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Abstract

E-variables are a novel tool for constructing hypothesis tests that retain
Type-I error guarantees when the sampling plan is not determined in ad-
vance, i.e. under optional stopping and optional continuation. We con-
struct E-variables for null hypotheses that are univariate exponential fami-
lies and point alternative hypotheses by calculating the Reverse Information
Projection, abbreviated to RIPr, of the alternative on the set of mixtures over
the null. We focus on RIPr’s that are simple; this means that they coincide
with a single element of the null hypothesis rather than a mixture of such
elements. We find that there is no unique simple way to determine the
RIPr for the whole class of exponential families. We give conditions under
which the RIPr is simple (and then also easy to calculate), and conditions
under which it is not (and then it is hard to calculate), and we give several
examples of each case. For the case that an E-variable for a specific expo-
nential family null is given, we establish E-variables for other exponential
families by 1-to-1 transformations of random variables. We approximate a
more complex RIPr (i.e. a mixture of exponential distributions) when the
sample space consists of two outcomes of the exponential distribution in
a specific setting by programming in R.
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Chapter 1
Introduction

The exponential families (Altun et al., 2012, Banerjee, 2007, Brown, 1986) are
a class of probability models that include the Bernoulli, binomial (with
known number of trials n), Poisson, negative binomial (with known num-
ber of failures r), exponential, Weibull (with known shape k), normal,
gamma, multinomial, and many other well-known sets of distributions.
They are widely used because their general form, introduced in Defini-
tion 1, makes it easy to compute important quantities such the maximum
likelihood estimator, the mean, variance, Fisher information, relative en-
tropy, and so on. Brown (1986) and later Nielsen and Garcia (2009) listed
properties (probability density function, maximum likelihood estimator,
dual parameterizations: natural and expectation parameters, and so on)
of some common exponential family distributions.

E-variables (Grünwald et al., 2020, Shafer, 2019, Vovk and Wang, 2021)
have been proposed in recent years as an alternative to the p-value. Hy-
pothesis testing using E-variables is ‘safer’ than traditional hypothesis
testing using p-values: it guarantees Type-I error under optional continu-
ation and optional stopping. It has by now been applied in several classic
testing scenarios, such as contingency tables (Turner et al., 2021) and the
logrank test (ter Schure et al., 2020).

In this thesis, we determine E-variables for exponential families in hy-
pothesis testing. We consider a composite null hypothesis H0 that is a set
of single parameter exponential families (i.e. H0 = {Pθ : θ ∈ Θ0}) together
with a simple alternative hypothesis H1 (i.e. H1 = {P1}). Grünwald
et al. (2020) argued that there is a special distribution W∗

0 on Θ0 such
that p1/pW∗

0
is an E-variable where pW∗

0
is the Bayes marginal distribu-

tion based on prior W∗
0 . This W∗

0 coincides with what has been called the
Reverse Information Projection (RIPr) in the literature (Grünwald et al., 2020,
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2 Introduction

Li, 1999). We construct E-variables based on this RIPr.
In the remainder of this introduction, we formally introduce exponen-

tial families, the concept of E-variable and we provide examples of E-
variables for some different types of hypotheses. We end by giving an
overview of the thesis and the main results.

1.1 Exponential Family

In this section, we state the definition and some well-known properties of
exponential families.

Definition 1 (Exponential Family). Let X be a random variable with sample
space X . Let P be a family of distributions for X . We say that P is a d-
dimensional exponential family if the probability density of every element of P
can be written in the following canonical form:

pη(x) = h(x) exp(ηTT(x)− A(η))

with h(x) a function from X to R+
0 , ‘canonical’ parameter vector η ∈ Rd, ‘suf-

ficient statistic’ vector T : X → Rd, and ‘log-partition function’ A(η).

h(x) is the density of a measure (which may not be a probability mea-
sure, i.e. not integrate to 1) relative to Lebesgue measure (in continuous
distributions) or counting measure (in discrete distributions). The statistic
T(x) is called ”sufficient” which intuitively means that we get the same
(and no less) information about the unknown parameter η from observ-
ing the value of statistic T(x) than from observing the full x. If T is the
identity and X is a subset of Rd, we call the family natural and η a natural
parameter. Since the integral or sum of pη(x) must be equal to 1, we have
that the log-partition function, also known as log-normalizer, is given by,
in continuous distributions

A(η) = log
∫

x∈X
h(x) exp(ηTT(x))dx,

or, in discrete distributions,

A(η) = log ∑
x∈X

h(x) exp(ηTT(x)).

The parameter space in the canonical form is given by
Θη = {η : A(η) < ∞}. This is the set of parameters for which the distri-
bution of X is well-defined.

2
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1.1 Exponential Family 3

We classify exponential families into univariate and multivariate based
on the dimension of sample space X . In this thesis, we only consider
univariate exponential families. The dimension of the natural parameter
space Θη determines the dimension of the exponential family.

The most commonly used parameterization of any specific exponen-
tial family is called its standard parameterization or standard form. It has
a number of parameters with particular meanings, like mean, variance,
location parameter, scale parameter, shape parameter and so on. For ex-
ample, the probability density function of the Poisson distribution in the
standard form is λx exp(−λ)

x! where parameter λ represents both the mean
and the variance. In order to distinguish the canonical form (parameteri-
zation) from the standard form, we add a small circle to the standard form
(eg: p◦θ(x), A◦(θ) in the standard form vs. pη(x), A(η) in the canonical
form).

Example 1 (Bernoulli Distribution). The Bernoulli distribution, also known
as the 0 − 1 distribution, is a univariate exponential family of dimension
1. It is a type of discrete distribution. Outcome 1 means the Bernoulli
trial succeeded. 0 means the trial failed. In the standard parameterization,
the success probability of the trial is θ ∈ [0, 1]. We have probability mass
function

p◦θ(x) = θx · (1 − θ)(1−x) , x = 0 or 1.

We transform it to the canonical form. We obtain h(x) = 1. The natural
parameter is η = log θ

1−θ . The sufficient statistic is T(x) = x. The log-
partition function is A(η) = − log(1 − θ).

Example 2 (Normal Distribution). The normal distribution, also known as
Gaussian, Gauss, or Laplace-Gauss distribution, is a univariate exponen-
tial family of dimension 2. It is a type of continuous distribution and is
often used in natural and social sciences to represent real-valued random
variables. In the standard parameterization, parameter µ ∈ R is the mean
of the distribution, which determines the location of the density curve, i.e.
the curve is symmetric around x = µ. Parameter σ2 > 0 is the variance of
the distribution, which determines the scale of the density curve, i.e. the
smaller the variance, the more concentrated the curve. We have probabil-
ity density function

p◦µ,σ2(x) =
1√

2πσ2
· exp

(
− (x − µ)2

2σ2

)
, x ∈ R.

We transform it to the canonical form. We have h(x) = 1√
2π

, natural pa-
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4 Introduction

rameter vector η =

( µ
σ2

− 1
2σ2

)
, sufficient statistic vector T(x) =

(
x
x2

)
,

and log-partition function A(η) = µ2

2σ2 + log σ.

1.2 E-variables, Test-martingale and Safety

This section introduces the central concepts related to E-variables, and
provides an important lemma about them. Both the definitions and the
lemma are taken from Grünwald et al. (2020), though the definition of
‘test martingale’ below is just the classical, standard definition of ‘nonneg-
ative supermartingale with starting value ≤ 1’, which can be found in any
advanced probability textbook, e.g. Williams (1991).

Let H0 be a set of distributions for random process X1, X2, . . .. Through-
out this thesis, H0 represents the null hypothesis.

Definition 2 (Conditional E-variable). Let X1, X2, . . . be a sequence of ran-
dom variables defined on sample space Ω. Let M1, M2, . . . be a sequence of non-
negative random variables where for all n ∈ N, Mn is determined by X1, . . . , Xn,
i.e. Mn is a function of X1, . . . , Xn. We say that Mn is an E-variable for Xn
relative to the null hypothesis H0 conditional on X1, . . . , Xn−1 if

EP0 [Mn|X1, . . . , Xn−1] ≤ 1 for all P0 ∈ H0.

We call a sequence M1, M2, . . . a conditional E-variable process.

Definition 3 (Test Martingale). If for all n ∈ N, Mn is an E-variable for Xn
conditional on X1, . . . , Xn−1, then the sequence M(1), M(2), . . . with M(n) =
∏n

i=1 Mi is called a test martingale relative to the null hypothesis H0.

Definition 4 ((Unconditional) E-variable). Let X1, X2, . . . be a sequence of
random variables defined on sample space Ω. Let S(n) be a non-negative random
variable which is determined by X1, . . . , Xn, i.e. S(n) is a function of X1, . . . , Xn.
We say that S(n) is an (unconditional) E-variable for Xn relative to the null hy-
pothesis H0 if

EP0 [S
(n)] ≤ 1 for ∀ P0 ∈ H0.

An E-variable is called sharp if the above holds with equality for at
least one P0 ∈ H0.

We call the value that an E-variable takes on a given data sample the
E-value; some authors use ‘E-value’ also for ‘E-variable’, similarly to what
is customary for p-values.

4
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1.2 E-variables, Test-martingale and Safety 5

Lemma 1 (E-variable Lemma). Suppose that M1, M2, . . . is a conditional E-
variable process, then for all n, M(n) is an E-variable for Xn, i.e.

EP0 [M
(n)] ≤ 1 for ∀ P0 ∈ H0.

Safety

We are interested in E-variables and test martingales because type-I error
probability bounds can be guaranteed irrespective of the stopping rule
used: for any test martingale {S(i)}i∈N, Ville’s inequality (Grünwald et al.,
2020, Shafer, 2019) shows that, for all 0 < α < 1, P ∈ H0,

P(there exists i such that S(i) ≥ 1/α) ≤ α.

Thus, if evidence against the null hypothesis H0 after observing i data
units is measured by S(i), and we reject the null hypothesis if S(i) ≥ 1/α,
then our type-I error will be bounded by α, independently of the stopping
rule used to determine i. We thus have type-I error control independently
of the stopping rule that is used, even if it is externally imposed, or if it
is chosen to be as aggressive as possible (keep sampling until S(i) ≥ 1/α
or time runs out); in contrast, in classical testing based on p-values, the
stopping rule must be determined in advance and must be adhered to to
get Type-I error control.

Any test which is based on {S(i)}i∈N and a stopping time τ that, after
stopping, rejects iff S(τ) ≥ 1/α is called a level α-test that is a safe under
optional stopping, or simply a safe test.

1.2.1 Hypotheses

The null hypothesis H0 and the alternative hypothesis H1 are both de-
fined as sets of distributions of random process X1, X2, . . . and thus define
marginal distributions for vector Xn. We now introduce some important
E-variables for Xn for three different types of H0,H1. All members of any
H0 or H1 mentioned below are thus probability distributions for Xn, and
they are assumed to have densities or probability mass functions. For dis-
tribution P (or Q) we denote its corresponding density/mass function by
p (or q, respectively).

