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Chapter 1

Introduction

Savannas are defined by Gillison (1983) as tropical grasslands with scattered individual trees.
These are located throughout the tropics in all continents, but mostly in America, Africa and
Australia (Solbrig, 1996). Savanna covers approximately one-sixth of all land surface on earth
(Grace, José, Meir, Miranda, & Montes, 2006). The characteristics of savanna changes with
the precipitation gradient. For example, if there are small increases in precipitation, the plant
productivity may increase. This happens because these increases cause a decrease in interception
and evaporation. On the other hand, large increases can decrease the plant productivity. For
instance due to overflow or deep soil infiltration (Berry & Kulmatiski, 2017). Towards humid ends
of the savanna, the savanna gives way to tropical forests. We will analyse a model that describes
the savanna-forest transition zone. In this zone, both savanna and forest can be observed under
similar climatic conditions when rainfall is moderate (Oliveras & Malhi, 2016). Spatial processes
like dispersal plays an important roll as well (Goel, Guttal, Levin, & Staver, 2018). We will
incorporate all these compontens into the model.

We first give ecological background, which shows that this problem is of interest. Forest and
savanna constitute approximately 35 percent of all land surface on earth. Moreover they are the
predominant biomes of the tropical regions of the world (Ametsitsi, 2021). The savanna-forest
boundary is the most common transition of the tropical regions (Oliveras & Malhi, 2016). The
research of Kershaw (1992) has shown that savanna-forest boundaries have shifted in the past and
other studies have shown that these boundaries will also continue to shift (D. Schwartz, 2013).
Forest encroachment into savannas is occurring worldwide (Mitchard & Flintrop, 2013). This
could occur due to the action of intricate anthropogenic and biophysical drivers (Janssen et al.,
2018), which is a disturbing phenomenon, because tropical forests contribute to climate change
reduction. Forest trees remove net CO2 from the atmosphere and store it as biomass (Bonan,
2008). Tropical forest are predicted to experience more climatic changes. This includes increased
temperatures, change in rainfall patterns and possibly longer dry seasons (Cuni-Sanchez et al.,
2016). That is why it is important that we get a better understanding of the savanna-forest
boundaries. Furthermore how these boundaries may respond to climatic changes.
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Figure 1.1: Savanna-forest boundary in regions of Western Ghats, Karnataka, India (Goel, 2020).

The interface between two distinct ecosystem states is called a front (Bel, Hagberg, & Meron,
2012), (Zelnik & Meron, 2018). In this thesis we will construct such a front with the help of
mathematical and numerical analysis in a spatial model of the savanna-forest transition zone.
This model has two variables, f̂ and ŝ, which represents the fire biomass and the savanna biomass
respectively. 

df̂

dτ
= rF f̂

(
1− f̂

KF

)
− ηfF ŝf̂ − dF f̂

dŝ

dτ
= rS ŝ

(
1− ŝ

KS

)
− df̂ ŝ− (ηfS ŝ+ dS) ŝ

(1.1)

This model consists of many parameters. We will explain their meaning and their significance in
the next section. Because dispersal plays an important role in the savanna-forest transition zone,
we add diffusion terms to both equations. This system has a clear separation in spatial scales,
hence we can use geometric singular perturbation theory. We will introduce this theory in section
2.3.

In the third section we will analyse the model. First we non- dimensionalize the system, this
procedure reduces the amount of parameter values, which makes it easier to analyse the system.
Later on in this section we will analyse this dimensionless system. We will determine the critical
values and their character, which we can use to plot their phase planes. This already helps us
finding the front solution we that we are looking for. In the next section we will use this to find a
heteroclinic connection. This heteroclinic connection goes from a pure forest state to a pure grass
state. This solution is called the bi-stable front.

Furthermore we change the system by adding a saturation term, which makes the model more
ecological relevant. Again we will show that a front solution exists for this system. Analysing this
model analytically is really complicated, hence we use numerical tools to show this. Lastly we
will plot these travelling fronts for both systems numerically. We compare these simulations to
our analytical findings. We start by simulating solutions in one dimension. Afterwards we repeat
this in two dimensions. Fingering fronts is a pattern that has been observed in other models
(Fernandez-Oto, Tzuk, & Meron, 2019). We try to find out whether our model can give these
patterns. We derive a condition that is needed for fingering fronts to exist. We will also use two
dimensional simulations to find these fingering fronts for the savanna-forest transition model.
Finally, we end this thesis by a short discussion section.
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Chapter 2

Methods

2.1 Model formulation

Finding a model that describes the savanna-forest boundaries would help to predict how these
boundaries will evolve over time. First we study the non-spatial model (1.1), which is a two
dimensional system of first order ordinary differential equations. This system has two state
variables f̂ and ŝ. f̂ and ŝ represent the forest biomass density and the savanna biomass density
respectively. The savanna biomass includes C4 grasses and savanna trees, which are both shade
intolerant as well as fire resistant.

Because the state variables represent the area that is covered by the biomass, we consider a
logistic growth. Then both of the state variables can increase independently until a certain
carrying capacity is reached (Murray, 2002).

We have many parameters in system (1.1), later on we are going to scale the system and reduce
this number of parameters. The parameters rS and rF represent the growth rate of the savanna
and forest vegetation respectively. The parameters KS and KF are the carrying capacities that
are incorporated into the system. dS and dF are the removal rates of the savanna vegetation and
the forest trees, resulting from various factors. Lastly, the parameter d represents the effect of
shading of the forest trees on the savanna grasses.

Figure 2.1: Fire at the savanna-forest boundary (Staver, 2011).
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Fire also has an impact on the savanna-forest transition dynamics. We incorporate this into our
model. The parameter fS is the sensitivity of the savanna biomass to fire. Because the savanna
vegetation itself is a fuel to fire, the rate of loss of savanna biomass is modeled by −ηfS ŝ2 in (1.1).
We also add a term in the first equation of (1.1) that incorporates the effect of fire, because fire
also causes loss of forest biomass. Similarly, fF represents the sensitivity of the forest biomass
to fire. The rate of loss of forest biomass is modeled by −ηfF ŝf̂ , where η is the frequency in
which a fire occurs. We multiply by f̂ in this term, because this loss due to fire must be directly
proportional to the present forest biomass density.

In order to analyse this system we non-dimensionalise system (1.1). We show how we have done
this procedure in section 3.1. The non-dimensionalised model is the following

df

dt
= f(α− f − as) =: A(f, s)

ds

dt
= s (β − bf − µs) =: B(f, s).

(2.1)

We remark that this equation is very similar to the well known modified Lotka-Volterra model
described in Braun (1983). 

dx

dt
= ax− bxy − ex2

dy

dt
= −cy + dxy − fy2.

(2.2)

This model describes predator-pray interactions. The variables x(t) and y(t) represent the prey-
and predator population over time respectively. System (2.1) is equal to the Lotka-Volterra
equations with a = α, b = a, c = −β < 0, d = −b < 0, e = 1 and f = µ.

2.1.1 Intoducing the spatial system

We want to add a spatial variable to the system. Hence we add a diffusion term to the system
(Murray, 2002), then it becomes the following

∂F

∂t
= F (α− F − aS) + ∆F

∂S

∂t
= S (β − bF − µS) +

1

ϵ2
∆S.

(2.3)

Where ∆ is the Laplace operator is equal to ∆ =
∂2

∂x2
+

∂2

∂y2
in two dimensions. The diffusion

coefficient of the F−equation is equal to 1. We set the diffusion coefficient of the S−equation

equal to
1

ϵ2
, where 0 < ϵ≪ 1. This is because grasses are the main component of the savanna

and that diffuses much faster than forest trees Oliveras and Malhi (2016). Moreover, we only look
into one spatial dimension, this already gives us a lot of information about how this equation

describes the savanna-forest boundary. So then we have ∆F =
∂2F

∂x2
and ∆S =

∂2S

∂x2
.

In the next section we want to analyse the spatially extended model (2.3). First we look at the

stationary equation:
∂f

∂t
=
∂s

∂t
= 0. This gives us this system of two stationary second order

ordinary differential equations 
d2f

dx2
= f(f + as− α)

d2s

dx2
= ϵ2s(bf + µs− β).

(2.4)
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We can rewrite this two dimensional system of second order ordinary differential equations in a
four dimensional system of first order ordinary differential equations. We do this by defining the

following variables p :=
df

dx
and q :=

1

ϵ

ds

dx
, then we get

df

dx
= p =: U(f, p, s, q)

dp

dx
= f(f + as− α) =: V (f, p, s, q)

ds

dx
= ϵq =:W (f, p, s, q)

dq

dx
= ϵs(bf + µs− β) =: Z(f, p, s, q).

(2.5)

2.1.2 Introducing the travelling wave solution

At the savanna forest transition zone is observed that the savanna can invade the forest or
the other way around. Hence we introduce a wave solution to (2.3) in order to describe this
phenomenon. Then we take F = F (x, t) = f(ξ) and S = S(x, t) = s(ξ), with ξ = x− ct. Then

we get ∆F =
∂2f

∂x2
=
d2f

dξ2
and ∆S =

∂2s

∂x2
=
d2s

dξ2
and

∂F

∂t
= −c df

dξ
and

∂S

∂t
= −cds

dξ
. Then we

get a two dimensional system of second order ordinary differential equations
d2f

dξ2
= −c df

dξ
+ f (f − α+ as)

d2s

dξ2
= ϵ2

[
−cds

dξ
+ s (µs− β + bf)

]
.

(2.6)

If we define the variables p :=
df

dξ
and q :=

1

ϵ

ds

dξ
we can rewrite this system into a system of four

first order ordinary differential equations as well

df

dξ
= p

dp

dξ
= −cp+ f (f − α+ as)

ds

dξ
= ϵq

dq

dξ
= ϵ(−ϵcq + s (µs− β + bf)).

(2.7)

In order to analyse this system we use geometric singular perturbation theory. In section 2.3 we
explain this theory and in section 4 we apply it to system (2.7).

2.2 Relations between the characters of the fixed points in
the temporal and the spatial system

In this section we will look into the relations between (F , S) and (F , 0, S, 0) as critical points
of (2.3) and (2.5). For both systems we only look at one spatial dimension, hence system (2.3)
becomes 

∂F

∂t
= F (α− F − aS) +

∂2F

∂x2
∂S

∂t
= S (β − bF − µS) +

1

ϵ2
∂2S

∂x2
.

(2.8)
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We state the following lemma’s that describe the relation between the characters of the fixed
points in these systems.

Lemma 2.2.1. Let P = (F , 0, S, 0) be a critical point of (2.5) that corresponds to a stable trivial
state (F , S) of (2.8) on R, then dim

(
W s

(
P
))

= dim
(
Wu

(
P
))

= 2: P is a saddle of (2.5)
(Doelman, n.d.)

Lemma 2.2.2. If dim
(
W s

(
P
))

= dim
(
Wu

(
P
))

= 2 and (F , S) is stable as solution of the

reaction ODE (2.1), then
(
F , S

)
is stable as solution of (2.8) on R (Doelman, n.d.).

In the next section we will determine the critical points and their characters of systems (2.1)
and (2.5). Afterwards we can use these lemma’s to derive the characters of the critical points of
(2.8).

2.3 Geometric singular perturbation theory

System (2.7) has a clear separation in spatial scales. Geometric singular perturbation theory is
very useful for these types of problems, this theory uses different scales to understand the global
structure of the phase space (Hek, 2009). The basic equations that this theory considers are
singularly perturbed systems of first order ordinary differential equations, that have two different
time-scales. These are of the form {

u̇ = g(u,v, ϵ),

v̇ = ϵh(u,v, ϵ),
(2.9)

where ˙=
d

dt
, 0 < ϵ≪ 1, u ∈ Rk and v ∈ Rl with k, l ≥ 1. The functions f and g must be at least

C1. System (2.9) is called the fast system and t is called the fast scale. To get the slow system,

we introduce a change the slow scale. For the first equation we get u̇ =
du

dt
=
du

dτ

dτ

dt
= ϵ

du

dτ
= ϵu′,

where ′ =
d

dτ
. In the same way we get v̇ = ϵv′ for the second equation. So the slow system

becomes {
ϵu′ = g(u,v, ϵ),

v′ = h(u,v, ϵ),
(2.10)

The fast and the slow system are equivalent, but only as long as ϵ ̸= 0 holds. For both systems
we can take the limit ϵ→ 0, these limits are respectively given by{

u̇ = g(u,v, 0),

v̇ = 0,
(2.11)

and {
0 = g(u,v, 0),

v′ = h(u,v, 0).
(2.12)

These systems are approximations for the full system where ϵ ≠ 0 holds, but where ϵ is sufficiently
small. However, in both systems we miss information about one of the equations. The goal of
geometric singular perturbation theory is to analyse and combine the dynamics of the two systems
with limit ϵ → 0, which gives an insight to the dynamics of the full system (2.9). Because the
limit sets are lower dimensional and we can analyse them in more details. And by combining this
knowledge of the fast and slow pieces of orbits, which is obtained in the fast and slow limits, we
can construct the global singular structures.
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2.3.1 Fenichel’s first theorem

We remark that system (2.12) describes the slow dynamics on the set g(u,v, 0). This set is equal
to the set of critical points of (2.11). The critical manifold M0 is defined as the l- dimensional
manifold that is contained in the set g(u,v, 0) = 0. To get more knowledge of the full system we
can analyse the slow dynamics on this manifold M0, so we analyse the system v′ = h(u,v, 0)
on M0. Fenichel’s first theorem (2.3.1) says that if the manifold M0 is normally hyperbolic,
it persists for 0 < ϵ ≪ 1 as a manifold Mϵ with a slow flow on it. Before we state Fenichel’s
theorem we define normal hyperbolicity.

Definition 2.3.1. (Normal hyperbolicity) A manifold M is called normally hyperbolic when the

eigenvalues λ of the Jacobian
∂g

∂u
(u,v, 0) |M are uniformly bounded away from the imaginary

axis (Hek, 2009).

Theorem 2.3.1. (Fenichel) Suppose M0 ⊂ {g(u, v, 0) = 0} is compact, possibly with boundary,
and normally hyperbolic. Suppose g and h are smooth. Then for ϵ > 0 and sufficiently small,
there exists a manifold Mϵ,O(ϵ) close and diffeomorphic to M0, that is locally invariant under
the flow of the full problem (2.9) (Hek, 2009).

The theorem states that under these conditions Mϵ is locally invariant under the flow of the full
problem under these conditions, which means that orbits on this manifold can leave this manifold
in the slow direction, via the the boundary of Mϵ, but via the directions not perpendicular to it
(Hek, 2009). It also states that Mϵ is a small perturbation of O(ϵ) of M0.

2.3.2 Fenichel’s second theorem

Fenichel’s first theorem guarantees the existence of the slow manifold M0 and gives an O(ϵ)
approximation for the flow on it. The second theorem gives more information about the stable and
unstable manifolds of M0 and Mϵ. It is already known that hyperbolic fixed points of ordinary
differential equations persists under small perturbations, as well as their stable and unstable
manifolds (Wiggins, 1990). This holds for the normally hyperbolic critical manifold M0 as well,
this is stated in Fenichel’s second theorem (2.3.2). In this theorem we require M0 ⊂ g(u,v, 0) = 0
to be a normally hyperbolic critical manifold, that has an l +m-dimensional stable manifold
W s(M0) and an l+ n-dimensional unstable manifold Wu(M0), such that m+ n = k holds. This

is the case whenever the Jacobian
∂g

∂u
(u,v, 0) |M has m eigenvalues with negative real part and

n eigenvalues with positive real part.

Theorem 2.3.2. (Fenichel) Suppose M0 ⊂ {g(u, v, 0) = 0} is compact, possibly with boundary,
and normally hyperbolic, and suppose f and g are smooth. Then for ϵ > 0 and sufficiently small,
there exists manifolds W s(Mϵ) and Wu(Mϵ), that are O(ϵ) close and diffeomorphic to W s(M0)
and Wu(M0), respectively, and that are locally invariant under the flow of (2.9) (Hek, 2009).

The stable and unstable manifolds W s(Mϵ) and W
u(Mϵ) also have respective dimensions l +m

and l + n.

In the next chapters of this thesis we apply this theory to our system (2.5).

2.4 Numerical schemes

We use geometric singular perturbation theory to analyse the system analytically. We would
also like to reproduce the analytical findings numerically. We start by doing simulations in one
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dimension, hence we look into system (2.8) We want to implement this system in our Matlab code.
The Matlab function pdepe solves a system of partial differential equations that are parabolic or
elliptic with one spatial variable x and time t (MATLAB, 2010).

For our numerical simulations we take the following domain Ω = [0, L] ⊂ R, with L = 100. We
take the stepsize equal to stepsize h = 0.2 and our running time to T = 500. We implement these
values in the Matlab code in A.1.1. We also defined our parameter values in this code. We saved
all these values in parameter vector P . This is what the vector P looks like

P = (α, a, β, b, µ)⊺.

In this code we also call the function pdepe and plot the solution for different time values. In our
theoretical calculations we used Ω = R, now we look at a finite domain. Before we can implement
our system in our Matlab code we have to rewrite it in a form that the pdepe solver expects. The
standard form that pdepe expects is

ω

(
x, t,u,

∂u

∂x

)
∂u

∂t
= x−m ∂

∂x

[
xmφ

(
x, t,u,

∂u

∂x

)]
+ ψ

(
x, t,u,

∂u

∂x

)
(2.13)

Rewriting (2.8) to this form gives us the following variable, functions and constants

u =

(
F
S

)
, m = 0, ω = 1, φ =

 ∂F

∂x
1

ϵ2
∂S

∂x

 , ψ =

(
F (α− F − aS)
S (β − bF − µS)

)
.

