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Abstract

We study the Hopf algebra O(SUq(2)), which is a q-deformed analogue
of the Lie group SU(2). In particular, we study its co-representations, and

show how to construct a subproduct system Em out of the determinant
det(ρ) of a co-representation ρ. We also show how this determinant can
be constructed from a braiding σ. We also study the quadratic algebra⊕∞

m=0 Em that is constructed from the subproduct system using the
non-commutative Nullstellensatz, and calculate its Hilbert series.
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Introduction

One of the major breakthroughs in physics of the past century has been
quantum mechanics, which has since found many applications in the tech-
nology we use today.

However, finding and solving the quantum mechanical equations that
describe specific systems has proven to be notoriously difficult to do ana-
lytically.

The theory of Lie Groups and Lie Algebras has been essential in de-
scribing and analytically solving many quantum mechanical systems, the
prototypical examples of which are the famous works by Pauli and Dirac,
where the spin of an electron is described by a representation of the Lie
Algebra su(2).

When trying to describe and solve a specific quantum mechanical sys-
tem related to magnetism, physicists found the Bethe ansatz. This solu-
tion did not directly involve Lie Groups or Lie Algebras, but introduced
the concept of a “Quantum Group”. Since then, several related theories
of “Quantum Groups” have been developed, several of which involve the
concept of a Hopf algebra. A Hopf algebra is a structure that generalises a
group, as outlined in section 1.1.

Besides their applications in physics, the theory of Hopf algebras has
been of interest to mathematicians for a long time because of their applica-
tions in many fields ranging from category theory and algebraic topology
to representation theory and, indeed, mathematical physics.

In this thesis, we restrict ourselves to the study of the Hopf algebra
O(SUq(2)), which is a certain q-deformed Hopf-algebra analogue of the
well-known Lie Group SU(2).

An extensive description of this Hopf algebra and related Hopf alge-
bras can be found in [5]. A study of Hopf algebras and their interaction
with quadratic algebras can be found in [6]. The article [1] describes sev-
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eral properties and constructions from the Lie Group SU(2), including the
construction of quadratic algebras related to representations of SU(2). The
results in [1] are expanded upon in [3].

Our main goal is to investigate up to what extend some of the construc-
tions in [1] can be generalised to the Hopf algebraO(SUq(2)). Besides this,
we try to show analogues with the theory of quadratic algebras from [6]
and compare our results with the results in [3].

Chapter 1 contains the preliminaries that are needed for Chapter 2,
which contains the main research and results. In particular, section 1.1
describes how a (Lie) group is related to a Hopf algebra and introduces
the algebra O(SUq(2)), section 1.2 describes how the representation the-
ory of (Lie) groups translates to the Hopf algebra setting, section 1.3 de-
scribes how this representation theory applies to O(SUq(2)) and section
1.4 describes Clebsch–Gordan coefficients ofO(SUq(2)), which wil be one
of our most important tools in Chapter 2.

Chapter 2 contains our main results. Section 2.3 describes how the
co-representations of O(SUq(2)) give rise to a subproduct system Em, in
which the determinant det(ρ) will play a central role. Section 2.2 investi-
gates the properties of this determinant. In particular, section 2.2.2 shows
how the determinant can be constructed from a certain solution of the
braid equation. Finally, section 2.4 shows how the non-commutative Null-
stellensatz (c.f. section 2.1) gives rise to a quadratic algebra starting from
Em, and compares these results to the theory in [6].
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Chapter 1
Preliminaries

In this chapter the concept of a Hopf algebra is introduced. After dis-
cussing basic definitions, the construction of a Hopf algebra from a Lie
Group is described. Then we give a basic introduction to related Hopf
algebras and Hopf co-modules (also known as Hopf co-representations).
For more background knowledge on Hopf algebras and their (co-)repre-
sentations, we refer to the books [6], [7], [4] and [5].

1.1 Groups and the related Hopf algebras

In this section, a Hopf algebras will be introduced and the construction of
a Hopf algebra from a group is discussed.

Definition 1.1.1. A group (G, ·, 1, ι) is a quadruple with a set G, an associative
binary operation · : G× G → G, a unit 1 ∈ G where ∀g ∈ G, 1 · g = g = g · 1,
and an inversion map ι : G → G where g · ι(g) = ι(g) · g = 1 for all g ∈ G.

Definition 1.1.2. For vector spaces V, W, the twisting map or flip
τV⊗W : V ⊗W →W ⊗V is given by v⊗ w 7→ w⊗ v.

Definition 1.1.3. An (unital, associative) algebra (A, µ, η) is a triple where
A is a vector space over a field K, µ : A × A → A is an associative bilinear
binary operation and η : K → A is a linear map that satisfies µ(η(1), a) =
µ(a, η(1)) = a for all a ∈ A.

By the universal property of the tensor product, the bilinear map
µ : A×A → A factors through a linear map µ : A⊗A → A.

Example 1.1.4. The ground field K is an algebra when we set η = idK and the
multiplication µ(a, b) = ab is just the multiplication of the field.
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1.1 Groups and the related Hopf algebras 5

Example 1.1.5. Let S be a set and A an algebra. Then AS = Map(S,A) =
{ f : S → A} is an algebra under pointwise operations. So the multiplication
is given by µAS( f , g)(s) = µA( f (s), g(s)), the unit is given by ηAS(α)(s) =
ηA(α), and the vector space structure on AS is constructed similarly.
Of special interest are the indicator functions {1a}a∈S, where 1a takes the value 1
on a and 0 on all other elements of S. We can formally write f = ∑a∈S f (a)1a.

Many often encountered algebras arise as subalgebras of
KS = Map(S, K). For example, if S is a topological space, we could look at
C(S) ⊆ KS, the space of continuous functions. If S is a differentiable man-
ifold, we could look at C∞(S) ⊆ C(S), the space of infinitely differentiable
functions. And if S has the structure of an algebraic variety, we could look
at OS(S) ⊆ C∞(S), the space of polynomial/algebraic functions on S.

A Hopf algebra arises when the set S has the additional structure of a
group.

Lemma 1.1.6. Let (G, ·, 1, ι) be a group, and (A, µ, η) be a subalgebra of KG.
The element 1 ∈ G induces a map ε : A → K given by ε( f ) = f (1).
The map ι : G → G induces a map S : A → A given by S( f ) = ∑g∈G f (ι(g))1g.
The map · : G×G → G gives ∆ : A → KG⊗KG, f 7→ ∑a,b∈G f (a · b)1a⊗ 1b.

Assuming the image of ∆ is contained in A ⊗ A ⊆ KG ⊗KG, the data
(A, µ, η, ∆, ε, S) satisfy the following commutative diagrams:

A⊗A⊗A A⊗A

AA⊗A

µ⊗id

id⊗µ µ

µ

(1.1)

A⊗A⊗A A⊗A

AA⊗A

∆⊗id

id⊗∆ ∆
∆

(1.2)

K⊗A A⊗A A⊗K

A

∼= ∼=

η⊗id id⊗η

µ

(1.3)
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1.1 Groups and the related Hopf algebras 6

K⊗A A⊗A A⊗K

A

∼= ∼=

ε⊗id id⊗ε

∆

(1.4)

K A

A⊗AK⊗K

η

∆∼=
η⊗η

(1.5)

K A

A⊗AK⊗K

ε

µ∼=
ε⊗ε

(1.6)

K K

A

id

η ε

(1.7)

A⊗A A A⊗A

A⊗A⊗A⊗AA⊗A⊗A⊗A

µ ∆

∆⊗∆
id⊗τA⊗A⊗id

µ⊗µ

(1.8)

A K A

A⊗AA⊗A

A⊗A A⊗A

ε η

∆

S⊗id

µ

∆
id⊗S

µ

(1.9)

The proof of this lemma consists of straightforward computations. A
few remarks on this lemma:
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1.1 Groups and the related Hopf algebras 7

• The assumption that the image of ∆ is contained in A ⊗ A is not
always true. It is true in the following important cases:

– A = KG,
– G is a compact topological group and A = C(G),
– G is a compact classical Lie group and A are the polynomial

functions on G.

It is not true in general when the above groups are not compact.

• Commutativity of the diagram (1.1) expresses associativity of the al-
gebra (A, µ, η) and commutativity of (1.3) expresses its unital prop-
erty.

• Commutativity of the diagrams (1.2) and (1.4) is referred to as ‘co-as-
sociativity’ and ‘co-identity’ respectively. A tuple (A, ε, ∆) that satis-
fies these properties is called a co-algebra.

• Commutativity of the diagrams (1.5)-(1.8) expresses how the alge-
bra and co-algebra structures nicely cooperate. A tuple (A, µ, η, ∆, ε)
satisfying (1.1)-(1.8) is called a bialgebra.

We see that a group gives rise to a bialgebra with additional structure
given by the map S : A → A, which arises from the inversion on the
group. A structure with these properties thus generalises a group, giving
rise to the following definition:

Definition 1.1.7. A Hopf algebra is a sextuple (A, µ, η, ∆, ε, S) satisfying the
9 relations (1.1)-(1.9).

Most examples of Hopf algebras in this thesis have the additional struc-
ture of a Hopf ∗-algebra. In particular, when G is a group, the Hopf-
algebra A = CG with the map ∗ : A → A, f ∗(a) = ( f (a))∗ (where
z 7→ z∗ ∈ C is complex conjugation) is a Hopf-*-algebra.

Definition 1.1.8. A *-algebra is an algebra (A, η, µ) endowed with a involutive
antihomomorphism ∗ : A → A, i.e. an additive map such that

∗ ◦ µ = µ ◦ (∗ ⊗ ∗) ◦ τA⊗A and ∗ ◦η = η ◦ ∗,

where the last ∗ : C→ C is complex conjugation.
A *-co-algebra is a co-algebra A with an additive map ∗ : A → A such that

∆ ◦ ∗ = (∗ ⊗ ∗) ◦ ∆ and ε ◦ ∗ = ∗ ◦ ε

A Hopf *-algebra is a Hopf algebra with both the structure of a *-algebra and a
*-co-algebra.
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1.1 Groups and the related Hopf algebras 8

Example 1.1.9. Consider the group

SU(2) =
{(

α −β∗

β α∗

)
: α, β ∈ C, αα∗ + ββ∗ = 1

}
,

of 2× 2 complex-valued unitary matrices. This is a classical Lie group, and we
can consider O(SU(2)), the space of complex polynomials on SU(2).

This is most easily thought of as the ring

O(SU(2)) = C[α, β, α∗, β∗]/(αα∗ + ββ∗ − 1) (1.10)

together with the antilinear conjugation map

∗ : α 7→ α∗, α∗ 7→ α, β 7→ β∗, β∗ 7→ β.

The elements α, β, α∗, β∗ map a matrix
(

a b
c d

)
∈ SU(2) to the following val-

ues:

α
(

a b
c d

)
= a, β∗

(
a b
c d

)
= −b,

β
(

a b
c d

)
= c, α∗

(
a b
c d

)
= d.

The function ε can be seen to map α, β, β∗ and α∗ to the following values

ε(α) = α
(

1 0
0 1

)
= 1, ε(β∗) = β∗

(
1 0
0 1

)
= 0,

ε(β) = β
(

1 0
0 1

)
= 0, ε(α∗) = α∗

(
1 0
0 1

)
= 1.

Note that for
(

a b
c d

)
∈ SU(2) we have

S(α)
(

a b
c d

)
= α

((
a b
c d

)−1
)
= α

(
d −b
−c a

)
= d = α∗

(
a b
c d

)
and thus S(α) = α∗. Similarly we can deduce

S(α) = α∗, S(β∗) = −β∗,
S(β) = −β, S(α∗) = α.
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1.1 Groups and the related Hopf algebras 9

Furthermore, we can deduce that

∆(α) = ∑(
a b
c d

)
,
(

a′ b′
c′ d′

)
∈SU(2)

α
(

aa′+bc′ ab′+bd′
ca′+dc′ cb′+dd′

)
1( a b

c d

) ⊗ 1( a′ b′
c′ d′

)

= ∑(
a b
c d

)
,
(

a′ b′
c′ d′

)
∈SU(2)

(aa′ + bc′)1( a b
c d

) ⊗ 1( a′ b′
c′ d′

)

=

 ∑(
a b
c d

)
∈SU(2)

a1( a b
c d

)
⊗

 ∑(
a′ b′
c′ d′

)
∈SU(2)

a′1( a′ b′
c′ d′

)


+

 ∑(
a b
c d

)
∈SU(2)

b1( a b
c d

)
⊗

 ∑(
a′ b′
c′ d′

)
∈SU(2)

c′1( a′ b′
c′ d′

)


=α⊗ α + (−β∗)⊗ β

=α⊗ α− β∗ ⊗ β

and in an analogous manner we get ∆(β) = α∗⊗ β+ β⊗ α. The values of ∆(α∗)
and ∆(β∗) can then be deduced by requiring compatibility with the antilinear
conjugation map ∗:

∆(β∗) = (∆(β))∗ = α⊗ β∗ + β∗ ⊗ α∗ ∆(α∗) = (∆(α))∗ = α∗ ⊗ α∗ − β⊗ β∗

The above identities can be written shortly as

ε

[
α −β∗

β α∗

]
=

[
1 0
0 1

]
,

S
[

α −β∗

β α∗

]
=

[
α∗ β∗

−β α

]
,

∆
[

α −β∗

β α∗

]
=

[
α −β∗

β α∗

]
⊗
[

α −β∗

β α∗

]
=

[
α⊗ α− β∗ ⊗ β −(α⊗ β∗ + β∗ ⊗ α∗)
β⊗ α + α∗ ⊗ β α∗ ⊗ α∗ − β⊗ β∗

]
.

The described structures turn O(SU(2)) into a Hopf *-algebra.

In this thesis we mainly focus on non-commutative Hopf *-algebras
related to the Hopf *-algebra introduced above. Because all Hopf alge-
bras that are constructed from a group as in Lemma 1.1.6 are commuta-
tive, these non-commutative Hopf algebras do not directly correspond to
a group. Nevertheless, we prefer to think of them as coming from a group-
like object.
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1.1 Groups and the related Hopf algebras 10

Notation 1.1.10. For a field K and symbols a, b, . . . , d, write K〈a, b, . . . , d〉 for
the free, associative, non-commutative algebra generated by a, b, . . . , d over K.

Example 1.1.11. For a parameter q ∈ (0, 1) ⊆ R, the quantum SU(2) coordi-
nate algebra O(SUq(2)) is given by

O(SUq(2)) = C〈α, β, α∗, β∗〉/I,

where I is the two-sided ideal generated by the relations

αβ = qβα, β∗α∗ = qα∗β∗, (1.11)
αβ∗ = qβ∗α, βα∗ = qα∗β, (1.12)

ββ∗ = β∗β, αα∗ = α∗α + (1− q2)ββ∗, (1.13)

1 = α∗α + β∗β, 1 = αα∗ + q2ββ∗. (1.14)

On this algebra, there is a conjugation antiautomorphism

∗ : O(SUq(2))→ O(SUq(2)), α 7→ α∗, α∗ 7→ α, β 7→ β∗, β∗ 7→ β, (1.15)

which turns this algebra into a Hopf *-algebra as in Definition 1.1.8.
Under ∗, the equations in (1.11) are interchanged, and likewise the equations

in (1.12), whereas both equations in (1.13) are invariant under ∗. When q = 1,
the equations (1.11)-(1.13) give commutativity, and the equation (1.14) becomes
the equation in (1.10), thereby re-obtaining O(SU(2)) from example 1.1.9.

