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Introduction

A queueing model with service control can be explained as a standard queueing model, where there
are two different options for service of which only one can operate at any time. An example is a
computer system which can only perform one task at the same time. However, two different types
of service are possible for each task, where type 2 provides faster service though uses more energy
and therefore is more expensive than type 1 service. Lippman (1975) and Koole (1998) have shown
that using the Value Iteration Algorithm can be successful in finding an optimal strategy for such
a queueing model. The Value Iteration Algorithm computes the optimal value in each state by

recursively improving the value of the previous state. From this value an optimal strategy can be
deduced.

The Value Iteration Algorithms needs an initial value function from which the algorithm recursively
computes the value in each subsequent time step. In this thesis we will explore which properties
we want an initial value function to hold, such that we can find an optimal strategy for using the
different types of service.

In the first section of this thesis the model used for this research will be described. Then, we
will look at which structural properties are necessary to obtain our desired results and how these
properties influence the choice of initial value functions for the Value Iteration Algorithm. Next,
the model will be extended with the application of discounting. For the discounting case we will
look into how this affects the choice of initial value functions. Finally, we will look at numerical
evidence for determining the results of finding an optimal strategy.

Some notations used in this thesis: 7 = max{0,z}, No = N U {0}.



1 Description of the model

In this thesis we will look at an M/M/1 queueing model with service control. This is a single
server model, where the arrivals are all determined by a Poisson process and the service times are
exponentially distributed independent of the arrival process. Let the state space X be the number
of customers in the system (customers in the queue and customer receiving service) i.e. X = Np.
The customers arrive in the system at rate A. We have holding costs ¢(z) for z € X per time unit.
Even though there is only one service station, the service control consists of two possible actions
in service: action 1 has a slower service rate (u1) and action 2 has a faster service rate (us) such
that p; < pe, which are mutually independent. The action space is equal to A(z) = {1,2} for
x € X. For all types of service there are holding costs ¢(z) per unit of time when the state is
xz € X. However, for action 2 there is an increased cost of K > 0 per unit of time. See Figure (1)

for this system.
Queue A(:ti}l, exp(p1)
Arrivals
-

Ps(A)

Action 2 ~ &XP (2)

Figure 1: M/M/1 queue with service control.

Although this is a continuous Markov Decision Process (MDP), we can analyse this as a uniformised
time-discretised MDP, as shown by Serfozo (1979). Even though, this does have an effect on the
costs of the system, we are specifically interested in an optimal strategy for choosing which action
to apply. Therefore, we will assume that A\ 4+ u; + po = 1. We will consider a stable system, thus,
we take A < p; < puo. For z,y € X, the transition probabilities are

Pay(@) = X+ Lypir + Loy [p1 Ly 1)+ + p2 - Ty—y| 4+ Loz [p1 - Ly + pto - ]ly:(z—1)+] - (1)
The total cost per unit of time, for state x € X, and action a € A, are

c(z,a) =c(z) + K - L4—s. (2)

Note that in state = 0 always action 1 will be chosen, as there is no need for extra costs in case

of no customers in the system.

The objective function of this system is to minimize the average expected costs. As the slower
service speed is cheaper, the question arises as to when one wants to switch to the faster service
speed, see Figure 2.

“What is the optimal strategy for choosing between the different possible actions for service?”

Value iteration, a form of dynamic programming, has shown to be a useful tool in finding optimal
strategies for this Markov Decision Process by Lippman (1975) and Koole (1998).

Furthermore, the system can be expanded to incorporate discounting such that one can observe
how this effects the strategy for switching service speed.



Figure 2: M/M/1 queue with service control (red: action 1, blue: action 2) for threshold at state
x> 1.

2 Determining the optimal strategy for server swapping

For approaching the value of the states in the MDP per unit of time, we will use dynamic program-
ming. The Value Iteration Algorithm allows us to numerically compute values in each state of our
state space by determining the optimal action in that state. In each iteration of the Algorithm this
value will be updated and improved in a recursive manner, and as such the choice for the optimal
action can be updated.

First, we will look at the iterative steps of the Value Iteration Algorithm and how this corresponds
to determining which action is optimal for each number of customers in the system. After, we will
have a closer look into choices for the initial value function vy in the Value Iteration Algorithm.
This approach has proven to be successful for our model by Ertiningsih et al (2017).

