(S1) ≤ 2bk′(T ) + bi(S1), which clearly holds. For i = k′ we need to prove
bk′(S1) ≤ bk′(T ). If dim(S1) < k′, then bk′(S1) = 0, so the inequality is trivial. Otherwise
let V be the closure of T \ S1. Then V ∩ S1 is the boundary of S1, which has dimension
less than k′ by Proposition 1.17. This implies that bk′(V ∩ S1) = 0, so using Proposition
3.40 we find that

bk′(S1) + bk′(V ) ≤ bk′(S1 ∪ V ) + bk′(S1 ∩ V ) = bk′(T ) + 0,

so clearly bk′(S1) ≤ bk′(T ). The induction step proceeds similarly to that of the other

part of the lemma as bi

(⋂s
j=1 Sj

)
≤ bi

(⋂s−1
j=1 Sj

)
+ bi(Ss) + bi+1

(⋂s−1
j=1 Sj ∪ Ss

)
; the main

difference is that we also need to deal with the terms that are multiples of bk′(T ). The

upper bound for bi

(⋂s−1
j=1 Sj

)
gets an extra term

∑k′−i
j=0

(
s−1
j

)
bk′(T ) while the upper bound

for bi+1

(⋂s−1
j=1(Sj ∪ Ss)

)
gets a term

∑k′−i−1
j=0

(
s−1
j

)
bk′(T ) =

∑k′−i
j=1

(
s−1
j−1

)
bk′(T ), and adding

these together gives
∑k′−i

j=0

(
s
j

)
bk′(T ) as required, completing the proof.

We now return to the setting of Theorem 3.42. Let σ be any sign condition on P . We
use Proposition 3.32 on the function fσ : Reali(σ, Z(Q)) → (0,∞) defined by f(x) =
minP∈σ−1({−1,1}) |P (x1, . . . , xk)|: This gives that there exists a tσ such that for all t ∈ (0, tσ]
there exists a semialgebraic deformation retraction from Reali(σ, Z(Q)) to f−1

σ ([t,∞)).

Similarly, by using Proposition 3.37 on the sign condition τ = σ∪{(Q, 0) : Q ∈ Q} we find
a uσ such that for all t ∈ (0, uσ] there exists a semialgebraic deformation retraction from
Reali(τ,Rk) = Reali(σ, Z(Q)) to Realit(τ) = Realit(σ)∩Z(Q): In particular the homology
of Reali(σ, Z(Q)) is defined as that of Realiuσ(σ) ∩ Z(Q), so bi(σ) = bi(Realit(σ) ∩ Z(Q))
for all t ≤ uσ.

Let u be the minimum of the tσ and uσ over all sign conditions σ on P . Write P =
{P1, P2, . . . , Ps}, and define

Sj = {x ∈ Z(Q) : Pj(x)
2(Pj(x)

2 − u2) ≥ 0}

for each 1 ≤ j ≤ s. Let S be the intersection of the Sj. We will show S has the bi(Q,P)
as its Betti numbers, and then bound the bi(S).

Lemma 3.44. For all i
bi(S) = bi(Q,P).

Proof. S is the union of the disjoint, closed, and semialgebraic sets f−1
σ ([u,∞)) as σ varies

over all sign conditions on P . By using induction and Proposition 3.40 we find that the Betti
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numbers of a union of disjoint closed semialgebraic sets are the sums of the corresponding
Betti numbers of those sets, so bi(S) =

∑
σ bi(f

−1
σ ([u,∞))). As both the Realiu(σ)∩Z(Q)

and f−1
σ ([u,∞)) are closed semialgebraic deformation retracts of Reali(σ, Z(Q)), they are

semialgebraically homotopy equivalent, so it follows from Proposition 3.36 that they have
isomorphic homology groups, so they also have the same Betti numbers. This implies that

bi(S) =
∑
σ

bi(f
−1
σ ([u,∞))) =

∑
σ

bi(Realiu(σ) ∩ Z(Q)) =
∑
σ

bi(σ) = bi(Q,P)

as required.

We need some intermediate sets to bound the bi(S). Define

Tj = {x ∈ Z(Q) : Pj(x)
2(Pj(x)

2 − u2) = 0}.

