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1 Introduction

There are many mathematical similarities between codes and lattices. A code C ⊂ Fnq
is a subspace over a finite field with the Hamming weight as the metric and a lattice
L ⊂ Rn is a discrete subspace of a Euclidean vector space with the Euclidean norm as the
metric. For an overview of all corresponding definitions used in this thesis, see the end
of the introduction. Codes and lattices also have similar applications in cryptography.

In cryptography, decoding systems can be based on finding closest codewords of lattice
points from a specific element. Both the closest codeword problem and closest vector
problem are NP-hard [APY09; Hof08] and they seem to be exponentially hard for a
larger dimension n. Therefore, a lot of research has been based on finding algorithms
that solve these problems. An algorithm that finds a codeword of a specific Hamming
weight [Ste88], an algorithm that tries to validate whether the nearest codeword is the
original message [LB88] and an algorithm for finding the nearest codeword [MO15] are
examples of the research that has been done.

Sometimes a technique or algorithm used for lattices is used as a base for an algorithm in
coding theory or the other way around. For example, there is the Blum-Kalai-Wasserman
algorithm [BKW03] for solving the Learning Parity with Noise problem for lattices. It
was fundamental for finding an algorithm for the Learning with Errors problem [Alb+15]
for q-ary codes. Another example is the use of locality-sensitive hashing for random
binary linear codes [MO15] was the foundation for locality-sensitive hashing for lattices
[Laa15b]. And the LLL algorithm for lattices [LLL82] had been adapted to find an
analogous algorithm for binary codes [DDW20].

In this thesis, we will give an algorithm to find a codeword with a small Hamming weight
based on the Nguyen-Vidick sieve algorithm [NV08]. This is an algorithm that tries to
solve the shortest vector problem, by having a list of vectors of a lattice L and reducing
the maximum size of these vectors in every iteration with a sieve factor 2

3 < γ < 1. The
original Nguyen-Vidick sieve algorithm for lattices is described in section 2.2.

Section 3 consists of some definitions and preliminaries for binary codes. It also describes
the adaptation of the LLL algorithm for binary codes. This section forms the groundwork
before proceeding to the adaptation of Nguyen-Vidick sieve algorithm for binary codes.

Our analogous algorithm for binary codes is described in section 4 It tries to find a
codeword of minimum Hamming weight. It starts with a list of codewords of the code
C and reduces the maximum Hamming weight of the codewords with a sieve factor
2
3 < γ < 1. The running time of our algorithm is O (1.0944)n.
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Below is an overview of corresponding definitions, that are used in this thesis, for codes
and for lattices. These definitions are written down more explicitly in the sections 2
and 3. For a more expanded list of analogous definitions between codes and lattices, see
[DDW20].

Lattice L ⊂ Rn Code C ⊂ Fn2
Ambient
space

Rn Fn2

Metric Euclidean norm: Hamming weight:
||x||2 =

∑
x2i |x| = #{i | xi 6= 0}

Support of
an element

R · x {i | xi 6= 0}

Auxiliary
matrix

Gram-Schmidt Orthogonalisation: Epipodal matrix:

b∗i = bi −
∑

j<i

〈bi,b∗j 〉
〈b∗j ,b∗j 〉

· b∗j b+
i = bi ∧ (b+

1 ∨ · · · ∨ b+
i−1)

Table 1: A dictionary for analogous definitions between codes and lattices.
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2 The original algorithms for lattices

We base the sieve algorithm for binary linear codes on the existing Nguyen-Vidick sieve
algorithm for lattices [NV08], which is a heuristic variant of the sieve algorithm by
Ajtai-Kumar-Sivakumar [AKS01]. Therefore, we first give the definitions, algorithms
and theorems that apply to the Nguyen-Vidick sieve algorithm. In this section, the
foundation is given before we continue to give the analogous definitions, algorithms and
theorems for binary linear codes. We start by giving the definitions, followed by the
LLL-algorithm and we end with the Nguyen-Vidick sieve algorithm.

Definition 2.1 (Lattice). Let n be a positive integer. A subset L of the n-dimensional
real vector space Rn is called a lattice if there exists a basis b1,b2, . . . ,bn of Rn such
that

L =
n∑
i=1

Zbi =

{
n∑
i=1

ribi | ri ∈ Z

}
.

Definition 2.2 (Inner product). For any two vectors x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn) in Rn we define the inner product of x and y as

〈x,y〉 = x1y1 + x2y2 + · · ·+ xnyn.

The intuitive notion of length of a vector is called the Euclidean norm.

Definition 2.3 (Euclidean norm). On the n-dimensional Euclidean space Rn, the Eu-
clidean norm of the vector x = (x1, x2, . . . , xn) is defined by the formula

||x|| :=
√
x21 + x22 + · · ·+ x2n.

Definition 2.4 (Gram-Schmidt orthogonalization, [LLL82]). Given a basis B =

b1
...

bn


of Rn. For 1 ≤ j < i ≤ n, the vectors b∗i and the real numbers µi,j are inductively
defined by

b∗i = bi −
i−1∑
j=1

µi,jb
∗
j (1)

µi,j =
〈bi,b∗j 〉
〈b∗j ,b∗j 〉

. (2)

Now B∗ = (b∗1,b
∗
2, . . . ,b

∗
n) is the Gram-Schmidt orthogonalization of B.

Note that for every next b∗i in equation (1), we know b∗j for all j < i and therefore we
are also able to calculate µi,j defined in equation (2) before calculating equation (1).
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2.1 The LLL algorithm for lattices

The well-known LLL algorithm runs in polynomial time and computes a so-called LLL
reduced matrix. It has several different applications in, for example, the algorithmic
number theory, integer programming or cryptology [NV10]. In the Nguyen-Vidick sieve
algorithm, the LLL reduced matrix is used as the input for the sieve algorithm. Hence,
the LLL algorithm is used as a first step to start with a ‘better’ representation of the
lattice before starting the sieving.

Definition 2.5 (LLL reduced, [LLL82]). A basis B = (b∗1,b
∗
2, . . . ,b

∗
n) is LLL reduced

if |µi,j | ≤ 1
2 for 1 ≤ j < i ≤ n and

||b∗i + µi,i−1b
∗
i−1|| ≥ ||b∗i−1|| for 1 < i ≤ n.

Algorithm 1 The LLL algorithm, [Hof08]

Input : A basis (b1, . . . ,bn) of a lattice L.
Output: An LLL reduced basis (b1, . . . ,bn).

1 k ← 2;
2 b∗1 ← b1;
3 while k ≤ n do
4 for j = 1 to k − 1 do
5 bk ← bk − bµk,jeb∗j ;
6 end
7 if ||b∗k|| ≥ (34 − µ

2
k,k−1)||bk−1|| then

8 k ← k + 1;
9 else

10 bk−1 ↔ bk;
11 k = max{k − 1, 2};
12 end

13 end
14 return (b1, . . . ,bn)

Let (b1, . . . ,bn) be a basis for a lattice L. Let bmax = max{||b1||, . . . , ||bn||}. Then the
running time of the LLL algorithm is O(n2 log(n) + n2 log(bmax)) [Hof08].
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2.2 The Nguyen-Vidick sieve algoritm for lattices

Now we look at the original sieve algorithm by Nguyen and Vidick [NV08]. It is split
into two algorithms, where Algorithm 3 uses Algorithm 2. For a lattice L ⊂ Rn, we
define

BL(R) := {vi ∈ L | vi ≤ R}.

Algorithm 2 LatticeSieve(S, γ), [NV08]

Input : A subset S of vectors in a lattice L and a sieve factor 2
3 < γ < 1.

Output: A subset S′ ⊆ BL(γR).
1 R← maxv∈S ||v||;
2 C ← ∅, S′ ← ∅;
3 for v ∈ S do
4 if ||v|| ≤ γR then
5 S′ ← S′ ∪ {v};
6 else
7 if ∃c ∈ C : ||v − c|| ≤ γR then
8 S′ ← S′ ∪ {v − c};
9 else

10 C ← C ∪ {v};
11 end

12 end

13 end
14 return S′;

Algorithm 2 is the sieve algorithm. It reduces the maximal Euclidean norm of the vectors
in the set S of the lattice L with a sieve factor 2

3 < γ < 1. Since the algorithm only sieves
vectors with a norm between γR and R, we make the following heuristic assumption:

Heuristic 2.6. We assume that at any stage in Algorithm 3, the vectors in S∩Cn(γ,R)
are uniformly distributed in Cn(γ,R) = {x ∈ Rn, γR ≤ ||x|| ≤ R}.
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Algorithm 3 Finding short lattice vectors based on sieving, [NV08]

Input : An LLL-reduced basis B = [b1, . . . ,bn] of a lattice L, a sieve factor γ such
that 2

3 < γ < 1, and a positive integer N .
Output: A short non-zero vector of L.

