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Abstract

Bioluminescence Tomography is a growing field in optical imaging. Governed by the diffusion approximation
of the Radiative Transfer Equation, Bioluminescence Tomography corresponds to the inverse problem of
reconstructing the source function q(x) from measurements Φ(x). This inverse problem is ill-posed in the
sense of Hadamard. The discrete form of the forward problem is given by A−1q = Φ. Although it seems like
obtaining q from Φ is straightforward, through numerical experiments it is shown that additive Gaussian
noise has a significant effect on reconstruction. Even for the simplest source function tested, i.e. q(x) = x2,
regular inversion only suffices in the absence of noise. Both the Truncated Singular Value Decomposition
solution and Tikhonov regularization provide a more adequate reconstruction of the source function in the
case of additive noise. This is also seen for a source function made up of two Gaussian peaks. Although both
methods are able to distinguish the two peaks in a similar fashion, Truncated Singular Value Decomposition
may result in misinterpretation of extra peaks due to its forced sinusoidal form. Finally, in the case of a 2D
image source function reconstruction we note that the regular inversion performs better than expected but
that overall Tikhonov regularization provides the best reconstruction of the source function. Nevertheless,
Tikhonov regularization is not perfect and may result in oversmoothing. Further research can be done to
improve the reconstruction of source function q(x) from noisy data.
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Chapter 1

Background

A brief introduction to bioluminescence tomography and optical imaging in general is given in this chapter.

1.1 Optical Imaging

X-ray radiography, ultrasonography, X-ray computed tomography (CT) and magnetic resonance imaging
(MRI) make up the list of the most common imaging procedures in medicine. Optical imaging is an emerging
new addition to this list. [1]

Optical molecular imaging uses light released from either internal sources or administered agents to obtain
information about biological processes on a microscopic scale. The optical photons provide nonionizing
and safe radiation which in turn provide biochemical information since the optical spectrum is related to
molecular conformation. According to [1] optical imaging is highly beneficial in comparison to the other
imaging modalities, the results summarized in table 1.

Characteristics X-ray Imaging Ultrasound MRI Optical Imaging
Soft-tissue contrast Poor Good Excellent Excellent
Spatial resolution Excellent Good Good Mixed

Function None Good Excellent Good
Nonionizing radiation No Yes Yes Yes

Data acquisition Fast Fast Slow Fast
Cost Low Low High Low

Table 1.1: Comparison of Several Imaging Modalities as Presented in [1]

1.2 Bioluminescence Imaging and Fluorescence Imaging

Optical molecular imaging encompasses many different imaging methods, the most common including bio-
luminescence and fluorescence imaging. Bioluminescence occurs as a result of an enzyme-substrate reaction,
namely when the substrate luciferin is oxidized using the catalyst luciferase. Luciferin is an organic substance
present naturally in, for instance, fireflies. In the case of fluorescence imaging, an excitation of the molecule
fluorophore is required, which results in the production of a lower energy light. Both are non-invasive modal-
ities that allow for the in vivo study of biological processes. However, in fluorescence imaging the excitation
required for the reemission of light means that phototoxicity is possible. Bioluminescence imaging (BLI)
on the other hand, does not have this issue. It does, however, have a couple of disadvantages compared to
fluorescence imaging.

BLI requires the use of a substrate, which fluorescence imaging (FLI), in turn, does not. Furthermore,
image acquisition is slower: in FLI it takes seconds whereas in BLI it takes minutes. One of the major
limitations to BLI is that it can only image about 1-2cm depth of tissue. Note, however, that this is not a
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limitation with respect to FLI, which only has an imaging depth of about 1cm. The major advantage of BLI
is that it’s signal-to-noise ratio is higher. Moreover, BLI is highly sensitive and specific. Like FLI, it has the
ability to simultaneously image multiple organisms. According to [2], this technique has allowed researchers
to study among others disease progression, protein-protein interaction and treatment efficacy.

1.2.1 Bioluminescence Tomography

Tomography is a branch of imaging that targets reconstruction from indirect measurement of an object under
consideration. [3] In this case, Bioluminescence Tomography (BLT) uses an inversion algorithm to determine
the distribution of internal bioluminescent sources which enables quantitative monitoring of pathological and
physiological changes. [2]

BLT is an optical molecular imaging method that is based on the light propagation model in biological
tissues governed by the Boltzmann equation. According to [3] and [2], BLT has been widely applied in
preclinical studies. However, the model used is a highly simplified photon propagation model. Moreover, the
inverse problem is inherently ill-posed in the sense of Hadamard. This limits the quality of BLT reconstruction
to some extent. Nevertheless, BLT has high sensitivity, low cost, and noninvasive characteristics, which makes
it a very appealing imaging modality. [2]

This thesis will delve into the inverse problem of reconstructing an image from (noisy) measurements of
BLT, beginning with the derivation of the forward problem from the radiative transfer equation (RTE), or
Boltzmann equation in chapter 2. From there the inverse problem is formulated and the ill-posedness of the
(inverse) problem will be discussed. In chapter 3, a numerical implementation of reconstruction techniques is
presented along side numerical experiments to test the quality of these techniques. The results are discussed
in chapter 4.
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Chapter 2

The Mathematical Model

In this chapter, the forward (diffusion) problem in bioluminescence tomography is derived from the radiative
transfer equation. The underlying assumptions used to simplify the model are explained and the correspond-
ing boundary conditions are presented. An analytic solution to the forward problem is given. This chapter
concludes with a discussion of the inverse problem and its ill-posedness. For the numerical implementation
see chapter 3.

2.1 The Forward Problem

Consider the volume element depicted in Figure 2.1. ds is the differential length element of the cylinder
in the direction of photon propagation ŝ and dA is the differential area element perpendicular to ŝ. Next,
consider an energy change in the volume element within the differential solid angle dΩ around ŝ. Due to the

Figure 2.1: Schematic diagram of directional vectors and differential solid angles.

conservation of energy we can write the change in energy in the volume element within the solid angle element
per unit time in terms of 4 contributing factors namely divergence (dPdiv), extinction (dPext), scattering
(dPsca) and the source (dPsrc), i.e.

dP = −dPdiv − dPext + dPsca + dPsrc (2.1)

All but the last term can be written in terms of the specific intensity I as given in [1].The contribution from
the source dPsrc is denoted by q. By rewriting the equation to avoid negative terms we get the well known
Boltzmann equation:

1

c

∂I

∂t
+ ŝ · ∇I(r, t, ŝ) + (µa + µs)I(r, t, ŝ) = µs

∫
S2
k(ŝ · ŝ′)I(r, ŝ′)dΩ′ + q(r, t, ŝ) r ∈ Ω (2.2)

3



Definitions of the important terms/symbols used in the RTE and derivation of the forward problem are
summarized in the following table:

Symbol Definition
S2 unit sphere
Ω domain
r position
ŝ unit scattered direction vector in S2
dΩ differential solid angle element around direction ŝ
ŝ′ unit incident direction vector
I specific intensity at the position r
µa absorption coefficient
µs scattering coefficient
k scattering kernel function a.k.a. phase function
t time
c speed of light through medium
q source distribution function

Table 2.1: Definition of important terms/symbols

Note from the scattering term (µs

∫
S2 k(ŝ · ŝ′)I(r, ŝ′)dΩ′) a phase function k. The phase function is

defined as ‘the angular distribution of light intensity scattered by a particle at a given wavelength.’ [4] It
can be thought of as a probability density function representing the probability that light with direction ŝ′

is scattered into dΩ around direction ŝ. [1] The phase function k is symmetrical with respect to interchange
of its arguments and respects the normalized condition:∫

k(ŝ′ · ŝ)dŝ′ = 1

In [3], Weimin Han and Ge Wang present the Hanyey-Greenstein scattering kernel as a commonly used
scattering kernel function given by

kHG(s) =
1

4π

1− g2a
(1 + g2a − 2gas)(3/2)

−1 ≤ s ≤ 1

where parameter ga ∈ (−1, 1) is a measure for anisotropy1, i.e. ga = 0 corresponds to isotropic scattering
(even in all directions).Furthermore, in the steady-state, i.e. time-independent case, we assume

1

c

∂I

∂t
= 0

For this to hold we require a time-invariant light source, i.e. a continuous wave light beam at constant power.
Nevertheless, for a pulsed light source this can still be applicable to ”time-integrated physical quantities such
as specific energy deposition.”[1]

We begin the derivation of our forward problem with equation (2.2). Since the RTE is computation-
ally expensive accurate numerical simulation remains difficult.Note that the RTE contains no less than 6
independent variables! We thus proceed by applying the diffusion approximation.

2.2 The Diffusion Approximation

The Boltzmann equation, also known as the Radiative Transfer Equation (RTE), models photon transport
in biological tissue. Nonetheless, at wavelengths of 400 to 750nm light scattering dominates over absorption

1The dependence on direction of measurement
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in the biological tissues.[5] Therefore, the light transport in this situation can be depicted accurately by the
diffusion approximation of the specific intensity, namely:

I(r, ŝ, t) =
1

4π
Φ(r, t) +

3

4π
J(r, t) · ŝ (2.3)

where Φ(r, t) is the fluence rate and J(r, t) is the current density, or flux. The goal is to use (2.3) to obtain
the diffusion approximation of the RTE. We begin by introducing several new terms, which will be used in
the derivation of the diffusion approximation, noted in table 2.2 below.

Symbol Term Equation
Φ(r, t) fluence rate Φ(r, t) =

∫
S2 I(r, t, ŝ)dΩ

J(r, t) current density, flux J(r, t) =
∫
S2 ŝI(r, t, ŝ)dΩ

g scattering anisotropy g =
∫
S2(ŝ · ŝ

′)k(ŝ · ŝ′)dΩ
µT interaction coefficient µT = µa + µs

µ′
T transport interaction coefficient µT = µa + µ′

s

µ′
s reduced scattering coefficient µ′

s = µs(1− g)
l′T transport mean free path l′T = 1

µ′
T

Table 2.2: Terms used in derivation of diffusion approximation

2.2.1 The Scalar Differential Equation

To apply the diffusion approximation of I, we integrate the RTE over the full 4π solid angle and substitute
(2.3) to obtain a scalar differential equation. Consider the terms in the RTE as first through fifth from left
tot right. In that case, the first term becomes:∫

S2

1

c

∂I

∂t
dΩ =

1

c

∂Φ

∂t

Recall that for the case of steady state this term is zero. The second term becomes:∫
S2
ŝ · ∇I(r, t, ŝ)dΩ =

∫
S2
∇ · ŝI(r, t, ŝ)dΩ = ∇ ·

∫
S2
ŝI(r, t, ŝ)dΩ = ∇ · J(r, t)

We shall see in the vector formulation of the diffusion approximation (see 2.2.2) that

J(r, t) = −D∇Φ(r, t)

Thus the second term becomes:

−∇ · (D∇Φ(r, t))

The third term of the RTE becomes:

µT

∫
S2
I(r, t, ŝ)dΩ = µTΦ(r, t)

where µT = µa + µs.
The fourth term becomes:

µs

∫
S2

∫
S2
I(r, ŝ′)k(ŝ · ŝ′)dΩ′dΩ = µs

∫
S2

∫
S2

(
1

4π
Φ(r, t) +

3

4π
J(r, t)

)
k(ŝ · ŝ′)dΩ′dΩ

= µs
1

4π

∫
S2

∫
S2
Φ(r, t)k(ŝ · ŝ′)dΩ′dΩ + µs

3

4π

∫
S2

∫
S2
J(r, t)k(ŝ · ŝ′)dΩ′dΩ
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We evaluate ∫
S2

∫
S2
Φ(r, t)k(ŝ · ŝ′)dΩ′dΩ = Φ(r, t)

∫
S2

∫
S2
k(ŝ · ŝ′)dΩ′dΩ

= Φ(r, t)

∫
S2
dΩ

= 4πΦ(r, t)

and ∫
S2

∫
S2
J(r, t)k(ŝ · ŝ′)dΩ′ = |J(r, t)|

∫
S2

[∫
S2
k(ŝ · ŝ′)dΩ

]
cos ŝ′dΩ′

= |J(r, t)|
∫
S2
cos ŝ′dΩ′ = 0

So the fourth term becomes:

µsΦ(r, t)

For the fifth term we have: ∫
S2
q(r, t, ŝ)dΩ =

1

4π

∫
S2
q(r, t)dΩ = q(r, t)

Thus we have that

−∇ · (D∇Φ(r, t)) + µTΦ(r, t) = µsΦ(r, t) + q(r, t)

−∇ · (D∇Φ(r, t)) + (µT − µs)Φ(r, t) = q(r, t)

and the resulting equation is:
−∇ · (D∇Φ(r, t)) + µaΦ(r, t) = q(r, t) (2.4)

Note that since we assume steady-state, the first term = 0 and thus implies that Φ is independent of time,
i.e. Φ = Φ(r).

