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Abstract

We study the Hopf algebra O(SU,(2)), which is a g-deformed analogue
of the Lie group SU(2). In particular, we study its co-representations, and
show how to construct a subproduct system E,;, out of the determinant
det(p) of a co-representation p. We also show how this determinant can
be constructed from a braiding . We also study the quadratic algebra
@D;,—o Em that is constructed from the subproduct system using the
non-commutative Nullstellensatz, and calculate its Hilbert series.
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Introduction

One of the major breakthroughs in physics of the past century has been
quantum mechanics, which has since found many applications in the tech-
nology we use today:.

However, finding and solving the quantum mechanical equations that
describe specific systems has proven to be notoriously difficult to do ana-
lytically.

The theory of Lie Groups and Lie Algebras has been essential in de-
scribing and analytically solving many quantum mechanical systems, the
prototypical examples of which are the famous works by Pauli and Dirac,
where the spin of an electron is described by a representation of the Lie
Algebra su(2).

When trying to describe and solve a specific quantum mechanical sys-
tem related to magnetism, physicists found the Bethe ansatz. This solu-
tion did not directly involve Lie Groups or Lie Algebras, but introduced
the concept of a “Quantum Group”. Since then, several related theories
of “Quantum Groups” have been developed, several of which involve the
concept of a Hopf algebra. A Hopf algebra is a structure that generalises a
group, as outlined in section 1.1.

Besides their applications in physics, the theory of Hopf algebras has
been of interest to mathematicians for a long time because of their applica-
tions in many fields ranging from category theory and algebraic topology
to representation theory and, indeed, mathematical physics.

In this thesis, we restrict ourselves to the study of the Hopf algebra
O(SU4(2)), which is a certain g-deformed Hopf-algebra analogue of the
well-known Lie Group SU(2).

An extensive description of this Hopf algebra and related Hopf alge-
bras can be found in [5]. A study of Hopf algebras and their interaction
with quadratic algebras can be found in [6]. The article [1] describes sev-
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eral properties and constructions from the Lie Group SU(2), including the
construction of quadratic algebras related to representations of SU(2). The
results in [1] are expanded upon in [3].

Our main goal is to investigate up to what extend some of the construc-
tions in [1] can be generalised to the Hopf algebra O(SU,(2)). Besides this,
we try to show analogues with the theory of quadratic algebras from [6]
and compare our results with the results in [3].

Chapter 1 contains the preliminaries that are needed for Chapter 2,
which contains the main research and results. In particular, section 1.1
describes how a (Lie) group is related to a Hopf algebra and introduces
the algebra O(SU,(2)), section 1.2 describes how the representation the-
ory of (Lie) groups translates to the Hopf algebra setting, section 1.3 de-
scribes how this representation theory applies to O(SU,(2)) and section
1.4 describes Clebsch-Gordan coefficients of O(SU,(2)), which wil be one
of our most important tools in Chapter 2.

Chapter 2 contains our main results. Section 2.3 describes how the
co-representations of O(SU,(2)) give rise to a subproduct system Ej, in
which the determinant det(p) will play a central role. Section 2.2 investi-
gates the properties of this determinant. In particular, section 2.2.2 shows
how the determinant can be constructed from a certain solution of the
braid equation. Finally, section 2.4 shows how the non-commutative Null-
stellensatz (c.f. section 2.1) gives rise to a quadratic algebra starting from
E;;, and compares these results to the theory in [6].
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Chapter 1

Preliminaries

In this chapter the concept of a Hopf algebra is introduced. After dis-
cussing basic definitions, the construction of a Hopf algebra from a Lie
Group is described. Then we give a basic introduction to related Hopf
algebras and Hopf co-modules (also known as Hopf co-representations).
For more background knowledge on Hopf algebras and their (co-)repre-
sentations, we refer to the books [6], [7], [4] and [5].

1.1 Groups and the related Hopf algebras

In this section, a Hopf algebras will be introduced and the construction of
a Hopf algebra from a group is discussed.

Definition 1.1.1. A group (G, -, 1,1) is a quadruple with a set G, an associative
binary operation -: G X G — G,aunit1 € GwhereVge€ G, 1-¢g=9=g-1,
and an inversion map 1: G — G where g - 1(g) = 1(g) - g = 1forall g € G.

Definition 1.1.2. For vector spaces V,W, the twisting map or flip
Tvew: VAW = W Visgivenby o @ w — w Q v.

Definition 1.1.3. An (unital, associative) algebra (A, u,n) is a triple where
A is a vector space over a field K, u: A x A — A is an associative bilinear
binary operation and n: K — A is a linear map that satisfies u(n(1),a) =
u(a,n(1)) =aforalla € A.

By the universal property of the tensor product, the bilinear map
u: Ax A— Afactors through a linear map y: A® A — A.

Example 1.1.4. The ground field K is an algebra when we set 1 = idk and the
multiplication p(a, b) = ab is just the multiplication of the field.

Version of July 12, 2022— Created July 12, 2022 - 15:52



1.1 Groups and the related Hopf algebras 5

Example 1.1.5. Let S be a set and A an algebra. Then AS = Map(S, A) =
{f:S — A} is an algebra under pointwise operations. So the multiplication
is given by 1 4s(f,8)(s) = pa(f(5),g(s)), the unit is given by 45 (w)(5) =
1.4(), and the vector space structure on AS is constructed similarly.

Of special interest are the indicator functions {1, },cs, where 1, takes the value 1
on a and 0 on all other elements of S. We can formally write f =Y ,cs f(a)1,.

Many often encountered algebras arise as subalgebras of
K = Map(S, K). For example, if S is a topological space, we could look at
C(S) C KS, the space of continuous functions. If S is a differentiable man-
ifold, we could look at C*(S) C C(S), the space of infinitely differentiable
functions. And if S has the structure of an algebraic variety, we could look
at Og(S) C C*(S), the space of polynomial/algebraic functions on S.

A Hopf algebra arises when the set S has the additional structure of a

group.

Lemma 1.1.6. Let (G, -, 1,1) be a group, and (A, i, 1) be a subalgebra of KC.

The element 1 € G induces amap e: A — K given by e(f) = f(1).

Themap1: G — Ginducesamap S: A — Agivenby S(f) = Yo f(1(g))1g-

Themap -: Gx G — Ggives A: A - K QKC, f s Y, pcc f(a-0)1, 01,
Assuming the image of A is contained in A ® A C K® ® KO, the data

(A, 1,1, ¢, S) satisfy the following commutative diagrams:

id
As Ao A —"" s 4

id®yl lﬂ
M

AR A A (1.1)

A A A 229 Aga

id®AT TA
A

AR A A (1.2)

n®id iden
KoA——AQA— ARK

\% /

A (1.3)
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1.1 Groups and the related Hopf algebras

KAe— A A ARK
\AT =
A
K ! A

id
K K
A

Az A A A A
lA@A ﬂ®4
dRT e 4®id
A AR A® A A AR A® A

A A —0  AwA

A

K A

- N
RN A

A A— | AwA

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

(1.9)

The proof of this lemma consists of straightforward computations. A

few remarks on this lemma:
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1.1 Groups and the related Hopf algebras 7

e The assumption that the image of A is contained in A ® A is not
always true. It is true in the following important cases:

- A=KE,
- G is a compact topological group and A = C(G),

- G is a compact classical Lie group and A are the polynomial
functions on G.

It is not true in general when the above groups are not compact.

¢ Commutativity of the diagram (1.1) expresses associativity of the al-
gebra (A, 1, 17) and commutativity of (1.3) expresses its unital prop-
erty.

e Commutativity of the diagrams (1.2) and (1.4) is referred to as ‘co-as-
sociativity’ and ‘co-identity’ respectively. A tuple (A, ¢, A) that satis-
fies these properties is called a co-algebra.

e Commutativity of the diagrams (1.5)-(1.8) expresses how the alge-
bra and co-algebra structures nicely cooperate. A tuple (A, 1,1, A, €)
satisfying (1.1)-(1.8) is called a bialgebra.

We see that a group gives rise to a bialgebra with additional structure
given by the map S: A — A, which arises from the inversion on the
group. A structure with these properties thus generalises a group, giving
rise to the following definition:

Definition 1.1.7. A Hopf algebra is a sextuple (A, 1,1, A, €, S) satisfying the
9 relations (1.1)-(1.9).

Most examples of Hopf algebras in this thesis have the additional struc-
ture of a Hopf x-algebra. In particular, when G is a group, the Hopf-
algebra A = C© with the map x: A — A, f*(a) = (f(a))* (where
z — z* € Cis complex conjugation) is a Hopf-*-algebra.

Definition 1.1.8. A *-algebra is an algebra (A, 1, i) endowed with a involutive
antihomomorphism x: A — A, i.e. an additive map such that

*xO U = Ho(x®*)oTypyqand *on =1 ox,

where the last x: C — C is complex conjugation.
A *-co-algebra is a co-algebra A with an additive map x: A — A such that

Aox =(x®+*)oAandeo*x =x%o¢

A Hopf *-algebra is a Hopf algebra with both the structure of a *-algebra and a
*-co-algebra.
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1.1 Groups and the related Hopf algebras 8

Example 1.1.9. Consider the group

SUu(2) = {(;_ﬁ*) ca, peCan”+ BB :1},

of 2 x 2 complex-valued unitary matrices. This is a classical Lie group, and we
can consider O(SU(2)), the space of complex polynomials on SU(2).
This is most easily thought of as the ring

O(suU(2)) =Cla, B, a*, B/ (aa™ + pp* — 1) (1.10)
together with the antilinear conjugation map
w:o—= a0t =, B, — B.

The elements w, B, a*, B* map a matrix (*4) € SU(2) to the following val-
ues:

w(Zq) =a pr(td) = -0,
p(ia)=c a* (¢q) =d.
The function € can be seen to map «, B, B* and a* to the following values
e)=a(py) =1, e(B)=p"(51) =0,
e(B) =B (o1) =0 e(’) =a" (1) =1.

Note that for (24) € SU(2) we have

—1 _ %
S@) (14) =a((25) ) =a () =d=u"(1})
and thus S(a) = a*. Similarly we can deduce

S(a) = o, S(B*) = =B",
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1.1 Groups and the related Hopf algebras 9

Furthermore, we can deduce that
A _ <aa/’+bcj ab/’+bd’> 1 1, .
7 Ty ) 5
c d 7 C/ d/
= Y. (aa’ + bc’)1<

Ry
EOICHRTE by

ab
Cd Cld/

= )3 al(ub) ® all(a’ )
(25)esu ¢f (7 b)esue 7
+ b1 ® "1, .
L bl A )

(25}

=a@a+(=p") ©p

—a®a—p ©p
and in an analogous manner we get A(B) = a* @ B+ B @ a. The values of A(a*)
and A(B*) can then be deduced by requiring compatibility with the antilinear
conjugation map *:
ABT) = (A(B))" =a@p +p ®@a” Ala") = (A)" =a"@a" —pp"

The above identities can be written shortly as

W —p*] 10
“1par | |0 1]'
_OC —‘B*_ _—DC* ﬁ*
T Al - ]
o —p*] o —p* x —pB*
slg =l el
_[a®a—-p @B —(“®/3*+/3*®“*)}
CfR®a+at®B  afRaF-BRBF |

The described structures turn O(SU(2)) into a Hopf *-algebra.

In this thesis we mainly focus on non-commutative Hopf *-algebras
related to the Hopf *-algebra introduced above. Because all Hopf alge-
bras that are constructed from a group as in Lemma 1.1.6 are commuta-
tive, these non-commutative Hopf algebras do not directly correspond to
a group. Nevertheless, we prefer to think of them as coming from a group-
like object.
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1.1 Groups and the related Hopf algebras 10

Notation 1.1.10. For a field K and symbols a,b, ..., d, write K(a,b, ..., d) for
the free, associative, non-commutative algebra generated by a, b, . .., d over K.

