
Spectra of Supersingular Isogeny Graphs
Buuren, S. van

Citation
Buuren, S. van. Spectra of Supersingular Isogeny Graphs.
 
Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in the
Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/4171443
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/4171443


Spectra of Supersingular Isogeny Graphs

Master Thesis of

Sam van Buuren

June 27, 2022

Thesis supervisor: dr. J. Vonk

Leiden University

Mathematical Institute

1



Abstract

In a 2007 paper, Charles, Lauter and Goren studied how one might use Ramanujan graphs to create cryptographic

hash functions. One of the most well-known such graphs is the isogeny graph, whose vertices are indexed by the

isomorphism classes of supersingular elliptic curves in a characteristic p.

In this thesis, we study the spectra of these graphs. To start, we give two algorithms to compute these graphs for

small p, and present data obtained from implementing these algorithms. This data provides some statistical evidence

for several properties of the spectra of these graphs. We discuss the proof of two of these properties.

Firstly, the fact that these supersingular isogeny graphs are Ramanujan, i.e. that they have large spectral gap.

For this, we discuss the relation with Hecke operators and the Eichler–Shimura relation.

Secondly, the distribution of the eigenvalues as p tends to infinity. This we prove via the relation between the graph

and the Brandt matrices for the quaternion algebra ramified at p and ∞. We sketch a proof of the Eichler–Selberg

trace formula, and use this to conclude the proof.
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1 Introduction

1.1 Motivation

There has, in recent years, been much interest in isogeny-based cryptographic schemes, especially in the context of

post-quantum security. A central role here is played by the supersingular isogeny graphs, whose vertices are (indexed

by) the isomorphism classes of supersingular elliptic curves in characteristic p and whose edges are (indexed by) the

cyclic degree-m isogenies between these curves (here p is prime and m is an integer coprime to p). For most of this

thesis, we consider graphs of prime degree m = l.

These graphs appear also in the work of Charles–Lauter–Goren [CLG09], where they are used to construct a

cryptographic hash function. We will discuss this construction below in Section 1.3. As we will see, the security

of this hash function depends on the mixing properties of the used graphs, and its speed (i.e. how quickly we

can compute a hash) is dependent on how efficiently steps in our graphs can be computed. We will see that the

supersingular isogeny graphs have good mixing properties. Steps in these graphs are isogenies over finite fields, the

computation of which is still optimized (for a quantum computing algorithm, one can for instance look at [BJS14]).

In this thesis we study we study the spectrum of these isogeny graphs, which we will call Pizer graphs (after

Arnold Pizer, who was first to prove these graphs are Ramanujan). These spectra give us information on several

graph-theoretic properties. For instance, in Theorem 2.8, we will see that having a large spectral gap implies that

a random walk in our graph quickly converges to a uniform distribution. We will not, however, delve deeply in

the cryptographic consequences of the properties of the spectra. We are interested first and foremost simply in

understanding these graphs and the techniques one requires to study them.

1.2 Overview of the thesis

In Section 2, we discuss the Pizer graphs from a computational point of view. To start, in Section 2.1, we discuss

some theory on the spectrum of general graphs, and define Ramanujan graphs. We prove in Theorem 2.8 that these

Ramanujan graphs have excellent mixing properties. In Section 2.2, we then define our Pizer graphs and discuss

two algorithms for computing these graphs. Included here is also a discussion on how one can compute a single

supersingular j-invariant over the prime field Fp, based on a paper by Bröker [Brö09]. Finally, Section 2.3 presents

data on the spectra of Pizer graphs acquired via our own implementation of these algorithms. From this data, we find

statistical backing for the known results that that Pizer graphs are Ramanujan graphs, and that their eigenvalues

follow a distribution. The remainder of the thesis discusses the proof of these results.

The proof of the Ramanujan property is found in Section 3. We deduce this property from a theorem of Deligne

on the eigenvalues of Hecke operators acting on modular forms on Γ0(p), from [Del74]. This result is on forms of

general weight, but for our purposes, the case of weight two modular forms suffices. The proof of this specific case is

a more classical consequence of the Riemann hypothesis for abelian varieties (which we discuss in Section 3.2) and

the work of Eichler–Shimura, as we see in Section 3.3. We also discuss the relationship between Pizer graphs and

modular forms in Section 3.1.

Section 4 discusses a proof of the distribution of the eigenvalues. This proof is directly based on Serre’s proof

of a distribution of the eigenvalues of Hecke operators [Ser97], and also bears a strong resemblance a classic graph-

theoretic result of McKay [McK81]. Using that the distribution of eigenvalues of linear operators is determined by

traces of polynomials of these operators, as discussed in Section 4.1, we compute the Eichler–Selberg trace formula

for Brandt matrices in Section 4.3 and use this to deduce the distribution in Section 4.4.

Finally, in section 5, we give a more informal review of the various results observed in this thesis.
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1.3 Graphs and hash functions

A hash function is a way to compress an arbitrary-length message to a fixed-length bit-string in such a way that one

cannot deduce the original from the result. Mathematically, we can model this as a function

h : Z≥0 → {0, 1}n,

for some fixed n ≥ 0, such that

• Given s ∈ {0, 1}n, it is hard to find m ∈ Z≥0 such that h(m) = s,

• Given m1 ∈ Z≥0, it is hard to find m2 ∈ Z≥0 such that h(m1) = h(m2) but m1 ̸= m2,

• It is hard to find any pair m1,m2 ∈ Z≥0 such that h(m1) = h(m2) but m1 ̸= m2.

Example 1.1. An ideal example would be the following: for k ∈ Z≥0, let Xk be a uniform random variable on

{0, 1}n, such that Xk1 and Xk2 are independent for k1 ̸= k2. We define

h : Z≥0 → {0, 1}n, h(m) = Xm.

The example above is impractical, as computing infinitely many Xk is impossible. Still, we can attempt to simulate

such randomness. This is what the hash function discussed below is based on. As mentioned, this discussion is taken

from [CLG09].

Let G = (V,E) be a (k + 1)-regular graph (that is, each vertex v ∈ V has exactly (k + 1) edges that originate in

v). For any vertex v ∈ V , let E(v) be the set of edges coming from v. Define some ordering on each E(v), so that

we can speak of the first (second, etc) edge coming from v for all vertices v ∈ V .

We can uniquely write a message m ∈ Z≥0 in k-ary digits, that is, we can write:

m =

⌊logk(m)⌋∑
i=0

ai · ki,

for unique ai ∈ {0, . . . , k − 1}. We call the ai the k-ary digits of m.

Algorithm 1.2. Input: A message m ∈ Z≥0, a graph G = (V,E) as above and some starting vertex v0 ∈ V .

Output: The hash of m with respect to G.

1. Compute the k-ary digits a0, . . . , ar of m (here r = ⌊logk(m)⌋).

2. Let e0 be the (k + 1)-th edge coming from v0

3. Initialise vs = v0, es = e0 and i = 0.

4. While i ≤ r:

(a) Let et be the ai-th edge coming from vs. If et = es, let it be the (ai + 1)-th edge instead (computing

modulo k + 1).

(b) Let vt be the other edge coming from et, i.e. et = (vs, vt).

(c) Update i = i+ 1, es = et, vs = vt

5. Return vt.
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In words, we make a ‘random’ walk through the graph based on our input message m and remember only the

ending vertex of this walk. If the graph G over which we walk has the property that random walks quickly become

indistinguishable from the uniform distribution over V , this hash function comes close to the ideal distribution

outlined in the example above.
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2 Pizer graphs

In this chapter, we will define the main objects of interest to us, the Pizer graphs. We start by defining Ramanujan

graphs in generality, and motivating why these are objects worthy of study. Then we define the Pizer graphs

themselves and give two algorithms we can use to compute then in their entirety. Finally, we present some data,

acquired with said algorithms, in which we observe statistically a number of results whose mathematical explanation

is the subject of the remaining chapters.

2.1 General Ramanujan graphs

We introduce expander graphs and Ramanujan graphs, and prove a mixing lemma on these graphs. We presume

the reader already has some knowledge of graph theory For a quick recap of basic graph theory, see either appendix

A of this thesis or chapter one of Elementary Number Theory, Group Theory and Ramanujan Graphs by Guillana

Davidoff, Peter Sarnak and Alain Valette, [DSV03]. Most of the theory in this section can also be found in this

source. Unless otherwise stated, our graphs will be finite and connected.

We will start with an extremely important definition.

Definition 2.1 (Isoperimetric constant). The isoperimetric constant of a graph G = (V,E) is

h(G) = min
S⊂V ||S|<|V |/2

|δS|
|S|

where

δ(S) = {(v, w) ∈ E | v ∈ S,w /∈ S or w ∈ S, v /∈ S}

is the boundary of S.

Definition 2.2 (Expander graph). A family G1, G2, . . . of k-regular undirected graphs, Gm = (Vm, Em), such that

|Vm| → ∞ as m→ ∞ is called a family of (combinatorial) ϵ-expanders if for each m,

h(Gm) ≥ ϵ

Remark. Before we get to discussing some properties of these graphs, perhaps it is worth taking a moment to discuss

why one should think these objects are interesting. The isoperimetric constant is a measure of how well a graph

mixes; we expect the boundary of a set of vertices to grow quite slowly with the size of the set. As such, we expect

h(G) to be very low and close to 0 if |V | is large.
Expander graphs have very good mixing properties; the size of the boundary grows linearly with the size of the

set. This means that if we start in some subset S of the vertices, S connects to many of vertices not in S. Random

walks over expander graphs very quickly approach the uniform distribution, that is to say, the chance that a random

walk in n = O(log(|V |) steps ends in a vertex v is approximately 1
|V | for all v ∈ V . Whilst getting a uniform sample

from V can become hard to calculate as |V | grows very large, if we can calculate edges easily, taking n random steps

in a k-regular graph might be easy.

There is a more exact result, but before we get to that, we must first relate the isoperimetric constant to the

eigenvalues of the matrix.

Recall that a k-regular graph G always has eigenvalue k, and in general all eigenvalues λ satisfy |λ| ≤ k. With

the non-trivial eigenvalues we mean those eigenvalues not equal to k (recall that the multiplicity of the eigenvalue k

is the number of connected components, by e.g. Proposition A.5. Since our graphs are connected, k has multiplicity

1). We then get the following lemma, which is theorem 1.2.3 in [DSV03].
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Lemma 2.3. Let G = (V,E) be a finite, connected, k-regular graph without loops. Let A be the adjacency matrix of

G and µ1 the largest non-trivial eigenvalue of A. Then

k − µ1

2
≤ h(G) ≤

√
2k(k − µ1)

Proof. For this proof, we define for any finite set X the space l2(X) = Maps(X,C). Overly formally, one might think

of this as the L2 space on X.

We start with the first inequality. Choose some orientation of the edges of G, so that every edge e ∈ E has an

endpoint e+ and origin e− both in V and define the boundary operator

d : l2(V ) → l2(E), df(e) = f(e+)− f(e−).

We endow l2(V ) with the Hermitian scalar product

⟨f, g⟩ =
∑
x∈V

f(x)g(x)

and l2(E) with the analogous product, so that we may consider the adjoint map d∗ : l2(E) → l2(V ), i.e. the map

such that ⟨df, g⟩ = ⟨f, d∗g⟩ for f ∈ l2(V ), g ∈ l2(E). Define a function δ : V × E → {0, 1,−1} given by

δ(v, e) =


1 x = e+

−1 x = e−

0 else

We have

df(e) =
∑
x∈V

δ(x, e)f(x)

for f ∈ l2(V ), e ∈ E, by definition. It easily follows that, for v ∈ V and g ∈ l2(E),

d∗g(v) =
∑
e∈E

δ(v, e)g(e).

We define the laplacian ∆ = d∗ · d : l2(V ) → l2(V ). Note that

∆f(v) = (d∗
∑
x∈V

δ(x, .)f(x))(v)

=
∑
x∈V

∑
e∈E

δ(x, e)δ(v, e)f(x)

=
∑
e∈E

δ(v, e)2f(x) +
∑

x∈V,x ̸=v

∑
e∈E

δ(x, e)δ(v, e)f(x)

= kf(v)−
∑
x∈V

Axvf(x).

Hence ∆ = kI − A, where I is the |V | by |V | identity matrix and A acts in the natural way on l2(V ). Note that in

the last equality, we use that A has no loops.
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Since A is symmetric, it is diagonalizable and ∆ takes the form

∆ =


0 ∅

k − µ1

. . .

∅ k − µn−1

 .

Here µ1 ≥ . . . ≥ µn−1 are the eigenvalues of A not equal to k. If f ∈ l2(V ) is such that
∑

x∈V f(x) = 0, i.e. if f is

orthogonal to the constant functions (the eigenfunctions for ∆ with eigenvalue 0), then

∥df∥22 = ⟨df, df⟩ = ⟨∆f, f⟩ ≥ (k − µ1) ∥f∥22 .

Consider the function on V defined as follows. Fix F ⊂ V and define F c = V \F . Set

f(x) =

|F c| x ∈ F

−|F | x /∈ F

Clearly, f has the following properties:∑
x∈V

f(x) = |F c||F | − F ||F c| = 0

∥f∥22 = |F | · |F c|2 + |F c||F |2 = |F | · |F c| · |V |

df(e) =

±|V | e connects a vertex in F with a vertex in F c

0 else

As such, ∥df∥22 = |V |2|δF | and by the inequality above,

∥df∥22 = |V |2|δF | ≥ (k − µ1)|F ||F c||V |,

yielding
|δF |
|F |

≥ (k − µ1)
|F c|
|V |

.

for any F ⊂ V . If |F | ≤ |V |
2 , we get the desired

δF

|F |
≥ k − µ1

2
,

which implies (since the above holds for any F ⊂ G with |F | ≤ |V |
2 )

h(G) ≥ k − µ1

2
.

We now move on to the second inequality. This is a more involved proof. We require some results on another, more

mysterious operator. For any non-negative f : V → R, define

Bf =
∑
e∈E

|f(e+)2 − f(e−)2|.
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Fix some such f . Let βr > . . . > β1 > β0 ≥ 0 be the values f takes and define

Li = {x ∈ V | f(x) ≥ βi}.

This induces a a chain of subsets

Lr ⊊ Lr−1 ⊊ . . . ⊊ L1 ⊊ L0 = V.

Note that

δLi = {e ∈ E | f(e+) ≥ βi and f(e
−) < βi or vice versa}.

Define

Ef = {e ∈ E | f(e+) ̸= f(e−)}

and, for each e ∈ Ef , the pair i(e) and j(e) such that

βi(e) = max(f(e+), f(e−))

and

βj(e) = min(f(e+), f(e−)).

We have

Bf =
∑
e∈Ef

|f(e+)2 − f(e−)2| =
∑
e∈Ef

β2
i(e) − β2

j(e).

We introduce the terms −β2
i(e)−1 + β2

i(e)−1 − . . .− β2
j(e)+1 + β2

j(e)+1 at each e to modify the above to:

Bf =
∑
e∈Ef

i(e)∑
l=j(e)+1

β2
l − β2

l−1 =

r∑
i=1

|δLi|(β2
i − βe

i−1).