Simple H0 & Simple H1

Example 3. Suppose that the null hypothesis H0 and the alternative hy-
pothesis H1 are simple, meaning that each hypothesis contains just a sin-
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6 Introduction

gle distribution for Xn, i.e. H0 = {P0} and H1 = {P1}. The likelihood
ratio for n outcomes p1(Xn)

p0(Xn)
is a sharp E-variable since

Ep0

[
p1(Xn)

p0(Xn)

]
=
∫

p0(xn) · p1(xn)

p0(xn)
dxn = 1,

with the integral replaced by a sum in case of probability mass functions.

Simple H0 & Composite H1

Example 4. Suppose that the null hypothesis H0 is simple, i.e. H0 = {P0},
and the alternative hypothesis H1 is composite, containing many distri-
butions for Xn, i.e. H1 = {Pθ|θ ∈ Θ1} for some (nonsingleton) set Θ1.
Let W1 be an arbitrary distribution on Θ1, with density function w1(θ).
In Bayesian statistics, one interprets W1 as a ‘prior distribution’ and mea-
sures the evidence in favor of H1 provided by the data Xn by the Bayes

factor
pW1

(Xn)

p0(Xn)
where we have

pW1(Xn) =
∫

θ∈Θ1

pθ(Xn) · w1(θ)dθ =
n

∏
i=1

pW1(Xi|Xi−1)

with
pW1(Xi|Xi−1) =

∫
θ∈Θ1

pθ(Xi) · w1(θ|Xi−1)dθ,

and w1(θ|Xi−1) the Bayesian posterior density of θ (Berger, 1985). No mat-

ter what distribution W1 is chosen, the Bayes factor
pW1

(Xn)

p0(Xn)
is an E-variable

since

Ep0

[
pW1(Xn)

p0(Xn)

]
=
∫

p0(xn) ·
pW1(xn)

p0(xn)
dxn = 1.

Composite H0 & Simple H1

In the case of a composite null hypothesis, E-variables are no longer as
easy to construct as in the case of the simple null hypothesis H0. Grünwald
et al. (2020) introduce a general way to find an E-variable nevertheless.
To explain it, we first need to introduce KL divergence (Andersen, 1970,
Kullback and Leibler, 1951) and reverse information projection (Li, 1999,
Li and Barron, 1999).

Definition 5 (KL Divergence). Kullback-Leibler divergence, also known as rela-
tive entropy or expected log-likelihood ratio, is a measure of the difference between

6
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1.3 Overview of thesis and main results 7

two probability distributions. Let P and Q be two probability distributions for a
random variable X. The KL divergence of P from Q is denoted and defined as

D(P||Q) := EP

[
log

p(X)

q(X)

]
.

Definition 6 (Reverse Information Projection (RIPr)). Suppose that the null
hypothesis H0 is a set of distributions for Xn with parameter θ, i.e. H0 = {Pθ :
θ ∈ Θ0}. We enlarge it to a convex set {PW0 |W0 ∈ W(Θ0)} where W(Θ0)
contains all distributions on Θ0 and

pW0(xn) =
∫

θ∈Θ0

pθdW0(θ)

We call this ‘the Bayes marginal distribution based on prior W0’. We take the
alternative hypothesis H1 to be simple, i.e. H1 = {P1}. We call PW∗

0
the Reverse

Information Projection (RIPr) of P1 if

W∗
0 = arg min

W0∈W(Θ0)
D(P1||PW0).

In the remainder of this thesis we will also use the RIPr terminology
for densities, i.e. we will also say ‘pW∗

0
is the RIPr of p1’.

Theorem 1 (Theorem 1 from (Grünwald et al., 2020)). Based on the condi-
tions in Definition 6, if PW∗

0
is a RIPr of P1, then p1

pW∗
0

is an E-variable, i.e.

Epθ

[
p1(Xn)

pW∗
0
(Xn)

]
≤ 1 for ∀θ ∈ Θ0.

In this thesis, we focus on this case of composite null hypothesis H0
and the simple alternative hypothesis H1, since obtaining E-variables for
simple null is easy, as indicated above, and, once we have an E-variable for
simple alternative vs. composite null, it is easy to extend this to composite
vs. composite. Various methods for doing this are described by Grünwald
et al. (2020) (the ‘GROW’ and ‘REGROW’ e-variables). Thus, the only in-
herently difficult case is that of composite null and simple alternative, and
this the only case we will consider from now on.

1.3 Overview of thesis and main results

Calculating the RIPr is a general method for finding an E-variable. There
are three cases: the RIPr may be a single distribution in the null model, or
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8 Introduction

a mixture of such distributions, or it may be arbitrarily well-approximated
(in the sense described by Li (1999)) by such mixtures, while not being it-
self such a mixture. When the RIPr is a single distribution, it is easy to cal-
culate. We find that there is no general rule to find the RIPr for the whole
exponential families. We aim to find some cases of exponential families
in which the RIPr is simple (i.e. a single distribution in the null model).
For three types of problems in which the null is an exponential family and
the alternative is an element of some other exponential family (Chapter
2,3,4), we can obtain a simple RIPr when the simple conditions of Lemma
(2,4,6) and Theorem (2,3,4) are satisfied. Lemma (3,5,7) are used to exclude
the existence of a simple RIPr. Chapter 2 discusses E-variables where the
alternative hypothesis is an element of a two-parameter exponential fam-
ily. Chapter 3 discusses E-variables in which the alternative hypothesis is
taken from a set of one-parameter exponential families indexed by an ad-
ditional integer parameter k. Chapter 4 considers E-variables in the con-
text of n outcomes of one-parameter exponential families. In Chapter 5,
we extend the cases in which there exists a simple RIPr by transforming
random variables and introduce some conditions (Theorem 5) of transfor-
mations that make it hold. We give several examples in all these chapters.
We especially mention Example 4.2.2 which shows that there does not exist
a simple RIPr for two outcomes of the exponential distribution. In Chap-
ter 6, we approximate this non-simple RIPr anyway, as a finite mixture of
distributions. We calculate it in a specific setting by programming in R
and verify that it has the right properties.

8
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Chapter 2
Two-parameter Exponential
Families

In this chapter, we discuss E-values where the alternative is an element of
an exponential family of dimension 2. In many cases, a particular value
of one parameter can simplify this two-parameter exponential family to a
well-known one-parameter exponential family which we can then take to
be the null. For example, when the shape parameter α of a gamma distri-
bution Gamma(α, β) is equal to 1, the gamma distribution is an exponential
distribution with parameter β.

Assuming that RIPr is a single distribution, Lemma 2 simplifies the
process of computing the parameter of this possible simple RIPr. Theorem
2 describes when this possible simple RIPr holds. Lemma 3 gives a simple
sufficient condition to exclude this possible simple RIPr.

We consider the canonical form of exponential families with two pa-
rameters, i.e. with density

pη(x) = h(x) exp(ηTT(x)− A(η)),

natural parameter vector

η =

(
ηa
ηb

)
,

sufficient statistic vector

T(x) =
(

Ta(x)
Tb(x)

)
,
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10 Two-parameter Exponential Families

and log-partition function

A(η) = log
∫

x∈X
h(x) exp(ηTT(x))dx in continuous distributions

= log ∑
x∈X

h(x) exp(ηTT(x)) in discrete distributions,

where h : X → R+
0 is a non-negative function.

Let Θη be the set of values η for which this distribution is well-defined,
i.e. Θη = {η : A(η) < ∞}.

Now, we calculate some useful partial derivatives. The partial deriva-
tive for A(η) in continuous distribution with respect to ηb is

∂A(η)

∂ηb
=

∫
Tb(x)h(x) exp(ηTT(x))dx∫

h(x) exp(ηTT(x))dx

=
∫

Tb(x)h(x) exp(ηTT(x)− A(η))dx = Epη[Tb(X)].

The second partial derivative for A(η) with respect to ηb is

∂2A(η)

∂η2
b

=
∫

Tb(x)h(x) exp(ηTT(x)− A(η))(Tb(x)− ∂

∂ηb
A(η))dx

=
∫

Tb(x)h(x) exp(ηTT(x)− A(η))(Tb(x)− Epη[Tb(X)])dx

= Epη[T
2
b (X)]− Epη[Tb(X)]Epη[Tb(X)] = varpη[Tb(X)]

We have the same results in discrete distributions.

2.1 Simple RIPr for Two-parameter Exponential
Family

Let P = {pη = pηa,ηb : ηa ∈ Θηa , ηb ∈ Θηb} with parameter space Θηa , Θηb ⊂
R denote a two-parameter exponential family. We suppose the null hy-
pothesis H0 is composite and is given by

H0 : X ∼ Pη0
= pη0a,η0b for a fixed η0a ∈ Θηa and varying η0b ∈ Θηb .

The alternative hypothesis H1 simple and is given by

H1 : X ∼ Pη1
= pη1a,η1b for a fixed η1a ̸= η0a , η1a ∈ Θηa and a fixed η1b ∈ Θηb .

10
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2.1 Simple RIPr for Two-parameter Exponential Family 11

In this chapter, we try to identify cases in which the RIPr pW∗
0

is simple,
which means that RIPr is a single distribution, i.e. W∗

0 (η
∗
0 ) = 1 for some

η∗
0 ∈ Θηa × Θηb and then pW∗

0
= pη∗0

. By definition of RIPr, if such an η∗0
exists at all, it must minimize D(pη1 ||pη0) over η0 = (η0a, η0b), η0b ∈ Θηb .
So our strategy will be to determine the η∗0 minimizing D(pη1 ||pη0) and
then check whether it is a RIPr by checking whether p1

pW∗
0
= p1

pη∗0
is an E-

variable later.

Lemma 2. Assuming there exists η∗0 = (η0a, η∗
0b)

T satisfying Epη∗0
[Tb(X)] =

Epη1
[Tb(X)], then this η∗0 minimizes D(pη1 ||pη0) over η0 = (η0a, η0b), η0b ∈

Θηb .

Proof. For all η0b ∈ Θηb , the KL divergence satisfies:

D(pη1 ||pη0) = Epη1

[
log

pη1

pη0

]
= Epη1

[
log

h(X) exp(η1
TT(X)− A(η1))

h(X) exp(η0TT(X)− A(η0))

]
= Epη1

[η1
TT(X)− η0

TT(X)− A(η1) + A(η0)]

= Epη1
[η1

TT(X)− η0aTa(X)− η0bTb(X)− A(η1) + A(η0)]

Taking the derivative with respect to η0b, we have

dD(pη1 ||pη0)

dη0b
= −Epη1

[Tb(X)] +
d

dη0b
A(η0)

= −Epη1
[Tb(X)] + Epη0

[Tb(X)]

and when η∗0 = (η0a, η∗
0b)

T satisfies Epη∗0
[Tb(X)] = Epη1

[Tb(X)], dD(pη1 ||pη0 )
dη0b

=

0. Taking the second derivative with respect to η0b, we get

d2D(pη1 ||pη0)

dη2
0b

=
d2

dη2
0b

A(η0) = varpη0
[Tb(X)] > 0,

so this KL divergence is a convex function in η0b, and is minimal when
η0b = η0b∗ .

Theorem 2. If η2 = η1 + η0 − η∗0 is included in the parameter space Θη, i.e.
η2a = η1a ∈ Θηa and η2b = η1b + η0b − η∗

0b ∈ Θηb , then

Epη0

[
pη1

pη∗0

]
= exp(A(η∗0 )− A(η1)− A(η0) + A(η2)).
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12 Two-parameter Exponential Families

Moreover, define f (η0b) := log Epη0

[
pη1
pη∗0

]
as a function of η0b (with η1a, η1b,

η0a fixed). Then f (η∗
0b) is a local maximum or minimum value.