Example 1.1.11. For a parameter q € (0,1) C R, the quantum SU(2) coordi-
nate algebra O(SU,(2)) is given by

O(SUy(2)) = Cla, B, 0", B%) /1,

where I is the two-sided ideal generated by the relations

ap = qpu, Bra* = qu*B*, (1.11)
af* =qp*a, Ba* = qa*B, (1.12)
BB = BB, at = a*a+ (1-¢%)Bp, (1.13)

1=a*a+p*B, 1 =an* +¢°BB* (1.14)

On this algebra, there is a conjugation antiautomorphism
x: O(SU,(2)) — O(SUy(2)), & = a*,a” = &, = B*, " — B, (1.15)

which turns this algebra into a Hopf *-algebra as in Definition 1.1.8.

Under *, the equations in (1.11) are interchanged, and likewise the equations
in (1.12), whereas both equations in (1.13) are invariant under x. When q = 1,
the equations (1.11)-(1.13) give commutativity, and the equation (1.14) becomes
the equation in (1.10), thereby re-obtaining O (SU(2)) from example 1.1.9.

The Hopf algebra maps are summarised by

s -1 9
sls -5
o[y =[5 ¥l ]

N B CLL Sl IR

It is a simple but tedious calculation to show that the equations (1.1)-(1.9) are

10
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1.2 Co-modules 11

satisfied. For example, to show that the top of (1.9) is satisfied, we calculate
. x —qp* x —qp* x —qp*
wosomealy T u(sls e [3 TF)

#(1 £lef )
([pantih ep T03)

I
[(x*(x-l—ﬁ*ﬁ —qoc*,[%*-i—ﬁ*zx*}
—qBx+aBf BB +ant |-

Using the equations (1.11) and (1.14), we see that this is equal to

o 3 =rees

This shows that wo (S ®id) o A(r) = noe(r) whenr € {a, —qp*, B, a*}, and
henceforth it is true for all of O(SU4(2)).

We will now move on to the co-representations of the Hopf algebra
O(SU,(2)).

1.2 Co-modules

(Lie) groups, algebras, and rings in general can be studied via their repre-
sentations or modules, and the theory of representations has been an ac-
tive field of study on its own. In this thesis, all (co-)representations are as-
sumed to be finite-dimensional when the converse is not explicitly stated.
More about co-modules can be found in e.g. [5, Chapters 4 & 11]. We start
with the definition of a module.

Definition 1.2.1. A (right) representation or module of an algebra (A, u, 1)
over a field K is a vector space V together with a linear mapr: V@ A — V
which satisfies the following diagrams:

id
Vodo A — veA

o l

11
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1.2 Co-modules 12

VoK

id
vV
oL

Ve A (1.20)

A representation r is irreducible if V' # 0 and there are no non-trivial vector
subspaces W C 'V such that r(W ® A) C W.

Diagram (1.19) is referred to as associativity and (1.20) as unit of the
module.

A co-module is a structure dual to a module. Recall that a co-algebra is
a triple (A, A, ¢) satisfying diagrams (1.2) and (1.4).

Definition 1.2.2. A (right) co-representation or co-module of a co-algebra
(A, A e) over a field K is a vector space V together with a linear map
p: V. =V ® A which satisfies the following diagrams:

p®id
VIARA—V®A

id®AT TP
[

VoK id %
id& /
Ve d (1.22)

Diagram (1.21) is referred to as co-associativity and (1.22) as co-unit.

The notions of irreducible representations and unitary representations
are also present in the dual setting.

Definition 1.2.3. A co-invariant subspace of a co-representation
p: V= V®Aisasubspace W C V such that p(W) C W ® A.

An irreducible co-representation is a co-representation p: V. — V ® A such
that V # 0 and there are no non-trivial co-invariant subspaces.

Unitary co-representations are best described using a basis of V. The
following procedure is described with more detail in [5, Section 11.1.1].

12
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1.2 Co-modules 13

Definition 1.2.4. The matrix coefficients of a co-representationp: V. — V® A
with respect to a basis (e;)}_, are the elements p;; € A such that

plej) = Zei ® pij- (1.23)

These satisfy €(p;;) = 1i=j and A(p;;) = Yi pix @ pxj for any i,j. Conversely,
for any p;; € A that satisfy these conditions, formula (1.23) gives a co-represen-
tation.

Definition 1.2.5. A unitary co-representation of a Hopf *-algebra A onto a
complex inner product space V is a co-representation p: V. — V @ A such that
for an orthonormal basis e; of V, the matrix coefficients p;; satisfy S(p;j) = p;fi,
which implies p (Y pf; @ pxj) = li=;-

A unitarisable co-representation of a Hopf *-algebra onto a complex vector
space V is a co-representation for which we can find an inner product on 'V for
which the co-representation is unitary.

In the case of group representations, unitary representations are char-
acterised by them leaving an inner product invariant: If (-, -)y is an inner
product on V and p: G x V. — V is a (left) group representation, then
(o(g,v),w)y = (v,0(g7!,w))y. A similar characterisation exists in this
case:

Lemma 1.2.6. When p: V — V ® A is a co-representation of the Hopf-*-algebra
A that is unitary with respect to an inner product (-, -)y, then we have

(p(a),b@1)vga = (a®1,(1@5)(0(D)))vea
where (-, Yyos: (V@A) x (Ve A) — Ais given by
(vRs,wRt)yes = (v,w)ys"t.

Proof. Tt suffices to prove it for the basis elements. Let ¢, e, be arbitrary,
and recall that £;,, = S(tuv) because p is unitary, and (ey, ep)v = 1=,

13
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1.2 Co-modules 14

because the basis e, is orthonormal w.r.t. (-, -)y. Then

<p(e}l)/ ey ®@1)yoa = <Zei7 & tyu, ey ® 1>
Ul

VoA

Ui
= <ey ® 1,Z:e,7 ® S(tw)>
U VoA
<ey ®1,(1®89) ():e,7 ® t,71,> >
0

=(,®1,(1® 5)(P(€V))>V®A‘

VoA

]

Corollary 1.2.7. If p: V = V ® A is unitary and W C V is a co-invariant
subspace, then W+ is also a co-invariant subspace.

Proof. Let v € W+ and w € W be arbitrary. Because W is co-invariant,
we have p(w) € W® A and thus also (1 ® S)(p(w)) € W ® A. Because
v € W we have that (v® 1,(1® S)(p(w)))yea = 0. By the previous
lemma,

0= (@1, (AaS5)(p(w)))ygs = (p(v),w@1)yea
and thus p(v) L w®1forallw € W,ie. p(v) € WH @ A. O

Notation 1.2.8. Given a bialgebra (A, pu,n,A,€) and two co-representations
pv:V = VR Aand py: W — W ® A, their tensor product co-representa-
tion is the co-representation pyow: V@ W — (V@ W) ® A defined by

VaW ™™ ve e Wed) 5 (Vew)e A,

where E is given by E(v @ a1 @ w @ ap) = v @ w @ u(ay, ap). This co-represen-
tation is sometimes also denoted by py @ pw.

14
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1.2 Co-modules 15

Notation 1.2.9. Given a co-algebra (A,A,e) and two co-representations
pv:V — V& Aand pw: W — W ® A, their sum co-representation
pov Bpow: VW — (Ve W)® A is induced by the identification
VOW)RA=VRAOW® A,

(vB0)®a1+ (0D w)Rax < (v®ay) @ (wKay).

Given a representation of a (Lie) group, we can construct a co-repre-
sentation of the corresponding Hopf algebra KC:

Lemma 1.2.10. Let G be a group, V a K-vector space and r: V. x G — V a
(right) group representation, i.e. r(r(v,g),h) = r(v,g-h). Then r induces a
(right) co-representation p,: V* — V* @ KC given by

o) A @1,
geG

where AG: V — Kiis the linear form v — o(r(v, g)).
When V is finite-dimensional, the co-representation p, is irreducible if and
only if v is irreducible.

Often, there is an interesting algebra A C K&, such as O(G) or C*(G),
such that the image of p, is contained in V* ® A. The function p, can then
be viewed as a co-representation of A.

Proof. To check that (1.22) is satisfied, note that

(idoe)op (o) = ) Ag®@e(ly) =A{ @ 1.
geG

From A{(v) = o(r(1,v)) = o(v) we get A{ = ¢ and thus
(id®e)op,(r) =0®1.
To check that (1.21) is satisfied, note that

(i[d@A)op (o) = ) Ag@ A1)

g€G

=) ) L@ bz,
g€Ga,beG

= ) Ay ®L®L,
a,beG

15
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1.2 Co-modules 16

and

(or @id) 0 p,(0) = ) pr(Ag ®1g_222\8®1h®1g
geG gc€G heG

Note that
1 (©) = AS(r(0,h)) = o (r(r(0,1),8)) = o(r(0,h- §)) = AT, . (0).

This gives Azg = A((Th-g) from which we conclude that (id ® A) o p,(0) =
(or ®1id) o pr(0) and therefore (1.21) is satisfied.
For the final part of the lemma, let W C V be a linear subspace, and let
L ={w e V*: w(w) = 0 Vw € W}. Because V is finite-dimensional, it
is known that W = (W) = {w € V: w(w) = 0 Vw € W}. We will see
that W is an invariant subspace under r if and only if W+ is a co-invariant
subspace under p,. The statement regarding irreducibility then follows
directly.
Note that po,(W+) C Wt ® K if and only if

Vwe W, Y AP el e WK,
geG

thus if and only if for all w € W and ¢ € G we have A € W+,

Now assume W+ is a co-invariant subspace, i.e. pr(WL) C Wt ® KE,
and let w € W be arbitrary. Then for any w € W+ and ¢ € G we have
Ag € W+ and thus AG(w) = 0. But AY (w) = w(r(w,g)), sor(w,g) € W.
Therefore, r(W x G) C W, i.e. W is an invariant subspace.

Now assume W is an invariant subspace, i.e. (W x G) C W, and
let w € Wt and ¢ € G be arbitrary. Then for any w € W it holds that
r(w,g) € W and thus w(r(w,g)) = 0 per definition of W'. But
w(r(w,g)) = A§ (w),so Ay € W+. Hence, p,(W') C WH @KC, ie Whis
a co-invariant subspace. [

This construction can be applied to the irreducible representations of
SU(2) to obtain all the irreducible co-representations of O(SU(2)). Re-
call that the irreducible representations of SU(2) are given on spaces of
homogeneous polynomials in two variables, as found” in e.g. [2]:

“The given reference classifies all left group representations. The right representations
can be obtained using the anti-automorphism SU(2) — SU(2),g + g~ !

16
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1.2 Co-modules 17

Theorem 1.2.11. Let P,(C) = C[X, Y], be the complex vector space of homoge-
neous polynomials in X and Y of degree n. The map

rn: Py(C) x SU(2) — P,(C)
given by p — p(g(X,Y)) is an irreducible representation of SU(2), and every
irreducible representation of SU(2) is equivalent to a representation of this form.
Explicitly, forg = (¢ ¢") € SU(2) and p = Y} ;X" *Y* € C[X, Y],

we have

ra(p, Z pe(aX —b*Y)" K (bX + a*Y)¥

BB ) )
f Py (Z (3= Ik) (’l‘) <a>"—’<—<f—’>(—b*)“l(b)k—’(a*ﬁ) Xy

=: f prag X"y (1.24)
k=0

where [ runs over all integers such that all exponents are non-negative.
The second equality follows from Newton’s binomium, and the third equal-
ity uses the identity

a ' b ' a+b min{r,b}
(Z SZ'YZ> (2 t]'Y]> = Z Z Sr—ltl Y.
i=0 j=0 r=0 \ I=max{0,r—a}

To apply lemma 1.2.10 to the representations in theorem 1.2.11, choose
the basis (X" 1Y) for C[X, V], := P,(C)* that sends the basis of P,(C)
to the values

. L g ifi =],
XY (XY = { (i) (1.25)

0 otherwise.