We implemented this equation in the MATLAB code eqn.m given in A.1.2. We also have to define
our initial conditions. Because we will be looking for a front solution we take fronts as initial
conditions. Here we define the initial condition for forest biomass F0 and savanna biomass S0.

F0 :=
1

2

(
1 + tanh

(
−x+

L

2

))
, S0 :=

1

2

(
1 + tanh

(
x− L

2

))
In figure 2.2 we plotted the graphs of these initial conditions.

Figure 2.2: The green and the red plots represent the initial condition of the forest biomass and
the savanna biomass respectively.
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We implemented these functions in initial.m in A.1.3. Now we have almost set everything up
in order to run the code. We still have to define the boundary conditions. We use Neumann
boundary conditions, because we want zero flux at the boundaries. For problems posed on the
interval a ≤ x ≤ b, the boundary conditions apply for all t and either x = a or x = b. Matlab
requires the boundary conditions to be of the form

p(x, t,u) + q(x, t)φ

(
x, t,u,

∂u

∂x

)
= 0.

Filling in u and φ gives us the following system of equations

(
p1(x, t, F, S)
p2(x, t, F, S)

)
+

 q(x, t)
∂F

∂x

q(x, t)
1

ϵ2
∂S

∂x

 =

(
0
0

)

The domain that we consider is [0, L]. If we choose

(
p1(x, t, F, S)
p2(x, t, F, S)

)∣∣∣∣
x=0

=

(
p1(x, t, F, S)
p2(x, t, F, S)

)∣∣∣∣
x=L

=(
0
0

)
and q(x, t)|x=0 = q(x, t)|x=L = 1. Because if we choose p and q in this way we have zero

flux at the boundary. These are the boundary conditions that we use

∂F

∂x

∣∣∣∣
x=0

=
∂S

∂x

∣∣∣∣
x=0

=
∂F

∂x

∣∣∣∣
x=L

=
∂S

∂x

∣∣∣∣
x=L

= 0. (2.14)

We implemented the boundary conditions in bc.m in A.1.4. Now we can call function pdepe.
with the line sol = pdepe(m,@eqn,@initial,@bc,x,t,[],P).
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Chapter 3

Analysis of the nonspatial model

3.1 Scaling of the system

We want to study system (1.1) to learn more about the savanna-forest boundary. This system
has many parameters, but we can reduce this number. We start by reducing the number of
parameters, because it makes analysing this system easier. We do this by scaling the system.
Before we can do this, we rewrite the system a little. We also ad two diffusion terms to the
system, with diffusion coefficients DF and DS .

∂F̂

∂τ
= rF F̂

(
1− F̂

KF

)
− ηfF ŜF̂ − dF F̂ +DF ∆̂F̂

∂Ŝ

∂τ
= rSŜ

(
1−

(
1

KS
+
ηfS
rS

)
Ŝ

)
− dF̂S − dSŜ +DS∆̂Ŝ

(3.1)

∆̂ is the Laplace operator, which is equal to ∆̂ =
∂2

∂x̂2
+

∂2

∂ŷ2
. We want to make this system

dimensionless. Because that way, we will have less parameters to deal with. Furthermore we can
scale τ in such a way that the rF term in the first equation disappears. Therefore we do choose
the following scaling

F =
1

KF
F̂ , S =

(
1

KS
+
ηfs
rS

)
Ŝ, t = rF τ, x = x̂

√
rF
DF

, y = ŷ

√
rF
DF

By using the chain rule, we can express
∂F̂

∂τ
in terms of t and our new variable f .

∂F̂

∂τ
=
∂F̂

∂F

∂F

∂τ

= KF
∂F

∂τ

= KF
∂F

∂t

∂t

∂τ

= rFKF
∂F

∂t
,
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Now we express
∂Ŝ

∂τ
in terms of t and s in the same way

∂Ŝ

∂τ
=

 rF
1

KS
+
ηfs
rS

 ∂S

∂t
.

Next we want to rewrite the diffusion term in the F̂ equation

∆̂F̂ =
∂2F̂

∂x̂2
+
∂2F̂

∂ŷ2

=
∂

∂x̂

[
∂F̂

∂x̂

]
+

∂

∂ŷ

[
∂F̂

∂ŷ

]

=
∂

∂x̂

[
∂F̂

∂F

∂F

∂x̂

]
+

∂

∂ŷ

[
∂F̂

∂F

∂F

∂ŷ

]

= KF

(
∂

∂x̂

[
∂F

∂x̂

]
+

∂

∂ŷ

[
∂F

∂ŷ

])
= KF

(
∂

∂x̂

[
∂F

∂x

∂x

∂x̂

]
+

∂

∂ŷ

[
∂F

∂y

∂y

∂ŷ

])
= KF

√
rF
DF

(
∂

∂x̂

[
∂F

∂x

]
+

∂

∂ŷ

[
∂F

∂y

])
= KF

rF
DF

(
∂2F

∂x2
+
∂2F

∂y2

)
= KF

rF
DF

∆F.

In the same manner we find

∆̂Ŝ =

 1

1

KS
+
ηfs
rS

 rF
DF

∆S.
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If we substitute these derivatives, F̂ = KFF and Ŝ =

 1

1

KS
+
ηfs
rS

S into (3.1), the equations

only depend on the variables F and S.

rFKF
∂F

∂t
= rFKFF (1− F )− ηfFKF

 1

1

KS
+
ηfS
rS

SF − dFKFF +KF rF∆F

 rF
1

KS
+
ηfS
rS

 ∂S

∂t
=

 rS
1

KS
+
nfS
rS

S (1− S)−

 dKF

1

KS
+
ηfS
rS

FS

−

 dS
1

KS
+
ηfS
rS

S +

 rF
1

KS
+
ηfS
rS

 DS

DF
∆S

(3.2)
We can simplify these equations by dividing the first equation by rFKF and the second on by

rF
1

KS
+
ηfS
rS

.


∂F

∂t
= F (1− F )−

 ηfF

rF

(
1

KS
+
ηfS
rS

)
SF − dF

rF
F +∆F

∂S

∂t
=
rS
rF
S (1− S)− dKF

rF
FS − dS

rF
S +

DS

DF
∆S

(3.3)

We can easily simplify these equations by defining the following constants

µ =
rS
rF
, b =

dKF

rF
, n =

dS
rF
, a =

ηfF

rF

(
1

KS
+
ηfS
rS

) , m =
dF
rF
, δ =

DS

DF
.

Substituting them gives us the scaled system below.


∂F

∂t
= F (1− F )− aSF −mF +∆F

∂S

∂t
= µS (1− S)− bFS − nS + δ∆S.

(3.4)

We can rewrite this system to (2.1), then we take ∆F = ∆S = 0. We also choose α = 1−m and
β = µ− n, later on in this thesis we show that both of these parameters must be positive.

3.1.1 Critical points and their character

To determine the critical points, we first have to determine the nullclines. These are the lines on
which A(f, s) = 0 or B(f, s) = 0 holds. A(f, s) = 0 gives us

f = 0 or f + as = α,
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setting the second equation to zero gives

s = 0 or bf + µs = β.

Combining these nullclines gives us the critical points

(0, 0),

(
0,
β

µ

)
, (α, 0), (f∗, s∗) =

(
aβ − αµ

ab− µ
,
αb− β

ab− µ

)
.

We would like to know if these points are stable or unstable, this will yield information about
solutions of our equation. Our goal is to find a front solution, hence we are looking for a

heteroclinic connection from (α, 0) to

(
0,
β

µ

)
. These points represent the pure forest state and

the pure grass state respectively. Because we want to find a bi-stable front, we want to choose

our parameters in such a way that (α, 0) and

(
0,
β

µ

)
are both stable nodes.

We continue with determining the character and stability of the equilibria. For this we look at the
linearised system of (2.1). The linearised system yields primary information about the behavior
of system (2.1) (Meiss, 2017). We compute the Jacobian matrix J(f, s) for (2.1)

J(f, s) =


∂A

∂f

∂A

∂s
∂B

∂f

∂B

∂s

 =

(
−2f − as+ α −af

−bs −2µs− bf + β

)
.

If we evaluate the Jacobian in the point critical point (0, 0) we get

J(0, 0) =

(
α 0
0 β

)
Because this is a diagonal matrix, we can directly see that the eigenvalues are α and β, which are
both positive values. This means that (0, 0) is an unstable node. Now we evaluate the Jacobian

in

(
0,
β

µ

)
, we get:

J

(
0,
β

µ

)
=

−aβ
µ

+ α 0

−bβ
µ

−β

 .

This is a lower triangular matrix, hence we know that the eigenvalues are equal to the values

on the diagonal. So the eigenvalues are equal to λ1 = −aβ
µ

+ α and λ2 = −β. We want both

eigenvalues to be negative, because then we know that the critical point is a stable node. In order
for λ2 to negative β must be negative. For λ1 we distinguish two cases

λ1 = −aβ
µ

+ α


< 0, if

α

a
<
β

µ
, so

(
0,
β

µ

)
is a stable node,

> 0, if
α

a
>
β

µ
, so

(
0,
β

µ

)
is a saddle.

So we conclude that the condition
α

a
<
β

µ
must hold.
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For (α, 0) we have:

J (α, 0) =

(
−α −aα
0 −bα+ β

)
.

Now we have a upper triangular matrix, which also has its eigenvalues on the diagonal. Hence
the eigenvalues are equal to λ1 = −α and λ2 = −bα+ β. Just like for the previous critical value
we want both eigenvalues to be negative. This can only hold when α > 0 holds, because then we
have λ1 < 0. Again we distinguish two separate cases

λ2 = −bα+ β


< 0, if

β

b
< α, so (α, 0) is a stable node,

> 0, if
β

b
> α, so (α, 0) is a saddle.

Hence we also choose
β

b
< α. Lastly we evaluate the Jacobian in (f∗, s∗)

J(f∗, s∗) =

(
−2f∗ − as∗ + α −af∗

−bs∗ −2µs∗ − bf∗ + β

)
=

(
−f∗ −af∗
−bs∗ −µs∗

)
The last equality holds because, we know that the equalities f∗ + as∗ = α and bf∗ + µs∗ = β − 1
hold for this critical point. To determine the eigenvalues we first compute the characteristic
polynomial

det (λI − J (f∗, s∗)) =

∣∣∣∣λ+ f∗ af∗

bs∗ λ+ µs∗

∣∣∣∣
= λ2 + λ(f∗ + µs∗) + µf∗s∗ − abf∗s∗.

Setting the characteristic polynomial to zero gives us the eigenvalues:

λ± = −1

2
(f∗ + µs∗)± 1

2

√
(f∗ + µs∗)2 − 4(µf∗s∗ − abf∗s∗)

We notice that for (f∗, s∗) we also have two possible characters{
λ− < 0 < λ+, if ab > µ, so (f∗, s∗) is a saddle,

λ± < 0, if ab < µ, so (f∗, s∗) is a stable node.

We have already shown that
α

a
<
β

µ
holds. We can rewrite this condition into µ <

βa

α
. We also

know that
β

b
< α hods, which we can rewrite into b >

β

α
. Combining these conditions gives us

µ < ab, thus we know that λ− is negative and that λ+ is positive. Thus we can conclude that
(f∗, s∗) is a saddle.

In this section we found the characters of the different critical values. This gives us a lot of
information about the behavior of system (2.1). The next step is to determine the phase planes
for different parameter values.
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3.1.2 Phase planes

Now that we know the characters of the critical values, we can plot the phase plane of system
(2.1). The critical point (0, 0) is always an unstable node. This is not true for the other critical

values, we saw that

(
0,
β

µ

)
and (α, 0) switch characters at the parameter values

α

a
=
β

µ
and

β

b
= α respectively. That is why the phase plane looks different in these four cases.

(a)
α

a
>

β

µ
and

β

b
< α (b)

α

a
<

β

µ
and

β

b
> α

(c)
α

a
>

β

µ
and

β

b
> α (d)

α

a
<

β

µ
and

β

b
< α

Figure 3.1: The phase planes of system (2.1) for four different choices of parameter values.

The orange and the pink nullclines represent
df

dt
= 0 and

ds

dt
= 0 respectively.
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In figures (3.1a) and (3.1b) the nontrivial critical point (f∗, s∗) does not lie in the first quadrant.
In figure 3.1a (0, β/µ) is a saddle and (α, 0) is a stable node. For figure 3.1b the opposite holds,
here holds that (0, β/µ) is a stable node and that (α, 0) is a saddle. (α, 0) and (0, β/µ) are
the only stable nodes in the first quadrant in the phase planes (3.1a) and (3.1b) respectively.
Furthermore we can prove that all solutions remain bounded and that there cannot exist any
periodic orbits. Hence we know that all solutions of (2.1) approach these critical points as t
approaches infinity (Braun, 1983).

In the case of figures (3.1c) and (3.1d) (f∗, s∗) does lie in the first quadrant. In figure 3.1c this
critical point is a stable node and both (0, β/µ) and (α, 0) are saddles. In figure 3.1d it is the
other way around, there we have that (f∗, s∗) is a saddle and (0, β/µ) and (α, 0) are stable nodes.
We are interested in this case, where the system exhibits bistability. Only in this case a connection
from (α, 0) to (0, β/µ) is possible.

We are also curious to see if there is a possibility that a connection between one of the fixed points

(α, 0) and (0, β/µ) and the mixed state (f∗, s∗) =

(
aβ − αµ

ab− µ
,
αb− β

ab− µ

)
exists. For a connection

between (α, 0) and (f∗, s∗), both of these fixed points need to be stable. Hence we know that

the conditions
β

b
< α and ab < µ must hold. This implies that the inequalities αb − β > 0

and ab − µ < 0 hold. Thus we know that s∗ is negative. So even if there exists a heteroclinic
connection between (α, 0) and (f∗, s∗), this would be ecologically irrelevant. We have the same
problem with the connection between (0, β/µ) and (f∗, s∗). Stability for both of these fixed

points requires
α

a
<
β

µ
and ab < µ. Which implies αβ − µα > 0 and ab− µ < 0. In this case we

have f∗ < 0, which makes this heteroclinic connection ecolocically irrevant as well.

3.2 Spatially extended savanna-forest model

In this section we want to analyse the spatially extended model (2.3) that we defined in section
2.1. We will look at the stationary system that we have rewritten into a four dimensional system
of ordinary differential equations (2.5).

3.2.1 Critical points and their character

We start by determining the critical points, to do this we determine the nullclines. In order to
determine the nullclines, we sett all four equations in (2.5) equal to zero. U(f, p, s, q) = 0 gives
that p = 0 must hold and V (f, p, s, q) = 0 implies that f = 0 or f = α− as. W (f, p, s, q) = 0 and

Z(f, p, s, q) = 0 give nullclines q = 0 and s ∈
{
0,
β − bf

µ

}
respectively. From combining these

nullclines we can conclude that the system has these four critical points:

(0, 0, 0, 0),

(
0, 0,

β

µ
, 0

)
, (α, 0, 0, 0), (f∗, 0, s∗, 0).

Where f∗ and s∗ are the solutions of the system of these two equationsf = α− as

s =
β − bf

µ
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Solving these equations gives us the non-trivial critical point

(f∗, 0, s∗, 0) =

(
aµ− a− β +mµ

ab− µ
, 0,

b− bm− µ+ n

ab− µ
, 0

)
.

Just like for system (2.1) we want to determine the characters of the critical points. So we look
at the linearised system of (2.5) by computing the Jacobian J(f, p, s, q) of system (2.5)

J(f, p, s, q) =



∂U

∂f

∂U

∂p

∂U

∂s

∂U

∂q
∂V

∂f

∂V

∂p

∂V

∂s

∂V

∂q
∂W

∂f

∂W

∂p

∂W

∂s

∂W

∂q
∂Z

∂f

∂Z

∂p

∂Z

∂s

∂Z

∂q


=


0 1 0 0

2f + as− α 0 af 0
0 0 0 ϵ
ϵbs 0 ϵ(2µs+ bf − β) 0

 .

We start by evaluating the Jacobian in the trivial critical point (0, 0, 0, 0).

J(0, 0, 0, 0) =


0 1 0 0
−α 0 0 0
0 0 0 ϵ
0 0 −ϵβ 0

 .

We determine the characteristic polynomial of this matrix.

det (λI − J (0, 0, 0, 0)) =

∣∣∣∣∣∣∣∣
λ −1 0 0
α λ 0 0
0 0 λ −ϵ
0 0 ϵβ λ

∣∣∣∣∣∣∣∣
= λ

∣∣∣∣∣∣
λ 0 0
0 λ −ϵ
0 ϵβ λ

∣∣∣∣∣∣+
∣∣∣∣∣∣
α 0 0
0 λ −ϵ
0 ϵβ λ

∣∣∣∣∣∣
=
(
λ2 + α

) ∣∣∣∣ λ −ϵ
ϵβ λ

∣∣∣∣
=
(
λ2 + α

) (
λ2 + ϵ2β

)
Setting the characteristic polynomial to zero gives us the two eigenvalues λ1± = ±

√
−α and

λ2± = ±ϵ
√
−β. We notice that λ1±, λ2± ∈ iR holds, because we know that α, β > 0 holds.