2.2.2 The Vector Differential Equation

Next we have the derivation of the equality J(r, t) = −D∇Φ(r, t). This comes from the vector differential
equation of the diffusion approximation of the RTE. To obtain this the RTE is multiplied by the direction
ŝ before evaluation.
The first term becomes: ∫

S2

1

c

∂I

∂t
ŝdΩ =

1

c

∂J

∂t

Since we assume that the fractional change in J(r, t) within the transport mean free path l′T is small, this
time-dependent term becomes negligible. More specifically we assume that(

l′T
c

)(
1

|J(r, t)|

∣∣∣∣∂J(r, t)∂t

∣∣∣∣) ≪ 1

where l′T = 1
µ′
T

thus we have that ∣∣∣∣∂J(r, t)c∂t

∣∣∣∣ ≪ µ′
T |J(r, t)|
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and thus this term is negligible.
Then the second term becomes:∫

S2
ŝ(ŝ · ∇I(r, t, ŝ))dΩ =

∫
S2
ŝ(ŝ · ∇(

1

4π
Φ(r, t) +

3

4π
J(r, t) · ŝ))dΩ

=
1

4π

∫
S2
ŝ(ŝ · ∇Φ(r, t))dΩ +

3

4π

∫
S2
ŝ(ŝ · ∇(J(r, t) · ŝ))dΩ

=
1

4π

4π

3
∇Φ(r, t)

The third term of the RTE becomes:

µT

∫
S2
ŝI(r, t, ŝ)dΩ = µTJ(r, t)

where µT = µa + µs.
For the fourth term we have:

µs

∫
S2

∫
S2
ŝ(I(r, t, ŝ)k(ŝ · ŝ, )dΩ′)dΩ = µs

∫
S2

∫
S2
ŝ((

1

4π
Φ(r, t) +

2

4π
J(r, t) · ŝ′)k(ŝ · ŝ, )dΩ′)dΩ

= µs
1

4π

∫
S2

∫
S2
ŝ(Φ(r, t)k(ŝ′ · ŝ)dΩ′)dΩ + µs

3

4π

∫
S2

∫
S2
ŝ((J(r, t) · ŝ′)k(ŝ′ · ŝ)dΩ′)dΩ

We call the first integral (i) and the second (ii). The first integral (i) becomes:∫
S2

∫
S2
ŝ(Φ(r, t)k(ŝ′ · ŝ)dΩ′)dΩ = Φ(r, t)

∫
S2
ŝ(

∫
S2
k(ŝ′ · ŝ)dΩ′)dΩ

= Φ(r, t)

∫
S2
ŝdΩ = 0

And the second integral (ii) becomes:∫
S2

∫
S2
ŝ((J(r, t) · ŝ′)k(ŝ′ · ŝ)dΩ′)dΩ =

∫
S2
(

∫
S2
ŝk(ŝ′ · ŝ)dΩ)(J(r, t) cot ŝ′)dΩ′

Using the identity ŝ = ŝ′(ŝ · ŝ′) + ŝ′ × (ŝ × ŝ′) we can proceed by splitting the internal integral into two
integrals.2 For the first, we apply the definition of scattering anisotropy and obtain that∫

S2
ŝ′(ŝ · ŝ′)k(ŝ · ŝ′)dΩ = ŝ′g

and for the second we use that k(ŝ · ŝ′) is azimuthally symmetric about ŝ, which means that
∫
S2 ŝk(ŝ

′ · ŝ)dΩ
is parallel with ŝ′, i.e. the cross-product is zero:∫

S2
ŝ′ × (ŝ× ŝ′)k(ŝ · ŝ′)dΩ = ŝ′ × ((

∫
S2
ŝk(ŝ′ · ŝ)dΩ)× ŝ′) = 0

We thus obtain for the fourth term that

µs
3

4π
g

∫
S2
ŝ′(J(r, t) · ŝ′)dΩ′ = µs

3

4π

4π

3
gJ(r, t) = µsgJ(r, t)

The final term of the RTE becomes:∫
S2
ŝq(r, t, ŝ)dΩ =

1

4π
q(r, t)

∫
S2
ŝdΩ = 0

2This identity is an application of the vector triple product, also known as Lagrange’s formula. Lagrange’s formula states
that a× (b× c) = (a · c) · b− (a · b) · c. Taking a = c = ŝ′ and b = ŝ we get the desired result. (Notice that ŝ · ŝ = 1.)

7



Hence the vector differential equation is:

1

3
∇Φ(r, t) + µTJ(r, t) = µsgJ(r, t)

(µT − µsg)J(r, t) = −1

3
∇Φ(r, t)

(µa + µs(1− g))J(r, t) = −1

3
∇Φ(r, t)

Rewriting this we have that
J(r, t) = −D∇Φ(r, t) (2.5)

where

D =
1

3(µa + µ′
s)

µ′
s = µs(1− g)

Equation (2.5) is referred to as Fick’s Law and D is called the diffusion coefficient.

2.2.3 Explaining Underlying Assumptions

The diffusion equation (2.4) does not depend on vector ŝ, thus has 4 instead of 6 degrees of freedom. Two
assumptions are made to obtain the diffusion equation:

1. The expansion of the radiance is limited to first-order spherical harmonics

2. The fractional change in J(r, t) in one l′T is much less than 1

The first assumption means that the radiance is nearly isotropic. That means that the magnitude does not
vary according to the direction of measurement. The interpretation of the second assumption is that the
photon current is ”temporally broadened relative to the transport mean free time”. Both assumptions hold
true in the case of multiple scattering events. Consequently, these two approximations can be translated into
a single condition namely that µ′

t ≫ µa. In other words, the photons must have gone through a sufficient
number of scattering events before being absorbed. Another requirement is that the observation point must
be sufficiently far from the sources and the boundaries. In order to improve accuracy we can also apply
boundary conditions.

2.3 Deriving the boundary condition

2.3.1 The Refractive-Index Matched Case

To obtain the boundary condition for the diffusion approximation (2.4) we first consider the case of a
refractive-index matched situation, such as soft tissue in water. In this case we have that

I(r, ŝ, t) = 0 for ŝ · v = 0

In other words the scattered direction is orthogonal to v, which is the unit vector normal to the interface
pointing into the scattering medium. If we define the z-axis to be along this unit vector, we have that
ŝ · v = cos θi, where θi is the polar angle of ŝ. (Note that this is a straightforward derivation from the scalar
projection formula.) Since radiance I ≥ 0 an equivalent boundary condition would be∫

ŝ·v
I(r, ŝ, t)ŝ · vdΩ = 0 (2.6)

Now we can use the diffusion approximation of I to get:∫
ŝ·v>0

(
1

4π
Φ(r, t) +

3

4π
J(r, t) · ŝ)ŝ · vdΩ =

∫
ŝ·v>0

1

4π
Φ(r, t)ŝ · vdΩ +

∫
ŝ·v>0

3

4π
(J(r, t) · ŝ)ŝ · vdΩ

=
1

4π
Φ(r, t)

∫
ŝ·v>0

ŝ · vdΩ +
3

4π
×
∫
ŝ·v>0

(J(r, t) · ŝ)ŝ · vdΩ
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Next we split J(r, t) into its directional components Jx, Jy and Jz. Also, for a smooth boundary we have
that

∫
ŝ·v>0

ŝ · vdΩ = π. Hence the above integrals reduce to

=
1

4
Φ(r, t) +

3

4π
×
∫ π

2

0

∫ 2π

0

(Jx sin θi cosβ + Jy sin θi cosβ + Jz cos θi) sin θi cos θidβdθi

=
1

4
Φ(r, t) +

3

4π
× 2π

∫ π
2

0

Jz cos θi cos θi sin θidθi =
1

4
Φ(r, t) +

3

4π

2π

3
Jz

=
1

4
Φ(r, t) +

1

2
J(r, t) · v

Convention has us multiplying by 4 to have the final boundary condition as

Φ(r, t) + 2J(r, t) · v = 0 (2.7)

However, the interface between soft tissue and air is refractive-index-mismatched and thus we need to adapt
the boundary condition. We make use of the Fresnel reflections to adapt our refractive-index-matched
boundary conditions to the mismatched case.

2.3.2 Fresnel Reflection

The Fresnel reflection formulas describe the reflection of a portion of incident light observed at a discrete
interface due to differences in the refractive indices of the two media (in this case soft tissue and air).
Consider the diagram shown in Figure (2.2). Consider an incident beam at ŝ. The angle made with the

Figure 2.2: 2-D Diagram of angles used in Fresnel Equations. Note that v, ŝ and ŝ′ refer to unit directions.

vector v normal to the boundary is called the incident angle θi. Due to the difference in respective refractive
indices of the two media, namely n1 and n2, some of the light is scattered (ŝ′) and some is transmitted (t).
The fraction of incident light that is reflected is called reflectance.

Reflectance varies depending on the polarization of light. A commonly used coordinate system used to
describe the polarization of light is the plane of incidence. The plane of incidence is the plane in which
the light propagates before and after reflection or refraction as shown in Figure (2.3). The electric field of
polarized light can be either parallel (p) or senkrecht (s), meaning perpendicular in German, to the plane of
incidence.

9



Figure 2.3: Diagram depicting the plane of incidence. Note that v, ŝ and ŝ′ refer to unit directions.