Using (1.24) gives

ALY (p) = XY (ru(pg) kZO P, XY (XY Z P )
Now P = (Z)Xn—kyk(p) giVQS

xn-iyi - (Z) g yn—kyk
/\g — Z mwk,i)( Y~
k=0 \i

17
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1.2 Co-modules 18

Expanding @ ; and using thata = a(g) and b = B(g) etc. we finally obtain
that the co-representation from lemma 1.2.10 is given by

3 MGHE)

l i

Xn—iyi — i Xn—kyk® ( (Dé)n_k_(i_l)(—ﬁ*)i_l(ﬁ)k_l(a*)l> )
k=0

Introducing notation for the matrix coefficients of the right hand side, this
becomes .
Xyl Y Ak yk g o (1.26)
k=0
Note that this co-representation can indeed be seen as a co-representation
of O(SU(2)) instead of CSU(2),

There is another way to look at these co-representations, which uses the
notion of algebra co-representation. Algebra co-representations are often
not finite-dimensional, which is why we do not extensively cover them in
this thesis. This viewpoint is used in [5].

Definition 1.2.12. An algebra co-representation py: V — V ® A of a Hopf-
algebra (A, u, 1,7, ¢, S) onto an algebra (V, m, e) is a co-representation such that
(m®idy) o pygy = pyomand (e ®idy) on = poe, where pygy is as in
Notation 1.2.8.
The co-representations given in (1.26) can be combined into a co-repre-
sentation on C[X, )] = @ C[&X, V],. This can be shown to be an algebra
n=0

co-representation, hence all matrix coefficients can be deduced from the
case n = 1 and the algebra co-representation properties. Note that n = 1

is given b
g y (;()H( XRoa+Y®p ) 127)
Yy X (—p*)+YRa* '

from which we can deduce that e.g.

p(X%) = p(m(X ® X)) = (m @id4) © pcrx,yjeciy,y| (X © X)
= (m®idg) cE((Y®@a+Y@pB) @ (X@a+)Y®p))
=X2@a*+ XY Rap+ VX @ pa+ V@B

where E is as in Notation 1.2.8.

18
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1.3 Irreducible co-modules of O(SU,(2)) 19

1.3 Irreducible co-modules of O(SU,(2))

Following [5], the irreducible co-representations of O(SU,(2)) are described
using definition 1.2.12. We should keep in mind that these co-representa-
tions are very similar to the co-representations of O(SU(2)) described in
the previous section.

Definition 1.3.1. The algebra C,[X, Y] is defined as C(X,Y) /(XY —qVX)
where C(X,Y) is the free algebra on X and Y (c.f. Notation 1.1.10) and
(XY — qYX) is the two-sided ideal generated by XY — q) X.

The vector space C4[ X, V], is the subspace of homogeneous elements of degree n.

In the literature, the algebra C,[X, )] is known as the quantum plane.
Some new notation is also required.

Notation 1.3.2. The g-binomial coefficients |} ], are the numbers (dependent

on q) such that in C4[X, Y] we have the identity

q

n

(X + )" =3 [}, Yk (128)
k=0
Furthermore, in this thesis the notation [}[] = [} ], is used.

n_—n
Sometimes, for n € Z the notation [n], = % is used.

Of course, formula (1.28) holds for any two elements in an algebra that
satisfy the same commutation relation as X and ) in C,[X’, V]. The reason
for [}] to have g2 instead of g is because for algebras of the form A ® B,
and elements X,) € A and «, 8 € B that commute up to a factor of g,
we have (XY @ a + Y ® B)" = Y1, [}] X" *V* @ a"~*B~. More about the
g-binomial coefficients and related notions can be found in [5, Chapter 2].

Theorem 1.3.3. Consider the function
¢1: Co[X, V)1 — Gy X, V)1 @ O(SU4(2))

given by

(i) = [X Y] ® {g _:Zﬁ} = <2( @iiﬁ%ﬁ?ém) (1.29)

This function can be extended to an (infinite-dimensional) algebra co-representa-
tion
¢: Cy[X, Y] = Cy[X, Y] @ O(SUy(2))

19
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1.3 Irreducible co-modules of O(SU,(2)) 20

using the relations from definition 1.2.12. The restrictions
¢n: CglX, V] — CylX, V] @ O(SUy(2))

are finite-dimensional irreducible co-representations, and any finite-dimensional
irreducible co-representation of O(SU,(2)) is equivalent to a co-representation of
this form.

Proof. See [5, Chapter 4.2.3-4.2.5]. O

A few remarks:

* When g — 1, equation (1.29) exactly agrees with equation (1.27).

e In [5], the algebra C,[X,))] is identified with the subalgebra of
O(SU4(2)) generated by « and * via X' <+ &, Y <+ —qpB*. Then
the co-action of ¢ can be identified with the co-action of A. Indeed,
we have a(—qp*) = q(—qp*)a and

A( « >:( xR@u~+ (—gp*) @B )
—qp* a® (—gp*) + (—gp*) ® a*
which agrees with equation (1.29).

* One can explicitly compute the matrix coefficients for these co-repre-
sentations. This is described in [5, Chapter 4.2.3-4.2.4], with respect
to the basis

fi(l) — [l%rli}Xl—iyl-‘ri (130)

where | = % € 1IN and i runs from — to | in integer steps. With this
basis, we have

—i1 [ 1+
n [lll ] [H}L—u} [l%rlz'
bj' = )y
U 2]
i
where u sums over all integers for which the exponents are all posi-
tive, and ¢y (f].(l)> =Y, fl.(l) ® tg).

e With respect to the basis (X ”_iyi)?zo of C4[X, Y]y, and after relabel-
ing the indices vian <+ 21, i <+ j+ [, j <> i+land ! < [ +j— yu, the
matrix coefficients are given by

) I L e G A e AT PO LA

T(”) § : [:l l]] [;] [7] 1=i)(j=1) yn—j—(i—I i—1 pj—1 I
ij l [n] q( U )an =G )(_qlB*)l ;3] (‘X*)
(1.31)

20
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1.3 Irreducible co-modules of O(SU,(2)) 21

where ¢, (X iyh = AT Y Tig.n). Note the similarity to the
coefficients found at (1.26).

Lemma 1.3.4. The matrix coefficients tg) considered above satisfy S <tl(]l)> =

(t](f )> *, i.e. the co-representations ¢y, is unitary with respect to the inner product
induced by the basis fl.(l).
Proof. See [5, Chapter 4.3.1 Proposition 16]. O

Example 1.3.5. The co-representation ¢;: Co[X,V]o — C4[X, V]2 ® O(SU,(2))
can be deduced as follows:

P2(X?) =p(m(X @ X)) = m @ido(sy,(2)) (9 @ (X @ X))
=m ®idosu,(2) (E(X @a+YRP) @ (XY @a+Y©p)))

=m id(’)(SUq(Z)) (X RLARan+ X RY® DC‘B

—I—y®X®ﬁtx+)}®y®ﬁB>
=X?@an+ (147 )XY Quap+)> BB

The values of p2(XY) and @o(V?) are deduced similarly, which gives

22 X2@an +(14q72)XYRap +)22BB
P2 ( XYy ) = X2@u(—qB*) FXYR(an*—pp*)  +V*@Pa*
y? 220 (—qB*)(—qB*) +(1+q )XY (—qp*)a* +V2a*a*

Similarly, the co-representation ¢3: Cy[X, V]3 — C4[X, Y]z ® O(SU4(2))

3
can be deduced to be given by @3 (;‘; ;Jﬁ) =
y3
X3@a’ +(14q72+g 1) X2V 2a2B +(14+q 724+ 1) XV 0ap? +V3p°
—qX0a%F"  + X2Vt —(1+q2)appr)  +XV2R((1+q H)apa’—q~ ' B7) +Y p
PX30u(p)* +X2YR(B(F*)*—q(1+q Papa”) +XV2@(a(a*)~(1+q 2)ppra’) +V2p(a*)?
—PX3O(F) AP (1424 ARV (F Ve —q(1+q 7+ AV (@) +Y38(a)?

Indeed, these expressions are the same as the expressions that can be calculated
using formula (1.31).
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1.4 Clebsch—Gordan coefficients of O(SU,(2)) co-modules 22

1.4 Clebsch-Gordan coefficients of O(SU,(2)) co-
modules

Per [5, Remark 1 below Theorem 4.14], any co-representation
p: V= VeO(SU2))

can be written as a direct sum p = @;¢;,, where @,, are the irreducible co-
representations given in Theorem 1.3.3. In other words, finite-dimensional
co-representations of O(SU,(2)) are completely reducible.

In particular, for any 1, 1, the co-representation ¢, ® ¢;, as in Nota-
tion 1.2.8 can be written as such, as summarised by the following result
found in [5]:

Lemma 1.4.1. Given ny, ny, there is an isomorphism

min{nq,np}

C: @ Cq[X/y]2k+|n1—n2| — Cq[Xry]nl ®Cq[X/y]nz
k=0

such that the following square diagram commutes:

min{nq,ny} C

kEPO Cq[Xry]zanl—nz ——————— G, V]n, @ Cy[X, V],
. Py ® Pny
min{ny,ny}
Pok+|ny—ny|
=0 Gyl X, V] @ Cg[X, V], © O(SUy(2))

C®ido(su,(2)

min{nl,nz}
< ke:BO Cf][‘)(’ y]2k+n1nz> ® O(Suq<2)>

Explicitly, for the basis vectors f]-(ll) € CylX, Vo, and f].(ZZ) € CylX, Vo, and

I, 1
f]-(l) € CylX, Y]y as in (1.30), such that (fi(ll) ®f]-(12)) ,1 21 - is a basis of
1=— ,]:—
. , (] hth . : ) :
the right-hand side and (( f] ) jz_l)l b is a basis of the left-hand side, we
==
22
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1.4 Clebsch—Gordan coefficients of O(SU,(2)) co-modules 23

have that*

Ch)= ¥ Cq(lzzllrl;kzj/m)fj(ll)®fk(12)-
j+k=m

where the expression for C, (I1,12,1;j, k, m) can be found in [5, Chapter 3 Formu-
las (51)-(53)].

The general formula for Cy(l1, I, I; j, k, m) will not be written out in this
thesis; it will only be used for a few special cases.

Proof. This proof will sketch the arguments used in [5], and fill in a few
missing gaps.

The proof starts with two Hopf algebrast introduced in [5, Chapter 3.1.1
and 3.1.2]: the algebra U, (sl,) generated by E, K, F and the closely related
I:Iq(slz) that is generated by E, K, F (which [5] just writes as HEV, K, F). There
is an injective map Uy (slp) < U, (sl) given by (If() > < ?(Ii( )

R1F

By restriction of 4 to R and with an additional *-map, the Hopf-algebras
Uy (sup) and U, (sup) are constructed out of U, (slp) and Uy(sly).

By [5, Chapter 4.4.1, Theorem 21], there is a dual pairing (-, -) between
O(SL4(2)) and Uy(sly), which also gives a dual pairing between O (SU,;(2))
and Uy (suy).