For nonempty J ⊆ {1, 2, . . . , s} define VJ =
⋃
j∈J Tj and WJ =

⋃
j∈J Sj.

Lemma 3.45. For all i ∈ Z

bi(VJ) ≤ (4|J | − 1)d(2d− 1)k−1.

Proof. Using (8) on the Tj of which VJ is the union, we get

bi(VJ) ≤
i+1∑
j=1

∑
K⊆J
|K|=j

bi+1−j

(⋂
k∈K

Tk

)
.

Clearly we can bound this from above by

∑
K⊆J

b

(⋂
k∈K

Tk

)

writing b(Z) for the sum of all Betti numbers of Z. For each ℓ ≤ |J | this summation
includes

(|J |
ℓ

)
terms corresponding to ℓ-ary intersections of Tk. Each Tk splits as a disjoint

union of the three pieces where Pk(X) = 0, Pk(X) = u, and Pk(X) = −u, so these
intersections split as disjoint unions of 3ℓ algebraic sets. Using Theorem 3.41 we get that
for each of these algebraic sets the sum of its Betti numbers is at most d(2d − 1)k−1, so
their disjoint union has a sum of Betti numbers of at most 3ℓd(2d − 1)k−1. Therefore we
have

bi(VJ) ≤
∑
K⊆J

b

(⋂
k∈K

Tk

)
≤

|J |∑
j=1

(
|J |
j

)
3jd(2d− 1)k−1 ≤ (4|J | − 1)d(2d− 1)k−1.
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Lemma 3.46. For all i ∈ Z we have

bi(WJ) ≤ (4|J | − 1)d(2d− 1)k−1 + bi(Z(Q)).

Proof. Consider the set

FJ = {x ∈ Z(Q) :
∧
j∈J

Pj(x)
2(Pj(x)

2 − u2) ≤ 0 ∨
∨
j∈J

Pj(x)
2(Pj(x)

2 − u2) = 0}.

We see that FJ ∪WJ = Z(Q) and FJ ∩WJ = VJ , so Proposition 3.40 gives that

bi(WJ) ≤ bi(WJ) + bi(FJ) ≤ bi(FJ ∪WJ) + bi(FJ ∩WJ) = bi(Z(Q)) + bi(VJ)

and the required inequality now follows from Lemma 3.45.

To finish the proof of Theorem 3.42, we now prove that bi(S) ≤
∑k′−i

i=0 d(2d − 1)k−1
(
s
i

)
4i.

Using (9) on the Si gives that

bi(S) ≤
k′−i∑
j=0

(
s

j

)
bk′(Z(Q)) +

∑
J⊆{1,2,...,s}

|J |=j

bi+j−1

(⋃
j∈J

Sj

)

=
k′−i∑
j=0

(
s

j

)
bk′(Z(Q)) +

∑
J⊆{1,2,...,s}

|J |=j

bi+j−1(Wj).

By Lemma 3.46 this is at most

k′−i∑
j=0

(
s

j

)
(bk′(Z(Q)) + (4j − 1)d(2d− 1)k−1 + bi+j−1(Z(Q))).

As i+ j − 1 < k′, by Theorem 3.41 we have that

bk′(Z(Q)) + bi+j−1(Z(Q)) ≤ b(Z(Q)) ≤ d(2d− 1)k−1.

Together with Lemma 3.44 this gives us that

bi(Q,P) = bi(S) ≤
k′−i∑
j=0

(
s

j

)
((4j − 1)d(2d− 1)k−1 + d(2d− 1)k−1) =

k′−i∑
j=0

(
s

j

)
4jd(2d− 1)k−1

completing the proof.

Theorem 3.42 is one of two key results we need to construct our bound for the Barroero-
Widmer constant. For the other result, we first need some way to measure the complexity
of semialgebraic sets.
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Definition 3.47. The language LR of ordered fields using coefficients from R consists of
the following formulas:

• All formulas of the form P (X1, X2, . . . , Xn) = 0 or P (X1, X2, . . . , Xn) > 0 with P
a polynomial in R[X1, X2, . . . , Xn] and n a non-negative integer; these are known as
the atoms.

• If Φ and Ψ are formulas in LR, then so are ¬Φ, Φ∨Ψ, Φ∧Ψ, Φ =⇒ Ψ, and Φ ⇔ Ψ.