Fresnel defines the reflectance for p- and s-polarized light, assuming that the materials are non-magnetic3,
as follows:

Rp =

∣∣∣∣n1 cos θt − n2 cos θi
n1 cos θt + n2 cos θi

∣∣∣∣
Rs =

∣∣∣∣n1 cos θi − n2 cos θt
n1 cos θi + n2 cos θt

∣∣∣∣
where n is the refractive index for medium 1 and 2 respectively and angles θi and θt are given in Figure
Since we are concerned with natural light, we assume it to be unpolarized. In other words there is an equal
amount of s- and p-polarized light and the effective reflectivity is simply the average of the two. In other
words, we define the effective reflectance R as the average of Rs and Rp:

R =
1

2
(Rp +Rs)

2.3.3 The Refractive-Index Mismatched Case

For the refractive-index-mismatched case we replace the boundary condition equation (2.6) with the following
condition instead: ∫

ŝ·v>0

I(r, ŝ, t)ŝ · vdΩ =

∫
ŝ·v<0

R(ŝ · v)I(r, ŝ, t)ŝ · vdΩ

where R is the effective reflectance defined by Fresnel and ŝ · v = cos θi.
Once again we substitute the diffusion approximation of the specific intensity I as given in equation (2.3)

and evaluate the integrals. The left-hand side is obtained following the method shown in section 2.3.1 and
is thus

1

4
Φ(r, t) +

1

2
J(r, t) · v

Similarly the right-hand side becomes:

1

4
RϕΦ(r, t)−

1

2
RjJ(r, t) · v

3The assumption of non-magnetic media is a good approximation for optical frequencies and for transparent media at other
frequencies.
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with

Rϕ :=

∫ π
2

0

2 sin θi cos θiR(cos θi)dθi

Rj :=

∫ π
2

0

3 sin θi(cos θi)
2R(cos θi)dθi

Thus, in the diffusive regime, we replace equation (2.7) with

1

4
Φ(r, t) +

1

2
J(r, t) · v =

1

4
RϕΦ(r, t)−Rj

1

2
J(r, t) · v

This can be rewritten as

1

4
Φ(r, t)− 1

4
RϕΦ(r, t) = −1

2
J(r, t) · v −Rj

1

2
J(r, t) · v

Φ(r, t)−RϕΦ(r, t) = −2J(r, t) · v −Rj2J(r, t) · v
Φ(r, t)(1−Rϕ) = (1 +Rj)(−2J(r, t) · v)

Φ(r, t) =
1 +Rj

1−Rj
(−2J(r, t) · v)

In the case of the diffusion approximation we also assume that the ratio of the fluence rate (Φ(r, t)) to the
normal component of the flux (J(r, t) ·v) at the surface to be large. Thus we can define an effective reflection
coefficient by

Φ(r, t)

3J(r, t) · v
=

2

3

1 +Rj

1−Rϕ
:=

2

3

1 +Re

1−Re

to get that [6, p. 2731]

Re =
Rϕ +Rj

2−Rϕ +Rj

as follows:

2

3

1 +Rj

1−Rϕ
=

2

3

1 +Re

1−Re

(1 +Re)(1−Rϕ) = (1−Re)(1 +Rj)

1−Rϕ +Re −ReRϕ = 1 +Rj −Re −ReRj

2Re −ReRϕ +ReRj = Rϕ +Rj

Re(2−Rϕ +Rj) = Rϕ +Rj

Re =
Rϕ +Rj

2−Rϕ +Rj

The effective reflection coefficient represents the fraction of the emittance that is reflected and becomes the
irradiance, in mathematical terms

Re =

∫
ŝ·v<0

R(ŝ · v)I(r, ŝ, t)ŝ · vdΩ∫
ŝ·v<0

I(r, ŝ, t)ŝ · vdΩ
(2.8)

thus ∫
ŝ·v<0

R(ŝ · v)I(r, ŝ, t)ŝ · vdΩ = Re

∫
ŝ·v<0

I(r, ŝ, t)ŝ · vdΩ

Finally, we can write that

1

4
Φ(r, t) +

1

2
J(r, t) · v =

1

4
ReΦ(r, t) +Re

1

2
J(r, t) · v (2.9)
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Using the expression (2.5) we rewrite (2.9) as follows:

1

4
Φ(r, t) +

1

2
J(r, t) · v =

1

4
ReΦ(r, t) +Re

1

2
J(r, t) · v

Φ(r, t) + 2J(r, t) · v = ReΦ(r, t) +Re2J(r, t) · v
Φ(r, t)− 2D∇Φ · v = ReΦ(r, t)−Re2D∇Φ(r, t) · v
Φ(r, t)−ReΦ(r, t) = Re2D∇Φ · v + 2D∇Φ(r, t) · v

Φ(r, t)(1−Re) = (1 +Re)(2D∇Φ · v)

Φ(r, t) =

(
1 +Re

1−Re

)
2D∇Φ(r, t) · v

and get the final diffusion approximation boundary condition for the refractive index mismatched case:

Φ(r, t)− 2AD∇Φ(r, t) · v = 0 (2.10)

where

A =
1 +Re

1−Re

If the surrounding medium is air, for which the refractive index η is approximately one, then Re can be
approximated by

R(η)e ≈ −1.4399η−2 + 0.7099η−1 + 0.6681 + 0.0636η.

[6]

2.4 Summary

We assume that the system is in steady-state. Then the diffusion model is given by:

−∇ · (D∇Φ(r)) + µaΦ(r) = q(r) (2.11)

with boundary condition

Φ(r) + 2AD∇Φ(r) · v = 0 (2.12)

where

A =
1 +Re

1−Re

and Re is the directionally varying refractive parameter approximated by

Re ≈ −1.4399η−2 + 0.7099η−1 + 0.636η

for some refractive index η. For the inverse problem, we have that Φ(r) on the boundary dΩ is the measured
quantity and µa, A, and D are known quantities. We want to solve for q(r), the source distribution function.
We begin by tackling the forward problem, to get an idea of the measurements Φ given a source function q;
we assume that q(r) is known and solve for Φ(r).

2.5 Solving the Forward Model

We begin the analysis by assuming a single spatial dimension x where x ∈ [0, 1] and solving the forward
model. We take D(x) and A(x) to be constant and scale them to 1. Likewise we scale such that µa = 1. We
thus have a second order in-homogeneous differential equation of the form:

−Φ′′(x) + Φ(x) = q(x) (2.13)

where q is given and Φ is unknown.

12



2.5.1 Homogeneous Boundary Conditions

We begin with solving the homogeneous case q(x) = 0. We have that

Φ′′(x)− Φ(x) = 0 (2.14)

with boundary conditions

Φ′(0) = −2Φ(0) (2.15)

Φ′(1) = 2Φ(1) (2.16)

We find that the general solution to (2.14) is given by

Φ(x) = C1 cos(kx) + C2 sin(kx)

We thus have that

Φ′(x) = −C1k sin(kx) + C2k cos(kx)

Φ′′(x) = −C1k
2 cos(kx)− C2k

2 sin(kx)

Thus for (2.14) to hold we have that −k2 = 1 ⇒ k = ±i. The boundary conditions give us that

Φ′(0) = kC2

−2Φ(0) = −kC1

kC2 = −2C1

C1 =
−k

2
C2

However,

Φ′(1) = −C1k sin(k) + C2k cos(k)

2Φ(1) = 2C1 cos(k) + 2C2 sin(k)

would imply that

−C1k sin(k) + C2k cos(k) = 2C1 cos(k) + 2C2 sin(k)

C2k cos(k)− 2C2 sin(k) = 2C1 cos(k) + C1k sin(i)

C1 =
k cos(k)− 2 sin(k)

2 cos(k)− k sin(k)
C2

In other words, we obtain that C2 = 0 = C1 the trivial solution.

2.5.2 The Inhomogeneous Case

To solve the inhomogeneous equation (2.13) we consider the related eigenvalue problem:

−∇2ϕn(x) + ϕn = λϕn (2.17)

with boundary conditions
ϕ′
n(0) + 2ϕn(0) = 0, ϕ′

n(1)− 2ϕn(1) = 0.

Using the ansatz
ϕn(x) = an cos(knx) + bn sin(knx)

we have that

ϕn(x) = an cos(knx) + bn sin(knx)

ϕ′
n(x) = −ank sin(knx) + bnkn cos(knx)

ϕ′′(x) = −ank
2
n cos(knx)− bnk

2
n sin(knx)
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substituting back into equation (2.17) we find that

k2nϕn + ϕn = λϕn

λ = k2n + 1

Using the boundary conditions we obtain

ϕ′
n(0) + 2ϕn(0) = 0

bnkn + 2an = 0 ⇒ bnkn = −2an

ϕn(1)− 2ϕn(1) = 0

−ankn sin(kn) + bnkn cos(kn)− 2an cos(kn)− 2bn sin(kn) = 0

Combining the two we get that kn is a solution of

(
1

2
bnk

2
n − 2bn) sin(kn) + 2bnkn cos(kn) = 0

bn[(
1

2
k2n − 2b) sin(kn) + 2kn cos(kn)] = 0

(
1

2
k2n − 2b) sin(kn) + 2kn cos(kn) = 0

2kn cos(kn) = (2− 1

2
k2n) sin(kn)

2kn = (2− 1

2
k2n)

sin(kn)

cos(kn)
= (2− 1

2
k2n) tan(kn)

0 = (2− 1

2
k2n) tan(kn)− 2kn

shown in Figure (2.4).

Figure 2.4: Function K(x) = (2− 1
2x

2) tan(x)− 2x with zeros x∗ = kn.

14



The eigenfunctions are now determined up to a scaling factor

ϕn(x) = an cos(knx) + bn sin(knx)

ϕn(x) = −1

2
bnkn cos(knx) + bn sin(knx)

2ϕn(x) = bnkn cos(knx) + 2bn sin(knx)

2

bn
ϕn(x) = −kn cos(knx) + 2 sin(knx).

hence, the solution of (2.13) is of the form

Φ(x) =
∑
n

cnϕn(x),

where we assume that
∫ 1

0
|ϕn|2dx = 1. Thus

q(x) =
∑
n

cn(−ϕ′′
n(x) + ϕn(x))

q(x) =
∑
n

cn(k
2
n + 1)ϕn(x)

and we conclude that cn is given by

cn =

∫ 1

0
ϕn(x)q(x)dx

k2n + 1

2.6 The Inverse Problem and Well-Posedness

In the case of bioluminescence tomography, we deal not with the forward problem, but the inverse problem.
That is, we want to obtain the source function q(x) from measured data Φ(x). We note that a well-posed
problem in the sense of Hadamard satisfies the following three criteria:

• There exists a solution u,

• The solution u is unique, and

• The solution is stable, i.e. the solution depends continuously on the data

We note that the solution to our forward problem is an infinite Fourier sum: we have a linear relation
between the data and the source function which we can interpret as a linear operator K such that Kq = Φ,
i.e.

Kq =
∑
n

⟨ϕn(x), q(x)⟩
k2n + 1

ϕn(x)

We note that the operator K is of the form

K =
∑
n

σn⟨·, vn⟩
uj

where {(ui, vi, σi)}∞i=1 is the singular system of K. Thus 1
k2
n+1 are the eigenvalues of operator K. Since kn

grows as n → ∞, we have that limn→∞{ 1
k2
n+1} = 0 soK is a compact operator. Therefore, the pseudo-inverse

of can be expressed as

K† =
∑
n

(k2n + 1)⟨ϕn(x), ·⟩ϕn(x)
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Here, the Picard condition lets us know whether the problem is ill-posed. The Picard condition states that
given a compact operator K : U → F and f ∈ F , f is in the range of K iff∑

n

|⟨f, uj⟩F |2

σ2
n

< ∞

In other words, the inverse of K is only well-defined if the Fourier coefficients (⟨f, uj⟩F ) decay fast enough,
in this case faster than the singular values (σn = 1/(k2n + 1)). Moreover, since in application we deal with
approximate data, the collected data is discrete, finite and prone to noise, then Φ may also not be in the
range of K for this reason and then a solution to the inverse problem doesn’t exist.

2.6.1 The discrete inverse problem

In chapter 3 we discretize the problem to get a discrete forward problem of the form

A−1q = Φ (2.18)

where q is the discrete source function and Φ are the discrete measurements, both in vector form. A is a
finite n × n real matrix. Note that this matrix equation immediately gives us the solution to the inverse
problem of finding the source function q given data Φ, assuming that we have all measurements Φi, i.e.
the solution exists and is unique. Thus, in the case of complete noiseless data, under the aforementioned
assumptions, reconstruction of q is quite simple and well-posed. However, in practice, measurements Φi can
only be made at the boundary and are subject to noise; in this case we expect the reconstruction of q to be
more problematic. In our experiments presented in section 4 we assume complete measurements. Even so,
we can still show that the problem is ill-posed.