2.1 Value Iteration

When applying value iteration to an MDP, we first need an initial value function vy from which
we can compute each next iteration recursively for z € X taking into account the different possible
actions for service. The value iteration for this system is defined as

vt (2) = min {e(e,a) + 3 pay (@) - va(y) } - 3)
Plugging in (1) and (2), for an initial value function vo(x), x = 0,1,2, ..., we have

Vpt1(®) = c(@) + Avp(z + 1) + min { v, — )T + 20, (2), K + prvn () + pov,(z — 1)1}
= c(z) + Mg (z + 1) + prvg (@) + povy(z — 1)

+ = )in {on) = ol — D7, L

(4)

2.1.1 Threshold

Perhaps intuitively clear that the optimal strategy has a threshold structure of a certain number
of customers in the system for switching from action 1 to action 2. This intuition will be justified
in the next section. First, we will introduce a definition of this threshold. We want to switch from



service action 1 to action 2 when action 2 is strict ‘cheaper’ than action 1. Therefore, define §,, 1
as the threshold for swapping actions in stage n + 1:

1 —p2 pm2—p1’
00, otherwise.

o

_ { min {x|vn(a:) —vp(z -1t > K } , when sup, (v,(z) — v, (z — 1)1) > K
n+1

(5)
This d,,41 exactly describes the threshold for swapping service actions at time step n. Thus, we see
that for all > d,,11, action 2 is optimal. Additionally note, that if in a time step action 2 is never
optimal, 0,11 will not exist and is set to oco.

2.1.2 Convexity and convergence

As seen in Lippman (1975) v,, is found to be a convex function. This is crucial for us, as when
Up(x+1) —v,(z) > ”2{(7”1 we find that for all y > x we have v, (y +1) —v,(y) > UZIEHI . This shows
us that if in a state z action 2 is optimal, then for all following states y > z action 2 is optimal as
well. Conversely, likewise when vy, (2 + 1) — vn(2) < -2 for some state « € X (when action 1 is
optimal to choose in this state), this means for all states y < x action 1 is the optimal action to

choose.

Ertiningsih et al (2017) has shown that lim,_,.(vn(z) — v,(0)) = v*, where v* = v*(z) is the
unique optimal average cost value function (except for a constant) of the system. As v,, convex for
all n, convexity also holds for v*. This is very useful as this also means that lim,, ., 0,41 = 0™ is
the optimal threshold for switching to service action 2. Indeed, the optimal strategy shows to be
finding a threshold for the number of customers in the system.

2.2 Choice of initial value function

Our approach in finding the optimal threshold for switching actions, consists of handy choices of
the initial value function of the VI Algorithm.

Lemma 2.1. Let v, the value function.
(a) If

vp (2 + 1) —vg(2) > vi(z + 1) — v (z) (6)
holds for all x € X, then

l
. 'UO *
nhm O, 16"

(b) If
vy (2 +1) —vg(x) < of(z +1) —vy'(2) (7)

holds for all x € X, then
nl;rr;o 62‘;1 6%



Proof. First, note that if vy (z + 1) — vp(x) > vpg1(z + 1) — vpp1(x) holds for an n > 0 and

if in stage m action 2 is optimal for state x € X, then uzlfﬂl > vu(x + 1) — v,(x). So also
Hzlfim > Unt1(Z +1) —vpp1(z) and action 2 is optimal in stage n + 1 for those same states. Hence,
Op+1 < Opta. Now, by Equations (4) and (6) and by Lemma 2.6 in Ertiningsih et al (2017) we find

that v} is a function such that v, (z + 1) — v (2) > vap1(z + 1) —vpy1(x) holds for all n > 0, hence,

1
. U,
limy, 006,51 T6%.

Conversely, the same arguments hold for a function v satisfying Equation (7), such that
limp o0 0,51 4 6% O

Remark. Lemma 2.6 in Ertiningsih et al (2017) calls for the service control operators to be non-
decreasing, however, it can be easily checked that this criterion is not necessary for the correctness
of Lemma 2.1.