Now we wish to estimate Bf by Bf ≤
√
2k ∥df∥2 ∥f∥2. This is a matter of ‘filling in’:

Bf =
∑
e∈E

|f(e+) + f(e−)| · |f(e+)− f(e−)|

≤

(∑
e∈E

(f(e+) + f(e−))2

) 1
2
(∑

e∈E

(f(e+)− f(e−))2

) 1
2

≤
√
2

(∑
e∈E

(f(e+) + f(e−))2

) 1
2

∥df∥2

=
√
2k

(∑
x∈V

f(x)2

) 1
2

∥df∥2

=
√
2k ∥f∥2 ∥df∥2 .

by Cauchy-Schwarz and the fact that (a+ b)2 ≤ 2(a2 + b2).

Finally, we wish to relate Bf to h(G). Suppose f is supported on at most half the vertices, that is

|{v ∈ V | f(v) ̸= 0}| ≤ |V |
2
.

Then Bf ≥ h(G) ∥f∥22:
Note that since there is v ∈ V such that f(v) = 0, β0 = 0. Since |Li| ≤ |V |

2 for i > 0, we have |δLi| ≥ h(G)|Li|

10



by definition of h(G). Thus

Bf ≥ h(G)

r∑
i=1

|Li|(β2
i − β2

i−1)

= h(G)
[
|Lr|β2

r + (|Lr−1| − |Lr|)β2
r−1 + . . .+ (|L1| − |L2|)β2

1

]
= h(G)

[
|Lr|β2

r +

r−1∑
i=1

(|Li| − |Li+1|)β2
i

]
.

Since Li\Li+1 is precisely the set {v ∈ V | f(v) = βi}, the term in brackets equals ∥f∥22.
We are finally ready to prove the second inequality. Let g be a real-valued eigenfunction of ∆ with eigenvalue

k − µ1, and set

V + = {v ∈ V | g(v) > 0}

and

f = max(g, 0).

We may presume that f has support |V +| ≤ |V |
2 (since g ̸= 0 and

∑
x∈V g(x) = 0, |V +| ≠ ∅ and −g is also an

eigenfunction). For x ∈ V +, we have

(∆f)(v) = kf(v)−
∑
x∈V

Avxf(x)

= kg(v)−
∑

x∈V +

Avxg(x)

≤ kg(v)−
∑
x∈V

Avxg(x)

= (k − µ1)g(x).

Thus we get

∥df∥22 = ⟨∆f, f⟩

=
∑

x∈V +

(∆f)(x)g(x)

≤ (k − µ1)
∑

x∈V +

g(x)2

≤ (k − µ1) ∥f∥22 .

Combining the above with the second and third results on Bf , we get

h(G) ∥f∥22 ≤ Bf

≤
√
2k ∥df∥2 ∥f∥2

≤
√
2k(k − µ1) ∥f∥22 .

Cancelling out ∥f∥22 ̸= 0 yields the result.

We call k − µ1 the spectral gap. Good expanders have, by the above lemma, a large spectral gap, and equivalently

graphs with a large spectral gap are good expanders. As such, we have the following alternate definition of expander

11



graphs:

Definition 2.4. A family G1, G2, . . . of k-regular undirected graphs, Gm = (Vm, Em), such that |Vm| → ∞ as

m→ ∞ is called a family of (spectral) ϵ-expanders if for every m and every non-trivial eigenvalue µ of Gm, we have

µ ≤ k − ϵ.

We also call a single k-regular graph G an ϵ-expander if all its non-trivial eigenvalues µ have µ ≤ k − ϵ.

We have translated a graph-theoretic property into a linear-algebraic property. Rather than computing the rather

esoteric isoperimetric constant of a graph, we need only compute the eigenvalues of a matrix. This latter problem is

far more studied, and almost any programming language has an efficient built-in way to compute these eigenvalues.

We have the following limit lemmas on eigenvalues of graphs. These are theorems 1.3.1 and 1.3.3 in [DSV03]

Lemma 2.5. Let G1, G2, . . . be a family of k-regular, connected finite graphs Gm = (Vm, Em), such that |Vm| → ∞
as m→ ∞. Then

lim inf
m→∞

µ1(Gm) ≥ 2
√
k − 1

where µ1(Gm) is the largest non-trivial eigenvalue of Gm.

On the other side of the spectrum, we have a similar lemma, though with a more stringent requirement.

Lemma 2.6. Let G1, G2, . . . be a family of k-regular, connected finite graphs Gm = (Vm, Em), such that the girth

gmof Gm goes to ∞ as m→ ∞. Then

lim sup
m→∞

µ(Gm) ≥ 2
√
k − 1

where µ(Gm) is the smallest (non-trivial) eigenvalue of Gm.

Thus, in the limit, the spectral gap cannot be larger than k − 2
√
k − 1 and, if the Gi have increasing girth,

the same restriction applies to the negative side of the spectrum. The significance of the following definition then

becomes apparent.

Definition 2.7. A finite, k-regular graph X is called a Ramanujan graph if for every non-trivial eigenvalue µ of X,

we have

|µ| ≤ 2
√
k − 1

We can now state the mixing theorem on expander graphs we are interested in. This version and its proof are

both lifted from [Gol01], lecture 10, theorem 5.

Theorem 2.8. Fix ϵ > 0 and k ∈ Z≥0. For every δ > 0, there is an integer

lδ = O(log(1/δ))

such that for every finite k-regular undirected ϵ-expander graph G = (V,E), a random walk X0, X1, . . . , Xlδ (of length

lδ) in G has, for every v ∈ V : ∣∣∣∣P(Xlδ = v)− 1

N

∣∣∣∣ ≤ δ

where N = |V |.

Remark. The way to think about this theorem is this: in O(log( 1δ ))-steps, a walk in G is ‘close to’ the uniform

distribution. In fact, if we take δ < 1
2N , we have that 1

2N ≤ P(Xl = v) ≤ 3
2N . Thus a walk of O(log(N))-steps is a

constant factor removed from the uniform distribution over the vertices!

Additionally, the remarkable thing about this theorem is the fact that l is independent of the size of G; the

logarithmic dependence on δ is true for any graph, but in the general version there is an additional dependence on

the number of vertices.
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Proof. Let A be the adjacency matrix of G and A′ = A/k. Note that A′ has entries in [0, 1] and the sum of any row

or column is 1. A random walk over G has probability matrix A′. Let

π =

(
1

N
,
1

N
, . . . ,

1

N

)
and r(v) be the row of A′ corresponding to a vertex v (i.e. r(v)w = A′

v,w is chance that a walk starting in v jumps

to w).

Let r⊥(v) = r(v) − π. Note that since the entries of r(v) sum to 1, the entries of r⊥(v) sum to 0 and as such

r⊥(v) is perpendicular to π.

Since r⊥(v) ∈ π⊥ and there is a basis consisting of eigenvectors of A (or A′), we have∥∥(A′)lr(v)− π
∥∥
∞ ≤

∥∥(A′)lr(v)− π
∥∥
2

=
∥∥(A′)l(r⊥(v) + π)− π

∥∥
2

=
∥∥(A′)lr⊥(v)

∥∥
2

using that A′π = π

Define λ = 1− ϵ
k . All eigenvalues of A (except k) have absolute value ≤ k−ϵ, and thus all eigenvalues of A′ except

1 have absolute value ≤ λ. Thus, since the space of vectors perpendicular to π is spanned by the other eigenvectors

of A′, we have that ∥(A′)w∥ ≤ λ ∥w∥2. Since r⊥(v) is perpendicular to π (and so is Ar⊥(v)), we in particular have

∥∥(A′)lr⊥(v)
∥∥ ≤ λl ∥r⊥(v)∥2 ≤ λl ∥r(v)∥2 ≤ λl ∥r(v)∥1 = λl

Here we use that r⊥(v) is a projection of r(v) and that r(v) is a probability vector.

If λl ≤ δ, then

|P(Xl = v)−N−1| ≤ δ

This is equivalent to

l ≥ log(δ)

log( 1λ )

which means that l = O(log( 1δ )).

A final note before we get to the Pizer graphs. The above lemma will provide convergence to the uniform

distribution in O(log(N)) steps regardless of the expander coefficient ϵ. However, the estimations we make do

depend on ϵ, and thus a better expander will have a quicker convergence and in the limit Ramanujan graphs will be

the ‘quickest’.

2.2 Pizer graphs

We will follow the conventions of Silverman with regards to elliptic curves, see [Sil09] for more detail.

Definition 2.9. Let p be a prime and m ≥ 0 an integer coprime to p. Let E1, . . . , EN be representatives of the

isomorphism classes of supersingular elliptic curves over Fp2 . The Pizer graph of degree n over p is the graph Pizp(m)

with vertex set {E1, . . . , EN} and adjacency matrix Bp(m) with entries:

Bp
ij(m) = #{C ⊂ Ei(Fp) | C a cyclic subgroup of order n and j(Ei/C) = j(Ej)}

When the prime p we work over is clear, we will omit the p in the notation.
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This corresponds to the isogeny graphs discussed in the introduction, since any isogeny is, up to composition with an

isomorphism, wholly determined by its kernel. Thus, Bij(m) can also be seen as the number of degree-m isogenies

from Ei and Ej , up to composition with automorphisms of Ej . Since we only consider curves up to isomorphism

over Fp, we can and usually will use the set of j-invariants as the vertex set of Pizp(l).

Remark. The Pizer graphs are directed. Our edges are isogenies, say ϕ : E1 → E2, which go in one direction. There

is of course the dual map ϕ̂ : E2 → E1, which may initially seem to make our graph undirected. However, if E1 has

non-trivial automorphism group, we may run into trouble in the following way.

Let ϕ : E1 → E2 be an isogeny and σ ∈ Aut(E1). We take duals to get

ϕ̂σ = σ̂ϕ̂ = σ−1ϕ̂.

Now, σ−1ϕ̂ has the same kernel as ϕ̂, so these are the same edge in the Pizer graph, but

ker(ϕσ) = σ−1[ker(ϕ)].

If ker(ϕ) ̸= σ−1(ker(ϕ)), then ϕ corresponds to another edge in the graph than ϕσ. Thus we cannot cancel edges via

duals to make our graphs undirected.

If σ = σ−1 = ±1, then of course σ−1(ker(ϕ)) = ker(ϕ), so if Aut(E1) = {±1}, this problem does not arise. This

is the case for all j-invariants except j = 0 and j = 1728, which have larger automorphism groups. Later on, we

will see that these j-invariants are ordinary (i.e. not supersingular) modulo p if (and only if) p ≡ 1 mod 12. In this

case, we can view our graphs as undirected.

We will want to relate walks in the graph to isogenies of prime power degrees. We prove the following proposition:

Proposition 2.10. Let p ̸= l be primes and E,E′ be supersingular curves over Fp2 .

Composition of isogenies provides a surjection from the walks of length n in Pizp(l) between E and E′ onto the

isogenies of degree ln between E and E′ up to composition with isomorphisms.

Moreover, restriction of this map to walks without backtracking yields a bijection to isogenies with cyclic kernel.

Proof. Let (e1, . . . , en) be a walk in Pizp(l) from E to E′. The edges ei correspond to degree-l isogenies ϕi : Ei−1 → Ei,

where E0 = E and En = E′. Composing these isogenies yields a map

ϕn ◦ ϕn−1 ◦ . . . ◦ ϕ1 : E → E′

of degree ln. On the other hand, given a degree-ln isogeny ψ : E → E′, the kernel ker(ψ) contains a subgroup, say

C1, of degree l. We can consider the map

ϕ1 : E → E/C1

Write E1 = E/C1. We know that ϕ1[ker(ψ)] ≃ ker(ψ)/C1 has degree ln−1. If n > 1, ϕ1[ker(ψ)] also contains a

subgroup of degree l, and we can consider

ϕ2 : E1 → E1/C2

Repeating the steps above n times, we get a sequence of morphisms

ϕi : Ei−1 → Ei

where E0 = E and En = E′. These ϕi correspond to edges ei in Pizp(l), and (e1, . . . , en) is a walk from E to

E′ whose composition is ψ. Note that the choice of subgroup C1 is not always unique, which may yield different
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compositions (so this map is not per se injective).

It remains to prove that if the kernel of ψ is cyclic, the choice of subgroup is unique, and the corresponding walk

in this case does not backtrack. The walk (e1, . . . , en) backtracks if, for some i, ei corresponds to the dual map of

ei−1.

Since our map ψ in this case has cyclic kernel, it contains a unique subgroup of order l, so the choice of C1 as

above is fixed. Since ϕ1[ker(ψ)] is the image of a cyclic group under a group morphism, it is cyclic also, and the choice

of C2 is also uniquely determined. Thus ψ can be uniquely decomposed (up to composition with isomorphisms) as

a walk in the graph.

A walk with backtracking clearly has non-cyclic kernel: the composition of ϕ and ϕ̂ is [l], with kernel (Z/lZ)2, a
non-cyclic group.

It remains to see that a walk (e1, . . . , en) without backtracking corresponds to an isogeny with cyclic kernel. Let

ϕ1, . . . , ϕn be the corresponding isogenies and suppose that

ψ = ϕn ◦ . . . ◦ ϕ1

has non-cyclic kernel.

Note that ϕ1 has cyclic kernel (as it is of degree l). Let us write

ψi = ϕi ◦ . . . ◦ ϕ1

This is the ‘truncated’ version of ψ. Let m be such that ψm−1 has cyclic kernel, but ψm has non-cyclic kernel. The

kernel of ψm−1 is (isomorphic to) Z/lm−1Z. Since ψm must have non-cyclic kernel and this kernel must contain

ker(ψm−1), ker(ψm) must be isomorphic to (Z/lm−1Z)× Z/lZ. We see that

ψm−2(ker(ψm)) ≃ (Z/lZ)2

An elliptic curve contains a unique subgroup of isomorphism type (Z/lZ)2, namely the l-torsion, and since ψm =

ϕm ◦ ϕm−1 ◦ ψm−2, ϕm ◦ ϕm−1 must be [l]. But this means that

ϕm−1 = ϕ̂m

This is in contradiction to the presumption that our walk was without backtracking.

2.2.1 Computing Pizer graphs

We would like to get a better understanding of these graphs. One way to do this is simply to compute some of

them and see if we can find statistical ‘evidence’ for their (cryptographic) properties. We discuss some algorithms

for computing these graphs.

To compute Bij(m), one can compute the m-torsion of Ei and for every (cyclic degree-m) subgroup of this

m-torsoin C ⊂ Ei[l], compute j(Ei/C). This leads to the following algorithm:

Algorithm 2.11. Input: Primes p and l, l ̸= p.

Output: The adjacency matrix of the l-isogeny graph over Fp2 .

1. Find a supersingular j−invariant j1 over Fp, and a corresponding curve E1.

2. Record j1 on the list of j-invariant to process and list of known j-invariants.

3. Let B be the 1-by-1 zero matrix.
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4. While the list of to-process j-invariants isn’t empty:

(a) Let j′ be a to-process j-invariant. Compute an elliptic curve E with j-invariant j′.

(b) Compute the l-torsion of E, and find all l + 1 subgroups of order l. Make a list of these groups, say

{G0, . . . , Gl}

(c) For each k ∈ {0, . . . , l}:

i. Compute the isogeny ϕk with kernel Gk. Let Ek be its co-domain and jk = j(Ek).

ii. If jk is on the list of known j-invariants, add 1 to Bj′,jk . Else, create a new row and column in B

labeled by jk with a 1 in the j′-th column and jk-th row.

iii. Add jk to the list of to-process j-invariants.

(d) Add j′ to the list of finished j-invariants.

(e) Remove from the list of to-process j-invariants all finished j-invariants.