Once again we take note of the discrete forward problem 2.18. Recall that in the inverse problem we wish
to obtain source function q from measurements Φ. Since A−1 is invertible, a solution to the inverse problem
exists and is given by q̃ = AΦ. However, the problem arises when looking at the stability of the solution,
i.e. whether the errors in the data get amplified too much. The relative error of our problem is given by

||q− qδ||
||q||

≤ κ(A)
||Φ−Φδ||

||Φ||

and κ(A) is the condition number of A, Φδ are measurements Φ subject to noise and qδ is the noisy
reconstruction of source function q. We see that for large number of discretization points the condition
number of A increases significantly (matrix A is ill-conditioned) causing errors to blow up.4 Thus we expect
that the reconstruction of q is highly sensitive to errors in measurement and thus we conclude that the
discrete inverse problem is also ill-posed. In the next chapter the discretization is presented as well as
methods to deal with this instability, including their implementation in python.

4An explicit definition of matrix A is given in equation 3.2.
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Chapter 3

Application in Python

This chapter presents the numerical implementation of the inverse problem and motivates the use of the
truncated pseudo-inverse and Tikhonov regularization to reconstruct q from noisy data Φδ. Note that from
here on out we shall refer to the number of internal discretization points, i.e. discretization points excluding
the two boundary points, as m = n− 1 as is implemented in the python code. In Appendix B all the code
used for the numerical exploration is presented.

3.1 Approach Han and Wang

In [3], Han and Wang express the inverse problem (2.11) in its variational form. Multiplying by a test
function and integrating over domain Ω they go from

−∇ · (D∇Φ) + µaΦ = q

to ∫
Ω

−∇ · (D∇Φ)v + µaΦvdx =

∫
Ω

qvdx

Applying integration by parts we get∫
Ω

D · ∇Φ∇vdx−
∫
Γ

vD · ∇Φds+

∫
Ω

µaΦvdx =

∫
Ω

qvdx

Han and Wang’s boundary condition is slightly different than our (2.12) in that it is non-zero. Instead it
reads

Φ + 2AD∇Φ · v = g

which they rewrite to get that

2AD∇Φ · v = g − Φ

D∇Φ · v =
1

2A
g − 1

2A
Φ

Thus, the variational formulation becomes∫
Ω

D · ∇Φ∇vdx−
∫
Γ

1

2A
g − 1

2A
Φds+

∫
Ω

µaΦvdx =

∫
Ω

qvdx∫
Ω

D · ∇Φ∇vdx+

∫
Γ

1

2A
Φds+

∫
Ω

µaΦvdx =

∫
Ω

qvdx+

∫
Γ

1

2A
gds

17



It can be shown, through the Lax-Milgram lemma, that the variational formulation of the inverse problem has
a unique solution. In [3], Han and Wang follow the idea of Tikhonov regularization to obtain a minimization
problem min J(q) where the functional J(q) is given by

J(q) =
1

2
||u(q)− g2||2L2(∂Ω) +

ϵ

2
||q||2Q

where Q = L2(Ω0) where Ω0 ⊂ Ω is a region that contains the light source support. For the full details of Han
and Wang’s method and analysis we refer the reader to [3]. Although in this thesis we treat the simplified
case given in 2.13, we choose to implement Tikhonov regularization as our alternative method based on its
applicability to the more complex problem as shown in [3]. We begin by using the Finite Difference Method
to discretize the problem.

3.2 Discretization of the Problem

To obtain a numerical solution of equation (2.13) the finite difference method can be applied to rewrite the
problem in matrix form. We divide the interval [0, 1] into a grid xi = i · h for i = 0, . . . , n with h = 1

n and
discretize the problem. Hence, the finite-difference approximation at gridpoint i is given by:

− 1

h2
(ui+1 − 2ui + ui−1)− ui = qi, i = 0, . . . , n.

where ui = Φ(xi). To eliminate the ghost points u−1 and un+1 we use the boundary conditions. At the left
boundary (i = 0) we use a central difference approximation:

u1 − u−1

2h
+ 2u0 = 0

u1 − u−1 = −2u0 · 2h
−u−1 = −4hu0 − u1

u−1 = 4hu0 + u1

⇒ 1

h2
(u1 − 2u0 + 4hu0 + u1)− u1 = q1

Similarly, at the right boundary we have that

un+1 − un−1

2h
− 2un = 0

un+1 − un−1 = 2un · 2h
un+1 = 4hun + un−1

⇒ 1

h2
(un−1 − 2un + 4hun + un−1)− un = qn

This yields a system of n + 1 equations in n + 1 unknowns. We can thus rewrite our inverse problem in
matrix form as

AΦ = q (3.1)

where A ∈ R(n+1)×(n+1) is given by

A =
1

h2



4h− 2 2− h2 0 0
1 −(h2 + 2) 1 0 0

0

0
0 0 1 −(h2 + 2) 1
0 2 4h− (h2 + 2)


(3.2)
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Φ ∈ Rn+1 = (ui) denotes the measurements at position xi and q ∈ Rn+1 = (qi) is the discretized source
function with qi = q(xi). Note that this is a direct expression of our inverse problem. In fact, the forward
problem would read

A−1q = Φ (3.3)

In numerical computations of solving the inverse problem, the inversion of A−1 is avoided by using A
directly. The code used to implement matrix A for given number of internal discretization points m is given
in Appendix B.1 (lines 18-49). For the discretization of source function q discrete(function,m) given in
lines 51-61 was used. In Appendix A.1, a test for the correct implementation of matrix A is given.

3.3 Truncated Pseudo Inverse

Let our measurements be subject to noise. Since the reconstruction of q is highly sensitive to errors,
particularly those associated with small singular values, instead of inverting A−1 in 3.3 to obtain the solution
of the inverse problem as in (3.1), we use a truncated pseudo-inverse of A−1 to get

AkΦ
δ = qδ

with Ak = (A−1)†k = VkΣ
−1
k U∗

k where Vk = (v1, .., vk), Uk = (u1, .., uk) and Σk contains the k largest singular
values of A−1. This is done to avoid the issue of noise components being blown up by small singular values,
by removing them altogether. Note that this is the same as decomposing A into its singular system and
removing the largest singular values.

In theory, the use of the truncated pseudo-inverse should allow for an improvement in the reconstruction of
the true q(x); however, if too many singular values are removed then a lot of data is lost in the reconstruction,
thus it is important to choose an optimal truncation parameter. In other words, although the truncated
pseudo inverse defines a unique solution, it may not be stable as ||A−1||2||Ak||2 = σ1

σk
may still be large.

Note that our solution qδ is given by

qδ = VnΣ
−1
n U∗

nΦ
δ =

k∑
i=1

⟨ui,Φ
δ⟩

σi
vi

where {Un,Σn, V
∗
n } denotes the singular system of A−1, i.e. A−1 = UnΣnV

∗
n . Hence, we note the component

in Φδ corresponding to vi is amplified by σ−1
i . Thus if Φ has noise components that correlate with vi’s

corresponding to very small singular values, these noise components get amplified. If the Picard condition is
satisfied this should not be a problem. The discrete Picard condition for our problem A−1q = Φ is satisfied
if for the vector Φ ∈ Rm the Fourier coefficients |⟨Ui,Φ⟩| decay faster than the singular values σi of A

−1,
where Ui denotes the left singular vectors of A−1. Python was used to plot |⟨Ui,Φ⟩|,|⟨Ui,Φ

δ⟩| and the
singular values of A−1 (Appendix B.2 lines 70-82, B.1 lines 108-116).

The truncated pseudo-inverse solution was implemented using the function best_trunc(A,phi_del,q)

shown in Appendix B.1 lines 81-106. The code was constructed such that this optimal parameter was picked
by keeping the reconstruction with the smallest scaled error. The error, truncated solution, truncation
parameter and number of singular values truncated are returned, such that a comparison can be made with
the suggested truncation by the Picard condition.

3.4 Reconstruction using Tikhonov regularization

Another regularization method that can be applied to solve the noisy system is Tikhonov regularization. In
this case, the regularized solution to (2.18) is given by

qδ =

k∑
i=1

σi⟨ui,Φ
δ⟩

σ2
i + α

vi
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where {(ui, vi, σi)}ki=1 is the singular system of A−1. Thus, note that for noiseless data and α = 0 we expect
to get the same results as for the regular inversion.

Tikhonov regularization has a corresponding variational problem, namely

min
q

||A−1q−Φ||22 + α||q||22 (3.4)

Here we see explicitly the trade-off between data fidelity (given by ||A−1q − Φ||22) and the regularization
||q||22. Once again the choice of regularization parameter α is important. A similar approach to choosing the
truncation parameter was used. The corresponding normal equations of (3.4) are

qδ = Vk(Σ
2
k + αI)−1ΣkU

∗
kΦ

This was implemented in Python in a function called Tikh_reg and then looped over increasing values of
α, starting with α = 10−16 and increasing in increments of power of 10 until α = 1, using the function
best_Tikh. The code for Tikhonov regularization is shown in Appendix B.1 (lines 119 - 136).
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Chapter 4

Results

The numerical experiments and their results are presented and discussed in this chapter.

4.1 The Experiments

4.1.1 A Smooth Source Function

The numerical exploration begins with defining a simple source function q on interval [0, 1], namely q(x) = x2

and computing the corresponding ideal measurements Φ. We let these in turn be subject to additive
Gaussian noise,i.e. Φδ = Φ + ϵ with ϵ ∼ N (0, δ2), which was implemented in python by the function
noisy_add(phi,delta). This function takes as input the correct measurements Φ and adds a vector of ran-
dom numbers of the same length (Appendix B.1 lines 75-79); the random numbers are sampled from the stan-
dard normal distribution of mean 0 but with variance δ2. Reconstruction was done 3 times: (1) computing

qδ directly as AΦδ, (2) implementing the truncated pseudo-inverse solution with Ak = (A−1)†k = VkΣ
−1
k U∗

k

and (3) using Tikhonov regularization given in section 3.4. For each method, the scaled reconstruction error
||q−qδ||
||Φδ|| was computed by taking the ratio of numpy’s linalg.norm function with q − qδ and Φδ as input.

This was repeated 5 times (seed=0,1,2,3,4) using the code in Appendix B.3, for noise levels corresponding
to δ = 0, 0.1, 0.01, 0.001 and 0.0001 for each m = 10, 20, 100, and 200 by running over python code given
in Appendix B.2 with the corresponding inputs. The (average) scaled errors and reconstruction parameters
were stored as a data frame using the pandas package.

4.1.2 2 Gaussian Peaks

In image reconstruction it is not only interesting to minimize the reconstruction error but also to distinguish
between objects.

(a) µ = {0.25, 0.75} (b) µ = {0.4, 0.6}

Figure 4.1: q with 2 Gaussian peaks of different µ.
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In this case we let

q =
1

2
√
πσ

e
1
2

(x−µ1)2

σ2 +
1

2
√
πσ

e
1
2

(x−µ2)2

σ2

such that we have two peaks. By adjusting µ1 and µ2 we can move the peaks closer together or further apart
as shown in Figure 4.1. This allows us to test the ability of the methods to distinguish the peaks as they
are brought closer together, as well as when they are subject to noise. Once again, given a source function
q we compute the corresponding ideal Φ measurements and subsequently add random noise as before. The
goal is to reconstruct the original q from the noisy measurements. The same reconstruction methods were
implemented as before, fixing m at 200 points. The two peaks and reconstruction was implemented using
the code in Appendix B.4. Note that the implementation is very similar to the code in B.2 used before, with
the only significant difference being the implementation of twopeaks(x) and gauss(x,sigma,mu).

Data was collected for (µi) pairs (0.25, 0.75), (0.4, 0.6), (0.45, 0.55) with fixed σ = 0.01 for both peaks.
Noise levels δ = 0.1, 0.01, 0.001, 0.0001 and 0 were tested over 5 repetitions using the code shown in Appendix
B.5. Once again we obtain the average scaled errors and regularization parameters as before.