1 S ← ∅;
2 for j = 1 to N do
3 S ← S ∪ Sampling(B);
4 end
5 Remove all zero vectors from S;
6 S0 ← S;
7 repeat
8 S0 ← S;
9 S ← LatticeSieve(S, γ) using Algorithm 2;

10 Remove all zero vectors from S;

11 until S = ∅;
12 Compute v0 ∈ S0 such that ||v0|| = min{||v||, v ∈ S0};
13 return v0;

In steps 2-5 of Algorithm 3, we start with sampling N non-zero vectors of reasonable
length from the lattice L. The sampling of these vectors is done with some polynomial-
time algorithm K, which is described in section 4.2.1 of [NV08]. Under the assumption
that Heuristic 2.6 is true, the vectors are uniformly distributed in the spherical shell
Cn(γ,R). Hence, they shouldn’t be biased into any single direction.

Then, in steps 7-11 of Algorithm 3 the maximum Euclidean norm of the vectors in the
set S is reduced by the sieve factor γ with the use of Algorithm 2. The first iteration
uses the sampled vectors from steps 2-5, the next iterations uses the sieved set from the
previous iteration.

At the end of Algorithm 3, we are left with a non-zero vector of our lattice L. However,
it is not clear how short this vector is. This is dependent on the number of iterations
of steps 7-11. Since we have to repeat these steps until the set S is empty, we have to
know how the size of the set S decreases. This can be done through Algorithm 2, when
vectors are added to the set of centers C, or by eliminating zero vectors in step 10 of
Algorithm 3. Under the assumption that Heuristic 2.6 is true, the number of eliminated
zero vectors is negligible until R is too small. Hence, the critical point to determine
the complexity of Algorithm 3 is the estimation of the number of codewords in the set
centers C [NV08].

Therefore, the next lemma assesses the number of points in the set of centers C. For
the proof of this lemma see [NV08, Lemma 4.1].
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Lemma 2.7. Let n ∈ N and 2
3 < γ < 1. Define cH = 1

γ

√
1− γ2

4

and NC = cnHd3
√

2π(n+

1)
3
2 e. Let N be an integer. and S a subset of Cn(γ,R) of cardinality N whose points are

independently picked at random with uniform distribution.

1. If NC < N < 2n, then for any subset C ≤ S of size at least NC whose points
are picked independently at random with uniform distribution, with overwhelming
probability for all v ∈ S, there exists a c ∈ C such that ||v − c|| ≤ γ.

2. If N < 4
√

π
2n

√
4
3

n

, the expected number of points in S that are at distance at least

γ from all the other points in S at least (1− 1
n)N .

With the use of Lemma 2.7 the complexity of the Nguyen-Vidick sieve algorithm can be

calculated. This gives that the algorithm runs inO
((

4
3 + ε

)n)
time and usesO

((
4
3 + ε

)n
2

)
bits of memory (see [NV08, page 195] for details and the proof of this complexity).
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3 Definitions and preliminaries for binary codes

Before we start adapting the Nguyen-Vidick sieve algorithm from lattices for binary
codes, we have to introduce the analogous definitions. In the rest of this section, the
LLL algorithm for binary codes is explained and some estimations and heuristics are
made which are used for the analysis of the sieve algorithm for binary codes.

Definition 3.1 (Binary linear code). A binary linear code C of length n and dimension
k, also written as an [n, k]-code, is a linear subspace of Fn2 of dimension k.

All linear codes can be described by a set of linearly independent generators (the gen-
erator matrix ) or by a system of modular equations (parity-check representation). The
vectors in C are called codewords.

In this thesis, we will use a generator matrix to represent a code. The codewords are
linear combinations of the row vectors of a generator matrix. There are some different
binary linear codes that are constructed in a specific way, for example a Hamming code
or a Reed-Muller code. For more information about these codes, see [Lin12].

For binary codewords, elements of the vector space Fn2 , we use the standard boolean
notations. So x̄ is the bitwise negation, x ⊕ y is the bitwise XOR, x ∧ y is the bitwise
AND and x ∨ y is the bitwise OR.

To define the metric on a lattice, we use the Euclidean norm. For codes we use the
Hamming weight for the metric.

Definition 3.2 (Hamming weight). The support Supp(x) of a codeword x ∈ Fn2 is the
set of indices of its non-zero coordinates, and its Hamming weight |x| ∈ J0, nK is the
cardinality of its support:

Supp(x) := {i ∈ J1, nK | xi 6= 0}, |x| := #Supp(x).

The minimum weight or minimum distance of a code C is

min{|x| : x ∈ C,x 6= 0}.

Now, we look at two examples of binary linear codes. These two examples will be used
throughout this thesis.

Example 3.3 (
[
7, 4
]
-Hamming code). A generator matrix of the Hamming code C ⊂ F7

2

is

G =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 .
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The dimension of this code is 4 and the minimum weight is 3 [Lin12]. So (1, 0, 0, 0, 0, 1, 1)
is a codeword of minimum weight.

Example 3.4 (Random Linear
[
10, 5

]
-code). A generator matrix a random linear code

C ⊂ F10
2 is

G =


0 0 1 0 1 0 0 1 1 0
0 1 0 1 0 0 1 0 1 0
1 1 0 0 1 0 1 1 0 0
1 1 0 0 0 1 0 1 1 0
0 1 0 1 1 1 1 1 0 1

 .

The dimension of this code is 5 and the minimum weight is 3.

3.1 The LLL algorithm for binary codes

Here we give an adaptation of the LLL algorithm for binary codes, as decribed by
[DDW20]. To find a LLL reduced basis for a lattice, we first need to find the Gram-
Schmidt orthogonalisation. The equivalent definition we use for codes is the epipodal
matrix.

Definition 3.5 (Epipodal matrix, [DDW20]). Let B =

b1
...

bk

 be a matrix of binary

codewords. The i-th projection associated to this matrix is defined as

πi : Fn2 → Fn2
c 7→ c ∧ (b1 ∨ · · · ∨ bi−1).

where π1 denotes the identity. The i-th epipodal vector is then defined as:

b+
i := πi(bi).

The matrix B+ :=

b+
1

. . .
b+
k

 ∈ Fk×n2 is called the epipodal matrix of B.

Example 3.6 (
[
7, 4
]
-Hamming code). The epipodal matrix of the given basis of the

Hamming code C as in Example 3.3 is

B+ =


1 0 0 0 0 1 1
0 1 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

 .

11



Example 3.7 (Random Linear
[
10, 5

]
-code). The epipodal matrix of the given basis of

the random linear code as in Example 3.4 is

B+ =


0 0 1 0 1 0 0 1 1 0
0 1 0 1 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1

 .

Definition 3.8 (Proper basis, [DDW20]). A basis B is called proper if all its epipodal
vectors b+

i are non-zero.

For the LLL reduction algorithm for binary codes, we need the following tie breaking
function [DDW20]:

TBp(y) =


0 if |p| is odd,

0 if yj = 0 where j = min(Supp(p)),
1
2 otherwise.

(3)

Definition 3.9 (LLL reduced basis, [DDW20]). A basis B = (b1, . . . ,bk) of an [n, k]-
code is said to be LLL reduced if it is a proper basis, and if b+

i is a shortest non-zero
codeword of the projected subcode πi(C(bi,bi+1)) for all i ∈ J1, k − 1K.

Now that we have given the definitions similar to those used in the LLL algorithm for
lattices, we finally can formulate the LLL reduction algorithm for codes.

Algorithm 4 LLL reduction algorithm for codes, [DDW20]

Input : A proper basis B = (b1, . . . ,bk) ∈ Fk×n2 of a code C
Output: An LLL reduced basis for C

1 while ∃i ∈ J0, k − 1K such that min(|πi(bi+1)|, |b+
i ⊕ πi(bi+1)|) < |b+

i | do
2 if |πi(bi+1) ∧ b+

i |+ TBb+
i

(πi(bi+1)) > |b+
i |/2 then

3 bi+1 ← bi+1 ⊕ bi
4 end
5 bi ↔ bi+1

6 end
7 return (b1, . . . ,bn)

The LLL reduction algorithm for binary codes runs in polynomial time. With B =
(b1, . . . ,bk) as input the algorithm performs at most k(n− k−1

2 ) maxi |b+
i | vector oper-

ations over Fn2 [DDW20].
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Example 3.10 (
[
7, 4
]
-Hamming code). The LLL reduced matrix of the given basis of

the Hamming code as in Example 3.3 is

BLLL =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 .