• If Φ is a formula in LR with free variable X, then ∃XΦ(X) and ∀XΦ(X) are also
formulas in LR.

Definition 3.48. We define a (semialgebraic) description to be quantifier-free formula
Φ(X1, X2, . . . , Xr) in the language LR. For a semialgebraic description Φ(X1, X2, . . . , Xr)
we define Reali(Φ,Rr) to be the set
{x ∈ Rr : Φ(x)}. We define pΦ as the number of unique polynomials Pi appearing in Φ,
and dΦ as the maximum of the degrees of the Pi.

If A is a semialgebraic subset of Rr, we call a formula Φ a semialgebraic description of
A if it is a semialgebraic description with Reali(Φ,Rr) = A. If we are looking at a fixed
semialgebraic description ΦA of A, we usually write pA and dA instead of pΦA

and dΦA
.

From the definition of a semialgebraic set (Definition 1.4) it is clear that every semialge-
braic set has a description. Recall that for any two semialgebraic descriptions Φ and Ω we
have that Φ is equivalent to Ω over R if and only if Reali(Φ,Rr) = Reali(Ω,Rr).

While semialgebraic descriptions are easy to modify for simple set operations, we encounter
trouble when taking projections. Projections introduce existential quantifiers, which are
not allowed in descriptions. However, we can still deal with this at the cost of increas-
ing the number of polynomials and their degrees exponentially in terms of the number of
eliminated quantifiers. This is where the second key result comes in:

Theorem 3.49 (Local Quantifier Elimination).
Let Ω(y1, . . . , yℓ) = (Q1x

[1]) . . . (Qνx
[ν])Φ(x1, . . . , xk, y1, . . . , yℓ) be a first-order formula

where Φ is a semialgebraic description, each Qi a quantifier, each x[i] a block of ki variables,
and k =

∑ν
i=1 ki. Let A = Reali(Ω,Rℓ). Then there exists a description Ω′ of A with

pΩ′ ≤ p
∏ν

i=1(ki+1)
Ω d

ℓ
∏ν

i=1O(ki)
Ω and dΩ′ ≤ d

∏ν
i=1O(ki)

Ω .

Proof. We use the Local Quantifier Elimination algorithm [2, Algorithm 14.28] on Ω. This
gives an output formula Ω′ which the algorithm guarantees to be a semialgebraic description
equivalent to Ω over R. As Ω′ is equivalent to Ω over R, we find that Reali(Ω′,Rℓ) = A,
and the complexity discussion afterwards proves the bounds on pΩ′ and dΩ′ .

As the Local Quantifier Elimination algorithm requires a significant amount of further
theory to fully understand, we do not explain it in detail. The main idea is this: Similar to
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how you can reduce the problem of cell decomposition step by step, reducing the dimension
by one each step, like we do in the proof of Theorem 3.2, this algorithm reduces the
problem one quantifier block at a time. For larger blocks this can be significantly more
efficient. This is already accomplished in the Quantifier Elimination algorithm found at
[2][p. 591, Algorithm 14.21]. However, Local Quantifier Elimination then uses the structure
of Ω in building the new formula rather than giving a fixed structure to the output, which
allows it to reduce the exponent of pΩ in the bound for pΩ′ by a factor ℓ+ 1.
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4 Asymptotic bounds

We now return to the central theorem of this thesis: The Barroero-Widmer Theorem.

Theorem BW-1.3. Fix an o-minimal structure D. Let m and n be positive integers, let
Λ ⊂ Rn be a lattice with successive minima λ1, . . . , λn, and let Z ⊆ Rm+n be a definable
family of which the fibers ZT are bounded for all T ∈ Rm. Then there exists a constant
cZ ∈ R depending only on Z such that∣∣∣∣|ZT ∩ Λ| − Voln(ZT )

d(Λ)

∣∣∣∣ ≤ cZ

n−1∑
j=0

Vj(ZT )∏j
i=1 λi

.