If f (η0b) takes the global maximum value at η∗
0b, in particular, if f (η0b) is in-

creasing for η0b < η∗
0b and decreasing for η0b > η∗

0b, then pη1
pη∗0

is an E-variable,

i.e.

Epη0

[
pη1

pη∗0

]
≤ 1, ∀ η0b ∈ Θηb .

Otherwise, if f (η0b) does not take the global maximum value at η∗
0b, in particular,

if f (η∗
0b) is a local minimum value, then pη1

pη∗0
is not an E-variable and there does

not exist a simple RIPr.

Proof.

Epη0

[
pη1

pη∗0

]
=
∫ h(x) exp(η1

TT(x)− A(η1))

h(x) exp(η∗0
TT(x)− A(η∗0 ))

· h(x) exp(η0
TT(x)− A(η0))dx

=
∫

h(x) exp((η1
T + η0

T − η∗0
T)T(x)− A(η1)− A(η0) + A(η∗0 ))dx

=
∫

h(x) exp(η2
TT(x)− A(η1)− A(η0) + A(η∗0 ))dx

= exp(A(η∗0 )− A(η1)− A(η0) + A(η2))

·
∫

h(x) exp(η2
TT(x)− A(η2))dx

= exp(A(η∗0 )− A(η1)− A(η0) + A(η2)) · 1 (2.1)

In (2.1), since η2 is included in the parameter space, h(x) exp(η2
TT(x) −

A(η2)) is a density of the two-parameter exponential family with param-
eter η2, and the integral of a probability is equal to 1.

Recall that η1a, η1b, η0a are fixed to particular values. We take the loga-
rithm of the expectation as a function f (η0b):

f (η0b) = log Epη0

[
pη1

pη∗0

]
= A(η∗0 )− A(η1)− A(η0) + A(η2).

When η0b = η∗
0b , we get f (η∗

0b) = 0 and Epη0∗

[
pη1
pη∗0

]
= 1.

Taking the derivative with respect to η0b, we get

d f (η0b)

dη0b
=

d
dη0b

(A(η2)− A(η0))

= Epη2
[Tb(X)]− Epη0

[Tb(X)].

12
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2.2 Examples 13

When η0b = η∗
0b , d f (η0b)

dη0b
= 0, so f (η0b) is a local maximum or minimum

value.
If f (η0b) takes the global maximum value at η∗

0b, then for ∀ η0b ∈ Θηb ,

f (η0b) ≤ 0 and Epη0

[
pη1
pη∗0

]
≤ 1.

If f (η0b) does not take the maximum value at η∗
0b, then there is a η0b

such that f (η0b) > f (η∗
0b) = 0 and Epη0

[
pη1
pη∗0

]
> Epη∗0

[
pη1
pη∗0

]
= 1.

Lemma 3. f (η0b) := log Epη0

[
pη1
pη∗0

]
takes a local minimum value at η∗

0b iff

varpη1
[Tb(X)]− varpη∗0

[Tb(X)] > 0.

Proof. Recall that d f (η0b)
η0b

|η0b=η∗
0b
= 0 in the proof of Theorem 2. Taking the

second derivative of f (η0b) with respect to η0b, we find

d2 f (η0b)

dη2
0b

=
d2

dη2
0b
(A(η2)− A(η0))

= varpη2
[Tb(X)]− varpη0

[Tb(X)].

From the condition of the lemma, we have

d2 f (η0b)

dη2
0b

|η0b=η∗
0b
= varpη1

[Tb(X)]− varpη∗0
[Tb(X)] > 0,

then f (η∗
0b) is a local minimum value.

2.2 Examples

This section presents two examples.

2.2.1 Example: The Normal Distribution

We consider the set of normal distributions N (µ, σ2) with mean µ ∈ R

and variance σ2 > 0 which is a common exponential family of dimension
2. The density function with parameters µ, σ2, i.e. in the standard param-
eterization, is

p◦µ,σ2(x) =
1√

2πσ2
· exp(− (x − µ)2

2σ2 ), x ∈ R.
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14 Two-parameter Exponential Families

Straightforward calculation shows that the The canonical form is as
below:

p◦µ,σ2(x) = pη(x) = h(x) exp(ηTT(x)− A(η)),

with h(x) = 1√
2π

, natural parameter vector

η =

(
ηa
ηb

)
=

( µ
σ2

− 1
2σ2

)
,

sufficient statistic vector

T(x) =
(

Ta(x)
Tb(x)

)
=

(
x
x2

)
,

and log-partition function

A(η) = A◦(µ, σ2) =
µ2

2σ2 + log σ = − η2
a

4ηb
− 1

2
log(−2ηb).

The set of natural parameters Θη is Θη = {η = (ηa, ηb) : ηa ∈ R, ηb < 0}.

Hypotheses: The null hypothesis H0 is a set of normal distributions with
density p◦0,σ2

0
, mean 0 and variance σ2

0 (σ0 ∈ R+) (i.e. the normal scale fam-

ily), and the corresponding canonical form with density p0,η0b (η0b ∈ R−).
The alternative hypothesis H1 is a fixed normal distribution with density
p◦

µ1,σ2
1

with mean µ1 ̸= 0, µ1 ∈ R and variance σ2
1 (σ1 ∈ R+). The corre-

sponding canonical form with density pη1a,η1b has η1a ̸= 0, η1a ∈ R and
η1b ∈ R−.

Result: There is a simple RIPr p◦0,σ∗2
0

for these hypotheses where σ∗2
0 =

σ2
1 + µ2

1, so that
p◦

µ1,σ2
1

p◦
0,σ∗2

0

is an E-variable, i.e. for all µ1 ∈ R,

Ep◦
0,σ2

0

 p◦
µ1,σ2

1

p◦
0,σ∗2

0

 ≤ 1, for ∀ σ0 ∈ R+.

Proof. By the parameter transformation, D(pη1 ||pη0) is the same as D(p◦
µ1,σ2

1
||p◦0,σ2

0
),

and getting η∗
0b from Epη∗0

[X2] = Epη1
[X2] is equivalent to getting σ∗2

0 from

Ep◦
0,σ∗2

0

[X2] = Ep◦
µ1,σ2

1

[X2], with

Ep◦
µ,σ2

[X2] = varp◦
µ,σ2

[X] + (Ep◦
µ,σ2

[X])2 = σ2 + µ2.

14
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2.2 Examples 15

We have

σ∗2
0 = σ2

1 + µ2
1 satisfying Ep◦

0,σ∗2
0

[X2] = Ep◦
µ1,σ2

1

[X2].

According to Lemma 2, this σ∗2
0 minimizes KL divergence D(p◦

µ1,σ2
1
||p◦0,σ2

0
).

We have
η2a = η1a + η0a − η∗

0a = η1a =
µ1

σ2
1

and

η2b = η1b + η0b − η∗
0b = − 1

2σ2
1
− 1

2σ2
0
+

1
2σ∗2

0
= −

σ2
0 µ2

1 + σ2
1 σ∗2

0

2σ2
0 σ2

1 σ∗2
0

< 0.

We get

A(η2) = − η2
2a

4η2b
− 1

2
log(−2η2b)

=
σ∗2

0 µ2
1

2σ2
1

·
σ2

0

σ2
0 µ2

1 + σ2
1 σ∗2

0
− 1

2
log(σ2

0 µ2
1 + σ2

1 σ∗2
0 ) + log σ1 + log σ0 + log σ∗

0 .

From Theorem 2, we have

f ◦(σ0) = f (η0b) = log Epη0

[
pη1

pη∗0

]
= A(η∗0 )− A(η1)− A(η0) + A(η2).

Taking the first derivative of f ◦(σ0) with respect to σ0, we get

d f ◦(σ0)

dσ0
=

dA(η2)

dσ0
− dA(η0)

dσ0

=
d

dσ0

[
σ∗2

0 µ2
1

2σ2
1

·
σ2

0

σ2
0 µ2

1 + σ2
1 σ∗2

0
− 1

2
log(σ2

0 µ2
1 + σ2

1 σ∗2
0 ) + log σ0

]

− d
dσ0

[log σ0]

=
σ0µ4

1(σ
∗2
0 − σ2

0 )

(σ2
0 µ2

1 + σ2
1 σ∗2

0 )2
.

If σ0 < σ∗
0 , then d f ◦(σ0)

dσ0
> 0. If σ0 > σ∗

0 , then d f ◦(σ0)
dσ0

< 0. So f ◦(σ0)

first increases and then decreases, taking the maximum value at σ∗
0 . More-

over, f ◦(σ∗
0 ) = f (η∗

0b) = 0, so for all σ0 ∈ R+, f ◦(σ0) ≤ f ◦(σ∗
0 ) = 0 and

Ep◦
0,σ2

0

[
p◦

µ1,σ2
1

p◦
0,σ∗2

0

]
≤ Ep◦

0,σ∗2
0

[
p◦

µ1,σ2
1

p◦
0,σ∗2

0

]
= 1.
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16 Two-parameter Exponential Families

2.2.2 Example: The Gamma Distribution

Another well-known two-dimensional exponential family distribution is
the gamma distribution Gamma(α, β) (α > 0, β > 0). It has density in the
standard parameterization, with parameters α, β:

p◦α,β(x) =
βα

Γ(α)
xα−1 exp(−βx), x > 0,

where Γ(α) is the gamma function: when n ∈ N+,

Γ(n) = (n − 1)!

and when z is a real number,

Γ(z) =
∫ ∞

0
xz−1 exp(−x)dx.

In particular, Γ(1) = 1. Moreover, the mean and variance of this distribu-
tion are, respectively,

Ep◦α,β
[X] =

α

β
, varp◦α,β

[X] =
α

β2 .

When α = 1, it can be simplified to an exponential distribution with pa-
rameter β as below:

p◦1,β(x) =
β1

Γ(1)
x1−1 exp(−βx) = β exp(−βx).

We require ηa = 0 in the canonical form when α = 1. The canonical form
is

p◦α,β(x) = pη(x) = h(x) exp(ηTT(x)− A(η)),

with h(x) = 1, natural parameter vector

η =

(
ηa
ηb

)
=

(
α − 1
−β

)
,

sufficient statistic vector

T(x) =
(

Ta(x)
Tb(x)

)
=

(
log x

x

)
,

and log-partition function

A(η) = A◦(α, β) = log Γ(α)− α log β = log Γ(ηa + 1)− (ηa + 1) log(−ηb).

16
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2.2 Examples 17

The natural parameter space Θη is Θη = {η = (ηa, ηb) : ηa > 1, ηb < 0}.

Hypotheses: Assume that the null hypothesis H0 consists of the gamma
distributions with density p◦1,β0

(β0 > 0). These gamma distributions are
also exponential distributions with parameter β0. If we convert them to
canonical form, then the density becomes p0,η0b with η0b < 0. For the al-
ternative hypothesis H1, we take a fixed gamma distribution with density
p◦α1,β1

, parameters in the standard parameterization α1 ̸= 1, α1 > 0 and
β1 > 0. The density in the canonical form is pη1a,η1b with natural parame-
ters η1a ̸= 0, η1a > −1 and η1b < 0.