Note that this LLL reduced basis is the same as the given general matrix in Example
3.3. Hence, the given generator matrix is already LLL reduced.

Example 3.11 (Random Linear
[
10, 5

]
-code). The LLL reduced matrix of the given

basis of the random linear code as in Example 3.4 is

BLLL =


1 0 1 1 0 0 0 0 0 0
0 0 1 0 1 0 0 1 1 0
0 1 0 1 0 0 1 0 1 0
1 1 0 0 0 1 0 1 1 0
0 1 0 1 1 1 1 1 0 1

 .

3.2 Preliminaries for Fn2
In this subsection, we will look at the code C = Fn2 . The results in this subsection will
be used when we look at codes that are not equal to Fn2 .

For each positive number R and x ∈ Fn2 , we define the following set:

BR[x] = {y ∈ Fn2 : |x⊕ y| ≤ R}.

In the next lemma and proposition, we give a bound on the cardinality of the set BR[x]
and of the intersection between the sets BR[0] and BR′ [x].

Lemma 3.12. Let 0 ≤ R ≤ n
2 be some integer. A upper bound for the cardinality of the

set BR[0] is

#BR[0] ≤
(
n

R

)
n− (R− 1)

n− (2R− 1)
.

Proof. We have BR[0] = {y ∈ Fn2 : |y| ≤ R}. So

#BR[0] =

R∑
i=0

(
n

i

)
.
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We know that(
n
R

)
+
(
n

R−1
)

+
(
n

R−2
)

+ . . .(
n
R

) = 1 +
R

n−R+ 1
+

R(R− 1)

(n−R+ 1)(n−R+ 2)
+ . . .

≤ 1 +
R

n−R+ 1
+

(
R

n−R+ 1

)2

+ . . .

=
1

1− R
n−(R−1)

=
n− (R− 1)

n− (2R− 1)

Hence, we have

#BR[0] ≤
(
n

R

)
n− (R− 1)

n− (2R− 1)
.

Let n be a positive integer and k ∈ Q \ Z, then we define(
n

k

)
:= 0.

The next proposition gives the cardinality of the intersection between the sets BR[0] and
BR′ [x] for some codeword x. It is an adaptation of Proposition 2.4.1 from [Dib13].

Proposition 3.13. Let R,R′ be positive integers. Let x be a codeword of length n and
w its Hamming weight. Then the size of the subset BR[0] ∩ BR′ [x] is∑

0≤δ1≤R

∑
0≤δ2≤R′

(
w

δ1−δ2+w
2

)(
n− w
δ1+δ2−w

2

)
.

Proof. Let y be a codeword. Then y ∈ BR[0] ∩ BR′ [x] if and only if

|y| = δ1 and |y ⊕ x| = δ2, (4)

where δ1 ∈ [0, R] and δ2 ∈ [0, R′]. Now we want to know how many codewords there are
that satisfy these conditions. For this, we look at the number of possible supports of a
codeword y with Hamming weight δ1. This is divided into the numbers a1, the number
of bits where y and x both have value 1, and a0, the number of bits where y has value
1 and x has value 0. Hence, we define

ai := #{j ∈ [1, n] : yj = 1 and xj = i}, i ∈ {0, 1}. (5)

When we combine equations (4) and (5), we get

δ1 = a0 + a1 and δ2 = a0 + (w − a1).

14



Therefore,

a0 =
δ1 + δ2 − w

2
and a1 =

δ1 − δ2 + w

2
.

Now, we can give an expression to calculate the number of elements in BR[0] ∩ BR′ [x]:∑
0≤δ1≤R

∑
0≤δ2≤R′

(
w

δ1−δ2+w
2

)(
n− w
δ1+δ2−w

2

)

We can generalize Proposition 3.13 to give the cardinality of the intersection between
the sets BR[x] and BR′ [y].

Corollary 3.14. Let R,R′ be some integers. Let x, y be codewords of length n and |x|
and |y| their respective Hamming weights. Then the size of the subset BR[x] ∩ BR′ [y] is

∑
0≤δ1≤R

∑
0≤δ2≤R′

( |t|
δ1−δ2+|t|

2

)(
n− |t|
δ1+δ2−|t|

2

)
.

Proof. The cardinality of intersection of the two subsets BR[x] and BR′ [y] of Fn2 can be
written as

#(BR[x] ∩ BR′ [y]) = {z ∈ Fn2 : |z ⊕ x| ≤ R and |z ⊕ y| ≤ R′}
substitute z=x⊕w

= {w ∈ Fn2 : |w| ≤ R and |x⊕ w ⊕ y| ≤ R′}
substitute t=y⊕x

= {w ∈ Fn2 : |w| ≤ R and |w ⊕ t| ≤ R′}
Proposition 3.13

=
∑

0≤δ1≤R

∑
0≤δ2≤R′

( |t|
δ1−δ2+|t|

2

)(
n− |t|
δ1+δ2−|t|

2

)

Now, we want to give a lower bound for the intersection between the sets BR[0] and
BR′ [x]. First, we give the following lemma (see [Car06, Lemma 1]).

Lemma 3.15. Let n be positive integer and k ≤ 1
2n. Then(

n

k

)
≤ 2n · exp

(
−(n− 2k)2

2n

)
.

We want to be able to give a better asymptotic estimate for a binomial coefficient. Based
on Lemma 2.2.2 from [Dib13], we will use the following approximation:
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Heuristic 3.16. Let n, k be a positive integers with k ≤ 1
2n. Then(

n

k

)
≈ 2n√

1
2π · n

· exp

(
−(n− 2k)2

2n

)
.

Lemma 3.17. Let R be an integer with R ≤ 1
2n. Let 2

3 < γ < 1 and R′ = γR. Let x be

a codeword of length n and w ≤ R be its Hamming weight. Let r− =
(5−γ)−

√
(γ−5)2−16
8 .

Assume that Heuristic 3.16 is true, then

#(BR[0] ∩ BR′ [x])

#BR[0]
&

{
1

n
√
n

√
8√
π

exp(−nG1(γ)) if 0 ≤ R
n ≤ r−

1
n
√
n

√
8√
π

exp(−nG2(γ)) if r− ≤ R
n ≤

1
2 .

where

G1(γ) =
7γ2 − (γ2 + 3γ − 1)

√
4γ + 1− γ + 1

2(
√

4γ + 1 + 1)

G2(γ) =
28γ2 − (4γ2 + 6γ − 1)

√
1 + 8γ − 2γ + 1

2(γ2 + (γ2 − 2γ + 1)
√

1 + 8γ − 2γ + 1)

Proof. First, we give a lower bound

#(BR[0] ∩ BR′ [x]) =
∑

0≤δ1≤R

∑
0≤δ2≤R′

(
w

δ1−δ2+w
2

)(
n− w
δ1+δ2−w

2

)

≥
∑

0≤δ2≤R′

(
w

R−δ2+w
2

)(
n− w
R+δ2−w

2

)

≥
(

w
R−R′+w

2

)(
n− w
R+R′−w

2

)
(6)

We can combine Lemma 3.12 with equation (6) to give a lower bound for the fraction
#(BR[0]∩BR′ [x])

#BR[0] . This gives

#(BR[0] ∩ BR′ [x])

#BR[0]
≥ n− (2R− 1)

n− (R− 1)

( w
R−R′+w

2

)( n−w
R+R′−w

2

)(
n
R

) .

Note that n−(2R−1)
n−(R−1) ≥

1
n . With the use of Heuristic 3.16, we get

#(BR[0] ∩ BR′ [x])

#BR[0]
&

1

n

√
2√
π

√
n√

w(n− w)
exp

(
−(R−R′)2

2w
− (n−R−R′)2

2(n− w)
+

(n−R)2

2n

)
.
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Now, we substitute R = rn, R′ = γrn and w = un, then we get

#(BR[0] ∩ BR′ [x])

#BR[0]
&

1

n
√
n

√
2√
π

1√
u(1− u)

exp

(
n

(
−(1− γ)2r2

2u
− (1− (1 + γ)r)2

2(1− u)

+
(1− 2r)2

2

))
.

We define

Fγ(u, r) :=
(1− γ)2r2

2u
+

(1− (1 + γ)r)2

2(1− u)
− (1− 2r)2

2
.