In this section, we are going to give an explicit asymptotic bound for the constant cZ in
the case that D is the structure of semialgebraic sets. Recall from (7) that in the case
where the fibers ZT are closed we can set

cZ = max
0≤j≤n−1

Mn−j
Z

(
n

j

)(
2 · j3/2 · n!2n

)j
BZ

Bj ·Bj
n

with Bj respectively Bn the volume of the j- respectively n-dimensional unit sphere, MZ

a constant obtained from the proof of Lemma BW-4.1, and BZ a constant obtained from
the proof of Proposition BW-6.1. Furthermore, recall that in the general case we have
cZ = cC(Z) + cB(Z), with C(Z) the fiberwise closure and B(Z) the fiberwise boundary
of Z. To give an asymptotic bound for cZ in the general case, we will therefore look to
boundMZ and BZ in terms of Z, and then replace Z with C(Z) and B(Z) in these bounds.

From now on, assume we have been given a semialgebraic description of Z. We will
construct bounds on MZ , BZ and cZ in terms of pZ , dZ , m and n, which will result in the
following theorem:

Theorem 4.1. The Barroero-Widmer constant cZ is at most

p
O(n4)
Z max(dZ , 2)

O(n(n3+mn)3).

Proof. This bound will be established by using the description of Z to get descriptions of
various intermediate sets. As in describing the very first of these sets (eitherB(Z) and C(Z)
or V , depending on whether or not Z has closed fibers) we have to add various quadratic
polynomials, in the following we will assume that dZ ≥ 2 for simplicity of notation.
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4.1 Bounding MZ

To get a bound for MZ , we first recall that we identify an endomorphism ψ ∈ End(Rn)
with the n2 coefficients of the matrix representing it with respect to the standard basis.
Recall the set W = {(ψ, T, x) ∈ Rn2+m+n : x ∈ ψ(ZT )}, which is an n-fold projection of
V = {(ψ, T, x, y) ∈ Rn2+m+2n : x = ψ(y), y ∈ ZT}. From the proof of Lemma BW-4.1 we
know that for MZ we can take an upper bound for the number of connected components
of all fibers W(ψ,T,x1,...,xn−1). Hence the following proposition gives an upper bound for MZ :

Proposition 4.2. Each fiber of the form W(ψ,T,x1,...,xn−1) has at most

(pZ + n)n+1d
O(n3+mn)
Z connected components.

Proof. We first construct a semialgebraic description of W . By assumption we have a
description ΦZ of Z. Then we can define a description ΦV of V as

ΦV (ψ, T, x, y) = ΦZ(T, y) ∧
n∧
i=1

(
xi −

n∑
j=1

ψijyj = 0

)
.

Clearly this description satisfies pV = pZ + n and dV = max(dZ , 2). To get from V to W
we use Local Quantifier Elimination (Theorem 3.49) to give us a description of W with

pW ≤ (pZ + n)n+1d
(n2+n+m)O(n)
Z = (pZ + n)n+1d

O(n3+mn)
Z ,

dW ≤ d
O(n)
Z .

(10)

(11)

To finish the proof we need the following lemma.

Lemma 4.3. Let A be a semialgebraic subset of R with description ΦA. Then A has at
most pAdA + 1 connected components.

Proof. Let N be the set of roots of the nonzero polynomials used in ΦA. Then clearly
|N | ≤ pAdA. As these polynomials are continuous, they cannot change sign except at these
roots. The sign of the zero polynomial is constant, so the signs of all the polynomials are
constant on each of the at most pAdA + 1 open intervals that R \ N is split into by the
roots. In particular the truth of ΦA will not change on these intervals. As it will not change
on the pAdA roots in N either, we find that A is the union of some of these intervals and
roots, of which there are at most 2pAdA+1. However, if consecutive pieces are chosen, they
will belong to the same connected component. Hence A has at most pAdA + 1 connected
components.

This bound is sharp, as equality holds in the case where |N | = pAdA and A = R \N . By
substituting the parameters into the defining polynomials, our description of W is actually
a description of each fiber W(ψ,T,x1,...,xn−1) as well. Using the lemma on the fibers shows
that each fiber has at most

pWdW + 1 ≤ (pZ + n)n+1d
O(n3+mn)+O(n)
Z + 1 = (pZ + n)n+1d

O(n3+mn)
Z

connected components as required.
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4.2 Bounding BZ

Getting a bound for BZ takes some additional steps, but the central principle remains the
same: We construct descriptions for the various sets involved in the proof of Proposition
BW-6.1.