The Hopf algebra maps are summarised by

ε

[
α −qβ∗

β α∗

]
=

[
1 0
0 1

]
(1.16)

S
[

α −qβ∗

β α∗

]
=

[
α∗ β∗

−qβ α

]
(1.17)

∆
[

α −qβ∗

β α∗

]
=

[
α −qβ∗

β α∗

]
⊗
[

α −qβ∗

β α∗

]
=

[
α⊗ α− qβ∗ ⊗ β −q(α⊗ β∗ + β∗ ⊗ α∗)
β⊗ α + α∗ ⊗ β α∗ ⊗ α∗ − qβ⊗ β∗

]
(1.18)

It is a simple but tedious calculation to show that the equations (1.1)-(1.9) are
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1.2 Co-modules 11

satisfied. For example, to show that the top of (1.9) is satisfied, we calculate

µ ◦ (S⊗ id) ◦ ∆
[

α −qβ∗

β α∗

]
= µ

(
S
[

α −qβ∗

β α∗

]
⊗
[

α −qβ∗

β α∗

])
= µ

([
α∗ β∗

−qβ α

]
⊗
[

α −qβ∗

β α∗

])
= µ

([
α∗ ⊗ α + β∗ ⊗ β −qα∗ ⊗ β∗ + β∗ ⊗ α∗

−qβ⊗ α + α⊗ β q2β⊗ β∗ + α⊗ α∗

])
=

[
α∗α + β∗β −qα∗β∗ + β∗α∗

−qβα + αβ q2ββ∗ + αα∗

]
.

Using the equations (1.11) and (1.14), we see that this is equal to[
1 0
0 1

]
= η ◦ ε

[
α −qβ∗

β α∗

]
.

This shows that µ ◦ (S⊗ id) ◦ ∆(r) = η ◦ ε(r) when r ∈ {α,−qβ∗, β, α∗}, and
henceforth it is true for all of O(SUq(2)).

We will now move on to the co-representations of the Hopf algebra
O(SUq(2)).

1.2 Co-modules

(Lie) groups, algebras, and rings in general can be studied via their repre-
sentations or modules, and the theory of representations has been an ac-
tive field of study on its own. In this thesis, all (co-)representations are as-
sumed to be finite-dimensional when the converse is not explicitly stated.
More about co-modules can be found in e.g. [5, Chapters 4 & 11]. We start
with the definition of a module.

Definition 1.2.1. A (right) representation or module of an algebra (A, µ, η)
over a field K is a vector space V together with a linear map r : V ⊗ A → V
which satisfies the following diagrams:

V ⊗A⊗A V ⊗A

VV ⊗A

r⊗id

id⊗µ r

r
(1.19)
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1.2 Co-modules 12

V ⊗K V

V ⊗A

id

id⊗η r

(1.20)

A representation r is irreducible if V 6= 0 and there are no non-trivial vector
subspaces W ⊆ V such that r(W ⊗A) ⊆W.

Diagram (1.19) is referred to as associativity and (1.20) as unit of the
module.

A co-module is a structure dual to a module. Recall that a co-algebra is
a triple (A, ∆, ε) satisfying diagrams (1.2) and (1.4).

Definition 1.2.2. A (right) co-representation or co-module of a co-algebra
(A, ∆, ε) over a field K is a vector space V together with a linear map
ρ : V → V ⊗A which satisfies the following diagrams:

V ⊗A⊗A V ⊗A

VV ⊗A

ρ⊗id

id⊗∆ ρ

ρ

(1.21)

V ⊗K V

V ⊗A

id

id⊗ε ρ

(1.22)

Diagram (1.21) is referred to as co-associativity and (1.22) as co-unit.

The notions of irreducible representations and unitary representations
are also present in the dual setting.

Definition 1.2.3. A co-invariant subspace of a co-representation
ρ : V → V ⊗A is a subspace W ⊆ V such that ρ(W) ⊆W ⊗A.
An irreducible co-representation is a co-representation ρ : V → V ⊗A such
that V 6= 0 and there are no non-trivial co-invariant subspaces.

Unitary co-representations are best described using a basis of V. The
following procedure is described with more detail in [5, Section 11.1.1].
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1.2 Co-modules 13

Definition 1.2.4. The matrix coefficients of a co-representation ρ : V → V⊗A
with respect to a basis (ei)

n
i=1 are the elements ρij ∈ A such that

ρ(ej) = ∑
i

ei ⊗ ρij. (1.23)

These satisfy ε(ρij) = 1i=j and ∆(ρij) = ∑k ρik ⊗ ρkj for any i, j. Conversely,
for any ρij ∈ A that satisfy these conditions, formula (1.23) gives a co-represen-
tation.

Definition 1.2.5. A unitary co-representation of a Hopf *-algebra A onto a
complex inner product space V is a co-representation ρ : V → V ⊗A such that
for an orthonormal basis ei of V, the matrix coefficients ρij satisfy S(ρij) = ρ∗ji,
which implies µ(∑k ρ∗ki ⊗ ρkj) = 1i=j.

A unitarisable co-representation of a Hopf *-algebra onto a complex vector
space V is a co-representation for which we can find an inner product on V for
which the co-representation is unitary.

In the case of group representations, unitary representations are char-
acterised by them leaving an inner product invariant: If 〈·, ·〉V is an inner
product on V and ρ : G × V → V is a (left) group representation, then
〈ρ(g, v), w〉V = 〈v, ρ(g−1, w)〉V . A similar characterisation exists in this
case:

Lemma 1.2.6. When ρ : V → V⊗A is a co-representation of the Hopf-*-algebra
A that is unitary with respect to an inner product 〈·, ·〉V , then we have

〈ρ(a), b⊗ 1〉V⊗A = 〈a⊗ 1, (1⊗ S)(ρ(b))〉V⊗A,

where 〈·, ·〉V⊗A : (V ⊗A)× (V ⊗A)→ A is given by

〈v⊗ s, w⊗ t〉V⊗A = 〈v, w〉Vs∗t.

Proof. It suffices to prove it for the basis elements. Let eµ, eν be arbitrary,
and recall that t∗νµ = S(tµν) because ρ is unitary, and 〈eµ, eη〉V = 1µ=η
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1.2 Co-modules 14

because the basis eµ is orthonormal w.r.t. 〈·, ·〉V . Then

〈ρ(eµ), eν ⊗ 1〉V⊗A =

〈
∑
η

eη ⊗ tηµ, eν ⊗ 1

〉
V⊗A

= ∑
η

〈eη, eν〉Vt∗ηµ

= ∑
η

1η=νt∗ηµ = t∗νµ

= S(tµν) = ∑
η

1µ=ηS(tην)

= ∑
η

〈eµ, eη〉VS(tην)

=

〈
eµ ⊗ 1, ∑

η

eη ⊗ S(tην)

〉
V⊗A

=

〈
eµ ⊗ 1, (1⊗ S)

(
∑
η

eη ⊗ tην

)〉
V⊗A

=
〈
eµ ⊗ 1, (1⊗ S)(ρ(eν))

〉
V⊗A .

Corollary 1.2.7. If ρ : V → V ⊗ A is unitary and W ⊆ V is a co-invariant
subspace, then W⊥ is also a co-invariant subspace.

Proof. Let v ∈ W⊥ and w ∈ W be arbitrary. Because W is co-invariant,
we have ρ(w) ∈ W ⊗A and thus also (1⊗ S)(ρ(w)) ∈ W ⊗A. Because
v ∈ W⊥ we have that 〈v ⊗ 1, (1 ⊗ S)(ρ(w))〉V⊗A = 0. By the previous
lemma,

0 = 〈v⊗ 1, (1⊗ S)(ρ(w))〉V⊗A = 〈ρ(v), w⊗ 1〉V⊗A

and thus ρ(v) ⊥ w⊗ 1 for all w ∈W, i.e. ρ(v) ∈W⊥ ⊗A.

Notation 1.2.8. Given a bialgebra (A, µ, η, ∆, ε) and two co-representations
ρV : V → V ⊗ A and ρW : W → W ⊗ A, their tensor product co-representa-
tion is the co-representation ρV⊗W : V ⊗W → (V ⊗W)⊗A defined by

V ⊗W
ρV⊗ρW−→ (V ⊗A)⊗ (W ⊗A) E→ (V ⊗W)⊗A,

where E is given by E(v⊗ a1⊗w⊗ a2) = v⊗w⊗ µ(a1, a2). This co-represen-
tation is sometimes also denoted by ρV ⊗ ρW .
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1.2 Co-modules 15

Notation 1.2.9. Given a co-algebra (A, ∆, ε) and two co-representations
ρV : V → V ⊗ A and ρW : W → W ⊗ A, their sum co-representation
ρV ⊕ ρW : V ⊕ W → (V ⊕ W) ⊗ A is induced by the identification
(V ⊕W)⊗A = V ⊗A⊕W ⊗A,

(v⊕ 0)⊗ a1 + (0⊕ w)⊗ a2 ↔ (v⊗ a1)⊕ (w⊗ a2).

Given a representation of a (Lie) group, we can construct a co-repre-
sentation of the corresponding Hopf algebra KG:

Lemma 1.2.10. Let G be a group, V a K-vector space and r : V × G → V a
(right) group representation, i.e. r(r(v, g), h) = r(v, g · h). Then r induces a
(right) co-representation ρr : V∗ → V∗ ⊗KG given by

σ 7→ ∑
g∈G

λσ
g ⊗ 1g,

where λσ
g : V → K is the linear form v 7→ σ(r(v, g)).

When V is finite-dimensional, the co-representation ρr is irreducible if and
only if r is irreducible.

Often, there is an interesting algebraA ⊆ KG, such asO(G) or C∞(G),
such that the image of ρr is contained in V∗ ⊗A. The function ρr can then
be viewed as a co-representation of A.

Proof. To check that (1.22) is satisfied, note that

(id⊗ ε) ◦ ρr(σ) = ∑
g∈G

λσ
g ⊗ ε(1g) = λσ

1 ⊗ 1.

From λσ
1 (v) = σ(r(1, v)) = σ(v) we get λσ

1 = σ and thus

(id⊗ ε) ◦ ρr(σ) = σ⊗ 1.

To check that (1.21) is satisfied, note that

(id⊗ ∆) ◦ ρr(σ) = ∑
g∈G

λσ
g ⊗ ∆(1g)

= ∑
g∈G

∑
a,b∈G

1g(a · b)λσ
g ⊗ 1a ⊗ 1b

= ∑
a,b∈G

λσ
(a·b) ⊗ 1a ⊗ 1b
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1.2 Co-modules 16

and

(ρr ⊗ id) ◦ ρr(σ) = ∑
g∈G

ρr(λ
σ
g)⊗ 1g = ∑

g∈G
∑

h∈G
λ

λσ
g

h ⊗ 1h ⊗ 1g.

Note that

λ
λσ

g
h (v) = λσ

g(r(v, h)) = σ(r(r(v, h), g)) = σ(r(v, h · g)) = λσ
(h·g)(v).

This gives λ
λσ

g
h = λσ

(h·g) from which we conclude that (id⊗ ∆) ◦ ρr(σ) =

(ρr ⊗ id) ◦ ρr(σ) and therefore (1.21) is satisfied.
For the final part of the lemma, let W ⊆ V be a linear subspace, and let

W⊥ = {ω ∈ V∗ : ω(w) = 0 ∀w ∈ W}. Because V is finite-dimensional, it
is known that W = (W⊥)⊥ = {w ∈ V : ω(w) = 0 ∀ω ∈ W⊥}. We will see
that W is an invariant subspace under r if and only if W⊥ is a co-invariant
subspace under ρr. The statement regarding irreducibility then follows
directly.

Note that ρr(W⊥) ⊆W⊥ ⊗KG if and only if

∀w ∈W⊥, ∑
g∈G

λw
g ⊗ 1g ∈W⊥ ⊗KG,

thus if and only if for all ω ∈W⊥ and g ∈ G we have λω
g ∈W⊥.

Now assume W⊥ is a co-invariant subspace, i.e. ρr(W⊥) ⊆ W⊥ ⊗KG,
and let w ∈ W be arbitrary. Then for any ω ∈ W⊥ and g ∈ G we have
λω

g ∈ W⊥ and thus λω
g (w) = 0. But λω

g (w) = ω(r(w, g)), so r(w, g) ∈ W.
Therefore, r(W × G) ⊆W, i.e. W is an invariant subspace.

Now assume W is an invariant subspace, i.e. r(W × G) ⊆ W, and
let ω ∈ W⊥ and g ∈ G be arbitrary. Then for any w ∈ W it holds that
r(w, g) ∈ W and thus ω(r(w, g)) = 0 per definition of W⊥. But
ω(r(w, g)) = λω

g (w), so λω
g ∈W⊥. Hence, ρr(W⊥) ⊆W⊥ ⊗KG, i.e. W⊥ is

a co-invariant subspace.

This construction can be applied to the irreducible representations of
SU(2) to obtain all the irreducible co-representations of O(SU(2)). Re-
call that the irreducible representations of SU(2) are given on spaces of
homogeneous polynomials in two variables, as found* in e.g. [2]:

*The given reference classifies all left group representations. The right representations
can be obtained using the anti-automorphism SU(2)→ SU(2), g 7→ g−1.
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1.2 Co-modules 17

Theorem 1.2.11. Let Pn(C) = C[X, Y]n be the complex vector space of homoge-
neous polynomials in X and Y of degree n. The map

rn : Pn(C)× SU(2)→ Pn(C)

given by p 7→ p(g(X, Y)) is an irreducible representation of SU(2), and every
irreducible representation of SU(2) is equivalent to a representation of this form.

Explicitly, for g =
( a −b∗

b a∗
)
∈ SU(2) and p = ∑n

k=0 pkXn−kYk ∈ C[X, Y]n
we have

rn(p, g) =
n

∑
k=0

pk(aX− b∗Y)n−k(bX + a∗Y)k

=
n

∑
k=0

pk

(
n−k

∑
i=0

(
n− k

i

)
(aX)n−k−i(−b∗Y)i

)(
k

∑
j=0

(
k
j

)
(bX)k−j(a∗Y)j

)

=
n

∑
k=0

pk

n

∑
r=0

(
∑

l

(
n− k
r− l

)(
k
l

)
(a)n−k−(r−l)(−b∗)r−l(b)k−l(a∗)l

)
Xn−rYr

=:
n

∑
r,k=0

pk v
g
k,r Xn−rYr (1.24)

where l runs over all integers such that all exponents are non-negative.
The second equality follows from Newton’s binomium, and the third equal-
ity uses the identity(

a

∑
i=0

siYi

)(
b

∑
j=0

tjY j

)
=

a+b

∑
r=0

 min{r,b}

∑
l=max{0,r−a}

sr−ltl

Yr.

To apply lemma 1.2.10 to the representations in theorem 1.2.11, choose
the basis (X n−iY i)n

i=0 for C[X ,Y ]n := Pn(C)∗ that sends the basis of Pn(C)
to the values

X n−iY i(Xn−jY j) =

{
1
(n

i )
if i = j,

0 otherwise.
(1.25)

Using (1.24) gives

λX
n−iY i

g (p) = X n−iY i(rn(p, g)) =
n

∑
r,k=0

pkv
g
k,rX

n−iY i(Xn−rYr) =
n

∑
k=0

pkv
g
k,i

1
(n

i )
.