5. Return B and the list indices of B.

The idea of the above algorithm is simple, and quite generally applicable to computations of complete graphs. We

start with some vertex in the graph, calculate all the points to which it is connected, then jump to one of these

vertices and repeat until we can only reach vertices we’ve already treated. Since we know that our graph is connected,

we know we’ve truly found every vertex and edge in our graph.

Before we continue with some potential improvements, we should firstly know how we can do any of the above.

More precisely:

1. Given j, how do we find a curve of j-invariant j?

2. How do we find a starting vertex, i.e. a supersingular elliptic curve E over Fp2?

3. How do we compute the l-torsion of a given elliptic curve?

4. Given a point or subgroup in an elliptic curve, how do we compute the accompanying isogeny, or the j-invariant

of its codomain?

The first is easy, and is mentioned in Silverman, see [Sil09], proposition III.1.4c; the curve given by y2 = x3 + 1

has j-invariant 0 and the curve given by y2 = x3 + x has j-invariant 1728. For j not equal to 0 or 1728, the curve

given by

y2 = x3 − 36

j − 1728
x− 1

j − 1728

has j-invariant j.

2.2.2 Finding supersingular j-invariants

Moving on to point 2. Computing a supersingular j-invariant in characteristic p can be achieved using CM-theory of

elliptic curves. We follow the ideas of Bröker from [Brö09]. An important basic result of CM-theory is the following:

Theorem 2.12. Let E be a CM-elliptic curve over some number field L, with endomorphism ring the maximal order

in a quadratic imaginary number field K. Let p be a prime of L lying above p ∈ Z such that E has good reduction at

p. Then E mod p is supersingular if and only if p remains inert in K.
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See for instance [Lan87], theorem 13.12. In this book (chapter 10) one can also find the following result: given

an elliptic curve as in the theorem above, there is an irreducible monic polynomial in Z[X] of degree equal to the

class group of K, which we call PK , such that the roots of PK in C are the j-invariants of elliptic curves with

endomorphism rings isomorphic to OK .

Furthermore, PK remains irreducible in K[X] and K[X]/PK is the Hilbert class field of K. Let p be a prime that

remains inert in K. The elliptic curves defined by the roots of PK are supersingular curves mod p (or modulo the

appropriate ideal above p). As such, PK splits in Fp2 (as all supersingular j-invariants of characteristic p are defined

here) and thus if PK is of odd degree, it is guaranteed to have a root in Fp. We have the following, which is lemma

2.3 in [Brö09].

Lemma 2.13. Let K = Q(
√
−d), where d ∈ Z≥2 is square-free. Let hK be the class number of K. We have:

hK is odd ⇐⇒ d = 2 or d ≡ 3 mod 4 and prime

Proof. Let D be the discriminant of K and p1, . . . , pr the odd prime divisors of D. We consider the genus field

G = K(
√
p∗1, . . . ,

√
p∗r).

Here, for odd primes p,

p∗ = (−1)
p−1
2 p =

p p ≡ 1 mod 4,

−p p ≡ 3 mod 4.

G is the largest unramified abelian extension of K that remains abelian as an extension of Q. The Galois group

Gal(G/K) is the Sylow-2 subgroup of the class group of K.

Thus Gal(G/K) is trivial if and only if hK is uneven. Note that G always contains
√
p∗ for any odd prime divisor

of d. Write

d = 2bq1q2 . . . qs,

where qi are odd primes. Note that b = 0, 1. If d is not prime, Q(
√
−d) does not contain

√
−q1, so K ̸= G. Thus if

d is not prime, Q(
√
−d) has even class number.

We see that d must be a prime then. The case d = 2 is trivial, so suppose d is an odd prime.

If d ≡ 1 mod 4, G contains the real quadratic number field Q(
√
d), so [K : G] = 2.

Else, if d ≡ 3 mod 4, D = −d and G = K(
√
−d) = K.

Note that if K has class number 1, the j-invariant of E is defined over Z and computing E mod p is very easy.

There are 9 quadratic imaginary fields with trivial class group. As such, to compute a supersingular curve mod p, we

could start by checking if there is such a field K where p remains inert. This is a congruence relation modulo some

fixed number, since if K has discriminant D, then p is inert if and only if (Dp ) = −1, which by quadratic reciprocity

is a congruence mod D.

If this fails, we can employ the following general method. It is more computational work, but will always produce

a supersingular j-invariant.

Let us simply give the algorithm as Bröker does.

Algorithm 2.14. Input: a prime p

Output: a supersingular j-invariant in Fp

1. If p = 2, return 0

2. If p ≡ 3 mod 4, return 1728

3. Find small prime q ≡ 3 mod 4 such that −q is not a square mod p
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4. Compute PK ∈ Z[X] for K = Q(
√
−d)

5. Find a root j of PK ∈ Fp[X]

6. Return j

We briefly discuss these steps. Step 1 and 2 are simple cases; by CM-theory, 1728 is supersingular modulo an

odd prime p if and only if p ≡ 3 mod 4.

We construct q such that p is inert in K = Q(
√
−q) and hK is odd. Because p remains inert, PK splits over Fp2

(as its root define supersingular j-invariants, and these all lie in Fp2). Thus if hK = deg(PK) is odd, PK has a root

in Fp.

To find such a q, we can simply try small primes. The density of primes that are 3 mod 4 is 1
2 , and also the

density of primes where −q is a square mod p is 1
2 . Thus a random prime has chance 1

4 to be sufficient for step 3,

and we expect q to be rather small.

There is a worst-case upper bound; under assumption of the generalised Riemann hypothesis, there is effectively

computable c ∈ R>0 such that a sufficient q exists with

q ≤ c log(4p2)2.

The computation of PK is harder. This has degree equal to the class number. There is a theorem of Siegel

that states that the class number of Q(
√
−d) grows in O(

√
d). We can be somewhat more precise, and follow the

introduction of [BM19]. For d ∈ Z≥1, write h(d) for the class number of Q(
√
−d). Using techniques from analytic

number theory, one can prove that, as d→ ∞,

h(d) ≪
√
d log(d).

There is also the following theorem, which provides a lower bound:

Theorem 2.15. Define, for d ∈ Z≥1, h(d) to be the class number of the imaginary quadratic number field Q(
√
−d).

For all ϵ > 0, there is effectively computable constant c(ϵ) such that

h(d) > c(ϵ)d
1
2−ϵ.

This is to say that the class number of Q(
√
−d) grows at least as quickly as

√
d as d→ ∞. The computability of

C(ϵ) is a later result of Dorian Goldfeld in [Gol77]. This yields to

lim
d→∞

log(h(d))

log(d)
=

1

2

In order to compute PK for a general quadratic order Z[α], note that Z[α] = Z + αZ and this is closed under

multiplication. In particular, as a lattice, it has endomorphism ring Z[α], and hence the elliptic curve C/Z[α]
also has endomorphism ring Z[α]. Since PK is irreducible, it is the minimum polynomial of any j-invariant with

endomorphism ring OK . In particular, it is the minimum polynomial of jK = j(C/OK). If L is any field extension

of Q containing all the roots of jK , then:

PK =
∏

j∈Aut(L)jK

(X − j)

We will not give a full algorithm for the computation of this polynomial. One can find an efficient way to do

so in [Brö08]. This algorithm uses the Galois action on field extensions of Qp; one can compute these actions with

enough precision to deduce the coefficients (recall that PK ∈ Z[X]). If (the maximal order of) K has discriminant

D, the outlined method has running time O(|D| log(|D|)8+ϵ) for all ϵ > 0.

18



Finally, we must compute a root of Pk mod p. We can use algorithm 14.15 from [vzGG13], which completes in

O(deg(f) · log(p)2)) time.

Hence running time we ‘expect’ to see is very good: we expect to find small q, and hence small class number hK .

The computation of PK will thus be easy, and we are only left with O(log(p)2) from the computation of a root of

PK mod p.

In the worst case, q = O(log(p)2), so the class number hK is

hK = deg(PK) = O(log(p)).

The computation of PK takes

O(log(p)2 log(log(p))8+ϵ).

Finally, finding a root of PK mod p takes

O(deg(PK) log(p)2) = O(log(p)3),

so the algorithm has a total worst-case running time of

O(log(p)3).

This compare favourably to ‘naive’ methods. The most naive method would be simply taking random j-invariants

in Fp2 until one is supersingular. There are approximately p/12 supersingular j-invariants, so this has running time

O

(
p2

p/12

)
= O(p).

The number of supersingular elliptic curves defined over Fp is approximately the class number of Q(
√
−p). This

is a consequence of the trace formula computed in Section 4.3 (for m = p).

This class number grows at order O(
√
p). Thus guessing in Fp has running time

O

(
p
√
p

)
= O(

√
p).

Brökers algorithm has a far more attractive running time. One should of course remember that for small primes p,

the implementation of Brökers algorithm is rather overkill, as O(
√
p) is a running time one can work with; it certainly

was not the bottleneck for our implementation. If on the other hand one is interested in implementing, say, the hash

function outlined in the introduction, one needs very large primes (of the order 21024 or larger), and perhaps finding

a starting vertex would be a significant part of the running time.

2.2.3 The torsion and Velù

The l-torsion then. For l = 2, this is easy. Since this is the only case we actually use, we will treat this in some more

detail. If our curve is defined by y2 = f(x), then the 2-torsion is given by the points (x1, 0), (x2, 0), (x3, 0), where

the xi are the roots of f , and, under the correct choice of isomorphism class, all these points are defined over Fp2 .

As mentioned under Bröker, there are only so many possible values for the trace of the p2-power Frobenius. This

is the first statement in [Brö09].

Theorem 2.16. Let E be a supersingular elliptic curve over Fp2 and π the p2-power Frobenius endomorphism of E.

Write t for its trace. Then t can have the following values:

1. t = 2± p
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2. t = ±p if p ̸≡ 1 mod 3

3. t = 0 if p ̸≡ 1 mod 4

Furthermore, there is always an elliptic curve E′ isomorphic to E (over Fp) such that the trace of Frobenius on E′

is ±2p.

Now, we can compute the discriminant of π − [1] (here [n] is the multiplication-by-n map on E): it is t2 − 4p2

(cf. the proof of lemma 3.7 of [Sch87]). As such, if t = 2 ± p or t = 0, π − 1 ∈ Z and thus π ∈ Z, that is, there is

n ∈ Z such that π = [n]. In fact, looking at degrees, n = ±p. If we write E[n] for the n-torsion of E, we get

E(Fp) = ker(π − [1]) = E[π − [1]] = E[p± 1]

Thus, we get the more general result that the m-torsion of E is defined over Fp2 if and only if m | π − 1. Which

m-torsions are defined depends on whether π = p or π = −p, but since 2 = gcd(p− 1, p+ 1), the 2-torsion is always

defined over Fp2 .

For l > 2, this is somewhat more difficult. Since the addition law on elliptic curves is given by polynomials in

the coordinates, we can find roots by again solving polynomials. In other words, since the multiplication-by-l map

is a morphism, it is given by rational functions, and has a global representation on the affine patch. In fact this to

some degree the method we use for determining the 2-torsion. We will not go into much further detail, but note that

these division polynomials quickly grow large and the roots might be defined over a large field. By the previously

mentioned lemma 3.7 from [Sch87], one could determine these fields in more detail.

Finally, the final question we had regarding Algorithm 2.11 was how to actually compute the isogenies belonging

to a certain point on an elliptic curve, or (the j-invariant of) the codomain. For this, there are the formulae of Velù,

[V7́1]. These are implemented in Sage, and are the standard manner of arithmetic on elliptic curves.

2.2.4 A second algorithm

The main sticking point of the above algorithm is, then, having to compute the entire l-torsion. Here, there is

powerful tool that can give us a significant speedup; the modular polynomial.

For a definition, see [Sil94], exercise 2.18. The properties that are important for us are the following:

• For n ∈ Z≥0, Φn(X,Y ) ∈ Z[X,Y ]

• For z1, z2 ∈ C, Φn(z1, z2) = 0 if and only if there are elliptic curves E1, E2 with j-invariants z1 and z2 and an

isogeny ψ : E1 → E2 of degree n whose kernel is cyclic.

• The multiplicity of a root z1 of Φn(X,X) equals the number of cyclic endomorphisms of elliptic curves E1 over

C of j-invariant z1 of degree n.

• The above properties hold true if z1 and z2 are elements of a finite field Fq, and the curves are defined over Fq.

Calculating these modular polynomials is no easy feat; the algorithm in [BLS12] has running timeO(l3 log(l)3 log(log(l))),

for l a prime. The coefficients quickly become unwieldy: for instance,

Φ2(X,Y ) = X3 − 162000X2 + 1488X2Y −X2Y 2
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+8748000000X + 40773375XY − 157464000000000

and

Φ3(X,Y ) = 1855425871872000000000X − 770845966336000000XY

+452984832000000X2 + 8900222976000X2Y + 2587918086X2Y 2 + 36864000X3

−1069956X3Y + 2232X3Y 2 −X3Y 3 +X4

Still, once one has this polynomial, for fixed n = l prime, one can upgrade to the following:

Algorithm 2.17. Input: A prime p such that p ̸= l.

Output: The l-isogeny graph over Fp2 .

1. Find a supersingular j-invariant j over Fp.

2. Add j onto the list of j-invariants to process and list of known j-invariants.

3. Let B be the 1-by-1 zero matrix.

4. While the list of to-process j-invariants isn’t empty:

(a) Let j′ be a to-process j-invariant. Compute f = Φl(j
′, X) ∈ Fp[X].

(b) Find the roots of f over Fp2 . say {j0, . . . , jl}

(c) For each k ∈ {0, . . . , l}:

i. If jk is on the list of known j-invariants, add 1 to Bj′,jk . Else, create a new row and column in B

labeled by jk with a 1 in the j′-th column and jk-th row.

ii. Add jk to the list of to-process j-invariants.

(d) Add j′ to the list of finished j-invariants.

(e) Remove from the list of to-process j-invariants all finished j-invariants.

5. Return B and the list indices of B.

Remark. Neither the above nor Algorithm 2.11 before makes use of the fact that the Pizer graph is ‘mostly undirected’.

That is to say, if there is a vertex from j1 to j2, then there is another vertex from j2 to j1; such a vertex represents

an isogeny ψ : E1 → E2, which has a dual isogeny of the same degree ψ̂ : E2 → E1 (recall the discussion above

Proposition 2.10). This ‘mostly undirected’ property can be useful; whenever we find an automorphism j1 → j2, we

can remember this. We know that one of the roots of Φl(j2, X) is j1, so we can calculate Φl(j2, X)/(X − j1) and

find the remaining roots. This polynomial will have lower degree, and as such finding roots here will be much easier!

In the same vein, for Algorithm 2.11, if we fix a specific curve for each j-invariant, we can compute a point on the

l-torsion to start. Let E1[l] = {P1, . . . , Pl2} be the l-torsion of E1 (P1 = O and let ϕ : E1 → E2 be the isogeny with

kernel ⟨P2⟩. If P3 /∈ ⟨P2⟩, then ϕ(P3) will be an order-l point on E2, and we can compute l points in the l-torsion

already. In fact, E1[l] = ⟨P2, P3⟩, so the isogeny with kernel ϕ(P3) will correspond to the dual isogeny of ϕ.

2.3 Implementation and data

For the research of this thesis, we used the first algorithm, with no speedups. Furthermore, these computations were

implemented in Sage, without specialized add-ons, on a home computer not dedicated to this program alone and thus

very far from optimized. The code was also written by the author of this thesis, who is not an expert programmer.
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Still, the spectra of the Hecke operators of all primes up to 3 · 105 are available. The time-usage is plotted below.