4.1.3 2D reconstruction

Finally, the 3 methods were used to reconstruct a 2 dimensional image. q was taken to be the shepp_logan_phantom()
shown in Figure 4.2 with m = 158. The corresponding measurements Φ were computed as before and Gaus-
sian noise was added once again. Reconstruction was repeated 5 times for noise levels δ = 0.1, 0.01, 0.001, 0.0001
and 0. For the code of one trial see Appendix B.6. For the full experiment see Appendix B.7.

Figure 4.2: shepp_logan_phantom() used as true value of q.
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4.2 The Results

4.2.1 A Smooth Source Function

Figure 4.3 shows the reconstruction for m = 200 and δ = 0.0001 (seed=0). Clearly, although m = 200
is the finest discretization and 0.0001 is the smallest level of noise added, the regular inversion method is
insufficient for the reconstruction of q = x2. The poor reconstruction despite the little amount of noise is

Figure 4.3: Reconstruction using regular inversion with δ = 0.001, m = 200 and seed=0.

easily justified using the discrete Picard condition. The result of graphing the discrete Picard condition is
given in figure 4.4.

Figure 4.4: Picard condition computed for m = 200, δ = 0.0001, seed=0.

As shown in figure 4.4, the Picard condition is not satisfied in the case of Φδ as the singular values of
A−1 (in green) decay much quicker than the Fourier coefficients (in red). Nonetheless, in the case of noiseless
data we have that the Picard condition does hold, which explains why using A works for that case. Since
noise component corresponding to very small singular values get blown up, we expect to get an improved
result in the reconstruction if we omit these values.

Figure 4.5 shows the result of reconstructing once again from noisy measurements Φδ for m = 200
(seed=0), this time using the truncated pseudo-inverse. We note from 4.5(b) that there is a notable im-
provement in the reconstruction of q from the noisy data Φδ compared to using just A as before. Note
however that at the boundary (x=0 and x=1) the reconstruction significantly deviates from the true value
compared to the rest of the reconstruction in both 4.5(b) and 4.5(c). Moreover, the internal points seem to
suggest some form of undulation, which is most clear when there is greater noise. As in Figure 4.5(c), at
δ = 0.01 we clearly note the forced sinusoidal structure of the reconstruction using the truncated singular
value decomposition (TSVD). In the case of no noise, since matrix A−1 is invertible, we should have no
truncation and thus reconstruction should be the same as the regular inversion (i.e. exact solution) which is
indeed the case as seen in Figure 4.5(a).
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(a) δ = 0 (b) δ = 0.0001 (c) δ = 0.01

Figure 4.5: Truncated Singular Value Decomposition solution for m = 200, seed=0

The same holds true for Tikhonov regularization; as shown in Figure 4.6(a), there is no regularization
for δ = 0. Figure 4.6(b) shows Tikhonov regularization for δ = 0.0001 (seed=0) for comparison. Where
the TSVD solution requires the sinusoidal shape, Tikhonov regularization does not enforce such regularity
whilst still maintaining smoothness.

(a) δ = 0 (b) δ = 0.0001 (c) δ = 0.01

Figure 4.6: Tikhonov regularization reconstruction for m = 200, seed=0

The average errors and parameters over 5 trials of each method are displayed in Table 4.1. The first
column of values (“qd err”) shows the error of reconstruction using the regular inverse, i.e. qδ = AΦδ. As
expected, this is 0 for no noise and largest for δ = 0.1 in all cases of m. The absolute largest error occurs
for m = 200 for δ = 0.1 with a value of 2.13× 104. Excluding δ = 0, the smallest error occurs for δ = 0.0001
for all m as expected. The absolute smallest occurs for m = 10 with a value of 6.18 × 10−2. In general,
decreasing the noise level by an order of magnitude reduces the error by an order of magnitude. This can
be explained by the fact that at more discretization points the errors add up more whereas at m = 10 there
are only few random errors in the first place and less chance of significant variations.

Nevertheless, most interesting is the comparison with the other methods. Both with the truncated
solution as with Tikhonov regularization the largest average scaled error is of order -1 as shown in columns
“qtrunc err” and “qtikh err”. The scaled errors of both reconstruction methods is significantly smaller than
of the regular inverse reconstruction. For both we have that the largest error is of order O(−1). The average
scaled errors of both these methods have been graphed in Figure 4.7.

As shown in the Figure 4.7 we note that both the truncated inverse solution and Tikhonov regularization
decreases in scaled error as δ decreases. Interesting to note is that for δ = 0.1 Tikhonov performs worse at 20
discretization points compared to 10. Nevertheless, we note that this difference is merely 0.061. Moreover,
we note that for δ = 0.1 Tikhonov regularization results in a significantly larger error than the Truncated
Singular Value Decomposition (TSVD) solution. In fact, overall, the TSVD solution seems to have a lower
and otherwise similar, scaled error compared to Tikhonov regularization.

Although Figure 4.7 seems to present a clear picture of which reconstruction method is better, it is
important to check the reconstruction parameters as well. In Table 4.1 these are given in columns “qtrunc
param” and “qtikh param” for TSVD and Tikhonov regularization respectively. In the case of TSVD it is
more insightful to look at the number of truncated singular values; the average number of truncated singular
values for each δ given m internal discretization points is given in column “qtrunc num”. Note that for
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m δ qd err qtikh err qtikh param qtrunc err qtrunc num qtrunc param

10

0.1000 69.863400 7.963300e-01 1.000000e-02 6.811760e-01 10.0 26.0
0.0100 5.624440 5.232600e-01 1.000000e-03 5.291660e-01 8.8 90.8
0.0010 0.662644 4.178320e-01 4.420000e-05 4.382700e-01 4.6 356.0
0.0001 0.061848 6.176120e-02 2.200000e-08 6.184840e-02 0.0 490.0
0.0000 0.000000 7.912800e-12 1.000000e-16 6.205300e-14 0.0 490.0

20

0.1000 251.002000 8.575580e-01 4.600000e-03 6.738740e-01 19.6 47.0
0.0100 26.015400 5.128820e-01 1.000000e-03 4.400480e-01 18.8 84.8
0.0010 2.131680 4.167800e-01 6.400000e-05 4.196520e-01 16.8 276.4
0.0001 0.241670 2.147380e-01 8.200000e-08 2.416700e-01 0.0 1800.0
0.0000 0.000000 9.035500e-11 1.000000e-16 5.645300e-13 0.0 1800.0

100

0.1000 5568.320000 6.849900e-01 2.800000e-03 5.240000e-01 99.2 64.0
0.0100 536.812000 2.801260e-01 1.000000e-04 2.735540e-01 99.0 72.0
0.0010 59.318200 2.501200e-01 1.000000e-05 2.337900e-01 96.6 278.0
0.0001 5.588920 2.288460e-01 2.800000e-06 2.286280e-01 93.8 650.0
0.0000 0.000000 2.544200e-08 1.000000e-16 2.298500e-11 0.0 41000.0

200

0.1000 21334.200000 6.115860e-01 1.000000e-03 3.424800e-01 199.0 79.0
0.0100 2292.600000 2.400060e-01 1.000000e-04 2.436420e-01 199.0 79.0
0.0010 221790000 1.875340e-01 1.000000e-05 1.771660e-01 195.8 374.0
0.0001 21.540000 1.682960e-01 1.000000e-06 1.674360-01 191.4 1112.0
0.0000 0.000000 2.881700e-07 1.000000e-16 8.802800e-11 0.0 160000.0

Table 4.1: Average scaled errors and reconstruction parameters for different values of δ and m over 5 trials.

Figure 4.7: Bar chart showing average scaled errors and reconstruction parameters for the reconstruction of
q = x2 for different values of m and δ.

m = 200 and δ = 0.001, TSVD supposedly performs better than Tikhonov regularization; however, we see
that on average 196 out of 200 singular values were truncated which means that a lot of the original data is
lost. Perhaps by using the Picard condition to choose the truncation parameter results in a more adequate
reconstruction. As shown in figure 4.4, for the case of m = 200 and δ = 0.0001 with seed=0, it seems as
though truncating 175 singular values might suffice since then the majority of remaining singular values will
then be larger than the Fourier coefficients of the noisy data. In this case we obtain the reconstruction shown
in figure 4.8. In this case we note a significant improvement in the reconstruction of q compared to regular
inversion, but certainly not less erroneous than the reconstruction with the smallest scaled error given in
4.5(b). Nonetheless, in the case that the true q were unknown and thus this ’best reconstruction’ unavailable,
using the Picard condition could allow for an initial choice of the truncation parameter. Nevertheless, we
note that 175 truncated singular values (out of a total of 200) is still a lot.

Since q = x2 is a smooth and regular function the fact that many singular values are truncated doesn’t
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Figure 4.8: 175 truncated singular values reconstruction for m = 200 with δ = 0.0001

cause too many problems in reconstruction. However, for different kinds of source functions and 2D imaging
it may be more problematic. Furthermore, note that for smaller noise levels Tikhonov regularization has
comparable error to TSVD as well as a small regularization parameter. The latter means that Tikhonov
remains closer to the original data for small amounts of noise as desired.

We note that overall, the truncated inversion method forces the reconstruction to have a sinusoidal shape,
which for a smooth curve with many discretization points may work well. Moreover, theoretically this allows
the reconstruction error to remain small. However, the number of truncated parameters is large whereas
Tikhonov may remain closer to the data fidelity term. Hence, for actual image reconstruction we cannot
conclude that TSVD would perform better.

4.2.2 Further exploration: two peaks

µ δ qd err qtikh err qtikh param qtrunc err qtrunc num qtrunc param

[0.25, 0.75]

0.1000 9.703e+ 04 5.027e+ 00 4.60e+ 00 5.067e+ 00 199.8 39.0
0.0100 3.521e+ 04 1.699e+ 01 8.20e− 05 1.679e+ 01 197.0 230.0
0.0010 3.590e+ 03 1.507e+ 01 1.00e− 06 1.516e+ 01 190.6 1276.0
0.0001 3.492e+ 02 9.876e+ 00 1.00e− 08 9.070e+ 00 171.4 8840.0
0.0000 3.244e− 11 4.094e− 07 1.00e− 16 1.460e− 10 2.0 160000.0

[0.4, 0.6]

0.1000 9.753e+ 04 4.951e+ 00 2.80e− 03 4.959e+ 00 199.0 79.0
0.0100 3.892e+ 04 1.814e+ 01 8.20e− 05 1.839e+ 01 199.0 79.0
0.0010 4.031e+ 03 1.633e+ 01 1.00e− 06 1.681e+ 01 189.0 1600.0
0.0001 3.921e+ 02 1.081e+ 01 1.00e− 08 1.010e+ 01 171.0 9080.0
0.0000 2.081e− 11 4.597e− 07 1.00e− 16 1.392e− 13 3.0 160000.0

[0.45, 0.55]

0.1000 9.754e+ 04 4.850e+ 00 1.00e− 03 4.874e+ 00 199.0 79.0
0.0100 3.929e+ 04 1.750e+ 01 1.00e− 04 1.776e+ 01 197.4 217.6
0.0010 4.079e+ 03 1.694e+ 01 2.80e− 06 1.763e+ 01 193.4 726.0
0.0001 3.967e+ 02 9.994e+ 00 1.00e− 08 1.016e+ 01 175.0 7100.0
0.0000 1.597e− 11 4.651e− 07 1.00e− 16 1.387e− 10 2.0 160000.0

Table 4.2: Table of average scaled errors and reconstruction parameters for each µi pair with different δ.