Since 0 ≤ r ≤ 1
2 and (1− γ)r ≤ u ≤ 1

2 , we know that u(1− u) ≤ 1
4 . Therefore

#(BR[0] ∩ BR′ [x])

#BR[0]
&

1

n
√
n

√
8√
π

exp (−nFγ(u, r)) . (7)

We want to find an upper bound for Fγ(u, r). First, we determine the roots of
∂Fγ
∂u .

∂

∂u
Fγ =

(2γru− γr + r − u)(γr + 2ru− r − u)

2u2(1− u)2

=
((2γr − 1)u+ (1− γr))((2r − 1)u− (1− γr))

2u2(1− u)2

Therefore the roots of ∂F
∂u are at u1 = (1−γ)r

1−2γr and u2 = (1−γ)r
2r−1 . Since 0 < r < 1

2 , we have
u2 < 0. Therefore the root u2 is not in the interval. So the global maximum of Fγ(u, r)
is at the root u1 or at the edges r or (1− γ)r.

Since

Fγ(r, r)− Fγ(u1, r) ≥
−γ2r(r2 − r + 1)

2(r − 1)
> 0

for all r, the global maximum of Fγ(u, r) is never at the root u1. So the global maximum
of Fγ(u, r) is at the edges. Finally, we want to know whether Fγ(r, r) or Fγ((1− γ)r, r)
is bigger for 0 < r < 1

2 . Since neither one of those is the biggest for all 0 < r < 1
2 , we

want to determine a turning point for the maximum of Fγ(u, r).

Fγ(r, r)− Fγ((1− γ)r, r) = −−γ
2r(4r2 − (5− γ)r + 1)

2(γr − r + 1)(r − 1)
= 0.

So the turning point is at r± =
(5−γ)±

√
(γ−5)2−16
8 . Since r− < 1

2 and r+ > 1
2 for

2
3 ≤ γ ≤ 1, the turning point is at r−. Hence, we get

Fγ(u, r) ≤

{
Fγ(r, r) if 0 ≤ r ≤ r−
Fγ((1− γ)r, r) if r− ≤ r ≤ 1

2 .
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Now, we want to calculate d
drFγ(u, r) where u is at both edges and equate them to 0.

First, we look at the edge r. Then we get

d

dr
Fγ(r, r) =

d

dr

(
(1− γ)2r

2
+

(1− (1 + γ)r)2

2(1− r)
− (1− 2r)2

2

)
= −8r3 − (20− 4γ)r2 + (16− 8γ)r − γ2 + 4γ − 4

2(r − 1)2

= −(4r2 − 6r − γ + 2)(2r + γ − 2)

2(1− r)2

This derivative is equal to 0 if 2r + γ − 2 = 0 or 4r2 − 6r − γ + 2 = 0. Since r < 1
2 and

2
3 < γ < 1 the equation 2r + γ − 2 = 0 will not take place. Hence 4r2 − 6r − γ + 2 = 0.

So we get the roots ρ± = 6±
√
4+16γ
8 . Since ρ+ > 1

2 for 2
3 < γ < 1, the root ρ+ is not

in our interval. So the root ρ1(γ) = 6−
√
4+16γ
8 is the only root for the derivative of

Fγ(r, r) that satisfies the conditions 2
3 < γ < 1 and 0 < r < 1

2 . Now, we substitute

r = ρ1(γ) = 6−
√
4+16γ
8 in Fγ(r, r):

G1(γ) = Fγ(ρ1(γ), ρ1(γ)) =
7γ2 − (γ2 + 3γ − 1)

√
4γ + 1− γ + 1

2(
√

4γ + 1 + 1)
.

Second, we take the edge (1− γ)r. Then we get

d

dr
Fγ((1− γ)r, r) =

d

dr

(
1

2
(1− γ)r +

(1− (1 + γ)r)2

2(1− (1− γ)r)
− 1

2
(1− 2r)2

)
= −(4γ2 − 8γ + 4)r3 − (4γ2 − 14γ + 10)r2 − (8γ − 8)r + 2γ − 2

(γr − r + 1)2

= −2(γ − 1)(2(γ − 1)r2 + 3r − 1)(r − 1)

(γr − r + 1)2

This derivative is equal to 0 if r− 1 = 0 or 2(γ− 1)r2 + 3r− 1 = 0. Since r < 1
2 , the first

case will not occur. Hence 2(γ − 1)r2 + 3r− 1 = 0. So we get the roots ρ± = −3±
√
1+8γ

4(γ−1) .

Since ρ− > 1
2 for 2

3 < γ < 1. So the root ρ2(γ) = 3−
√
1+8γ

4(1−γ) is the only root for the

derivative of Fγ((1− γ)r, r) that satisfies the conditions 2
3 < γ < 1 and 0 < r < 1

2 . Now

we substitute r = ρ2(γ) = 3−
√
1+8γ

4(1−γ) in Fγ((1− γ)r, r):

G2(γ) = Fγ((1− γ)ρ2(γ), ρ2(γ)) =
28γ2 − (4γ2 + 6γ − 1)

√
1 + 8γ − 2γ + 1

2(γ2 + (γ2 − 2γ + 1)
√

1 + 8γ − 2γ + 1)

Concluding, we get

#(BR[0] ∩ BR′ [x])

#BR[0]
&

{
1

n
√
n

√
8√
π

exp(−nG1(γ)) if 0 ≤ r ≤ r−
1

n
√
n

√
8√
π

exp(−nG2(γ)) if r− ≤ r ≤ 1
2 .
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Remark 3.18. When we look at the values for G1(γ) and G2(γ) from Lemma 3.17, we
see that G1(γ) > G2(γ) for all 2

3 < γ < 1. Hence, from here we continue to use that

#(BR[0] ∩ BR′ [x])

#BR[0]
&

1

n
√
n

√
8√
π

exp(−nG1(γ)).

In Figure 1, we can see the numerical evidence that exp(G1(γ)) > exp(G2(γ)) is true for
all 2

3 < γ < 1. Furthermore, 1.0461 < exp(G1(γ)) < 1.1235 for 2
3 < γ < 1.

Figure 1: The numerical evaluation of exp(G1(γ)) and exp(G2(γ)) for 2
3 < γ < 1.

3.3 Preliminaries for codes C

In this subsection, we will look at binary linear codes C and the relation between a binary
linear [n, k]-code C and Fn2 . For every positive real number R, we define the following
set:

BCR[x] = {y ∈ C : |x⊕ y| ≤ R} .

The cardinality of a code C with dimension k is 2k. Hence #C = 2k−n#Fn2 .

Since Algorithm 6 at steps 2-4 only samples codewords of maximum Hamming weight 1
2n

and in Lemma 3.17 the integer R is smaller than 1
2n, we make the following assumption:

Heuristic 3.19. Let C be a binary linear [n, k]-code. Then

#BCn
2
[0]

#C
≈

#Bn
2
[0]

#Fn2
≈ 1

2
.

In Figure 2, the fraction
#BC

n/2
[0]

#C is plotted for 30 randomly generated linear codes. In
these plots, we can see that Heuristic 3.19 is a useful and accurate estimation. For the
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Hamming [15, 11]-code and [31, 26]-code, the fraction
#BC

n/2
[0]

#C is equal to 1
2 in both cases.

The fraction
#BC

n/2
[0]

#C for the Reed Muller [32, 16]-code and [16, 11]-code are respectively
0.7786 and 0.7124. What these numerical examples show is that most codewords in
a code have Hamming weight smaller than 1

2n. Hence, when we sample N random
codewords in Algorithm 6, the number of codewords that satisfy the condition that the
Hamming weight is smaller than or equal to 1

2n is large enough.

(a) Random linear codes with n = 30 and k =
10

(b) Random linear codes with n = 30 and k =
20

(c) Random linear codes with n = 40 and k =
13

(d) Random linear codes with n = 40 and k =
26

Figure 2: Histogram of
#BC

n/2
[0]

#C with 30 different random linear codes

Now, we want an estimation for the ratio between the cardinality of the sets BCR[0] and
BR[0]. Therefore, the following assumption is needed.

Heuristic 3.20. Let C be a binary linear [n, k]-code. Let R be an integer. Then

#BCR[0] ≈ 2k−n#BR[0].

For some numerical evidence for this heuristic see Figure 3. In these plots, #BCR[0] (in
red) and 2k−n#BR[0] (in blue) is shown for all 1 < R < n for the Reed-Muller [32, 16]-
code, the Hamming [15, 11]-code, a random linear [30, 10]-code and a random linear
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[30, 20]-code. We can see that Heuristic 3.20 is an accurate assumption for the size of
BCR[0].