By experimentation, the curve seems lie between O(x2) and O(x3) and happens to line up nicely with C · x2
√
x,

though these are experimental results and should not be taken as fact. For clarification, a point on the blue line has

coordinated (p, t), where p is a prime and t is the time (in seconds) our code took to compute the adjacency matrix

of Pizp(l).

Figure 1: Time taken per prime

The code we used to implement the algorithms discussed above is included in the appendices. We used this code

to calculate the spectra of the Pizer graphs Pizp(2) for p between 5 and 38113. We could of course have analysed the

entire adjacency matrix, but this would have taken even longer, and most of the properties we seek can be derived

from the spectrum (to be clear, we do compute the entire matrix and only then the spectrum. However, storing each

of the 3500 matrices, whose size scales quadratically in the size of the prime, would take a lot of storage. Additionally,

Python does not write-to-file very quickly, thus in storing this data, we would also ‘waste’ a lot of time). We did

save the full matrices for some small primes.

As such, we can give some examples. The first interesting example where p ≡ 1 mod 12 is p = 37. In the picture,

the labels are the j-invariants of the elliptic curves, and a is a root of X2 + 4X − 2, that is, a generator of F372 over

F37 (this is a standard generator Sage chooses).

Figure 2: Piz37(2)
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For an example where Pizp(l) is directed, we chose p = 67. Again, a is a generator of F672 and a root for

X2 + 4X − 2. Note that there are 2 arrows from 1728 to 66, but only one from 66 to 1728. This is because the dual

of the first arrow is the dual of the second arrow composed with an automorphism of (the curve with j-invariant)

1728. Still, the graph is 3-regular in the sense that the out-degree of each node is 3.

Figure 3: Piz67(2)

The reason for our interest in the Pizer graphs is of course because they are Ramanujan graphs. Below we see

that this does indeed fit with our data: in blue is the value of the second largest eigenvalue of Pizp(l), in red is the

constant line y = 2
√
2. In chapter 3, we will prove the following:

Theorem 2.18. For every pair of primes l and p, Pizp(l) is a Ramanujan graph. That is, for every eigenvalue λ of

Pizp(l), we have λ = l + 1 or λ ≤ 2
√
l. Furthermore, λ = l + 1 has (geometric and algebraic) multiplicity 1.

Figure 4: Value of the 2nd largest eigenvalue

We see that the statement is indeed true; the Pizer graphs have a large spectral gap.
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When one is given a large amount of sets of data, a natural thing to do is to look for patterns between these sets.

As such, we simply plotted all the spectra and made a .gif-file from them. Regrettably, moving pictures cannot as of

yet be printed, and we hence cannot include this gif here. From this figure, it was clear that the eigenvalues followed

a non-uniform distribution, that was still symmetric around 0. Below is plotted the ordered spectrum of Piz38113(2);

this spectrum is a tuple of real numbers (µ1, . . . , µn) such that µm ≤ µm+1. A point on the blue line is of the form

(m,µm) for some 1 ≤ m ≤ n. In red is the straight line between (1, µ1) and (n, µn). Note that 3 is not included in

the spectrum, as it is obvious that it is an eigenvalue, and would only show as a strange ‘jump’ in the top-right of

the graph.

Figure 5: Spectrum at 38113

One notices that there is a clearly visible gap between the linear approximation and the spectrum. This was

consistent for all other spectra, and indicates that the eigenvalues are not distributed according to the uniform

distribution. The next thing to do is to simply count the occurrences of each eigenvalue.

Of course, these are algebraic numbers, so exact repetition will be quite rare, but if we round to 3 digits, we will

see repetition. We computed over 4.5 million eigenvalues in total. Below is plotted our count. To clarify, a point

(x, y) on the (blue) graph indicates that there were y instances of eigenvalue x occurring.
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Figure 6: Occurrence of Eigenvalues, rounded to 3 digits

In red, there is plotted the function 3
√
8−x2

2π(9−x2) . This comes from [McK81], and is the predicted density function

for the probability distribution for the eigenvalues of large 3-regular graphs. The count follows this line very closely.

This is intriguing; the proof in McKay’s paper relies on an additional requirement that the total number of k-cycles

grows sublinearly with the size of the graph, which is not the case of our graphs (as we see in Lemma 4.16). Still,

this distribution seems to be maintained! We will, in chapter 4, get to proving the following.

Theorem 2.19. Fix a prime l. Let El(N) be the set of (non-trivial) eigenvalues of Pizp(l). Define

Fl(x, p) =
#{µ ∈ El(p) | µ ≤ x}

#El(p)

Then, for all x in [−2
√
l, 2

√
l], Fl(x, p) converges to

Fl(x) =

∫ x

−2
√
l

(l + 1)
√
4l − x2

2π((l + 1)2 − x2)
dx

as p→ ∞.

The proof of the above theorem (discussed in chapter 4) relies on the relationship between quaternion algebras

and isogeny graphs as discussed in Section 4.3. In particular, it relies on a formula for the trace, for which we must

discuss the embedding theory of orders into quaternion algebras. For the special case l = 2, we do not need this; the

proof of the below theorem is entirely CM-related.

Proposition 2.20. For any prime p, we have

Tr(Pizp(2)) = 2−
(
−7

p

)
− 1

2

((
−4

p

)
+

(
−2

p

))
.

In particular, the trace of Pizp(2) depends only on p mod 56.

Proof. The trace of Pizp(2) is, by the correspondence to our matrices, precisely the number of supersingular j-

invariants with degree 2 endomorphisms, weighted by the amount of endomorphisms, i.e.

Tr(Pizp(2)) =
∑

j∈Fp2 |j supersingular

#{ϕ ∈ End(j) | deg(ϕ) = 2}
#Aut(j)
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Recall that a CM-j-invariant with corresponding CM-field K is supersingular modulo p if and only if p is inert

in K. Recall also the modular polynomials defined above. We can factor Φ2(X,X):

Φ2(X,X) = −X4 + 2978X3 + 40449375X2 + 17496000000X − 157464000000000

= −(X + 3375)2(X − 1728)(X − 8000)

As such, only the j-invariants -3375, 1728 and 8000 have endomorphisms of degree 2, and they have 2, 1 and 1

of these respectively. Over C, they are CM-invariants, with corresponding fields Q(
√
−7),Q(i) and Q(

√
−2) and

discriminants -7,-4 and -8 respectively. Recall that a prime p is split in a quadratic number field of discriminant d if

and only if

(
d

p

)
= 1.

Note that

(
1−

(
d

p

))
is 0 if d is not a square mod p and 2 if it is (and 1 if p | d). Thus we get the trace formula:

Tr (Pizp(2)) =

(
1−

(
−7

p

))
+

1

2

(
1−

(
−4

2

))
+

1

2

(
1−

(
−2

p

))
= 2−

(
−7

p

)
− 1

2

[(
−4

p

)
+

(
−2

p

)]
We can use quadratic reciprocity to reduce the above formula to congruences mod 7,4 and 8 respectively. By the

Chinese Remainder Theorem, these remainder properties can be combined into a requirement modulo lcm(4, 7, 8) =

56.

Note that we are ‘lucky’ to be able to prove this theorem. It ‘just so happens’ that Φ2(X,X) splits over Z[X]

and the roots correspond to CM-curves. The trace formula from chapter 4 will allow us to get more results like

this, though they will be harder to compute. Before we get to that, however, we should prove that we are actually

interested in these curves, that is, that they are actually Ramanujan graphs.
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3 The Ramanujan property

In this section, we will discuss a proof of first hypothesis, that is, that the Pizer graphs are actually Ramanujan

graphs. The theorem we aim to prove is the following:

Theorem 3.1. For all pairs of distinct primes l and p and every eigenvalue µ of Pizp(l) not equal to l+ 1, we have

|µ| ≤ 2
√
l

Recall that Pizp(l) is an (l+1)-regular graph for l ̸= p, so 2
√
l is indeed the upper bound bound in the definition

of Ramanujan graphs 2.7.

We will prove this by relating the Pizer graphs to Hecke operators on modular forms. We write Mk(N) (resp.

Sk(N)) for the modular (resp. cusp) forms of weight k on Γ0(N). The theorem above can be proven as a simple

corrollary of the following theorem of Deligne (theorem 8.2 of [Del74]).

Theorem 3.2. Let l, N ∈ Z≥1, l prime and l ∤ N . Write Tl for the l-th Hecke operator on Sk(N). For every

eigenvalues λ of the l-th Hecke operator on Sk(N),

|λ| ≤ 2l
k−1
2

The proof of this general theorem uses techniques well beyond the scope of this thesis.However, to prove the first

theorem, we do not need the full generality; we only need the case for weight k = 2. This proof is still not easy,

however we can provide a sketch.

Before this, however, it would behoove us to explain why Theorem 3.2 implies Theorem 3.1. To this end, Section

3.1 defines the theta series (for some prime p) and compute the action of the Hecke operators on these series, which

are elements of M2(p).

The proof for the weight two case of Theorem 3.2 relies on the Riemann hypothesis for Abelian varieties:

Theorem 3.3. Let A be an abelian variety defined over a finite field Fq. Let σq be the q-power Frobenius map on

A. Any eigenvalue λ of σq satisfies

|λ| = √
q.

In Section 3.2, we provide a sketch of the proof of this.

Finally, we need to relate the Hecke operators on modular forms to the Frobenius on abelian varieties. We use

the Eichler–Shimura relation (which we do not prove) to conclude this in Section 3.3.

3.1 Pizer graphs and Hecke operators

The proof that the adjacency matrices of the Pizer graphs equal the Hecke operator, is not ultimately too enlightening.

Fix a prime p. Let E1, . . . , En be (representatives of isomorphism classes of) the supersingular curves over Fp. Recall

the definition of B(m); it is the matrix with entries Bij(m), where

Bij(m) = #{C ⊂ Ei(Fp) | C a cyclic subgroup of order m, Ei/C ≃ Ej}.

we define Bij(m) = 0 if m is not a non-negative integer. We define also B(0) by defining

Bij(0) =
1

#Aut(Ej)
.

Note that Bij(0) is
1
2 unless j(Ej) = 0 or j(Ej) = 1728, in which case it is 1

4 or 1
6 respectively.
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Let us write Tm for the m-th Hecke operator acting on M2(p). One can verify that, for all m ≥ 0,

Tr(Tm) = Tr(B(m)).

The details are beyond this thesis, but one can look at [Gro87], chapter 5.

Since dim(M2(p)) = n (see for instance [DS05], exercise 3.1.4 and theorem 3.5.1) and the Tm and B(m) obey the

same recurrence formula we know that inside Mat(n× n,Q), the map Tm → B(m) is an isomorphism of subspaces,

and thus there is a basis of M2(p) such that Tm = B(m) as matrices.

Rather than give an exact proof, then, we will try to convince the reader that this result is not unreasonable. To

this end, we define the theta series.

Definition 3.4 (Theta series). Write q(z) = e2πiz. The i, j-th theta series is the function

fij : H → C,

given by the Fourier series

fij(z) =

∞∑
m=0

Bij(m)q(z)m.

These are modular forms of weight two. Holomorphy is easy to prove; it suffices to prove that the above power series

converges everywhere on H (i.e. that the fij are well-defined). But since (for Im(z) > 0)
∣∣e2πiz·m∣∣ is an exponentially

decreasing function in m and Bij(m) is only polynomial in m (since the m-torsion is (Z/mZ)2, there are at most m2

cyclic degree-m subgroups, so Bij(m) ≤ m2), convergence is clear. Modularity by Γ0(N) is more complicated. One

can look at [Ser73], section 6.5, though the notation here is quite different than the one used in this thesis.

Example 3.5. Let us compute the first few coefficients of the theta series over p = 37. To this end, we compute

B(0), B(1), B(2), B(3) and B(4). Let us order E1, E2, E3 as in Figure 2, i.e. such that j(E1) = 8, j(E2) = 23 + 27a

and j(E3) = 20 + 10a (where a2 = −4a+ 2 is such that F37(a) = F1369, as in Figure 2).

B(0) and B(1) are trivial:

B(0) =


1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

 .

B(1) =

1 0 0

0 1 0

0 0 1

 .

B(2) is simply the adjacency matrix of the graph in Figure 2.

B(2) =

1 1 1

1 0 2

1 2 0

 .

Since 4 = 22, Bij(4) is the number of paths of length 2 in the above-mentioned graph from Ei to Ej without

backtracking.

B(4) =

0 3 3

3 2 1

3 1 2

 .

As expected, we find that B(4) = B(2)2 − 3 ·B(1).
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Finally, for B(3) we must compute the 3-torsion of E1, E2 and E3. This is most easily done with a computer,

and we find:

B(3) =

2 1 1

1 0 3

1 3 0

 .

Filling this in the definition above, we get:

f00(z) = 1
2 + q(z) + q(z)2 + 2q(z)3 + . . .

f11(z) = 1
2 + q(z) + 2q(z)4 + . . .

f22(z) = 1
2 + q(z) + 2q(z)4 + . . .

f10(z) = f01(z) = 1
2 + q(z)2 + q(z)3 + 3q(z)4 + . . .

f20(z) = f02(z) = 1
2 + q(z)2 + q(z)3 + 3q(z)4 + . . .

f12(z) = f21(z) = 1
2 + 2q(z)2 + 3q(z)3 + q(z)4 + . . .

Let us compute the action of the l-th Hecke operator Tl on fij :

(Tlfij) (z) =

∞∑
m=0

(Bij(ml) + lBij(m/l)) q(z)
m.

Note that

Bij(ml) + lBij(m/l) =

n∑
k=1

Bik(l)Bkj(m).

This is a consequence of factoring and splitting isogenies; any lm-degree isogeny ϕ : Ei → Ej can be split into a

degree-m and degree-l part as we did in the proof of Proposition 2.10. We can now rearrange:

(Tlfij)(z) =

∞∑
m=0

(Bij(ml) + lBij(m/l))q(z)
m

=

∞∑
m=0

[
n∑

k=1

Bik(m)Bkj(l)

]
q(z)m

=

n∑
k=1

Bkj(l)

∞∑
m=0

Bik(m)q(z)m

=

n∑
k=1

Bkj(l)fik(z).

The above shows that the space of theta series is invariant under the action of the Hecke operators. One can prove

that the theta series span the entire space of modular forms, see for instance [Gro87], chapter 5. The space M2(Γ0(p))

of modular forms of weight two over Γ0(p) has dimension n, as proven in chapter 3 of [DS05] (exercise 3.1.4 and

theorem 3.5.1).

We would now like to state that there i ∈ {1, . . . , n} such that {fi1, . . . , fin}. Regrettably, this is not known to

be true; the computation of the dimension ni of the space ⟨fi1, . . . , fin⟩ for some i is Hecke’s basis problem, and is a

major open problem.

Under presumption that there is an i such that ni = n, i.e. such that {fi1, . . . , fin} is a basis, the proof of the

correspondence between Hecke operators and Pizer graphs becomes quick and constructive.

Theorem 3.6. Let p be a prime. Presume that there is i such that ni = n as above. For every prime l ̸= p, the

matrix of Tl with respect to the basis {fi1, . . . , fin} equals the adjacency matrix of Pizp(l).
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Proof. As computed, the action of Tl on fij is

Tlfij =

n∑
k=1

Bkj(l)fik(z).