Lemma 4.4. We can take a value of BZ that is at most

nn(pZ + n)8n
3

d
O((n3+mn)3)
Z .

Proof. We start with S = {(ϕ, T, x) ∈ Rn2+m+n : ϕ ∈ On(R), x ∈ ϕ(ZT )}. This is simply
W with the requirement that MϕM

⊤
ϕ = In, with Mϕ the matrix (ϕij)1≤i,j≤n. This can be

expressed in n(n+1)
2

quadratic equations as this is an equation of symmetric matrices, and

taking the conjunction of ΦW with them gives a description ΦS of S with pS = pW + n(n+1)
2

and dS = dW . As n(n+1)
2

< 2n(n+1) ≤ d
O(n3+mn)
Z and d

O(n3+mn)
Z = 2 ·dO(n3+mn)

Z , we find using
(10) and (11) that

pS ≤ (pZ + n)n+1d
O(n3+mn)
Z + d

O(n3+mn)
Z = (pZ + n)n+1d

O(n3+mn)
Z ,

dS = dW ≤ d
O(n)
Z .

(12)

(13)

We next move to the graphs of the definable choice functions fj : πn−j(S) → Rn−j.

Lemma 4.5. We can construct a semialgebraic description of Γ(fj) with

pΓ(fj) ≤ np
8(n−1)
S d

(n2+m+n)2O(n)
S ,

dΓ(fj) ≤ d
O(n)
S .

Proof. As discussed after the proof of Proposition 1.20, (ϕ, T, y) ∈ Γ(fj) is equivalent
to
∧

1≤i≤n−j
∨

1≤k≤5Φi,k(ϕ, T, y). However, this is not quite a description yet, as the Φi,k

contain quantifiers and refer to projections πi−1(S). To solve the latter problem, using Local
Quantifier Elimination to eliminate the projections gives a description of each πi−1(S) with

pπi−1(S) ≤ pi−1
S d

(n2+m+n+1−i)O(i)
S ≤ pn−1

S d
(n2+m+n)O(n)
S ,

dπi−1(S) ≤ d
O(i)
S ≤ d

O(n)
S

by Theorem 3.49. We then substitute these descriptions into the Φi,k to get equivalent
formulae Φ′

i,k.
Using basic logical manipulations we can move the remaining quantifiers in each Φ′

i,k to
the front to get equivalent formulas Φ′′

i,k. When k ∈ {1, 2, 4} this gives a single quantifier
∀z, for k = 3 we get the two quantifiers ∀z∃x, and for k = 5 we get the three quantifiers
∃uT∀z∃x. For example, we take

Φ′′
i,5 = ∃u∀z∃x : ((z − u ≥ 0 ∧ z /∈ πi−1(S)(ϕ,T,y1,...,yn−i))
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∨(z − u > 0 ∧ 2yn−i+1 − u− z > 0 ∧ z ∈ πi−1(S)(ϕ,T,y1,...,yn−i))

∨(2yn−i+1 − u− x < 0 ∧ z − x > 0 ∧ x /∈ πi−1(S)(ϕ,T,y1,...,yn−i))).

Local Quantifier Elimination can turn each of these formulas into a semialgebraic descrip-
tion Ψi,k. Each Φ′′

i,k includes either pπi−1(S) or 2pπi−1(S) equations and inequalities, as well as
a couple of linear equations and inequalities we can safely ignore as pπi−1(S) ≥ pS ≥ nn+1.
The worst case is clearly k = 5 as it has a triple quantifier, which means

pΨi,k
≤ (2pπi−1(S))

8d
(n2+m+n+1−i)O(1)
πi−1(S)

≤ p
8(n−1)
S d

(n2+m+n)2O(n)
S ,

dΨi,k
≤ d

O(1)
πi−1(S)

≤ d
O(n)
S .

As (ϕ, T, y) ∈ Γ(fj) is equivalent to
∧

1≤i≤n−j
∨

1≤k≤5Ψi,k(ϕ, T, y), this gives a description
of Γ(fj) with

pΓ(fj) ≤
∑

1≤i≤n−j,1≤k≤5

pΨi,k
,

dΓ(fj) ≤ max
1≤i≤n−j,1≤k≤5

dΨi,k
.