(a) Reed-Muller code with n =
32, k = 16 and minimum
weight 8.

(b) Hamming code with n =
15, k = 11 and minimum
weight 3.

(c) Random Linear code with
n = 30, k = 10 and minimum
weight 8.

Figure 3: #BCR[0] and 2k−n#BR[0] for three different codes C

Since #BCR[0] and 2k−n#BR[0] is small for R close to 1, Figure 3 does not give a clear
view on the differences between the two plots. To more clearly show this, we have also
plot the natural logarithm in Figure 4.

(a) Reed-Muller code with n =
32, k = 16 and minimum
weight 8.

(b) Hamming code with n =
15, k = 11 and minimum
weight 3.

(c) Random Linear code with
n = 30, k = 10 and minimum
weight 8.

Figure 4: log
(
#BCR[0]

)
and log

(
2k−n#BR[0]

)
for three different codes C

Now, we want an estimate for the relation between the cardinalities of BCR[0] ∩ BCR′ [x]
and BR[0] ∩ BR′ [x]. For this, we make the following assumption:

Heuristic 3.21. Let C be a binary linear [n, k]-code and x ∈ C. Let R be an integer
with R ≤ 1

2n. Let 2
3 < γ < 1 and R′ = γR. Then

#(BCR[0] ∩ BCR′ [x]) ≈ 2k−n#(BR[0] ∩ BR′ [x]).

For some numerical evidence for this heuristic see Figure 5. In these plots, we have
taken 10 random codewords of the code C with a maximum Hamming weight 1

2n. Then
we calculated #

(
BCR[0] ∩ BCR′ [x]

)
and # (BR[0] ∩ BR′ [x]) for all these 10 codewords and
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took the average of these cardinalities. We can see that the lines for a code C (in red)
and for Fn2 differs more than in Figure 3, but still is an accurate assumption.

(a) Reed-Muller code with n =
32, k = 16 and minimum
weight 8.

(b) Hamming code with n =
15, k = 11 and minimum
weight 3.

(c) Random Linear code with
n = 30, k = 10 and minimum
weight 8.

Figure 5: #(BCR[0]∩BCγR[x]) and 2k−n#(BR[0]∩BγR[x]) for three different codes C with
γ = 0.8

For small R, Figure 6 will shows more clearly how #(BCR[0]∩BCR′ [x]) and 2k−n#(BR[0]∩
BR′ [x]) differ. Note that the lines stop at the point where BCR[0] ∩ BCR′ [x] = ∅. In this
case, it is at the point where R is equal to the minimum weight of the code C. Hence,
for least one of the ten codewords that are generated, the cardinality #(BCR[0] ∩ BCR′ [x])
is not equal to zero for R equal to the minimum weight of the code.

(a) Reed-Muller code with n =
32, k = 16 and minimum
weight 8.

(b) Hamming code with n =
15, k = 11 and minimum
weight 3.

(c) Random Linear code with
n = 30, k = 10 and minimum
weight 8.

Figure 6: log
(

#(BCR[0] ∩ BCγR[x])
)

and log
(
2k−n#(BR[0] ∩ BγR[x])

)
for three different

codes C with γ = 0.8

Now that we have settled some estimations for the ratio between the cardinality of

the codes C and Fn2 , we are able to give a lower bound for the fraction
#(BCR[0]∩B

C
R′ [x])

#BCR[0]
analogous to Lemma 3.17.
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Corollary 3.22. Let C be a binary linear [n, k]-code and x ∈ C. Let R be an integer

with R ≤ 1
2n. Let 2

3 < γ < 1 and R′ = γR. Let r− =
(5−γ)−

√
(γ−5)2−16
8 . Assume that

the heuristics 3.16, 3.20 and 3.21 are true, then

#(BCR[0] ∩ BCR′ [x])

#BCR[0]
&

{
1

n
√
n

√
8√
π

exp(−nG1(γ)) if 0 ≤ R
n ≤ r−

1
n
√
n

√
8√
π

exp(−nG2(γ)) if r− ≤ R
n ≤

1
2 .

where

G1(γ) =
7γ2 − (γ2 + 3γ − 1)

√
4γ + 1− γ + 1

2(
√

4γ + 1 + 1)

G2(γ) =
28γ2 − (4γ2 + 6γ − 1)

√
1 + 8γ − 2γ + 1

2(γ2 + (γ2 − 2γ + 1)
√

1 + 8γ − 2γ + 1)

Proof. By Lemma 3.17, we know that

#(BR[0] ∩ BR′ [x])

#BR[0]
&

{
1

n
√
n

√
8√
π

exp(−nG1(γ)) if 0 ≤ r ≤ r−
1

n
√
n

√
8√
π

exp(−nG2(γ)) if r− ≤ r ≤ 1
2 .

From the heuristics 3.20 and 3.21, we can conclude that

#(BCR[0] ∩ BCR′ [x])

#BCR[0]
≈ 2k−n#(BR[0] ∩ BR′ [x])

2k−n#BR[0]

=
#(BR[0] ∩ BR′ [x])

#BR[0]

&

{
1

n
√
n

√
8√
π

exp(−nG1(γ)) if 0 ≤ r ≤ r−
1

n
√
n

√
8√
π

exp(−nG2(γ)) if r− ≤ r ≤ 1
2 .

Since G1(γ) and G2(γ) are the same for Corollary 3.22 and Lemma 3.17, it still holds,
as shown in Figure 1, that exp(G1(γ)) > exp(G2(γ)) for all 2

3 < γ < 1. Hence, we get

Remark 3.23. Similar to Remark 3.18, we can conclude that

#(BCR[0] ∩ BCR′ [x])

#BCR[0]
&

√
8

n
√
πn

exp(−nG1(γ)).

In Figure 7, the fractions
#(BCR[0]∩B

C
R′ [x])

#BCR[0]
and

#(BR[0]∩BR′ [x])
#BR[0] and the approximate lower

bound
√
8

n
√
πn

exp(−nG1(γ)) from Lemma 3.17 are plotted. This gives a view on what the

difference is between the fractions for a code C and Fn2 .
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(a) Reed-Muller code with n =
32, k = 16 and minimum
weight 8.

(b) Hamming code with n =
15, k = 11 and minimum
weight 3.

(c) Random Linear code with
n = 30, k = 10 and minimum
weight 8.

Figure 7:
#(BCR[0]∩B

C
R′ [x])

#BCR[0]
,
#(BR[0]∩BR′ [x])

#BR[0] and
√
8

n
√
πn

exp(−nG1(γ)) for γ = 0.8.

Figure 7 isn’t clear on whether the estimation
√
8

n
√
πn

exp(−nG1(γ)) is really a lower bound

for the fractions
#(BCR[0]∩B

C
R′ [x])

#BCR[0]
and

#(BR[0]∩BR′ [x])
#BR[0] . To see whether the lower bound is

a good lower bound, we once again plot the natural logarithm of each in Figure 8. For
the Reed-Muller [32, 16]-code and the Hamming [15, 11]-code, we see that the red line at
some point drops under the blue line before R is greater than the minimum weight. This
is the case, because we randomly generated ten codewords x and then calculated the
average of #(BCR[0] ∩ BCR′ [x]) and #(BR[0] ∩ BR′ [x]) over these ten codewords. Since for
some of these codewords the cardinality of the set was 0, it is possible that the average

is lower than
√
8

n
√
πn

exp(−nG1(γ)).

(a) Reed-Muller code with n =
32, k = 16 and minimum
weight 8.

(b) Hamming code with n =
15, k = 11 and minimum
weight 3.

(c) Random Linear code with
n = 30, k = 10 and minimum
weight 8.

Figure 8: log

(
#(BCR[0]∩B

C
R′ [x])

#BCR[0]

)
, log

(
#(BR[0]∩BR′ [x])

#BR[0]

)
and log

( √
8

n
√
πn

exp(−nG1(γ))
)

for

γ = 0.8.
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4 The Nguyen-Vidick sieve algorithm for binary codes

4.1 The algorithm

Now, we finally are able to give an adaptation of the Nguyen-Vidick sieve algorithm for
codes. Similarly to the algorithm for lattices, the goal of this algorithm is to reduce the
maximum Hamming weight of the codewords in the set S of our code C. Before we look
into these algorithms, we define

BC(R) := {c ∈ C | |c| ≤ R}.

Analogous to the lattice sieve algorithm, we now define two algorithms. One that sieves
a list of codewords (Algorithm 5) and one that outputs a codeword of low Hamming
weight (Algorithm 6).