Thus, with respect to the given basis, the r-th column of Tl is given by (Bkr(l))
n
k=1, which is of course the r-th

column of the adjacency matrix of Pizp(l).

Now that we ‘know’ that the Hecke operators equal the adjacency matrix of our graphs, we almost understand

why Theorem 3.2 implies that the Pizer graphs are Ramanujan. Note that the first-mentioned only investigates the

cusp forms, rather than all modular forms. On the other hand, the Ramanujan property is a requirement on all

eigenvalues except the one equal to l + 1.

As stated, we know that dimC(M2(p)) = n. One can also prove that dimC(S2(p)) = n− 1. We could now simply

conclude that indeed our results line up: since Tl is the adjacency matrix of an (l + 1)-regular graph, it must have

eigenvalue l+1. We know that its eigenvectors do not lie in S2(p), since 2
√
l < l+1 for all l ̸= 1, thus the complement

space of S2(p), which is of dimension 1, must be the eigenspace of l + 1.

We can, however, be somewhat more constructive. The complement space is called the Eisenstein space. In our

case, this space is one-of . A generator for this space is the Eisenstein series:

E
(p)
2 (z) =

p− 1

24
+

∞∑
m=0

σ
(p)
1 (m)q(z)m.

Here we write

σ
(p)
1 (n) =

∑
d|n,p∤d

d.

For the construction of this series, see chapter 4 of [DS05] (specifically theorem 4.6.2).

Note that this series is normalized, in the sense that the coefficient before q(z)1 is 1. One can prove that E
(p)
2 (z) is

an eigenvector of Tl for primes l ̸= p (e.g. proposition 5.2.3 of [DS05]). The l-th coefficient of E
(p)
2 (z) is σ

(p)
1 (l) = l+1,

so indeed

TlE
(p)
2 (z) = (l + 1)E

(p)
2 (z).

As such, we now see that it suffices to prove Theorem 3.2. In order to accomplish this, we must take a short

detour through the theory of abelian varieties.

3.2 The Riemann hypothesis for abelian varieties

We prove the Riemann hypothesis for Abelian varieties, following the proof and notation from [Mil08]. Recall that

an abelian variety over K is a complete, connected variety over K together with regular maps

+ : A×A→ A

− : A→ A

and a point e on A all defined over K such that A(L) becomes a group with identity element e for any field extension

K ⊂ L. One can prove that such a group structure is always abelian and that any rational map

α : A→ B

of abelian varieties is a group morphism composed with a translation, and furthermore that α is defined on all points

of A.
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We quickly recap what we mean with eigenvalues of regular maps. Let A,B be (abelian) varieties defined over

a field K of characteristic l. For primes p ̸= l, any regular map α : A → B of defines a morphism of p-adic Tate

modules

α : Tp(A) → Tp(B).

Consider now an endomorphism α : A → A. We can define the characteristic polynomial Pα of α by taking its

characteristic polynomial as an endomorphism of Tp(A) (it is not immediately clear that this is independent of the

choice of p, but this is proven in theorem 10.9 and proposition 10.20 of [Mil08]). The eigenvalues of α are then the

roots of its characteristic polynomial (which lies in Z[X]). From this, we can also define the trace discriminant, etc.

of α.

For a ∈ A, we write ta for the translation-by-a map:

ta : A→ A, b 7→ a+ b.

Recall the notation

End0(A) = End(A)⊗Q.

This is a division algebra, since for non-zero α ∈ End(A) there is a dual map α̂ such that αα̂ = α̂α = [deg(α)].

Putting d = deg(α), we get:

(α⊗ 1) ·
(
α̂⊗ 1

d

)
= [d]⊗ 1

d
= 1.

We define a map that will be crucial in our proof of the Riemann hypothesis: the Rosati-involution.

(αβ)∧ = β∧α∧.

Definition 3.7. Let A be an abelian variety over a field K and D an ample divisor on A. Consider the map

ϕD : A→ Pic0(A)

given by

a 7→ [t∗aD −D].

The Rosati-involution (associated to D) is the map

† : End0(A) → End0(A), α† = ϕ−1
D ◦ α∧ ◦ ϕD.

This has the following basic properties (for α, β ∈ End0(A)):

1. (α+ β)† = α† + β†.

2. (αβ)† = β†α†.

3. (α†)† = α

4. If α ∈ Q, then α† = α.

As a consequence of the above, † defines an endomorphism of the ring Q[α] for any α ∈ End(E).

The most important property of the Rosati-involution for our purposes is that it is positive-definite. More

precisely:

31



Theorem 3.8. Let A be an abelian variety defined over a field K and let † be the Rosati-involution on End0(A).

For any non-zero α ∈ End0(A), we have

Tr(α ◦ α†) > 0.

The proof of this theorem relies on a direct computation of Tr(α ◦α†), see [Mil86], section 17. This computation

uses methods of algebraic geometry beyond the scope of this thesis.

We are now ready to prove our theorem. Recall our stated goal:

Theorem 3.9. Let A be an abelian variety defined over a finite field Fq. Let σq be the q-power Frobenius map on

A. Any eigenvalue λ of σq satisfies

|λ| = √
q.

Let us relate the eigenvalues of a morphism to its action under the Rosati involution: This is lemma 1.3 of chapter

2 of [Mil08].

Lemma 3.10. Let A be a variety over some (not necessarily finite) field K and α ∈ End(A) such that α†α is some

integer r. Then any eigenvalue λ of α has

|λ| =
√
r.

Proof. Note that Q[α] has finite dimension as a vector space over Q, as α is a root of its characteristic polynomial.

It is thus an Artin ring. Let m1, . . . , mn be the (finitely many) maximal ideals of Q[α]. Then

Q[α]/

n⋂
i=1

mi =

n∏
i=1

Q[α]/mi =

n∏
i=1

Ki.

Here, the quotients Ki = Q[α]/mi are fields. Recall that
⋂n

i=1 mi is the set of nilpotent elements of Q[α]. We prove

that this intersection is trivial.

Consider a ∈ Q[α], a ̸= 0. Then Tr(a†a) > 0, so b = a†a ̸= 0. b† = b, so b2 = b†b ̸= 0 and by induction

b2
n

= (b2
n−1

)†b2
n−1 ̸= 0. Thus b is not nilpotent and neither is a. Hence

⋂n
i=1 mi = {0} and Q[α] is the product of

finitely many fields.

Any automorphism τ : Q[α] → Q[α] permutes the maximal ideals, and hence the factors Q[α]/mi. That is to say,

there is a permutation σ of {1, . . . , n} and morphisms τi : Ki → Kσ(i) such that

τ((a1, . . . , an)) = (b1, . . . , bn),

where

bσ(i) = τi(ai).

For τ = †, this permutation must be trivial: if σ(i) = j ̸= i, then the vector ei with a 1 on the i-th component and

0 elsewhere, has Tr(eie
†
i ) = Tr(eiej) = Tr(0) = 0, but ei ̸= 0.

Consider Q[α] ⊗ R. The above results hold here also, however now each Ki is isomorphic to R or C. Any

automorphism τ of Q[α] is thus a product of automorphisms of R or C of finite order. Over R, there is only the

identity morphisms, and over C, there is the identity and complex conjugation. The identity morphism is not

positive-definite, since Tr(i · i) = −1 < 0. Hence † must be complex conjugation on any complex part of Q[α]⊗ R.
As such, for any homomorphism ρ : Q → C, ρ(α†) = ρ(α). Hence, r = ρ(r) = ρ(α†α) = |ρ(α)|2. Since ρ(α) is an

eigenvalue of α (as it is a root of Pα), and any such eigenvalue gives rise to a morphism Q[α] → C, any eigenvalue λ

of α has |λ| =
√
r.

We can now finish our proof!
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Proof (of Theorem 3.9). By the lemma above, it suffices to prove that σ†
qσq = q. To this end, let D be the divisor

defining † and ϕD as in Definition 3.7.

Note that σ∗
q is given by

σ∗
q : Pic0(A) → Pic0(A), [D′] 7→ [σ∗

qD
′].

If D′ = div(f), we get:

σ∗
qD

′ = div(f ◦ σq) = div(fq) = qD′.

Additionally, for any morphism α : A→ A and a ∈ A(K), we have:

α ◦ ta(x) = α(a+ x)

= α(a) + α(x)

= tα(a) ◦ α(x).

Hence, we get, for a ∈ A(K):

σ†
q ◦ σq = σ∗

q ◦ λ ◦ σq
= σ∗

q [Dσq(a) −D]

= [σ∗
q t

∗
σq(a)

D − σ∗
qD]

= [(tσq(a) ◦ σq)
∗D − σ∗

qD]

= [(σq ◦ ta)D − σ∗
qD]

= [t∗aqD − qD]

= qλ(a).
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3.3 Eichler–Shimura and finishing the proof

In order to finish our proof of Theorem 3.2, we need the Eichler–Shimura relation. The proof, and even the precise

statement, of this relation is beyond the scope of this thesis. For a complete discussion, one can look at chapters 6,

7 and 8 of [DS05] (theorem 8.7.2 for the main result, the remainder for an explanation and proof). As such, we shall

give only a sketch of this relation.

Consider the Jacobian A(p) of X0(p). The Hecke operators define an endomorphism of this variety. Its tangent

space is S2(p). That is, there is a Hecke-equivariant (natural) isomorphism

Te(A(p)) ≃ S2(p).

For any prime l ̸= p, A(p) has good reduction at l. Finally, the Eichler–Shimura relation (in the form we need) states

that the following diagram commutes:

A(p) A(p)

Ã(p) Ã(p)

mod l

Tl

mod l

σl+σ̂l

Here σl is the l-power Frobenius morphism and Ã(p) is the reduction of A(p) mod l. Note that, as linear maps on

the q-adic Tate module of Ã(p) (for some prime q ̸= l), we have

σ̂lσl = l(σ−1
l σl) = l.

As such,

σ̂l = lσ−1
l .

Consider an eigenvalue λ of Tl acting on Te(A(p)) = S2(p). One can prove, as a consequence of the Eichler–Shimura

relation, that λ is also an eigenvalue of σl + σ̂l and thus of σl + lσ−1
l . Since σl and lσ

−1
l have the same eigenvectors,

λ = β + lβ−1, where β is an eigenvalue of σl.

By the Riemann hypothesis, we have |β| =
√
l and hence |β|−1 = 1√

l
. Using the triangle inequality we get

|λ| = |β + lβ−1|

≤ |β|+ l|β|−1

= 2
√
l.
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4 Distribution of eigenvalues

In Figure 2.3 we saw the eigenvalues of Pizp(2) seemed to follow some distribution as p → ∞. In fact, there is a

family of functions fl such that the eigenvalues of Pizp(l) are distributed according to a distribution with density

function fl (as p→ ∞).

This fl appears not only as the distribution for our graphs, but is the defining distribution of eigenvalues for

many families k-regular graphs. This is the main theorem of [McK81]:

Theorem 4.1. Let k ≥ 2 be an integer and let X1, X2, . . . be a family of k-regular graphs, such that the order

#Xm → ∞ as m→ ∞. Let F (Xi, x) be the cumulative distribution function of the eigenvalues of Xi. That is, if Xi

has order #Xi = Ni, then

F (Xi, x) =
1

Ni
·#{λ ∈ Eig(Xi) | λ ≤ x}.

Here Eig(Xi) is the multiset of eigenvalues of Xi, counting is counting multiplicities.

Define cn(Xm) to be the number of cycles (closed walks without backtracking) of length n in Xm. If for all n ≥ 0,

lim
m→∞

cn(Xm)

#Xm
→ 0,

then, for all x,

lim
i→∞

F (Xi, x) =

∫ x

−2
√
k−1

fk(t)dt

where fk : R → R is defined as

fk(t) =


k
√

4(k−1)−t2

2π(k2−t2) |t| ≤ 2
√
k − 1.

0 else.

Remark. Note that ‘cn(Xm)/#Xm → 0’ means that the number of n-cycles in Xm grows sublinearly with the size

of Xm. In particular, if the graphs have girth going to ∞, then cn(Xm) → 0 as m→ ∞ for any n, so graph families

with increasing girth will in the limit follow this distribution. The proof of this theorem uses only graph theory.

Let us discuss its core ideas. Recall that a distribution is defined by the expected value of its moments (this is

explained in the proof of Lemma 4.7). The r-th moment of the distribution of eigenvalues of a linear operator A is

the sum of the r-th power of its eigenvalues; if A has eigenvalues λ1, . . . , λn, then the r-th moment is

λr1 + . . .+ λrn = Tr(Ar).

As such, to understand the distribution of eigenvalues of a matrix is to understand the traces of powers of this matrix.

If A is the adjacency matrix of some graph G, then Tr(Ar) is the number of closed walks of length r in G (allowing

backtracking), and hence we can determine the distribution of the eigenvalues of G by counting this number of walks.

Instrumental in the proof of the above theorem is the following result (lemma 2.1 in McKay’s paper):

Lemma 4.2. Let G = (V,E) be a finite, k-regular graph and r ∈ Z≥1. Suppose v ∈ V is such that the subgraph of

G consisting of vertices distance at most r/2 away from v0 contains no cycles. Then the number of closed walks of

length r in X starting (and ending) in v is θ(r), where θ(r) = 0 if r is odd and

θ(2s) =

s∑
i=1

(
2s− i

s

)
i

2s− i
ki(k − 1)s−i.

The proof of this lemma is not so hard (as the subgraph of vertices distance at most r/2 from v0 is isomorphic to

a subgraph of the k-regular tree, and any walks of distance r must remain within distance r/2 of v0), but its impacts

are profound.
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For r = 0, there is exactly one closed circuit from v to v, so we should put θ(0) = 1. Since in Theorem 4.1, the

number of r-circuits without backtracking in Xi grows sublinearly, one can prove that the density of vertices of Xi

for which the conditions of the above lemma are satisfied goes to 1 as i→ ∞. As such, we get:

lim
i→∞

∫
xrdFi = θ(r).

McKay proves that there is a function F such that∫
xrdF = θ(r)

for each r and constructs this function F (x), which is indeed

F (x) =

∫ x

−2
√
k−1

fk(t)dt.

We shall see that our graphs do not have sublinear growth of k-cycles (see the Trace Formula section below). As

such, we cannot use McKay’s proof here. The statement we will prove is the theorem below. Recall that Bp(l) is the

adjacency matrix of Pizp(l).

Theorem 4.3. Let p, l ∈ Z≥1 be distinct primes. Write B′
p(l) = Bp(l)/

√
l and define

Fp(x, l) =
1

#Eig
(
B′

p(l)
)#{λ ∈ Eig

(
B′

p(l)
)
| λ ≤ x}.

Then, as p → ∞, the (non-trivial) eigenvalues of B′
p(l), which lay in [-2,2], are distributed according to the density

function

f(x) =
l(l + 1)

√
4− x2

2π((l + 1)2 − lx2)
.

The distributions in Theorem 4.1 and Theorem 4.3 are related by a change of variables. Note that the support of the

density function in Theorem 4.1 is the interval [−2
√
k − 1, 2

√
k − 1] whilst in 4.3 it is [−2, 2]. Recalling that Pizp(l)

is (l + 1)-regular, we should put k = l + 1 and thus ‘compress’ the first interval by replacing x with x√
l
. Indeed:

fl+1

(
x√
l

)
=

(l + 1)
√
4l − lx2

2π((l + 1)2 − lx2)

=

√
l(l + 1)

√
4− x2

2π((l + 1)2 − lx2)

=
1√
l
f(x).

so by the chain rule ∫ b
√
l

a
√
l

fl+1(x)dx =

∫ b

a

fl+1

(
x√
l

)
· 1√

l
dx =

∫ b

a

f(x)dx.