Evaluating

(
0, 0,

β

µ
, 0

)
in the Jacobian gives us the following matrix

J

(
0, 0,

β

µ
, 0

)
=


0 1 0 0

a
β

µ
− α 0 0 0

0 0 0 ϵ

ϵb
β

µ
0 ϵ(2β − β) 0

 =


0 1 0 0

a
β

µ
− α 0 0 0

0 0 0 ϵ

ϵb
β

µ
0 ϵβ 0

 .

19



We want to determine its eigenvalues, to do this we first determine the characteristic polynomial.

det

(
λI − J

(
0, 0,

β

µ
, 0

))
=

∣∣∣∣∣∣∣∣∣∣∣

λ −1 0 0

−aβ
µ
+ α λ 0 0

0 0 λ −ϵ

ϵb
−β
µ

0 −ϵβ λ

∣∣∣∣∣∣∣∣∣∣∣
= λ

∣∣∣∣∣∣
λ 0 0
0 λ −ϵ
0 −ϵβ λ

∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣
−aβ

µ
+ α 0 0

0 λ −ϵ

ϵb
−β
µ

−ϵβ λ

∣∣∣∣∣∣∣∣∣
=

(
λ2 − a

β

µ
+ α

) ∣∣∣∣ λ −ϵ
−ϵβ λ

∣∣∣∣
=

(
λ2 − a

β

µ
+ α

)(
λ2 − ϵ2β

)
Setting this expression to zero gives eigenvalues λ1± = ±

√
aβ

µ
− α and λ2± = ±ϵ

√
β. We know

that
α

a
<
β

µ
holds, thus we can conclude that λ1− < 0 < λ1+ must hold. We have also shown

that β > 0 holds, hence we know λ2− < 0 < λ2+ must hold.

We continue like this for the other two critical values. Evaluating (α, 0, 0, 0) in J(f, p, s, q) gives

J(α, 0, 0, 0) =


0 1 0 0

2α− α 0 aα 0
0 0 0 ϵ
0 0 ϵ(bα− β) 0

 =


0 1 0 0
α 0 aα 0
0 0 0 ϵ
0 0 ϵ(bα− β) 0

 .

Then we determine the characteristic polynomial.

det (λI − J (0, 0, 0, 0)) =

∣∣∣∣∣∣∣∣
λ −1 0 0
−α λ −aα 0
0 0 λ −ϵ
0 0 +ϵ(−bα+ β) λ

∣∣∣∣∣∣∣∣
= λ

∣∣∣∣∣∣
λ −aα 0
0 λ −ϵ
0 +ϵ(−bα+ β) λ

∣∣∣∣∣∣+
∣∣∣∣∣∣
−α −aα 0
0 λ −ϵ
0 +ϵ(−bα+ β) λ

∣∣∣∣∣∣
= (λ2 − α)

∣∣∣∣ λ −ϵ
+ϵ(−bα+ β) λ

∣∣∣∣− aα(λ+ 1)

∣∣∣∣0 −ϵ
0 λ

∣∣∣∣
= (λ2 − α)(λ2 + ϵ2(−bα+ β))

So we find the eigenvalues λ1± = ±
√
α andλ2± = ±ϵ

√
bα− β. We can directly see that

λ1− < 0 < λ1+ holds. The same holds for the other eigenvalues λ2− < 0 < λ2+, because we have

already shown that
β

b
< α holds.

Lastly we want to determine the character of critical point (f∗, 0, s∗, 0). the evaluated Jacobian
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in this point is the following.

J(f∗, 0, s∗, 0) =


0 1 0 0

2f∗ + as∗ − α 0 af∗ 0
0 0 0 ϵ
ϵbs∗ 0 ϵ(2µs∗ + bf∗ − β) 0

 =


0 1 0 0
f∗ 0 af∗ 0
0 0 0 ϵ
ϵbs∗ 0 ϵµs∗ 0


The last equality holds because equalities f∗ + as∗ = α and bf∗ + µs∗ = β hold for this critical
point. Now we can determine the characteristic polynomial of this evaluated Jacobian.

det (λI − J (f∗, 0, s∗, 0)) =

∣∣∣∣∣∣∣∣
λ −1 0 0

−f∗ λ −af∗ 0
0 0 λ −ϵ

−ϵbs∗ 0 −ϵµs∗ λ

∣∣∣∣∣∣∣∣
= λ

∣∣∣∣∣∣
λ −af∗ 0
0 λ −ϵ
0 −ϵµs∗ λ

∣∣∣∣∣∣+
∣∣∣∣∣∣
−f∗ −af∗ 0
0 λ −ϵ

−ϵbs∗ −ϵµs∗ λ

∣∣∣∣∣∣
= (λ2 − f∗)

∣∣∣∣ λ −ϵ
−ϵµs∗ λ

∣∣∣∣+ af∗λ

∣∣∣∣0 −ϵ
0 λ

∣∣∣∣+ af∗
∣∣∣∣ 0 −ϵ
−ϵbs∗ λ

∣∣∣∣
= (λ2 − f∗)(λ2 − ϵ2µs∗)− ϵ2abf∗s∗

= λ4 − (f∗ + ϵ2µs∗)λ2 + ϵ2f∗s∗(µ− ab)

If we define σ = λ2, we get the following quadratic expression for the characteristic polynomial.

det (λI − J (f∗, 0, s∗, 0)) = σ2 − (f∗ + ϵ2µs∗)σ + ϵ2f∗s∗(µ− ab)

Setting this to zero gives us the following expression for σ

σ± =
1

2
(f∗ + ϵ2µs∗)± 1

2

√
(f∗ + ϵ2µs∗)2 − 4ϵ2f∗s∗(µ− ab)

If we substitute λ back into the expression and take the square roots of the left- and the right
hand side we get the following four eigenvalues

λ+± = ±
√

1

2
(f∗ + ϵ2µs∗) +

1

2

√
(f∗ + ϵ2µs∗)2 − 4ϵ2f∗s∗(µ− ab)

λ−± = ±
√

1

2
(f∗ + ϵ2µs∗)− 1

2

√
(f∗ + ϵ2µs∗)2 − 4ϵ2f∗s∗(µ− ab).

We have already shown that µ > ab holds, hence we can conclude λ±+ > 0, λ±− < 0.

In this four dimensional space we are looking for a heteroclinic connection from (α, 0, 0, 0) to(
0, 0,

β

µ
, 0

)
. This connection is a front connection between the stable background states. These

background states are the pure trees and pure grass states. The corresponding critical points

for system 2.8 are (α, 0) and

(
β

µ
, 0

)
. We have already determined that both (α, 0, 0, 0) and(

0, 0,
β

µ
, 0

)
have two positive- and negative eigenvalues for system (2.5). Hence the stable- and

unstable manifold of both of these critical points are two dimensional. We have also shown that
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(α, 0) and

(
β

µ
, 0

)
are stable as solution of the reaction ODE (2.1). Then we can apply lemma

(2.2.2), which says that (α, 0) and

(
β

µ
, 0

)
is stable as solution of (2.3). Hence we can talk about

a bi-stable front connection.
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Chapter 4

Constructing traveling fronts

The analysis of a system of four ordinary differential equations can be very complex. That is why
we want to apply geometric singular perturbation theory. System (2.7) has a clear separation in
spatial scales and is of the form (2.9). The functions in (2.9) are defined as follows in our case

g(u,v, ϵ) = g(f, p, s, q) =

(
p

−cp+ f(f + as− α)

)
h(u,v, ϵ) = h(f, p, s, q) =

(
q

−ϵcq + s(bf + µs− β)

)
,

(4.1)

with u = (f, p)⊺, v = (s, q)⊺. The functions f and g must be at least C1, which holds for functions
(4.1).

System (2.9) is called the fast system and ξ is called the fast scale. To get the slow system,
we introduce a change the slow scale χ = ϵξ. In order to rewrite this system in terms of χ

we determine the derivatives with respect to χ. Using the chain rule we get
du

dξ
= ϵ

du

dχ
and

dv

dξ
= ϵ

dv

dχ
, thus the slow system becomes



ϵ
df

dχ
= p

ϵ
dp

dχ
= −cp+ f (f − α+ as)

ds

dχ
= q

dq

dχ
= −ϵcq + s (µs− β + bf) .

(4.2)
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4.1 The fast and slow limits

Now we can determine the fast and the slow limits (2.11) and (2.12). Taking the limit ϵ→ 0 of
(2.7) gives the following fast limit

df

dξ
= p

dp

dξ
= −cp+ f (f − α+ as)

ds

dξ
= 0

dq

dξ
= 0.

(4.3)

We can determine the slow limit by taking ϵ→ 0 of system (4.2)

0 = p

0 = −cp+ f(f + as− α)
ds

dχ
= q

dq

dχ
= s(bf + µs− β).

(4.4)

These limits are approximations for the full system where ϵ > 0 holds. These limit systems are
only two dimensional instead of four, so we can analyse them in more detail. But the disadvantage
is that both systems miss information about two of the equations. We use geometric singular
perturbation theory to analyse and combine the dynamics of systems (4.3) and (4.4), which gives
an insight in the dynamics of the full system (2.7).

The reduced system (4.4) is a dynamical system on the sets

M = {(f, p, s, q) ∈ R4 : p = 0, f(f + as− α) = 0, s ≥ 0, q ∈ R}.

In the rest of this thesis we refer to M as critical manifolds. In section 4.2 we define these
manifolds explicitly.

4.2 Fast sub-system

Note that
ds

dξ
= 0 holds in the fast limit (4.3). Thus we know that s(ξ) must be a constant

function s(ξ) ≡ s0. So we can write down the following system
df

dξ
= p, =: C(f, p)

dp

dξ
= −cp+ f(f + as0 − α) =: D(f, p).

(4.5)

This describes system (4.3) together with
ds

dξ
= 0 and

dq

dξ
= 0. We are going to analyse system

(4.5) to learn more about the fast dynamics.
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4.2.1 Critical points and their character

We want to determine the critical points of system (4.5), in order to do this we first determine its
nullclines. C(f, p) = 0 gives p = 0 and D(f, p) = 0 together with p = 0 gives f = 0 or f = α−as0.
Combining these equations gives us two critical points, (0, 0) and (α− as0, 0). This also gives us
the following critical manifolds for system system (2.7) with ϵ→ 0.

M0
0 = {(f, p, s, q) | f = 0, p = 0, s ≥ 0, q ∈ R},

M+
0 = {(f, p, s, q) | f = α− as, p = 0, s ≥ 0, q ∈ R}.

(4.6)

We want to look at linearised the system. So first we determine the Jacobi matrix J(f, p)

J(f, p) =


∂C

∂f

∂C

∂p
∂D

∂f

∂D

∂p

 =

(
0 1

2f + as0 − α −c

)
.

We start by evaluating the Jacobian in the trivial critical point

J(0, 0) =

(
0 1

as0 − α −c

)
. (4.7)

We determine the characteristic polynomial in order to find the eigenvalues. We determine the
characteristic polynomial in the same way as we did in section 3 a couple of times. For this
evaluated Jacobian it’s equal to λ2 + cλ + α − as0. Setting this expression to zero gives us

two eigenvalues λ± =
1

2

(
−c±

√
c2 − 4(α− as0)

)
. We remark that (0, 0) can have different

characters depending on the parameter choices. We have a few different cases. For c2 > 4(α−as0)
the expression in the square root is positive, otherwise it is negative. We get the following
possibilities 

If s0 >
α

a
λ− < 0 < λ+, so (0, 0) is a saddle,

If s0 <
α

a
c > 0 gives λ± < 0, so (0, 0) is a stable node,

c < 0 gives λ± > 0, so (0, 0) is an unstable node,

c = 0 gives λ± ∈ iR, so (0, 0) is a center.

If c2 < 4(α−as0) holds, the expression in the square root is negative, therefore we have a nonzero
imaginary part. So when c > 0 (0, 0) is a stable focus and when c < 0 (0, 0) is an unstable focus.

We remark that only for s0 >
α

a
the manifold M0

0 is normally hyperbolic according to definition

(2.3.1). So only where s0 >
α

a
holds on M0

0 we can apply Fenichel’s theorems. Otherwise we

cannot state anything about the manifold M0
ϵ , where 0 < ϵ≪ 1 holds.

Evaluating Jacobi matrix in the other critical point (α− as0, 0) gives us this matrix

J(α− as0, 0) =

(
0 1

2(α− as0) + as0 − α −c

)
=

(
0 1

α− as0 −c

)
The characteristic polynomial of this matrix is equal to λ2+cλ−α+as0. Which gives us eigenvalues

λ± =
1

2

(
−c±

√
c2 − 4(−α+ as0)

)
. For this critical point we can also expect different characters
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depending on the parameter values. For c2 > 4(−α+ as0), the expression in the square root is
positive, so both eigenvalues on we have a nonzero imaginary part.


If s0 >

α

a
c > 0 gives λ± < 0, so (α− as0, 0) is a stable node,

c < 0 gives λ± > 0, so (α− as0, 0) is an unstable node,

c = 0 gives λ± ∈ iR, so (α− as0, 0) is a center.

If s0 <
α

a
λ− < 0 < λ+, so (α− as0, 0) is a saddle,

If c2 < 4(−α + as0), then we have a nonzero imaginary part. So when c > 0, (α− as0, 0) is a
stable focus and when c < 0, (α− as0, 0) is an unstable focus.

Now we would like to determine where normal hyperbolicity on M+
0 holds. Only when s0 <

α

a
the eigenvalues of the evaluated Jacobian are bounded away from the imaginary axis. Hence

definition (2.3.1) says that M+
0 is only normally hyperbolic for s0 <

α

a
. Hence it is only relevant

to look at s0 <
α

a
on M+

0 .

4.2.2 Hamiltonian

We remark that (4.5) is an Hamiltonian system if we take the wavespeed c equal to zero. Next
we state the definition of a Hamiltonian system.

Definition 4.2.1. (Hamiltonian) A Hamiltonian system is a system of 2n ordinary differential
equations of the form 

dp

dt
= −∂H

∂q
dq

dt
=
∂H

∂p

(4.8)

where H = H(t,p,q), called the Hamiltonian, is a smooth real-valued function defined for
(t,p,q) ∈ O, an open set in R1 × Rn × Rn.

In order to determine the possible homoclinic and heteroclinic orbits of (4.5), we look at the
Hamiltonian of our integrable system. We know that if we take c = 0, this system is of the form
(4.8), so its Hamiltonian 

df

dξ
= p = −∂H

∂p
dp

dξ
= f(f + as0 − α) =

∂H

∂f
.

(4.9)

We can determineH(f, p) itself by integrating over both equations in (4.9). We start by integrating
over the first equation

H(f, p) =

∫
−p dp = −1

2
p2 + φ(f),

where φ is a real valued function that depends on f . We repeat this for the second equation

H(f, p) =

∫
f2 + f(as0 − α) df =

1

3
f3 +

1

2
f2(as0 − α) + ψ(p),
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where ψ is a real valued function that depends on p. If we combine these two expressions by

taking φ(f) =
1

3
f3 +

1

2
f2(as0 −α) and ψ(p) = −1

2
p2, we find the Hamiltonian H(f, p) of system

(4.9)

H(f, p) =
1

3
f3 +

1

2
f2(as0 − α)− 1

2
p2. (4.10)

We want to find the homoclinic orbits for this system. In the case s0 >
α

a
we have that (0, 0) is a

saddle and that (α− as0, 0) is a center point. So in that case we have a homoclinic orbit from
(0, 0) to (0, 0) that goes around (α− as0, 0). We want to find the equation of this orbit by using
the Hamiltonian. The orbit goes through (0, 0), so we want to determine the value of H(0, 0).
Easily we see that H(0, 0) = 0 holds. Thus the following equation must hold for the homoclinic

orbit γ(x) = (f̂(x), p̂(x)):
1

3
f̂3 +

1

2
f̂2(as0 − α)− 1

2
p̂2 = 0

We know that p̂ =
˙̂
f holds, substituting this gives us:

1

3
f̂3 +

1

2
f̂2(as0 − α)− 1

2
˙̂
f2 = 0

We remark that this is a first order ordinary differential equation, if we solve it we get the solution

f̂(x) = −3

2
(as0 − α)sech2

(
1

2

√
as0 − αx−

√
3

2

√
as0 − αk

)
,

with k ∈ R a constant that we can determine. Because the orbit f̂ goes to zero for infinity
and minus infinity, lim

x→±∞
f̂(x) = 0, we can conclude that k = 0 must hold. Hence we find the

following expression for the homoclinic orbit

f̂(x) = −3

2
(as0 − α)sech2

(
1

2

√
as0 − αx

)
,

p̂(x) =
˙̂
f(x)

=
3

2
(as0 − α)

3

2 tanh

(
1

2

√
as0 − αx

)
sech2

(
1

2

√
as0 − αx

)
.

We want to do the same for the case s0 >
α

a
. Then we have that (α− as0, 0) is a saddle and that

(0, 0) is a center point. So in that case we have a homoclinic orbit from (α− as0, 0) to (α− as0, 0)
that goes around (0, 0). In order to find this orbit, we again use the Hamiltonian. We want to
find the level set of H(f, p) that goes trough (α − as0), so we want to determine the value of
H(α− as0, 0).