The average scaled errors and parameters for the reconstruction of two Gaussian peaks are displayed
in Figure 4.2 where µi = [0.25, 0.75] are the peaks that are furthest apart and µi = [0.45, 0.55] are closest
together. First we note once again that a regular inverse does not suffice for the reconstruction. The largest
average scaled error occurs for the peaks closest together and with most noise as expected. The value
of this error is 9.75 × 104. We note that for no noise the average scaled error no longer obtains a value
0. For µi pair (0.25, 0.75) this could be explained because the boundary conditions taken into account by
matrix A do not hold. However, in the case of (0.4, 0.6) and (0.45, 0.55) the boundary conditions hold (since
Φ′(0) = −2Φ(0) = 0 = 2Φ(1) = Φ′(1)), thus we conclude that the difficulty in reconstruction there has to
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do with the ill-posedness rather than the holding of the boundary conditions.

Figure 4.9: Bar chart showing average scaled errors and reconstruction parameters for the reconstruction of
two gaussian peaks with different values of δ and µi pairs.

Moreover, the average scaled error increases as the peaks are brought closer together. Intuitively this
makes sense because it becomes more difficult to distinguish the two peaks. The average scaled errors for
the TSVD solution and Tikhonov regularization method are displayed in figure 4.9. We note that overall the
errors behave similar to before in that for noise levels 0.01 to 0 the average scaled error decreases. Moreover,
it is important to note that although the average scaled error for noise level δ = 0.1 is the smallest, this is
definitely not the best reconstruction. In fact, in this case both reconstruction methods no longer identify
either of the peaks altogether as shown for µ = (0.25, 0.75) in figure 4.10.

(a) TSVD (b) Tikhonov regularization

Figure 4.10: Reconstruction with m = 200 for δ = 0.1 (seed=0) using TSVD and Tikhonov regularization.

We consider the reconstruction of the peaks with µi = (0.4, 0.6) and noise level 0.0001. The results for
seed=0 are shown in figure 4.11. In the case of both methods, the size of the peaks are underestimated.
Moreover, both methods contain noise on the sides of the peaks. If there is a priori knowledge available
on the shape of the source function this could be easily filtered using some sort of threshold. However, in
general in applications the true value of the source function is unknown. In that case, it seems as though the
truncated inversion solution is more easily misinterpreted to have more peaks, due to the sinusoidal shape
and general regularity of the noisy reconstruction compared to Tikhonov regularization. Nevertheless, it
must be noted that Tikhonov regularization can easily lead to oversmoothing.
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(a) TSVD solution (b) Tikhonov regularization

Figure 4.11: Reconstruction of 2 peaks with mu = (0.4, 0.6) and noise δ = 0.0001, seed=0.

δ qd err qtikh err qtikh param qtrunc err qtrunc num qtrunc param
0.1000 6.682320e+01 2.239460e+00 1.000000e+00 4.731780e+00 2.0 26.0
0.0100 1.842580e+01 4.476820e+00 8.200000e-06 4.738980e+00 2.0 350.0
0.0010 1.902020e+00 1.209480e+00 1.000000e-09 1.358980e+00 2.0 47800.0
0.0001 1.902180e-01 1.852720e-01 1.000000e-11 1.859640e-01 2.0 100000.0
0.0000 5.149100e-11 3.969800e-07 1.000000e-16 7.669600e-11 2.0 100000.0

Table 4.3: Table of average scaled errors and reconstruction parameters for the reconstruction of
shepp_logan_phantom() 2D image for δ = 0.1, 0.01, 0.001, 0.0001 and 0.

4.2.3 2D reconstruction

The average scaled errors in the reconstruction of shepp_logan_phantom() over 5 trials is displayed in
Table 4.3. We note once again that the errors in regular reconstruction increase as δ increases. Interesting

Figure 4.12: Average scaled errors over 5 trials of TSVD solution and Tikhonov regularization for the
shepp_logan_phanton with noise δ = 0.1, 0.01, 0.001, 0.0001 and 0

to note is that the largest average scaled error, which occurs for δ = 0.1, is much smaller than in the
previous 1 dimensional reconstructions at 66.8. The average scaled errors for the Truncated Singular Value
Decomposition solution (TSVD) and Tikhonov regularization are graphed in figure 4.12. These are smaller
than for the reconstruction of 2 peaks but larger than the 1 dimensional reconstruction of q = x2. As
expected, we note that Tikhonov regularization has a lower scaled error than TSVD. Interesting to note is
that at the lowest amount of noise δ = 0.0001 the average scaled error is comparable (4.74 and 4.48). For
seed=0 the reconstruction looks as shown in figure 4.13(b).
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(a) δ = 0 (b) δ = 0.0001

(c) δ = 0.001 (d) δ = 0.01

(e) δ = 0.1

Figure 4.13: Reconstruction using regular inversion (top right), TSVD (bottom left) and Tikhonov (bottom
right) of shepp_logan_phantom() for different δ values seed=0.

We note that indeed all three reconstructions are similar. The biggest statistical difference is found at
δ = 0.1, figure 4.13(e), TSVD has a slightly larger scaled error than Tikhonov regularization; however, in
terms of image reconstruction, all three methods are insufficient. For δ = 0.01 we see that even the regular
inverse actually performs alright in that the outer border and two main dark shapes are distinguished.
Nonetheless, the other shapes are lost; resolution is lower due to the loss of contrast. This is recovered
best with Tikhonov regularization, where the top circle is also visible. Although the image appears blurry,
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using Tikhonov regularization now three main shapes are still notable. Yet the smaller details are still
lost. Compared to the regular inverse the shape is blurrier however the contrast of the border is clearer
in Tikhonov. The image reconstructed using TSVD is so blurry that even the overall shape is distorted.
δ = 0.001 is an interesting case. Reconstruction with the regular inverse is good, nonetheless both Tikhonov
regularization and TSVD solution has a greater contrast and thus can distinguish the smaller details better.
We note that Tikhonov is slightly better than the truncated inverse. For noise level δ = 0.0001 and no noise
the reconstructions are optically similar (in the case of no noise identical).
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Chapter 5

Concluding Remarks

In this chapter a conclusion is drawn from the numerical experiments and possible extensions to this project
are suggested.

5.1 Conclusion

Bioluminescence Tomography is governed by the Radiative Transfer Equation, a six-variable integro-differential
equation. By applying the diffusion approximation, we obtain a simpler 2nd order differential equation in
section 2. This equation is, in the case of the steady-state assumption, dependent only on space. In terms of
computational complexity, this is a much simpler problem to tackle. However, obtaining the source function
from discrete (and incomplete) data is an ill-posed inverse problem. Han and Wang in [3] thus proceed to ap-
ply the idea of Tikhonov regularization to the variational formulation of the problem, which by Lax-Milgram
does have a unique solution. Following this idea, we discretize the problem and implement a reconstruction
of various source functions using a) a regular inversion, b) a truncated singular value decomposition and c)
Tikhonov regularization in section 3 for comparison.

The results presented in section 4 of these numerical experiments emphasize the ill-posedness of the
problem. We note that in one dimension the reconstruction from noisy data points without any form of
regularization was inadequate, even in the case of a smooth one-dimensional source function q = x2. Both
alternative methods, namely Truncated Singular Value Decomposition (TSVD) and Tikhonov regularization,
performed significantly better. Nevertheless, it must be pointed out that in our case we had complete
knowledge of the source function we were attempting to reconstruct, which in applications is often not the
case. This causes reconstruction to be even more difficult. For instance, it was noted that choosing the
truncation parameter using the Picard condition resulted in a slightly less accurate reconstruction than
when using the smallest scaled norm. Having said that, using the Picard condition for choosing a truncation
parameter is a valid option if no a priori information is known of what the source function should look like,
despite that it is not the optimal solution.

TSVD and Tikhonov regularization performed similarly well in reconstruction of q = x2 and also
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σ2 . Nevertheless, in the latter case, TSVD had the disadvantage that

the reconstruction could be more readily misinterpreted due to the forced sinusoidal-like shape and thus
extra ’peaks’. The advantage of Tikhonov regularization became most apparent in the two-dimensional
reconstruction as for larger noise TSVD became significantly more blurry than Tikhonov regularization.
Nevertheless, we still see that for larger noise it still performs slightly better than the regular inversion.
Surprisingly, the regular inversion worked well for noise levels under δ = 0.001.

Despite its advantages, Tikhonov regularization can result in the oversmoothing of an image. This means
that edges could be blurred out. Hence, it would be an interesting extension to this project to test a method
such as Total Variance regularization which allows for edges. This is also interesting for applications of
BLT since it would allow for clearer identification of for instance organs in medical imaging. Moreover, in
this project it was assumed that certain parameters were constants, which in general is not the case. The
incorporation of their true value would be a valuable addition to this investigation. Lastly, note that the
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diffusion approximation is already an approximation, [1] suggests the development of a new approach which
combines the Monte Carlo method (applied directly to the Radiative Transfer Equation) and the diffusion
equation. This indeed seems like an interesting option which would allow for more accuracy at a slightly
higher computational cost, but not too involved as the Monte Carlo Method is on its own.

In conclusion, these results give a glimpse on the ill-posedness of the inverse problem related to Biolumi-
nescence Tomography of reconstructing the source function from (noisy) data, but leave plenty of room for
further analysis. It will be interesting to see the developments within this field in a couple of years.
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Appendix A

Extras

A.1 Ensuring the Correct Implementation of Matrix A

Before conducting the numerical experiments it was crucial that matrix A given in [ref] be implemented
correctly in python. To do this we choose a function to describe our measurements and compute the
corresponding source function by hand. We compare this with obtaining q from matrix A.

A.1.1 Chooising a simple source function

We take an arbitrary function to describe our hypothetical measurements Φ = ax3 + bx2 + cx + d on [0, 1]
and require that Φ satisfies the boundary conditions (2.15)-(2.16), i.e.

Φ′(x) = 3ax2 + 2bx+ c

3a(0)2 + 2b(0) + c = −2(a(0)3 + b(0)2 + c(0) + d)

c = −2d

and

3a(1)2 + 2b(1) + c = 2(a(1)3 + b(1)2 + c(1) + d)

3a+ 2b+ c = 2a+ 2b+ 2c+ 2d

a− c = d

Hence, the simplest scenario to test would a = c = d = 0, namely Φ = x2.

A.1.2 Implementing matrix A

Given Φ we hence expect q to be

q(x) = −Φ′′ +Φ = −2 + x2

In other words, we want AΦ = −2 + x2 for large n where Φ = (Φi) with Φi = Φ(xi). Φ was implemented
with function func(x) and discretized using discrete(function) given in Appendix B.1 (lines 4-5 and
52-61 respectively). The corresponding q was computed (Appendix B.2 line 23) as q = AΦ where matrix A
was implemented using the function getA(m) presented in Appendix B.1 (lines 18 - 61). As shown in Figure
[ref], we note that indeed the two graphs (blue=true value and orange=discretized reconstruction) coincide.
We also note that the reconstruction improves when a larger number of grid points are used. Note that for
m = 10 in (a) there is a slight discrepancy around x = 0 whereas this is negligible in the graph for m = 200
(c). We conclude that the implementation of A is correct and move on to the reconstruction of noisy data.
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Appendix B

Python Code

The following chapter includes all of the code I wrote for the numerical exploration of this thesis. B.1
contains all the predefined functions used to compute the solutions from the (noisy) data. B.2 contains 1
trial of the numerical experiment conducted in 4.