Result: Based on the hypotheses above, if α1 > 1, then there is a simple

RIPr p◦1,β∗0
where β∗

0 = β1
α1

, and
p◦α1,β1
p◦1,β∗0

is an E-variable, i.e.

Ep◦1,β0

[
p◦α1,β1

p◦1,β∗0

]
≤ 1, for ∀ β0 ∈ R+.

If 0 < α1 < 1 and β0 > ( 1
α1
− 1)β1, then

p◦α1,β1
p◦1,β∗0

is not an E-variable and there

does not exist a simple RIPr.

If 0 < α1 < 1 and β0 < ( 1
α1

− 1)β1, then Ep◦1,β0

[
p◦α1,β1
p◦1,β∗0

]
is not well-defined.

Proof. By the parameter transformation, p0,η0b = p◦1,β0
and pη1a,η1b = p◦α1,β1

.
The mean of a gamma distribution is

Epηa ,ηb
[X] = Ep◦α,β

[X] =
α

β
.

We know β∗
0 = β1

α1
, so it holds that

Ep0,η∗0b
[X] = Ep◦1,β∗0

[X] =
1
β∗

0
=

α1

β1
= Ep◦α1,β1

[X] = Epη1a ,η1b
[X].

According to Lemma 2, this β∗
0 makes the KL divergence D(pη1a,η1b ||pη0a,η0b)

(in other words, D(p◦α1,β1
||p◦α0,β0

)) take its minimum value.
In addition, we have

η2a = η1a + η0a − η0a∗ = η1a = α1 − 1

and

η2b = η1b + η0b − η0b∗ = −β1 − β0 + β∗
0 = −β1(1 −

1
α1

)− β0.
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18 Two-parameter Exponential Families

For α1 > 1, we have η2b < 0, which is in this canonical parameter space.
We have

A(η2) = log Γ(η2a + 1)− (η2a + 1) log(−η2b)

= log Γ(α1)− α1 log(β1 + β0 − β∗
0).

From Theorem 2, we obtain

f ◦(β0) = f (η0b) = log Epη0

[
pη1

pη∗0

]
= A(η∗0 )− A(η1)− A(η0) + A(η2).

Taking the first derivative of f ◦(β0) with respect to β0, we get

d f ◦(β0)

dβ0
=

dA(η2)

dβ0
− dA(η0)

dβ0

=
d

dβ0
[−α1 log(β1 + β0 − β∗

0)]−
d

dβ0
[− log β0]

=
1
β0

− α1

β1 + β0 − β∗
0

=
(α1 − 1)(β∗

0 − β0)

β0[β0 + β1(1 − 1
α1
)]

.

Since α1 > 1, if β0 < β∗
0, then d f ◦(β0)

dβ0
> 0. If β0 > β∗

0, then d f ◦(β0)
dβ0

< 0. So
f ◦(β0) first increases and then decreases, taking the maximum value at β∗

0.
Moreover, f ◦(β∗

0) = f ◦(η∗
0b) = 0, so for all β0 ∈ R+, f ◦(β0) ≤ f ◦(β∗

0) = 0

and Ep◦1,β0

[
p◦α1,β1
p◦1,β∗0

]
≤ Ep◦1,β∗0

[
p◦α1,β1
p◦1,β∗0

]
= 1. Then

p◦α1,β1
p◦1,β∗0

is an E-variable.

For 0 < α1 < 1, only when β0 > ( 1
α1

− 1)β1, η2b < 0 holds.
We know that the variance of gamma distribution is

varpηa ,ηb
[X] = varp◦α,β

[X] =
α

β2 ,

so

varpη1a ,η1b
[X]− varp0,η∗0b

[X] = varp◦α1,β1
[X]− varp◦1,β∗0

[X]

=
α1

β2
1
− 1

β∗2
0

=
α1

β2
1
(1 − α1) > 0.

From Lemma 3, log Ep◦1,β0

[
p◦α1,β1
p◦1,β∗0

]
takes a local minimum value at β∗

0. Ac-

cording to Theorem 2,
pα1,β1
p1,β∗0

is not an E-variable.

18
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2.2 Examples 19

For 0 < α1 < 1, when β0 < ( 1
α1

− 1)β1, η2b > 0 and then it is not
included in the parameter space Θηb .
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Chapter 3
One-parameter Exponential
Families with Fixed Parameter k

This chapter discusses E-values in which the alternative is taken from a
set of exponential families of dimension 1 indexed by an additional in-
teger parameter k. The sufficient statistic T(x) and natural parameter η
are independent of parameter k in the canonical form and the probability
density (mass) function of this distribution is given by

pk,η(x) = hk(x) exp(ηT(x)− Ak(η)), (k fixed)

where natural parameter η is a function of original parameter (i.e. in the
standard parameterization) θ

η = η(θ),

hk(x) is a non-negative function of x with fixed k

hk(x) = h(x, k),

and log-partition function is

Ak(η) = log
∫

hk(x) exp(ηT(x))dx in continuous distributions

= log ∑
x

hk(x) exp(ηT(x)) in discrete distributions.

The treatment in this chapter is analogous to the treatment in chapter 2.
Lemma 4 gives us a candidate for the RIPr with a simple form (i.e. a single
distribution). Theorem 3 indicates when this candidate is indeed the RIPr
and Lemma 5 gives an easy characterization when it is not.

20

Version of – Created August 19, 2022 - 07:51



3.1 Simple RIPr for One-parameter Exponential Families with Fixed k 21

We compute some useful derivatives. The first derivative for Ak(η) in
continuous distributions is

dAk(η)

dη
=

∫
T(x)hk(x) exp(ηT(x))dx∫

hk(x) exp(ηT(x))dx

=
∫

T(x)hk(x) exp(ηT(x)− Ak(η))dx = Epk,η [T(X)].

The second derivative for Ak(η) is

d2Ak(η)

dη2 =
∫

T(x)hk(x) exp(ηT(x)− Ak(η))(T(x)− dAk(η)

dη
)dx

=
∫

T(x)hk(x) exp(ηT(x)− Ak(η))(T(x)− Epk,η [T(X)])dx

= Epk,η [T
2(X)]− Epk,η [T(X)]Epk,η [T(X)] = varpk,η [T(X)].

We have the same results for discrete distributions.

3.1 Simple RIPr for One-parameter Exponential
Families with Fixed k

We use P = {pk,η : fixed k ∈ Θk, η ∈ Θη} with Θk ⊂ N, Θη ⊂ R to denote
the one-parameter families we mentioned above. The null hypothesis is
composite and is given by

H0 : X ∼ Pk0,η0 for a fixed k0 ∈ Θk and varying η0 ∈ Θη

The alternative hypothesis is simple and is given by

H1 : X ∼ Pk1,η1 for a fixed k1 ̸= k0, k1 ∈ Θk and a fixed η1 ∈ Θη

In this chapter, just like in the previous chapter, we aim to find con-
ditions under which the RIPr pW∗

0
is simple, that is, RIPr is a single dis-

tribution, i.e. W∗
0 (η

∗
0 ) = 1 and then pW∗

0
= pη∗

0
. Again, we first find the

η∗
0 minimizing KL divergence D(pk1,η1 ||pk0,η0) over η0 ∈ Θη; if the RIPr is

simple it must be given by pη∗
0
. After finding pη∗

0
, we must check whether

it is a RIPr by checking whether p1
pη∗0

is an E-variable.

Lemma 4. The η∗
0 satisfying Epk1,η1

[T(X)] = Epk0,η∗0
[T(X)], if it exists, mini-

mizes D(pk1,η1 ||pk0,η0) over η0 ∈ Θη.
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22 One-parameter Exponential Families with Fixed Parameter k

Proof. For ∀ η0 ∈ Θη, KL divergence

D(pk1,η1 ||pk0,η0) = Epk1,η1

[
log

pk1,η1

pk0,η0

]

= Epk1,η1

[
log

hk1(X) exp(η1T(X)− Ak1(η1))

hk0(X) exp(η0T(X)− Ak0(η0))

]
= Epk1,η1

[
log hk1(X)− log hk0(X) + η1T(X)− η0T(X)

−Ak1(η1) + Ak0(η0)
]

Taking the derivative with respect to η0,we get

dD(pk1,η1 ||pk0,η0)

dη0
= −Epk1,η1

[T(X)] +
d

dη0
Ak0(η0)

= −Epk1,η1
[T(X)] + Epk0,η0

[T(X)]

When η∗
0 satisfies Epk1,η1

[T(X)] = Epk0,η0
[T(X)],

dD(pk1,η1
||pk0,η0

)

dη0
= 0. Taking

the second derivative with respect to η0, we have

d2D(pk1,η1 ||pk0,η0)

dη2
0

=
d2

dη2
0

Ak0(η0) = varpk0,η0
[T(x)] > 0,

so this KL divergence is a convex function, and is minimal when η0 =
η∗

0 .

Theorem 3. If η2 = η1 + η0 − η∗
0 as a function of η0 is included in parameter

space Θη, then

Epk0,η0

[
pk1,η1

pk0,η∗
0

]
= exp(Ak0(η

∗
0 )− Ak1(η1)− Ak0(η0) + Ak1(η2)).

Moreover, define f (η0) := log Epk0,η0

[
pk1,η1
pk0,η∗0

]
as a function of η0 (with k1, η1, k0

fixed). Then f (η0) is a local maximum or minimum value.
If f (η0) takes the maximum value at η∗

0 , in particular, if f (η0)is increasing for
η0 < η∗

0 and decreasing for η0 > η∗
0 , then

pk1,η1
pk0,η∗0

is an E-variable, i.e.

Epk0,η0

[
pk1,η1

pk0,η∗
0

]
≤ 1, ∀η0 ∈ Θη,

22
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3.1 Simple RIPr for One-parameter Exponential Families with Fixed k 23

Otherwise, if f (η0) does not take the maximum value at η∗
0 , in particular, if f (η∗

0 )

is a local minimum value, then
pk1,η1
pk0,η∗0

is not an E-variable, and there does not exist

a simple RIPr.

Proof.

Epk0,η0

[
pk1,η1

pk0,η∗
0

]
=
∫ hk1(x) exp(η1T(x)− Ak1(η1))

hk0(x) exp(η∗
0 T(x)− Ak0(η

∗
0 ))

hk0(x)

· exp(η0T(x)− Ak0(η0))dx

=
∫

hk1(x) exp((η1 + η0 − η∗
0 )T(x)− Ak1(η1)

− Ak0(η0) + Ak0(η
∗
0 ))dx

=
∫

hk1(x) exp(η2T(x)− Ak1(η1)− Ak0(η0) + Ak0(η
∗
0 ))dx

= exp(Ak0(η
∗
0 )− Ak1(η1)− Ak0(η0) + Ak1(η2))

·
∫

hk1(x) exp(η2T(x)− Ak1(η2))dx

= exp(Ak0(η
∗
0 )− Ak1(η1)− Ak0(η0) + Ak1(η2)) · 1 (3.1)

In (3.1), since η2 is included in the parameter space, hk1(x) exp(η2T(x)−
Ak1(η2)) is density of the one-parameter exponential family with parame-
ter η2, and the integral of a probability is equal to 1.