Now pk = (n
k)X n−kY k(p) gives

λX
n−iY i

g =
n

∑
k=0

(n
k)

(n
i )

v
g
k,iX

n−kY k.
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1.2 Co-modules 18

Expanding v
g
k,i and using that a = α(g) and b = β(g) etc. we finally obtain

that the co-representation from lemma 1.2.10 is given by

X n−iY i 7→
n

∑
k=0
X n−kY k ⊗

(
∑

l

(k
l)(

n−k
i−l )(

n
k)

(n
i )

(α)n−k−(i−l)(−β∗)i−l(β)k−l(α∗)l

)
.

Introducing notation for the matrix coefficients of the right hand side, this
becomes

X n−iY i 7→
n

∑
k=0
X n−kY k ⊗ τ

(n)
ki (1.26)

Note that this co-representation can indeed be seen as a co-representation
of O(SU(2)) instead of CSU(2).

There is another way to look at these co-representations, which uses the
notion of algebra co-representation. Algebra co-representations are often
not finite-dimensional, which is why we do not extensively cover them in
this thesis. This viewpoint is used in [5].

Definition 1.2.12. An algebra co-representation ρV : V → V ⊗A of a Hopf-
algebra (A, µ, η, ∆, ε, S) onto an algebra (V , m, e) is a co-representation such that
(m⊗ idA) ◦ ρV⊗V = ρV ◦ m and (e⊗ idA) ◦ η = ρ ◦ e, where ρV⊗V is as in
Notation 1.2.8.

The co-representations given in (1.26) can be combined into a co-repre-

sentation on C[X ,Y ] =
∞⊕

n=0
C[X ,Y ]n. This can be shown to be an algebra

co-representation, hence all matrix coefficients can be deduced from the
case n = 1 and the algebra co-representation properties. Note that n = 1
is given by (

X
Y

)
7→
(
X ⊗ α + Y ⊗ β

X ⊗ (−β∗) + Y ⊗ α∗

)
(1.27)

from which we can deduce that e.g.

ρ(X 2) = ρ(m(X ⊗X )) = (m⊗ idA) ◦ ρC[X ,Y ]⊗C[X ,Y ](X ⊗X )

= (m⊗ idA) ◦ E((X ⊗ α + Y ⊗ β)⊗ (X ⊗ α + Y ⊗ β))

= X 2 ⊗ α2 +XY ⊗ αβ + YX ⊗ βα + Y2 ⊗ β2.

where E is as in Notation 1.2.8.
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1.3 Irreducible co-modules of O(SUq(2)) 19

1.3 Irreducible co-modules of O(SUq(2))

Following [5], the irreducible co-representations ofO(SUq(2)) are described
using definition 1.2.12. We should keep in mind that these co-representa-
tions are very similar to the co-representations of O(SU(2)) described in
the previous section.

Definition 1.3.1. The algebra Cq[X ,Y ] is defined as C〈X ,Y〉/(XY − qYX )
where C〈X ,Y〉 is the free algebra on X and Y (c.f. Notation 1.1.10) and
(XY − qYX ) is the two-sided ideal generated by XY − qYX .
The vector space Cq[X ,Y ]n is the subspace of homogeneous elements of degree n.

In the literature, the algebra Cq[X ,Y ] is known as the quantum plane.
Some new notation is also required.

Notation 1.3.2. The q-binomial coefficients [ n
k ]q are the numbers (dependent

on q) such that in Cq[X ,Y ] we have the identity

(X + Y)n =
n

∑
k=0

[ n
k ]q Y

n−kX k. (1.28)

Furthermore, in this thesis the notation [ n
k ] = [ n

k ]q−2 is used.

Sometimes, for n ∈ Z the notation [n]q =
qn−q−n

q−q−1 is used.

Of course, formula (1.28) holds for any two elements in an algebra that
satisfy the same commutation relation as X and Y in Cq[X ,Y ]. The reason
for [ n

k ] to have q−2 instead of q is because for algebras of the form A⊗ B,
and elements X ,Y ∈ A and α, β ∈ B that commute up to a factor of q,
we have (X ⊗ α + Y ⊗ β)n = ∑n

k=0 [
n
k ]X n−kY k ⊗ αn−kβk. More about the

q-binomial coefficients and related notions can be found in [5, Chapter 2].

Theorem 1.3.3. Consider the function

ϕ1 : Cq[X ,Y ]1 → Cq[X ,Y ]1 ⊗O(SUq(2))

given by(
X
Y

)
7→ [X Y ]⊗

[
α −qβ∗

β α∗

]
=

(
X ⊗ α + Y ⊗ β

X ⊗ (−qβ∗) + Y ⊗ α∗

)
(1.29)

This function can be extended to an (infinite-dimensional) algebra co-representa-
tion

ϕ : Cq[X ,Y ]→ Cq[X ,Y ]⊗O(SUq(2))
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1.3 Irreducible co-modules of O(SUq(2)) 20

using the relations from definition 1.2.12. The restrictions

ϕn : Cq[X ,Y ]n → Cq[X ,Y ]n ⊗O(SUq(2))

are finite-dimensional irreducible co-representations, and any finite-dimensional
irreducible co-representation ofO(SUq(2)) is equivalent to a co-representation of
this form.

Proof. See [5, Chapter 4.2.3-4.2.5].

A few remarks:

• When q→ 1, equation (1.29) exactly agrees with equation (1.27).

• In [5], the algebra Cq[X ,Y ] is identified with the subalgebra of
O(SUq(2)) generated by α and β∗ via X ↔ α, Y ↔ −qβ∗. Then
the co-action of ϕ can be identified with the co-action of ∆. Indeed,
we have α(−qβ∗) = q(−qβ∗)α and

∆
(

α

−qβ∗

)
=

(
α⊗ α + (−qβ∗)⊗ β

α⊗ (−qβ∗) + (−qβ∗)⊗ α∗

)
which agrees with equation (1.29).

• One can explicitly compute the matrix coefficients for these co-repre-
sentations. This is described in [5, Chapter 4.2.3-4.2.4], with respect
to the basis

f (l)i =
√[ 2l

l+i
]
X l−iY l+i (1.30)

where l = n
2 ∈

1
2N and i runs from −l to l in integer steps. With this

basis, we have

t(l)ij = ∑
µ

[ l−i
µ

] [ l+i
l+j−µ

]√[ 2l
l+i
]√[

2l
l+j

] q−µ(µ+i−j)αl−i−µ(−qβ∗)µβi−j+µ(α∗)l+j−µ

where µ sums over all integers for which the exponents are all posi-
tive, and ϕ2l

(
f (l)j

)
= ∑i f (l)i ⊗ t(l)ij .

• With respect to the basis (X n−iY i)n
i=0 of Cq[X ,Y ]n, and after relabel-

ing the indices via n ↔ 2l, i ↔ j + l, j ↔ i + l and l ↔ l + j− µ, the
matrix coefficients are given by

τ
(n)
ij = ∑

l

[
n−j
i−l

] [
j
l

] [ n
j
]

[ n
i ]

q(l−i)(j−l)αn−j−(i−l)(−qβ∗)i−l βj−l(α∗)l

(1.31)
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1.3 Irreducible co-modules of O(SUq(2)) 21

where ϕn(X n−jY j) = ∑i X n−iY i ⊗ τ
(n)
ij . Note the similarity to the

coefficients found at (1.26).

Lemma 1.3.4. The matrix coefficients t(l)ij considered above satisfy S
(

t(l)ij

)
=(

t(l)ji

)∗
, i.e. the co-representations ϕn is unitary with respect to the inner product

induced by the basis f (l)i .

Proof. See [5, Chapter 4.3.1 Proposition 16].

Example 1.3.5. The co-representation ϕ2 : Cq[X ,Y ]2 → Cq[X ,Y ]2 ⊗O(SUq(2))
can be deduced as follows:

ϕ2(X 2) =ϕ(m(X ⊗X )) = m⊗ idO(SUq(2)) (ϕ⊗ ϕ(X ⊗X ))

=m⊗ idO(SUq(2)) (E((X ⊗ α + Y ⊗ β)⊗ (X ⊗ α + Y ⊗ β)))

=m⊗ idO(SUq(2))

(
X ⊗X ⊗ αα +X ⊗Y ⊗ αβ

+ Y ⊗X ⊗ βα + Y ⊗ Y ⊗ ββ

)
=X 2 ⊗ αα + (1 + q−2)XY ⊗ αβ + Y2 ⊗ ββ

The values of ϕ2(XY) and ϕ2(Y2) are deduced similarly, which gives

ϕ2

(
X 2

XY
Y2

)
=

(
X 2⊗αα +(1+q−2)XY⊗αβ +Y2⊗ββ

X 2⊗α(−qβ∗) +XY⊗(αα∗−ββ∗) +Y2⊗βα∗

X 2⊗(−qβ∗)(−qβ∗) +(1+q−2)XY⊗(−qβ∗)α∗ +Y2⊗α∗α∗

)

Similarly, the co-representation ϕ3 : Cq[X ,Y ]3 → Cq[X ,Y ]3 ⊗O(SUq(2))

can be deduced to be given by ϕ3

 X 3

X 2Y
XY2

Y3

 =

 X 3⊗α3 +(1+q−2+q−4)X 2Y⊗α2β +(1+q−2+q−4)XY2⊗αβ2 +Y3⊗β3

−qX 3⊗α2β∗ +X 2Y⊗(α2α∗−(1+q−2)αββ∗) +XY2⊗((1+q−2)αβα∗−q−1β2β∗) +Y3⊗β2α∗

q2X 3⊗α(β∗)2 +X 2Y⊗(β(β∗)2−q(1+q−2)αβ∗α∗) +XY2⊗(α(α∗)2−(1+q−2)ββ∗α∗) +Y3⊗β(α∗)2

−q3X 3⊗(β∗)3 +q2(1+q−2+q−4)X 2Y⊗(β∗)2α∗ −q(1+q−2+q−4)XY2⊗β∗(α∗)2 +Y3⊗(α∗)3


Indeed, these expressions are the same as the expressions that can be calculated
using formula (1.31).
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1.4 Clebsch–Gordan coefficients ofO(SUq(2)) co-
modules

Per [5, Remark 1 below Theorem 4.14], any co-representation

ρ : V → V ⊗O(SUq(2))

can be written as a direct sum ρ ∼= ⊕i ϕni , where ϕni are the irreducible co-
representations given in Theorem 1.3.3. In other words, finite-dimensional
co-representations of O(SUq(2)) are completely reducible.

In particular, for any n1, n2 the co-representation ϕn1 ⊗ ϕn2 as in Nota-
tion 1.2.8 can be written as such, as summarised by the following result
found in [5]:

Lemma 1.4.1. Given n1, n2, there is an isomorphism

C :
min{n1,n2}⊕

k=0

Cq[X ,Y ]2k+|n1−n2|
∼−→ Cq[X ,Y ]n1 ⊗Cq[X ,Y ]n2

such that the following square diagram commutes:

Cq[X ,Y ]n1 ⊗Cq[X ,Y ]n2

min{n1,n2}⊕
k=0

Cq[X ,Y ]2k+|n1−n2|

(
min{n1,n2}⊕

k=0
Cq[X ,Y ]2k+|n1−n2|

)
⊗O(SUq(2))

Cq[X ,Y ]n1 ⊗Cq[X ,Y ]n2 ⊗O(SUq(2))

C

C⊗ idO(SUq(2))

ϕn1 ⊗ ϕn2
min{n1,n2}⊕

k=0
ϕ2k+|n1−n2|

Explicitly, for the basis vectors f (l1)j ∈ Cq[X ,Y ]2l1 and f (l2)j ∈ Cq[X ,Y ]2l2 and

f (l)j ∈ Cq[X ,Y ]2l as in (1.30), such that
(

f (l1)i ⊗ f (l2)j

)l1, l2

i=−l1, j=−l2
is a basis of

the right-hand side and
(
( f (l)j )l

j=−l

)l1+l2

l=|l1−l2|
is a basis of the left-hand side, we
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have that†

C( f (l)m ) = ∑
j+k=m

Cq(l2, l1, l; k, j, m) f (l1)j ⊗ f (l2)k .

where the expression for Cq(l1, l2, l; j, k, m) can be found in [5, Chapter 3 Formu-
las (51)-(53)].

The general formula for Cq(l1, l2, l; j, k, m) will not be written out in this
thesis; it will only be used for a few special cases.

Proof. This proof will sketch the arguments used in [5], and fill in a few
missing gaps.

The proof starts with two Hopf algebras‡ introduced in [5, Chapter 3.1.1
and 3.1.2]: the algebra Uq(sl2) generated by E, K, F and the closely related
Ŭq(sl2) that is generated by Ĕ, K̆, F̆ (which [5] just writes as E, K, F). There

is an injective map Uq(sl2) ↪→ Ŭq(sl2) given by
( E

K
L

)
7→
(

ĔK̆
K̆2

K̆−1 F̆

)
.

By restriction of q to R and with an additional ∗-map, the Hopf-algebras
Uq(su2) and Ŭq(su2) are constructed out of Uq(sl2) and Ŭq(sl2).

By [5, Chapter 4.4.1, Theorem 21], there is a dual pairing 〈·, ·〉 between
O(SLq(2)) and Uq(sl2), which also gives a dual pairing betweenO(SUq(2))
and Uq(su2).

In [5, Chapter 4.4.2] it is explained how any co-representation ϕ of
O(SUq(2)) gives rise to a representation ϕ̂ of Uq(su2). Explicitly for the

co-representation ϕ2l given on the basis f (l)i by ϕ2l

(
f (l)j

)
= ∑i f (l)i ⊗ t(l)ij ,

we have ϕ̂2l(x) f (l)j = ∑i f (l)i 〈x, t(l)ij 〉 for all x ∈ Uq(su2). For the generators
E, K, F we have

ϕ̂2l(E) f (l)j = q−j
√
[l − j + 1]q[l + j]q f (l)j−1

ϕ̂2l(K) f (l)j = q−2j f (l)j (1.32)

ϕ̂2l(F) f (l)j = qj+1
√
[l + j + 1]q[l − j]q f (l)j+1

†Calculations in specific cases (See the footnote in the proof of Lemma 2.2.3) show that
this formula might be incorrect. In [5] it seems to be implied that the correct formula is

C( f (l)m ) = ∑
j+k=m

Cq(l1, l2, l; j, k, m) f (l1)j ⊗ f (l2)k .

‡These algebras are Hopf-algebra analogues of the Lie algebra sl(2) of the group
SL(2). In particular, Uq(sl2) should be thought of as (a quantum analogue of) the uni-
versal enveloping algebra of the lie-algebra sl(2).
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1.4 Clebsch–Gordan coefficients of O(SUq(2)) co-modules 24

Using the map f (l)j ↔ e−j, this representation agrees with the repre-

sentation of Ŭq(sl2) found in [5, Chapter 3.2.3, Theorem 13]:

Tl(Ĕ)em =
√
[l + m + 1]q[l −m]qem+1

Tl(K̆)em = qmem (1.33)

Tl(F̆)em =
√
[l −m + 1]q[l + m]qem−1

The powers of q in (1.32) and (1.33) agree after applying the aforemen-
tioned inclusion map Uq(sl2) ↪→ Ŭq(sl2).

The representation theory of Ŭq(su2) is described in [5, Chapter 3.4],
which states

el
m = ∑

j+k=m
Cq(l1, l2, l; j, k, m) ej ⊗ ek.