B.1 untitled0.py

1 import numpy as np

2

3 #function

4 def func(x):

5 return x**2

6

7 #derivative of function

8 def funcprime(x):

9 return 2*x

10

11 #construct matrix A and corresponding x-axis

12 def getK(m):

13 K = np.linalg.inv(getA(m))

14 x = np.linspace(0,1,m+2)

15 return K,x

16

17 #construct matrix A of Finite Discretization Method

18 def getA(m):

19 h = float(1/(m+1))

20 H = -(1/(h**2))

21 A = np.zeros((m+2,m+2))

22

23 #left boundary

24 A[0,0] = H*(4*h-2)

25 A[0,1] = H*(2-h**2)

26
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27 #u_i-1

28 i=1

29 while i<=m:

30 A[i,i-1]=H

31 i=i+1

32

33 #u_i

34 i=1

35 value=-H*(2+h**2)

36 while i<=m:

37 A[i,i]=value

38 i=i+1

39

40 #u_i+1

41 i=1

42 while i<=m:

43 A[i,i+1]=H

44 i=i+1

45

46 #right boundary

47 A[m+1,m]=H*2

48 A[m+1,m+1]=H*(4*h-(2+h**2))

49 return A

50

51 #discretization of function

52 def discrete(function,m):

53 h = float(1/(m+1))

54 j=0

55 phi=[]

56 while j<=m+1:

57 x=j*h

58 a=function(x)

59 phi.append(a)

60 j=j+1

61 return phi

62

63 #check boundary conditions

64 def checkBC(func,funcprime):

65 nulcheck = funcprime(0) + 2*func(0)

66 onecheck = funcprime(1) - 2*func(1)

67 if nulcheck ==0 and onecheck ==0:

68 ans = print("boundary conditions hold")

69 return ans

70 else:

71 print("0 boundary condition: ", nulcheck)
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72 print("1 boundary condition: ", onecheck)

73 return False

74

75 #additive noise

76 def noisy_add(phi,delta):

77 noise = delta*np.random.randn(len(phi))

78 phi_del = phi + noise

79 return phi_del

80

81 #truncated singular value decomposition solution with smallest scaled error

82 def best_trunc(A,phi_del,q):

83 U, s, v = np.linalg.svd(A) #singular value decomposition

84 trunc = s[0]

85 Norm = []

86 alt =0

87 this = 400000

88 while trunc>0:

89 copy = s #initialize a copy of the singular values to truncated

90 i=0

91 while i < len(s):

92 if copy[i] > trunc:

93 copy[i]=0

94 i=i+1

95 A1 = np.matmul(np.matmul(U,np.diag(copy)),v) #truncated A

96 q1 = np.matmul(A1,phi_del)

97 norm = np.linalg.norm(q-q1)/np.linalg.norm(phi_del)

98 Norm.append(norm)

99 if norm<this: #remember smallest scaled error and corresponding truncation parameter

100 this=norm

101 alt=q1

102 hi=trunc

103 j=0

104 for r in copy:

105 if r==0:

106 j+=1

107 trunc=trunc-10

108 print("upper truncation:", hi)

109 print("q vs q trunc error:", this)

110 return this, alt, hi, j

111 """"returns scaled error, TSVD solution, truncation parameter

112 and number of truncated singular values"""

113

114 #to check Picard condition

115 def Picard_check(U,phi,phi_del):

116 Picard=[]
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117 Picard_del=[]

118 i=0

119 while i<len(phi):

120 Picard.append(abs(np.dot(U[:,i],phi)))

121 Picard_del.append(abs(np.dot(U[:,i],phi_del)))

122 i=i+1

123 return Picard, Picard_del

124

125 #Tikhonov regularization solution

126 def Tikh_reg(U,s,v,phi,a):

127 ans=v.T@np.linalg.inv((np.diag(s**2)+(a*np.identity(len(s)))))@np.diag(s)@U.T@phi

128 return ans

129

130 #Tikhonov regularization with smallest scaled error

131 def best_Tikh(U,s,v,phi,q):

132 ANS=0

133 this=400

134 a=1e-16

135 while a<=100: #iterate over regularization parameter

136 q1=Tikh_reg(U,s,v,phi,a)

137 norm =np.linalg.norm(q-q1)/np.linalg.norm(phi)

138 if norm<this:

139 this=norm

140 ANS=q1

141 alph=a

142 a=a*10

143 return ANS,alph,this #returns regularized solution, parameter and scaled error

144

145 def bias_var(U, s, Vh,f,f_delta,u):

146 # error, bias and variance for TSVD

147 n=len(s)

148 error = np.zeros(n)

149 bias = np.zeros(n)

150 variance = np.zeros(n)

151 for k in range(0,n):

152 uk = Vh[:k,:].T@np.diag(1/s[:k])@U[:,:k].T@f

153 uk_delta = Vh[:k,:].T@np.diag(1/s[:k])@U[:,:k].T@f_delta

154 error[k] = np.linalg.norm(u - uk_delta)

155 bias[k] = np.linalg.norm(u - uk)

156 variance[k] = np.linalg.norm(uk - uk_delta)

157

158 return error, bias, variance
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B.2 CORRECTTHESIS.py

The option of user input for values of m and δ (instead of argument line input) is possible and given in lines
11 and 39 respectively.

1 import importlib as imp

2 import numpy as np

3 import matplotlib.pyplot as mp

4 import untitled0 as u

5 imp.reload(u)

6 from sys import argv

7 #PART 1: Constructing and testing matrix A in A*phi=q

8

9 m=int(argv[1])

10 #how many internal grid points

11 #m = int(input("How many internal grid points should be used? (Insert positive integer): "))

12

13 # construct matrix A

14 A = u.getA(m)

15

16 #discretize phi

17 phi = u.discrete(u.func,m)

18

19 #check boundary conditions

20 u.checkBC(u.func,u.funcprime)

21

22 #compute q = A*phi

23 q = np.matmul(A,phi)

24

25 #graph q vs -ddphi + phi

26 xaxis2 = np.linspace(0.0, 1.0, 1000)

27 xaxis = np.linspace(0,1,m+2)

28

29 mp.figure(0)

30 mp.title("Test of A")

31 mp.xlabel("x")

32 mp.ylabel("q(x)")

33 mp.plot(xaxis,q,label='q=A*phi')

34 mp.plot(xaxis2,u.func(xaxis2)-2,label='q=-ddphi+phi')

35 mp.legend()

36

37

38 #PART 2: adding noise

39 delta = float(argv[2])

40 #delta = float(input("Noise level to be added: "))

41 phi_del = u.noisy_add(phi,delta)
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42

43 #compute q from noisy measurements

44 q_del = np.matmul(A,phi_del)

45

46 #plotting

47 mp.figure(1)

48 mp.title("Regular Inversion, delta ="+str(delta)+", m = "+str(m))

49 mp.xlabel("x")

50 mp.ylabel("q(x)")

51 mp.plot(xaxis,q,'b',label='q')

52 mp.plot(xaxis,q_del,'r*',label='q_del')

53 mp.legend()

54

55 err = np.linalg.norm(q-q_del)/np.linalg.norm(phi_del)

56 print("q vs q del error: ", err)

57

58 #PART 3

59 #truncated solution

60 #choosing best truncation parameter

61 trunc_err, alt, trunc_param, numb = u.best_trunc(A,phi_del,q)

62 print("number of truncated s: ",numb)

63

64 #plot

65 mp.figure(2)

66 mp.title("Truncated Inversion, delta ="+str(delta)+", m = "+str(m))

67 mp.xlabel("x")

68 mp.ylabel("q(x)")

69 mp.plot(xaxis,q,'b',label='q')

70 mp.plot(xaxis,alt,'r*',label='q_trunc')

71 mp.legend()

72 mp.show()

73

74 #PART 4

75 #Calculating picard condition

76 U, s, v = np.linalg.svd(np.linalg.inv(A))

77 Picard, Picard_del = u.Picard_check(U,phi,phi_del)

78

79 mp.figure(3)

80 mp.title("Picard Condition, delta ="+str(delta)+", m = "+str(m))

81 mp.xlabel("n")

82 mp.semilogy(xaxis*(m+2),s,'go',label='sigma')

83 mp.semilogy(xaxis*(m+2),Picard,'b^',label='|u*phi|')

84 mp.semilogy(xaxis*(m+2),Picard_del,'r*',label='|u*phi_del|')

85 mp.legend()

86 mp.show()
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87

88 #PART 5

89 #Tikhonov regularization

90 ans,a,NORM = u.best_Tikh(U,s,v,phi_del,q)

91

92 print("parameter alpha: ",a)

93 print("error in tikhonov: ", NORM)

94

95 #plot

96 mp.figure(4)

97 mp.title("Tikhonov Regularization, delta ="+str(delta)+", m = "+str(m))

98 mp.xlabel("x")

99 mp.ylabel("q(x)")

100 mp.plot(xaxis,q,'b',label='q')

101 mp.plot(xaxis, ans, 'y*', label='tikh')

102 mp.legend()

103 mp.show()

104

105 #PART 6

106 #Visualize bias variance tradeoff for TSVD

107 error, bias, variance = u.bias_var(U, s, v,phi,phi_del,q)

108

109 k = np.linspace(0,m+1,m+2)

110 mp.figure(5)

111 mp.title("Bias Variance Trade-Off, delta ="+str(delta)+", m = "+str(m))

112 mp.plot(k,bias,label='bias')

113 mp.plot(k,variance,label='variance')

114

115 mp.xlabel('number of singular values cut off')

116 mp.ylabel('error')

117 #note that limits are best adjusted manually depending on value of delta

118 #mp.ylim([0,10])

119 #mp.xlim([0,10])

120

121 mp.legend()

122 mp.show()

123

124 print("condition number of A: ",np.linalg.cond(A))

B.3 DATACOLLECTIONtrue.py

1 from numpy import random

2 import pandas as pd

3
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4 #m and delta values tested

5 list_m = [10,20,100,200]

6 list_delta = [0.1,0.01,0.001,0.0001,0]

7

8 #one trial of numerical experiment

9 def data_collection(r=0,list_m=list_m,list_delta=list_delta):

10 df = pd.DataFrame()

11 first_row=[]

12 qd_error_list=[]

13 qtrunc_error_list=[]

14 qtrunc_param_list=[]

15 qtrunc_num_list=[]

16 qtikh_error_list=[]

17 qtikh_param_list=[]

18 for i in list_m:

19 random.seed(r) #set seed

20 for d in list_delta:

21 first_row.append(tuple([i,d]))

22 this = str(i)+' '+str(d)

23 runfile('C:/Users/jocel/Thesis/CORRECTTHESIS.py', args=this,\

24 wdir='C:/Users/jocel/Thesis')

25 qd_error_list. append(float('%.5g'%err))

26 qtrunc_error_list.append(float('%.5g'%trunc_err))

27 qtrunc_param_list.append(float('%.2g'%trunc_param))

28 qtrunc_num_list.append(numb)

29 qtikh_error_list.append(float('%.5g'%NORM))

30 qtikh_param_list.append(float('%.2g'%a))

31 d+=1

32 df = pd.DataFrame(

33 {"qd err" : qd_error_list,

34 "qtrunc err" : qtrunc_error_list,

35 "qtrunc param": qtrunc_param_list,

36 "qtrunc num": qtrunc_num_list,

37 "qtikh err": qtikh_error_list,

38 "qtikh param": qtikh_param_list},

39 index = pd.MultiIndex.from_tuples(first_row

40 , names=["m","delta"]))

41 return df

42

43

44 trials = 5

45

46 i=1

47 data=data_collection(0)

48 result=data
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49 while i < trials:

50 one_trial = data_collection(i)

51 data = pd.merge(data,one_trial,on=["m","delta"])

52 result = pd.concat([result,one_trial],axis=1)

53 i+=1

54 pd.set_option('display.max_columns', None)

55 print(data)

56

57 #display means over 5 trials

58 print(result.groupby(level=0,axis=1).mean())

59 result.loc[:, ~result.columns.isin(['qd err','qtikh param', 'qtrunc param', 'qtrunc num'])]\

60 .groupby(level=0,axis=1).mean().plot.bar();

B.4 TwoPeaks.py

1 import importlib as imp

2 import untitled0 as u

3 import numpy as np

4 import matplotlib.pyplot as mp

5 imp.reload(u)

6 from sys import argv

7

8 #gaussian

9 def gauss(x,sigma,mu):

10 frac = 1/(2*np.sqrt(np.pi*sigma))