As the bounds we just found for the pΨi,k
and dΨi,k

are independent of i and k, these bounds
for pΓ(fj) and dΓ(fj) become

pΓ(fj) ≤ 5(n− j)p
8(n−1)
S d

(n2+m+n)2O(n)
S ≤ np

8(n−1)
S d

(n2+m+n)2O(n)
S ,

dΓ(fj) ≤ d
O(n)
S

finishing the proof.

To get a description for Z ′
j = {(ϕ, T, x) ∈ Rn2+m+n : ϕ ∈ On(R), ϕ(x) ∈ Γ(fj)(ϕ,T )} we just

need to replace each xi in the description of (ϕ, T, x) ∈ Γ(fj) with the quadratic expression
ϕ(x)i =

∑n
k=1 ϕikxk. Indeed, (ϕ, T,

∑n
k=1 ϕikxk) ∈ Γ(fj) already implies that ϕ ∈ On(R).

So we get the following corollary:

Corollary 4.6. We can construct a semialgebraic description of Z ′
j with

pZ′
j
= pΓ(fj),

dZ′
j
= 2dΓ(fj).

What we need in the end is a bound on the number of connected components of the (ϕ, T, y)
fibers of the sets RI = {(ϕ, T, y, x) ∈ Rn2+m+j+n : ϕ ∈ On(R), ϕ(x) ∈ Γ(fj)(ϕ,T ), y = πI(x)}
where I ⊆ {1, 2, . . . , n} and |I| = j. We first prove that such a bound can be generated
independently of the choice of I.

Lemma 4.7. For each 1 ≤ j ≤ n− 1 and each I ⊆ {1, 2, . . . , n} with |I| = j the (ϕ, T, y)-
fibers of RI are homeomorphic to (ϕ, T, x1, . . . , xj)-fibers of a semialgebraic set U I with
pUI = pZ′

j
and dUI = dZ′

j
.

50



Proof. Consider the permutation σI of {1, 2, . . . , n} that sends {1, 2, . . . , j} to the elements
of I in increasing order, while sending {j + 1, . . . , n} to the complement of I in increasing
order. Now define U I = {(ϕ, T, x) ∈ Rn2+m+n : (ϕ, T, σI(x)) ∈ Z ′

j}. Define the function
fI : U

I → RI given by fI(ϕ, T, x) = (ϕ, T, (xi)i≤j, (xσ(i))1≤i≤n); this is well-defined by defi-
nition of σI .

As fI simply duplicates and reorders the x-coordinates, it is a homeomorphism. Its re-
strictions to fibers U I

(ϕ,T,x1,...,xj)
are homeomorphisms mapping these to the fibers RI

(ϕ,T,y).

Hence it suffices to look at the fibers U I
(ϕ,T,x1,...,xj)

. Note that for each I we have that

pUI = pZ′
j
and dUI = dZ′

j
, as we can create a description for U I by permuting the variables

of a description of Z ′
j. Then each fiber of the form U I

(ϕ,T,c1,...,cj)
is homeomorphic to the cor-

responding fiber RI
(ϕ,T,c1,...,cj)

of RI : after all, we can explicitly give such a homeomorphism

fI : R
I
(ϕ,T,c1,...,cj)

→ U I
(ϕ,T,c1,...,cj)

by fI(x1, x2, . . . , xn) = (xi)i/∈I , which simply is deleting the

coordinates that are constant in the RI-fiber.

Lemma 4.7 implies we can use bounds for the number of connected components of the
U I-fibers instead, and as the descriptions of the U I have fixed size and degree for all I
with |I| = j, we will get a single bound Ej. The fibers U

I
(ϕ,T,x1,...,xj)

we are interested in are

subsets of Rn−j defined by sign conditions on pZ′
j
polynomials of degree at most dZ′

j
. So

Theorem 3.42 gives us that the number of connected components of such a fiber is at most∑
0≤i≤n−j

(
pZ′

j

i

)
4idZ′

j
(2dZ′

j
− 1)n−j−1 ≤ (8pZ′

j
dZ′

j
)n−j ≤ (8pZ′

j
dZ′

j
)n−1.