This result can now be applied to the co-representations of O(SUq(2)), by

pulling it back via the map f (l)j ↔ e−j, which gives

C( f (l)j ) = ∑
j+k=m

Cq(l1, l2, l;−j,−k,−m) f (l1)j ⊗ f (l2)k .

By [5, Chapter 3.4.4, formula (70)], we have

Cq(l1, l2, l;−j,−k,−m) = Cq(l2, l1, l; k, j, m).
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Chapter 2
Algebraic subproduct systems

In this chapter, an algebraic subproduct system En ⊆ V⊗n is constructed
for a unitary co-representation ρ : V → V ⊗ O(SUq(2)) onto a complex
inner product space V, similar to the constructions in [1, Chapter 2].

2.1 The non-commutative Nullstellensatz, an in-
troduction

The famous (commutative) Hilbert Nullstellensatz is a fundamental result
in commutative algebra that relates the algebraic notion of an ideal I ⊆ R
in a ring R to the geometric notion of a variety V(I) ⊆ Spec(R).

The classical version of this statement takes R = C[X1, . . . , Xn] in which
case Spec(R) is known as n-dimensional affine space, and an ideal gener-
ated by a polynomial p corresponds to the set of zeroes of p.

In non-commutative algebra, an analogous statement has been
described in [8], where an ideal I ⊆ C〈X1, . . . , Xn〉 is related to a structure
known as a subproduct system. This thesis considers algebraic subproduct
systems as opposed to the more general, analytical notion of subproduct
systems of Hilbert spaces.

Definition 2.1.1. An algebraic subproduct system is a collection of finite-
dimensional complex inner product spaces {En}n≥0 and linear isometries
ιk,m : Ek+m ↪→ Ek ⊗ Em that satisfy the following three conditions:

i. E0 = C,

ii. ι0,m : Em → C⊗ Em and ιm,0 : Em → Em ⊗C are the canonical identifica-
tions v 7→ 1⊗ v and v 7→ v⊗ 1,
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2.1 The non-commutative Nullstellensatz, an introduction 26

iii. (idEk ⊗ ιl,m) ◦ ιk,l+m = (ιk,l ⊗ idEm) ◦ ιk+l,m.

The more general subproduct systems used in the literature, notably in
[8] differ from this definition in that the En are C∗-correspondences instead
of finite-dimensional inner product spaces. The definition used here is
obtained when the “correspondences” En are over the trivial C∗-algebra
C, and required to be finite-dimensional.

The noncommutative Nullstellensatz describes how for a fixed inner
product space V ∼= Cn, a subproduct system (Ek)k≥0 with E1 ⊆ V relates
to a homogeneous two-sided ideal I ⊆ C〈X1, . . . , Xn〉. To state it, we need
the following simple but crucial observation:

Lemma 2.1.2. Given an n-dimensional complex inner product space V with or-
thonormal basis {e1, . . . , en}, there is a natural algebra isomorphism between the
tensor algebra T(V) =

⊕∞
k=0 V⊗k and the polynomial algebra C〈X1, . . . , Xn〉,

which is obtained by identifying the algebra generators (ei)
n
i=1 with the generators

(Xi)
n
i=1.

Notation 2.1.3. For a polynomial p ∈ C〈X1, . . . , Xn〉, the image under the iden-
tification of Lemma 2.1.2 is written p(e), whereas for a vector v ∈ T(V), we use
the notation X(v) for the corresponding element in C〈X1, . . . , Xn〉.

For example, when v = 1 + 2e1 ⊗ e2 + 3e4 ⊗ e3 ⊗ e2 ∈ T(V) we have

X(v) = 1 + 2X1X2 + 3X4X3X2

and similarly for p = 1 + 2X1X2 + 3X4X3X2 ∈ C〈X1, X2, X3, X4〉 we have

p(e) = 1 + 2e1 ⊗ e2 + 3e4 ⊗ e3 ⊗ e2.

The noncommutative nullstellensatz can now be stated:

Theorem 2.1.4. (Noncommutative Nullstellensatz) There is an inclusion-
reversing bijective correspondence between subproduct systems (Em)∞

m=0 with
Em ⊆ (V)⊗m and homogeneous two-sided proper ideals I ⊆ C〈X1, . . . , Xk〉. Un-
der this correspondence, a subproduct system (Em)∞

m=0 corresponds to the ideal

IEm = Span{X(v) : ∃m such that v ∈ (Em)
⊥ ⊆ V⊗m},

and an ideal I ⊆ C〈X1, . . . , Xk〉 corresponds to the subproduct system (EI
m)

∞
m=0

where

EI
m = {p(e) : p ∈ I is homogeneous of degree m}⊥ ⊆ V⊗m,

where the maps ιk,m : EI
k+m ↪→ EI

k ⊗ EI
m are induced by the natural isomorphism

V⊗(k+m) ∼= V⊗k ⊗V⊗m.
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2.2 The determinant of a co-representation 27

Proof. This is [8, Proposition 7.2]

In section 2.3, for each co-representation ϕ : V → V ⊗O(SUq(2)) we
construct a subproduct system related to the subspace det(ρ).

Under the non-commutative Nullstellensatz, this subspace becomes an
ideal generated by quadratic polynomials, which puts it in the context of
quadratic algebras as found in e.g. [6, Chapter 4]. The following section
will study det(ρ) in greater detail, and section 2.4 will give more insight
in the related quadratic algebras for irreducible ρ.

2.2 The determinant of a co-representation

This section describes and studies the determinant det(ρ) of a co-represen-
tation, which will play a central role in the construction of the subproduct
system.

Definition 2.2.1. The subspace of co-invariant elements CoInv(ρ) ⊆ V of a
co-representations ρ : V → V ⊗A is the set {v ∈ V : ρ(v) = v⊗ 1}.

Note the similarity and subtle difference between this definition and
the definition of co-invariant subspaces (definition 1.2.3). In particular,
CoInv(ρ) is a co-invariant subspace.

Definition 2.2.2. The determinant det(ρ) ⊆ V ⊗V of anA-co-representation

ρ : V → V ⊗A

is the space
CoInv(ρ⊗k) ⊆ V⊗k,

where k ∈N≥1 is the minimal number such that there exists some co-representa-
tion ϕ : V → V ⊗A with CoInv(ϕ) = {0} and dimC(V) = k.

In the case that A = O(SUq(2)), we have that k = 2 for the co-repre-
sentation ϕ1 from Theorem 1.3.3.

Another example is when A = O(SU(3)) is a function Hopf-algebra
on the classical Lie group SU(3), in which case k = 3 for the co-represen-
tation ϕ : C3 → C3 ⊗ O(SUq(3)) obtained from the fundamental group
action C3 × SU(3)→ C3 through Lemma 1.2.10.

This thesis will from now on only focus on the case thatA = O(SUq(2)),
so det(ρ) = CoInv(ρ⊗ ρ). In this case, the name “determinant” has been
chosen because of the following observation:

Version of July 12, 2022– Created July 12, 2022 - 15:52

27



2.2 The determinant of a co-representation 28

Lemma 2.2.3. When ρ : V → V⊗O(SUq(2)) is an irreducible co-representation,
we have that det(ρ) is a 1-dimensional subspace of V ⊗V.

In particular, for the co-representation

ϕ1 : Cq[X ,Y ]1 → Cq[X ,Y ]1 ⊗O(SUq(2))

we have det(ρ) = Span(X ⊗Y − qY ⊗X )

Proof. Assume without loss of generality that ρ is the (n + 1)-dimensional
irreducible co-representation ϕn from Theorem 1.2.11. By Lemma 1.4.1,
the co-representation ρ⊗ ρ decomposes as ρ⊗ ρ ∼=

⊕n
k=0 ϕ2k.

All co-invariant subspaces of ρ⊗ ρ are therefore given by⊕
k∈S

Cq[X ,Y ]2k ⊆ C[X ,Y ]n ⊗C[X ,Y ]n,

where the ⊆-identification is as in Lemma 1.4.1, and S ⊆ {0, 1, . . . , n} is
any subset. It follows that CoInv(ρ ⊗ ρ) must be of this form as well.
Because for k 6= 0 the elements in Cq[X ,Y ]2k are not co-invariant under
ϕ2k, it follows that k can only be 0. We thus obtain that

CoInv(ρ⊗ ρ) =
⊕

k∈{0}
Cq[X ,Y ]2k

= Span( f (0)0 )

= Span

(
∑

j+k=0
Cq

(n
2

,
n
2

, 0; k, j, 0
)

f (
n
2 )

j ⊗ f (
n
2 )

k

)
.

In [5, Chapter 3.4.3 just below formula (67)] we find Cq(l1, l2, 0; j,−j, 0) =
(−1)l1−jqj√

[2l1+1]
when l1 = l2, so we see that *

CoInv(ρ⊗ ρ) = Span

 n
2

∑
j=− n

2

(−1)
n
2−jqj√

[n + 1]q
f (

n
2 )

j ⊗ f (
n
2 )
−j

 . (2.1)

*The cautious reader might have noticed that here we used the formula for
Cq(

n
2 , n

2 , 0; j,−j, 0) instead of Cq(
n
2 , n

2 , 0;−j, j, 0). There must be some miscalculation
somewhere, either here or in the proof of Theorem 1.2.11. Calculations for small
n do show that this formula should be used for det(ρ), and not the one using
Cq(l2, l1, 0;−j, j, 0).
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2.2 The determinant of a co-representation 29

Writing this in the basis X n−kY k of Cq[X ,Y ]n and dropping a constant

factor of
√

(−q)n

[n+1]q
, we get

det(ρ) = CoInv(ρ⊗ ρ) = Span

(
n

∑
j=0

(−q)j [ n
j
]
X n−jY j ⊗X jYn−j

)
.

For small n, this gives

det(ϕ1) = Span
(
X ⊗Y − qY ⊗X

)
, (2.2)

det(ϕ2) = Span
(
X 2 ⊗Y2 − q(q−2 + 1)XY ⊗XY + q2Y2X 2

)
, (2.3)

det(ϕ3) = Span
(
X 3 ⊗Y3 − q(q−4 + q−2 + 1)X 2Y ⊗XY2

+ q2(q−4 + q−2 + 1)XY2 ⊗X 2Y − q3Y3 ⊗X 3
)

, (2.4)

det(ϕ4) = Span
(
X 4 ⊗Y4 − q(q−6 + q−4 + q−2 + 1)X 3Y ⊗XY3

+ q2(q−8 + q−6 + 2q−4 + q−2 + 1)X 2Y2 ⊗X 2Y2

− q3(q−6 + q−4 + q−2 + 1)XY3 ⊗X 3Y + q4Y4 ⊗X 4
)

.

(2.5)

It is a simple but tedious verification to show that these vectors are indeed
co-invariant under these respective co-representations as found in Exam-
ple 1.3.5.

We can also describe the determinant of a reducible co-representation
of O(SUq(2)):

Lemma 2.2.4. Let ρ : V → V ⊗O(SUq(2)) be a reducible unitary co-represen-
tation. Let V =

⊕
i(⊕

ni
j=1Vij) be a decomposition such that for each Vij there

is a bijective orthogonal map pij : Vi → Vij that intertwines ρ|Vij with the map
ϕi : Vi → Vi ⊗O(SUq(2)) from Theorem 1.3.3, i.e. the diagram

Vi ⊗O(SUq(2))

V ⊗O(SUq(2))V

Vi
ϕi

pij⊗idpij

ρ
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2.2 The determinant of a co-representation 30

commutes. Then

det(ρ) =
⊕

i

 ni⊕
j1,j2=1

(pij1 ⊗ pij2)(det(ϕi))


Proof. Similarly to the proof of Lemma 2.2.3, the determinant can be found
by decomposing ρ⊗ ρ into irreducible co-representations via Lemma 1.4.1,
and then the trivial irreducible co-representations of this decomposition
constitute the determinant. Clearly,

ρ⊗ ρ =
⊕

i1,j1,i2,j2

ρ|Vi1 j1
⊗ ρ|Vi2 j2

∼=
⊕

i1,j1,i2,j2

ϕi1 ⊗ ϕi2

and thus

CoInv(ρ⊗ ρ) =
⊕

i1,j1,i2,j2

CoInv
(

ρ|Vi1 j2
⊗ ρ|Vi2 j2

)
. (2.6)

Thanks to Lemma 1.4.1, we have

ϕi1 ⊗ ϕi2
∼=

min{i1,i2}⊕
k=0

ϕ2k+|i1−i2|.

In this decomposition, the trivial co-representation, denoted ϕ0, is in the
direct sum only when i1 = i2. And when i1 = i2 = i, we have that
CoInv(ϕi1 ⊗ ϕi2) = det(ϕi), so we obtain that

CoInv
(

ρ|Vi1 j2
⊗ ρ|Vi2 j2

)
=

{
(pij1 ⊗ pij2)(det(ϕi)) if i1 = i2 = i,
{0} if i1 6= i2.

(2.7)

Combining (2.6) and (2.7) gives the desired result.

For example, take the vector space V as

V1 = Cq[X1,Y1]1 = Span(X1,Y1),
V2 = Cq[X2,Y2]1 = Span(X2,Y2),

V3 = Cq[X3,Y3]2 = Span(X 2
3 ,X3Y3,Y2

3 ),

V = V1 ⊕V2 ⊕V3 = Span(X1,Y1,X2,Y2,X 2
3 ,X3Y3,Y2

3 )

where the Vi are as in Definition 1.3.1, and the co-representation ρ as

ϕ11 : V1 → V1 ⊗O(SUq(2)),
ϕ12 : V2 → V2 ⊗O(SUq(2)),
ϕ23 : V3 → V3 ⊗O(SUq(2)),

ρ = ϕ11 ⊕ ϕ12 ⊕ ϕ23 : V → V ⊗O(SUq(2)),
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2.2 The determinant of a co-representation 31

where the representation ϕij agrees with the representation ϕi from Theo-
rem 1.3.3. Then

det(ρ) = CoInv(ϕ11 ⊗ ϕ11)⊕CoInv(ϕ11 ⊗ ϕ12)⊕
CoInv(ϕ12 ⊗ ϕ11)⊕CoInv(ϕ12 ⊗ ϕ12)⊕
CoInv(ϕ23 ⊗ ϕ23)

= Span
(
(X1 ⊗Y1 − qY1 ⊗X1), (X1 ⊗Y2 − qY1 ⊗X2),

(X2 ⊗Y1 − qY2 ⊗X1), (X2 ⊗Y2 − qY2 ⊗X2),(
X 2

3 ⊗Y2
3 − q(1 + q−2)X3Y3 ⊗X3Y3 + q2Y2

3X 2
3

))
.

2.2.1 Temperley–Lieb vectors

In this section we investigate a property known as being “Temperley–
Lieb”, as found in [3, Definition 1.2]. Temperley–Lieb vectors and algebras
are of interest in several mathematical fields, including braid theory and
quantum groups.

Definition 2.2.5. Let V be a complex finite-dimensional inner product space V.
A vector δ ∈ V ⊗ V is called Temperley-Lieb when the orthogonal projection
e : V ⊗V → Span(δ) satisfies

(e⊗ 1)(1⊗ e)(e⊗ 1) =
1
λ

e⊗ 1

for some λ ∈ R>0

We can show that det(ϕn) is Temperley-Lieb:

Lemma 2.2.6. Let ρ be as in Lemma 2.2.3. There exists a λ ∈ R>0 such that the
ortogonal projection

e : V ⊗V → det(ρ)

onto the subspace det(ρ) satisfies (e ⊗ 1)(1 ⊗ e)(e ⊗ 1) = 1
λ e ⊗ 1. In other

words, det(ρ) is Temperley-Lieb.