In [5, Chapter 4.4.2] it is explained how any co-representation ¢ of
O(SU4(2)) gives rise to a representation ¢ of U,(suz). Explicitly for the

co-representation ¢, given on the basis fi(l) by ¢y ( f].(l)> =Y, fl.(l) ® tg),

we have (p}_l(x)f]-(l) =Y fi(l)<x, tEp) for all x € U,(suy). For the generators
E,K, F we have

Fu(EVF = a7\ 11—+ 15l + 7l f1)
Fu(K)f) =g 4f0 (1.32)
Fu(F) D = g 1+ + gl flof

tCalculations in specific cases (See the footnote in the proof of Lemma 2.2.3) show that
this formula might be incorrect. In [5] it seems to be implied that the correct formula is

—~

Cw) = ¥ Gl Ljkmf" @ f2.
jrk=m

fThese algebras are Hopf-algebra analogues of the Lie algebra sl(2) of the group
SL(2). In particular, U,(sl) should be thought of as (a quantum analogue of) the uni-
versal enveloping algebra of the lie-algebra s((2).

23
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1.4 Clebsch—Gordan coefficients of O(SU,(2)) co-modules 24

Using the map f].(l) <> e_j, this representation agrees with the repre-
sentation of Uy (sl,) found in [5, Chapter 3.2.3, Theorem 13]:

Ti(E)en = /11 +m+ 1yl — m]gen i1
Ti(K)ew = q"en (1.33)

Ty(F)ew = /1 — m+ 1)1+ mgen 1

The powers of g in (1.32) and (1.33) agree after applying the aforemen-
tioned inclusion map Uy (sly) < U, (sh).

The representation theory of Uq(suz) is described in [5, Chapter 3.4],
which states

ef,n = Z Cq(lll 12/ l/]/ k/ m) ej ® ex.
j+k=m

This result can now be applied to the co-representations of O(SU,(2)), by
pulling it back via the map f].(l) <> e_j, which gives

j+k=m

By [5, Chapter 3.4.4, formula (70)], we have

Cq(lll 121 l/ _jl _kl _m) - Cq(ZZ/ ll/ l/ k/j/ m)

24
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Chapter 2

Algebraic subproduct systems

In this chapter, an algebraic subproduct system E, C V" is constructed
for a unitary co-representation p: V. — V ® O(SU,4(2)) onto a complex
inner product space V, similar to the constructions in [1, Chapter 2].

2.1 The non-commutative Nullstellensatz, an in-
troduction

The famous (commutative) Hilbert Nullstellensatz is a fundamental result
in commutative algebra that relates the algebraic notion of an ideal I C R
in a ring R to the geometric notion of a variety V(I) C Spec(R).

The classical version of this statement takes R = C[Xj, ..., X;,;| in which
case Spec(R) is known as n-dimensional affine space, and an ideal gener-
ated by a polynomial p corresponds to the set of zeroes of p.

In non-commutative algebra, an analogous statement has been
described in [8], where an ideal I C C(Xj,..., X,) is related to a structure
known as a subproduct system. This thesis considers algebraic subproduct
systems as opposed to the more general, analytical notion of subproduct
systems of Hilbert spaces.

Definition 2.1.1. An algebraic subproduct system is a collection of finite-
dimensional complex inner product spaces {E}n>0 and linear isometries
tem: Ekem = Ex ® Ey, that satisfy the following three conditions:

i. Eg=C,

ii. tom: Em = CQEy and 1,01 Eyy — Ep @ C are the canonical identifica-
tionsv— 1®@uvandv— o1,

25
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2.1 The non-commutative Nullstellensatz, an introduction 26

iii. (idEk & Ll,m) Oljl+m = (tk,l & idEm) O lktl,m-

The more general subproduct systems used in the literature, notably in
[8] differ from this definition in that the E, are C*-correspondences instead
of finite-dimensional inner product spaces. The definition used here is
obtained when the “correspondences” E, are over the trivial C*-algebra
C, and required to be finite-dimensional.

The noncommutative Nullstellensatz describes how for a fixed inner
product space V == C", a subproduct system (Ej)i>o with E; C V relates
to a homogeneous two-sided ideal I C C(Xj, ..., X,). To state it, we need
the following simple but crucial observation:

Lemma 2.1.2. Given an n-dimensional complex inner product space V with or-
thonormal basis {ey, ..., ey}, there is a natural algebra isomorphism between the
tensor algebra T(V) = @52,V and the polynomial algebra C (X, ..., Xy),
which is obtained by identifying the algebra generators (e;)?_, with the generators
(Xi)?:l-

Notation 2.1.3. For a polynomial p € C(X1, ..., Xn), the image under the iden-
tification of Lemma 2.1.2 is written p(e), whereas for a vector v € T(V'), we use
the notation X(v) for the corresponding element in C(X, ..., Xu).

For example, when v =1+ 2¢; ® ep + 3e4 ® e3 ® ep € T(V) we have
X(v) =14+2X1 Xy +3X4 X3Xp
and similarly for p = 1+ 2X1 X, +3X4 X3Xp € C(Xj, Xp, X3, X4) we have
ple) =142 ®ex+ 3es @ e3 @ ey.
The noncommutative nullstellensatz can now be stated:

Theorem 2.1.4. (Noncommutative Nullstellensatz) There is an inclusion-
reversing bijective correspondence between subproduct systems (E)5_, with
En C (V)®™ and homogeneous two-sided proper ideals I C C(Xy, ..., Xi). Un-

der this correspondence, a subproduct system (Ey,);,_ corresponds to the ideal

Ig, = Span{X(v): 3m such that v € (E,,)* C V®™},

o
m=0

and an ideal I C C(Xq, ..., Xy) corresponds to the subproduct system (E.,)
where

El, = {p(e): p € I is homogeneous of degree m}- C V™,

.l
where the maps iy, : Ei

V®(k+m) o~ @k ® Vom,

— E] ® El, are induced by the natural isomorphism
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2.2 The determinant of a co-representation 27

Proof. This is [8, Proposition 7.2] O

In section 2.3, for each co-representation ¢: V — V ® O(SU,(2)) we
construct a subproduct system related to the subspace det(p).

Under the non-commutative Nullstellensatz, this subspace becomes an
ideal generated by quadratic polynomials, which puts it in the context of
quadratic algebras as found in e.g. [6, Chapter 4]. The following section
will study det(p) in greater detail, and section 2.4 will give more insight
in the related quadratic algebras for irreducible p.

2.2 The determinant of a co-representation

This section describes and studies the determinant det(p) of a co-represen-
tation, which will play a central role in the construction of the subproduct
system.

Definition 2.2.1. The subspace of co-invariant elements Colnv(p) C V of a
co-representations p: V — V@ Ais theset {v € V: p(v) =v®1}.

Note the similarity and subtle difference between this definition and
the definition of co-invariant subspaces (definition 1.2.3). In particular,
Colnv(p) is a co-invariant subspace.

Definition 2.2.2. The determinant det(p) C V ® V of an A-co-representation
p:V-oVRA

is the space
Colnv(p®F) C V&K,

where k € N >q is the minimal number such that there exists some co-representa-
tion ¢: V. — V ® Awith Colnv(¢) = {0} and dim¢ (V) = k.

In the case that A = O(SU,(2)), we have that k = 2 for the co-repre-
sentation ¢; from Theorem 1.3.3.

Another example is when A = O(SU(3)) is a function Hopf-algebra
on the classical Lie group SU(3), in which case k = 3 for the co-represen-
tation ¢: C> — C> ® O(SU,(3)) obtained from the fundamental group
action C3 x SU(3) — C® through Lemma 1.2.10.

This thesis will from now on only focus on the case that A = O(SU,(2)),
so det(p) = Colnv(p ® p). In this case, the name “determinant” has been
chosen because of the following observation:

27

Version of July 12, 2022— Created July 12, 2022 - 15:52



2.2 The determinant of a co-representation 28

Lemma2.2.3. Whenp: V — V ® O(SU,(2)) is an irreducible co-representation,
we have that det(p) is a 1-dimensional subspace of V@ V.
In particular, for the co-representation

¢1: Co[X, V)1 — Gy X, V]1 @ O(SUy(2))

we have det(p) = Span(X ® Y —q)Y ®@ X)

Proof. Assume without loss of generality that p is the (1 + 1)-dimensional
irreducible co-representation ¢, from Theorem 1.2.11. By Lemma 1.4.1,
the co-representation p ® p decomposes as p ® p = Dy_q Pak-

All co-invariant subspaces of p ® p are therefore given by

P Cy[X, Y]k € CIX, V], @ CIX, V],
keS

where the C-identification is as in Lemma 1.4.1, and S C {0,1,...,n} is
any subset. It follows that Colnv(p ® p) must be of this form as well.
Because for k # 0 the elements in C,[X, V], are not co-invariant under
@2k, it follows that k can only be 0. We thus obtain that

Colnv(p® p) = @ Cq[é\,’,y]Zk
ke{0}

= Span(f\")

—spun T ¢ (3. 0mi0) 1 e 7).

j+k=0

In [5, Chapter 3.4.3 just below formula (67)] we find C4(13,15,0;j, —j,0) =
(=D /g

when [; = [, so we see that *
[211 +1]

2 (—1)iigi
Colnv(p ® p) = Span | ) (Gl DEIC

P ff) . 2.1)
=4 y/[n+ 1]

]

“The cautious reader might have noticed that here we used the formula for
Cy(5,%,0;j,—j,0) instead of C4(%,%5,0;—,j,0). There must be some miscalculation
somewhere, either here or in the proof of Theorem 1.2.11. Calculations for small
n do show that this formula should be used for det(p), and not the one using
Cy(l2,1h,0;-4,1,0).
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2.2 The determinant of a co-representation 29

Writing this in the basis X" %Y of C,[X, Y], and dropping a constant

factor of /=" we get

[n+1],7
det(p) = Colnv(p ® p) = Span <i |yl xiyn ])
j=0
For small n, this gives
det(¢1) = Span <X RY—qY® X) (2.2)

det(¢y) = Span(?(2 ® Y? — q(q~ 24 +1HXY XY+ qzyZXZ), (2.3)
det(¢3) = Span<X3 QY3 — q(q_4 + q_z + 1)2‘(2)) ® X)?
+ gt g P+ )AY 2 XY - PV e X3), 2.4)

det(ps) = Span(?f“ OV —q(q  +q g+ DAY @ XY
+ qZ(q—S + q—6 +2q—4 + q—Z + 1))(2))2 ® X2y2
PG gt g P DAV R ABY 4 ¢V e X4>.
2.5)

It is a simple but tedious verification to show that these vectors are indeed
co-invariant under these respective co-representations as found in Exam-
ple 1.3.5. O]

We can also describe the determinant of a reducible co-representation
of O(SU,(2)):
Lemma 2.2.4. Let p: V — V ® O(SUy(2)) be a reducible unitary co-represen-
tation. Let V. = @; (EB”" ij) be a decomposition such that for each V;; there

is a bijective orthogonal map py;: Vi — V;; that intertwines plv, with the map
@i Vi = V;® O(SUy(2)) from Theorem 1 3.3, i.e. the diagram

V, —— V;® O(SU,(2))

Pij l l pi;®id

v—" L veosu, )

29

Version of July 12, 2022— Created July 12, 2022 - 15:52



2.2 The determinant of a co-representation 30

commutes. Then

n;

det(p) =P | D (pij; @ pij) (det(gi))
i \Ju2=1

Proof. Similarly to the proof of Lemma 2.2.3, the determinant can be found

by decomposing p ® p into irreducible co-representations via Lemma 1.4.1,

and then the trivial irreducible co-representations of this decomposition
constitute the determinant. Clearly,

p®p - @ p|V11]1 | 12]2 @ g011 ®q)12
111]1 12 ]2 11 ]1 12 ]2

and thus

Colnv(p®p) = €P Colnv <p|v ®ply, > (2.6)

i ip
1,j142/)2
Thanks to Lemma 1.4.1, we have
min{il,iz}

P, @ @i, = EB P2k+ iy —ia|*
k=0

In this decomposition, the trivial co-representation, denoted ¢y, is in the
direct sum only when iy = i;. And when i; = i, = i, we have that
Colnv(¢;, ® ¢;,) = det(¢;), so we obtain that

| (pij, @ pij,) (det(gy)) ifiy =ip =1,
Colnv (plv,-l,'2 ®P|szfz> N {{0}1 2 if i # ip. 27)

Combining (2.6) and (2.7) gives the desired result. O

For example, take the vector space V as

Vi = Cy[X1, 1|1 = Span(&y, M),

Vo = C4[X2, V21 = Span(&y, V),

Vs = C4[X3, V3]2 = Span(XF, X3V, V3),

V =V, @ V2@ V3 =Span(Xy, V1, Xp, Vo, X3, X33, )3)

where the V; are as in Definition 1.3.1, and the co-representation p as
p11: V1 = V1 @ O(SUy(2)),
P12: Vo = Vo ® O(SU,(2)),
¢23: V3 = V3@ O(SUy(2)),
P=011DP2® gx: V=V O(SU;(2)),
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where the representation ¢;; agrees with the representation ¢; from Theo-
rem 1.3.3. Then
det(p) = Colnv(¢11 ® ¢11) & Colnv (911 @ @12)®
Colnv(pi2 ® ¢11) ® Colnv (@12 ® @12)P
COIHV(§023 X q)zg)

(XY —gh1@4&)), (1@ — g1 ® Ay),
(VI — g @ X)), (@I —qIh® X),

(323 -9+ 020 XY + q2y§?€§)) :

221 Temperley-Lieb vectors

In this section we investigate a property known as being “Temperley—
Lieb”, as found in [3, Definition 1.2]. Temperley-Lieb vectors and algebras
are of interest in several mathematical fields, including braid theory and
quantum groups.