H(α− as0, 0) =
1

3
(α− as0)

3 +
1

2
(α− as0)

2(as0 − α)− 1

2
(0)2

=
1

3
(α− as0)

3 − 1

2
(α− as0)

3

= −1

6
(α− as0)

3

=
1

6
(as0 − α)3 (4.11)
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Setting H(f, p) equal to the constant (4.11) that we found gives us the equation for the homoclinic
orbit γ∗(x) = (f(x), p(x))

1

3
f
3
+

1

2
f
2
(as0 − α)− 1

2
p2 =

1

6
(as0 − α)3.

We know that p = ḟ hods because of system (4.5). We can find an implicit expression of this
homoclinic orbit by substituting this.

1

3
f
3
+

1

2
f
2
(as0 − α)− 1

2
ḟ
2

=
1

6
(as0 − α)3.

4.2.3 Phase plane

We now know the characters of the critical points and we have determined the Hamiltonian. So
we are able to plot the phase planes of the system (4.5) for different choices of our parameters.
We first give another few definitions from the field of dynamical systems.

Definition 4.2.2. (Invariant set) A set Λ is invariant under a flow φt if φt(Λ) = Λ for all t; that
is, for each x ∈ Λ, φt(x) ∈ Λ for any t (Meiss, 2017).

Definition 4.2.3. (Heteroclinic orbit) An orbit Γ is a heteroclinic orbit from A to B if each
x ∈ Γ is backward asymptotic to an invariant set A and forward asymptotic to an invariant set B
(Meiss, 2017).

Definition 4.2.4. (Homoclinic orbit) An orbit Γ is a homoclinic orbit to A if each x ∈ Γ is both
forward and backward asymptotic to the same invariant set A (Meiss, 2017).

If we take c = 0 and s0 <
α

a
, then we know that (0, 0) is a center and (α− as0, 0) is a saddle. In

figure 4.1 we plot the phase plane to validate our analytical computations.
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Figure 4.1: Phase planes for system (4.5).

The pink and the orange nullclines represents the values for which
df

dξ
= 0 and

dp

dξ
= 0 holds

respectively.

We note that there is a homoclinic orbit from the saddle to itself. The homoclinic orbit goes
around the other critical point, which is a center. Around the center point we see infinitely many
periodic orbits. The green orbit describes the stable and unstable manifolds of the saddle. Which
are defined below.

Definition 4.2.5. (Stable manifold) A stable manifold of an invariant set Λ as the set of points
forward asymptotic to Λ (Meiss, 2017):

W s(Λ) =
{
x /∈ Λ : lim

t→∞
ρ (φt(x),Λ = 0)

}
.

Definition 4.2.6. (Unstable manifold) An unstable manifold of an invariant set Λ as the set of
points backward asymptotic to Λ (Meiss, 2017):

Wu(Λ) =

{
x /∈ Λ : lim

t→−∞
ρ (φt(x),Λ) = 0

}
,

where ρ(φt(x),Λ) is the distance between φt(x) and Λ.

4.3 Slow system on M0
0

We have determined the manifolds M0
0 and M+

0 . Now we would like to determine the flow on
both of these manifolds. We first look at M0

0, on which we have f = p = 0. We substitute these
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values of f and p into (4.4), which gives the following system
ds

dχ
= q =: E(s, q)

dq

dχ
= s(µs− β) =: G(s, q).

(4.12)

4.3.1 Critical points and their character

Just like for the fast system we want to determine the critical points and their character of system
(4.12). We first determine the nullclines. Setting the first equation of (4.12) equal to zero gives

q = 0 and setting the second equation equal to zero gives s = 0 or s =
β

µ
. Hence we know the

critical points are equal to (0, 0) and

(
β

µ
, 0

)
. In order to determine the character of the critical

points we linearise the system. We first determine the Jacobian J(s, q)

J(s, q) =


∂E

∂s

∂E

∂q
∂G

∂s

∂G

∂q

 =

(
0 1

2µs− β 0

)
.

We evaluate this matrix in (0, 0)

J(0, 0) =

(
0 1
−β 0

)
.

The characteristic polynomial is equal to λ2 + β. We can determine the eigenvalues of the
evaluated Jacobian by setting this expression to zero. Then we get λ± = ±

√
−β We know that

β > 0 holds, so we can conclude λ± ∈ iR. So for all possible parameter values we can conclude
that (0, 0) is a center.

We repeat this for

(
β

µ
, 0

)
, the Jacobian evaluated in this critical point is equal to

J

(
β

µ
, 0

)
=

(
0 1

2β − β 0

)
=

(
0 1
β 0

)
.

The characteristic polynomial is equal to λ2−β, which gives the eigenvalues λ± = ±
√
β. Because

β is positive we know that λ− < 0 < λ+ holds for the eigenvalues, again for all possible parameter

values. So
(

β
µ , 0
)
is a saddle.

4.3.2 Phase plane

Now that we know the characters of the critical points, we plot the phase plane.
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Figure 4.2: Phase planes for system (4.12).

The pink and the orange nullclines represents the values for which
ds

dχ
= 0 and

dq

dχ
= 0 holds

respectively.

We know that

(
β

µ
, 0

)
is a saddle, with stable and unstable manifolds. We plotted these as the

green lines in figure 4.2. In this phase plane we took s >
α

a
, because that is the only part of M0

0

that is normally hyperbolic. We also note that it is necessary that the condition
α

a
<
β

µ
holds.

Otherwise
β

µ
would not be normally hyperbolic and then we cannot find a front solution using

Fenichel’s theorems.

We can see that this phase plane contains a homoclinic orbit, this orbit goes form

(
β

µ
, 0

)
to

itself around the trivial critical point (0, 0). This homoclinic orbit is a subset of the stable and

unstable manifolds of

(
β

µ
, 0

)
. We determine an expression for this orbit implicitly in the next

subsection using the Hamiltonian.

4.3.3 Hamiltonian

We remark that (4.12) is a Hamiltonian system, because it is of the form (4.2.1)
ds

dχ
= q = −∂H

∂q
dq

dχ
= s(µs− β) =

∂H

∂s

(4.13)
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We first integrate the first equation over q, then we get the following expression for H(s, q)

H(s, q) =

∫
−q dq = −1

2
q2 + φ(s),

where φ is a real valued function that depends on s. Then we do the same for the second equation,
but we integrate over the variable s

H(s, q) =

∫
s(−β + µs) ds = −1

2
βs2 +

1

3
µs3 + ψ(q),

where ψ is a real valued function that depends on q. We can combining these two expressions for

H(s, q) by takingφ(s) = −1

2
βs2 +

1

3
µs3 and ψ(q) = −1

2
q2. Substituting these functions gives us

the Hamiltonian function

H(s, q) = −1

2
βs2 +

1

3
µs3 − 1

2
q2 (4.14)

In this invariant plane we have two critical points (0, 0), which is a center, and

(
β

µ
, 0

)
, which is

a saddle. We want to find the homoclinic orbit that we saw in figure 4.2. In order to find an
expression of this homoclinic orbit, we determine the Hamiltonian. Because the level sets of the

Hamiltonian are the solutions to the system and the fact homoclinic orbit goes through

(
β

µ
, 0

)
,

we evaluate the Hamiltonian in this point

H

(
β

µ
, 0

)
=

1

2

(
β

µ

)2

(−β) + 1

3
µ

(
β

µ

)3

=
1

3

β3

µ2
− 1

2

β3

µ2

= −1

6

β3

µ2
.

Setting the Hamiltonian equal to this value gives us the equation that describes the homoclinic
orbit that we are looking for

−1

2
βs2 +

1

3
µs3 − 1

2
q2 = −1

6

β3

µ2

⇒ q2 = −2

3
µ

(
s− β

µ

)2(
s+

β

2µ

)
(4.15)

4.4 Slow system on M+
0

Now we want to learn more about the flow on the other manifold. So we look at M+
0 , on which

f = α− as holds. Substituting this value of f into the slow subsystem gives us the system
ds

dχ
= q =: I(s, q)

dq

dχ
= s(µs− β + b(α− as)) =: J(s, q).

(4.16)
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4.4.1 Critical points and their character

For this system we also determine the critical points, in order to do that we determine the
nullclines. I(s, q) = 0 gives q = 0 and setting J(s, q) to zero together with q = 0 gives us s = 0 or

s =
β − bα

µ− ab
. Hence we know the critical points are equal to (0, 0) and

(
β − bα

µ− ab
, 0

)
. The next

step in order to determine the characters of these critical points is to linearise and determine the
Jacobian.

J(s, q) =


∂I

∂s

∂I

∂q
∂J

∂s

∂J

∂q

 =

(
0 1

2µs− β + b(1− 2as−m) 0

)

Evaluating (0, 0) into the Jacobian gives us

J(0, 0) =

(
0 1

−β + bα 0

)
The characteristic polynomial is equal to λ2 + (β − bα), setting it to zero gives us the eigenvalues
λ± = ±

√
−β + bα. We can conclude that (0, 0) is a saddle because of the stability condition

β

b
< α we already found in section 3.

Not we evaluate the Jacobian into

(
β − bα

µ− ab
, 0

)
, which gives

J

(
β − bα

µ− ab
, 0

)
=

 0 1

2µ
β − bα

µ− ab
− β + b

(
α− 2a

β − bα

µ− ab

)
0


=

 0 1

(2(µ− ab)
β − bα

µ− ab
− β + bα) 0


=

(
0 1

(2 (β − bα)− β + bα) 0

)
=

(
0 1

β + bα 0

)
This matrix has characteristic polynomial λ2 − β − bα, which implies that the eigenvalues are

equal to λ± = ±
√
β + bα. Using the condition

β

b
< α again gives λ± ∈ R. This implies that(

β − bα

µ− ab
, 0

)
is a center.

Because
β

b
< α holds, the numerator of

β − bα

µ− ab
is negative. In subsection 3.1.1 we have shown

hat µ < ab hods, which implies that µ− ab is negative. So the s-component of the critical point(
β − bα

µ− ab
, 0

)
is positive.

4.4.2 Phase planes

Now that we have determined the fixed points and their characters of system (4.16), we give the
phase planes of the system for two different parameter choices.
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Figure 4.3: Phase planes for system (4.16).

The pink and the orange nullclines represents the values for which
ds

dχ
= 0 and

dq

dχ
= 0 holds

respectively.

In this figure the plotted green lines are the stable and unstable manifolds of the saddle point
(0, 0). There exists a homoclinic orbit that goes from (0, 0) to itself. In the next subsection we
determine an implicit expression for the homoclinic orbit in figure 4.3. We are interested in the
homoclinic orbit, because eventually we want to find a heteroclinic orbit from (α− as0, 0) on M

0
ϵ

to (0, 0) on M+
ϵ .

4.4.3 Hamiltonian

We remark that the system on the manifold M+
0 (4.16) is Hamiltonian, because it is of the form

(4.2.1) 
ds

dχ
= q = −∂H

∂q
dq

dχ
= s(µs− β + b(α− as)) =

∂H

∂s
.

(4.17)

Integrating the first equation over q gives us the first expression for H(s, q)

H(s, q) =

∫
−q dq = −1

2
q2 + φ(s),
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where φ(s) is a real valued function dependent on s. Integrating the second equation over s gives
the other expression that we need in order to determine H(s, q).

H(s, q) =

∫
s(−β + b(α− as) + µs) ds

=

∫
s(−β + bα) + s2(µ− ab) ds

=
1

2
s2(−β + bα) +

1

3
s3(µ− ab) + ψ(q)

Combining these two expressions for H(s, q) we get:

H(s, q) =
1

2
s2(−β + bα) +

1

3
s3(µ− ab)− 1

2
q2 (4.18)

We want to choose the parameter values in such a way that
β

b
< α holds. Because then both

critical points lay in the half-plane s ≥ 0, q ∈ R and then the homoclinic orbit also lies in this
plane. Hence this choice is ecologically relevant. In this invariant plane we have two critical points

(0, 0), which is a saddle, and

(
β − bα

µ− ab
, 0

)
, which is a center. We want to find an expression of tje

homoclinic orbit that goes from (0, 0) around

(
β − bα

µ− ab
, 0

)
back to itself. We can determine this

expression by using the Hamiltonian. Because the level sets of the Hamiltonian are the solutions
to the system. The homoclinic orbit goes through (0, 0), we evaluate the Hamiltonian in this
saddle point

H (0, 0) =
1

2
02(−β + bα) +

1

3
03(µ− ab)− 1

2
02.

= 0

So the following equation describes the homoclinic orbit that we are looking for

1

2
s2(−β + bα) +

1

3
s3(µ− ab)− 1

2
q2 = 0. (4.19)

Now we know a lot about system (2.5) for ϵ→ 0, we can use this together with geometric singular
perturbation theory to learn more about the dynamics of the system for 0 < ϵ≪ 1
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4.5 Heteroclinic connection in the 4D space

4.5.1 Intersection of the manifolds

Figure 4.4: Intersection of the manifolds M0
ϵ and M+

ϵ , with the heteroclinic orbit we want to
find.

We are looking for the heteroclinic orbit in figure 4.4, which consists parts of the homoclinic
orbits on M0

ϵ and M+
ϵ . This heteroclinic orbit connects the critical point (α, 0, 0, 0), which is the

pure trees state, to the critical point

(
0, 0,

β

µ
, 0

)
. This last point is the pure grass state.

are the pure trees and pure grass state

This orbit represents the front in the savanna-forest transition zone. At this front the forest
biomass starts at value α and then decreases to 0, and the front that represents the savanna

biomass goes from 0 to
β

µ
. We already determined that the two manifolds intersect in f = 0, p = 0

and s =
α

a
. We want that the homoclinic orbits in both the manifolds intersect in this line.

4.5.2 Finding condition for heteroclinic connection using Hamiltonians

So we found two homoclinic orbits:
1

2
s2(−β) + 1

3
µs3 − 1

2
q2 = −1

6

β3

µ2
on M0

ϵ ,

1

2
s2(−β + bα) +

1

3
s3(µ− ab)− 1

2
q2 = 0 on M+

ϵ

(4.20)
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We can rewrite these into:
1

2
q2 =

1

2
s2(−β) + 1

3
µs3 +

1

6

β3

µ2
on M0

ϵ ,

1

2
q2 =

1

2
s2(−β + bα) +

1

3
s3(µ− ab) on M+

ϵ

(4.21)

We know that for in intersection of these manifolds s =
α

a
must hold. Substituting this gives:

1

2
q2 =

1

2

(α
a

)2
(−β) + 1

3
µ
(α
a

)3
+

1

6

β3

µ2
on M0

ϵ ,

1

2
q2 =

1

2

(α
a

)2
(−β + bα) +

1

3

(α
a

)3
(µ− ab) on M+

ϵ

(4.22)

Now we can combine these equations:

1

2

(α
a

)2
(−β) + 1

3
µ
(α
a

)3
+

1

6

β3

µ2
=

1

2

(α
a

)2
(−β + bα) +

1

3

(α
a

)3
(µ− ab)

⇒ 3
(α
a

)2
(−β) + 2µ

(α
a

)3
+
β3

µ2
= 3

(α
a

)2
(−β + bα) + 2

(α
a

)3
(µ− ab)

⇒ β3

µ2
= 3

(α
a

)2
bα− 2ab

(α
a

)3
⇒ β3

µ2
= 3b

α3

a2
− 2b

α3

a2

⇒ β3

µ2
= b

α3

a2

⇒ a2β3 = bµ2α3 (4.23)

When parameters are chosen in such a way that this condition holds, there exists a heteroclinic

orbit from (α, 0, 0, 0) to

(
0, 0,

β

µ
, 0

)
with c = 0. So we can conclude that this condition gives a

standing front. We will confirm this numerically in section 4.6. For finding this heteroclinic orbit
that we took ϵ = 0. Because this orbit lies on the normally hyperbolic parts M0

0 and M+
0 we can

use Fenichel’s first and second theorem. Hence we know that this singular orbit persists for ϵ ̸= 0.

4.5.3 Heteroclinic connection for c ̸= 0

We would also like to see if we can find such a connection for c ̸= 0. Because there is no c in the
slow limit, we look at the slow system without taking ϵ→ 0.

ds

dχ
= q

dq

dχ
= −ϵcq + s (µs− β + bf) .

(4.24)

We want to find a heteroclinic connection from (α, 0, 0, 0), that lies on M+
ϵ , to

(
0, 0,

β

µ
, 0

)
on

M0
ϵ . This orbit goes leaves from M+

ϵ to M0
ϵ at s =

α

a
. On M0

ϵ we know that f = 0 holds.

We have already determined the Hamiltonian (4.14) for this system. We implement this in the
Matlab code A.4.1. We want to plot this phase plane together with the orbit on M+

ϵ from (0, 0),
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which is the critical value (α, 0, 0, 0) in the 4D space. On M+
ϵ we have f = α − as. For this

system we use the Matlab function ode45 (MATLAB, 2010). This function integrates a system

of differential equations of the form
df

dt
= f(t, y) from t0 to tf with initial condition y0. We

implemented the equations of (4.24) together with f = α− as in the Matlab code in A.4.1.1. To
use ode45 we first define the parameters and we chose ϵ = 0.01. Then we define the start the
begin- and end time by tspan=[0 5]. Lastly we define the initial condition y0=[0 0.001]. So we
took y0 = (s0, q0) = (0, 0.001), this initial condition lies really close to (0, 0). We chose this initial
condition because then we can see how the system behaves around (0, 0). Then we use the line
[t,y] = ode45(@(t,y) eqns2(y,P), tspan, y0) to find the solution. We also plot the value

s =
α

a
. Then we vary the value of c until the orbit from (0, 0) on M+

ϵ intersects with

(
β

µ
, 0

)
on

M0
0 in s =

α

a
. We have found this connection in figure 4.5 for the value c = −18.