For fixed k1, η1 and k0, set the logarithm of the expectation to the func-
tion f (η0):

f (η0) = log Epk0,η0

[
pk1,η1

pk0,η∗
0

]
= Ak0(η

∗
0 )− Ak1(η1)− Ak0(η0) + Ak1(η2)

When η0 = η∗
0 , we get f (η∗

0 ) = 0 and Epk0,η∗0

[
pk1,η1
pk0,η∗0

]
= 1.

Taking the derivative with respect to η0, we have

d f (η0)

dη0
=

d
dη0

(Ak1(η2)− Ak0(η0))

= Epk1,η2
[T(X)]− Epk0,η0

[T(X)]

When η0 = η∗
0 , d f (η0)

dη0
= 0, so f (η0) is a local maximum or minimum value.

If f (η0) takes the maximum value at η∗
0 , then for ∀ η0 ∈ Θη, f (η0) ≤ 0

and Epk0,η0

[
pk1,η1
pk0,η∗0

]
≤ 1.
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24 One-parameter Exponential Families with Fixed Parameter k

If f (η0) does not take the maximum value at η∗
0 , then there is a η0 such

that f (η0) > f (η∗
0 ) = 0 and Epk0,η0

[
pk1,η1
pk0,η∗0

]
> Epk0,η∗0

[
pk1,η1
pk0,η∗0

]
= 1.

Lemma 5. f (η0) := log Epk0,η0

[
pk1,η1
pk0,η∗0

]
takes a local minimum value at η∗

0 iff

varpk1,η1
[T(X)]− varpk0,η∗0

[T(X)] > 0

Proof. We have d f (η0)
dη0

= 0 when η0 = η∗
0 in the proof of Theorem 3. Taking

the second derivative of f (η0) with respect to η0, we get

d2 f (η0)

dη2
0

=
d2

dη2
0
(Ak1(η2)− Ak0(η0))

= varpk1,η2
[T(X)]− varpk0,η0

[T(X)]

From the condition of the lemma, we have

d2 f (η0)

dη2
0

|η0=η∗
0
= varpk1,η1

[T(X)]− varpk0,η∗0
[T(X)] > 0

then f (η∗
0 ) is a local minimum value.

3.2 Example

3.2.1 Example: Negative Binomial Distributions

The negative binomial distribution NB(r, θ) describes the number of suc-
cess before r failures occurs, with stopping parameter r ∈ N+ and success
probability θ ∈ [0, 1). It is a one-parameter exponential family distribution
for every fixed value of r. The density of this distribution is

pr,θ(x) =
(

x + r − 1
r − 1

)
θx(1 − θ)r, x ∈ N

The mean and variance of this distribution are

Epr,θ [X] =
θr

1 − θ
and varpr,θ [X] =

θr
(1 − θ)2 .

The canonical form is

pr,θ(x) = pr,η(x) = hr(x) exp(ηT(x)− Ar(η)) (for fixed r)

24
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with

hr(x) =
(

x + r − 1
r − 1

)
,

natural parameter η = log θ, sufficient statistic T(x) = x and log-partition
function

Ar(η) = A◦
r (θ) = −r log(1 − θ) = −r log(1 − exp(η)).

The natural parameter space is Θη = {η : η < 0}

Hypotheses: The null hypothesis H0 is the set of negative binomial dis-
tributions NB(r0, θ0) with fixed r0 ∈ N+ and varying θ0 ∈ [0, 1). The
corresponding canonical form pr0,η0 has parameter η0 < 0. The alternative
hypothesis H1 is a single negative binomial distribution NB(r1, θ1) with a
fixed r1 ∈ N+, r0 ̸= r1 and a fixed θ1 ∈ [0, 1). The corresponding canonical
form pr1,η1 has parameter η1 < 0.

Result: If 0 < r0 < r1, there is a simple RIPr pr0,θ∗0 based on the above

hypotheses where θ∗0 = θ1r1
θ1r1+(1−θ1)r0

, and
p◦r1,θ1
p◦r0,θ∗0

is an E-variable, i.e.

Ep◦r0,θ0
[
p◦r1,θ1

p◦r0,θ∗0

] ≤ 1, for ∀θ0 ∈ [0, 1).

If 0 < r1 < r0 and 0 ≤ θ0 < 1
(

r0
r1
−1)(1−θ1)+1

< 1, then
p◦r1,θ1
p◦r0,θ∗0

is not an E-

variable and there does not exist a simple RIPr.

If 0 < r1 < r0 and 0 ≤ 1
(

r0
r1
−1)(1−θ1)+1

≤ θ0 < 1, then Ep◦r0,θ0
[

p◦r1,θ1
p◦r0,θ∗0

] is not

well-defined.

Proof. We know p◦r0,θ0
= pr0,η0 and p◦r1,θ1

= pr1,η1 by the parameter trans-
formation. The mean of a negative binomial distribution is

Epr,η [X] = Ep◦r,θ
[X] =

θr
1 − θ

.

From the condition θ∗0 = θ1r1
θ1r1+(1−θ1)r0

, we get

Epr1,η1
[X] = Ep◦r1,θ1

[X] =
θ1r1

1 − θ1
=

θ∗0r0

1 − θ∗0
= Ep◦r0,θ∗0

[X] = Epr0,η∗0
[X]
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26 One-parameter Exponential Families with Fixed Parameter k

According to Lemma 4, this θ∗0 minimizes KL divergence D(pr1,η1 ||pr0,η0).
Moreover,

η2 = η1 + η0 − η∗
0 = log θ1 + log θ0 − log θ∗0

= log
θ1θ0

θ∗0

= log
[
(

r0

r1
− 1)(1 − θ1) + 1

]
+ log θ0.

If 0 < r0 < r1 and θ0, θ1 ∈ [0, 1), then η2 < log(0 + 1) + log θ0 < 0 is
included in the natural parameter space.
We have

Ar1(η2) = −r1 log(1 − exp(η2)) = −r1 log(1 − exp(η2))

= r1 log θ∗0 − r1 log(θ∗0 − θ1θ0).

From Theorem 3, we obtain

f ◦(θ0) = f (η0) = log Epk0,η0

[
pk1,η1

pk0,η∗
0

]
= Ak0(η

∗
0 )− Ak1(η1)− Ak0(η0)+ Ak1(η2).

Taking the first derivative of f ◦(θ0) with respect to θ0, we get

d f ◦(θ0)

dθ0
=

dAk1(η2)

dθ0
−

dAk0(η0)

dθ0

=
d

dθ0
[−r1 log(θ∗0 − θ1p0)]−

d
dθ0

[−r0 log(1 − θ0)]

=
θ1(r1 − r0)(θ

∗
0 − θ0)

(θ∗0 − θ1θ0)(1 − θ0)

Since η2 = log θ1θ0
θ∗0

< 0, then θ1θ0
θ∗0

< 1 and θ∗0 − θ1θ0 > 0. If θ0 < θ∗0 ,

then d f ◦(θ0)
dθ0

> 0. If θ0 > θ∗0 , then d f ◦(θ0)
dθ0

< 0. So f ◦(θ0) first increases
and then decreases, taking the maximum value at θ∗0 . Moreover, f ◦(θ∗0) =

f ◦(η∗
0 ) = 0, so for all θ0 ∈ [0, 1), f ◦(θ0) ≤ f ◦(θ∗0) = 0 and Ep◦r0,θ0

[
p◦r1,θ1
p◦r0,θ∗0

] ≤

Ep◦r0,θ∗0
[

p◦r1,θ1
p◦r0,θ∗0

] = 1. Then
p◦r1,θ1
p◦r0,θ∗0

is an E-variable.

If 0 < r1 < r0 and 0 ≤ θ0 < 1
(

r0
r1
−1)(1−θ1)+1

< 1, then η2 < log 1 = 0.

The variance of the negative binomial distribution is

varpr,η [X] = varp◦r,θ
[X] =

θr
(1 − θ)2

26
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3.2 Example 27

so

varpr1,η1
[X]− varpr0,η∗0

[X] = varp◦r1,θ1
[X]− varp◦r0,θ∗0

[X]

=
θ1r1

(1 − θ1)2 − θ∗0r0

(1 − θ∗0)
2

=
θ2

1r1(r0 − r1)

(1 − θ1)2r0
> 0

According to Lemma 5, log Ep◦r0,θ0
[

p◦r1,θ1
p◦r0,θ∗0

] takes a local minimum at θ0. Then

according to Theorem 3,
p◦r1,θ1
p◦r0,θ∗0

is not an E-variable.

If 0 < r1 < r0 and 0 ≤ 1
(

r0
r1
−1)(1−θ1)+1

≤ θ0 < 1, then η2 ≥ log 1 = 0 and

it is not included in the parameter space Θη.
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Chapter 4
N Outcomes of One-parameter
Exponential Families

This chapter considers E-values in the context of a sample of n indepen-
dent outcomes of a one-dimensional exponential family. We take as the
alternative a special parameter vector (η1, . . . , ηn). The density function of
the corresponding distribution is the product of the densities of n individ-
ual one-parameter exponential families, and their canonical form is

pη1,...,ηn(xn) =
n

∏
i=1

pηi(xi) =
n

∏
i=1

h(xi) exp(ηiT(xi)− A(ηi))

with log-partition function (i = 1, . . . , n)

A(ηi) = log
∫

h(x) exp(ηiT(x))dx in continuous distributions

= log ∑ h(x) exp(ηiT(x)) in discrete distributions.

We take as the null hypothesis that X1, . . . , Xn ∼ i.i.d. according to Pη,
where Pη is any number of the corresponding family.

The treatment in this chapter is also analogous to the treatment in
Chapter 2. Lemma 6 gives us a possible simple RIPr. Theorem 4 states the
conditions that make this possible simple RIPr true. Lemma 7 provides a
simple condition to reject this possible simple RIPr.

Let us compute some useful derivatives. The first derivative for A(ηi)

28
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4.1 Simple RIPr for N Outcomes of One-parameter Exponential Family 29

in continuous distributions is

dA(ηi)

dηi
=

∫
T(x)h(x) exp(ηiT(x))dx∫

h(x) exp(ηiT(x))dx

=
∫

T(x)h(x) exp(ηiT(x)− A(ηi))dx = Epηi
[T(X)].

The second derivative for A(ηi) is

d2A(ηi)

dη2
i

=
∫

T(x)h(x) exp(ηiT(x)− A(ηi))(T(x)− dA(ηi)

dηi
)dx

=
∫

T(x)h(x) exp(ηiT(x)− A(ηi))(T(x)− Epηi
[T(X)])dx

= Epηi
[T2(X)]− Epηi

[T(X)]Epηi
[T(X)] = varpηi

[T(X)].

We have the same results for discrete distributions.

4.1 Simple RIPr for N Outcomes of One-parameter
Exponential Family

P = {pη1,...,ηn = ∏n
i=1 pηi : η1, . . . , ηn ∈ Θη} with Θη ⊂ R denotes a sam-

ple of n n independent outcomes of a one-parameter exponential family.
The null hypothesis is composite and is given by

H0 : X1, . . . , Xn
i.i.d.∼ Pη0 for varying η0 ∈ Θη.

The alternative hypothesis is simple and is given by

H1 : X1 ∼ Pη11 , . . . , Xn ∼ Pη1n for fixed, and not all identical η11, . . . , η1n ∈ Θη.