Definition 2.2.5. Let V be a complex finite-dimensional inner product space V.
A vector 6 € V ® V is called Temperley-Lieb when the orthogonal projection
e: V®V — Span(9) satisfies

(e®1)(1®e)(e®1):%e®l

for some A € R~
We can show that det(¢,) is Temperley-Lieb:

Lemma 2.2.6. Let p be as in Lemma 2.2.3. There exists a A € R~ such that the
ortogonal projection
e: VeV — det(p)

onto the subspace det(p) satisfies (e ® 1)(1®e)(e® 1) = te ® 1. In other
words, det(p) is Temperley-Lieb.

Proof. This is most easily proven by direct computation. Recall that by

Lemma 1.3.4, the inner product on V is induced by the basis f].(%). By the
proof of Lemma 2.2.3, det(p) = Span(J) where

7 —1 5=igi (n n 2 n n
o=y CE 0oy 5 iPafd es
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Note that ||5]|? = 1, as by the geometric series we have

1 1 n
16]1* = @ "+ "+ g ") = —tf”( q2k>
[n+1], [n+1], kg
_ 42(n+1) —(n+1) _ n+1
S L S B TG Y
- n+1] 1-g¢ m+1l; g l—9q

On an element f, (2) ® fﬁ), the projection e is given by

(2) (2)
. y fa¥ @ f7,0
€ (fa(Z) ®f1§2)> = < ||5||2 > = (5a1a:—b)5'

Hence, for a general basis element fa(%) ® fﬁ) ® fc(%) of VeVeV, we
have

1) (£ of @ V) = @)oY
Writing p,, = 6,1,— _p and applying (1 ® e) now gives

Vl

(o) () on) o) = yabz iV we (1

\ N\:

® £7)
_.”abZ(S(S 1)f Y @0

- (yubdcé_c) s
Applying (e ® 1) to the result gives

(e®1)(1®e)(e®1) (fa(%) ®fﬁ) ®fc(%)>
=100 ¢ Zée( f%>®f§)
=Hapdcd-c ) (00c1e=—)0 @ f E%)
j
=Hab (505 ) 5®fc%
= (6.6_c)? (e®1) (fa ® f,? ®fc(%)> ‘

Finally, §; = (_1[31—\/%]]‘7] gives us that §.0_. = % is independent of ¢, so
q

il (nt1)\ 2
the lemma holds for A = ([n + 1]q)2 - (%) . -
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2.2.2 The determinant and braids

This section, together with section 2.2.3, will be dedicated to proving the
following theorem:

Theorem 2.2.7. For each unitary finite-dimensional co-representation
p: V= V®O(SU,(2)) there existsamap o: V@V — V ® V such that

det(p) = (Inv(c))™" (2.10)

and
(ce)(1eo)(cel)=1x0)(c1)(1x0). (2.11)

Equation (2.11) is known as the braid equation or Yang-Baxter equation,
and is central to the study of a broad class of Hopf algebras. First, the
simpler case when p is an irreducible co-representation of O(SU,(2)) will
be studied. In particular, we have the following result:

Theorem 2.2.8. Given an irreducible co-representation
pn: V=V O(SU2)),

amapo: VRV — V ® V satisfies (2.10) and (2.11) if and only if o expressed
on the basis (1.30) has the form

NI=

(1P ) = Tl (= (i) £V @ f8) it =k,
N VY ifj # —k,
(2.12)
where for each j, the numbers xy satisfy the equation
T+xjx_j=)Y X (2.13)
m

The proof of 2.2.8 starts with the following observation:

Lemma 2.2.9. When ¢,,: V. — V ® O(SUy(2)) is irreducible as in Theorem
133, anyc: V®V — V ® V that satisfies equation (2.10) is of the form

s TR CODIIC ) Ry
U(f(%)®f(%)): 21'2:—% (1];:1'_(_@] xi) ;7@ f5 ifj=—k
Y e ifj # —k,

n
2

where (xy);_

_u» € Visan arbirary non-zero vector.
2
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Visually, the function ¢ above is given by

Youfi o fY ifk=—j,
k

(%) (%)
U<f] Ji > (%) (%) - .

=

where 0y is given by

e If nis odd and dim¢(V) is even:

055 035 015 0O 15 035 0. 55 1-xs5 x50 —x5472 x597° —x3q7* x5q7°
22 22 22 22 22 22 2 2 2
I I I I I I 1— 1 _x3q72 3 —xygt
53 33 13 0_13 33 53 x3q X3 X3q X34 © X3q xX3q
22 22 22 22 22 22 2 2
_ 2 1— -1 _ -2 -3
Us1 031 011 011 031 051 x9% x1q X oxq !l —xg? xg
22 22 22 22 22 22 — 2 2 2 2
3 2 1— -1 _ -2
©05 103 101 101 103 105 1 x_1q —x_1q? x 19 1-x_3 x_ 197" -x_1q
272 272 272 272 272 272 2 2
_ 4 3 _ 2 1— 1
105 303 301 301 303 305 3 x_3q" x_30° —x_34% x_39 1-x_3 x_3q
272 272 172 272 T273 T272 2 2 2 2 2
U5 503 501 501 503 505 5 x_sq® —x_sqt x_sq® —x_sq® x_3q 1-x_s
272 272 2712 2772 272 272 2 2 2 2
e If niseven and dimg (V) is odd:
oy Gip Oop O_1p Oonp T—x2 X070 —x27% xq7% —xpq7*

e 021 011 01 0-11 021 xig  1-x xgl —xg7? xg73

.. .. = . 2 -1 -2
- 020 010 Co0 O-10 C-20 - - —xpq°  xoq 1-x0 X0 " —Xoq

. - - 3 2 -1
< 09,1 01,1 00~1 0—1,-1 02,1 < oxog? —xgt xqq 1-xog x_qq

. . . 4 3
+02,201,200-20-1,-20-2-2 " c TX_2q" X2

—x,zqz X_2q 1-x_ ’

Proof of Lemma 2.2.9. Recall that by Lemma 1.3.4, fj(%) is an orthonormal
basis of V, and by equation (2.1), we have

det(@y) = Span | ¥_(—9)/f? @ f
]
For the remainder of this proof, introduce the shorthand notation fj =
f].(%) ® f,ﬁg) We easily find that

det(¢n)" = Span ((fx)kz—j (afj—j + fi+1,-j-1)) -

34

Version of July 12, 2022— Created July 12, 2022 - 15:52



2.2 The determinant of a co-representation 35

A rigorous proof of this can be found in the proof of Lemma 2.4.4.
Now Inv(c) = det(¢,)" implies that o(fj) = fjx when k # —j,

and also (qf;,—j + fi+1,-j-1) = 4fj—j + fi+1,—j—1. Writing o(f; ;) =
ik fk,—k, the last relation gives

qg ifj=k,
qojk +0jip1x =91 ifj+1=k,
0 else.

which is equivalent to
q(1 —op) ifk=j,
0-]'+1,k: 1—[]0']'k lfk:]+1,
—q0jk else.
After choosing x; = 1 — 0y, we see that the above inductive relation is
uniquely solved by ojx = 1 — (—q)/Fx;. O

Having solved equation (2.10), the next equation of interest is equation
(2.11). Consider the following lemma

Lemma 2.2.10. For a finite-dimensional vector space V with basis (f;) e and a
map
c:VeV=VeV

that satisfies o (f; ® fi) = f; ® fr whenk # —j, and
o(fi®f-j) =) oife ® fks

kel

the braid equation (2.11) is equivalent to the set of equations

030,10 = Oj) = ) OO = ), CojmOm,—j V€L (214)
m#j m#—j
Uik0—j,— ] U]] Z UimOmk j#k, (215)
m#j
i (L= 0jj) = Y OimOmj i#j, (2.16)
m#j
Uik — UijOjk0—j,—j = Z UimOmk i#j,j#k (217)
m#j

Proof. Introduce the shorthand notations fix = f; ® f; ® frand j = —j.
The braid equation can be investigated on the basis elements fij. The
following cases can be distinguised:

35
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Li#},j#k
2.i=J,j=k,

3.i=J,j#kori#J,j=k
In the first case, we have
(1@e)(ce)1Ae0)(fix) = fix = (c®@1) (1@ 0)(c@1)(fij)-
For the second case, we can calculate

1®o)(c@1)(1®0)(fji)

=(1®o)(c®1) (‘fﬁfﬁf + ) 1m#7‘77mfjmm>

mel

=(1®0) (Z U'jjo'jkfk]}j + 21 1m7é]v(7'jmfjmrh>
me

kel

= kE L0307k fis + 30007 e + < ZI 1m¢7<77m‘7mk> fik
el me

and similarly

(c® 1)(1®(7)((7®1)(f]-]7)

=(cen)(1wo) (‘Tjjfﬁj + ) 1M#J"ijfmﬁ1j>

mel

=(c®1) (Z O S + L 1m#]"71'mfmﬁ1j>
kel mel

=Y Lexg i S + 000 fig; + ( ). 1m7éjffjm‘7mk> ik
kel mel

Equating the coefficient for fj]v]- gives

00 + 2 In#10mOmi = 0503055 + Lt iCimCmjs
which is equivalent to equation (2.14). Equating the coefficients for fk];].
gives (when k # j) that

Ojk0y = Ojk030j; + ZI Lyt i Coks
me

36
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which is equivalent to equation (2.15). Lastly, note that equating the coef-
ticients for f].k]v( gives exactly the same, but with j instead of j.