Hence the eigenvalues of our Pizer graphs are indeed distributed in the same way as the regular graphs in McKay’s

paper.

Let us briefly discuss the structure of the proof we give. We follow the structure of [Ser97]. This method has the

same strategy as that of McKay. We compute the trace of polynomial expressions of our adjacency matrices. McKay

does this by estimating the number of length-n walks for all n ≥ 0. Our graphs do not quite permit this method.

Instead, we estimate the number of cycles of length n, and we use this result to compute the distribution.
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Explicitly, for all n ≥ 0, we find a polynomial Pn ∈ Z[X] of degree n such that Pn(B
′
p(l)) = B′

p(l
n) for primes

l ̸= p and n ∈ Z≥0, and relate these to the f(x) above.

Using the theory of quaternion algebras, we compute the Eichler–Selberg trace formula for the Brandt matrices.

Serre uses the general version, for Hecke operators acting on modular forms of general weight and general character.

We are able to provide a sketch of the proof of our specific case, and because we use a more specific and hence shorter

formula, our estimations are easier, but the methods are the same.

We finish our proof by computing a limit, specifically

lim
p→∞

Tr(B′
p(l

m))12

p− 1
.

This, together with the measure theory above, proves our result. Note the similarities in Serre’s method and McKay’s

method. Both rely on the fact that in order to know a distribution, one needs only study its moments. McKay can

immediately use this, together with the result on the number of closed walks in our graphs, to conclude that there

is some distribution from which the eigenvalues are drawn. He then constructs this distribution using the Chebyshev

polynomials. Serre does this also, though he uses the normalised version; the Pn is the normalised version of the n-th

Chebyshev polynomial.

4.1 Measure theory of eigenvalues

In this section, we relate the distribution of the traces of moments of linear operators to the distribution of their

eigenvalues. To do so, we briefly discuss some theory of measures on topological spaces. We presume the reader is

familiar with the basics of measure theory. Recall the definition of a Radon measure:

Definition 4.4. A Radon Measure is a measure µ on (the Borel-σ-algebra of) a Hausdorff topological space X such

that:

• For all x ∈ X there is a neighbourhood U of x such that µ(U) <∞

• For all open sets U ⊂ X, µ(U) = sup{µ(K) | K ⊂ U is compact}

We can use such a measure to define a linear map

C(X,R) → R

given by

f 7→
∫
f(x)µ(x).

C(X,R) here denotes the continuous functions from X to R. If f(x) ≥ 0 for all x ∈ X, then
∫
f(x)µ(x) ≥ 0. We

will write

⟨f, µ⟩ =
∫
f(x)µ(x).

For finite non-empty sets S ⊂ X, we write

δS =
1

#S

∑
s∈S

δs.

Here δs is the Dirac measure supported on s. Explicitly,

⟨f, δS⟩ =
1

#S

∑
s∈S

f(s).
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We can now precisely state what we mean when we say that a sequence of values are distributed according to a

measure (or distribution).

Definition 4.5 (Equidistribution). Let X be a Hausdorff space and let S1, S2, . . . be a sequence of finite non-empty

subsets of X. We say that the Si are µ-equidistributed or (evenly) distributed according to µ, for some Radon measure

µ on X if, in the space of measures with weak topology, we have

lim
i→∞

δSi
= µ.

Explicitly, for all functions f ∈ C(X,R), we must have

lim
i→∞

1

#Si

∑
s∈Si

f(s) = ⟨f, µ⟩ .

The fact that this is indeed an appropriate definition is the subject of the following lemma:

Lemma 4.6. Let X and µ be as above and let S1, S2, . . . be subsets of X evenly distributed according to µ. Let also

A ⊂ X be given such that its boundary ∂A is measurable and has µ(∂A) = 0. Then

lim
i→∞

#(Si ∩A)
#Si

= µ(A).

For a more general result and proof, see theorem III.1.3 of [Bou04]. This lemma should intuitively make sense,

since by definition, we have:

lim
i→∞

1

#Si
·#(Si ∩A) = lim

i→∞

1

#Si

∑
s∈Si

1A(s) = ⟨1A, µ⟩ = µ(A).

We will now apply the above concepts to the distribution of eigenvalues. As such, consider for i ∈ Z≥1 some

linear map Hi ∈ Mat(R, ni × ni), and suppose that all Hi have eigenvalues all lying in some interval Ω = [a, b] ⊂ R.
Define Si to be the set of eigenvalues of Hi. We then have the following proposition:

Lemma 4.7. In the situation above, the following are equivalent:

1. The Si are µ-equidistributed (on Ω)

2. For all polynomials P (X) ∈ R[X], we have

lim
i→∞

Tr(P (Hi))

ni
= ⟨P, µ⟩

3. For all m ≥ 0, there is a polynomial Pm(X) ∈ R[X] with deg(Pm) = m and

lim
i→∞

Tr(Pm(Hi))

ni
= ⟨Pm, µ⟩

Proof. Recall that if A is a finite-dimensional matrix, over some field K, with eigenvalues λ1, . . . , λn and P ∈ K[X],

then Tr(P (A)) =
∑n

i=1 P (λ1).

The implication 1 =⇒ 2 is immediate, as R[X] ⊂ C(Ω,R). Furthermore, by the Stone-Weierstrass theorem,

R[X] is dense in the set of continuous functions, which proves 2 =⇒ 1.

The equivalence of 2 and 3 is a consequence of the fact that such Pm’s give a R-basis for R[X], and taking the

trace and integration are both R-linear operations.
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To relate all this to the proof, the Hi’s are our (normalized) adjacency matrices, the measure is

µl(x) =
l(l + 1)

√
4− x2

2π((l + 1)2 − lx2)
dx

It is then our task to find polynomials Pm for m ∈ Z≥0 such that we understand Pm(Bp(l)). We will first define

related matrices, and compute a trace formula for these matrices.

4.2 Our polynomials and measures

We give the measures and polynomials we shall use in the final proof of this theorem, and give the necessary results.

This is taken from section 2 of [Ser97]. Central in our construction is the observation that the Bp(m) satisfy a

recurrence relation: if l ̸= p is a prime, then for all k ≥ 2

Bp(l
k) = Bp(l)Bp(l

k−1)− l ·Bp(l
k−2)

To see this, note that these matrices count isogenies of degree lk with cyclic kernel. These correspond to walks in

Pizp(l) of length k without backtracking, which implies this relation (see Lemma A.4).

Recall that we write

B′
p(m) =

Bp(m)√
m

.

These matrices then satisfy the relation

B′
p(l

n) = B′
p(l)B

′
p(l

n−1)−B′
p(l

n−2).

As such, if we define P0 = 1, P1 = X and Pn = X · Pn−1 − Pm for n ≥ 2, we see that

Pn(B
′
p(l)) = B′

p(l
n).

The Pn are monic polynomials in Z[X]. They are the normalized Chebyshev polynomials of the second kind (see

for instance definition 1.4.4 of [DSV03]) defined by the equality

Pn(2 cos(ϕ)) =
sin((n+ 1)ϕ)

sin(ϕ)
.

We give the first few such polynomials:

P0(X) = 1

P1(X) = X

P2(X) = X2 − 1

P3(X) = X3 − 2X

P4(X) = X4 − 3X2 + 1

P5(X) = X5 − 4X3 + 3X

Their generating series is
∞∑

n=0

Pn(x)t
n =

1

1− xt+ t2
.
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By the recurrence relation, they satisfy

Pm · Pn = Pm+n + Pm+n−2 + . . .+ P|m−n|+2 + P|m−n|.

Define the measures

µl =
l(l + 1)

√
4− x2

2π((l + 1)2 − lx2)
dx

for l > 1 and

µ∞ = lim
l→∞

µl =

√
4− x2

2π
dx.

Note that µl =
l(l+1)

(l+1)2−lx2µ∞.

We now relate the µl and the Pn. From the generating series of the Pn, we get that

∞∑
n=1

P2nt
−n =

t(t+ 1)

(t+ 1)2 − tx2
.

Thus

µl = µ∞ ·
∞∑

n=1

P2nl
−n.

We compute

⟨Pn, µ∞⟩ =
∫ 2

−2

Pn(x)

√
4− x2

2π
dx.

Applying the change of variables x = 2 cos(ϕ), this becomes

1

π

∫ π

0

Pn(2 cos(ϕ))2 sin
2(ϕ)dϕ =

2

π

∫ π

0

sin((m+ 1)ϕ) sin(ϕ)dϕ =

1 m = 0,

0 m > 0.

As such ⟨PmPn, µ∞⟩ = 1m=n. We get

⟨Pm, µl⟩ =
∞∑

n=0

⟨PmP2n, µ∞⟩ l−n =

∞∑
n=0

1m=2nl
−n =

 1
lm/2 m is even,

0 m is odd.

4.3 Brandt matrices and their trace

In order to finish our proof, we need a formula on the traces of the adjacency matrices of our graphs. This we do by

their relation to quaternion algebras. This subsection is mostly taken from [Gro87].

4.3.1 Brandt matrices

Let us start by recalling the quaternionic definition of the Brandt matrices. Fix some prime p and let B be the

(unique up to isomorphism) quaternion algebra over Q ramified at p and ∞ (and nowhere else). Let R ⊂ B be a

maximal order and consider the following equivalence relation on left-ideals of R:

I ∼ J ⇐⇒ there is b ∈ B∗ such that J = Ib.

The set of left ideal classes (modulo the relation above) is finite and independent of the choice of maximal order R.

Let {I1, . . . , In} be a set of representatives of left ideal classes, chosen such that I1 = R.

Write

Ri = {b ∈ B | Iib ⊂ Ii}.
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for the right order of Ii. This is a maximal order of B and each maximal order of B is represented in the set

{R1, . . . , Rn}, up to conjugacy.

The groups Γi = R∗
i / ⟨±1⟩ are finite and thus it makes sense to define

wi = #Γi

Their product W =
∏n

i=1 wi is independent of the choice of R and equals the denominator of p−1
12 . As for their sum,

we have the following general result:

Theorem 4.8 (Eichler Mass Formula). Let B be a quaternion algebra over Q of discriminant D and O ⊂ B a

maximal order. Let {I1, . . . , Ir} be representatives the left ideal classes of O, Ri the right order of Ii and wi =

#(Ri/{±1}). Then
r∑

i=1

1

wi
=
φ(D)

12

Here φ(D) = #(Z/DZ)∗ is the Euler-totient function.

This is theorem 25.1.1 in [Voi21]. Its general proof is beyond the scope of this thesis, but for D = p a prime, this

is actually equivalent to the following (exercise 5.9 of [Sil09], an easy consequence of theorem V.4.1(c)).

Proposition 4.9. Let p be a prime. If E1, . . . , En are the supersingular curves over Fp2 , then

n∑
i=1

1

#Aut(Ei)
=
p− 1

24

We define also

Mi,j = I−1
j Ii =

{∑
k

ak · bk | ak ∈ I−1
i , bk ∈ Ij

}
.

Here I−1
i is the inverse ideal of Ii:

I−1 = {b ∈ B | IbI ⊂ I}.

We write N(b) for the norm of an element b ∈ B. We also define a norm on the set of Mi,j by letting N(Mi,j) be

the positive rational number such that N(b)
N(Mi,j)

is an integer for all b ∈ Mi,j and

gcd

({
N(b)

N (Mi,j)
| b ∈Mi,j

})
= 1.

For b ∈Mi,j , write

Ni,j(b) =
N(b)

N(Mi,j)
.

Define

Bij(m) = #{b ∈Mi,j | Ni,j(b) = m} · 1

2wj
.

This is the number of element in Mi,j of norm m up to multiplication with units (since wj =
1
2#R

∗
j ).

We now have the tools to define the Brandt matrices.

Definition 4.10 (Brandt matrices). Let p,m ∈ Z≥0 be given, p prime. Let the Bij(m) be given as above. The m-th

Brandt matrix of p is the matrix.

Bp(m) =


B11(m) . . . Bn1(m)

...
. . .

...

B1n . . . Bnn(m)

 .
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Remark. To see why these matrices are the adjacency matrices of our Pizer graphs, recall that there are exactly n

supersingular elliptic curves over Fp2 up to isomorphism, corresponding to the maximal orders of B up to conjugation.

We can now choose representatives of curves E1, . . . , En such that

End(Ei) ≃ Ri.

There is then a bijection between isogenies ϕ : Ei → Ej and elements of Mi,j , and if ϕ corresponds to b, then

deg(ϕ) = Ni,j(b). As such, if we consider only isogenies up to conjugation with isomorphisms, we must divide by
1

#Aut(Ej)
, and #Aut(Ej) = #R∗

j = 2wj , so we see that the definition above yields the same matrices as Definition

2.9.

4.3.2 Optimal embeddings and class numbers

In the proof of our trace formula, we will need the theory of embeddings of imaginary quadratic orders into quaternion

algebras. As this is not standard, we give a short overview. This is discussed in the proof of proposition 1.9 of Gross,

but the discussion in chapter 30 of [Voi21] is more complete (both than Gross’ discussion and ours). We start with

the definition of embeddings.

Definition 4.11. [Embedding] Let O be an order in a number field K and R a maximal order in a quaternion

algebra B over Q. An embedding of O into R is an injective ring morphism

ψ : O → R.

An embedding is called optimal if, for the induced map

ψ : K → B,

we have

ψ(K) ∩R = ψ(O).

We write Emb(O,R) for the set of embeddings, and OptEmb(O,R) for the set of optimal embeddings, of O into R.

Note that if an embedding ψ : O → R (for some order O ⊂ K) is not optimal, there is a unique order O′ ⊂ K

containing O such that the induced embedding ψ : O′ → R is optimal.

We are interested in the case that K is quadratic and imaginary and B is the quaternion algebra ramified at p

and ∞ as above. In this case, since orders are defined uniquely by their discriminants and, by the above, embeddings

are uniquely determined by the order at which they are optimal, we have

|Emb(OD, R)| =
∑

df2=D

|OptEmb(Od, R)|.

The sum here is over divisors d | D such that D
d is a square.

Furthermore, writing K = Q(
√
−d), there is an embedding

K → B

if and only if there is b ∈ B such that b2 = −d, which is the case if and only if

Tr(b) = 0 and N(b) = −d.
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More generally, if O = Z[α] is an order in K and R some (maximal) order in B, then there is an embedding

O → B

if and only if there is r ∈ R such that

Tr(r) = Tr(α), N(r) = N(α).

Any such r defines an embedding of O into R.

There is an action of Γ = R∗/{±1} on Emb(O,R), given by:

(γψ)(z) = γ−1ψ(z)γ.

If ψ is optimal, so is γψ, so this also induces an action on OptEmb(O,R).

The reason we are interested in these embeddings is their relation to class groups. For d < 0, write h(d) for

the class number of Od, the order of discriminant d in an imaginary quadratic number field. As in the previous

discussion, let R1, . . . , Rn be the maximal orders of B and Γi = R∗
i /{±1}. The following is a result of Eichler, see

theorem 30.4.7 of [Voi21]:

Theorem 4.12. Let B, the Ri and Γi be as above. Define (for d < 0)

hi(d) = #[Γi\OptEmb(Od, Ri)].