As in the previous two chapters, we investigate whether the RIPr pW∗
0 ,...,W∗

0
is simple, i.e. pW∗

0 ,...,W∗
0
= pη∗

0 ,...,η∗
0
. Just like in the previous chapters, after

finding the KL minimizing pη∗
0 ,...,η∗

0
, we must check if it is a RIPr by check-

ing if
pη11,...,η1n
pη∗0 ,...,η∗0

is an E-variable.

Lemma 6. The η∗
0 ∈ Θη satisfying ∑n

i=1 Epη1i
[T(X)] = nEpη∗0

[T(X)], if it
exists, minimizes D(pη11,...,η1n ||pη0,...,η0) over Θη.
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30 N Outcomes of One-parameter Exponential Families

Proof. For ∀η0 ∈ Θη, the KL divergence satisfies

D(pη11,...,η1n ||pη0,...,η0) = Epη11,...,η1n

[
log

pη11,...,η1n

pη0,...,η0

]
= Epη11,...,η1n

[
log

∏n
i=1 pη1i(Xi)

∏n
i=1 pη0(Xi)

]
=

n

∑
i=1

Epη1i

[
log

pη1i(X)

pη0(X)

]
=

n

∑
i=1

Epη1i

[
log

h(X) exp(η1iT(X)− A(η1i))

h(X) exp(η0T(X)− A(η0))

]
=

n

∑
i=1

Epη1i
[η1iT(X)− η0T(X)]− nA(η1i) + nA(η0)

Taking the derivative with respect to η0, we have

dD(pη11,...,η1n ||pη0,...,η0)

dη0
= −

n

∑
i=1

Epη1i
[T(X)] + n · dA(η0)

dη0

= −
n

∑
i=1

Epη1i
[T(X)] + nEpη0

[T(X)]

According to the condition, we get
dD(pη11,...,η1n ||pη0,...,η0 )

dη0
= 0. Taking the

second derivative with respect to η0, we have

d2D(pη11,...,η1n ||pη0,...,η0)

dη2
0

= n · d2A(η0)

dη2
0

= n varpη0
[T(X)] > 0,

so this KL divergence is a convex function, and takes the minimum value
at η∗

0 .

Theorem 4. Consider η(1i) = η1i + η0 − η∗
0 as a function of η0. If η(1i) ∈ Θη,

then

Epη0,...,η0

[
pη11,...,η1n

pη∗
0 ,...,η∗

0

]
= exp(nA(η∗

0 )−
n

∑
i=1

A(η1i)− nA(η0) +
n

∑
i=1

A(η(1i)))

Moreover, define f (η0) := log Epη0,...,η0

[
pη11,...,η1n
pη∗0 ,...,η∗0

]
as a function of η0 (with fixed

η11, . . . , η1n). Then f (η∗
0 ) is a local maximum or minimum value.

30
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If f (η0) takes the maximum value at η∗
0 , then

pη11,...,η1n
pη∗0 ,...,η∗0

is an E-variable, i.e.

Epη0,...,η0

[
pη11,...,η1n

pη∗
0 ,...,η∗

0

]
≤ 1, ∀η0 ∈ Θη.

Otherwise, if f (η0) does not take the maximum value at η∗
0 , in particular, if f (η∗

0 )

is a local minimum value, then
pη11,...,η1n
pη∗0 ,...,η∗0

is not an E-variable and there does not

exist a simple RIPr.

Proof.

Epη0,...,η0

[
pη11,...,η1n

pη∗
0 ,...,η∗

0

]
= Epη0,...,η0

[
n

∏
i=1

pη1i(Xi)

pη∗
0
(Xi)

]

=
n

∏
i=1

Epη1i

[
pη1i(X)

pη∗
0
(X)

]
since x1, . . . , xn are independent

=
n

∏
i=1

∫ h(x) exp(η1iT(x)− A(η1i))

h(x) exp(η∗
0 T(x)− A(η∗

0 ))
h(x)

· exp(η0T(x)− A(η0))dx

=
n

∏
i=1

∫
h(x) exp((η1i + η0 − η∗

0 )T(x)− A(η1i)

− A(η0) + A(η∗
0 ))dx

=
n

∏
i=1

∫
h(x) exp(η(i)T(x)− A(η1i)− A(η0) + A(η∗

0 ))dx

=
n

∏
i=1

[exp(A(η∗
0 )− A(η1i)− A(η0) + A(η(1i)))

·
∫

h(x) exp(η(1i)T(x)− A(η(1i)))dx]

=
n

∏
i=1

exp(A(η∗
0 )− A(η1i)− A(η0) + A(η(1i)) · 1

(4.1)

= exp(nA(η∗
0 )−

n

∑
i=1

A(η1i)− nA(η0) +
n

∑
i=1

(A(η(1i)))

In (4.1), h(x) exp(η(1i)T(x)− A(η(1i))) is the density of the one-parameter
exponential family with parameter η(1i), and the integral of a probability
is equal to 1.
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32 N Outcomes of One-parameter Exponential Families

η11, . . . , η1n are fixed and denote the logarithm of the expectation by
f (η0)

f (η0) = log Epη0,...,η0

[
pη11,...,η1n

pη∗
0 ,...,η∗

0

]
= nA(η∗

0 )−
n

∑
i=1

A(η1i)−nA(η0)+
n

∑
i=1

A(η(1i))

When η0 = η∗
0 , we have f (η∗

0 ) = 0 and Epη∗0 ,...,η∗0

[
pη11,...,η1n
pη∗0 ,...,η∗0

]
= 1.

Taking the derivative with respect to η0, we get

d f (η0)

dη0
=

d
dη0

(
n

∑
i=1

(A(η(1i))− nA(η0))

=
n

∑
i=1

Epη(1i)
[T(X)]− nEpη0

[T(X)]

When η0 = η∗
0 , d f (η0)

dη0
= 0, so f (η0) is a local maximum or minimum value.

If f (η0) takes the maximum value at η∗
0 , then for ∀ η0 ∈ Θη, f (η0) ≤ 0

and Epη0,...,η0

[
pη11,...,η1n
pη∗0 ,...,η∗0

]
≤ 1.

If f (η0) does not take the maximum value at η∗
0 , then there is a η0 such

that f (η0) > f (η∗
0 ) = 0 and Epη0,...,η0

[
pη11,...,η1n
pη∗0 ,...,η∗0

]
> Epη∗0 ,...,η∗0

[
pη11,...,η1n
pη∗0 ,...,η∗0

]
=

1.

Lemma 7. f (η0) := log Epη0,...,η0

[
pη11,...,η1n
pη∗0 ,...,η∗0

]
takes a local minimum value at η∗

0

iff
n

∑
i=1

varpη1i
[T(X)]− nvarpη∗0

[T(X)] > 0

Proof. We know f (η0)
dη0

|η0=η∗
0
= 0 in the proof of Theorem 4. Taking the

second derivative of f (η0) with respect to η0, we have

d2 f (η0)

dη2
0

=
d2

dη2
0
(

n

∑
i=1

(A(η(1i))− nA(η0))

=
n

∑
i=1

varpη(1i)
[T(X)]− nvarpη0

[T(X)].

According to the condition of the lemma, we obtain

d2 f (η0)

dη2
0

|η0=η∗
0
=

n

∑
i=1

varpη1i
[T(X)]− nvarpη∗0

[T(X)] > 0,

then f (η∗
0 ) is a local minimum value.

32
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4.2 Examples

This section discusses two examples.

4.2.1 Example: The Poisson Distribution

Poisson distributions form a one-parameter exponential family. The prob-
ability of a sample of n outcomes from n Poisson distributions is equal
to the product of the probabilities of n independent Poisson distributions
Pois(λi) (λi > 0, i = 1, . . . , n). The density function, with λi denoting the
parameter in the standard parameterization, is

p◦λ1,...,λn
(xn) =

n

∏
i=1

p◦λi
(xi) =

n

∏
i=1

λ
xi
i exp(−λi)

xi!
, xi ∈ N (i = 1, . . . , n).

The mean and variance of a Poisson distribution are

Ep◦λi
[X] = varp◦λi

[X] = λi.

Transforming this n-sample density into the canonical form, we get

p◦λ1,...,λn
(xn) = pη1,...,ηn(xn) =

n

∏
i=1

pηi(xi) =
n

∏
i=1

h(xi) exp(ηiT(xi)− A(ηi))

with h(xi) =
1

xi!
, natural parameter ηi = log λi, sufficient statistic T(xi) =

xi, and log-partition function

A(ηi) = A◦(λi) = λi = exp(ηi).

The space of natural parameter ηi is Θηi = {ηi : ηi ∈ R}.

Hypotheses: The null hypothesis H0 says that X1, . . . , Xn are i.i.d. samples
from a Poisson distribution with unknown parameter λ0 > 0, hence the
null hypothesis is composite. The density in the canonical form is pη0,...,η0

with η0 ∈ R. The alternative hypothesis is a sample of n outcomes from
n Poisson distributions whose parameters λ11, . . . , λ1n(> 0) are fixed and
not all identical. The density in the canonical form is pη11,...,η1n with not all
identical natural parameters η11, . . . , η1n < 0.

Result: Under these hypotheses, there is a simple RIPr p◦λ∗
0 ,...,λ∗

0
where

λ∗
0 = 1

n ∑n
i=1 λ1i and

p◦λ11,...,λ1n
p◦

λ∗0 ,...,λ∗0
is an E-variable, i.e.

Ep◦λ0,...,λ0

[
p◦λ11,...,λ1n

p◦λ∗
0 ,...,λ∗

0

]
= 1, for ∀ λ0 > 0.
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34 N Outcomes of One-parameter Exponential Families

Proof. We know the mean of an Poisson distribution is

Epηi
[X] = Ep◦λi

[X] = λi.

From the condition λ∗
0 = 1

n ∑n
i=1 λ1i, we obtain

n

∑
i=1

Epη1i
[X] =

n

∑
i=1

Ep◦λ1i
[X] =

n

∑
i=1

λ1i = nλ∗
0 = nEp◦

λ∗0
[X] = nEpη∗0

[X].

According to Lemma 6, KL divergence D(p◦λ11,...,λ1n
||p◦λ0,...,λ0

) takes the min-
imum value when λ0 = λ∗

0 .
Moreover,

η(1i) = η1i + η0 − η∗
0 = log λ1i + log λ0 − log λ∗

0 ∈ Θηi .

We have
A(η(1i)) = exp(η(1i)) =

λ1iλ0

λ∗
0

.

According to Theorem 4, since A(ηi) = A(λi) = λi, then we obtain

Epη0,...,η0

[
pη11,...,η1n

pη∗
0 ,...,η∗

0

]
= exp(nA(η∗

0 )−
n

∑
i=1

A(η1i)− nA(η0) +
n

∑
i=1

A(η(1i)))

= exp(nλ∗
0 −

n

∑
i=1

λ1i − nλ0 +
n

∑
i=1

λ1iλ0

λ∗
0

)

= exp(0) = 1,

so
pη11,...,η1n
pη∗0 ,...,η∗0

is an E-variable.