Proof. This is most easily proven by direct computation. Recall that by

Lemma 1.3.4, the inner product on V is induced by the basis f (
n
2 )

j . By the
proof of Lemma 2.2.3, det(ρ) = Span(δ) where

δ =

n
2

∑
j=− n

2

(−1)
n
2−jqj√

[n + 1]q
f (

n
2 )

j ⊗ f (
n
2 )
−j =:

n
2

∑
j=− n

2

δj f (
n
2 )

j ⊗ f (
n
2 )
−j . (2.8)
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Note that ‖δ‖2 = 1, as by the geometric series we have

‖δ‖2 =
1

[n + 1]q
(q−n + q2−n + · · ·+ qn−2 + qn) =

1
[n + 1]q

q−n

(
n

∑
k=0

q2k

)

=
1

[n + 1]q
q−n 1− q2(n+1)

1− q2 =
1

[n + 1]q
q−(n+1) − qn+1

q−1 − q
= 1. (2.9)

On an element f (
n
2 )

a ⊗ f (
n
2 )

b , the projection e is given by

e
(

f (
n
2 )

a ⊗ f (
n
2 )

b

)
=

〈
f (

n
2 )

a ⊗ f (
n
2 )

b , δ
〉

‖δ‖2 = (δa1a=−b)δ.

Hence, for a general basis element f (
n
2 )

a ⊗ f (
n
2 )

b ⊗ f (
n
2 )

c of V ⊗ V ⊗ V, we
have

(e⊗ 1)
(

f (
n
2 )

a ⊗ f (
n
2 )

b ⊗ f (
n
2 )

c

)
= (δa1a=−b)δ⊗ f (

n
2 )

c .

Writing µab = δa1a=−b and applying (1⊗ e) now gives

(1⊗ e)(e⊗ 1)
(

f (
n
2 )

a ⊗ f (
n
2 )

b ⊗ f (
n
2 )

c

)
= µab ∑

j
δj f (

n
2 )

j ⊗ e
(

f (
n
2 )
−j ⊗ f (

n
2 )

c

)
= µab ∑

j
(δjδ−j1c=j) f (

n
2 )

j ⊗ δ

= (µabδcδ−c) f (
n
2 )

c ⊗ δ.

Applying (e⊗ 1) to the result gives

(e⊗ 1)(1⊗ e)(e⊗ 1)
(

f (
n
2 )

a ⊗ f (
n
2 )

b ⊗ f (
n
2 )

c

)
=µabδcδ−c ∑

j
δje
(

f (
n
2 )

c ⊗ f (
n
2 )

j

)
⊗ f (

n
2 )
−j

=µabδcδ−c ∑
j
(δjδc1c=−j)δ⊗ f (

n
2 )
−j

=µab (δcδ−c)
2 δ⊗ f (

n
2 )

c

= (δcδ−c)
2 (e⊗ 1)

(
f (

n
2 )

a ⊗ f (
n
2 )

b ⊗ f (
n
2 )

c

)
.

Finally, δj =
(−1)

n
2−jqj√

[n+1]q
gives us that δcδ−c = (−1)n

[n+1]q
is independent of c, so

the lemma holds for λ =
(
[n + 1]q

)2
=
(

qn+1−q−(n+1)

q−q−1

)2
.

Version of July 12, 2022– Created July 12, 2022 - 15:52

32



2.2 The determinant of a co-representation 33

2.2.2 The determinant and braids

This section, together with section 2.2.3, will be dedicated to proving the
following theorem:

Theorem 2.2.7. For each unitary finite-dimensional co-representation
ρ : V → V ⊗O(SUq(2)) there exists a map σ : V ⊗V → V ⊗V such that

det(ρ) = (Inv(σ))⊥ (2.10)

and
(σ⊗ 1)(1⊗ σ)(σ⊗ 1) = (1⊗ σ)(σ⊗ 1)(1⊗ σ). (2.11)

Equation (2.11) is known as the braid equation or Yang-Baxter equation,
and is central to the study of a broad class of Hopf algebras. First, the
simpler case when ρ is an irreducible co-representation of O(SUq(2)) will
be studied. In particular, we have the following result:

Theorem 2.2.8. Given an irreducible co-representation

ϕn : V → V ⊗O(SUq(2)),

a map σ : V ⊗ V → V ⊗ V satisfies (2.10) and (2.11) if and only if σ expressed
on the basis (1.30) has the form

σ
(

f (
n
2 )

j ⊗ f (
n
2 )

k

)
=

∑
n
2
i=− n

2

(
1j=i − (−q)j−ixi

)
f (

n
2 )

i ⊗ f (
n
2 )
−i if j = −k,

f (
n
2 )

j ⊗ f (
n
2 )

k if j 6= −k,
(2.12)

where for each j, the numbers xk satisfy the equation

1 + xjx−j = ∑
m

xm. (2.13)

The proof of 2.2.8 starts with the following observation:

Lemma 2.2.9. When ϕn : V → V ⊗ O(SUq(2)) is irreducible as in Theorem
1.3.3, any σ : V ⊗V → V ⊗V that satisfies equation (2.10) is of the form

σ
(

f (
n
2 )

j ⊗ f (
n
2 )

k

)
=

∑
n
2
i=− n

2

(
1j=i − (−q)j−ixi

)
f (

n
2 )

i ⊗ f (
n
2 )
−i if j = −k,

f (
n
2 )

j ⊗ f (
n
2 )

k if j 6= −k,

where (xk)
n
2
k=− n

2
∈ V is an arbirary non-zero vector.
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Visually, the function σ above is given by

σ
(

f (
n
2 )

j ⊗ f (
n
2 )

k

)
=


∑
k

σjk f (
n
2 )

k ⊗ f (
n
2 )
−k if k = −j,

f (
n
2 )

j ⊗ f (
n
2 )

k if k 6= −j,

where σjk is given by

• If n is odd and dimC(V) is even:


. . . . . . . . . . . . . . . . . . . . .

. . . σ5
2

5
2

σ3
2

5
2

σ1
2

5
2

σ− 1
2

5
2

σ− 3
2

5
2

σ− 5
2

5
2

. . .

. . . σ5
2

3
2

σ3
2

3
2

σ1
2

3
2

σ− 1
2

3
2

σ− 3
2

3
2

σ− 5
2

3
2

. . .

. . . σ5
2

1
2

σ3
2

1
2

σ1
2

1
2

σ− 1
2

1
2

σ− 3
2

1
2

σ− 5
2

1
2

. . .

. . . σ5
2 ,− 1

2
σ3

2 ,− 1
2

σ1
2 ,− 1

2
σ− 1

2 ,− 1
2

σ− 3
2 ,− 1

2
σ− 5

2 ,− 1
2

. . .

. . . σ5
2 ,− 3

2
σ3

2 ,− 3
2

σ1
2 ,− 3

2
σ− 1

2 ,− 3
2

σ− 3
2 ,− 3

2
σ− 5

2 ,− 3
2

. . .

. . . σ5
2 ,− 5

2
σ3

2 ,− 5
2

σ1
2 ,− 5

2
σ− 1

2 ,− 5
2

σ− 3
2 ,− 5

2
σ− 5

2 ,− 5
2

. . .

. . . . . . . . . . . . . . . . . . . . .



=



. . . . . . . . . . . . . . . . . . . . .

. . . 1−x 5
2

x 5
2

q−1 −x 5
2

q−2 x 5
2

q−3 −x 5
2

q−4 x 5
2

q−5 . . .

. . . x 3
2

q 1−x 3
2

x 3
2

q−1 −x 3
2

q−2 x 3
2

q−3 −x 3
2

q−4 . . .

. . . −x 1
2

q2 x 1
2

q 1−x 1
2

x 1
2

q−1 −x 1
2

q−2 x 1
2

q−3 . . .

. . . x− 1
2

q3 −x− 1
2

q2 x− 1
2

q 1−x− 1
2

x− 1
2

q−1 −x− 1
2

q−2 . . .

. . . −x− 3
2

q4 x− 3
2

q3 −x− 3
2

q2 x− 3
2

q 1−x− 3
2

x− 3
2

q−1 . . .

. . . x− 5
2

q5 −x− 5
2

q4 x− 5
2

q3 −x− 5
2

q2 x− 5
2

q 1−x− 5
2

. . .

. . . . . . . . . . . . . . . . . . . . .



• If n is even and dimC(V) is odd:

. . . . . . . . . . . . . . . . . .

. . . σ2,2 σ1,2 σ0,2 σ−1,2 σ−2,2
. . .

. . . σ2,1 σ1,1 σ0,1 σ−1,1 σ−2,1
. . .

. . . σ2,0 σ1,0 σ0,0 σ−1,0 σ−2,0
. . .

. . . σ2,−1 σ1,−1 σ0,−1 σ−1,−1 σ−2,−1
. . .

. . . σ2,−2 σ1,−2 σ0,−2 σ−1,−2 σ−2,−2
. . .

. . . . . . . . . . . . . . . . . .


=



. . . . . . . . . . . . . . . . . .

. . . 1−x2 x2q−1 −x2q−2 x2q−3 −x2q−4 . . .

. . . x1q 1−x1 x1q−1 −x1q−2 x1q−3 . . .

. . . −x0q2 x0q 1−x0 x0q−1 −x0q−2 . . .

. . . x−1q3 −x−1q2 x−1q 1−x−1 x−1q−1 . . .

. . . −x−2q4 x−2q3 −x−2q2 x−2q 1−x−2
. . .

. . . . . . . . . . . . . . . . . .



Proof of Lemma 2.2.9. Recall that by Lemma 1.3.4, f (
n
2 )

j is an orthonormal
basis of V, and by equation (2.1), we have

det(ϕn) = Span

(
∑

j
(−q)j f (

n
2 )

j ⊗ f (
n
2 )
−j

)
.

For the remainder of this proof, introduce the shorthand notation f jk =

f (
n
2 )

j ⊗ f (
n
2 )

k . We easily find that

det(ϕn)
⊥ = Span

(
( f jk)k 6=−j, (q f j,−j + f j+1,−j−1)

)
.
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A rigorous proof of this can be found in the proof of Lemma 2.4.4.
Now Inv(σ) = det(ϕn)⊥ implies that σ( f jk) = f jk when k 6= −j,

and also σ(q f j,−j + f j+1,−j−1) = q f j,−j + f j+1,−j−1. Writing σ( f j,−j) =
∑k σjk fk,−k, the last relation gives

qσjk + σj+1,k =


q if j = k,
1 if j + 1 = k,
0 else.

which is equivalent to

σj+1,k =


q(1− σjk) if k = j,
1− qσjk if k = j + 1,
−qσjk else.

After choosing xk = 1− σkk, we see that the above inductive relation is
uniquely solved by σjk = 1j=k − (−q)j−kxk.

Having solved equation (2.10), the next equation of interest is equation
(2.11). Consider the following lemma

Lemma 2.2.10. For a finite-dimensional vector space V with basis ( f j)j∈I and a
map

σ : V ⊗V → V ⊗V

that satisfies σ( f j ⊗ fk) = f j ⊗ fk when k 6= −j, and

σ( f j ⊗ f−j) = ∑
k∈I

σjk fk ⊗ f−k,

the braid equation (2.11) is equivalent to the set of equations

σjjσ−j,−j(σ−j,−j − σjj) = ∑
m 6=j

σjmσmj − ∑
m 6=−j

σ−jmσm,−j ∀j ∈ I, (2.14)

σjkσ−j,−j(1− σjj) = ∑
m 6=j

σjmσmk j 6= k, (2.15)

σijσ−j,−j(1− σjj) = ∑
m 6=j

σimσmj i 6= j, (2.16)

σik − σijσjkσ−j,−j = ∑
m 6=j

σimσmk i 6= j, j 6= k. (2.17)

Proof. Introduce the shorthand notations fijk = fi ⊗ f j ⊗ fk and ̌ = −j.
The braid equation can be investigated on the basis elements fijk. The
following cases can be distinguised:
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1. i 6= ̌, j 6= ǩ,

2. i = ̌, j = ǩ,

3. i = ̌, j 6= ǩ or i 6= ̌, j = ǩ.

In the first case, we have

(1⊗ σ)(σ⊗ 1)(1⊗ σ)( fijk) = fijk = (σ⊗ 1)(1⊗ σ)(σ⊗ 1)( fijk).

For the second case, we can calculate

(1⊗ σ)(σ⊗ 1)(1⊗ σ)( f j ̌j)

=(1⊗ σ)(σ⊗ 1)

(
σ̌ ̌ f j ̌j + ∑

m∈I
1m 6= ̌σ̌m f jmm̌

)

=(1⊗ σ)

(
∑
k∈I

σ̌ ̌σjk fkǩj + ∑
m∈I

1m 6= ̌σ̌m f jmm̌

)

= ∑
k∈I

1k 6=jσ̌ ̌σjk fkǩj + σjjσ̌ ̌σ̌k f jkǩ +

(
∑

m∈I
1m 6= ̌σ̌mσmk

)
f jkǩ

and similarly

(σ⊗ 1)(1⊗ σ)(σ⊗ 1)( f j ̌j)

=(σ⊗ 1)(1⊗ σ)

(
σjj f j ̌j + ∑

m∈I
1m 6=jσjm fmm̌j

)

=(σ⊗ 1)

(
∑
k∈I

σjjσ̌k f jkǩ + ∑
m∈I

1m 6=jσjm fmm̌j

)

= ∑
k∈I

1k 6= ̌σjjσ̌k f jkǩ + σjjσ̌ ̌σjk fkǩj +

(
∑

m∈I
1m 6=jσjmσmk

)
fkǩj.

Equating the coefficient for f j ̌j gives

σjjσ̌ ̌σ̌ ̌ + ∑
m∈I

1m 6= ̌σ̌mσm ̌ = σjjσ̌ ̌σjj + ∑
m∈I

1m 6=jσjmσmj,

which is equivalent to equation (2.14). Equating the coefficients for fkǩj
gives (when k 6= j) that

σjkσ̌ ̌ = σjkσ̌ ̌σjj + ∑
m∈I

1m 6=jσjmσmk,
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which is equivalent to equation (2.15). Lastly, note that equating the coef-
ficients for f jkǩ gives exactly the same, but with ̌ instead of j.

For case 3, let i 6= j and note that (1⊗ σ)( fiı̌j) = fiı̌j so the braid equa-
tion (2.11) is (1⊗ σ)(σ⊗ 1)( fiı̌j) = (σ⊗ 1)(1⊗ σ)(σ⊗ 1)( fiı̌j). Now

(1⊗ σ)(σ⊗ 1)( fiı̌j) = (1⊗ σ)

(
σij f j ̌j + ∑

k∈I
1k 6=jσik fkǩj

)
= ∑

k∈I
σijσ̌k f jkǩ + 1k 6=jσik fkǩj

and

(σ⊗ 1)(1⊗ σ)(σ⊗ 1)( fiı̌j)

=(σ⊗ 1)

(
∑
k∈I

σijσ̌k f jkǩ + ∑
m∈I

1m 6=jσim fmm̌j

)

= ∑
k∈I

1k 6= ̌σijσ̌k f jkǩ +

(
σijσ̌ ̌σjk + ∑

m∈I
1m 6=jσimσmk

)
fkǩj.