Using the estimates from Corollary 4.6, Lemma 4.5, and inequalities (12) and (13), and
collecting the constant factors in the big-O exponents, we find that we can take a value of
Ej that is at most

8n−1pn−1
Z′
j
dn−1
Z′
j

≤ nn−1p
8(n−1)2

S d
8(n2+m+n)2(n−1)O(n)
S d

(n−1)O(n)
S

≤ nnp
8(n−1)2

S d
O((n3+mn)2)
S ≤ nn(pZ + n)8n

3

d
O((n3+mn)3)
Z .

As this bound applies to all Ej and BZ is the maximum of the Ej, it follows that

BZ ≤ nn(pZ + n)8n
3

d
O((n3+mn)3)
Z

completing the proof.

4.3 Bounding cZ

As all bounds so far are still using the assumption that Z has closed fibers, we now have
to move to the fiberwise closure and fiberwise boundary.
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Proposition 4.8. Let Z ⊆ Rm+n be a semialgebraic family with dZ ≥ 2. Let C(Z) be its
fiberwise closure and B(Z) its fiberwise boundary. Then

MC(Z) ≤ p
2(n+1)2

Z d
O(n(n3+mn))
Z ,

BC(Z) ≤ nnp
16(n+1)n3

Z d
O(n(n3+mn)3)
Z ,

and the same bounds hold for MB(Z) and BB(Z).

Proof. We first construct semialgebraic descriptions of C(Z) and B(Z).

Lemma 4.9. Let Z ⊆ Rm+n be a semialgebraic family. There exist semialgebraic descrip-
tions for the fiberwise closure C(Z) and the fiberwise boundary B(Z) such that

pC(Z) = pB(Z) ≤ p
2(n+1)
Z d

O(n(m+n))
Z ,

dC(Z) = dB(Z) ≤ d
O(n)
Z .

Proof. C(Z) is the set

{(T, x) ∈ Rm+n : ∀z ∈ R>0∃y ∈ Rn : ∥x− y∥ < z ∧ (T, y) ∈ Z}

= {(T, x) ∈ Rm+n : ∀z ∈ R∃y ∈ Rn : z ≤ 0 ∨ (∥x− y∥ < z ∧ (T, y) ∈ Z}.

Hence C(Z) is the realization of a formula with two blocks of quantifiers of sizes 1 and n
which uses pZ + 2 polynomials of degree at most max(dZ , 2) = dZ . Using Local Quantifier
Elimination (Theorem 3.49) we find that there is a description of C(Z) with

pC(Z) ≤ (pZ + 2)2(n+1)d
O(n(m+n))
Z ,

dC(Z) ≤ d
O(n)
Z .

As dZ ≥ 2, pZ ≥ 1, we have that

(pZ + 2)2(n+1)d
O(n(m+n))
Z ≤ (3pZ)

2(n+1)d
O(n(m+n))
Z = p

2(n+1)
Z 9n+1d

O(n(m+n))
Z .

The factor 9n+1 can be absorbed into the power of dZ , so

pC(Z) ≤ p
2(n+1)
Z d

O(n(m+n))
Z .

This finishes the proof of the bounds for C(Z). Z and its complement Z are described by
the same polynomials, so the same bounds apply for C(Z). As B(Z) = C(Z) ∩ C(Z) we
find pB(Z) ≤ 2pC(Z) and dB(Z) = dC(Z). Our bound for pC(Z) contains a factor d

O(n(m+n))
Z ,

so the factor 2 falls out there, finishing the proof.

Using this description of C(Z) in the bound for MZ we constructed, we find that

MC(Z) ≤ (p
2(n+1)
Z d

O(n(m+n))
Z + n)n+1d

O(n(n3+mn))
Z .
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As n ≤ 2n ≤ p
2(n+1)
Z d

O(n(m+n))
Z and 2 · p2(n+1)

Z d
O(n(m+n))
Z = p

2(n+1)
Z d

O(n(m+n))
Z , we can just

remove the term n in the base of the first factor. This gives

MC(Z) ≤ p
2(n+1)2

Z d
O(n(m+n)(n+1))
Z d

O(n(n3+mn))
Z = p

2(n+1)2

Z d
O(n(n3+mn))
Z .