For case 3, let i # j and note that (1® ¢)(fiz;) = fi;j so the braid equa-
tion (2.11)is (1®0)(c @ 1)(fuj) = (c ®1)(1®0)(0c @ 1)(fi). Now

(1@o)(c@1)(fij) = (1®0) (Uijfj]“j +) 1k7éj‘7ikfk7cj>
kel
=) 050k f ik + Lkik ik
kel
and

(c@1)(A©0)(c®1)(fi)

=(c®1) (Z 007 Sk + Y Imiimf mﬁu’)
kel mel

= Z 1k7é7(7ij0'jkfjkf< + (Uijo'jjo'jk + Z 1m7éj0im(7mk) fk]E]'-
kel mel

We see that the coefficients for f].k]v( already agree for k # j. Equating the
coefficients for f;;; gives

0ij0 = 05035 + 2 L TimOmj
mel
which is equivalent to equation (2.16), and equating the coefficient for f,; J
gives for k # j that

Uik = 0ij05i0jk + Y. L £iTimOmk
mel
which is equivalent to equation (2.17). We can show that the braid equa-

tion for fy; gives exactly the same equations, which completes the last
case. O

Combining the results of Lemmas 2.2.9 and 2.2.10, we obtain the fol-
lowing result, which concludes the proof of Theorem 2.2.8:

Lemma 2.2.11. When o is as in Lemma 2.2.9, the equations (2.14)-(2.17) are all
equivalent to

vjr me =1 +X]‘x_]'.
m

37
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Proof. Note that if m # i,j, we have that
Uimamj = (—q)i’jxmxj.
For (2.14) we find that

(1 + XiX_j— (x] + x,]-))(x]- — x,]-) = (1 — x]) (1 — x,]-)(xj — x,]-)
= 03j0—j,~j(0—j~j — )

(2.14)
=" ) OmOmj = Y O—jmOm,—
=y .

_ (;x,nxj _xjx]) - (;xmxf —xjxf>
— (. <me> x - le)

= (xj—x_;) <me — (xj+ x_j)> ,

which is equivalent to x; —x_; = 0 or }_,, xy = 1+ x;x_;. For (2.17) with
i = k # j we obtain

1T—xi+x (xx_j—xj) = (1—x;) — x52(1 — x_)
= Uii — 0ij0ji0—j,—j

(2.17)
= Z OimOmi

m#j
2
=0+ Z OimOmi — UijTji
m;«éi
(1—x;) 24 2 XmXi — XjX;

m#i

:1—2xi+x%+xi (me—xi—x])
m
=1—x;+x (me—l—x]->,
m

which is equivalent to x; =0 or }_,, x,m = 1+ x;x_;
For (2.17) with i # k, as well as for (2.15) and (2.16), first note that for
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i # j we have
Y OimOnj = 030 + 0505 + Y, CimOm;j
Z mi |
= jj(os +03) + Y (=) Ty
m#i,j

=0’ij<(1—x)+ 1—xj)— (me— —x]->>
=%G—ZM> (2.18)

Now (2.17) with i # k gives

O (1 +xj — xjx_j) = —(—q) (1 + xi(1—x_j))
= —(=q) M = (=) T
= Uik = OO0 —j

(2;7) Z TimTmk
mZj
2.18)
(: Oik ( me> — UijUjk
= 0k (2 - me> — (=) i
m

= Ojk (2_2xm+x]’>/
m

which is equivalent to o3 = 0 or 3, x» = 1+ xjx_;. Lastly, from (2.18)

39
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one sees that (2.15) immediately becomes

o (xj — xjx_j) = oo (1 — o))

(2.15)
= Z UimUmk
m#j

2.18
(ZM%G—ZMJ—%%
m
= jk (2— me — (1 — x])>
m

= Ojk (xj-kl—zxm),
m

which is equivalent to ojy = 0 or }_,, x = 1+ xjx_;. Similarly (2.16) is
equivalent to

Uij(xj - xjx—j) = Uij"—j,—j(l - (Tff)
(2.16) Z
= UimOmj

m#j
(2.18

ZHWG—ZM—%>
m

which is equivalent to g;; =0 or }_,, x;y = 1+ xjx_;.

We conclude that (2.14)-(2.17) are satisfied if and only if x; = 0 for all
k,or Y., xm =1+ x;x_; for all j. Because 2.2.9 requires x; to be nonzero, it
follows that ), x;s = 1+ x;jx_; must hold for all j. O

We can now try to solve equation (2.13). The following statement says
that there are [ 5| degrees of freedom in finding a solution:

Lemma 2.2.12. When xy is given for all k > 0, equation (2.13) has a solution
except when we are in the very specific case that n is odd, all x; are nonzero,

Yiso 3 = Land Yoo Xy # 1.

Note that instead of all k > 0, we could take any subset of the index set
that only contains at most one of {k, —k} for each k.

Proof. Let xy for k > 0 be arbitrary.

40
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1. If Jj such that x; = 0, then xx_ = x;x_; = 0 for all k. Furthermore,
(2.13) becomes Y, x;; = 1. The numbers xy, k < 0 can now be chosen
such that these two requirements are satisfied: if n is odd, we require
xo = 0 and for all k > 0 where x; # 0 we require x_; = 0. The
other x_j for k > 0 must be chosen such that }_,, x,, = 1, e.g. X_j=
1—Yjsoxrand x_j = O fork # j.

2. The next case is when Vj,x; # 0, Y1 xik = 1 and n is even. Then

2
xX_j= i—? and (2.13) becomes

2
X
1413 = Zxk—l—x0+2x—0:xo+2xk+x%.
k>0 k>0 K k>0

2
Hence we require xg =1 — Y - gxrand x_j = 3;_2

3. The next case is when Vj, x; # 0, Y~ xlk = 1 and n is odd. If further-

more Y ;-0 X = 1, then for an arbitrary A we can set x_; = 2

% such
that (2.13) becomes

Zxk+zi=1+)\,
k>0 k>0 Yk

which is clearly satisfied. If } ;- xx # 1, the requirement that x;x_; =
xmX—m for all k,m gives a similar equation to the one above, which
cannot be satisfied in this case.

4. The next case is when Vj, x; # 0, ;¢ xlk # 1 and n is odd. In this

_ ( 1-Ym>0¥m )
1-Y,50 7 .
case, when we choose x_j = ——=2=03 2 equation (2.13) becomes

Xk
. (1—Zm>0 Xm )
1
Yo+ ) TEw0wn ) g L= Yo Xm
- 7
k>0 k<0 Xk L=Ym>0%,

which is true.

5. The last case is when Vj, x; # 0, Y~ xlk # 1 and n is even. Then we

2
must choose x_j = 3;—2 and (2.13) becomes

1+x%:x%<2xlk> +x0+ ) X

k>0 k>0
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which is equivalent to

x%(lek—l) +x0+ (Zxk—1> =0.

k>0 k>0

Solving this for x( gives

2
1 1 1-—
Xp = - + - - (—1 L0 x1m>
2 (1 — Lk>0 x_k> 2 (1 — Lk>0 x_k> ~Lm>0%,
This concludes the cases to be considered for Lemma 2.2.12. O

We can now look at some specific examples:

1. We can choose x; = 0 for all j except one specific k # 0. Then (2.13)
gives x; = 1, and thus ¢ has the following form:

(Y efiV) = e Y (P e D - j=irk
0 if —j=i=k

In particular, ¢ satisfies ¢ o o = ¢ and has nontrivial kernel.
2. For odd n (so dim¢ (C4[X, V]») is even), we can take

1 k>0,
-1 k<O.

x = sgn(k) = {

Then (2.13) states that 1 +1(—1) = 0 = Y,,~0 Xm + X_m, which is
clearly true. Now ¢ has the form (as in Lemma 2.2.10)

055 035 015 0 15 0_35 0 55
22 22 22 22 22 22 .
-1 -2 -3 —4 -5
053 033 013 0_13 0 33 0 _53 0 g7 —q7° g7 —q7° ¢q
22 22 22 22 22 22
-1 -2 -3 —4
9 0 97 —qg° 497 —¢
051 031 011 0_11 0O 31 0_51 2 -1 -2 3
22 22 22 T22  T22  T22 — —113 qz 0 4 —q ) q s
-9 -9 2 -4 4
T3b g b3 T T3 T
, , , , , , 4 3 .
T ¢ 9 -9 2 —q
©05 303 301 30 1 303 30 5 3 5 4 3 2
273 373 373 373 TR a2 - q° -9 q -q 2
<05 503 501 501 503 505 5 N -
2772 272 2072 272 272 272
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3. We can request 0 to be symmetric, i.e. 0;; = 0j; for all i # j. It follows
that x; = (—q)2(—7) xj, which is uniquely solved by

xi = A(—q)*
for an arbitrary A. Now (2.13) becomes A (L, (—9)*") = 1+ A?
which is solved by
A G \/<zm<;q>2m)2 o

For n = 1 this means

—1 —1\ 2 -1 |
A:_q+2q i\/(rﬁzq )_1:_q+q $2(q ) _ g7,

in which case ¢ has the form

<"%% "3} >: (r8) A=
3 (q(_)l 1:}_2) ifA = —qfl,

where the 0y, are as in Lemma 2.2.10. For n > 2 the formula for A
cannot be simplified much further. The conclusion is that for every
n, there are exactly two symmetric solutions of (2.13).

2.2.3 The determinant and braids for reducible co-repre-
sentations

In this section, suppose that p: V' — V ® O(SU,(2)) is not irreducible. For
this case, we have the following result:

Lemma 2.2.13. Let p: V — V ® O(SUy(2)) be a reducible unitary co-repre-
sentation. Let V = 691-(@?;11/1-]-)‘ be a decomposition with maps pj;: V; — Vj; as
in Lemma 2.2.4. For each i let 0': V; @ V; — V; ® V; satisfy (2.10), (2.11) and
c'ocot =0, and definec: V — V via

ol — (Pi1j1 ® piziz) oc'o (Pilil ® pizjz)_l if iy = iy,
Vigjy @Vigj ide‘1j1®Vizj2 if iy # 1.

This map satisfies the equations (2.10), (2.11) and c o0 = 0.
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Proof. To check (2.10), we start with equation (2.7). From this equation it
follows that for i1 # ip we have

) = inji @ Vl’zjz
= (pi1h ® Pizjz) <{O}L>
= (Piyjs @ Pirp) ((Colnv(g;, @ 91,))* ),

InV(U| Vs ®Vigjy

whereas if i; = iy, then because ¢ satisfies (2.10) we directly obtain

v (ol ; ov,,) = Inv <(pi1h ® Pigjp) 00" 0 (piyj, @ pizfz)_1>
= (Piyj, @ Pirjy) (Il’lV(g’i))
= (Pirj; @ Pirjy) ((COIHV(GDil ® G%))L) :
Hence

InV(O') = @ ((pi1]’1 & pizjz) ((COInV(q)il ® (Pi2))L>> ’

il/jl ri2/j2

Because the maps p;, j, are orthogonal, it quickly follows that p and ¢ sat-
isfy (2.10).

To check (2.11), consider it restricted to the subspace V;,;, ® Vi,;, ® Vi j,

for arbitrary iy, j1, iz, j2, 13, j3 and introduce the notation oy, = ‘7|Vilj1®Vizj2/
023 = ‘7|‘/i2j2®Vi3j3 and py = p;,j, for k = 1,2,3. Then (2.11) reads
(12 ®1)(1® 023) (012 ® 1) = (1 ® 023) (012 ® 1) (1 ® 023).
Note that
11®1 if i1 # iy,

012 ® 1= i -1 -1 -1 . .1 7& .2 .
(P@p2@ps)(d @1)(py @p, ®@py ) ifii=ir =1,
1®1®1 if i i3,

1® o023 = i -1 -1 -1 . .2 7& .3 .

(P @p2@p3)10c)(py @p, ®py) ifip=i3=1.

We can distinguish the following cases:

L iy #ip # 13,

2. i =iy = i3,
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3. ilziz#igoril#lé:ig.

In the first case, (2.11) reads (1 ®1® 1)} = (1 ® 1 ® 1)% which is clearly
true. In the second case, (2.11) reads

(mepop)(del)(led)(dol)(plep op!) =
(mepep)(led)(del)(del)(pleop ' ep?),

which is true because ¢ satisfies (2.11). In the last case, say iy = iy # i3, we
have 1® 03 = 1®1® 10 (2.11) reduces to (1o ® 1) (012 ®1) = (12 ® 1)
which is true because ¢ o ¢ = ¢. Finally, ¢ o ¢ = ¢ holds per construction
on every space V; ; ® V,,;,, and therefore alsoon V® V. O

Note that in the previous proof, ¢’ o ¢ = ¢ is only required when
p # @i, i.e. when the decomposition of p contains non-equivalent co-
representations.