We see that the coefficients for f jkǩ already agree for k 6= ̌. Equating the
coefficients for f j ̌j gives

σijσ̌ ̌ = σijσ̌ ̌σjj + ∑
m∈I

1m 6=jσimσmj

which is equivalent to equation (2.16), and equating the coefficient for fkǩj
gives for k 6= j that

σik = σijσ̌ ̌σjk + ∑
m∈I

1m 6=jσimσmk

which is equivalent to equation (2.17). We can show that the braid equa-
tion for f ̌iı̌ gives exactly the same equations, which completes the last
case.

Combining the results of Lemmas 2.2.9 and 2.2.10, we obtain the fol-
lowing result, which concludes the proof of Theorem 2.2.8:

Lemma 2.2.11. When σ is as in Lemma 2.2.9, the equations (2.14)-(2.17) are all
equivalent to

∀j, ∑
m

xm = 1 + xjx−j.
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Proof. Note that if m 6= i, j, we have that

σimσmj = (−q)i−jxmxj.

For (2.14) we find that

(1 + xjx−j − (xj + x−j))(xj − x−j) = (1− xj)(1− x−j)(xj − x−j)

= σjjσ−j,−j(σ−j,−j − σjj)

(2.14)
= ∑

m 6=j
σjmσmj − ∑

m 6=−j
σ−jmσm,−j

=

(
∑
m

xmxj − xjxj

)
−
(

∑
m

xmx−j − x−jx−j

)

= (xj − x−j)

(
∑
m

xm

)
− (x2

j − x2
−j)

= (xj − x−j)

(
∑
m

xm − (xj + x−j)

)
,

which is equivalent to xj − x−j = 0 or ∑m xm = 1 + xjx−j. For (2.17) with
i = k 6= j we obtain

1− xi + xi
(
xjx−j − xj

)
= (1− xi)− xjxi(1− x−j)

= σii − σijσjiσ−j,−j

(2.17)
= ∑

m 6=j
σimσmi

= σ2
ii + ∑

m 6=i
σimσmi − σijσji

= (1− xi)
2 + ∑

m 6=i
xmxi − xjxi

= 1− 2xi + x2
i + xi

(
∑
m

xm − xi − xj

)

= 1− xi + xi

(
∑
m

xm − 1− xj

)
,

which is equivalent to xi = 0 or ∑m xm = 1 + xjx−j
For (2.17) with i 6= k, as well as for (2.15) and (2.16), first note that for
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i 6= j we have

∑
m

σimσmj = σiiσij + σijσjj + ∑
m 6=i,j

σimσmj

= σij(σii + σjj) + ∑
m 6=i,j

(−q)i−jxmxj

= σij

(
(1− xi) + (1− xj)−

(
∑
m

xm − xi − xj

))

= σij

(
2−∑

m
xm

)
. (2.18)

Now (2.17) with i 6= k gives

σik(1 + xj − xjx−j) = −(−q)i−kxk(1 + xj(1− x−j))

= −(−q)i−kxk − (−q)i−kxjxkσ−j,−j

= σik − σijσjkσ−j,−j

(2.17)
= ∑

m 6=j
σimσmk

(2.18)
= σik

(
2−∑

m
xm

)
− σijσjk

= σik

(
2−∑

m
xm

)
− (−q)i−kxjxk

= σik

(
2−∑

m
xm + xj

)
,

which is equivalent to σik = 0 or ∑m xm = 1 + xjx−j. Lastly, from (2.18)
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one sees that (2.15) immediately becomes

σjk(xj − xjx−j) = σjkσ−j,−j(1− σjj)

(2.15)
= ∑

m 6=j
σjmσmk

(2.18)
= σjk

(
2−∑

m
xm

)
− σjjσjk

= σjk

(
2−∑

m
xm − (1− xj)

)

= σjk

(
xj + 1−∑

m
xm

)
,

which is equivalent to σjk = 0 or ∑m xm = 1 + xjx−j. Similarly (2.16) is
equivalent to

σij(xj − xjx−j) = σijσ−j,−j(1− σjj)

(2.16)
= ∑

m 6=j
σimσmj

(2.18)
= σij

(
2−∑

m
xm − σjj

)
,

which is equivalent to σij = 0 or ∑m xm = 1 + xjx−j.
We conclude that (2.14)-(2.17) are satisfied if and only if xk = 0 for all

k, or ∑m xm = 1 + xjx−j for all j. Because 2.2.9 requires xk to be nonzero, it
follows that ∑m xm = 1 + xjx−j must hold for all j.

We can now try to solve equation (2.13). The following statement says
that there are dn

2 e degrees of freedom in finding a solution:

Lemma 2.2.12. When xk is given for all k > 0, equation (2.13) has a solution
except when we are in the very specific case that n is odd, all xk are nonzero,
∑k>0

1
xk

= 1 and ∑k>0 xk 6= 1.

Note that instead of all k > 0, we could take any subset of the index set
that only contains at most one of {k,−k} for each k.

Proof. Let xk for k > 0 be arbitrary.
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1. If ∃j such that xj = 0, then xkx−k = xjx−j = 0 for all k. Furthermore,
(2.13) becomes ∑m xm = 1. The numbers xk, k ≤ 0 can now be chosen
such that these two requirements are satisfied: if n is odd, we require
x0 = 0 and for all k > 0 where xk 6= 0 we require x−k = 0. The
other x−k for k > 0 must be chosen such that ∑m xm = 1, e.g. x−j =
1−∑k>0 xk and x−k = 0 for k 6= j.

2. The next case is when ∀j, xj 6= 0, ∑k>0
1
xk

= 1 and n is even. Then

x−j =
x2

0
xj

and (2.13) becomes

1 + x2
0 = ∑

k>0
xk + x0 + ∑

k>0

x2
0

xk
= x0 + ∑

k>0
xk + x2

0.

Hence we require x0 = 1−∑k>0 xk and x−k =
x2

0
xk

.

3. The next case is when ∀j, xj 6= 0, ∑k>0
1
xk

= 1 and n is odd. If further-
more ∑k>0 xk = 1, then for an arbitrary λ we can set x−k = λ

xk
such

that (2.13) becomes

∑
k>0

xk + ∑
k>0

λ

xk
= 1 + λ,

which is clearly satisfied. If ∑k>0 xk 6= 1, the requirement that xkx−k =
xmx−m for all k, m gives a similar equation to the one above, which
cannot be satisfied in this case.

4. The next case is when ∀j, xj 6= 0, ∑k>0
1
xk
6= 1 and n is odd. In this

case, when we choose x−k =
−
(

1−∑m>0 xm
1−∑m>0

1
xm

)
xk

, equation (2.13) becomes

∑
k>0

xk + ∑
k<0

−
(

1−∑m>0 xm

1−∑m>0
1

xm

)
xk

= 1− 1−∑m>0 xm

1−∑m>0
1

xm

,

which is true.

5. The last case is when ∀j, xj 6= 0, ∑k>0
1
xk
6= 1 and n is even. Then we

must choose x−k =
x2

0
xk

and (2.13) becomes

1 + x2
0 = x2

0

(
∑
k>0

1
xk

)
+ x0 + ∑

k>0
xk,
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which is equivalent to

x2
0

(
∑
k>0

1
xk
− 1

)
+ x0 +

(
∑
k>0

xk − 1

)
= 0.

Solving this for x0 gives

x0 =
1

2
(

1−∑k>0
1
xk

) ±
√√√√√
 1

2
(

1−∑k>0
1
xk

)
2

−
(

1−∑m>0 xm

1−∑m>0
1

xm

)
.

This concludes the cases to be considered for Lemma 2.2.12.

We can now look at some specific examples:

1. We can choose xj = 0 for all j except one specific k 6= 0. Then (2.13)
gives xk = 1, and thus σ has the following form:

σ
(

f (
n
2 )

i ⊗ f (
n
2 )

j

)
=


f (

n
2 )

i ⊗ f (
n
2 )

j if − j 6= i,

f (
n
2 )

i ⊗ f (
n
2 )
−i − (−q)i−k f (

n
2 )

k ⊗ f (
n
2 )
−k if− j = i 6= k,

0 if − j = i = k.

In particular, σ satisfies σ ◦ σ = σ and has nontrivial kernel.

2. For odd n (so dimC(Cq[X ,Y ]n) is even), we can take

xk = sgn(k) =

{
1 k > 0,
−1 k < 0.

Then (2.13) states that 1 + 1(−1) = 0 = ∑m>0 xm + x−m, which is
clearly true. Now σ has the form (as in Lemma 2.2.10)

. . . . . . . . . . . . . . . . . . . . .

. . . σ5
2

5
2

σ3
2

5
2

σ1
2

5
2

σ− 1
2

5
2

σ− 3
2

5
2

σ− 5
2

5
2

. . .

. . . σ5
2

3
2

σ3
2

3
2

σ1
2

3
2

σ− 1
2

3
2

σ− 3
2

3
2

σ− 5
2

3
2

. . .

. . . σ5
2

1
2

σ3
2

1
2

σ1
2

1
2

σ− 1
2

1
2

σ− 3
2

1
2

σ− 5
2

1
2

. . .

. . . σ5
2 ,− 1

2
σ3

2 ,− 1
2

σ1
2 ,− 1

2
σ− 1

2 ,− 1
2

σ− 3
2 ,− 1

2
σ− 5

2 ,− 1
2

. . .

. . . σ5
2 ,− 3

2
σ3

2 ,− 3
2

σ1
2 ,− 3

2
σ− 1

2 ,− 3
2

σ− 3
2 ,− 3

2
σ− 5

2 ,− 3
2

. . .

. . . σ5
2 ,− 5

2
σ3

2 ,− 5
2

σ1
2 ,− 5

2
σ− 1

2 ,− 5
2

σ− 3
2 ,− 5

2
σ− 5

2 ,− 5
2

. . .

. . . . . . . . . . . . . . . . . . . . .



=



. . . . . . . . . . . . . . . . . . . . .

. . . 0 q−1 −q−2 q−3 −q−4 q−5 . . .

. . . q 0 q−1 −q−2 q−3 −q−4 . . .
··· −q2 q 0 q−1 −q−2 q−3 ···
··· −q3 q2 −q 2 −q−1 q−2 ···
. . . q4 −q3 q2 −q 2 −q−1 . . .
. . . −q5 q4 −q3 q2 −q 2

. . .
. . . . . . . . . . . . . . . . . . . . .


.
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3. We can request σ to be symmetric, i.e. σij = σji for all i 6= j. It follows
that xi = (−q)2(i−j)xj, which is uniquely solved by

xi = λ(−q)2i

for an arbitrary λ. Now (2.13) becomes λ
(
∑m(−q)2m) = 1 + λ2

which is solved by

λ =
∑m(−q)2m

2
±

√(
∑m(−q)2m

2

)2

− 1.

For n = 1 this means

λ = −q + q−1

2
±

√(
q + q−1

2

)2

− 1 = −q + q−1 ∓ (q− q−1)

2
= −q∓1,

in which case σ has the form(
σ1

2
1
2

σ− 1
2

1
2

σ1
2 ,− 1

2
σ− 1

2 ,− 1
2

)
=


(

1−q2 q
q 0

)
if λ = −q,(

0 q−1

q−1 1−q−2

)
if λ = −q−1,

where the σik are as in Lemma 2.2.10. For n ≥ 2 the formula for λ
cannot be simplified much further. The conclusion is that for every
n, there are exactly two symmetric solutions of (2.13).

2.2.3 The determinant and braids for reducible co-repre-
sentations

In this section, suppose that ρ : V → V⊗O(SUq(2)) is not irreducible. For
this case, we have the following result:

Lemma 2.2.13. Let ρ : V → V ⊗O(SUq(2)) be a reducible unitary co-repre-
sentation. Let V =

⊕
i(⊕

ni
j=1Vij) be a decomposition with maps pij : Vi → Vij as

in Lemma 2.2.4. For each i let σi : Vi ⊗ Vi → Vi ⊗ Vi satisfy (2.10), (2.11) and
σi ◦ σi = σi, and define σ : V → V via

σ|Vi1 j1
⊗Vi2 j2

=

{
(pi1 j1 ⊗ pi2 j2) ◦ σi ◦ (pi1 j1 ⊗ pi2 j2)

−1 if i1 = i2,
idVi1 j1

⊗Vi2 j2
if i1 6= i2.

This map satisfies the equations (2.10), (2.11) and σ ◦ σ = σ.
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Proof. To check (2.10), we start with equation (2.7). From this equation it
follows that for i1 6= i2 we have

Inv(σ|Vi1 j1
⊗Vi2 j2

) = Vi1 j1 ⊗Vi2 j2

= (pi1 j1 ⊗ pi2 j2)
(
{0}⊥

)
= (pi1 j1 ⊗ pi2 j2)

(
(CoInv(ϕi1 ⊗ ϕi2))

⊥
)

,

whereas if i1 = i2, then because σi satisfies (2.10) we directly obtain

Inv(σ|Vi1 j1
⊗Vi2 j2

) = Inv
(
(pi1 j1 ⊗ pi2 j2) ◦ σi ◦ (pi1 j1 ⊗ pi2 j2)

−1
)

= (pi1 j1 ⊗ pi2 j2)
(

Inv(σi)
)

= (pi1 j1 ⊗ pi2 j2)
(
(CoInv(ϕi1 ⊗ ϕi2))

⊥
)

.

Hence

Inv(σ) =
⊕

i1,j1,i2,j2

(
(pi1 j1 ⊗ pi2 j2)

(
(CoInv(ϕi1 ⊗ ϕi2))

⊥
))

.

Because the maps pi1 j1 are orthogonal, it quickly follows that ρ and σ sat-
isfy (2.10).

To check (2.11), consider it restricted to the subspace Vi1 j1 ⊗Vi2 j2 ⊗Vi3 j3
for arbitrary i1, j1, i2, j2, i3, j3 and introduce the notation σ12 = σ|Vi1 j1

⊗Vi2 j2
,

σ23 = σ|Vi2 j2⊗Vi3 j3
and pk = pik jk for k = 1, 2, 3. Then (2.11) reads

(σ12 ⊗ 1)(1⊗ σ23)(σ12 ⊗ 1) = (1⊗ σ23)(σ12 ⊗ 1)(1⊗ σ23).

Note that

σ12 ⊗ 1 =

{
1⊗ 1⊗ 1 if i1 6= i2,
(p1 ⊗ p2 ⊗ p3)(σ

i ⊗ 1)(p−1
1 ⊗ p−1

2 ⊗ p−1
3 ) if i1 = i2 = i,

1⊗ σ23 =

{
1⊗ 1⊗ 1 if i2 6= i3,
(p1 ⊗ p2 ⊗ p3)(1⊗ σi)(p−1

1 ⊗ p−1
2 ⊗ p−1

3 ) if i2 = i3 = i.

We can distinguish the following cases:

1. i1 6= i2 6= i3,

2. i1 = i2 = i3,
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3. i1 = i2 6= i3 or i1 6= i2 = i3.

In the first case, (2.11) reads (1⊗ 1⊗ 1)3 = (1⊗ 1⊗ 1)3 which is clearly
true. In the second case, (2.11) reads

(p1 ⊗ p2 ⊗ p3)(σ
i ⊗ 1)(1⊗ σi)(σi ⊗ 1)(p−1

1 ⊗ p−1
2 ⊗ p−1

3 ) =

(p1 ⊗ p2 ⊗ p3)(1⊗ σi)(σi ⊗ 1)(σi ⊗ 1)(p−1
1 ⊗ p−1

2 ⊗ p−1
3 ),

which is true because σi satisfies (2.11). In the last case, say i1 = i2 6= i3, we
have 1⊗ σ23 = 1⊗ 1⊗ 1 so (2.11) reduces to (σ12⊗ 1)(σ12⊗ 1) = (σ12⊗ 1)
which is true because σi ◦ σi = σi. Finally, σ ◦ σ = σ holds per construction
on every space Vi1 j1 ⊗Vi2 j2 , and therefore also on V ⊗V.