With this approach we can ‘squeeze’ the optimal threshold and we will know to have found that
threshold once ¥ = §v6 . Therefore, we are interested in two functions for which inequalities in (6)
and (7) hold. Furthermore, we presume the optimal threshold to be reached in less iterations when
the initial value functions are chosen closer to equality in (6) and (7). We will look at numerical
evidence to support this claim and to observe the behaviour of the threshold and the values in each
stage of the VI Algorithm.

2.2.1 The zero initial value function

First, we will look at the case where v} = 0. In this case it can be easily seen that Equation (7) holds
when we have non-decreasing holding costs. To then ‘squeeze’ the optimal threshold, we will use
the initial value function v{(z) of quadratic form, which can be found in the next section. Then,
we will use numerical results of different lower initial value functions to be able to see whether
convergence occurs faster with an initial value function closer or equal to equality in (7), than the
zero initial value function.

For further choices of initial value functions, we find that when substituting Equation (4) in Equa-
tions (6) and (7), a common term of vy(z + 1) — vo(x) can be found on both sides of the inequality
sign, leaving a rest of degree one lower than the degree of ¢(z + 1) — ¢(x). This leads us to the
suspicion that a handy choice of the degree of the initial value function is one lower than the degree
of the cost function, due to the necessity for the Equations (6) and (7) to hold for all possible states
in our state space.

2.2.2 Quadratic initial value function

We are interested in a quadratic vy for the VI Algorithm when the holding costs are of linear form.
Hence, let c(z) = c,z and set vg(z) = az? + bx + ¢, for z € X.



Lemma 2.2. For

— Ca 2
th(e) = gty (6 + ) (®)
and
v§(2) = gt (@ + ) ©)
2(p2 — A)
equations (6) and (7) respectively hold.
Proof. See Appendix A. O

2.2.3 Cubic initial value function

We are interested in a cubic vg for the VI Algorithm when the holding costs are of quadratic form.
Hence, let c(z) = c,o? + cpx and set vo(z) = ax® + bz® + cx + d, for z € X.

Lemma 2.3. For

Ué(m): Ca w3+cb+(/\+lll)mci>\ 5 Cb-i-()\-!-,ul)mci)\ 3 Ca . (10)
3(p — A) 2(p1 — A) 2(p1 — A) 3(pr — A)
and
vy (z) = S ot At )ty e+ (At o) 25 ___Ca T (11)
3(p2 — A) 2(p2 — A) 2(p2 — A) 3(p2 — A)
equations (6) and (7) respectively hold.
Proof. See Appendix B. O



3 Discounting

Adding discounting to the system ensures the value iteration to have lower value in a later time
stage. In this section we will look at the effect on this discounting when analysing the optimal
threshold for switching service speeds, from the slower service speed (action 1) to the faster yet
more expensive service speed (action 2). We will once again use the Value Iteration Algorithm to
obtain this desired information, likewise to the previous section where no discounting was applied.

3.1 Value iteration with discounting

Once again, the Value Iteration Algorithm starts with an initial value function vo(z) for all z € X.
However, in this instance, in each iterative step of the VI Algorithm the value of the previous
iteration is only worth a as much, for an a € (0,1). Discounting is applied to events that occur
in the future, thus, in the Algorithm we discount each previous iteration. Now, for an initial value
function vg(z), z = 0,1,2,..., and a € (0,1) the value iteration for this system with discounting is
defined as

v (@) = min {e(,a) + @Y pay (@) - va(y) } (12)

Plugging in (1) and (2), this results in

vp(z) =c(z) +a {/\vn(m +1)

K
# min {paona = 107 4 a0, (), 5+ pon(a) + vl = 1)} )

=c(z) + advy(z + 1) + apyv,(z) + apsv,(z — 1)

+ (s — p1) min {vn(m) —vp(z — 1T, a(uf_m)} .

3.1.1 Threshold

In the previous section, we defined the threshold for swapping actions to faster service speed as the
lowest number of customers in the system for which action 2 is more optimal than when applying
action 1 for service per time stage in the VI Algorithm. Then, the threshold for swapping server
speeds with discounting is defined as follows:

s — { min {x|vn(m) —vp(z =1 > m} ,  when sup, (v,(7) —v,(z — 1)) > ﬁ,
n

) otherwise.