The previous result allows us to prove Theorem 2.2.7

Proof of Theorem 2.2.7. Combining Theorem 2.2.8 and Lemma 2.2.13, we
only have to show whether equation (2.13) has solutions such that o o =
0, 1i.e. Y Oim0j = 0jj for all i, j. Consider the following cases:

e (i # j) Equation (2.18) states that

Oij = 0ijj (2 — me> ’
m
SO 0jj = Yy Oim0m;j if and only if 0;; = 0 (equivalently, x; = 0) or
Zm xm - 1.

e (i = j) We can derive

Y OimOmi = 05+ Y xmx; =1 —2x; + 27 + x; (me — xi>
m m

m#£i
=1—x;+x; (ZXm_1>l
m

SO Uji = Y 1 Oim0mi if and only if x;(Y,, x,» — 1) = 0, i.e. if and only if
YwmXm=1lorx;=0.

Hence, because not all x; should be zero, these are equivalent to ), X, =
1. Solutions of (2.13) where also }_,, x,, = 1 do exist for all n. The first
example given above Lemma 2.2.13 is one possibility. O
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2.3 The subproduct systems

This section describes the construction of an O(SU,(2))-co-equivariant
subproduct system E;, from a unitary finite-dimensional co-representation

0: V= V@ O(SU,(2)).

Definition 2.3.1. An O(SU,(2))-co-equivariant (algebraic) subproduct sys-
tem { Ey }m>0 is an (algebraic) subproduct system with for each n > 0 a co-action

on: Em — En ® O(SUy(2))
such that the following diagram commutes:

Pk+m

Bt —= By ® O(SUy (2))

l Yo l tem @id o (sug (2))

PrkOPm
Ex @ Em —5 By @ Epy © O(SUy(2)) 219)

The construction of the subproduct system related to the co-represen-
tation p starts by making subspaces K;, C V™ for m > 2.

Definition 2.3.2. For any m > 2 and 1 < i < m, we define the maps
Ay (i): VO — VO @ O(SU,(2)) via

Am(i) — 1®(i—1) ® (P ®P) ® 1®(m—1—i),

where 1: V. — V ® O(SUy(2)) is the co-representation v — v ® 1 and the
tensor products are as in Notation 1.2.8.

We define the spaces Ky, as Ky, = Y, CoInv( A (i)). For convenience, we
also define Ky, (i) := CoInv (A (i)).

Note that det(p) = Colnv(A,(1)) = K3(1) = Ks.
Lemma 2.3.3. For all m > 2, we have
K (i) = VEE1 @ det(p) @ vEm-1-1),
and thus -

Kw= Y v?i-U g det(p) @ v®m—1-0,
i=1
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Proof. This follows from the following observation:
Claim: For finite-dimensional vector spaces W, W', W" and a co-representa-
tion pw: W — W ® A we have

Colnv(1y ® pw) = W @ Colnv(pw)
and

Colnv(pw ® 1y ) = Colnv(pw) @ W”

When this claim is true, the lemma directly follows by looking at Def-
inition 2.3.2: First apply the first part of the claim with pyy = p ® p and
W’ = V@1 then apply the second part with oy = 120D ® p ® p and
W/ = y®(m—1-i)

Proof of Claim: Let }_; w} ® w; € W’ ® W be arbitrary. Assume w.l.o.g.
that all w! are linearly independent, and write py (w;) = Yj wij @ajj. Using
Notation 1.2.8, we obtain

(1w @ pw) (Zw ®wz> =E (le ®PW(wz)>

= ;E (wf@l@ (;wﬁ@aﬁ))

= Zzwz/‘@wij@ (1-ay)
L
= Zw: X (Zwu (%Y Elﬁ)
i j
= wa ® pow (w;)
1
and thus

Zw: ®@ w; € Colnv(1y @ pw) &
i

(1 @ pw) <Zw ®w1> =) w®pw(w;) = (Zw ®w1) ®1 <
i

Vi, ow(wi) =w; ®1 &
Zw; Rw; € V® Colnv(pw),
i

where for the second equivalence we used linear independence of the w!.
This proves half of the claim. The other half is proven analogously. O
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For a unitary co-representation p, we can now define the system of
subspaces E,, C V&,

Definition 2.3.4. The subproduct system induced by p, (E)m>0 is given by
Ey =C, E; = V and for m > 2 define

Enm = (Kn)t ={ve V¥ : Vo e Ky, (v,o)g, =0}.
The following follows immediately from lemma 2.3.3

Lemma 2.3.5. For k < m we have E;, C Ex ® E,,,_, and for ki # ky we have
En = (Ex, @ Ey—,) N (Ex, @ Ey—x, ). In particular, E,y = N¢Eg @ Eypy_y.

Proof. First, note that ((Ki)' ® (Kyy_x) ")+ = K@ VErn—h L yekg K, 4,
so lemma 2.3.3 gives

(Ex ® Ep—ie)™ = (Ko)" @ (K)™) "
=K ® V®(mfk) + &k @ K,y_x
— Z V®(i—1) ® det(p) ® V®(m—1—i).
i+k

From
m—1

Kn= Y V-1 det(p) @ veim-1-)
i=1

it is immediate that

(Ex ® Em—i)" S K, (2.20)

and
(Et, ® Eppy) " + (Ey ® Epyy) - = Ko (2.21)
Both results follow from (2.20) and (2.21) by taking perpendiculars again.
O

Corollary 2.3.6. The system (E;) >0, together with the maps
Um® Ektm = Ex @ Em

that are induced by the canonical maps Ty ,,: VE*T™ — V&K @ VEM forms an
algebraic subproduct system.

Proof. By lemma 2.3.5, the maps y ,, are well-defined. The conditions i-iii
of definition 2.1.1 are clearly true for (V®") and I ,,, and therefore also
true for E;; and 1 ;. O
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Corollary 2.3.7. The subproduct system (Ey,)m>o from Corollary 2.3.6 together
with the maps

is O(SUy(2))-co-equivariant.
Here p®™: V&M — V&M @ O(SU,(2)) is as in Notation 1.2.8.

Proof. First, we have to prove that p,;: E;y, — E; ® O(SUy(2)) is well-
defined, i.e. that E,, is co-invariant under p®". We start by proving co-in-

variance of K, under p®". Co-invariance of K,, can be proven by noting
that if 6 € det(p) and

v=r¢ey, @ ---Qey, , 0 Ky(m—1),

m—2

then p(ey,, ) = ¥y, ey, ® tyy, and p(8) =6 ® 1 s0

m—2
M) = Y ey ®-®e, ,®00 (H twk> € Ky(m —1) ® O(SUy(2)).
k=1

V1...Vyp—2

s0 Ky, (m — 1) is co-invariant under p®™. In a similar manner, we can show
that Ky, (i) is co-invariant for all other i, and thus K, = }; K, (i) is also
co-invariant under p®™. Now Corollary 1.2.7 gives that E,, = (Ky,)" is
co-invariant under p®™ as well, i.e. p,, is well-defined.

Diagram (2.19) states that

b (0, (0)) = (0% © 0" [E,) (1 (0))-

forall v € Ejyp. In VK™ O we have 4 ,,(v) = v and p®Kk+m) =
0%k ® p®™, s0 diagram (2.19) clearly commutes.
Hence, both conditions of Definition 2.3.1 are satisfied. O

We conclude this section by calculating the dimensions of the vector
spaces E;, for irreducible p: V. — V ® O(SU4(2)), analogously to
[1, Lemma 3.3]. Before we start the proof, we have a small lemma

Lemma 2.3.8. For « € R with |a| > 0, the recurrence relation for (ay)3> , with
ax € R given by

A2 = KA1 — g, (2.22)
is solved by
a _
aj = ﬁ(tk+l —t (k+1)), (223)
where t satisfies t + 171 = a.
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Proof. This result can be found near [3, Lemma 1.6]. It is easily checked:
Assuming (2.23), we have

t 02_1 (Mk+2 _op(eF2) gkl t—(k+1)>

] k427 =1\ g~ (k+2)(,
_—t_fl(t (a— 1) — =2y t))

:a—o k+2 — _(k+2) -1
o (50 -0

= k2.

Xgy1 — Ak =

O
In [1] the dimensions of E,; are calculated by introducing the maps Gy;.

Definition 2.3.9. For the irreducible co-representation ¢,,: V — V& O(SUy(2))
from Theorem 1.3.3, and m > 1 define the maps G,,: VE"=1) — K, 11 by

m—1 m— k m—1
T <®v,-> _Y (@vi) 258 ( Q vi>, @24)
i—1 k=0 i—1 i=k+1

where 6 € det(¢y) isasin (2.8), A = [(n_+11)]: = 030_s Vs and the Ay € R satisfy

the recurrence relation
A= ——— — A2, (2.25)

with A_1 = 0and Ay # 0 arbitrary. B
Let Gyt E;y—1 — K11 be the restriction of Gy, to Epy—q.

Note that the recurrence relation (2.25) is of the form (2.22).
Remark 2.3.10. Note that G, satisfies the recursive relation
Gi(1) = Agd
G = Gp—1 ®idy + Ay_1(idyem-1) @ G1). (2.26)
Because E;; C E,;;_q ® V per Lemma 2.3.5, Gy, also satisfies this relation.
Remark 2.3.11. We can show that the maps G, and G, satisfy

®(m—1)
Pn
Evo1 s Ey1 ® O(SU,(2))
Gml le@)id
®(m+1)

Pn
Ki1 s Koy © O(SU, (2))
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because both G,, (q)?(m_l) (®§":_11 fﬁ)) and ¢, (m+1) ( ( fyl ))
are equal to

7 k . m—1 . m—1
5oy (®f15,,2k)> 260 ( 2 fé,,a)) . (H w) .
i=1 i=1

OVlk Vin— 1k__ﬂ i=k+1

Lemma 2.3.12. Forallv € E,;;_1 ® V,w € E,;, we have

((Gm ©1dy)(v), G y1(w)) = 0.

Proof. First, note that by (2.26) we have that

((Gm ®1dv)(v), Gpp1(w)) =((Gp ®idy)(v), (G @idy)(w))
+ A (G ®idy)(v), w®6).  (227)

We will investigate both terms separately. Write v = };v; ® f; %) and note
that (2.26) gives

((Gn ®idy)(v),w®6) <2Gm v;) ®f% w®5>
:Z< Gm_1®idv)(vi)®fl(%) w®(5>
+2Am 1<vl®(5®f% w®<5>.
Note that the image of G,,_1 is K;; and w € Ej, = K-, so
(Gua®idy)(v)® £ was) =o.

Furthermore, from § = }; §; f (2) fi%) and J;0_; = A we obtain

Lwosofi wss)=You(ue P ot o ve i erd))

i ijk

—Zwk<vz @ f%,w) (3 50 (12,7
=Z§i5_1<vl®f% >

= Ao, w).
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In conclusion, we have
(G ®@idy)(v),w®6) = Ay_1(v, w). (2.28)

Next, consider (G (v), Gm(w)) for v,w € E,_1. Again using (2.26), we
obtain

(Gm(0), Gu(w)) =((Gn—1 ®idy)(v), (Gn-1 ®@idy)(w))
+A2,_1(v®6,w® )
+ /\m—1<(Gm—1 &® ldv) (U), W& 5>
+An-1(0 ® 3, (Gp—1 ®idy)(w)).