Algorithm 5 CodeSieve(S, γ)

Input : A subset S of codewords of C and a sieve factor 2
3 < γ < 1.

Output: A subset S′ ⊆ Bn(γR).
1 R← maxc∈S |c|
2 C ← ∅, S′ ← ∅
3 for c ∈ S do
4 if |c| ≤ γR then
5 S′ ← S′ ∪ {c}
6 else
7 if ∃w ∈ C such that |c⊕ w| ≤ γR then
8 S′ ← S′ ∪ {c⊕ w}
9 else

10 C ← C ∪ {c}
11 end

12 end

13 end
14 return S′

Note that the matrix for the input of Algorithm 6 isn’t specified which matrix is used.
In section 4.2.1, we check experimentally whether the LLL reduced matrix as an input
matrix gives a better result versus the generator matrix.

The equivalent of Algorithm 3 for codes is Algorithm 6. Similarly as for the algorithm
for lattices, this algorithm starts with sampling N non-zero codewords. First we add
the codewords that are represented in the basis matrix for which the Hamming weight is
smaller than or equal to 1

2n. Then we take linear combinations of two codewords of the
basis matrix, again for which the Hamming weight is smaller than or equal to 1

2n. We
continue to take an increasing number linear combinations of the basis matrix for which
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Algorithm 6 Finding codes of low Hamming weight based on sieving.

Input : A basis matrix G of a code C, a sieve factor γ such that 2
3 < γ < 1, and a

number N .
Output: A non-zero codeword of C with a low Hamming weight.

1 S ← ∅
2 for j = 1 to N do
3 S ← S ∪ Sampling(G)
4 end
5 Remove all zero codewords from S.
6 repeat
7 S0 ← S
8 S ← CodeSieve(S, γ) using Algorithm 5
9 Remove all zero codewords from S.

10 until S = ∅;
11 Compute c0 ∈ S0 such that |c0| = min{|c|, c ∈ S0}.
12 return c0

the Hamming weight is smaller than or equal to 1
2n until we have a list of N non-zero

codewords.

Under the assumption that Heuristic 3.19 is true, we know that there are enough code-
words that satisfy this condition. Hence, after steps 2-4 of Algorithm 6 we have a set S
with N non-zero codewords all with a maximum length of 1

2n.

Then, with the use of Algorithm 5, at every iteration of steps 6-10 of Algorithm 6, the
maximum Hamming weight of the codewords in S is reduced by a factor γ. For the first
iteration of steps 6-10, we use the sampled set S from steps 2-4. In Algorithm 5, we
start with two empty lists C and S′. Then for every codeword c in S, we check whether
the Hamming weight of this codeword c is smaller than γR. If this is the case, then
the codeword c is added to the list S′. If this is not the case, we check whether there
exists a codeword w in the set C such that the codeword c ∈ BCγR[w]. Then we add the
codeword c + w to the set S′, else we add the codeword c to the set C. For every new
iteration of the steps 6-10 of Algorithm 6, we use the set S′ as the set S. This is done
until the set S′ is empty or only contains zero codewords at the end of Algorithm 5.

Now, we define Cn(γR,R) := {x ∈ Fn2 | γR ≤ |x| ≤ R}. Since Algorithm 5 only sieves
the codewords that have a Hamming weight between γR and R, we make the following
assumption:

Heuristic 4.1. At any stage in Algorithm 6, the codewords in S ∩ Cn(γR,R) are uni-
formly distributed in Cn(γR,R).
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Lemma 4.2. Let n ∈ N and 2
3 < γ < 1. Define αγ := exp (G1(γ)) with

G1(γ) =
7γ2 − (γ2 + 3γ − 1)

√
4γ + 1− γ + 1

2(
√

4γ + 1 + 1)

and NC = n2√πn√
8
αnγ . Let N be an integer, and S a subset of Cn(γR,R) of cardinality N

whose points are picked independently at random with uniform distribution.

If 1
n
√
n

√
8√
π
αnγ < N < 2n, then for any subset centers C ⊆ S of size at least NC whose

points are picked independently at random with uniform distribution, with probability
1− e−n, for all y ∈ S, there exists a c ∈ C such that |y ⊕ c| ≤ γ.

Proof. If αγ is as described, then by Corollary 3.22 we have

Ω(γ) =
#(BR[0] ∩ BR′ [x])

#BR[0]
&

√
8

n
√
nπ

α−nγ .

Let x be a codeword in the set of centers C. Then the expected fraction of BR[0] that is
not covered by BR′ [x] is at most 1− Ω(γ). Hence for NC uniformly distributed centers,
the expected fraction of BR[0] that is not covered by any of these centers is at most
(1− Ω(γ))NC . We have

NC log(1− Ω(γ)) ≤ −NCΩ(γ)

≤ −n
2√πn√

8
αnγ

√
8

n
√
nπ

α−nγ

= −n

So the expected fraction that is not covered by ant of the NC centers is at most e−n.
Hence, the expected fraction that is covered by NC centers is 1− e−n.

With the result of Lemma 4.2, we can estimate the complexity of the sieve algorithm.
Under the assumption that Heuristic 4.1 is true, we expect at steps 7-11 that the size of
S will decrease by roughly αnγ . Then at every iteration of the steps 7-11, the maximum
Hamming weight of the codewords in S is reduced by a factor γ. Since the maximum
Hamming weight of the initial sampled codewords is bn2 c, and if the number of sampled
codewords is poly(n) ·NC , then after a linear number of iterations we expect to be left
with a large number of codewords with a low Hamming weight. At the limit γ → 1, we get

αγ = exp
(

7−3
√
5

2(
√
5+1)

)
. Since the running time of the sieve is quadratic, the total running

time of the algorithm is expected to be of order
(

exp
(
7−3
√
5√

5+1

)
+ ε
)n
≈ (1.0944 + ε)n.

The quadratic running time of the sieve does not influence the space complexity, so the
space complexity is expected to be of order (αγ + ε)n ≈ (1.0461 + ε)n.

Since the Nguyen-Vidick sieve algorithm for lattices has (43 + ε)n ≈ (1.3333 + ε)n as
running time, hence we see that the sieve algorithm for codes has a lower heuristic
complexity.
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4.2 Numerical experiments

The minimum Hamming weight of a Hamming code is 3, independent of the length n
and the dimension d of the code. The binary Reed Muller code of length n = 2m has
2m−2 as its minimum Hamming weight [Lin12]. Since the minimum Hamming weight
of these types of codes is already known, using this sieve algorithm isn’t necessary to
find this minimum Hamming weight. Furthermore, the LLL reduced basis consisted of
a codeword of minimum Hamming weight in the examples we tried. Therefore, we only
looked at random linear codes for the numerical experiments.

4.2.1 LLL reduced basis versus generator matrix

As mentioned before, we wanted to find out whether using the LLL reduced basis matrix
increases the chance to find the codeword of minimum Hamming weight versus using the
generator matrix as the input matrix. To analyze this, we have performed a hundred
experiments for an increasing number of sampled codewords N with for different values
for γ. So for the sieve factor γ equal to 0.7, 0.8, 0.9 and 0.97 (the value Nguyen-
Vidick [NV08] used for their experiments) with an increasing integer N , we checked
for a hundred random linear binary codes whether the output of Algorithm 6 was a
codeword of minimum Hamming weight.

In Figure 9, the fraction where a codeword of minimum Hamming weight was found for
random linear codes with n = 30 and k = 20 is represented. The indicated value NC is
calculated the same as in Lemma 4.2.

As we can see in Figure 9, the chance that you find a codeword of minimum Hamming
weight at N = NC is larger for a smaller γ. We also see that for γ closer to one, using the
LLL reduced basis matrix as input matrix for the algorithm improves the result more
than for smaller γ.

For γ = 0.97, we see that when the number of sampled codewords N is equal to NC , that
the chance that we found a codeword of minimum Hamming weight is approximately 0.4
without the use of LLL and approximately 0.8 with the use of LLL. When we increase
N , then the chance that we find a codeword of minimum Hamming weight gets closer
to one with or without using LLL as the input matrix.

If γ = 0.9, the chance that the algorithm outputs a codeword of minimum Hamming
weight is almost equal at N = NC when the LLL reduced basis or the generator matrix
is used as input. When N becomes a lot smaller than NC , the chance that a codeword
of minimum weight is returned after the algorithm is bigger when the LLL reduced basis
is used as input.