4.2.2 Example: The Exponential Distribution

Exponential distributions form a one-parameter exponential family. For
simplicity, we consider a sample of two independent outcomes of the ex-
ponential distribution, whose density is the product of densities of 2 in-
dependent exponential distributions with parameters λ1 and λ2. In the
standard parameterization, the density of this distribution is

p◦λ1,λ2
(x2) = p◦λ1

(x1)p◦λ2
(x2) = λ1 exp(−λ1x1) · λ2 exp(−λ2x2),

where x1, x2 > 0.
The mean and variance of an exponential distribution with parameter λj
are

Ep◦λj
[X] =

1
λj

and varp◦λj
[X] =

1
λ2

j
.

34
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The canonical form is as below:

p◦λ1,λ2
(x2) = pη1,η2(x2) = pη1(x1)pη2(x2) =

2

∏
i=1

h(xi) exp(ηiT(xi)− A(ηi))

with h(xi) = 1, natural parameter ηi = −λi, sufficient statistic T(xi) = xi
and log-partition function

A(ηi) = A◦(λi) = − log λi = − log(−ηi).

The natural parameter space is Θηi = {ηi : ηi < 0}.

Hypotheses: The null hypothesis H0 says that X1, X2 are i.i.d. samples
from an exponential distribution with parameter λ0 > 0. In the canonical
form, the density is pη0,η0 with η0 < 0. The alternative hypothesis says
that X1, X2 is a sample of two outcomes from two exponential distribu-
tions with fixed parameters λ11 > λ12 > 0. In the canonical form, the
density is pη11,η12 with fixed η11 < η12 < 0.

Result: If λ0 > λ∗
0 − λ12 and λ∗

0 = 2λ11λ12
λ11+λ12

, then
p◦λ11,λ12
p◦

λ∗0 ,λ∗0
is not an E-variable

and there does not exist a simple RIPr.

If 0 < λ0 < λ∗
0 − λ12, then Ep◦λ0,λ0

[
p◦λ11,λ12
p◦

λ∗0 ,λ∗0

]
is not well-defined.

Proof. The mean of an exponential distribution is

Epηj
[X] = Ep◦λj

[X] =
1
λj

.

According to the condition of λ∗
0 ,

Epη11
[X] + Epη12

[X] = Ep◦λ11
[X] + Ep◦λ12

[X] =
1

λ11
+

1
λ12

=
2

λ∗
0

= 2Ep◦
λ∗0
[X] = 2Epη∗0

[X].

By Lemma 6, this λ∗
0 minimizes KL divergence D(p◦λ11,λ12

||p◦λ0,λ0
).

In addition, we have

λ11 =
λ2

11 + λ11λ12

λ11 + λ12
>

2λ11λ12

λ11 + λ12
= λ∗

0 >
λ2

12 + λ11λ12

λ11 + λ12
= λ12,
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36 N Outcomes of One-parameter Exponential Families

and

η(1i) = η1i + η0 − η∗
0 = −λ1i − λ0 + λ∗

0 (i = 1, 2).

If λ0 > λ∗
0 − λ12, then η(11) < η(12) < 0. The variance of an exponential

distribution is
varpηj

[X] = varp◦λj
[X] =

1
λ2

j
.

so

varpη11
[X] + varpη12

[X]− 2varpη∗0
[X] = varp◦λ11

[X] + varp◦λ12
[X]− 2varp◦

λ∗0
[X]

=
1

λ2
11

+
1

λ2
12

− 2
λ∗2

0

=
(λ11 − λ12)

2

2λ2
11λ2

12
> 0

According to Lemma 7, Ep◦λ0,λ0

[
p◦λ11,λ12
p◦

λ∗0 ,λ∗0

]
takes a local minimum value at

λ0. According to Theorem 4,
p◦λ11,λ12
p◦

λ∗0 ,λ∗0
is not an E-variable.

If 0 < λ0 < λ∗
0 − λ12, then η(11) < 0 < η(12) and η(12) is not included in

the parameter space Θη12 .

36
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Chapter 5
Transformation of Random
Variables

In this chapter, we discuss the situation when the random variable X is
transformed into a new random variable Y, where X follows an expo-
nential family distribution. We denote a d-dimensional exponential fam-
ily by P = {pη : η ∈ Θd

η} with Θd
η ⊂ Rd. The definition of pη was

shown in Definition 1. We consider two exponential families, for k = 0, 1:
Pk = {pk,ηk

: ηk ∈ Θd
k} with Θd

k ∈ Rd. The null hypothesis H0 for X is
composite and is given as

H0 : X ∼ P0,η0
for varying η0 ∈ Θd

0.

The alternative H1 for X is simple and is given that

H1 : X ∼ P1,η1
for a fixed η1 ∈ Θd

1.

We suppose the new random variable Y satisfies Y = h(X) and their
distribution is Qk,ηk

with density qk,ηk
(k = 0, 1). The new null hypothesis

H′
0 and new alternative hypothesis H′

1 are given by

H′
0 : Y ∼ Q0,η0

for varying η0 ∈ Θd
0,

H′
1 : Y ∼ Q1,η1

for a fixed η1 ∈ Θd
1.

Theorem 5. If y = h(x) is a continuous function that piecewise has a differen-
tiable inverse (i.e, in each piece, it is strictly monotonic and differentiable), and
p1,η1 (x)
p0,η∗0

(x) is an E-variable, that is

Ep0,η0

[
p1,η1

(X)

p0,η∗0 (X)

]
≤ 1, ∀η0 ∈ Θd

0.
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38 Transformation of Random Variables

Then
q1,η1 (y)
q0,η∗0

(y) is also an E-variable, i.e.

Eq0,η0

[
q1,η1

(Y)
q0,η∗0 (Y)

]
≤ 1, ∀η0 ∈ Θd

0.

Proof. Firstly, we consider y = h(x) to be strictly monotonically increas-
ing and differentiable, then their unique inverse function x = g(y) is also
strictly monotonically increasing and differentiable, i.e, g′(x) > 0. The
cumulative distribution function is

FY(y) = Pr(Y ≤ y) = Pr(h(X) ≤ y) = Pr(X ≤ g(y)) = FX(g(y)).

Then the density function is

qk,ηk
(y) =

d
dy

FY(y) =
d

dy
FX(g(y)) = F′

X(g(y)) · g′(y) = pk,ηk
(g(y)) · g′(y).

So

Eq0,η0

[
q1,η1

(Y)
q0,η∗0 (Y)

]
=
∫ q1,η1

(y)
q0,η∗0 (y)

· q0,η0
(y)dy

=
∫ p1,η1

(g(y)) · g′(y)
p0,η∗0 (g(y)) · g′(y)

· p0,η0
(g(y)) · g′(y)dy

=
∫ p1,η1

(g(y))
p0,η∗0 (g(y))

· p0,η0
(g(y))d(g(y))

=
∫ p1,η1

(x)
p0,η∗0 (x)

· p0,η0
(x)dx

= Ep0,η0

[
p1,η1

(X)

p0,η∗0 (X)

]
≤ 1

Secondly, we consider y = h(x) to be strictly monotonically decreasing
and differentiable. Set x ∈ (a0, a1), then y ∈ (h(a1), h(a0)). The unique
inverse function x = g(y) is also strictly monotonically decreasing and
differentiable, i.e, g′(x) < 0. And g(h(a1)) = a1, g(h(a0)) = a0. The
cumulative distribution function is

FY(y) = Pr(Y ≤ y) = Pr(h(X) ≤ y) = Pr(X ≥ g(y))
= 1 − Pr(X ≤ g(y)) = 1 − FX(g(y)).

38
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Then the density function is

qk,ηk
(y) =

d
dy

FY(y) =
d

dy
[1 − FX(g(y))]

= −F′
X(g(y)) · g′(y) = −pk,ηk

(g(y)) · g′(y).

So

Eq0,η0

[
q1,η1

(Y)
q0,η∗0 (Y)

]
=
∫ h(a0)

h(a1)

q1,η1
(y)

q0,η∗0 (y)
· q0,η0

(y)dy

=
∫ h(a0)

h(a1)

−p1,η1
(g(y)) · g′(y)

−p0,η∗0 (g(y)) · g′(y)
·
[
−p0,η0

(g(y)) · g′(y)dy
]

=
∫ a0

a1

−
p1,η1

(g(y))
p0,η∗0 (g(y))

· p0,η0
(g(y))d(g(y))

=
∫ a1

a0

p1,η1
(x)

p0,η∗0 (x)
· p0,η0

(x)dx

= Ep0,η0

[
p1,η1

(X)

p0,η∗0 (X)

]
≤ 1.

Taking together the two conditions above, if y = h(x) is a strictly
monotone continuous function and is differentiable, then it has a unique
inverse function x = g(x), and the density function of Y is

qk,ηk
(y) = pk,ηk

(g(y)) · |g′(y)|. (5.1)

Moreover,

Eq0,η0

[
q1,η1

(Y)
q0,η∗0 (Y)

]
= Ep0,η0

[
p1,η1

(X)

p0,η∗0 (X)

]
≤ 1.

Finally, we consider y = h(x) as a continuous function that piecewise
has a differentiable inverse (i.e, in each piece, it is strictly monotonic and
differentiable). Set x ∈ (a0, an). If h′(x) = 0 at some positions x = aj (j =
1, . . . , n − 1), then the definition space of x (i.e. set (a0, an)) can be split
into n disjoint intervals Ij = (aj−1, aj) (j = 1, . . . , n) and

⋃n
j=1 Ij = (a0, an).

So when xj ∈ Ij, yj = hj(xj) is strictly monotonic and differentiable, then
the corresponding inverse function xj = gj(yj) (xj ∈ Ij) is also strictly
monotonic and differentiable. The cumulative distribution function is

FY(y) = Pr(Y ≤ y) =
n

∑
j=1

Pr(hj(Xj) ≤ y).
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40 Transformation of Random Variables

From (5.1), we get the density

qk,ηk
(y) = fY(y) =

n

∑
j=1

pk,ηk
(gj(yj))|g′j(yj)|.

So

Eq0,η0

[
q1,η1

(Y)
q0,η∗0 (Y)

]
=

n

∑
j=1

Eq0,η0

[
q1,η1

(Yj)

q0,η∗0 (Yj)

]

=
n

∑
j=1

Ep0,η0

[
p1,η1

(Xj)

p0,η∗0 (Xj)

]

= Ep0,η0

[
p1,η1

(X)

p0,η∗0 (X)

]
≤ 1.

5.1 Example

5.1.1 Example: The Exponential Distributions and the Pareto
Distributions

As in the setting in Example 4.2.2, random variables X1, X2 are two in-
dependent outcomes of the exponential distribution. The composite null
hypothesis H0 and the alternative hypothesis H1 for X1, X2 are given by

H0 : X1, X2
i.i.d.∼ P◦

λ0
for varying λ0 > 0,

H1 : X1 ∼ P◦
λ11

, X2 ∼ P◦
λ12

for fixed λ11 > λ12 > 0.

Transform X1, X2 to new random variables Y1, Y2 by function y = h(x) =
ymin · exp x where ymin is fixed. Then Yj follows a Pareto distribution with
the same parameter as the corresponding Xj. The density with parameter
λi of Y is

q◦λi
=

λiy
λi
min

yλi+1 where ymin is fixed.