Because (6, ) = 1 per (2.9) and using (2.28), this is equal to
(Gpo1 ®idy) (v), (G @idy) (w)) + (A2_; + 24 1AA, 2) {0, w).
By induction and because (G (1), G1(1)) = A3 and A_; = 0 we obtain

(G (0), G (w)) = <m21 A2 +szAk1) (v, w).
k=0

Per (2.25) and by rearranging the sum, we have

m—1 m—1
( Y Af+ ZMkAk_1> = ( Y A A+ AL+ A/\k/\k_1> S
k=0 k=0

= —AApAp_1.
In conclusion, we find
(Gm(v),Gp(w)) = —AAA,_1(v,w). (2.29)
Combining (2.27) with (2.28), (2.29) and (2.25), we find that

(G ®idy)(v), Gpa1(w)) = =AAyAy_1(v, W) + AyAy 1 (v, w)
=0
[

Corollary 2.3.13. The vector space dimensions dimg (E,,) satisfy the recurrence
relation

dimc(Eg) =1,
dimc(E1) = dimc(V),
dime (Ey4+1) = dimg(V)dime (En) — dime (Epn-1)

which can be solved with Lemma 2.3.8.

52

Version of July 12, 2022— Created July 12, 2022 - 15:52



2.3 The subproduct systems 53

Proof. Tt is clear that dim¢(Ep) = 1 and dim¢(E;) = dime (V). We will
show that
(Km & V) D Gm(Emfl) = Kij+1-

Note that Gy, (E;+1) € Kypyyq and Ky ® V' C K1 so what remains is
(Kp @ V) + Gu(Em—1) 2 Kyst and (Kyy ® V) N G(Ep—1) = {0}. Now
for v € K, +1, Lemma 2.3.3 gives that

m i—1 . m—1 .
vzz< v}(>®§®<®v§<)
i=1 \k=1 k=i

(?{fﬁ) ®5+mf (évi) ®I® <n§v;;>

i=1

=:0®J+ vk,

Note that we can write v = g 4+ v with 9x € K,,_1 and v € E,,_.
However, 7x ® § € K;;; ® V, so we can put 0x ® ¢ inside vg,, and assume
w.lo.g. thatv € E,,_;. We find that

1
0 — G (A 15) =0®6+ vk, — TR0
—

m—2 A i m—1
Y — (R | 0o | & o
i=0 Am—1 k=0

k=i+1
eEKn® V.

Therefore we have proven that
Kpy+1 C Ky ®V + Gu(Ep—1). (2.30)

To prove that (K,, ® V) N Gp(Ey—1) = {0}, we show that for arbitrary
v € Ky®Vandw € E,_1 we have (v, Gy (w)) = 0 such that v = G, (w)
if and only if v = G, (w) = 0. Using (2.30) for m — 1 we find that

v="vk, , + (Gyu_1®idy)(7g),
where vk, | € Kyy—1 ® V®? and Tg € E;;—1 @ V. Now
(v, Gu(w)) = (vK,_y, Gm(w)) + ((Gu—1 ®idy)(VE), Gm(w)).

By Lemma 2.3.12, the second term is 0. Using induction starting with
Ki®V = {0} and (v,G1(w)) = 0 forallv € K1 ® V and w € Ey, the
first term is also 0. Therefore,

(K ® V)N Gy (Ep—1) = {0}.
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To show injectivity of Gy, note that (2.29) states that G,,(v) = 0 <
(G (v),Gu(v)) = —AApAy—1(v,v) = 0. And AA,A,_1 is nonzero be-
cause of Lemma 2.3.8 (the conditions are easily checked), so indeed G, is
injective. Hence it follows that dim¢ (G (Ep—1)) = dime(E,,—1) and thus
dim(E,41) = dim(VE"™ ) — dim(K,,11)

= dim(V)"*! — (dim(K,,)dim(V) + dim(E,,_1))
= dim(V)" ! — (dim(V®™) — dim(E,;))dim (V) — dim(E,,,_1)
= dim(V)dim(E,,) — dim(E;;_1).

[

Note that [3, Lemma 1.6] states that the result in Corollary 2.3.13 holds
when det(p) is Temperley-Lieb. We have shown this in Lemma 2.2.6, so
our results do agree with [3, Lemma 1.6] and generalise [1, Lemma 3.3].

2.4 The quadratic algebras

In this chapter we do not look at each E,;, separately, but consider the space
A(p) := @j—o Em instead. We can turn A(p) into an algebra by identify-
ing E,, = V™ /K, such that

- () (@)

is a quotient of the tensor algebra of V. This is a quadratic algebra in the
sense of [6, Section 4.1]:

Definition 2.4.1. A quadratic algebra A is an IN-graded associative algebra
with the properties:

[ ] AO:C/

o Aisgenerated (as an algebra) by Ay, s0 A = (Py—y AY")/R(A) for some
two-sided ideal of relations R(A),

* The ideal of relations R(A) is generated by elements from A1 ® Aj.

This algebra can also be obtained by applying the non-commutative
nullstellensatz, Theorem 2.1.4, to our subproduct system. Then we find
that

Ig,, = Span{X(v): Im such that v € K;,} = 5 X(Kin).

m=2
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From Lemma 2.3.3 it thus follows that Ir, C C(Xj,...,Xy) is the two-
sided ideal generated by X(det(p)), and the algebra A(p) can then be ob-
tained as A(p) = C(Xo, ..., Xn)/IE,,- Explicitly, A(p) can be described by
the following definition:

Definition 2.4.2. The algebra A(p) = @j,—o Em together with the algebra
structure described above is an (infinite-dimensional) algebra generated by el-

ements (fi(%)).7 . with multiplication a,b — a ® b and unit n: C = Eg

j—_n
subject to the relation

Note that for n = 1, we re-obtain the algebra C;[X’, V] from Definition
1.3.1, together with the co-action ¢: C4[X, V] — C4[X, )] ® O(SU,(2))
from Theorem 1.3.3. Because C,[X, )] is known as the “Quantum Plane”,
for other n the space A(p) with the map

D pu: Alp) = Alp) ® O(SU, (2))
m=0

can be thought of as a more general notion of “Quantum Plane”. In [6,
Chapter 4.1] it is argued that any quadratic algebra can play the role of a
Quantum Plane. We now describe the construction of the algebras A(p)’,
A(p)@ and A(p)"® from the algebra A(p).

Definition 2.4.3. For a quadratic algebra A = (@5_q AT")/R(A), the dual
algebra A' is given by

A= (é(Ai‘)W) /(R(AYY)
n=0

where A% is the dual of A1 and R(A)~ is the ideal generated by those elements
r € A} ® Aj such that r(a) =0 foralla € R(A) N A} ® A;.

Lemma 2.4.4. For the algebra A(p) from Definition 2.4.2, the dual A(p)' is

generated by elements ( fi(%)) 7 . subject to the relations
i

if i 7£ _j/

fori e {—g,...,g—l}.
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Alternatively, we have A(p) = 1C & V & tC with the relations

0=V s 5" i % -]
(—q) 't = fi(%) ®f§) for all i,
Ozﬂ(%)@’”f:”f@fi(g):”f@’f for all 1.

For n = 1, this algebra coincides with the one in [6, Section 2.2].

Proof. Clearly, E; = Ej because E; is an inner product space. Now we just

have to calculate de’c(qon)L C V ® V, which has already been used in the
proof of Lemma 2.2.9. First, note that

dimc (det(qon)L) = dime (V®2) — dimc(det(gy)) = (1 +1)% =1 = n(n +2).

:
3

Furthermore there are n(n + 1) vectors of the form f g f 2 (i #7)
and fi ® f] )1 det(¢,), because these vectors do not appear as terms

n (2.1). There are n vectors of the form g fi(%) ® fﬁ%) + fl(fl) ® fi%(l) Lq) With
—75 <1< 5. Using (2.8) we can calculate that

(af Ve fP 4+ 00 ,,8) = a8+ 611

_ (=12 (q(_l)fz‘qi L (_1)f(i+1)qi+1>
[n+1],

_ (-pE <qi+1 _ qi+1>
[n+1]4

=0.

We have thus found n(n 4+ 1) +n = n(n + 2) linearly independent vectors
in V ® V that belong to the n(n + 2)-dimensional subspace
det(¢,)*+ € V ® V, so these vectors must span det(¢, ).

When we introduce

NIz

e ),

2

NI=

T:= (=)

NI N

the relation gf; ) fE + f1+1 ®f %( +1) — = 0 gives

fi®foi=(=0) " i1 ® fopy = (—g) 7't
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by induction. Thus, for any i we can choose j # —i for which it follows
that

Similarly T ®fi(%) =0andT®71=0 O

Definition 2.4.5. For a quadratic algebra A = (@5 A7")/R(A), the d-th
Quantum symmetric power A@) is given by

Ald) — EBAdn
n=0

and the d-th quantum exterior power A'@) is given by A'@) = (A")@)

Remark 2.4.6. Per [6, Section 4.10], A is again a quadratic algebra. Note
that (A is in general not the same as (A@))". In most cases, (A")@) is more

relevant than (A@))".

Lemma 2.4.7. For the algebra A(p) from Definition 2.4.2, the d-th quantum
symmetric power A(p)\) is an algebra generated by elements (f;, ;)

2
iy,ig=—1
subject to the relations

NIz

0= 4'fiuiy® iy (—ip).y, forallkii.. i . igj1.. Jk---ja

Here (—iy) appears where j,. would have been, and iy resp. . means that iy resp.
Jk is omitted.

Proof. This quickly follows from Lemma 2.3.3 when we define

) (%)
foiz = QLY =fiV @0 fi Y.
k=1

]

Lemma 2.4.8. For the algebra A(p) from Definition 2.4.2, the d-th quantum
exterior power A(p)"?) is equal to TC for d = 2 and {0} for d > 2.

Proof. This quickly follows from the last part in Lemma 2.4.4. O
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We can also calculate the “Hilbert series” for the graded algebra A(p).

By Corollary 2.3.13 and Lemma 2.3.8, we have that dim¢ (Ey) = w

where t + t~! = 1+ 1. We can now calculate the series, which converges
for |x| < min{|¢|, [t7|}:

HSEm Z dlmc Ek)
k=0

[e0]

( 1)( t-lx>
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Conclusion & further research

In this thesis we have studied the Hopf algebra O(SU,(2)). We have seen
in section 2.3 how we can construct a subproduct system E,
from a co-representation of O(SU;(2)), with a natural co-action
p: Ey = En ® O(SUy(2)). We investigated the structure of this subprod-
uct system in two ways: At the end of section 2.3 we constructed (for irre-
ducible co-representations) a decomposition

Km_|_1 = (Km ® V) D Gm(Em—l)

which allowed us to calculate the dimension of E;;, and in section 2.2 we
investigated the subspace det(p) C V ® V, which plays a central role in the
construction of the subproduct system E;,. In particular, we have shown
how det(p) can be constructed as the orthogonal complement of the invari-
ant elements of a braiding ¢. Finally, in section 2.4 we showed analogues
of the quantum plane C,[X, )] that could be constructed from E,, for ir-
reducible co-representations. These generalised quantum planes do admit
a natural co-action of O(SU,(2)).

However, there is an inconsistency somewhere between the proof of
Lemma 1.4.1 and the proof of Lemma 2.2.3, as noted in the footnotes of
these proofs. These lemmas are main building blocks of this thesis. There-
fore, either trying to prove these lemmas in a different way, or finding
the inconsistency is one main problem that has been left open for fur-
ther research. Some other minor problems for further research are how
to generalise the decomposition Ky, 11 = (K ® V) & G (Ey,—1) of sec-
tion 2.3 and the quantum plane analogues of section 2.4 for reducible co-
representations. Other problems to consider are generalising other parts
of [1] to the O(SU,(2))-setting, or generalising the results of this thesis to
other Hopf algebras.
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