(That is, hi(d) is the number of optimal embeddings of Od into Ri up to conjugation with R∗
i ). Then we have

n∑
i=1

hi(d) =

(1−
(

d
p

)
) · h(d) if p2 ∤ d,

0 if p2 | d.

4.3.3 The Eichler–Selberg trace formula

The trace formula of the Brandt matrices we will give is a sum of Hurwitz class numbers. The definitions of these

numbers are lifted from Gross, see chapter 1 of [Gro87] (the part just before the trace formula, proposition 1.9)

Definition 4.13. For d < 0, let Od be the order of discriminant d and rank 2 over Z. We define:

h(d) = #Cl(Od),

u(d) = #(O∗
d/{±1}).

Let D ∈ Z≥1 be given. The Hurwitz Class Number H(D) is given by

H(D) =
∑

df2=−D

h(d)

u(d)
.

The sum here is over all divisors d of −D such that −D
d is a square.

Note that u(d) = 1 for all d except d = −3 or d = −4, when it is 3 or 2 respectively.
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Example 4.14. We compute H(D) for some small D:

H(3) = h(−3)
u(−3) = 1

3 ,

H(4) = h(−1)
u(−1) +

h(−4)
u(−4) = 1

2 ,

H(5) = h(−5)
u(−5) = 0,

H(6) = h(−6)
u(−6) = 0,

H(7) = h(−7)
u(−7) = 1.

Let p be a prime number. We define the modified Hurwitz class numbers Hp(D) as follows:

Hp(D) =



0 p splits in O−D.

H(D) p remains inert in O−D.

1
2H(D) p ramifies in O−D, but does not divide its conductor.

Hp(
D
p2 ) p ramifies in O−D and does divide its conductor.

Also define

Hp(0) =

n∑
i=1

1

2wi
=
p− 1

24
.

We can now finally give our trace formula. This is proposition 1.9 from [Gro87].

Theorem 4.15. For all m ≥ 0, we have

Tr(Bp(m)) =
∑

s2≤4m

Hp(4m− s2).

The sum here is over integers s of any sign.

Proof. For m = 0, this is the mass formula (Theorem 4.8). We assume m ≥ 1.

Bii(m) is the number of elements in Ri with norm m modulo multiplication with units in R∗
i . Recall that

#R∗
i = 2wi. Define the set

Ai(s,m) = {b ∈ Ri | Tr(b) = s,N(b) = m}.

This set is finite, and if s2 > 4m, it is empty: the discriminant of an element b in Ri is negative and equals

Tr(b)2 − 4N(b).

Thus

Tr(Bp(m)) =

n∑
i=1

∑
s2≤4m

#Ai(s,m)

#R∗
i

.

By swapping indices, we may rewrite this to

∑
s2≤4m

n∑
i=1

#Ai(s,m)

#R∗
i

.

It thus suffices to prove that
n∑

i=1

#Ai(s,m)

#R∗
i

= Hp(4m− s2).

If 4m− s2 = 0, this again follows from the mass formula. Presume then that

D = 4m− s2 > 0.
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As mentioned in Section 4.3.2, any element b ∈ Ai(s,m) gives an embedding of the order O−D into Ri. Furthermore,

if O−D = Z[α] and we have an embedding

ψ : O−D → Ri,

then ψ(α) ∈ Ai(s,m) and (γψ)α = γ−1ψ(α)γ. Thus if we let Γi act on Ai(s,m) by conjugation, the orbits of this

action correspond to embeddings O−D → Ri up to the action of Γi. In other words:

#[Γi\Ai(s,m)] = #[Γi\Emb(O−D, Ri)] =
∑

df2=−D

hi(d).

Now, the stabiliser of an element b ∈ Ai(s,m) is trivial, unless the corresponding embedding of O−D (i.e. the

one where ψ(α) = b) extends to Z[i] or Z[ζ6] (writing ζn = e2πi/n), in which case this stabiliser has order 2 or 3

respectively. This corresponds with our definition of the u(d), and we find:

#Ai(s,m) = wi

∑
df2=−D

hi(d)

u(d)

Combining this with Theorem 4.12 above, we get our desired result:

Tr(Bp(m)) =

n∑
i=1

∑
s2≤4m

#Ai(s,m)

#R∗
i

=
∑

s2≤4m

n∑
i=1

#Ai(s,m)

#R∗
i

=
∑

s2≤4m

Hp(4m− s2).

4.4 Finishing the proof

To finish our proof, we must show that, for all n ≥ 0,

lim
p→∞

Tr(Pn(B
′
p(l)))

dim(S2(p))
= ⟨Pn, µl⟩ .

Since Pn(B
′
p(l)) = B′

p(l
n), we can use our trace formula. We will prove the following:

Lemma 4.16. For all m ≥ 0, we have:

lim
p→∞

12Tr(B′
p(m))

p− 1
=

 1√
m

m is a square.

0 else.

Note that ln is a square if and only if n is even, so this is the result we desire. Furthermore, taking m = 1 in the

above, B′
p(1) = Bp(1) is the identity morphism on S2(p) and thus Tr(Bp(1)) = dim(S2(p)). As such,

lim
p→∞

12 dim(S2(p))

p− 1
= 1

and we really measure the proportion of eigenvalues. Finally, since (Bp(l
k)) counts the number of paths of length k

without backtracking in Pizp(l), Tr(Bp(l
k)) is the number of closed walks of length k without backtracking. We now
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see that this number does not grow sublinearly, but rather linearly, in p:

lim
p→∞

Tr(Bp(l
k))

p
=

 1
12 k is even.

0 else.

Let us continue with the proof.

Proof (of Lemma 4.16). Since B′
p(m) = 1√

m
Bp(m), it follows from the trace formula that

Tr(B′
p(m)) =

1√
m

∑
s2≤4m

Hp(4m− s2).

Remark that, for all D ̸= 0

lim
p→∞

Hp(D)

p− 1
= 0.

After all,

Hp(D) ∈
{
0, H(D),

1

2
H(D), Hp(D/p

2)

}
,

depending on the splitting behaviour of p in O−D. In the case

Hp(D) = Hp(D/p
2),

there is still some D′ ≤ D such that

Hp(D) ∈
{
0, H(D′),

1

2
H(D′)

}
.

In any case,

Hp(D) ≤ sup
d≤D

H(D).

Hence Hp(D) is not increasing in p and the above limit holds. Recall that for D = 0, we defined

Hp(0) =
p− 1

24
.

Note that 4m = s2 has a solution over Z if and only if m is a square. Thus, if m is not a square, we have:

lim
p→∞

Tr(B′
p(m))

p− 1
= lim

p→∞

1√
m

∑
s2≤4m

Hp(4m− s2)

p− 1

≤ 1√
m

lim
p→∞

4m∑
D=1

Hp(D)

p− 1

=
1√
m

4m∑
D=1

lim
p→∞

Hp(D)

p− 1

= 0.

Next suppose that m is a square. In this case, 4m = s2 has two solutions; s = ±2
√
m. We split the trace and then

proceed the same as before:

Tr(B′
p(m)) =

1√
m
(2Hp(0) +

∑
s2<4m

Hp(4m− s2)).
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Thus we get

lim
p→∞

12Tr(B′
p(m))

p− 1
=

12√
m

lim
p→∞

2Hp(0)

p− 1
+ 12 lim

p→∞

∑
s2<4m

Hp(4m− s2)

p− 1

= lim
p→∞

2Hp(0)
12√

m(p− 1)

= lim
p→∞

2(p− 1)

24

12√
m(p− 1)

=
1√
m
.
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5 Final thoughts

In this final section of our thesis, we provide some closing remarks on the various proofs and relations we have seen,

and posit some avenues for further research.

To start, we discussed several algorithms used for computing Pizer graphs. For these algorithms, we used at

various points simple graph theory (connectedness of our graph for the correctness of our first algorithm), CM-

theory (for computing an initial supersingular j-invariant) and the more mysterious modular polynomial for our

second algorithm, arising in the theory of modular forms.

This section also presented some figures, created from data acquired without specialized equipment or extensive

knowledge of programming, showing that computing these graphs is not particularly hard (though doing so efficiently

is). This data allows us to think about the graphs in a different manner than as abstract mathematical objects, and

observe already well-known properties statistically, providing some intuition.

We observed the graphs approach the Ramanujan bound, that is, the largest non-trivial eigenvalue of Pizp(l)

approaches 2
√
l. We might wonder how swift this convergence occurs, that is, if we write µp(l) for the greatest (in

absolute value) non-trivial eigenvalue of Pizp(l), how does 2
√
l − µp(l) grow in p (or l)? From Figure 2.3, we might

observe that 2
√
2−µp(2) grows sublinearly. Is this indeed the case? The growth of the largest non-trivial eigenvalue

is, to our knowledge, less well studied. This would indeed have practical applications, as the estimations made in

the mixing lemma (Theorem 2.8) become better with larger spectral gap.

Beyond computational analysis, we also outlined the proofs for two important properties of the spectra of isogeny

graphs. First of all, chapter 3 we sketched a proof for the fact that the Pizer graphs are Ramanujan. This proof

required us to first understand the relation between the Pizer graphs and (Hecke operators on) modular forms.

Secondly, we showed that the eigenvalues of Pizp(l) obey some distribution as p tends to infinity, for which we needed

the relation with quaternion algebras.

On this last result, if we may speculate somewhat; it is interesting that these deeply number-theoretic graphs

obey a distribution law also obeyed by many other families of regular graphs. In our proof, we saw hardly any graph

theory, whereas in the proof of McKay there is hardly anything else. We might posit some greater connection. Recall

that McKay’s paper proves this distribution for regular graphs of increasing size and sub-linear growth of the number

of cycles. We could posit that any such family is always related to some facet of number theory, even if the initial

definition of such a family is not number-theoretical.

We can easily motivate the relevance of our first result to an application-oriented mathematician. It is relevant

to know that these Pizer graphs are Ramanujan, because this implies that they are optimal expanders, and thus

have good mixing properties. The motivation for the relevance of the distribution is harder. There does not seem

to be an obvious way to use this, neither to enhance schemes nor to break them. The primary motivation for this

result is that it is an interesting result with an interesting proof. If this is not sufficient for our application-oriented

friend, we will remark that this proof lays bear yet another layer of deep mathematical structure behind these graphs.

Through CM-theory, they are intertwined with the classic theory of number fields. Through Hecke operators, there

is a relation with complex analysis. Through the Brandt matrices, they are intimately connected to quaternion

algebras also.

This structure may have consequences for the cryptographic application of these graphs. On the one hand, it allows

us to prove correctness of cryptographic schemes, and perhaps we can use it to construct speedups for computation.

On the other, it may be exploited by those with malicious intent to formulate attacks on these schemes. In short,

structure can be both a blessing and a curse in cryptography.

For example, the CSIDH scheme (a Diffie-Hellman key-exchange system, see [CLM+18]). This relies on the

subgroup of Pizp(l) of elliptic curves defined over Fp, and the action of a (commmutative) class group of a quadratic

order on this graph. This allows CSIDH several speedups relative to SIDH (which uses the whole graph). On the

other hand, there is Kuperbergs algorithm ([Kup03]). This is an algorithm attacking the hidden-subgroup problem
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for cyclic groups. The fact that the class group used in CSIDH is mostly cyclic, makes this scheme vulnerable to this

attack, and as a consequence the number of bits required for a secure implementation of CSIDH is a matter of some

debate.

As we mentioned in the introduction, Mestre suggested a way to compute data on modular forms by passing to

the Pizer graphs ([Mes86]). The relation between these objects is thus reciprocal; it is not the case that one is always

better off thinking of these graphs as Hecke operators or vice versa. It is this interplay of different viewpoints that

make these graphs so interesting.
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A Graph Theory

This is a short recap of some elementary elements of graph theory. This is a part of mathematics where a good

intuition can be far better than an exact definition. We will attempt to give both.

One should think of a graph as a collection of points and lines between pairs of those points. In general, one

should think of oriented lines, so that there might be a line from point A to point B, but not the other way around.

For instance, if we consider a graph where the points are people and the edges are lines of communication, the head

of state of your nation probably has a way to reach you, for instance by emergency notification, but you most likely

do not have a direct way to communicate to him.

On the other hand, it is possible to get a message to your head of state. You might know someone who works

in a governmental department, who knows their boss, who know the minister, who can directly relay the message

to your head of state. As such, you might be in some way still connected to your head of state. You can probably

not get a message to Charlemagne, however, as he has been dead for over a millennium, so you are not connected to

Charlemagne.

There might be multiple ways to get a message to your friend. You might send them an e-mail, or text them, or

send them a letter (to readers in the distant future; these are different manners of communication, which depending

on how we have done, are either very old-fashioned or extremely advanced to you). As such, there can be multiple

edges between you and your friend.

We now get to formal definitions. Keep in the back of your mind the intuition of points and lines, or the concrete

example of persons and lines of communication.

Definition A.1. A graph G is a pair of sets G = (V,E), elements of V being the vertices, and elements of E the

edges, together with a mapM : E → V ×V . We say that a pair of vertices v, w ∈ V are neighbours if (v, w) ∈ im(M)

or (w, v) ∈ im(M).

A graph is finite if V and E are finite sets. In this case, the size of G is #V

G is undirected if, for all v, w ∈ V , #M−1(v, w) = #M−1(w, v).

A graph is said to be simple if it is undirected, M is injective and no element v ∈ V is a neighbour of itself.

A path of length n in G is a finite sequence of edges P = (e1, e2, . . . , en) where M(e1) = (v1, w1),M(e2) =

(v2, w2), . . . ,M(en) = (vn, wn) ∈ E such that for all i ∈ {1, . . . , n − 1}, wi = vi+1. Such a path is a path from

v1 to wn. We say such a path connects v1 and wn.

We say that two elements v, w ∈ V are connected if there is a path of any length from v to w. G is a connected graph

if all pairs of vertices are connected.

Definition A.2 (Adjacency Matrix). Let G = (V,E) be a finite graph. Then the adjacency matrix of G is the

matrix A indexed by elements in V , where

Av,w = #M−1(v, w) = #{e ∈ E |M(e) = (v, w)}

Remark. The adjacency matrix is thus a record of how many lines are between each pair of points. Going back to

our example, there might be 1 line from your head of state to you, none from you to Charlemagne and 3 between

you and your friend, and the appropriate entries in the matrix would be 1, 0 and 3, though that 3 would be in two

opposite positions in the matrix.

We also see that the total graph of all humans and their connections is finite (as there have only been finitely many

humans in a finite part of the universe), but it not a connected graph (as you are not connected to Charlemagne),

nor is it undirected. One could consider the connected part of the graph of which you are part, which would be all

the people you could send a message to, possibly via many intermediaries.
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Clearly A has entries in Z≥0 and dimension equal to #V . Some definitions translate nicely; a graphG is undirected

if its adjacency matrix A is symmetric, and simple if, on top of symmetry, A has entries in {0, 1} and Tr(A) = 0.

The number of self-loops equals Tr(A), and the number of paths of length n between v and w is the (v, w)-entry of

An.

We also define a regular graph

Definition A.3. An undirected graph G with adjacency matrix A is called k-regular for some k ∈ Z≥0 if for each

row or column T in A, we have ∥T∥1 = k.

That is, the sum over each column in A is k. In terms of the graph, this means that every vertex has exactly

k edges coming in and exactly k going out! For undirected graphs, there are multiple definitions. One can demand

that both rows and columns sum to k, or only one. We will use the row-sum definition. In graph terms, this means

that each vertex has exactly k vertices going out, though, due to self-loops, it may have a different number coming

in.