Figure 4.5: Intersection of the manifolds M0
ϵ and M+

ϵ at s = α
a for parameter values

α = 0.7, a = 2, β = 0.9, µ = 1.1, b = 6, ϵ = 0.01, c = −18.

So also for c ̸= 0 we have found a heteroclinic connection that represents a bi-stable front solution.

4.6 Numerical simulations

4.6.1 Travelling front

We want to reproduce our analytical findings. We have introduced a traveling wave solution
to system (2.3). Then we took ϵ = 0 and provided a leading order analysis, which resulted in

finding a condition for a heteroclinic connection from (α, 0) to

(
0,
β

µ

)
. Now we would like to

take c ̸= 0 again and construct the travelling wave solution numerically. If we look at the forest
biomass f this heteroclinic connection goes from α to zero, so this gives a traveling front. The

heteroclinic connection goes from zero to
β

µ
for the savanna biomass s, which gives a second
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traveling front. We used the MATLAB function pdepe explained in section 2.4 to construct these
fronts numerically.

We determine the solution for 500 time steps, but we don’t have to plot them all to see what the
solution looks like. We plot the solution at time t = 10 and then add 100 each time we make plot,
we do this until t = T is reached. In these numerical simulations we chose ϵ2 = 0.005. In figure
4.6 our traveling front solution is plotted.

Figure 4.6: The green and the red plots represent the solutions of (2.8)
for parameter values α = 0.75, a = 1.12, β = 1, b = 4.5, µ = 1.25, ϵ = 0.005.

The front that describes the forest biomass decreases from α = 0.75 to α and the front that
describes the savanna biomass increases from 0 to β/µ = 0.8. We see that the forest is invading
the savanna for these parameter values. We can alter these values, then we see that the savanna
invades the forest in figure (4.7).
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(a) T = 500 (b) T = 80

Figure 4.7: The green and the red plots represent the solutions of (2.8)
for parameter values α = 0.5, a = 2.24, β = 2, b = 5.25, µ = 2.5, ϵ = 0.005.

What we notice in this plot is that the wavespeed c for these parameter values is way bigger than
for those in figure 4.6. So these fronts move faster. If we keep end time T = 500, the fronts leave
our domain after a certain value of t. We plotted the solutions for T = 500 in figure 4.7a. If
we want for the fronts to stay in our domain, we have to lower T . In figure 4.7b we plotted the
solutions for T = 150.

It is also interesting to zoom in. In figure 4.8 we have only plotted one solution at t = 10, zoomed
in from x = 30 to x = 70.

Figure 4.8: The green and the red plots represent the solutions of (2.8) at t = 10.
for parameter values α = 0.75, a = 1.12, β = 1, b = 4.5, µ = 1.25, ϵ = 0.005.

We can see that the forest front is sharper than the savanna front. So the savanna thins out more
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slowly than the forest in the savanna-forest transition zone.

4.6.2 Standing front

Now we want to use result (4.23) in our simulations. This is a condition for a heteroclinic

condition from (α, 0) to

(
0,
β

µ

)
when c = 0 holds. So if we use this condition in our simulations,

we must get a standing front, because the wavespeed c is equal to zero. We implemented this
condition by rewriting the equation to

b =
a2β3

µ2α3
.

Hence we change b in the parameter vector P in the Matlab code A.1.1. We keep the other
parameter values the same as in figure 4.6.

Figure 4.9: The green and the red plots represent the solutions of (2.8)

for parameter values α = 0.5, a = 2.24, β = 2, µ = 2.5, b =
a2β3

µ2α3
≈ 1.903, ϵ = 0.005.

In figure 4.9 we see that the fronts move way slower than in 4.6, where we did not use this
condition. But we see that the front does not completely stand still and hence wavespeed c is not
equal to zero. This is because we made an order ϵ error determining condition (4.23). We want
to change parameter value b a bit in order for c to be zero. First we just try to add a small term
to b and we see that this increases our wavespeed, which is the opposite of what we want. So we
want to decrease b a little. In Matlab code A.1.5 we write a for-loop that goes from i = −0.1 to
i = 0 with step size 0.01. Then we add this number i to b and plot the solution for t = T = 500
in figure 4.10.
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Figure 4.10: Solutions of (2.8) at T = 500 for different values of b on the interval [40, 60].
The dotted line is the solution for t = 20, we can use this to compare the other solutions with.

In this figure we also plotted the solution for t = 20 this is the dotted line. We choose the
value b+ i for which the solution is closest to the solution at t = 20. Because for this value of
b the front does barely shift after many timesteps. We can see that for the seventh iteration

i = −0.04 = O(ϵ), so we get b =
a2β3

µ2α3
− 0.04. If we plot the solutions from t = 1 until t = T

again for this new b we get the following figure 4.11.

Figure 4.11: The green and the red plots represent the solutions of (2.8)

for parameter values α = 0.5, a = 2.24, β = 2, µ = 2.5, b =
a2β3

µ2α3
− 0.04 ≈ 1.863, ϵ = 0.005.

We remark that this front does almost stand still, but still we see that the front moves a little. We
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can repeat this procedure again to choose b more precisely. We know that b must be approximately

b =
a2β3

µ2α3
− 0.04. Creating another for-loop that goes from i = −0.045 to i = −0.035 with step

size 0.001 will show us how we could choose b even more precisely. The solutions of system (2.8)

at time t = T for b =
a2β3

µ2α3
+ i are shown in figure 4.12.

Figure 4.12: Solutions of (2.8) at T = 500 for different values of b on the interval [49, 50]

for parameter values α = 0.5, a = 2.24, β = 2, µ = 2.5, b =
a2β3

µ2α3
− 0.043 ≈ 1.860, ϵ = 0.005.

All of these solutions get really close to a standing front, so it is hard to see which one gets
the closest to this front. That is why we zoomed in for this plot. Now we can see that the
solution for the third iteration i = −0.043 is the one with the lowest wavespeed. So we choose

b =
a2β3

µ2α3
− 0.043. If we plot the solutions again from t = 1 to t = T we get the following plot.
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Figure 4.13: The green and the red plots represent the solutions of (2.8)

for parameter values α = 0.5, a = 2.24, β = 2, µ = 2.5, b =
a2β3

µ2α3
− 0.043 ≈ 1.861.94, ϵ = 0.005.

The solutions in figure 4.13 seem to stand still. If we zoom in we see that the fronts move a little,

but we can conclude that if b ≈ a2β3

µ2α3
− 0.043 holds the wavespeed c is equal to zero.
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Chapter 5

A more realistic model: saturation
with respect to forest trees

In this section we add a saturation term to the first equation of the system
∂F

∂t
= F

(
α− F − aS

1 + σF

)
+∆F

∂S

∂t
= S (β − bF − µS) +

1

ϵ2
∆S,

(5.1)

where σ > 0 holds. This makes sure that the term
aSF

1 + σF
cannot keep growing. This term can

only get as big as its saturation value
as

σ
. Adding this term makes this system more ecologically

realistic than system (2.1). First we look at the non-spatial model, hence we take ∆F = ∆S = 0


df

dt
= f

(
α− f − as

1 + σf

)
=: K(f, s)

ds

dt
= s (β − bf − µs) =: L(f, s).

(5.2)

We remark that if we take σ equal to zero, we get system (2.1). We start the analysis of this
model by determining the nullclines. In order to determine these we set both equations to

zero. The first one gives f = 0 or s =
1

a
(α − f)(1 + σf) and the second one gives s = 0 or

s =
1

µ
(β − bf). We want to plot the nullclines. First we would like to know more about the

nullcline s =
1

a
(α− f)(1 + σf) where K(f, s) = 0 holds. This nullcline intersects the s−axis in

s =
α

a
. This function is a concave parabola, because the conditions σ, a > 0 makes sure that

−σ
a

is always negative. The value of f where this parabola reaches its maximum value can be

determined by computing the derivative and setting it to zero. First we define the function

s(f) =
1

a
(−σf2 + f(ασ − 1) + α),
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then we differentiate and set to zero

s′(fmax) = 0 ⇒ 1

a
(−2σfmax + ασ − 1) = 0

⇒ −2σfmax + ασ − 1 = 0

⇒ fmax =
1

2σ
(ασ − 1).

We look into two cases, we see that fmax is positive whenever ασ > 1 holds and it’s negative
when ασ < 1. Plotting these nullclines for these cases gives the following plots.

Figure 5.1: Nullclines for system (2.1) when ασ > 1 holds.

The pink and the orange nullclines represents the values for which
df

dt
= 0 and

ds

dt
= 0 holds

respectively

Figure 5.2: Nullclines for system (2.1) when ασ < 1 holds.

The pink and the orange nullclines represents the values for which
df

dt
= 0 and

ds

dt
= 0 holds

respectively

Now we that know for which f value the function s(f) reaches its maximum, therefore substituting
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this value of f into s(f) to determines its maximum value

smax = s

(
1

2σ
(ασ − 1)

)
=

1

a

(
α− 1

2σ
(ασ − 1)

)(
1 + σ

1

2σ
(ασ − 1)

)
=

1

a

(
2ασ − ασ + 1

2σ

)(
2 + ασ − 1

2

)
=

(ασ + 1)2

4aσ
.

So we cannot study this system for values of s larger than this maximum value. Hence we will
only look at s ≥ smax in our analysis. We would like to determine the critical values of system

(5.2). The trivial point (0, 0) is a critical value. If we combine s = 0 with s =
1

a
(α− f)(1 + σf)

we get f = α or f = − 1

σ
. This gives us critical values (α, 0) and

(
− 1

σ
, 0

)
. Now we want to

combine f = 0 together with s =
1

µ
(β − bf), which gives

(
0, βµ

)
. The last two critical points

can be found by combining s =
1

a
(α− f)(1 + σf) together with s =

1

µ
(β − bf). Just like for the

system in section 4 we would like to determine the characters of these critical values. In order to
do this we compute the Jacobian of system (5.2).

J(f, s) =


∂K

∂f

∂K

∂s
∂L

∂f

∂L

∂s

 =

α− 2f − as

(1 + σf)2
− af

1 + σf
−bs β − 2µs− bf

 .

For this bi-stable front to exist we require that both of these critical values are stable nodes. First
we determine the eigenvalues of the Jacobian evaluated in (α, 0).

J(α, 0) =

(
−α − aα

1 + σα
0 β − bα

)
.

Because this is a upper triangular matrix we can directly conclude that the eigenvalues are equal
to λ1 = −α < 0 and λ2 = β − bα. We require that λ2 < 0 holds. Hence we get the stability

condition
β

b
< α, which is the same condition as the one we found in section 3.

We repeat this for the critical value

(
0,
β

µ

)
.

J

(
0,
β

µ

)
=

α− aβ

µ
0

−bβ
µ

−β

 .

This gives eigenvalues λ1 = −β < 0 and λ2 = α− aβ

µ
. For the second eigenvalue to be negative,

we need αµ < aβ to hold. So we have found these two conditions that are necessary for the
bi-stable front to exist.

β

b
< α, αµ < aβ (5.3)
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5.1 Four dimensional system

Just like for the other system, we add diffusion terms to both equations.


∂F

∂t
= F (α− F )− a

SF

1 + σF
+∆F

∂S

∂t
= S (β − µS)− bFS +

1

ϵ2
∆S.

(5.4)

To apply the geometric singular perturbation theory we want to rewrite this system again to
system of four equations in the form (2.9). We are also looking for a wave solution, hence we
take F = F (x, t) = f(ξ) and S = S(x, t) = s(ξ), with ξ = x− ct. Then we get a two dimensional
system of second order ordinary differential equations

d2f

dξ2
= −c df

dξ
+ f

(
f − α+

as

1 + σf

)
d2s

dξ2
= ϵ2

[
−cds

dξ
+ s (µs− β + bf)

]
.

(5.5)

Which can be rewritten into this four dimensional system by taking p :=
df

dξ
and q :=

1

ϵ

ds

dξ

df

dξ
= p

dp

dξ
= −cp+ f

(
f − α+

as

1 + σf

)
ds

dξ
= ϵq

dq

dξ
= ϵ (−ϵcq + s (µs− β + bf)) .

(5.6)

The values (α, 0, 0, 0) and

(
0, 0,

β

µ
, 0

)
are critical values for system (6.2). It can be shown that

both of these critical values are saddles using the same analysis as before together with the
bistability conditions (5.3).

5.2 Fast and slow sub-system

Again we want to apply geometric singular perturbation theory. We can use this theory because
system (6.2) is of the form (2.10). We call this system the fast system. If we take the limit ϵ→ 0
we get the system 

df

dξ
= p

dp

dξ
= −cp+ f

(
f − α+

as

1 + σf

)
ds

dξ
= 0

dq

dξ
= 0.

(5.7)
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To get the slow system (2.12), we use a different scale, namely χ = ϵξ. We call this scale the slow
scale. Then we get the following slow system

ϵ
df

dχ
= p

ϵ
dp

dχ
= −cp+ f

(
f − α+

as

1 + σf

)
ds

dχ
= q

dq

dχ
= −ϵcq + s (µs− β + bf) .

(5.8)

We look at the ϵ→ 0 limit, then we get the following system:

0 = p

0 = −cp+ f

(
f − α+

as

1 + σf

)
ds

dχ
= q

dq

dχ
= s (µs− β + bf)

(5.9)

The fist equation gives p = 0, and the second one f = 0 or f −α+
as

1 + σf
= 0. This last equation

can be rewritten into s =
1

a
(α − f)(1 + σf). We can express this expression in terms of f by

doing the following analysis.

s =
1

a
(α− f)(1 + σf) ⇒ as = −σf2 − (1− ασ)f + α

⇒ σf2 + (1− ασ)f − α+ as = 0

⇒ f± =
ασ − 1±

√
(ασ − 1)2 + 4σ(α− as)

2σ

(5.10)

This implies that there are three critical points in the fast system, namely (0, 0), (f+, 0) and
(f−, 0). Now we want to define the critical manifolds. Because s describes the savanna biomass
density, this variable must be positive.

M0
0 = {f = 0, p = 0, s, q ≥ 0} ,

M+
0 =

{
f =

1

2σ

(
ασ − 1 +

√
(ασ − 1)2 + 4σ(α− as)

)
, p = 0, s ≥ 0, q

}
M−

0 =

{
f =

1

2σ

(
ασ − 1−

√
(ασ − 1)2 + 4σ(α− as)

)
, p = 0, s ≥ 0, q

}
We would like to determine whether these critical manifolds are normally hyperbolic, so that we

can use Fenichel’s theorems. We first state the fast subsystem. Because
ds

dξ
=
dq

dξ
= 0 holds, we

know that the value of s is constant for this system. Hence we take s ≡ s0.
df

dξ
= p

dp

dξ
= −cp+ f

(
f − α+

as0
1 + σf

) (5.11)
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The Jacobian of this system is equal to

J(f, p) =

(
0 1

2f − α+
as

(1 + σf)2
−c

)
(5.12)

We would like to determine the characters of the critical points (0, 0), (f−(s0), 0) and (f+(s0), 0).
We remark that if we evaluate the Jacobian in (0, 0), we get the same matrix as in (4.7). Hence
we can conclude that the character of (0, 0) is the same as the character of (0, 0) for the fast
subsystem in section 4. So for this system we also know that M0

0 is only normally hyperbolic

whenever s0 >
α

a
holds.

Now we evaluate the Jacobian in the critical values (f±(s0), 0). We know that s0 =
1

a
(α− f±)(1+

σf±) holds for these values. So the evaluated Jacobian becomes

J(f±(s0), 0) =

 0 1

2f±(s0)− α+
(α− f±(s0))(1 + σf±(s0))

(1 + σf±(s0))2
−c


=

 0 1

2f±(s0)− α+
α− f±(s0)

1 + σf±(s0)
−c

 .

The eigenvalues of this matrix are equal to λ± =
1

2

(
−c±

√
c2 + 4

(
2f±(s0)− α+

α− f±(s0)

1 + σf±(s0)

))
.

These eigenvalues are only bounded away from the imaginary axis whenever the expression

2f±(s0)− α+
α− f±(s0)

1 + σf±(s0)
is positive. This function is equal to zero on f±(s0) =

ασ − 1

2σ
, this is

exactly the value where s0 reaches its maximum value. When f±(s0) is smaller than
ασ − 1

2σ
, then

the expression is negative. Otherwise it is positive. So this expression is only positive on M+
0 ,

thus this critical manifold is normally hyperbolic. The manifold M−
0 is not normally hyperbolic.

5.3 Heteroclinic orbit

We want to construct a front solution for this system as well. So we are again looking for a

heteroclinic orbit from (α, 0, 0, 0) to

(
0, 0,

β

µ
, 0

)
. We already found this heteroclinic orbit for

σ = 0 in section (4), this orbit is depicted in figure 5.3. We naturally expect that this persists for
0 < σ ≪ 1. For the other two cases we are looking for a heteroclinic orbit as in figure 5.4.

50



Figure 5.3: Heteroclinic orbit of system (6.2) for 0 < σ ≪ 1

(a) ασ < 1 (b) ασ > 1

Figure 5.4: Heteroclinic orbit of system (6.2) for two different cases.