So Y follows the Pareto distribution with parameter λi and fixed ymin. The
new composite null hypothesis H′

0 and the new alternative hypothesis H′
1

40
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5.1 Example 41

for Y1, Y2 are given by

H′
0 : Y1, Y2

i.i.d.∼ Q◦
λ0

for varying λ0 > 0,

H′
1 : Y1 ∼ Qλ11 , Y2 ∼ Q◦

λ12
for fixed λ11 > λ12 > 0.

Since y = h(x) = ymin · exp x is a monotonic continuous function and

is differentiable, according to Theorem 5, if
p◦λ11,λ12
p◦

λ∗0 ,λ∗0
is an E-variable, then

q◦λ11,λ12
q◦

λ∗0 ,λ∗0
is also an E-variable. However, it is not an E-variable from the re-

sults of Example 4.2.2, so it can not show that there exists a simple RIPr
for the Pareto distribution with two independent outcomes each with a
different parameter‘.
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Chapter 6
Two Outcomes of Exponential
Distributions in a Specific Case

This chapter uses programming in R to approximate the RIPr E-variable
for Example 4.2.2: a sample of two independent outcomes from expo-
nential distributions each with a specific parameter value. As was seen,
there does not exist a simple RIPr, i.e., single point probability distribu-
tion pλ∗

0 ,λ∗
0
. To approximate the RIPr anyhow, we set the probability p◦0n to

be the weighted sum of n(≥ 2) distinct probabilities p◦λ0i,λ0i
(λ0i ∈ Θλ =

R+, i = 1..n) where the weights wi ∈ Θw = {wi : 0 < wi < 1} correspond-
ing to probability p◦λ0i,λ0i

sum to 1 (i = 1, . . . , n), i.e.

p◦0n =
n

∑
i=1

wi · p◦λ0i,λ0i
and

n

∑
i=1

wi = 1,

where p◦λ0i,λ0i
is the product of the probabilities of exponential distribu-

tions with parameter λ0i, that is

p◦λ0i,λ0i
= p◦λ0i

(x1) · p◦λ0i
(x2) = λ0i exp(−λ0ix1) · λ0i exp(−λ0ix2).

and p◦
0n is the set of all p◦0n that can be written in this manner. If there exists

p◦∗0 := arg min
p◦0n∈p◦

0n,n≥1
D(p◦λ11,λ12

||p◦0n),

then p◦0
∗ must be the RIPr and

p◦λ11,λ12
p◦∗0

must be an E-variable by Theorem 1
from (Grünwald et al., 2020), i.e.

Ep◦λ0,λ0

[
p◦λ11,λ12

p◦∗0

]
≤ 1 ∀λ0 ∈ Θλ. (6.1)

42
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While we do not succeed in finding such p◦∗0 , we will approximate it with
the minimum above restricted to some large but finite n. We may then
expect that this satisfies (6.1) up to a small additive constant ϵ that goes to
0 as n gets larger.

For convenience, we simplify the function of KL divergence as follows:

D(p◦λ11,λ12
||p◦0n) = Ep◦λ11,λ12

[
log

p◦λ11,λ12

p◦0n

]
= Ep◦λ11,λ12

[log p◦λ11,λ12
]− Ep◦λ11,λ12

[log p◦0n]

= Ep◦λ11
[log p◦λ11

] + Ep◦λ12
[log p◦λ12

]− Ep◦λ11,λ12
[log p◦0n]

= log λ11 + log λ12 − 2 − Ep◦λ11,λ12
[log p◦0n].

Since λ11 and λ12 are given, we find that the minimum value of KL
divergence depends on the minimum value of −Ep◦λ11,λ12

[log p◦0n].

We use an iterative method to approximate p◦0
∗ to avoid too much com-

putation. We assume n = h in iteration h. p◦∗0h denotes p◦0h that minimizes
the KL divergence in iteration h and has parameters w∗ = (w∗

1 , . . . , w∗
h)

and λ∗
0 = (λ∗

01, . . . , λ∗
0h). The probability p◦∗0h is based on p◦∗0(h−1) of the last

iteration and we only need to find a λ∗ and a w∗ in each iteration. We
have the general form of probability p◦0h of iteration h(≥ 2) which is easy
to prove by mathematical induction.

p◦∗0h = wh · p◦∗0(h−1) + (1 − wh) · p◦λ0h,λ0h

= wh

[
p◦λ∗

01,λ∗
01
·

h−1

∏
i=1

w∗
i +

h−2

∑
i=2

(
(1 − w∗

i )p◦λ∗
0i,λ

∗
0i
·

h−1

∏
j=i+1

w∗
j

)

+(1 − w∗
(h−1))p◦λ∗

0(h−1),λ
∗
0(h−1)

]
+ (1 − wh) · p◦λ0h,λ0h

.

The iteration stops when the following conditions are satisfied:

Ep◦λ0,λ0

[
p◦λ11,λ12

p◦∗0h

]
≤ 1, ∀λ0 ∈ Θλ.

In practice, the optimal p◦∗ may not be expressible as a mixture with a
finite number of components; or the number of components may be too
large to be found in the available time. For that reason, in practice, we will
stop if the above holds up to some small ϵ > 0.
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44 Two Outcomes of Exponential Distributions in a Specific Case

6.1 Specific Steps in R

Now, we introduce the specific steps in programming R.
Step 1: Compute exact λ∗

01
In iteration 1, we have p◦01 = w1 · p◦λ01,λ01

, where w1 is equal to 1. We

get w∗
1 = w1 = 1 and exact λ∗

01 = 2λ11λ12
λ11+λ12

easily.
Step 2: Narrow the value range of wi and λ0i
We choose nw evenly spaced values of possible wi from 0 to 1 and nλ

evenly spaced values of possible λ0i from 0 to 4λ11λ12. The more sub-
divided wi and λ0i are, the closer the approximate value of w∗

i and λ∗
0i

is to the exact value. We do 10 iterations to get rough w∗
2 , . . . , w∗

10 and
λ∗

02, . . . , λ∗
010.

In iteration 2, we add new parameters w2 and λ02. We have

p◦02 = w2 · p◦01
∗ + (1 − w2) · p◦λ02,λ02

= w2 · w∗
1 · p◦λ∗

01,λ∗
01
+ (1 − w2) · p◦λ02,λ02

.

Substitute these possible values of w2 and λ02 into this probability, com-
pute −Ep◦λ11,λ12

[log p◦02] respectively by programming in R. We get approx-

imate values of w∗
2 andλ∗

02 by minimizing this set of −Ep◦λ11,λ12
[log p◦02].

In iteration 3, we add new parameters w3 and λ03. Substituting into
approximate w∗

2 and λ∗
02 above, We have

p◦03 = w3 · p◦02
∗ + (1 − w3) · p◦λ03,λ03

= w3 · (w∗
2 · w∗

1 · p◦λ∗
01,λ∗

01
+ (1 − w∗

2) · p◦λ∗
02,λ∗

02
) + (1 − w3) · p◦λ03,λ03

.

By similar steps as in iteration 3, we get the approximate w∗
3 and λ∗

03.
. . .
From these approximate w∗

2 , . . . , w∗
10 and λ∗

02, . . . , λ∗
010, we obtain a smaller

range of wi: Iw and a smaller range of λ∗
0i: Iλ.

Step 3: Find n, w∗
1 , . . . , w∗

n and λ∗
02, . . . , λ∗

0n
We choose n′

w evenly spaced values of possible wi in Iw and n′
λ evenly

spaced values of possible λ0i in Iλ. Since these w∗ and λ∗
0 are not exact,

then we allow a very small error ϵ > 0. Iterate and stop these iterations
when

Ep◦λ0,λ0

[
p◦λ11,λ12

p◦∗0h

]
≤ 1 + ϵ.

We pick nλ” evenly spaced values of λ0 in I′λ. Substitute these possible

values of λ0 and p◦∗0h into Ep◦λ0,λ0

[
p◦λ11,λ12

p◦∗0h

]
and judge whether the maximum

44
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6.2 Examples 45

value of Ep◦λ0,λ0

[
p◦λ11,λ12

p◦∗0h

]
is smaller than 1 + ϵ. For convenience, we make

a judgement every five iterations. We stop when the condition is reached.
So we get n, w∗

1 , . . . , w∗
n and λ∗

02, . . . , λ∗
0n.

6.2 Examples

We consider three examples. We set nw = 50, nλ = 80, n′
w = 60, n′

λ = 250,
nλ” = 20000 and I′λ = [0, 5].

Example 5 (λ11 = 3,λ12 = 1). Set ϵ = 0.0007.

Step 1: λ01 = 2λ11λ12
λ11+λ12

= 3
2 .

Step 2: Do 10 iterations. We get Iw = [0.9, 1] and Iλ = [0, 5].

Step 3: We get n = 125. The graph of Ep◦λ0,λ0

[
p◦λ11,λ12
p◦0125

∗

]
is as follows:

The graph of p◦0125
∗ is
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46 Two Outcomes of Exponential Distributions in a Specific Case

Example 6 (λ11 = 3,λ12 = 3
2 ). Set ϵ = 0.0005.

Step 1: λ01 = 2λ11λ12
λ11+λ12

= 2.

Step 2: Do 10 iterations. We get Iw = [0.95, 1] and Iλ = [0, 5].

Step 3: We get n = 110. The graph of Ep◦λ0,λ0

[
p◦λ11,λ12
p◦0110

∗

]
is as follows:

The graph of p◦0110
∗ is

46
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Example 7 (λ11 = 2,λ12 = 1). Set ϵ = 0.0005.

Step 1: λ01 = 2λ11λ12
λ11+λ12

= 4
3 .

Step 2: Do 10 iterations. We get Iw = [0.95, 1] and Iλ = [0, 4].

Step 3: We get n = 90.The graph of Ep◦λ0,λ0

[
p◦λ11,λ12

p◦090
∗

]
is as follows:

The graph of p◦090
∗ is
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48 Two Outcomes of Exponential Distributions in a Specific Case

However, the graph of Ep◦λ0,λ0

[
p◦λ11,λ12

p∗090

]
is different when nλ” is 50000 in-

stead of 20000. Only one of the 50000 points is greater than 1.0005, which
seems to be a numerical issue.

48
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Chapter 7
Conclusion

In this thesis, we establish E-variables by calculating RIPrs, especially sim-
ple RIPrs (i.e. a single distribution in the null hypothesis, rather than a
mixture of such distributions). We find that there is no general rule to eas-
ily determine the RIPr for the whole of exponential family null models. We
have obtained a simple RIPr and established E-variables for a simple alter-
native taken from three types of exponential families: (1) two-parameter
exponential families; (2) one-parameter exponential families indexed by
an additional integer parameter k; (3) a single alternative representing n
independent outcomes of one-parameter exponential families. The corre-
sponding RIPr is simple if some easily checkable conditions in the theo-
rems are satisfied. We have shown how E-variables used for one exponen-
tial family can be used for some other exponential families by transforma-
tions of random variables. We have also established E-variables for two
outcomes of the exponential distribution in a specific setting, by assuming
that the RIPr is a mixture of exponential distributions. This thesis raises
two interesting open questions for future work:

1. Is there a general rule for some exponential families that describes
when exactly the RIPr is not simple? (we only have a sufficient con-
dition). And, if it is not simple, is there a general formula or rule that
allows us to calculate it easily?

2. We only consider the case when the null hypothesis is a set of distri-
bution with one parameter in this thesis. What about distributions
with two or more parameters?
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