11 powe = -0.5*((x-mu)**2/sigma**2)

12 expo = np.e**(powe)

13 return frac*expo

14

15 #two peaks

16 def twopeaks(x):

17 peakone = gauss(x,0.01,float(argv[1]))

18 peaktwo = gauss(x,0.01,float(argv[2]))

19 return peakone+peaktwo

20

21 m=200

22

23 q = u.discrete(twopeaks,m)

24 A = u.getA(m)

25 phi = np.linalg.inv(A)@q

26

27 xaxis2 = np.linspace(0.0, 1.0, 1000)

28 xaxis = np.linspace(0,1,m+2)

29
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30 #PART 2: adding noise

31 delta = float(argv[3])

32 #delta = float(input("Noise level to be added: "))

33 phi_del = u.noisy_add(phi,delta)

34

35 #compute q from noisy measurements

36 q_del = np.matmul(A,phi_del)

37

38 mp.figure(1)

39 mp.title("Regular Inversion, delta ="+str(delta))

40 mp.xlabel("x")

41 mp.ylabel("q(x)")

42 mp.plot(xaxis,q,'b',label='q')

43 mp.plot(xaxis,q_del,'r*',label='q_del')

44 mp.legend()

45

46 err = np.linalg.norm(q-q_del)/np.linalg.norm(phi_del)

47 print("q vs q del error: ", err)

48

49 #PART 3

50 #truncated solution

51 #choosing best truncation parameter

52 trunc_err, alt, trunc_param, numb = u.best_trunc(A,phi_del,q)

53 print("number of truncated s: ",numb)

54

55 mp.figure(2)

56 mp.title("Truncated Inversion, delta ="+str(delta))

57 mp.xlabel("x")

58 mp.ylabel("q(x)")

59 mp.plot(xaxis,q,'b',label='q')

60 mp.plot(xaxis,alt,'r*',label='q_trunc')

61 mp.legend()

62 mp.show()

63

64 #PART 4

65 #Calculating picard condition

66 U, s, v = np.linalg.svd(np.linalg.inv(A))

67 Picard, Picard_del = u.Picard_check(U,phi,phi_del)

68

69 mp.figure(3)

70 mp.title("Picard Condition, delta ="+str(delta))

71 mp.xlabel("n")

72 mp.semilogy(xaxis*(m+2),s,'go',label='sigma')

73 mp.semilogy(xaxis*(m+2),Picard,'b^',label='|u*phi|')

74 mp.semilogy(xaxis*(m+2),Picard_del,'r*',label='|u*phi_del|')
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75 mp.legend()

76 mp.show()

77

78 #PART 5

79 #Tikhonov regularization

80 ans,a,NORM = u.best_Tikh(U,s,v,phi_del,q)

81

82 print("parameter alpha: ",a)

83 print("error in tikhonov: ", NORM)

84 mp.figure(4)

85 mp.title("Tikhonov Regularization, delta ="+str(delta))

86 mp.xlabel("x")

87 mp.ylabel("q(x)")

88 mp.plot(xaxis,q,'b',label='q')

89 mp.plot(xaxis, ans, 'y*', label='tikh')

90 mp.legend()

91 mp.show()

92

93 #PART 6

94 #Visualize bias variance tradeoff for TSVD

95 error, bias, variance = u.bias_var(U, s, v,phi,phi_del,q)

96

97 k = np.linspace(0,m+1,m+2)

98 mp.figure(5)

99 mp.title("Bias Variance Trade-Off, delta ="+str(delta))

100 mp.plot(k,bias,label='bias')

101 mp.plot(k,variance,label='variance')

102

103 mp.xlabel('number of singular values cut off')

104 mp.ylabel('error')

105 #note that limits are best adjusted manually depending on value of delta

106 #mp.ylim([0,10])

107 #mp.xlim([0,10])

108

109 mp.legend()

110 mp.show()

111

112 print("condition number of A: ",np.linalg.cond(A))

B.5 TPdatacollection.py

1 from numpy import random

2 import pandas as pd

3
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4 #mu paris of the gaussian peaks tested

5 list_mu = [[0.25,0.75],[0.4,0.6],[0.45,0.55]]

6 list_delta = [0.1,0.01,0.001,0.0001,0]

7

8 def data_collection(r=0,list_mu=list_mu,list_delta=list_delta):

9 df = pd.DataFrame()

10 first_row=[]

11 qd_error_list=[]

12 qtrunc_error_list=[]

13 qtrunc_param_list=[]

14 qtrunc_num_list=[]

15 qtikh_error_list=[]

16 qtikh_param_list=[]

17 for i in list_mu:

18 random.seed(r)

19 for d in list_delta:

20 first_row.append(tuple([str(i),d]))

21 this = str(i[0])+' '+str(i[1])+' '+str(d)

22 runfile('C:/Users/jocel/Thesis/TwoPeaks.py', args=this,\

23 wdir='C:/Users/jocel/Thesis')

24 qd_error_list.append(float('%.5g'%err))

25 qtrunc_error_list.append(float('%.5g'%trunc_err))

26 qtrunc_param_list.append(float('%.2g'%trunc_param))

27 qtrunc_num_list.append(numb)

28 qtikh_error_list.append(float('%.5g'%NORM))

29 qtikh_param_list.append(float('%.2g'%a))

30 d+=1

31 df = pd.DataFrame(

32 {"qd err" : qd_error_list,

33 "qtrunc err" : qtrunc_error_list,

34 "qtrunc param": qtrunc_param_list,

35 "qtrunc num": qtrunc_num_list,

36 "qtikh err": qtikh_error_list,

37 "qtikh param": qtikh_param_list},

38 index = pd.MultiIndex.from_tuples(first_row

39 , names=["mu","delta"]))

40 return df

41

42 trials = 5

43

44 i=1

45 data=data_collection(0)

46 result=data

47 while i < trials:

48 one_trial = data_collection(i)
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49 data = pd.merge(data,one_trial,on=["mu","delta"])

50 result = pd.concat([result,one_trial],axis=1)

51 i+=1

52 print(data)

53

54 pd.set_option('display.max_columns', None)

55 print(result.groupby(level=0,axis=1).mean())

56

57 result.loc[:, ~result.columns.isin(['qd err','qtikh param', 'qtrunc param','qtrunc num'])]\

58 .groupby(level=0,axis=1).mean().plot.bar();

B.6 2dimages.py

1 import importlib as imp

2 import numpy as np

3 import matplotlib.pyplot as mp

4 import untitled0 as u

5 imp.reload(u)

6 from sys import argv

7

8 from skimage.data import shepp_logan_phantom,camera

9 from skimage.transform import radon, rescale

10 #PART 1: Constructing and testing matrix A in A*phi=q

11

12 #how many internal grid points

13 m = 158

14 #m=203 #alternative m for reconstructing camera() instead of phantom

15

16 # construct matrix A

17 A = u.getA(m)

18

19 #discretize phi

20 q = rescale(shepp_logan_phantom(), scale=0.4, mode='reflect', multichannel=False)

21 #q = rescale(camera(), scale=0.4, mode='reflect', multichannel=False)

22

23 #compute q = A*phi

24 phi = np.matmul(np.linalg.inv(A),q)

25

26

27 fig, ax = mp.subplots(2, 2, figsize=(8, 4.5), sharey=False)

28 ax[0,0].imshow(q, cmap=mp.cm.Greys_r, extent=(0, 1, 0, 1))

29 ax[0,0].set_title("true")

30

31 #PART 2: adding noise
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32 delta = float(argv[1])

33 #delta = float(input("Noise level to be added: "))

34 phi_del = u.noisy_add(phi,delta)

35

36 #compute q from noisy measurements

37 q_del = np.matmul(A,phi_del)

38 ax[0,1].imshow(q_del, cmap=mp.cm.Greys_r, extent=(0, 1, 0, 1))

39 ax[0,1].set_title("regular inversion")

40 err = np.linalg.norm(q-q_del)/np.linalg.norm(phi_del)

41 print("q vs q del error: ", err)

42

43 #PART 3

44 #truncated solution

45 #choosing best truncation parameter

46 trunc_err, alt, trunc_param, numb= u.best_trunc(A,phi_del,q)

47 ax[1,0].imshow(alt,cmap=mp.cm.Greys_r,extent=(0,1,0,1))

48 ax[1,0].set_title("truncated inverse")

49

50 #PART 4

51 #Calculating picard condition

52 U, s, v = np.linalg.svd(np.linalg.inv(A))

53 Picard, Picard_del = u.Picard_check(U,phi,phi_del)

54

55 #PART 5

56 #Tikhonov regularization

57 ans,a,NORM = u.best_Tikh(U,s,v,phi_del,q)

58

59 ax[1,1].imshow(ans,cmap=mp.cm.Greys_r,extent=(0,1,0,1))

60 ax[1,1].set_title("Tikhonov")

61 print("parameter alpha: ",a)

62 print("error in tikhonov: ", NORM)

63

64 #PART 6

65 #Visualize bias variance tradeoff for TSVD

66 error, bias, variance = u.bias_var(U, s, v,phi,phi_del,q)

67

68 k = np.linspace(0,m+1,m+2)

69 mp.figure(5)

70 mp.title("Bias Variance Trade-Off, delta ="+str(delta)+", m = "+str(m))

71 mp.plot(k,bias,label='bias')

72 mp.plot(k,variance,label='variance')

73

74 mp.xlabel('number of singular values cut off')

75 mp.ylabel('error')

76 #note that limits are best adjusted manually depending on value of delta
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77 #mp.ylim([0,10])

78 #mp.xlim([0,10])

79

80 mp.legend()

81 mp.show()

82

83 print("condition number of A: ",np.linalg.cond(A))

B.7 untitled1.py

1 from numpy import random

2 import pandas as pd

3

4 list_delta = [0.1,0.01,0.001,0.0001,0]

5

6 def data_collection(r=0,list_delta=list_delta):

7 df = pd.DataFrame()

8 first_row=[]

9 qd_error_list=[]

10 qtrunc_error_list=[]

11 qtrunc_param_list=[]

12 qtrunc_num_list=[]

13 qtikh_error_list=[]

14 qtikh_param_list=[]

15 for i in list_delta:

16 random.seed(r)

17 first_row.append(tuple([i]))

18 this = str(i)

19 runfile('C:/Users/jocel/Thesis/2dimages.py', args=this,\

20 wdir='C:/Users/jocel/Thesis')

21 qd_error_list. append(float('%.5g'%err))

22 qtrunc_error_list.append(float('%.5g'%trunc_err))

23 qtrunc_param_list.append(float('%.2g'%trunc_param))

24 qtrunc_num_list.append(numb)

25 qtikh_error_list.append(float('%.5g'%NORM))

26 qtikh_param_list.append(float('%.2g'%a))

27 df = pd.DataFrame(

28 {"qd err" : qd_error_list,

29 "qtrunc err" : qtrunc_error_list,

30 "qtrunc param": qtrunc_param_list,

31 "qtrunc num": qtrunc_num_list,

32 "qtikh err": qtikh_error_list,

33 "qtikh param": qtikh_param_list},

34 index = pd.MultiIndex.from_tuples(first_row
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35 , names=["delta"]))

36 return df

37

38 trials = 5

39

40 i=1

41 data=data_collection(0)

42 result=data

43 while i < trials:

44 one_trial = data_collection(i)

45 data = pd.merge(data,one_trial,on=["delta"])

46 result = pd.concat([result,one_trial],axis=1)

47 i+=1

48 pd.set_option('display.max_columns', None)

49 print(data)

50 print(result.groupby(level=0,axis=1).mean())

51 result.loc[:, ~result.columns.isin(['qd err','qtikh param', 'qtrunc param', 'qtrunc num'])]\

52 .groupby(level=0,axis=1).mean().plot.bar();
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