In figure 5.4a the heteroclinic connection is a fully slow orbit as the one in section (4). In this
case there is no sharp transition in f(ξ). This means that the forest thins out slowly towards the
savanna. The heteroclinic connection figure 5.4b contains a jump from M+

0 to M0
0 in the f − p

space, this is called the fast jump. So this connection consists of a slow part, a fast jump and
another slow part. The fast jump occurs at s = s∗ from f = f+(0) to f = 0. Because of the fast
jump there is a sharp interface between a relatively dense forest and the savanna.

In this section we will focus on finding a heteroclinic connection as depicted in figure 5.4b that
contains a fast jump, hence we take ασ > 1. First we study the flow on the slow manifolds. Then
we can see where this fast jump occurs. In other words, we would like to find out what the value
of this s∗ is.
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On M0
0 we have f = 0, so on this invariant plane we have the following system

ds

dx
= q = −∂H

∂q
dq

dx
= s(µs− β) =

∂H

∂s
,

(5.13)

which is the same as system (4.13). We have already concluded that this is a Hamiltonian system.
Its Hamiltonian is equal to (4.14). We have also shown that the homoclinic orbit in figure 4.2

that goes from

(
β

µ
, 0

)
to itself is equal to (4.15). We already determined the equation for the

homoclinic orbit in (4.15).

On M+
0 we have f = f+ =

1

2σ

(
ασ − 1 +

√
(ασ − 1)2 + 4σ(α− as)

)
. If we substitute this f

into system (5.9), we get (5.14).


ds

dχ
= q

dq

dχ
= s (µs− β + bf+)

(5.14)

We remark that it is really complicated to determine the Hamiltonian of this system. So we will
not use the Hamiltonian to find out what the slow flow looks like on M+

0 , but we use MATLAB
to analyse this numerically.

5.3.1 Orbit from (0, 0) on M+
0

Eventually we want to find a heteroclinic connection from (α, 0, 0, 0) to (0, 0,
β

µ
, 0). This first

critical value lies on M+
0 . We use numerical simulations to analyse the flow on this manifold.

Because this system is not Hamiltonian we cannot use the Hamiltonian to plot the phase plane.
We want to use the Matlab function ode45 (MATLAB, 2010). This function integrates a system

of differential equations of the form
df

dt
= f(t, y) from t0 to tf with initial condition y0. We

remark that our slow limit (5.14) on M+
0 is of this form. We implemented the equations of (5.14)

in the Matlab code in A.4.2.2. Because we substituted f+ into these equations we implemented
this expression (5.10) into the Matlab ode A.4.2.3. In (A.4.2.1) we start by defining all of our
parameters. Then we define the start the begin- and end time by tspan=[0 20]. Lastly we define
the initial condition y0=[0 0.01]. So we took y0 = (s0, q0) = (0, 0.01), this initial condition lies
really close to (α, 0, 0, 0). We chose this initial condition because then we can see how the system
behaves around (0, 0) . Then we use the line [t,y] = ode45(@(t,y) eqns(y,P), tspan, y0)

to find the solution.

5.3.2 Combine dynamics of fast and slow system

We already know what the phase plane (4.2) looks like on M0
0. We know that there is a homoclinic

orbit from

(
β

µ
, 0

)
back to itself. We check if we can find certain parameter values such that the

homoclinic orbits on M0
0 and M+

0 intersect if we project them on the same plane. If we can find
this intersection we call it (s∗, q∗). Because if this is the case, there exists an orbit form (α, 0, 0, 0)
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to (f+(s
∗), 0, s∗, q∗). Then we can look for the fast jump that goes from (f+(s

∗), 0, s∗, q∗) to
(0, 0, s∗, q∗) in the f − p space. Now the orbit is on the critical manifold M0

0 and then it follows

the homoclinic orbit to

(
0, 0,

β

µ
, 0

)
. We depicted what this heteroclinic orbit looks like in figure

5.5.

Figure 5.5: Heteroclinic connection from (α, 0, 0, 0) to (0, 0,
β

µ
, 0) for ασ > 1.

5.3.3 Heteroclinic orbit in fast system

We want to find the fast jump that we saw in figure (5.5). So we take s = s∗ in the fast system.
We already determined the critical points (0, 0), (f∗−, 0), (f

∗
+, 0) of the fast system (5.15), with

f∗± = f±(s
∗) =

ασ − 1±
√
(ασ − 1)2 + 4σ(α− as∗)

2σ
.

In the f − p space this heteroclinic connection goes form (f∗+, 0) to (0, 0). We have determined
the following fast system, by taking ϵ to zero.

df

dξ
= p

dp

dξ
= −cp+ f

(
f − α+

as

1 + σf

) (5.15)

For this case we need (0, 0) and (f∗+, 0) to be saddles and (f∗−, 0) to be a center, together with
the condition 0 < f∗− < f∗+. We also need f∗− and f∗+ to be real values. Hence we know that the
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following conditions must hold for the parameter values.
ασ > 1

α < as

(ασ − 1)2 > 4σ(as∗ − α)

(5.16)

We want to choose these parameters in such a way that this heteroclinc orbit from (f∗+, 0) to
(0, 0) exists.

5.3.4 Intersection of the orbits on M0
0 and M+

0

Now we would like to plot both homoclinic orbits on M0
0 and M+

0 in one plane. We already
computed the equation of the homoclinic orbit (4.15) on M0

0. We implemented this equation in
A.4.2.1 as well. If we run the code we see that the orbit that goes from (0, 0) on M+

0 shoots to
infinity. That is why we shorten our running time to tspan=[0 3]. Then we get the following
plot.

Figure 5.6: Intersection of orbit from (0, 0) on M0
0 and the homoclinic orbit on M+

0 for
parameter values α = 0.75, a = 2.8, β = 1, µ = 0.65, b = 6, σ = 7.

We can see that the orbits from (0, 0) on M+
0 and from

(
β

µ
, 0

)
on M0

0 intersect. The value of

the intersection (s∗, q∗) = (0.49, 0.77) is where the fast jump occurs. We know that the value of s

cannot get bigger than smax =
(ασ + 1)2

4aσ
, which is approximately equal to 0.498. We remark

that the value of s∗ is smaller than this maximum value for s. Now we can substitute this value
into the fast plane.
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5.4 Fast jump

The fast system then becomes equal to
df

dξ
= p

dp

dξ
= −cp+ f

(
f − α+

0.49a

1 + σf

)
.

(5.17)

We would like to find a heteroclinic orbit from (f∗+, 0) to (0, 0). Because our goal is to find a
heteroclinic orbit as in figure 5.5. We found the value of s∗ for certain parameter values, hence
we need to choose the parameter values in the same way in the fast system. In order to find
this orbit we use the Matlab function ode45 again. We have implemented this function in the
Matlab code A.4.3.1. We have found out that it is easier to find a heteroclinic orbit from (0, 0) to
(f∗+, 0). Hence we try to find this orbit and then take ξ → −ξ. First we implement the equations
in A.4.4. Then we can run our code. Just like for determining the homoclinic orbits on the slow
manifolds we set the initial condition close to zero, so we set y0 = [0.0001 0]. Furthermore we
choose our running time equal to 500, we implement this like tspan = [0 500]. We start by by
choosing c = 0, then we see in figure 5.7a that the solution shoots to infinity. If we choose this
value a little bigger, c = 0.5, then we get the orbit in figure 5.7b. We see that this solution does
not reach (f∗+, 0) and that it spirals to (f∗−, 0). Thus we know that there must exist a variable c
in the interval (0, 0.5) such that there exists a heteroclinic orbit. We call this value c∗.

(a) c = 0 (b) c = 0.5

Figure 5.7: Orbit of (6.3) with initial condition close to (0, 0) for different values of c.

Now we would like to vary c to see if we can find a heteroclinic solution. We use a for loop to do
this, starting by the for loop for i=0:0.01:0.5. Then we can see what the solution looks like
for 0, 0.01, 0.02, . . . 0.5. If we keep reducing the size of this interval and picking a smaller step-size,
we get closer to the value of c∗. Repeating this procedure we find that c∗ must lie in the interval
(0.20676, 0.20677). In the figures below we plotted the solutions for these values of c.
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(a) c = 0.20676 (b) c = 0.20677

Figure 5.8: Orbit of (6.3) with initial condition close to (0, 0) for different values of c.

We see that the solution again shoots to infinity for c = 0.20676, if we add 0.00001 the solution
spirals to (f∗−, 0). Hence we can conclude that for c = c∗ = 0.20676 + O(10−6) there exists a
heteroclinic orbit from (f∗+, 0) to (0, 0). Therefore the heteroclinic orbit in figure 5.5 exists.

5.5 Finding the fast jump numerically

In this section we saw that the heteroclinic orbit for system (5.4) makes a fast jump. We are
interested in finding out if that also happens numerically. Again we are looking for fronts, so it is
sufficient to only look into one dimension. Hence system (5.4) becomes


∂f

∂t
= f

(
α− f − as

1 + σf

)
+
∂2f

∂x2

∂f

∂t
= s(β − µs− bf) +

1

ϵ2
∂2s

∂x2
.

(5.18)

We can use the code that we used to solve (2.8), we only have to change the equations in eqn.m in
A.1.2 and took ϵ2 = 0.0005. We plotted the solutions of this system at times t = 10, 110, . . . , 510.
We also plotted the solutions of (2.8) in the same plot, so that we can compare the fronts.
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(a) Forest biomass solution. (b) Savanna biomass solution.

Figure 5.9: The blue and magenta plots represent the solutions of (2.8) and (5.18) respectively.
for parameter values α = 0.75, a = 1.12, β = 1, b = 4.5, µ = 1.25, σ = 2.5.

In figure 5.9a and 5.9b we plotted the solution of the forest- and the savanna biomass respectively.
The solutions of (2.8) differ form the ones of (5.18). In this case we have ασ > 1, in this case the
critical manifolds of this system are shown in figure 5.4b. This is where the fast jump occurs.
In the other case ασ < 1 the critical manifolds are shown in 5.4a where the fast jump does not
occur. So just like in figure 5.10 we plot the numerical solutions of (5.18), but now for σ = 1.2.

(a) Forest biomass solution. (b) Savanna biomass solution.

Figure 5.10: The blue and magenta plots represent the solutions of (2.8) and (5.18) respectively
for parameter values α = 0.75, a = 1.12, β = 1, b = 4.5, µ = 1.25, σ = 1.2.

In these plots it is hard to see if the fronts of the extended model (5.18) have a fast jump. In
figure 5.11 we plotted the solution at T = 500 in the f − s space. So we can compare them with
the heteroclinic orbits in figures 5.3, 5.4a and 5.4b.
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Figure 5.11: Solutions of (2.8) and (5.18) at T = 500 in the f − s space.
The green line is the solution of (2.8), the blue and red lines are the solutions of (5.18) for

σ = 2.5 and σ = 1.2 respectively.

We remark that the solution of (2.8) looks like the heteroclinic orbit in figure 5.3. The solution
of (5.18) for σ = 1.2 also looks like the heteroclinic orbit in 5.4a, this solution is more curved
than the solution of (2.8). The blue line in figure 5.11 that represents the solution of (5.18) for
σ = 2.5 should have a fast jump in 5.4b. We see that this solution reaches the s-axis faster than
the other two solutions. But we don’t see the sharp fast jump. This is because in 5.4b we took
ϵ = 0, now we took ϵ =

√
0.0005. Hence we make an order ϵ error in these plots.
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Chapter 6

Front (in-)stability

We alter the system a little. We change the term in front of the FS term in the S−equation. We
are curious to see whether we can find the heteroclinic connection for this system. Furthermore,
other dryland vegetation models that have been studied have generated vegetation patterns
named fingering fronts. Front instability results in these vegetation fingers that grow into bare
soil (Fernandez-Oto et al., 2019). So we would like to investigate whether this system gives a
fingering front for a suitable parameter combination. The extended model becomes the following

∂F

∂t
= F (α− F )− a

SF

1 + σF
+∆F

∂S

∂t
= S (β − µS)− bF − d

F + 1
FS +

1

ϵ2
∆S.

(6.1)

Again we want to rewrite this system into a four dimensional system. We also take only one
spatial variable and introduce a wave solution again. Analogue to the earlier models we get the
following system



df

dξ
= p

dp

dξ
= −cp+ f

(
f − α+

as

1 + σf

)
ds

dξ
= ϵq

dq

dξ
= ϵ

(
−ϵcq + s

(
µs− β +

bf − d

f + 1
fs

))
.

(6.2)

We also want to find a heteroclinic orbit for this system. To do this we look at the fast and the
slow system again. The fast- and slow limits become


df

dξ
= p

dp

dξ
= −cp+ f

(
f − α+

as

1 + σf

)
,

(6.3)
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
ds

dχ
= q

dq

dχ
= s

(
µs− β +

bf − d

f + 1
fs

)
.

(6.4)

The fast system is exactly the same as the fast system of the extended model in section 5. This
also implies that we have the same critical manifolds M0

0 and M+
0 as in section 5.2. So we have

the same conditions on the parameters for the heteroclinic orbit in the fast plane to exist. So our
parameters have to meet the conditions (5.16). Because these systems are equal, we have the
same condition for normal hyperbolicity as in section 5.

6.1 Intersection homoclinic orbits

Now we would like to determine the value of s∗ for this model. So we try to determine the
homoclinic orbits on both the manifolds M0

0 and M+
0 and find the intersection. We use the same

Matlab codes to plot both homoclinic orbits. We have found the intersection in figure 6.1.

Figure 6.1: The phase plane on M0
0 together with homoclinic orbit on M+

0 of system (6.4).
For parameter values α = 0.75, a = 2.8, β = 1, µ = 1.3, b = 6, d = 1, σ = 7.

The value of the intersection (s∗, q∗) = (0.49, 0.25) is where the fast jump occurs. Now we can
substitute this value into the fast plane.

6.2 Fast jump

We remark that the fast system is equal to the one in (6.3). We also see that the parameter
values that we took for finding the intersection in figure 6.1 are equal to the ones that we took
for the intersection in figure (5.6). Hence we know that we have the same fast jump as in section
(5.4) and we know that for c∗ = c = 0.20676 + O(10−6) there exists a heteroclinic orbit from
(f∗+, 0) to (0, 0). Therefore the heteroclinic orbit in figure 5.5 also exists for this system.
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6.3 Condition for fingering fronts

In Carter, Doelman, Lilly, Overmayer, and Rao (2022) this general system of 2-component
singularly perturbed reaction-diffusion equation is stated


τ
∂F

∂t
= ∆F +M(F, S; P⃗ )

∂S

∂t
=

1

ϵ2
∆S +N(F, S; P⃗ ),

(6.5)

where (x, y) ∈ R2, F (x, y, t), S(x, y, t) : R2 × R+ → R, M(F, S; P⃗ ) and N(F, S; P⃗ ) sufficiently

smooth, 0 < ϵ ≪ 1, and τ > 0, P⃗ ∈ Rm, parameters (Carter et al., 2022). This paper assumes
that system (6.5) has at least two stable homogeneous background states (F (x, y, t), V (x, y, t)) ≡
(F

±
, S

±
). Then the travelling wave coordinate ξ = x − ct is introduced, together with f(ξ) =

F (x, y, t) and s(ξ) = S(x, y, t). This gives the following system of ordinary differential equations.
∂2f

∂ξ2
= −c∂f

∂ξ
−M(f, s, P⃗ )

∂2s

∂ξ2
= −ϵ2

(
c
∂s

∂ξ
+M(f, s, P⃗ )

) (6.6)

Equation (6.5) is equal to the systems that we have analysed for these choices of τ, P⃗ ,M and N

τ = 1, P⃗ = (α, a, β, µ, b, d, σ, σS)
⊺

M(f, s; P⃗ ) = f(α− f)− asf

1 + σf

N(f, s; P⃗ ) = s(β − µs)− sf
bf − d

f + 1
.

For system (2.3) we have σ = 0 and b = −d > 0, for (5.4) σ > 0 and b = −d > 0 and for (6.1)
σ > 0 and d > 0. Then the paper defines the following values

M∗(P⃗ ) =

∫
R
Ms(f∗(ξ), s

∗)f∗,ξ(ξ)e
c∗τξ dξ (6.7)

N∗(P⃗ ) = N(f+∗ , s
∗)−N(f−∗ , s

∗) (6.8)

where s∗ is the value where the fast jump occurs. In our case the fast jump f∗(ξ) goes from
f+∗ = 0 to f−∗ = f+(s

∗) = f∗+, like in figure 5.4b. Then the following condition must hold for
front instability (Carter et al., 2022)

−sign(M∗(P⃗ ))× sign(N∗(P⃗ )) > 0 (6.9)

Only in the case of front instability it is possible for the fronts to finger (Carter et al., 2022). The
front solutions we found before are stable. Only when they are unstable, fingering could occur.
We would like to determine such a condition for system (6.1). We start by determining the value

of M∗(P⃗ )

M∗(P⃗ ) =

∫
R

∂

∂s

(
f∗(α− f∗)−

asf∗
1 + σf∗

)
f∗,ξ(ξ)e

c∗τξ dξ

= −
∫
R

af∗
1 + σf∗

f∗,ξ(ξ)e
c∗ξ dξ
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We know that f∗ ≤ 0 holds, which implies that the term
af∗

1 + σf∗
is positive. f∗,ξ(ξ)u is negative,

because f∗(ξ) is a decreasing function. We also know that ec∗ξ is positive. Hence we can conclude

that M∗(P⃗ ) > 0 holds. Now we want to determine N∗(P⃗ ).