In this case, we can also get some information on walks without backtracking from the adjacency matrix. Define

Am to be the matrix indexed by V , such that Am(v, w) is the number of walks of length m without backtracking.

Obviously, A1 is the adjacency matrix of G.

Lemma A.4. Let G be a finite simple k-regular graph and Am as above. Define I to be the identity matrix in

dimension |V |. We have the following relations:

A2 = A2
1 − k · I

Ar+1 = Ar ·A1 − (k − 1)Ar−1.

Furthermore, the Am’s form a commutative family of matrices.

Proof. Since A2
1 counts the number of paths of length 2 between vertices, we must count how many paths there are

of length 2 with backtracking. But a walk of length 2 with backtracking is simply a walk up an edge and then down

the same edge. As such, between a pair v, w ∈ V , there are none if v ̸= w and (by k-regularity) k if v = w. Thus the

matrix counting these backtracking walks is kI, and A2 = A2
1 − kI.

ArA1 counts the number of paths of length r + 1 where in the first r steps there is no backtracking. Consider

the (v, w)-th entry of ArA1 and a walk between v and w, say (e0, . . . , er). If the endpoint of er−1 was w, we do

backtrack at the last step. Else, we do not. In the first case, we have a path of length r − 1 between v and w of

length r − 1, and we can choose another vertex from w except er−1. There are Ar−1(v, w) such walks, and we can

choose from k − 1 edges each, so indeed Ar+1(v, w) = ArA1(v, w)− (k − 1)Ar−1(v, w) for all (v, w).

Note that (AmAn)(v, w) is the number of walks of length m+n between v and w, where there is no backtracking

in the fist m or the last n steps. Consider now the reverse of this walk. This is a walk of length m + n from w to

v where there is no backtracking in the first n or last m steps. Inversion of walks thus proves that (AmAn)(v, w) =

(AnAm)(w, v). But since G is undirected, (AmAn)(v, w) = (AmAn)(w, v). Thus indeed the Am commute.

This matrix has a natural action on the space of functions

l2(V ) = {f : V → C},

given by

(Af)(v) =
∑
w∈V

Avw · f(w).

We can now consider eigenvalues of this matrix. The following is proposition 1.1.2 in [DSV03].

Proposition A.5. Let A be the adjacency matrix of a finite k-regular graph G = (V,E).
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1. k is an eigenvalue of A.

2. For all eigenvalue λ of A, we have |λ| ≤ k.

3. The multiplicity of k equals the number of connected components of A. In particular, k has multiplicity 1 if

and only if A is connected.

Proof. For the first point, consider the constant function C(v) = 1. Then, by k-regularity:

(AC)(v) =
∑
w∈V

Avw · C(w) =
∑
w∈V

Avw = k.

Hence C is an eigenvector of A with eigenvalue k.

For the second, let f be an eigenfunction with eigenvalue µ. Let x be such that

|f(x)| = max
v∈V

|f(v)|.

Suppose that f(x) > 0 (if not, replace f with −f). Then we have:

f(x)|µ| = |f(x)µ|
= |(Af)(x)|
= |
∑

v∈V Axvf(v)|
≤ f(x)|

∑
v∈V Axv|

= f(x)k.

Finally, write m for the multiplicity of k, r for the number of connected components and let G1, . . . , Gr denote the

connected components of G and Gi = (Vi, Ei). Consider first the functions

fi : V → C, fi(v) = 1v∈Vi .

These are indicator functions that are 1 on Vi and 0 elsewhere. Let v ∈ V be given and say v ∈ Vj . We compute

(Afi)(v) =
∑
w∈V

Avwfi(w) =
∑
w∈Vj

Avwfi(w).

If i = j, this is
∑

w∈Vj
Avw = k and we get (Afi)(v) = k = k · 1. Else, this sum is 0, so we get (Afi)(v) = 0 = k · 0.

In any case, (Afi)(v) = kfi(v), so the fi are all eigenfunctions of A with eigenvalue k. Hence m ≥ r.

For m ≤ r, it suffices to prove that k has multiplicity 1 if A is connected (i.e. if r = 1, then m = 1), since we

reduce to the connected components Gi if G is not connected. Let then f be an eigenfunction with eigenvalue k, and

as above, take x ∈ V such that |f(x)| = maxv∈V |f(v)|. We have that

f(x) =
(Af)(x)

k
=
∑
v∈V

Axv

k
f(v).

Thus f(x) is a convex combination of numbers of absolute value at most equal to it. Thus f(x) = f(v) for all v ∈ V

and f is constant. Thus k has multiplicity 1.

To close, we relate eigenvalues of a graph to its bicolourability. This is not immediately relevant for our thesis,

but is an often-studied part of graph theory which relates to the spectrum. First, the definition of colourability.
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Definition A.6. Let n ∈ Z≥1. We call a graph G = (V,E) n-colourable if there is a partition of the vertices

V = V0 ∪ V2 ∪ . . . ∪ Vn−1

such that if vertices v and w have Avw > 0 and v ∈ Vi, then w /∈ Vi.

For m = 2, we call such graphs bicolourable.

Intuitively, one wishes to mark, usually by colouring, the vertices of a graph such that no two vertices of the

same colour are connected. There is a famous result on colourability, which states than any planar graph, that is

any graph that can be drawn on flat paper without edges intersecting, is 4-colourable. Since it is known that there

are planar graphs that are not 3-colourable, this is an optimal result.

One can relate the n-colourability of a graph to its spectrum in great generality, as is done in paragraphs 1.6 and

1.7 of [DSV03]. We are, for now, interested only in bicolourability. We have the following result, which is proposition

1.1.4 in the previous.

Proposition A.7. Let G = (V,E) be a finite, connected k-regular graph. The following are equivalent:

1. G is bipartite

2. The spectrum of G is symmetric about 0

3. −k is in the spectrum of G

Proof. We write A for the adjacency matrix of G.

1 → 2: Let V = V0 ∪ V1 be a partition as in the above definition. Let f be an eigenfunction of A with eigenvalue

µ. Define

g(v) =

f(v) v ∈ V1,

−f(v) v ∈ V2.

We claim that g is an eigenfunction for −µ. Let v ∈ V be given, say v ∈ Vi.

(Ag)(v) =
∑
w∈V

Avwg(w) =
∑

w∈V1−i

Avwg(w) = −µg(v).

2 → 3: Obvious, since k is in the spectrum.

3 → 1: Let f be an eigenfunction with eigenvalue −k and x ∈ V with |f(x)| = maxv∈V |f(v)| and f(x) > 0

(again, we may replace f with −f). We have

f(x) =
(Af)(x)

−k
=
∑
v∈V

Axv

k
· (−f(y)).

As above, f(x) is a convex combination of the −f(y) with absolute value at most |f(x)|. Thus, if Axv ̸= 0, we must

have that −f(y) = f(x). To the same effect, for any z adjacent to a y adjacent to x, we must have −f(z) = f(y).

Since X is connected and f(x) > 0, there cannot be v ∈ V with f(v) = 0. We may then define the partition

V0 = {v ∈ V | f(v) < 0

V1 = {v ∈ V | f(v) > 0,

which provides a bicolouring of G.

For instance, in chapter 3, we have seen that the non-trivial eigenvalues of the Pizer graphs Pizp(l), which are

(l + 1)-regular, have absolute value ≤ 2
√
l < l + 1 (since l ≥ 2), so the Pizer graphs are at least not bicolourable!
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B SageMath Scripts

Below is the Sage code used to compute Pizer graphs. The figures in chapter 2 were aquired with this code (the

actual data-processing was done in the standard python library matplotlib/pyplot).

import random

import time

from sage.plot.scatter_plot import ScatterPlot

import numpy as np

from sage.schemes.elliptic_curves.ell_finite_field import is_j_supersingular

from sage.schemes.elliptic_curves.ell_finite_field import supersingular_j_polynomials

working_direc = ’YourFolderHere ’#name of data folder

def printToFile(A,name):

fileName = working_direc+name+’.txt’

with open(fileName ,’w’) as f:

f.write(str(A))

f.close()

def addZeroColumn(A):

#Adds column of zeroes to A

return(np.c_[A,np.zeros(A.shape [0])])

def addZeroRow(A):

#Adds row of zeroes to A

return(np.r_[A,[np.zeros(A.shape [1])]])

def addZeroDimen(A):

#Adds row *and* column of zeroes to A

if(A.shape == (0,0) or A.shape == (0,)):#empty matrix is weird

return(np.array ([[0]]))

A = addZeroColumn(A)

return(addZeroRow(A))

def PrimesTo(n):

#Just gives a list of all primes p<n

P = Primes ()

X = [2]

while(P.next(X[-1])<n):

X.append(P.next(X[ -1]))

return(X)

def leg(lam):

#See Silverman , III.1b

top = lam^2-lam+1

top = top^3

bot = lam ^2*(lam -1)^2

return (2^8* top/bot)

def curveFromjInv(j,K,return_coef = False):

#Returns curve y^2=x^3+Ax+B of j-invariant j

if(j == 0):#j = 0 and j = 1728 are ’weird ’ j-invariants

E = EllipticCurve(K,[0 ,1])

elif(j == 1728):

E = EllipticCurve(K,[1 ,0])

else:#see Silverman , proof of prop. III .1.4c,

B = -1/(j -1728)

A = 36*B
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E = EllipticCurve(K,[1,0,0,A,B]). short_weierstrass_model ()

if(return_coef ):

return(E,E.a_invariants ()[ -2:])

else:

return(E)

def supersingularFromPoly(K,return_coef = False):

#Based on Silverman , V.4.1b

#Very inefficient at finding just 1 j-invariant

count_time = time.time()

p = K.characteristic ()

if(p<5):# p = 2,3 potentially weird

return(supersingularjInv(K,return_coef=return_coef ))

m = (p-1)/2

coef = [GF(p)( choose(m,x))^2 for x in range(m+1)]

P.<t> = PolynomialRing(GF(p^2))

t = P.gen()

f = sum(coef[i]*t^i for i in range(m+1))#this is H_p(t) in Silverman

rts = f.roots(multiplicities=False)

return(rts[0], curveFromjInv(j,K,return_coef=return_coef ))

def supersingularjInv(K,return_coef = False ,keepTime = False ):

#Returns a supersingular j-invariant of K

count_time = time.time()

notSS = True

j = 0

p = K.characteristic ()

if p is 0:

raise ValueError(’Characteristic 0 not implemented!’)

#have criterion for detecting if j = 0 or j = 1728 are supersingular

if(Mod(p,3) == 2):

j = 0

elif(Mod(p,4) == 3):

j = 1728

else:#if neiher are (if p = 1 mod 12), just try ’random ’ elts in F_p

while(notSS ):

j += 1

notSS = not(is_j_supersingular(K(j)))

if keepTime:

print(’finding j cost’,time.time()-count_time ,’seconds ’)

return(j,curveFromjInv(j,K,return_coef = return_coef ))

def imagejInv(E,P):

#Finds j-invariant of E/<P>, via Velu

#Only works for E in reduced Weierstrass

a4,a6 = E.a_invariants ()[ -2:]

b2,b4,b6 ,b8 = E.b_invariants ()

x = P.xy ()[0]

t = 3*x^2+a4

u = 4*x^3+b2*x^2+2*b4*x+b6

w = u+t*x

A = a4 -5*t

B = a6-b2*t-7*w

j = -1728*(4*A)^3/( -16*(4*A^3+27*B^2))

return(j)
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def getAdjMatrix(p,l = 2, mtrx = True ,keepTime = False , justMat = False ):

#Computes the adjacency matrix of PG_l(p)

#Currenlty only implemented for l = 2

if l != 2:

raise ValueError(’Higher -degree Pizer graphs not implemented!’)

if keepTime:

start_time_mat = time.time()

Fp = GF(p)

k.<a> = GF(p^2)

P.<x>= PolynomialRing(k)

j,E = supersingularjInv(Fp)

finishedJs = []#this is where we store our finished j-invariants

matrixJs = [j]#this is the list for matrix -indices

toDo = [j]#our to -do list

adjMat = np.array ([[0]])

while(toDo !=[]):

j = toDo [0]

n = matrixJs.index(j)#remember which index we came from

E = curveFromjInv(j,k)

Tf = E.torsion_polynomial(l)/4#if E: y^2 = x^3+Ax+B Tf = x^3+Ax+B

xCo = Tf.roots(multiplicities =0)

twoTors = [E(x,0) for x in xCo]#two -torsion points , from torsion polynomial

isogjInvs = [imagejInv(E,x) for x in twoTors]

for isJ in isogjInvs:#fills in the matrix

if isJ in matrixJs:

#If isJ is already known , fill in the right place in the matrix

m = matrixJs.index(isJ)

else:

#Else , we add a row of 0s (since the new isJ can’t be connected

#To already -treated invariants)

adjMat = addZeroDimen(adjMat)

m = adjMat.shape [0]-1

matrixJs.append(isJ)

adjMat[n][m]+=1#add 1 edge between the nth and mth j-invariant

finishedJs += [j]

toDo += isogjInvs

toDo = [elt for elt in toDo if elt not in finishedJs]#remove treated j-inv

if(mtrx):#As stands , adjMat is a numpy double list , which isn’t a sage matrix

adjMat = matrix(adjMat)

if keepTime:

print(’time elapsed:’,time.time()-start_time_mat ,’ seconds ’)

if justMat:

return(adjMat)

return(adjMat ,matrixJs)

print(’starting up!’)

X = [p for p in PrimesTo (100000) if p>3]#primes to compute

timeList = []#track total time taken per prime

#can add more lists for different data

for p in X:

start_time = time.time()

print(’this is for’,p)

A,jInvs = getAdjMatrix(p,keepTime = False)

timeList.append(time.time()- start_time)

print(A)

print(jInvs)

#printToFile(timeList ,’timeTaken ’)
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print(’time elapsed:’,time.time()-start_time ,’ seconds ’)

We should mention that Sage has an in-built function to compute isogenies of prime degree belonging to a elliptic

curve. If E is an elliptic curve and l is a prime

E.isognies_prime_degree(l)

will return a list of all isogenies ϕ1, . . . , ϕn of degree l and domain E. So, if one knows the supersingular j-invariants

j1, . . . , jn over Fp2 , one can do the following:

K.<a> = GF(p^2)

listjs = [j1 ,...,jn]

A = list(matrix(nrows = n,ncols = n))#can’t edit matrix entries

for j in listjs:

E = curveFromjInv(j,K)

col = listjs.index(j)

for phi in E.isogenies_prime_degree(l):

codoj = phi.codomain (). j_invariant ()

row = listjs.index(codoj)

A[col][row ]+= 1

A = matrix(A)#convert back to matrix

This is for instance how we computed B(3) in example 3.5. If one doesn’t know the list of j-invariants, the

following short program can very inefficiently compute Bp(l) for (very) small p and l.

K.<a> = GF(p^2)

listjs = []

for j in K:

if curveFromjInv(j,K). is_supersingular ():

listjs.append(j)

print(listjs)

n = len(listjs)

A = list(matrix(nrows = n,ncols = n))

for j in listjs:

E = curveFromjInv(j,K)

col = listjs.index(j)

for phi in E.isogenies_prime_degree(l):

codoj = phi.codomain (). j_invariant ()

row = listjs.index(codoj)

A[col][row] += 1

matrix(A)
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