Note that in the previous proof, σi ◦ σi = σi is only required when
ρ � ⊕j ϕi, i.e. when the decomposition of ρ contains non-equivalent co-
representations.

The previous result allows us to prove Theorem 2.2.7

Proof of Theorem 2.2.7. Combining Theorem 2.2.8 and Lemma 2.2.13, we
only have to show whether equation (2.13) has solutions such that σ ◦ σ =
σ, i.e. ∑m σimσmj = σij for all i, j. Consider the following cases:

• (i 6= j) Equation (2.18) states that

σij = σij

(
2−∑

m
xm

)
,

so σij = ∑m σimσmj if and only if σij = 0 (equivalently, xj = 0) or
∑m xm = 1.

• (i = j) We can derive

∑
m

σimσmi = σ2
ii + ∑

m 6=i
xmxi = 1− 2xi + x2

i + xi

(
∑
m

xm − xi

)

= 1− xi + xi

(
∑
m

xm − 1

)
,

so σii = ∑m σimσmi if and only if xi(∑m xm − 1) = 0, i.e. if and only if
∑m xm = 1 or xi = 0.

Hence, because not all xi should be zero, these are equivalent to ∑m xm =
1. Solutions of (2.13) where also ∑m xm = 1 do exist for all n. The first
example given above Lemma 2.2.13 is one possibility.
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2.3 The subproduct systems

This section describes the construction of an O(SUq(2))-co-equivariant
subproduct system Em from a unitary finite-dimensional co-representation

ρ : V → V ⊗O(SUq(2)).

Definition 2.3.1. An O(SUq(2))-co-equivariant (algebraic) subproduct sys-
tem {Em}m≥0 is an (algebraic) subproduct system with for each n > 0 a co-action

ρn : Em → Em ⊗O(SUq(2))

such that the following diagram commutes:

Ek+m

Ek ⊗ Em Ek ⊗ Em ⊗O(SUq(2))

Ek+m ⊗O(SUq(2))
ρk+m

ιk,m

ρk⊗ρm

ιk,m⊗idO(SUq(2))

(2.19)

The construction of the subproduct system related to the co-represen-
tation ρ starts by making subspaces Km ⊆ V⊗m for m ≥ 2.

Definition 2.3.2. For any m ≥ 2 and 1 ≤ i < m, we define the maps
Nm(i) : V⊗m → V⊗m ⊗O(SUq(2)) via

Nm(i) = 1⊗(i−1) ⊗ (ρ⊗ ρ)⊗ 1⊗(m−1−i),

where 1 : V → V ⊗ O(SUq(2)) is the co-representation v 7→ v ⊗ 1 and the
tensor products are as in Notation 1.2.8.

We define the spaces Km as Km = ∑m−1
i=1 CoInv(Nm(i)). For convenience, we

also define Km(i) := CoInv(Nm(i)).

Note that det(ρ) = CoInv(N2(1)) = K2(1) = K2.

Lemma 2.3.3. For all m > 2, we have

Km(i) = V⊗(i−1) ⊗ det(ρ)⊗V⊗(m−1−i),

and thus

Km =
m−1

∑
i=1

V⊗(i−1) ⊗ det(ρ)⊗V⊗(m−1−i).
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Proof. This follows from the following observation:
Claim: For finite-dimensional vector spaces W, W ′, W ′′ and a co-representa-

tion ρW : W →W ⊗A we have

CoInv(1W ′ ⊗ ρW) = W ′ ⊗CoInv(ρW)

and
CoInv(ρW ⊗ 1W ′′) = CoInv(ρW)⊗W ′′

When this claim is true, the lemma directly follows by looking at Def-
inition 2.3.2: First apply the first part of the claim with ρW = ρ ⊗ ρ and
W ′ = V⊗(i−1), then apply the second part with ρW = 1⊗(i−1) ⊗ ρ⊗ ρ and
W ′′ = V⊗(m−1−i).

Proof of Claim: Let ∑i w′i ⊗ wi ∈ W ′ ⊗W be arbitrary. Assume w.l.o.g.
that all w′i are linearly independent, and write ρW(wi) = ∑j wij⊗ aij. Using
Notation 1.2.8, we obtain

(1W ′ ⊗ ρW)

(
∑

i
w′i ⊗ wi

)
= E

(
∑

i
1W ′(w′i)⊗ ρW(wi)

)

= ∑
i

E

(
w′i ⊗ 1⊗

(
∑

j
wij ⊗ aij

))
= ∑

i
∑

j
w′i ⊗ wij ⊗ (1 · aij)

= ∑
i

w′i ⊗
(

∑
j

wij ⊗ aij

)
= ∑

i
w′i ⊗ ρW(wi)

and thus

∑
i

w′i ⊗ wi ∈ CoInv(1W ′ ⊗ ρW) ⇔

(1W ′ ⊗ ρW)

(
∑

i
w′i ⊗ wi

)
= ∑

i
w′i ⊗ ρW(wi) =

(
∑

i
w′i ⊗ wi

)
⊗ 1 ⇔

∀i, ρW(wi) = wi ⊗ 1 ⇔

∑
i

w′i ⊗ wi ∈ V ⊗CoInv(ρW),

where for the second equivalence we used linear independence of the w′i.
This proves half of the claim. The other half is proven analogously.
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For a unitary co-representation ρ, we can now define the system of
subspaces Em ⊆ V⊗n.

Definition 2.3.4. The subproduct system induced by ρ, (Em)m≥0 is given by
E0 = C, E1 = V and for m ≥ 2 define

Em = (Km)
⊥ = {ν ∈ V⊗n : ∀v ∈ Km, 〈ν, v〉Em = 0}.

The following follows immediately from lemma 2.3.3

Lemma 2.3.5. For k < m we have Em ( Ek ⊗ Em−k, and for k1 6= k2 we have
Em =

(
Ek1 ⊗ Em−k1

)
∩
(
Ek2 ⊗ Em−k2

)
. In particular, Em = ∩kEk ⊗ Em−k.

Proof. First, note that ((Kk)
⊥⊗ (Km−k)

⊥)⊥ = Kk⊗V⊗(m−k)+V⊗k⊗Km−k,
so lemma 2.3.3 gives

(Ek ⊗ Em−k)
⊥ = ((Kk)

⊥ ⊗ (Km)
⊥)⊥

= Kk ⊗V⊗(m−k) + V⊗k ⊗ Km−k

= ∑
i 6=k

V⊗(i−1) ⊗ det(ρ)⊗V⊗(m−1−i).

From

Km =
m−1

∑
i=1

V⊗(i−1) ⊗ det(ρ)⊗V⊗(m−1−i)

it is immediate that
(Ek ⊗ Em−k)

⊥ ( Km, (2.20)

and
(Ek1 ⊗ Em−k1)

⊥ + (Ek2 ⊗ Em−k2)
⊥ = Km. (2.21)

Both results follow from (2.20) and (2.21) by taking perpendiculars again.

Corollary 2.3.6. The system (Em)m≥0, together with the maps

ιk,m : Ek+m → Ek ⊗ Em

that are induced by the canonical maps ι̃k,m : V⊗(k+m) → V⊗k ⊗V⊗m, forms an
algebraic subproduct system.

Proof. By lemma 2.3.5, the maps ιk,m are well-defined. The conditions i-iii
of definition 2.1.1 are clearly true for (V⊗n) and ι̃k,m, and therefore also
true for Em and ιk,m.
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Corollary 2.3.7. The subproduct system (Em)m≥0 from Corollary 2.3.6 together
with the maps

ρm = ρ⊗m|Em : Em → Em ⊗O(SUq(2))

is O(SUq(2))-co-equivariant.
Here ρ⊗m : V⊗m → V⊗m ⊗O(SUq(2)) is as in Notation 1.2.8.

Proof. First, we have to prove that ρm : Em → Em ⊗ O(SUq(2)) is well-
defined, i.e. that Em is co-invariant under ρ⊗m. We start by proving co-in-
variance of Km under ρ⊗m. Co-invariance of Km can be proven by noting
that if δ ∈ det(ρ) and

v = eµ1 ⊗ · · · ⊗ eµm−2 ⊗ δ ∈ Km(m− 1),

then ρ(eµk) = ∑νk
eνk ⊗ tνkµk and ρ(δ) = δ⊗ 1 so

ρ⊗m(v) = ∑
ν1...νm−2

eν1 ⊗ · · · ⊗ eνm−2 ⊗ δ⊗
(

m−2

∏
k=1

tνkµk

)
∈ Km(m− 1)⊗O(SUq(2)).

so Km(m− 1) is co-invariant under ρ⊗m. In a similar manner, we can show
that Km(i) is co-invariant for all other i, and thus Km = ∑i Km(i) is also
co-invariant under ρ⊗m. Now Corollary 1.2.7 gives that Em = (Km)⊥ is
co-invariant under ρ⊗m as well, i.e. ρm is well-defined.

Diagram (2.19) states that

ιk,m(ρ
⊗(k+m)|Ek+m(v)) = (ρ⊗k|Ek ⊗ ρ⊗m|Em)(ιk,m(v)).

for all v ∈ Ek+m. In V⊗(k+m) ⊇ Ek+m we have ιk,m(v) = v and ρ⊗(k+m) =

ρ⊗k ⊗ ρ⊗m, so diagram (2.19) clearly commutes.
Hence, both conditions of Definition 2.3.1 are satisfied.

We conclude this section by calculating the dimensions of the vector
spaces Em for irreducible ρ : V → V ⊗ O(SUq(2)), analogously to
[1, Lemma 3.3]. Before we start the proof, we have a small lemma

Lemma 2.3.8. For α ∈ R with |α| > 0, the recurrence relation for (ak)
∞
k=0 with

ak ∈ R given by
ak+2 = αak+1 − ak, (2.22)

is solved by
ak =

a0

t− t−1 (t
k+1 − t−(k+1)), (2.23)

where t satisfies t + t−1 = α.
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Proof. This result can be found near [3, Lemma 1.6]. It is easily checked:
Assuming (2.23), we have

αak+1 − ak =
a0

t− t−1

(
αtk+2 − αt−(k+2) − tk+1 + t−(k+1)

)
=

a0

t− t−1

(
tk+2(α− t−1)− t−(k+2)(α− t)

)
=

a0

t− t−1

(
tk+2(t)− t−(k+2)(t−1)

)
= ak+2.

In [1] the dimensions of Em are calculated by introducing the maps Gm.

Definition 2.3.9. For the irreducible co-representation ϕn : V → V⊗O(SUq(2))
from Theorem 1.3.3, and m ≥ 1 define the maps Gm : V⊗(m−1) → Km+1 by

Gm

(
m−1⊗
i=1

vi

)
=

m−1

∑
k=0

λk

(
k⊗

i=1

vi

)
⊗ δ⊗

(
m−1⊗

i=k+1

vi

)
, (2.24)

where δ ∈ det(ϕn) is as in (2.8), λ = (−1)n

[n+1]q
= δsδ−s ∀s and the λk ∈ R satisfy

the recurrence relation
λk = −

λk−1

λ
− λk−2, (2.25)

with λ−1 = 0 and λ0 6= 0 arbitrary.
Let Gm : Em−1 → Km+1 be the restriction of Gm to Em−1.

Note that the recurrence relation (2.25) is of the form (2.22).

Remark 2.3.10. Note that Gm satisfies the recursive relation

G1(1) = λ0δ

Gm = Gm−1 ⊗ idV + λm−1(idV⊗(m−1) ⊗ G1). (2.26)

Because Em ⊆ Em−1 ⊗V per Lemma 2.3.5, Gm also satisfies this relation.

Remark 2.3.11. We can show that the maps Gm and Gm satisfy

Em−1 ⊗O(SUq(2))

Km+1 ⊗O(SUq(2))Km+1

Em−1
ϕ
⊗(m−1)
n

Gm⊗idGm
ϕ
⊗(m+1)
n

Version of July 12, 2022– Created July 12, 2022 - 15:52

50



2.3 The subproduct systems 51

because both Gm

(
ϕ
⊗(m−1)
n

(⊗m−1
i=1 f (

n
2 )

µi

))
and ϕ

⊗(m+1)
n

(
Gm

(⊗m−1
i=1 f (

n
2 )

µi

))
are equal to

m−1

∑
k=0

n
2

∑
ν1,k ...νm−1,k=− n

2

λk

(
k⊗

i=1

f (
n
2 )

νi,k

)
⊗ δ⊗

(
m−1⊗

i=k+1

f (
n
2 )

νi,k

)
⊗
(

m−1

∏
i=1

tνi,kµi

)
.

Lemma 2.3.12. For all v ∈ Em−1 ⊗V, w ∈ Em we have

〈(Gm ⊗ idV)(v), Gm+1(w)〉 = 0.

Proof. First, note that by (2.26) we have that〈
(Gm ⊗ idV)(v), Gm+1(w)

〉
=
〈
(Gm ⊗ idV)(v), (Gm ⊗ idV)(w)

〉
+ λm

〈
(Gm ⊗ idV)(v), w⊗ δ

〉
. (2.27)

We will investigate both terms separately. Write v = ∑i vi ⊗ f (
n
2 )

i and note
that (2.26) gives

〈
(Gm ⊗ idV)(v), w⊗ δ

〉
=

〈
∑

i
Gm(vi)⊗ f (

n
2 )

i , w⊗ δ

〉
=∑

i

〈
(Gm−1 ⊗ idV)(vi)⊗ f (

n
2 )

i , w⊗ δ
〉

+ ∑
i

λm−1

〈
vi ⊗ δ⊗ f (

n
2 )

i , w⊗ δ
〉

.

Note that the image of Gm−1 is Km and w ∈ Em = K⊥m , so〈
(Gm−1 ⊗ idV)(vi)⊗ f (

n
2 )

i , w⊗ δ
〉
= 0.

Furthermore, from δ = ∑j δj f (
n
2 )

j ⊗ f (
n
2 )
−j and δjδ−j = λ we obtain

∑
i
〈vi ⊗ δ⊗ f (

n
2 )

i , w⊗ δ〉 = ∑
ijk

δjδk

〈
vi ⊗ f (

n
2 )

j ⊗ f (
n
2 )
−j ⊗ f (

n
2 )

i , w⊗ f (
n
2 )

k ⊗ f (
n
2 )
−k

〉
= ∑

ijk
δjδk

〈
vi ⊗ f (

n
2 )

j , w
〉 〈

f (
n
2 )
−j , f (

n
2 )

k

〉 〈
f (

n
2 )

i , f (
n
2 )
−k

〉
= ∑

i
δiδ−i

〈
vi ⊗ f (

n
2 )

i , w
〉

= λ〈v, w〉.
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In conclusion, we have〈
(Gm ⊗ idV)(v), w⊗ δ

〉
= λλm−1〈v, w〉. (2.28)

Next, consider 〈Gm(v), Gm(w)〉 for v, w ∈ Em−1. Again using (2.26), we
obtain

〈Gm(v), Gm(w)〉 =〈(Gm−1 ⊗ idV)(v), (Gm−1 ⊗ idV)(w)〉
+ λ2

m−1〈v⊗ δ, w⊗ δ〉
+ λm−1〈(Gm−1 ⊗ idV)(v), w⊗ δ〉
+ λm−1〈v⊗ δ, (Gm−1 ⊗ idV)(w)〉.