N∗(P⃗ ) = N(0, s∗)−N(f−∗ , s
∗)

= s∗(β − µs∗)−
(
s∗(β − µs∗)− s∗f∗+

bf∗+ − d

f∗+ + 1

)
= s∗f+(s

∗)
bf∗+ − d

f∗+ + 1

We remark that the term
s∗f∗+
f∗+ + 1

is positive. We have also shown that M∗(P⃗ ) is positive. So the

condition for instability (6.9) only holds whenever bf∗+ − d < 0 holds. Hence we can conclude that

for fingering fronts to exist, we need bf∗+ − d to be negative. We also remark that the term bf−d
f+1

in crucial for fingering fronts. Therefore we know that the fronts (2.3) and (5.4) will not finger.

We have found a heteroclinic connection in this chapter for certain parameter values and a certain
value c = c∗. We are curious to see if the instability condition holds for these parameter values.

bf∗+ − d = bf+(s
∗)− d

=
b

2σ

(
ασ − 1 +

√
(ασ − 1)2 + 4σ(α− as∗)

)
− d

≈ 1.4616 > 0

Hence we know that the system will not give fingering fronts for these parameter values.

6.4 Numerical simulations in 2D (Still have to do these
simulations for the second extended model)

In this section we want to do numerical simulations in two dimensions. We want to see if we get
similar results as in the one dimensional case. Equation (6.1) is implemented in the Matlab code
A.3. We define the solutions of (6.1) as matlab variables popS and popF. These are 100× 100
matrices. In this code we have a two dimensional domain, we use spatial variables x and y. The
domain we use is (x, y) ∈ [0, 100] × [0, 100], with m = 100 grid points for each variable. The
running time is EndTime = 1000 with time step dT = 1. For the initial condition we use a
two-dimensional front, which is defined in the following way:

popFij =

α , if j <
m

2
0 , if j ≥ m

2
,

popSij =


0 , if j <

m

2
β

µ
, if j ≥ m

2
,

for every i ∈ {1, . . . , 100}. For the boundary conditions we use zero flux Neumann boundary
conditions. So there is no flow in or out of the boundary in the x and in the y direction. Running
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the Matlab code gives the following plots for the forest biomass in the x− y plane, for different
values of t.

(a) t = 1 (b) t = 80

(c) t = 160 (d) t = 250

Figure 6.2: Forest biomass solution for different time values of (6.1), with parameter values:
α = 0.8, a = 2.5, β = 1.5, µ = 2.5, b = 5.25, d = 1, σ = 1

If we plot the savanna biomass, we get the same figures. Except that the colors are interchanged.
Which makes sense because for this front the savanna biomass decreases from a positive value to
zero.
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(a) t = 1 (b) t = 80

(c) t = 160 (d) t = 250

Figure 6.3: Savanna biomass solution for different time values of (6.1), with parameter values:
α = 0.8, a = 2.5, β = 1.5, µ = 2.5, b = 5.25, d = 1, σ = 1

We see that the solution is a two-dimensional invasion front. For these parameter values the front
moves to the right, which implies that the savanna biomass is invading the forest biomass for
these parameter values.

We remark that these fronts are bi-stable, so these fronts do not finger. Varying the parameter
values for system (6.1) did not result in these vegetation patterns. There may exist a parameter
combination such that these patterns do exist, but we are not sure.
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Chapter 7

Discussion

In this thesis, we have analysed system (1.1) that describes the savanna-forest transition zone.
Because this model is a singularly perturbed system of differential equations with a clear separation
in spatial scales, we were able to use geometric singular perturbation theory (Hek, 2009). We
start by reducing the number of parameters by non-dimensionalising our system. Followed by
the analysis of the two dimensional system of ordinary differential equation. We determined its

critical points and plotted its phase plane. The critical points (α, 0) and

(
0,
β

µ

)
are stable. We

are interested in finding a heteroclinic orbit that connects these points. This orbit represents the
bi-stable front that has been observed in the tropics (Ametsitsi, 2021).

In section 2.3 we have introduced geometric singular perturbation theory. First we gave a basic
set-up and defined the slow and fast limit systems. Afterwards we stated Fenichel’s first and
second theorem that uses the knowledge of the limit systems to understand the full system
(Fenichel, 1979). We applied this theory to our system in section 4. In this section we added
a diffusion term, introduced the wave solution and rewrote the system into a four dimensional
system of first order ordinary differential equations. Because of the clear separation in spatial
scales we were able to split this system into two systems, the fast and the slow system. These
systems are both two dimensional. By analysing these systems and combining their dynamics
using geometric singular perturbation theory we found the heteroclinic orbit that we were looking
for. We found a condition for which this obit exist, with wave-speed zero. So we found a standing
front analytically. Furthermore, we also found a travelling front numerically.

We continued with extending the model. In the extended model we added a saturation term.
For large values of F this term satures. This is a reflection of the limited savanna- and forest
capability, when one of these biomes are abundant (Murray, 2002). Again we use geometric
singular perturbation theory on these equations to find a heteroclinic orbit that represents the
bi-stable front. We were able to find a heteroclinic connection that represents the bi-stable fronts.
This orbit consists of a slow part on the two slow manifolds that are connected with a fast jump
on the fast plane. We found this connection for a certain wavespeed c∗. We also performed
numerical simulations for this system using Matlab.

Lastly we made a second extension on the model, because we wanted to see if we could find
fingering fronts for this model. These patterns have been observed in other models. We used a
different term instead of the saturation term in the S−equation. This also resulted in finding the
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heteroclinic orbit that we were looking for. Then we used Atassi (n.d.) to derive a condition for
when fingering fronts exist for this model. Unfortunately the parameter choices that we made
for finding the heteroclinic connection does not meet this condition. So we know that this will
not result in fingering fonts. It is hard to find parameter values such that the heteroclinic orbit
exists, especially when you have to take the stability condition into account. This is because
this condition depends on f∗+, which you can find after you have already found the heteroclinic
connection. We have also done some two-dimensional simulations in this section, unfortunately
we have not found fingering fronts.

Because we have found a bi-stable front solution for the unextended and two extended models,
we can conclude that these models describe the savanna-forest boundary properly.

These results are promising, it gives insight in the ecology, but a lot has to be considered. Because
the models, especially the extended model, are complicated it is hard to find a solution. Hence it
is difficult to predict how this savanna-forest will evolve over time. A logical research suggestion
would be to analyse the system analytically in two dimensions. We also assumed that our domain
Ω is one dimensional, because we can already get a lot of information of the systems for this
assumption. But actually this area is two dimensional. Hence it would be interesting to find out
what solutions for these systems will look like in this case even if it makes the problem more
complicated.

We have found bi-stable fronts for these models and we have derived a condition that may result
in fingering fronts. Further research could result in finding a front solution that will give fingering
fronts. A way to do this may be to follow the procedure as in section 6 and choose the parameters
in such a way that the instability condition holds.

Another research suggestion could be to change the model (6.1) such that the instability condition
can still hold. We chose equation (6.1) for mathematical reasons. But changing the model such
that it makes more sense ecologically, would give better insight in the savanna-forest transition
zone.

Further studies could result in finding a more precise solution for this system, so we might get
a better insight in how the savanna-forest boundary will evolve over time. This could lead to
finding precautionary measures that will slow down the desertification process.
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Appendix A

Matlab codes

A.1 Unextended model

A.1.1 Main code for using pdepe

This Matlab code uses pdepe to determine the solution of (2.8).

1 %PDE: MATLAB s c r i p t M− f i l e that s o l v e s the PDE
2 % u=(u1 , u2 )=(s , f )
3 m = 0 ;
4

5 %% Parameters f o r f o r e s t invading the savanna
6 % P(1) = 0 . 7 5 ; %alpha
7 % P(2) = 1 . 1 2 ; %a
8 % P(3) = 1 ; %beta
9 % P(4) = 4 . 5 ; %b

10 % P(5) = 1 . 2 5 ; %mu
11

12

13 %% Parameters f o r savanna invading the f o r e s t
14 P(1) = 0 . 5 ; %alpha
15 P(2) = 2 . 2 6 ; %a
16 P(3) = 1 . 5 ; %beta
17 P(4) = 5 . 2 5 ; %b
18 P(5) = 2 . 5 ; %mu
19

20 %% Here we de f i n e the other v a r i a b l e s
21 T = 510 ; %End time
22 L = 100 ; %Domain [ 0 ,L ]
23 P(6) = L ; %We want to use L in i n i t i a l .m
24

25 t=l i n s p a c e (0 ,T, 510 ) ; %tspan
26 x=l i n s p a c e (0 ,L , 510 ) ; %xmesh
27

28 %% Using pdepe to s o l v e the system
29 s o l = pdepe (m,@eqn , @ in i t i a l , @bc , x , t , [ ] , P) ; %Determine s o l u t i o n
30 u1 = s o l ( : , : , 1 ) ; %So lu t i on f o r e s t biomass
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31 u2 = s o l ( : , : , 2 ) ; %So lu t i on savanna biomass
32

33 %% Plo t t i ng s o l u t i o n s
34 f o r i =10:100:510
35 f i g u r e (1 )
36 p lo t (x , u1 ( i , : ) , ’ green ’ , ’ LineWidth ’ , 1) %Plot s o l u t i o n f o r e s t biomass
37 hold on
38 p lo t (x , u2 ( i , : ) , ’ red ’ , ’ LineWidth ’ , 1) %Plot s o l u t i o n savanna biomass
39 drawnow
40 end
41 x l ab e l ( ’ Distance x ’ )
42 y l ab e l ( ’ Biomass ’ )
43 l egend ( ’ Forest ’ , ’ Savanna ’ )
44

45 %% Plo t t i ng i n i t i a l c ond i t i on s
46 f i g u r e (2 )
47 p lo t (x , u1 ( 1 , : ) , ’ green ’ ) %Plot i n i t i a l cond i t i on f o r e s t biomass
48 hold on
49 p lo t (x , u2 ( 1 , : ) , ’ red ’ ) %Plot i n i t i a l cond i t i on savanna biomass
50 drawnow
51 x l ab e l ( ’ Distance x ’ )
52 y l ab e l ( ’ Biomass ’ )
53 l egend ( ’ Forest ’ , ’ Savanna ’ )
54

55 f i g u r e (5 )
56 p lo t ( u1 ( i , : ) , u2 ( i , : ) , ’ green ’ , ’ LineWidth ’ , 1) %Plot s o l u t i o n f o r e s t biomass

A.1.2 Defining equations for pdepe

The equations of (2.8) are implemented in this code.

1 f unc t i on [ c , b , s ] = eqn (x , t , u ,DuDx,P)
2 %EQN2: MATLAB M− f i l e that conta in s the c o e f f i c e n t s f o r
3 %a system o f two PDE in time and one space dimension .
4

5 f o = u (1) ; %f o r e s t v a r i a b l e
6 sa = u (2) ; %savanna va r i ab l e
7

8 c = [ 1 ; 1 ] ; %func t i on omega
9 b = [ 0 . 0 0 5 ; 1 ] .∗ DuDx; %func t i on varphi

10 s = [ f o ∗(P(1)−fo−P(2) ∗ sa ) ;
11 sa ∗(P(3)−P(4) ∗ fo−P(5) ∗ sa ) ] ; %func t i on p s i

A.1.3 Defining initial condition for pdepe

1 f unc t i on value = i n i t i a l (x ,P) ;
2 %INITIAL2 : MATLAB func t i on M− f i l e that d e f i n e s i n i t i a l c ond i t i on s
3 %fo r a system o f two PDE in time and one space va r i ab l e .
4

5 f =1/2∗(1+tanh(−x+1/2∗P(6) ) ) ; %I n i t i a l cond i t i on ( f r on t ) f o r e s t biomass
6 s=1/2∗(1+tanh (x−1/2∗P(6) ) ) ; %I n i t i a l c ond i t i on ( f r on t ) savanna biomass
7

8 value=[ f ; s ] ; %Return i n i t i a l cond i t i on
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A.1.4 Defining boundary conditions for pdepe

1 f unc t i on value = i n i t i a l (x ,P) ;
2 %INITIAL2 : MATLAB func t i on M− f i l e that d e f i n e s i n i t i a l c ond i t i on s
3 %fo r a system o f two PDE in time and one space va r i ab l e .
4

5 f =1/2∗(1+tanh(−x+1/2∗P(6) ) ) ; %I n i t i a l cond i t i on ( f r on t ) f o r e s t biomass
6 s=1/2∗(1+tanh (x−1/2∗P(6) ) ) ; %I n i t i a l c ond i t i on ( f r on t ) savanna biomass
7

8 value=[ f ; s ] ; %Return i n i t i a l cond i t i on

A.1.5 Finding still front

1 %PDE: MATLAB s c r i p t M− f i l e that s o l v e s the PDE
2 % u=(u1 , u2 )=(s , f )
3 m = 0 ;
4

5 %Parameters
6 %% Forest invading the savanna
7 P(1) = 0 . 7 5 ; %alpha
8 P(2) = 1 . 1 2 ; %a
9 P(3) = 1 ; %beta

10 P(5) = 1 . 2 5 ; %mu
11

12 %% Here we de f i n e the other v a r i a b l e s
13 T = 500 ; %End time
14 L = 100 ; %Domain [ 0 ,L ]
15 P(6) = L ; %We want to use L in i n i t i a l .m
16

17 t=l i n s p a c e (0 ,T, 500 ) ; %tspan
18 x=l i n s p a c e (0 ,L , 500 ) ; %xmesh
19

20 %% Determine s o l u t i o n
21 C = { ’ k ’ , ’ b ’ , ’ r ’ , ’ g ’ , ’ y ’ , [ . 5 . 6 . 7 ] , [ . 8 . 2 . 6 ] } %Def ine d i f f e r e n t c o l o r s
22

23 f o r i = −0.1 :0 .01:0 %For loop with time step 0 .01
24 %fo r i =−0.045:0.001:−0.035 %For loop with time step 0 .001
25 P(4)= (P(2) ˆ2∗P(3) ˆ3) /(P(5) ˆ2∗P(1) ˆ3)+i ; %Add i to b
26 s o l = pdepe (m,@eqn , @ in i t i a l , @bc , x , t , [ ] , P) ; %Determine s o l u t i o n
27 %fo r b=b+1
28 u1 = s o l ( : , : , 1 ) ; %So lu t i on f o r e s t biomass
29 u2 = s o l ( : , : , 2 ) ; %So lu t i on savanna biomass
30 f i g u r e (3 )
31 p lo t (x , u1 ( i , : ) , ’ green ’ , ’ LineWidth ’ , 1) %Plot s o l u t i o n f o r e s t biomass
32 hold on
33 p lo t (x , u2 ( i , : ) , ’ red ’ , ’ LineWidth ’ , 1) %Plot s o l u t i o n savanna biomass
34 drawnow
35 end
36 p lo t (x , u1 ( 2 0 , : ) , ’−− ’ , ’ LineWidth ’ , 1 . 5 ) %Plot s o l u t i o n f o r t=20
37 hold on
38 p lo t (x , u2 ( 2 0 , : ) , ’−− ’ , ’ LineWidth ’ , 1 . 5 ) %Plot s o l u t i o n f o r t=20
39 x l ab e l ( ’ Distance x ’ )
40 y l ab e l ( ’ Biomass ’ )
41 drawnow
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A.2 Extended model: saturation term in F- and S-equation

1 %PDE: MATLAB s c r i p t M− f i l e that s o l v e s the PDE
2 % u=(u1 , u2 )=(s , f )
3 m = 0 ;
4

5 %% Parameters f o r f o r e s t invading the savanna
6 P(1) = 0 . 7 5 ; %alpha
7 P(2) = 1 . 1 2 ; %a
8 P(3) = 1 ; %beta
9 P(4) = 4 . 5 ; %b

10 P(5) = 1 . 2 5 ; %mu
11 P(7) = 2 . 5 ; %sigma
12

13 %% Here we de f i n e the other v a r i a b l e s
14 T = 500 ; %End time
15 L = 100 ; %Domain [ 0 ,L ]
16 P(6) = L ; %We want to use L in i n i t i a l .m
17

18 t=l i n s p a c e (0 ,T, 500 ) ; %tspan
19 x=l i n s p a c e (0 ,L , 500 ) ; %xmesh
20

21 %% Using pdepe to s o l v e the system
22 %This g i v e s the s o l u t i o n o f the unextended model
23 s o l = pdepe (m, @eqnold , @ in i t i a l , @bc , x , t , [ ] , P) ; %Determine s o l u t i o n
24 u1 = s o l ( : , : , 1 ) ; %So lu t i on f o r e s t biomass
25 u2 = s o l ( : , : , 2 ) ; %So lu t i on savanna biomass
26

27 %This g i v e s the s o l u t i o n o f the extended model f o r sigma=2.5
28 s o l 2 = pdepe (m,@eqn , @ in i t i a l , @bc , x , t , [ ] , P) ; %Determine s o l u t i o n
29 w1 = so l 2 ( : , : , 1 ) ; %So lu t i on f o r e s t biomass
30 w2 = so l 2 ( : , : , 2 ) ; %So lu t i on savanna biomass
31

32 %This g i v e s the s o l u t i o n o f the extended model f o r sigma=1.2
33 P(7) = 1 . 2 ; %sigma
34 s o l 3 = pdepe (m,@eqn , @ in i t i a l , @bc , x , t , [ ] , P) ; %Determine s o l u t i o n
35 v1 = so l 3 ( : , : , 1 ) ; %So lu t i on f o r e s t biomass
36 v2 = so l 3 ( : , : , 2 ) ; %So lu t i on savanna biomass
37