(14)

Note, adding discounting does not influence the convexity or threshold structure of this system.
Thus, our approach in determining the optimal threshold remains unchanged.



3.2 Initial value function with discounting

The choice of the initial value function will be done similarly as for the non-discounting model.
We will once again try to ‘squeeze’ the optimal value and the optimal threshold. Lemma 2.1
holds in the exact same way with discounting. By replacing uzlfm by a(uzlim) has no influence
on the implications in the Lemma. Therefore, we use a similar approach to determining initial
value functions, such that we can ‘squeeze’ the threshold of the number of customers in the system

necessary for swapping actions.

Different to the situation without discounting, when plugging in Equation (4) into Equations (6)
and (7), we find the term a(vo(z — 1) — vg(x)), such that the term vg(z — 1) — vo(x) does not get
‘cancelled out’ as in the previous section. This motivates the idea of using finding value function
of the same degree as the cost function has, due to the necessity for the Equations (6) and (7) to
hold for all possible states in our state space.

3.2.1 Quadratic initial value function with discounting
We are interested in a quadratic vg for the VI Algorithm with discounting (with value «) when the
holding costs are of quadratic form. Hence, let ¢(x) = c,2? + cpx and set vo(z) = ax? + bz + ¢, for

reX.

Lemma 3.1. For

cp + 2a(X — fa ¢y + a(2X — Ca
o = _fe 42 4 max {2 ( Hl)l*“, ’ ( )1 T (15)
1-a l-a l—a+awm
" 200\ — pa) - (A — )
Cp +20(A— )72 ¢t — M2) 7
vy " = e 42 4 min = 12 Lo ’ el , (16)
1-a 11—« 1—a+aps
equations (6) and (7) respectively hold.
Proof. See Appendix C. O

3.2.2 Cubic initial value function with discounting

We are interested in a cubic vy for the VI Algorithm with discounting (with value &) when the
holding costs are of cubic form. Hence, let ¢(z) = c,23+cpa? +c.x and set vy (z) = axd+br?+cr+d,
for z € X.



Lemma 3.2. For

Ca

cy + 3N — p1) 7% 2

1, c
voa(x)zl_aaxs —
c a(A— Ca
ce +3a(N + ) 12 + 20(X — Nl)%
+ max ,
l1-a
c +3a(A— ca_
Co + 3\ + 1) 5 + 20(A — prp) 2O =S
11—« )
c a(A— Ca
ce + a3\ + 2u1) % + a(2) — ﬂl)% )
I—a+am ’
and
cp + 3a(\ — ) La
Ug’a(ﬂf)zlc_aaﬁ ’ i_a'uz)l—axz
e 3000 + ) 18 + 20 (A — pp) AT TS
+ min ,
1-a
c a(A— Ca
ce + 3a(X + p1) 12 + 2a(\ — Nl)%
1-—a )
c cp+3a(A— Ca
o+ (3 + 2up) 1 + (2X — ug)% )
I —a+aps ’

equations (6) and (7) respectively hold.

Proof. See Appendix D. O

Interestingly, this is the first time that that we find both p; and ps in the lower and upper initial

value functions.

10



4 Numerical results

Using MATLAB, we have programmed the Value Iteration Algorithm implementing all the previ-
ously discussed initial value functions for various parameters. See Appendix E for this MATLAB
code. In this section some examples will be presented to show the effect of the ‘squeezing” method
of the optimal threshold of swapping service speeds.

4.1 Iterations for optimal threshold for different initial value functions

We want to determine if convergence occurs in less iterations for the found quadratic or cubic initial
functions, as given before, than when applying the zero initial function. As, Equation (7) holds
for the zero initial function, we will compare this to the upper initial functions of quadratic and
cubic degree. The numerical results of the minimum number of iterations necessary for reaching
the optimal threshold are shown in Table 1. Indeed, we determine that in each of the 21 different
(combinations of) parameters there are less iterations necessary for the optimal threshold to be
reached. For some parameters the difference is even substantially large. Especially the difference
in the number of iterations between the zero and cubic initial function is significant. The difference
ranges from over 2 to 188 times less iterations necessary for the cubic function. For the quadratic
initial function we find a range of approximately 1.2 to 3.5 times less iterations to reach the optimal
threshold than for the zero initial function.