We similarly find that

BC(Z) ≤ nn(p
2(n+1)
Z d

O(n(m+n))
Z + n)8n

3

d
O(n(n3+mn)3)
Z = nn(p

2(n+1)
Z d

O(n(m+n))
Z )8n

3

d
O(n(n3+mn)3)
Z

= nnp
16(n+1)n3

Z d
O(n(n3+mn)3)
Z .

As pB(Z) = pC(Z) and dB(Z) = dC(Z), we have the same bounds for MB(Z) and BB(Z).

Substituting the bounds for MC(Z) and BC(Z) in our earlier expression (7) for cZ , we find
that

cC(Z) ≤ max
0≤j≤n−1

Mn−j
C(Z)

(
n

j

)
(j3/2n!2n+1)jBC(Z)

Bj
nBj

≤ max
0≤j≤n−1

p
2(n−j)(n+1)2

Z d
(n−j)O(n(n3+mn)
Z

(
n

j

)
(j3/2n!2n+1)jnnp

16(n+1)n3

Z d
O(n(n3+mn)3)
Z

Bj
nBj

≤ max
0≤j≤n−1

nnp16n
4+18n3+4n2+2n

Z d
O(n(n3+mn)3)
Z · j

3j/2(n!)j+12(n+1)j

j!(n− j)!Bj
nBj

.

We can estimate Bi, the volume of the i-dimensional unit ball, from below by taking the
volume of the hyperoctahedron {x ∈ Ri :

∑i
k=1 |xk| ≤ 1} inscribed in that ball. The

hyperoctahedron has volume 2i

i!
, which means that cC(Z) is at most

max
0≤j≤n−1

nnp
O(n4)
Z d

O(n(n3+mn)3)
Z · j

3j/2(n!)2j+1

(n− j)!
.

Estimating the numerator of the fraction from above by setting j = n, we find this is at
most

max
0≤j≤n−1

nnp
O(n4)
Z d

O(n(n3+mn)3)
Z · n

3n/2(n!)2n+1

(n− j)!
= nnp

O(n4)
Z d

O(n4(n2+m)3)
Z · n3n/2(n!)2n.

Noting that n! ≤ nn and n ≤ 2n ≤ dnZ , this is bounded from above by

p
O(n4)
Z d

O(n(n3+mn)3)
Z d

n2+3n2/2+2n3

Z = p
O(n4)
Z d

O(n(n3+mn)3)
Z .

As the bounds we have forMB(Z) andBB(Z) are the same, we also have cB(Z) ≤ p
O(n4)
Z d

O(n(n3+mn)3)
Z .

A factor 2 can be absorbed into the power of dZ , so the same bound holds for cZ =
cC(Z) + cB(Z), proving Theorem 4.1.

We can also derive the following corollary:
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Corollary 4.10. If the fibers ZT are closed, we can reduce the bound from Theorem 4.1 to

p
O(n3)
Z max(dZ , 2)

O((n3+mn)3).

Proof. This follows directly from the proof of Theorem 4.1: If the fibers ZT are known to
be closed, we do not need to calculate bounds for cC(Z) and cB(Z), but can instead bound
cZ directly. As replacing MZ and BZ with MC(Z) and BC(Z) increases the exponents of pZ
and dZ in our bounds by a factor n, skipping this step reduces the final exponents of pZ
and dZ in the bound for cZ by a factor n, which gives the bound in this corollary.

Conclusion

In this thesis we have proven an asymptotic bound for the Barroero-Widmer constant that
is only singly exponential in m and n, which is somewhat remarkable given that algorithms
in this field have a tendency to be doubly exponential. Furthermore, if an actual semi-
algebraic family is provided, we can calculate an exact bound, as the algorithms used in
computing our bound are explicit, and hence descriptions for all sets involved can actually
be constructed given a description of the family Z.

Of course, that does not mean there is no room for improvement. The asymptotic bound
could be tightened by either using better estimates or more efficient algorithms. Alterna-
tively, an exact bound may be found by replacing Local Quantifier Elimination with an
algorithm with a known exact complexity bound. Furthermore, our bound only works for
semialgebraic families, and there are plenty of other o-minimal structures to consider. But
hopefully this thesis provides a good starting point for further investigation, as well as a
bound that is already useful in its own right.
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