When γ is equal to 0.7 or 0.8, we see that the chance that the algorithm finds a codeword
of minimum weight is 1 when the number of sampled codewords N is equal to NC and
also if N is several times smaller than NC . If the generator matrix is used as the input
for the algorithm, we see that the chance that a codeword of minimum weight is found
drops faster to zero than if the LLL reduced basis is used as the input.
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(a) γ = 0.7 (b) γ = 0.8

(c) γ = 0.9 (d) γ = 0.97

Figure 9: The chance that a codeword of minimum Hamming weight was found for a
random [30, 20]-code for four different values of γ with N sampled codewords.

Overall, we can conclude from Figure 9 that LLL does improves the chance that a
codeword of minimum Hamming weight will be the output of Algorithm 6.

4.2.2 Number of iterations

The maximum number of iterations the algorithm uses is bounded and can easily be
calculated. At the beginning of the algorithm, the maximum Hamming weight of the
sampled codewords is b12nc. The minimum Hamming weight of a code is at least 1. Since
the maximum Hamming weight of the list of codewords in every iteration is reduced by
γ, we know in which range the Hamming weights of the list of codewords is at each
iteration. Hence, the number of iterations can be calculated with Algorithm 7.

In most cases when the algorithm is used, the maximum number of iterations will not
be needed. This could be the case if the maximum Hamming weight of the sampled
codewords is smaller than b12nc or if the minimum Hamming weight of the code is larger
than 1. Therefore, it is interesting to know what the average number of iterations is.
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Algorithm 7 Maximum number of iterations needed for a binary linear code C ⊂ Fn2 .

Input : The length of the code n and a sieve factor 2
3 < γ < 1.

Output: Maximum number of iterations.
1 w = b12nc
2 i = 0
3 while w > 1 do
4 w = bw · γc
5 i = i+ 1

6 end
7 return i

To calculate the average number of iterations, we performed twenty experiments for
codes of length 20 < n < 40 for four different values of γ. We used the the algorithm
with the LLL reduced basis matrix as the input matrix and the number of sampled
codewords is N = NC . Then we calculated the average number of iterations needed in
the algorithm.

In Figure 10, the average number of iterations the algorithm uses is displayed in the
solid lines. The dotted lines show the maximum number of iterations calculated with
Algorithm 7.

Figure 10: Average number of iterations needed for codes with length 20 < n < 40
for four different values of γ compared with the maximum number of iterations (dotted
lines).
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5 Discussion and further research

5.1 Discussion

For the calculation of the lower bound for the fraction
#(BCR[0]∩B

C
R′ [x])

#BCR[0]
in 3.3, we have

used several heuristics. These heuristics are substantiated with numerical evidence, but
are not exact. Therefore some differences could still occur in the given estimations. The
lower bound of this fraction is used to analyze the running time of Algorithm 6. For this
running time, we also assumed that Heuristic 4.1 is true.

Second, in section 3.3 we have only given an upper bound for the fraction
#(BCR[0]∩B

C
R′ [x])

#BCR[0]
and no lower bound for this fraction. Therefore, we were not able to give a tight estimate
for the running time of the algorithm.

5.2 Further research

As we could see in section 4.2.1, the chance to find a codeword of minimum Hamming
weight is larger for a smaller γ than for γ closer to one. The numerical calculations in
the section suggests that for γ equal to 0.7 or 0.8, the number of sampled codewords at
the beginning of the algorithm can be lower than for γ equal to 0.9 or 0.97. Hence, it
could be interesting to look what the optimal value for γ is for the running time and
space requirements.

q-ary codes

In this thesis, we only looked at binary linear codes C. The estimations, heuristics and
the LLL algorithm in section 3 are all only applicable for binary codes. This is the case,
because the i-th position of a codeword can only have two values, namely it can be 0 or
1. Therefore we were able to use binomial coefficients to find the cardinality of BCR[x].

It is possible that algorithms 5 and 6, can be adapted directly for q-ary codes with q > 2.
However, the analysis of the running time has to be adapted.

Multiple level sieving

The traditional Nguyen-Vidick lattice sieve, which was the basis for this thesis, is some-
times also considered as the 1-level sieve [Laa15a]. This 1-level sieve has been improved
by Wang-Liu-Tian-Bi into a 2-level sieve [Wan+11] and by Zhang-Pan-Hu into a 3-level
sieve [ZPH13]. These algorithms work by adding respectively one or two sieve factors.
These algorithms have a better time complexity, but use more space.

It could be interesting to look if these algorithms will also improve the 1-level sieve
algorithm for binary codes.
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SageMath code

The next code is used as the Nguyen-Vidick sieve algorithm for binary codes. The code
is written in SageMath.

V = GF(2)

”””
Set up the de s i r ed parameters
”””
gamma = 0.7
L = 30
k = f l o o r ( (2/3 ) ∗L)

M = matrix . random(V, k , L)
B = codes . LinearCode (M)
G = copy (B. gene ra to r matr ix ( ) )

”””
Bi tw i se AND func t i on
”””
def AND(v ,w) :

V = v . parent ( )
And = [ v [ i ] and w[ i ] for i in range ( len ( v ) ) ]
return V(And)

”””
Bi tw i se OR func t i on
”””
def OR(v ,w) :

V = v . parent ( )
Or = [ v [ i ] or w[ i ] for i in range ( len ( v ) ) ]
return V(Or)

”””
Bi tw i se NOT func t i on
”””
def NOT(v ) :

V = v . parent ( )
Not = [1−v [ i ] for i in range ( len ( v ) ) ]
return V(Not )

”””
Function t ha t computes a l i s t o f the nego ta t i on o f the union o f the

prev ious c a l c u l a t e d ep i poda l v e c t o r f o r the ep i poda l matrix
”””
def not or (G) :

n o t o r l i s t = [ ]
r = z e r o v e c t o r (G. nco l s ( ) )
n o t o r l i s t . append (NOT( r ) )
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for v in G. rows ( ) :
r = OR( r , v )
n o t o r l i s t . append (NOT( r ) )

return ( n o t o r l i s t )

”””
Function t ha t computes the b i ˆ+ ve c t o r s o f the ep i poda l matrix
”””
def B plus (G, n o t o r l i s t ) :

B p l u s l i s t = [ ]

for i in range (G. nrows ( ) ) :
i f i == 0 :

B p l u s l i s t . append (G. row ( i ) )
else :

b i p l u s = AND(G. row ( i ) , n o t o r l i s t [ i ] )
B p l u s l i s t . append ( b i p l u s )

return ( B p l u s l i s t )

”””
Function t ha t c a l c u l a t e s p i i ( b { i +1})
”””
def p i f un c t i o n ( i , v ,M) :

n o t o r l i s t = not or (M)
w = n o t o r l i s t [ i −1]
return (AND(v ,w) )

”””
Function t ha t f i n d s whether t h e r e i s a l o c a l minimum , t h i s i s used in the

wh i l e s ta tement o f the LLL a lgor i thm fo r b inary codes
”””
def f ind loca l min imum (M, B p l u s l i s t ) :

for i in range (1 ,M. nrows ( ) ) :
i f min( p i f u n c t i o n ( i ,M. row ( i ) ,M) . hamming weight ( ) ,

( B p l u s l i s t [ i −1] +
p i f un c t i o n ( i ,M. row ( i ) ,M) ) . hamming weight ( ) ) <
B p l u s l i s t [ i −1] . hamming weight ( ) :
return i−1

return None

”””
The t i e b reak ing func t i on used o f the LLL a lgor i thm fo r b inary codes
”””
def TB(p , y ) :

i f p . hamming weight ( ) % 2 == 1 :
return 0

else :
j = min(p . support ( ) )
i f y [ j ] == 0 :

return 0
else : return 1/2

”””
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The LLL a lgor i thm fo r b inary codes
”””
def LLL codes (G) :

while True :
B p l u s l i s t = B plus (G, not or (G) )
i = f ind loca l min imum (G, B p l u s l i s t )
i f i i s None :

break
i f AND( p i f un c t i o n ( i +1,G. row ( i +1) ,G) ,

B p l u s l i s t [ i ] ) . hamming weight ( ) + TB( B p l u s l i s t [ i ] ,
p i f u n c t i o n ( i +1,G. row ( i +1) ,G) ) >
B p l u s l i s t [ i ] . hamming weight ( ) / 2 :
G. add mul t ip l e o f r ow ( i +1, i , 1 )

G. swap rows ( i , i +1)
return G

”””
Function t ha t samples l i n e a r combinat ions o f the codewords o f the LLL

matrix wi th maximal Hamming weigh t n/2
”””
def sampling (B,N,R) :