38 %% Plo t t i ng s o l u t i o n s
39 %Plot f o r e s t biomass s o l u t i o n ( sigma=2.5)
40 f o r i =1:100:500
41 f i g u r e (1 )
42 p lo t (x , u1 ( i , : ) , ’ b lue ’ , ’ l i n ew id th ’ , 1 ) %Plot s o l u t i o n f o r e s t biomass
43 hold on
44 p lo t (x ,w1( i , : ) , ’magenta ’ , ’ l i n ew id th ’ , 1 ) %Plot s o l u t i o n f o r e s t biomass
45 drawnow
46 end
47 x l ab e l ( ’ Distance x ’ )
48 y l ab e l ( ’ Biomass ’ )
49 l egend ( ’ Simple model ’ , ’ Extended model ’ )
50

51 %Plot savanna biomass s o l u t i o n ( simga=2.5)
52 f o r i =1:100:500
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53 f i g u r e (2 )
54 p lo t (x , u2 ( i , : ) , ’ b lue ’ , ’ l i n ew id th ’ , 1 ) %Plot s o l u t i o n savanna biomass
55 hold on
56 p lo t (x ,w2( i , : ) , ’magenta ’ , ’ l i n ew id th ’ , 1 ) %Plot s o l u t i o n savanna biomass
57 drawnow
58 end
59 x l ab e l ( ’ Distance x ’ )
60 y l ab e l ( ’ Biomass ’ )
61 l egend ( ’ Simple model ’ , ’ Extended model ’ )
62

63 %Plot f o r e s t biomass s o l u t i o n ( sigma=1.2)
64 f o r i =1:100:500
65 f i g u r e (3 )
66 p lo t (x , u1 ( i , : ) , ’ b lue ’ , ’ l i n ew id th ’ , 1 ) %Plot s o l u t i o n f o r e s t biomass
67 hold on
68 p lo t (x , v1 ( i , : ) , ’magenta ’ , ’ l i n ew id th ’ , 1 ) %Plot s o l u t i o n f o r e s t biomass
69 drawnow
70 end
71 x l ab e l ( ’ Distance x ’ )
72 y l ab e l ( ’ Biomass ’ )
73 l egend ( ’ Simple model ’ , ’ Extended model ’ )
74

75 %Plot savanna biomass s o l u t i o n ( sigma=1.2)
76 f o r i =1:100:500
77 f i g u r e (4 )
78 p lo t (x , u2 ( i , : ) , ’ b lue ’ , ’ l i n ew id th ’ , 1 ) %Plot s o l u t i o n savanna biomass
79 hold on
80 p lo t (x , v2 ( i , : ) , ’magenta ’ , ’ l i n ew id th ’ , 1 ) %Plot s o l u t i o n savanna biomass
81 drawnow
82 end
83 x l ab e l ( ’ Distance x ’ )
84 y l ab e l ( ’ Biomass ’ )
85 l egend ( ’ Simple model ’ , ’ Extended model ’ )
86

87 f i g u r e (5 )
88 p lo t ( u1 ( i , : ) , u2 ( i , : ) , ’ green ’ , ’ LineWidth ’ , 1) %f−s p l o t s imple model
89 hold on
90 p lo t (w1( i , : ) ,w2( i , : ) , ’ b lue ’ , ’ LineWidth ’ , 1) %f−s p l o t extended model
91 hold on
92 p lo t ( v1 ( i , : ) , v2 ( i , : ) , ’ red ’ , ’ LineWidth ’ , 1) %f−s p l o t extended model
93 drawnow
94 x l ab e l ( ’ f = f o r e s t biomass ’ )
95 y l ab e l ( ’ s = savanna biomass ’ )
96 l egend ( ’ Simple model ’ , ’ Extended model ’ , ’ Extended model ’ )

A.3 Unextended model 2D

1 % Rietkerk 2002 AmNat
2 c l e a r a l l
3

4 %% System d i s c r e t i s a t i o n
5 DeltaX=101; % (m)
6 DeltaY=101; % (m)
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7

8 DifS=1000; % (m2 d−1)
9 DifF=1; % (m2 d−1)

10

11 %% Parameter va lue s
12 P(1) = 0 . 8 ; %alpha
13 P(2) = 2 . 5 ; %a
14 P(3) = 1 . 5 ; %beta
15 P(4) = 5 . 2 5 ; %b
16 P(5) = 2 . 5 ; %mu
17 P(6) = 1 ; %sigma
18 P(7) = 1 ; %d
19

20 %% Number o f g r id c e l l s
21 m=100;
22 NX=m;
23 NY=m;
24

25 %% Timesteps
26 dT=1; %t imestep
27 Time=1; % begin time
28 EndTime=1000; % end time
29 PlotStep=1; % (d)
30 PlotTime=PlotStep ; % (d)
31 count=1;
32

33 % I n i t i a l i s a t i o n
34 popS = ze ro s (m,m) ;
35 popF = ze ro s (m,m) ;
36

37 dS=ze ro s (m,m) ;
38 dF=ze ro s (m,m) ;
39

40 NetS=ze ro s (m,m) ;
41 NetF=ze ro s (m,m) ;
42

43 %% Boundary cond i t i on s
44 FYS = ze ro s (NY+1,NX) ; % bound . con . no f low in /out to Y−d i r e c t i o n
45 FXS = ze ro s (NY,NX+1) ; % bound . con . no f low in /out to X−d i r e c t i o n
46 FYF = ze ro s (NY+1,NX) ; % bound . con . no f low in /out to Y−d i r e c t i o n
47 FXF = ze ro s (NY,NX+1) ; % bound . con . no f low in /out to X−d i r e c t i o n
48

49 %% I n i t i a l s t a t e
50 f o r i =1:m
51 f o r j =1:m
52 i f ( j<m/2)
53 popS ( i , j )=0; % Homogeneous equ i l i b r i um su r f a c e water in

absence o f p l ant s
54 popF( i , j )=P(1) ; % Homogeneous equ i l i b r i um s o i l water

in absence o f p l ant s
55 e l s e
56 popS ( i , j )=P(3) /P(5) ; % Homogeneous equ i l i b r i um su r f a c e water

in absence o f p la
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57 popF( i , j )=0; % Homogeneous equ i l i b r i um s o i l water in
absence o f p l ant s

58 end
59 end
60 end
61

62 %% Timesteps
63 whi le Time<=EndTime
64

65 dF=popF . ∗ (P(1 )−popF−P(2) .∗ popS ./(1+P(6) .∗ popF) ) ;
66 dS=popS . ∗ (P(3 )−P(5) .∗ popS−popF . ∗ (P(4) .∗popF−P(7) ) . / ( popF+1) ) ;
67

68 %% Di f f u s i on : c a l c u l a t e Flow in x d i r e c t i o n : Flow= −D∗dpopF/dx
69 FXS( 1 :NY, 2 :NX)= −DifS . ∗ ( popS ( 1 :NY, 2 :NX)−popS ( 1 :NY, 1 :NX−1) ) . / DeltaX ;
70 FXF( 1 :NY, 2 :NX)= −DifF . ∗ ( popF ( 1 :NY, 2 :NX)−popF ( 1 :NY, 1 :NX−1) ) . / DeltaX ;
71

72 %% Calcu la t e the f low in y d i r e c t i o n : Flow= −D∗dpopF/dy
73 FYS( 2 :NY, 1 :NX)= −DifS . ∗ ( popS ( 2 :NY, 1 :NX)−popS ( 1 :NY−1 ,1:NX) ) . / DeltaY ;
74 FYF( 2 :NY, 1 :NX)= −DifF . ∗ ( popF ( 2 :NY, 1 :NX)−popF ( 1 :NY−1 ,1:NX) ) . / DeltaY ;
75

76 %% Calcu la t e net f low
77 NetS ( 1 :NY, 1 :NX)=(FXS( 1 :NY, 1 :NX)−FXS( 1 :NY, 2 :NX+1) ) . / DeltaX+(FYS( 1 :NY, 1 :

NX)−FYS( 2 :NY+1 ,1:NX) ) . / DeltaY ;
78 NetF ( 1 :NY, 1 :NX)=(FXF( 1 :NY, 1 :NX)−FXF( 1 :NY, 2 :NX+1) ) . / DeltaX+(FYF( 1 :NY, 1 :

NX)−FYF( 2 :NY+1 ,1:NX) ) . / DeltaY ;
79

80 %% Update
81 popS = popS +NetS∗dT+dS∗dT;
82 popF = popF +NetF∗dT+dF∗dT;
83

84 Time=Time+dT
85

86 %% Plo t t i ng
87

88 PlotTime=PlotTime−dT;
89 i f PlotTime<=0
90 % imagesc ( popS ) ; t i t l e ’ Savanna biomass ’
91 % cax i s ( [ 0 1 . 2 ] ) ;
92 imagesc (popF) ; t i t l e ’ Forest biomass ’
93 c ax i s ( [ 0 2 ] ) ;
94 co l o rba r
95 colormap ( f l i p ud (summer) )
96 x l ab e l ( ’ x ’ )
97 y l ab e l ( ’ y ’ )
98 drawnow ;
99 PlotTime=PlotStep ;

100 count=count+1;
101 end
102

103 end
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A.4 Heteroclinic orbit

A.4.1 Heteroclinic orbit for (2.7)

1 % other parameter va lue s in vec to r P ( f o r e s t invading savanna )
2 P(1) =1.1 ; %mu
3 P(2) =0.9 ; %beta=mu−n
4 P(3) =6; %b
5 P(4) =0.7 ; %alpha=1−m
6 P(5) =2; %a
7 P(6)=−18; %c
8 P(7) =0.01; %ep s i l o n
9

10 tspan = [0 5 ] ; %Time span
11 y0 = [0 0 . 0 0 1 ] ; %I n i t i a l cond i t i on
12 [ t , y ] = ode45 (@( t , y ) eqns2 (y ,P) , tspan , y0 ) ;
13 p lo t ( y ( : , 1 ) , y ( : , 2 ) , ’ b lue ’ ) %Plot s o l u t i o n M+ in phase plane near (0 , 0 )
14 hold on
15

16 [ s , q ] = meshgrid ( −0 . 5 : 0 . 0 1 : 1 . 5 , −1 :0 .01 :1 ) ; %Def ine s−q gr id
17 g=@( s , q ) 1/3∗P(1) ∗ s .ˆ3−1/2∗P(2) ∗ s .ˆ2−1/2∗q.ˆ2+1/6∗P(2) ˆ3/(P(1) ˆ2) ;
18 %Leve lcurve Hamiltonian through (0 , 0 ) in M0
19 w=g ( s , q ) ;
20 contour ( s , q ,w, [ − 0 . 5 : 0 . 0 5 : 1 ] , ’ red ’ ) %p l o t t i n g M0 phaseplane
21 l egend ( ’ Homocl inic o r b i t M+’ , ’ Phase plane M0 ’ )
22

23 x l i n e (P(4 ) /P(5) )
24

25 x l ab e l ( ’ s ’ )
26 y l ab e l ( ’ q ’ )

A.4.1.1 Defining equations for ode45

1 f unc t i on dydt = eqns (y ,P)
2 s=y (1 ) ;
3 q=y (2) ;
4 dydt = [ q ; −P(6) ∗P(7) ∗q+s ∗(P(1) ∗ s−P(2)+P(3) . ∗ (P(4 )−P(5) .∗ s ) ) ] ;
5 re turn

A.4.2 Heteroclinic orbit for (5.4)

A.4.2.1 Find intersection homoclinic orbits

1 % other parameter va lue s in vec to r P ( f o r e s t invading savanna )
2 P(1) =1.3 ; %mu
3 P(2) =1; %beta=mu−n
4 P(3) =6; %b
5 P(4) =1; %d
6 P(5) =0.75; %alpha=1−m
7 P(6) =7; %sigma
8 P(7) =2.8 ; %a
9 Sstar = 0 . 4 9 ; %s ∗

10

11 tspan = [0 2 0 ] ; %Time span
12 y0 = [0 0 . 0 1 ] ; %I n i t i a l cond i t i on
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13 [ t , y ] = ode45 (@( t , y ) eqns (y ,P) , tspan , y0 ) ;
14 p lo t ( y ( : , 1 ) , y ( : , 2 ) , ’ b lue ’ ) %Plot s o l u t i o n M+ in phase plane near (0 , 0 )
15 hold on
16

17 [ s , q ] = meshgrid ( −0 . 5 : 0 . 0 1 : 1 . 5 , −1 :0 .01 :1 ) ; %Def ine s−q gr id
18 g=@( s , q ) 1/3∗P(1) ∗ s .ˆ3−1/2∗P(2) ∗ s .ˆ2−1/2∗q.ˆ2+1/6∗P(2) ˆ3/(P(1) ˆ2) ;
19 %Leve lcurve Hamiltonian through (0 , 0 ) in M0
20 w=g ( s , q ) ;
21 contour ( s , q ,w, [ − 0 . 5 : 0 . 0 5 : 1 ] , ’ red ’ ) %p l o t t i n g M0 phaseplane
22 l egend ( ’ Homocl inic o r b i t M+’ , ’ Phase plane M0 ’ )
23 x l ab e l ( ’ s ’ )
24 y l ab e l ( ’ q ’ )

A.4.2.2 Defining equations for ode45

1 f unc t i on dydt = eqns (y ,P)
2 s=y (1 ) ;
3 q=y (2) ;
4 dydt = [ q ; s ∗(P(1) ∗ s−P(2)+(P(3) ∗ f p l u s ( s ,P) ) /(1+P(6) ∗ f p l u s ( s ,P) ) ) ] ;
5 %dydt = [ q ; s ∗(P(1) ∗ s−P(2)+fp l u s ( s ,P) ∗(P(3) ∗ f p l u s ( s ,P)−P(4) ) /( f p l u s ( s ,P)+1)

) ] ;
6 re turn

A.4.2.3 Defining f+

1 f unc t i on y = fp l u s ( s ,P)
2 y = (P(5) ∗P(6)−1+sq r t ( (P(5) ∗P(6)−1)ˆ2+4∗P(6) ∗(P(5)−P(7) ∗ s ) ) ) . / ( 2∗P(6) ) ;
3 re turn

A.4.3 Heteroclinic orbit for (6.2)

A.4.3.1 Find heteroclinic connection f∗(ξ)

1 %other parameter va lue s in vec to r P ( f o r e s t invading savanna )
2

3 P(1) =1.3 ; %mu
4 P(2) =1; %beta=mu−n
5 P(3) =6; %b
6 P(4) =1; %c
7 P(5) =0.75; %alpha=1−m
8 P(6) =7; %sigma
9 P(7) =2.8 ; %a

10 P(8) =0.49; %s ∗
11

12 plus = fp l u s (P(8) ,P)
13

14 tspan = [0 5 0 0 ] ; %Time span
15 y0 = [0 . 0 001 0 ] ; %I n i t i a l cond i t i on
16

17 f i g u r e (1 ) %c=0
18 P(9) =0; %c
19 [ t , y ] = ode45 (@( t , y ) eqns fp (y ,P) , tspan , y0 ) ; %Find s o l u t i o n
20 p lo t ( y ( : , 1 ) , y ( : , 2 ) ) %Plot s o l u t i o n
21 x l ab e l ( ’ f ’ )
22 y l ab e l ( ’p ’ )
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23

24 f i g u r e (2 ) %c=0
25 P(9) =0.3 ; %c
26 [ t , y ] = ode45 (@( t , y ) eqns fp (y ,P) , tspan , y0 ) ; %Find s o l u t i o n
27 p lo t ( y ( : , 1 ) , y ( : , 2 ) ) %Plot s o l u t i o n
28 x l ab e l ( ’ f ’ )
29 y l ab e l ( ’p ’ )
30

31 f o r i =0 : 0 . 0 1 : 0 . 5
32 f i g u r e (3 ) %c=0
33 P(9)=i ; %c
34 [ t , y ] = ode45 (@( t , y ) eqns fp (y ,P) , tspan , y0 ) ; %Find s o l u t i o n
35 p lo t ( y ( : , 1 ) , y ( : , 2 ) ) %Plot s o l u t i o n
36 end
37 x l ab e l ( ’ f ’ )
38 y l ab e l ( ’p ’ )
39

40 f i g u r e (4 ) %c=0
41 P(9) =0.20676; %c
42 [ t , y ] = ode45 (@( t , y ) eqns fp (y ,P) , tspan , y0 ) ; %Find s o l u t i o n
43 p lo t ( y ( : , 1 ) , y ( : , 2 ) ) %Plot s o l u t i o n
44 x l ab e l ( ’ f ’ )
45 y l ab e l ( ’p ’ )
46

47 f i g u r e (5 ) %c=0
48 P(9) =0.20677; %c
49 [ t , y ] = ode45 (@( t , y ) eqns fp (y ,P) , tspan , y0 ) ; %Find s o l u t i o n
50 p lo t ( y ( : , 1 ) , y ( : , 2 ) ) %Plot s o l u t i o n
51 x l ab e l ( ’ f ’ )
52 y l ab e l ( ’p ’ )

A.4.4 Defining equations for ode45

1 f unc t i on dydt = eqns fp (y ,P)
2 f=y (1) ;
3 p=y (2) ;
4 dydt = [ p ; −P(9) ∗p+f ∗( f−P(5)+(P(7) ∗P(8) ) /(1+P(6) ∗ f ) ) ] ;
5 re turn
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