Because 〈δ, δ〉 = 1 per (2.9) and using (2.28), this is equal to

〈(Gm−1 ⊗ idV)(v), (Gm−1 ⊗ idV)(w)〉+ (λ2
m−1 + 2λm−1λλm−2)〈v, w〉.

By induction and because 〈G1(1), G1(1)〉 = λ2
0 and λ−1 = 0 we obtain

〈Gm(v), Gm(w)〉 =
(

m−1

∑
k=0

λ2
k + 2λλkλk−1

)
〈v, w〉.

Per (2.25) and by rearranging the sum, we have(
m−1

∑
k=0

λ2
k + 2λλkλk−1

)
=

(
m−1

∑
k=0

λλk+1λk + λ2
k + λλkλk−1

)
− λλmλm−1

= −λλmλm−1.

In conclusion, we find

〈Gm(v), Gm(w)〉 = −λλmλm−1〈v, w〉. (2.29)

Combining (2.27) with (2.28), (2.29) and (2.25), we find that

〈(Gm ⊗ idV)(v), Gm+1(w)〉 = −λλmλm−1〈v, w〉+ λλmλm−1〈v, w〉
= 0

Corollary 2.3.13. The vector space dimensions dimC(Em) satisfy the recurrence
relation

dimC(E0) = 1,
dimC(E1) = dimC(V),

dimC(Em+1) = dimC(V)dimC(Em)− dimC(Em−1)

which can be solved with Lemma 2.3.8.
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Proof. It is clear that dimC(E0) = 1 and dimC(E1) = dimC(V). We will
show that

(Km ⊗V)⊕ Gm(Em−1) = Km+1.

Note that Gm(Em+1) ⊆ Km+1 and Km ⊗ V ⊆ Km+1 so what remains is
(Km ⊗ V) + Gm(Em−1) ⊇ Km+1 and (Km ⊗ V) ∩ Gm(Em−1) = {0}. Now
for v ∈ Km+1, Lemma 2.3.3 gives that

v =
m

∑
i=1

(
i−1⊗
k=1

vi
k

)
⊗ δ⊗

(
m−1⊗
k=i

vi
k

)

=

(
m−1⊗
k=1

vm
k

)
⊗ δ +

m−1

∑
i=1

(
i−1⊗
k=1

vi
k

)
⊗ δ⊗

(
m−1⊗
k=i

vi
k

)
=: v⊗ δ + vKm .

Note that we can write v = vK + vE with vK ∈ Km−1 and vE ∈ Em−1.
However, vK ⊗ δ ∈ Km ⊗ V, so we can put vK ⊗ δ inside vKm and assume
w.l.o.g. that v ∈ Em−1. We find that

v− Gm

(
1

λm−1
v
)
=v⊗ δ + vKm − v⊗ δ

−
m−2

∑
i=0

λi

λm−1

(
i⊗

k=0

vm
k+1

)
⊗ δ⊗

(
m−1⊗

k=i+1

vm
k+1

)
∈Km ⊗V.

Therefore we have proven that

Km+1 ⊆ Km ⊗V + Gm(Em−1). (2.30)

To prove that (Km ⊗ V) ∩ Gm(Em−1) = {0}, we show that for arbitrary
v ∈ Km ⊗ V and w ∈ Em−1 we have 〈v, Gm(w)〉 = 0 such that v = Gm(w)
if and only if v = Gm(w) = 0. Using (2.30) for m− 1 we find that

v = vKm−1 + (Gm−1 ⊗ idV)(vE),

where vKm−1 ∈ Km−1 ⊗V⊗2 and vE ∈ Em−1 ⊗V. Now

〈v, Gm(w)〉 = 〈vKm−1 , Gm(w)〉+ 〈(Gm−1 ⊗ idV)(vE), Gm(w)〉.

By Lemma 2.3.12, the second term is 0. Using induction starting with
K1 ⊗ V = {0} and 〈v, G1(w)〉 = 0 for all v ∈ K1 ⊗ V and w ∈ E0, the
first term is also 0. Therefore,

(Km ⊗V) ∩ Gm(Em−1) = {0}.
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To show injectivity of Gm, note that (2.29) states that Gm(v) = 0 ⇔
〈Gm(v), Gm(v)〉 = −λλmλm−1〈v, v〉 = 0. And λλmλm−1 is nonzero be-
cause of Lemma 2.3.8 (the conditions are easily checked), so indeed Gm is
injective. Hence it follows that dimC(Gm(Em−1)) = dimC(Em−1) and thus

dim(Em+1) = dim(V⊗m+1)− dim(Km+1)

= dim(V)m+1 − (dim(Km)dim(V) + dim(Em−1))

= dim(V)m+1 − (dim(V⊗m)− dim(Em))dim(V)− dim(Em−1)

= dim(V)dim(Em)− dim(Em−1).

Note that [3, Lemma 1.6] states that the result in Corollary 2.3.13 holds
when det(ρ) is Temperley-Lieb. We have shown this in Lemma 2.2.6, so
our results do agree with [3, Lemma 1.6] and generalise [1, Lemma 3.3].

2.4 The quadratic algebras

In this chapter we do not look at each Em separately, but consider the space
A(ρ) :=

⊕∞
m=0 Em instead. We can turn A(ρ) into an algebra by identify-

ing Em ∼= V⊗m/Km such that

A(ρ) ∼=
(

∞⊕
m=0

V⊗m

)/(
∞⊕

m=2
Km

)
is a quotient of the tensor algebra of V. This is a quadratic algebra in the
sense of [6, Section 4.1]:

Definition 2.4.1. A quadratic algebra A is an N-graded associative algebra
with the properties:

• A0 = C,

• A is generated (as an algebra) by A1, so A ∼= (
⊕∞

n=0 A⊗n
1 )/R(A) for some

two-sided ideal of relations R(A),

• The ideal of relations R(A) is generated by elements from A1 ⊗ A1.

This algebra can also be obtained by applying the non-commutative
nullstellensatz, Theorem 2.1.4, to our subproduct system. Then we find
that

IEm = Span{X(v) : ∃m such that v ∈ Km} =
∞⊕

m=2
X(Km).

Version of July 12, 2022– Created July 12, 2022 - 15:52

54



2.4 The quadratic algebras 55

From Lemma 2.3.3 it thus follows that IEm ⊆ C〈X0, . . . , Xn〉 is the two-
sided ideal generated by X(det(ρ)), and the algebra A(ρ) can then be ob-
tained as A(ρ) ∼= C〈X0, . . . , Xn〉/IEm . Explicitly, A(ρ) can be described by
the following definition:

Definition 2.4.2. The algebra A(ρ) =
⊕∞

m=0 Em together with the algebra
structure described above is an (infinite-dimensional) algebra generated by el-

ements
(

f (
n
2 )

i

) n
2

i=− n
2

with multiplication a, b 7→ a ⊗ b and unit η : C
∼→ E0

subject to the relation

0 =

n
2

∑
i=− n

2

qi f (
n
2 )

i ⊗ f (
n
2 )
−i .

Note that for n = 1, we re-obtain the algebra Cq[X ,Y ] from Definition
1.3.1, together with the co-action ϕ : Cq[X ,Y ] → Cq[X ,Y ] ⊗ O(SUq(2))
from Theorem 1.3.3. Because Cq[X ,Y ] is known as the “Quantum Plane”,
for other n the space A(ρ) with the map

∞⊕
m=0

ρm : A(ρ)→ A(ρ)⊗O(SUq(2))

can be thought of as a more general notion of “Quantum Plane”. In [6,
Chapter 4.1] it is argued that any quadratic algebra can play the role of a
Quantum Plane. We now describe the construction of the algebras A(ρ)!,
A(ρ)(d) and A(ρ)!(d) from the algebra A(ρ).

Definition 2.4.3. For a quadratic algebra A = (
⊕∞

n=0 A⊗n
1 )/R(A), the dual

algebra A! is given by

A! =

(
∞⊕

n=0
(A∗1)

⊗n

)
/(R(A)⊥)

where A∗1 is the dual of A1 and R(A)⊥ is the ideal generated by those elements
r ∈ A∗1 ⊗ A∗1 such that r(a) = 0 for all a ∈ R(A) ∩ A1 ⊗ A1.

Lemma 2.4.4. For the algebra A(ρ) from Definition 2.4.2, the dual A(ρ)! is

generated by elements
(

f (
n
2 )

i

) n
2

i=− n
2

subject to the relations

f (
n
2 )

i ⊗ f (
n
2 )

j = 0 if i 6= −j,

q f (
n
2 )

i ⊗ f (
n
2 )
−i + f (

n
2 )

i+1 ⊗ f (
n
2 )

−(i+1) = 0 for i ∈
{
−n

2
, . . . ,

n
2
− 1
}

.
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Alternatively, we have A(ρ) = 1C⊕V ⊕ τC with the relations

0 = f (
n
2 )

i ⊗ f (
n
2 )

j if i 6= −j,

(−q)−iτ = f (
n
2 )

i ⊗ f (
n
2 )
−i for all i,

0 = f (
n
2 )

i ⊗ τ = τ ⊗ f (
n
2 )

i = τ ⊗ τ for all i.

For n = 1, this algebra coincides with the one in [6, Section 2.2].

Proof. Clearly, E1 = E∗1 because E1 is an inner product space. Now we just
have to calculate det(ϕn)⊥ ⊆ V ⊗ V, which has already been used in the
proof of Lemma 2.2.9. First, note that

dimC

(
det(ϕn)

⊥
)
= dimC(V⊗2)− dimC(det(ϕn)) = (n + 1)2 − 1 = n(n + 2).

Furthermore, there are n(n + 1) vectors of the form f (
n
2 )

i ⊗ f (
n
2 )

j (i 6= j)

and f (
n
2 )

i ⊗ f (
n
2 )

j ⊥ det(ϕn), because these vectors do not appear as terms

in (2.1). There are n vectors of the form q f (
n
2 )

i ⊗ f (
n
2 )
−i + f (

n
2 )

i+1 ⊗ f (
n
2 )

−(i+1) with
−n

2 ≤ i < n
2 . Using (2.8) we can calculate that〈

q f (
n
2 )

i ⊗ f (
n
2 )
−i + f (

n
2 )

i+1 ⊗ f (
n
2 )

−(i+1), δ
〉
= qδi + δi+1

=
(−1)

n
2√

[n + 1]q

(
q(−1)−iqi + (−1)−(i+1)qi+1

)

=
(−1)

n
2−i√

[n + 1]q

(
qi+1 − qi+1

)
= 0.

We have thus found n(n + 1) + n = n(n + 2) linearly independent vectors
in V ⊗ V that belong to the n(n + 2)-dimensional subspace
det(ϕn)⊥ ⊆ V ⊗V, so these vectors must span det(ϕn)⊥.

When we introduce

τ := (−q)
n
2 f (

n
2 )

n
2
⊗ f (

n
2 )

− n
2

,

the relation q f (
n
2 )

i ⊗ f (
n
2 )
−i + f (

n
2 )

i+1 ⊗ f (
n
2 )

−(i+1) = 0 gives

fi ⊗ f−i = (−q)−1 fi+1 ⊗ f−(i+1) = (−q)−iτ
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by induction. Thus, for any i we can choose j 6= −i for which it follows
that

f (
n
2 )

i ⊗ τ = (−q)−j
(

f (
n
2 )

i ⊗ f (
n
2 )

j

)
⊗ f (

n
2 )
−j = 0.

Similarly τ ⊗ f (
n
2 )

i = 0 and τ ⊗ τ = 0

Definition 2.4.5. For a quadratic algebra A = (
⊕∞

n=0 A⊗n
1 )/R(A), the d-th

Quantum symmetric power A(d) is given by

A(d) =
∞⊕

n=0
Adn

and the d-th quantum exterior power A!(d) is given by A!(d) = (A!)(d)

Remark 2.4.6. Per [6, Section 4.10], A(d) is again a quadratic algebra. Note
that (A!)(d) is in general not the same as (A(d))!. In most cases, (A!)(d) is more
relevant than (A(d))!.

Lemma 2.4.7. For the algebra A(ρ) from Definition 2.4.2, the d-th quantum
symmetric power A(ρ)(d) is an algebra generated by elements ( fi1...id)

n
2
i1,...id=− n

2
subject to the relations

0 =

n
2

∑
ik=− n

2

qi fi1...id ⊗ f j1...(−ik)...jd for all k, i1 . . . ı̂k . . . id, j1 . . . ̂k . . . jd.

Here (−ik) appears where jk would have been, and ı̂k resp. ̂k means that ik resp.
jk is omitted.

Proof. This quickly follows from Lemma 2.3.3 when we define

fi1...id :=
d⊗

k=1

f (
n
2 )

ik
= f (

n
2 )

i1
⊗ · · · ⊗ f (

n
2 )

id
.

Lemma 2.4.8. For the algebra A(ρ) from Definition 2.4.2, the d-th quantum
exterior power A(ρ)!(d) is equal to τC for d = 2 and {0} for d > 2.

Proof. This quickly follows from the last part in Lemma 2.4.4.
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We can also calculate the “Hilbert series” for the graded algebra A(ρ).
By Corollary 2.3.13 and Lemma 2.3.8, we have that dimC(Ek) =

tk+1−t−(k+1)

t−t−1

where t + t−1 = n + 1. We can now calculate the series, which converges
for |x| < min{|t|, |t−1|}:

HSEm(x) =
∞

∑
k=0

dimC(Ek)xk

=
1

t− t−1

∞

∑
k=0

(tk+1 − t−(k+1))xk

=

(
1

t− t−1

)(
1

t−1 − x
− 1

t− x

)
=

1
(t− x)(t−1 − x)
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Conclusion & further research

In this thesis we have studied the Hopf algebra O(SUq(2)). We have seen
in section 2.3 how we can construct a subproduct system Em
from a co-representation of O(SUq(2)), with a natural co-action
ρ : Em → Em ⊗O(SUq(2)). We investigated the structure of this subprod-
uct system in two ways: At the end of section 2.3 we constructed (for irre-
ducible co-representations) a decomposition

Km+1 = (Km ⊗V)⊕ Gm(Em−1)

which allowed us to calculate the dimension of Em, and in section 2.2 we
investigated the subspace det(ρ) ⊆ V⊗V, which plays a central role in the
construction of the subproduct system Em. In particular, we have shown
how det(ρ) can be constructed as the orthogonal complement of the invari-
ant elements of a braiding σ. Finally, in section 2.4 we showed analogues
of the quantum plane Cq[X ,Y ] that could be constructed from Em, for ir-
reducible co-representations. These generalised quantum planes do admit
a natural co-action of O(SUq(2)).

However, there is an inconsistency somewhere between the proof of
Lemma 1.4.1 and the proof of Lemma 2.2.3, as noted in the footnotes of
these proofs. These lemmas are main building blocks of this thesis. There-
fore, either trying to prove these lemmas in a different way, or finding
the inconsistency is one main problem that has been left open for fur-
ther research. Some other minor problems for further research are how
to generalise the decomposition Km+1 = (Km ⊗ V) ⊕ Gm(Em−1) of sec-
tion 2.3 and the quantum plane analogues of section 2.4 for reducible co-
representations. Other problems to consider are generalising other parts
of [1] to the O(SUq(2))-setting, or generalising the results of this thesis to
other Hopf algebras.
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