S = [ ]
k = B. nrows ( )

for i in [ 0 . . k−1] :
s = B. row ( i )
i f s . hamming weight ( ) <= R:

S . append ( s )
for i in [ 0 . . k−2] :

for j in [ i +1. . k−1] :
i f len (S)<N:

s = B. row ( i ) + B. row ( j )
i f s . hamming weight ( ) <= R:

S . append ( s )
else : break

for i 1 in [ 0 . . k−3] :
for i 2 in [ i 1 +1. . k−2] :

for i 3 in [ i 2 +1. . k−1] :
i f len (S)<N:

s = B. row ( i 1 ) + B. row ( i 2 ) + B. row ( i 3 )
i f s . hamming weight ( ) <= R:

S . append ( s )
else : break

for i 1 in [ 0 . . k−4] :
for i 2 in [ i 1 +1. . k−3] :

for i 3 in [ i 2 +1. . k−2] :
for i 4 in [ i 3 +1. . k−1] :

i f len (S)<N:
s = B. row ( i 1 ) + B. row ( i 2 ) + B. row ( i 3 ) + B. row ( i 4 )
i f s . hamming weight ( ) <= R:

S . append ( s )
else : break

for i 1 in [ 0 . . k−5] :
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for i 2 in [ i 1 +1. . k−4] :
for i 3 in [ i 2 +1. . k−3] :

for i 4 in [ i 3 +1. . k−2] :
for i 5 in [ i 4 +1. . k−1] :

i f len (S)<N:
s = B. row ( i 1 ) + B. row ( i 2 ) + B. row ( i 3 ) +

B. row ( i 4 ) + B. row ( i 5 )
i f s . hamming weight ( ) <= R:

S . append ( s )
else : break

for i 1 in [ 0 . . k−6] :
for i 2 in [ i 1 +1. . k−5] :

for i 3 in [ i 2 +1. . k−4] :
for i 4 in [ i 3 +1. . k−3] :

for i 5 in [ i 4 +1. . k−2] :
for i 6 in [ i 5 +1. . k−1] :

i f len (S)<N:
s = B. row ( i 1 ) + B. row ( i 2 ) + B. row ( i 3 ) +

B. row ( i 4 ) + B. row ( i 5 ) + B. row ( i 6 )
i f s . hamming weight ( ) <= R:

S . append ( s )
else : break

for i 1 in [ 0 . . k−7] :
for i 2 in [ i 1 +1. . k−6] :

for i 3 in [ i 2 +1. . k−5] :
for i 4 in [ i 3 +1. . k−4] :

for i 5 in [ i 4 +1. . k−3] :
for i 6 in [ i 5 +1. . k−2] :

for i 7 in [ i 6 +1. . k−1] :
i f len (S)<N:

s = B. row ( i 1 ) + B. row ( i 2 ) + B. row ( i 3 )
+ B. row ( i 4 ) + B. row ( i 5 ) +
B. row ( i 6 ) + B. row ( i 7 )

i f s . hamming weight ( ) <= R:
S . append ( s )

else : break
for i 1 in [ 0 . . k−8] :

for i 2 in [ i 1 +1. . k−7] :
for i 3 in [ i 2 +1. . k−6] :

for i 4 in [ i 3 +1. . k−5] :
for i 5 in [ i 4 +1. . k−4] :

for i 6 in [ i 5 +1. . k−3] :
for i 7 in [ i 6 +1. . k−2] :

for i 8 in [ i 7 +1. . k−1] :
i f len (S)<N:

s = B. row ( i 1 ) + B. row ( i 2 ) +
B. row ( i 3 ) + B. row ( i 4 ) +
B. row ( i 5 ) + B. row ( i 6 ) +
B. row ( i 7 )+B. row ( i 8 )

i f s . hamming weight ( ) <= R:
S . append ( s )

else : break
for i 1 in [ 0 . . k−9] :
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for i 2 in [ i 1 +1. . k−8] :
for i 3 in [ i 2 +1. . k−7] :

for i 4 in [ i 3 +1. . k−6] :
for i 5 in [ i 4 +1. . k−5] :

for i 6 in [ i 5 +1. . k−4] :
for i 7 in [ i 6 +1. . k−3] :

for i 8 in [ i 7 +1. . k−2] :
for i 9 in [ i 8 +1. . k−1] :

i f len (S)<N:
s = B. row ( i 1 ) + B. row ( i 2 ) +

B. row ( i 3 ) + B. row ( i 4 ) +
B. row ( i 5 ) + B. row ( i 6 ) +
B. row ( i 7 ) + B. row ( i 8 ) +
B. row ( i 9 )

i f s . hamming weight ( ) <= R:
S . append ( s )

else : break
for i 1 in [ 0 . . k−10] :

for i 2 in [ i 1 +1. . k−9] :
for i 3 in [ i 2 +1. . k−8] :

for i 4 in [ i 3 +1. . k−7] :
for i 5 in [ i 4 +1. . k−6] :

for i 6 in [ i 5 +1. . k−5] :
for i 7 in [ i 6 +1. . k−4] :

for i 8 in [ i 7 +1. . k−3] :
for i 9 in [ i 8 +1. . k−2] :

for i 10 in [ i 9 +1. . k−1] :
i f len (S)<N:

s = B. row ( i 1 ) + B. row ( i 2 )
+ B. row ( i 3 ) +
B. row ( i 4 ) + B. row ( i 5 )
+ B. row ( i 6 ) +
B. row ( i 7 ) + B. row ( i 8 )
+ B. row ( i 9 ) +
B. row ( i10 )

i f s . hamming weight ( ) <= R:
S . append ( s )

else : break
for i 1 in [ 0 . . k−11] :

for i 2 in [ i 1 +1. . k−10] :
for i 3 in [ i 2 +1. . k−9] :

for i 4 in [ i 3 +1. . k−8] :
for i 5 in [ i 4 +1. . k−7] :

for i 6 in [ i 5 +1. . k−6] :
for i 7 in [ i 6 +1. . k−5] :

for i 8 in [ i 7 +1. . k−4] :
for i 9 in [ i 8 +1. . k−3] :

for i 10 in [ i 9 +1. . k−2] :
for i 11 in [ i 10 +1. . k−1] :

i f len (S)<N:
s = B. row ( i 1 ) +

B. row ( i 2 ) +
B. row ( i 3 ) +
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B. row ( i 4 ) +
B. row ( i 5 ) +
B. row ( i 6 ) +
B. row ( i 7 ) +
B. row ( i 8 ) +
B. row ( i 9 ) +
B. row ( i10 ) +
B. row ( i11 )

i f s . hamming weight ( )
<= R:
S . append ( s )

else : break
return S

”””

”””
def f i n d c e n t r e (v , C, X) :

for c in C:
i f (v−c ) . hamming weight ( ) <= X:

return c
return None

”””
The CodeSieve (S ,gamma) a lgor i thm , the same as Algorithm 5
”””
def c od e s i e v e (M, gamma) :

R = max( v . hamming weight ( ) for v in M. rows ( ) )
C = [ ]
S accent = [ ]

for i in range (M. nrows ( ) ) :
i f M. row ( i ) . hamming weight ( ) <= gamma∗R:

S accent . append (M. row ( i ) )
else :

c = f i n d c e n t r e (M. row ( i ) , C, gamma∗R)
i f c i s None :

C. append (M. row ( i ) )
else :

S accent . append (M. row ( i )−c )

C hammingweight = [ c . hamming weight ( ) for c in C]

for s in S accent :
s . set immutable ( )

return set ( sorted ( S accent ) )

”””
Ca l cu l a t e s N C as de f ined in Lemma 4.2
”””
G1 = (7∗gammaˆ2−(gammaˆ2+3∗gamma−1)∗ s q r t (4∗gamma+1)−gamma+1) /

(2∗ ( s q r t (4∗gamma+1)+1) )
N = c e i l ( ( (Lˆ2∗ s q r t ( p i ∗L) ) / sq r t (8 ) ) ∗exp (L∗G1) )
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”””
The Nguyen−Vidick s i e v e a l gor i thm fo r b inary codes wi th the LLL reduced

matrix as input
”””
def s i ev ing with LLL (G,L , k ,N) :

G = LLL codes (G)
B = matrix (G)
S = sampling (B,N,L/2)

while S ! = [ ] :
M = matrix (S)
S = code s i e v e (M,gamma)
S = [ v for v in S i f not v . i s z e r o ( ) ]

c0 = [ c for c in M. rows ( ) i f c . hamming weight ( ) ==
min( v . hamming weight ( ) for v in M. rows ( ) ) ]

return c0 [ 0 ]
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