4.2 Effect of discounting

Example 4.1. Choose the following parameters:
A=0.3, p1 =032, py =038, K =20, c¢(z) =0.12° + .

Various values of a: 0.9, 0.99, 0.999 and 1.

The results are found in Figure 3, the optimal thresholds can be determined numerically:

a | 09 1099|0999 |1
o || 182 | 17 8 7

For a < 1, the initial functions from Lemma 3.1 are used, and for « = 1 the initial functions
from Lemma 2.3 are used, as we have a quadratic holding cost function. Although the number of
iterations, until the optimal threshold for both the upper and lower initial function is reached, for
different values of a varies, we do see that for the initial function from Lemma 3.1 (with a € (0,1)),
less iterations are necessary for lower values of a. Furthermore, we do notice that for higher values
of a, the optimal threshold ¢* decreases. This raises the suspicion that this is the case for arbitrary
values of «, which we found to be correct, see Theorem 4.1. Although, (6%)* — (§')*, this occurs
in a slow manner, as even here (§°999)* > (§1)*.

11



vy; (no discounting)

A I pne K || zero | quad. || zero | cubic
5 27 21 7 1
0.1 03 06 10 80 73 8 2
20 99 89 13 6
5 63 43 10 1
01 04 05 10 121 97 23 9
20 234 204 20 4
5 114 89 15 1
0.1 042 048 10 201 166 23 4
20 401 362 32 11
5 23 12 15 5
0.2 025 055 10 53 38 11 3
20 131 112 14 5
5 42 27 9 1
02 03 05 10 7 56 26 12

20 162 135 32 19
) 75 44 54 21
0.2 035 045 10 168 130 19 1
20 310 263 40 17
) 163 48 93 1
0.3 031 039 10 222 95 41 1
20 641 460 158 7
) 222 63 84 1
0.3 032 038 10 475 276 64 1
20 623 389 600 | 115
) 322 91 175 1
0.3 033 037 10 560 287 128 1
20 || 1449 | 1101 188 1

Table 1: Number of iterations until threshold is reached for various variables and different initial
value functions. The holding costsfor the quadratic and cubic initial functions are ¢(z) = z and
c(z) = 0.1z + z respectively.

Theorem 4.1. For a;,as € (0,1] with a; < as

5311 > 633, (a7)

holds for all n € Nqg for the zero initial value function.
Proof. We will prove by induction for all time steps n € No, that v2* (z) — v (z — 1)" > v22(z) —
ve2(zp)T, for all z € X. Consequently, Equation (17) holds.

Note that, when the cost function is an increasing function, we have c(x) —c(z —1)™ > 0. As such,

with the zero initial value function, v%%(z) — v%%(z — 1)* > 0 always holds.

12



Base step. For all x € X we find

0= (@) = 0§ (z — )T < 0§ () — v (@ — )T =0

such that 07" > 472, as for a; < ay the inequality al(,f;m) > az(,f;ul) holds for a € (0,1].

Inductive step. Let k& € N be arbitrarily given and suppose Equation (17) holds (Induction
Hypothesis) for all 0 < n < k. Then consider time step k + 1,

vt (@) =gk (@ = DT = (02, (@) — o (e = 1))
=c(z) —c(z —1) = (c(z) — c(x — 1))
+ A Jar (02 (@ + 1) — 02 (@) — e (v (3 + 1) — 022 (m))}

+ o (0" (2) — 0§ (@ — DF) — ag(of (@) — 12 (2 — 1))
+ po [al(v,':l (x—1)T — vtz — 2)7) — as(vy?(z — nt— vt (x — 2)+)]

+a1(u2—ﬂl)-min {Ufl(ir)_vl?l(x_l)Jr’oq(uzK—m)} "
-—min {v,‘jl(w D) -t @ =27, oq(uzK—ul)}

—as(pz2 — ) :min {052(33) — ot @ =17, ozz(uzK—/u)}
- {v,gw(x— 1+ —vz”(w—”*’%(,f—m)}:

First, we will consider the state x = 0 followed by state x = 1, and finally all states = > 2.
Let z = 0 then,
V31 (0) = vig (0) = (031 (0) — v, (0)
= ¢(0) = ¢(0) = (¢(0) — ¢(0))
+ Mai (v (1) = v37(0)) — @z (v (1) — v32(0))]
+ [ (v (0) = v (0)) — @z (v (
+ 2 [ (v (0) — 037 (0)) — aa(vy®(0) — v*(0))]

+ ai(p2 — p1) [min {U’?I(O) _U’SI(O)’K)}

~ min {v;;l(O) - (0), al(,f_m)}
— ag(pg — ) [min {”?2(0) ot (0); OQ(P‘ZK_NI)}
~ min {v;f(m —0(0), a(,f(_m}

= Mai (v (1) = 31 (0) — ez (vy?(1) — vy (0))]
<0 (by Induction Hypothesis)

13



Let =1 then,

Ugh(l) Uk+1( ) — (Uk+1( ) — Uk+1(0))
= (1) = ¢(0) = (e(1) = e(1))
+ Mo (v (2) = v (1) — o (v?(2) — v (1))]
+ i [ (vt (1) — 01 (0)) — aa(vp? (1) — ve2(0))]
+ po [ (v (0) — v (0)) — aa(vy?(0) — ve=(0))]
o K
+ a1 (p2 — p1) min {Uk (1) — vy (0), 041(#2—/11)}

— ag(p2 — p1) min {”?2(1) — o (0), 0‘2(/;{_“1)}

The remainder of this part of the proof is split over the following three possible cases.

e Case 1: v?l(l) — 0?1(0) < m and 1);:2(1) — U??(O) < ozz(uf—m)

Vit (1) = 034 (0) = (Ufﬂ(l) v 31(0))
= Mo (vp" (2) = vg* (1)) — 02 (v2(2) — vi*(1))]
)

+ pu e (v (1 )—v;?l(o))—az(vk (1)—1)532(0 )]
+ 2 [an (v (0) — o (0))—az(vk (0) — v*(0))]
+ (2 = pn) [on (v (1) = 0 (0)) — a2 (v (1) — v (0))]

<0 (by Induction Hypothesm)

e Case 2: v (1) —v*(0) < al(uf—ul) and a2(u2 o < v 2 (1) —v?(0)

Ui (1) =01 (0) — (ka( ) — v 31(0)
= Man (03 (2) = v* (1)) = a2 (v (2) — vy* (1))]
+ o o (v (1)—11?1(0))—042(% (1)— 12 (0)]
( «

+N2[041(U 0) — Ukl(o))_OQ(Uk (0) — vy k (0))]
+ (k2 _Nl)[al( H(1) = v (0)) —az%(uf_m)}
< Aer (v (2) — v (1)) — a2 (v (2) — vy* (1))]

+ [041(

1) - C“( ) — a2 (v?(1) —v?(0))]
+ pa o ( ) —

0) — v (0) — a2 (vf?(0) — vg?(0))]
K K

+ (b2 =) [al ar(iz —pn) an(uz — Ml)]

<0 (by Induction Hypothesis)

v (
v (
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e Case 3: al(,f;m) <wvg'(1) — v (0) and vp* (1) —vg?(0) < M(MI;M)

”/3—}-1(1) - UI(:-}& (0) - (”13—?—1(1) - U/?L(O))
= Aa (v (2) — vt (1) — az(v*(2) —vp2(1))]
+ pa [aa (v (1) = 0 (0) — @2(v>(1) = v;2(0))]
+ [ (v (0) = v (0) — a2(vy (0) — v (0))]
+ (p2 — 1) | K —Qy K
ay(p2 — 1) as(p2 — 1)
<0 (by Induction Hypothesis)

Let z > 2, for Equation (18) to hold we have to consider the following six cases.

e Case 1: K
vt () —opt (e = 1), vtz —1) —vp' (2 —2) < (s — )’
022 (@) — 0Pz — 1), v (@ — 1) — o2(z — 2) < m
Then,
vt () — vty (= 1) = (vp3, () —vpi (z — 1))
=c(z) —c(z —1) — (c(z) — e(z — 1))
+ A (gt (@ + 1) — vt (2)) — as(vp? (z + 1) — vp? (m))}
+ [ (vt () — vt (z — 1)) — az(vp?(z) — vp? (z — 1))]
+ po[ar (vt (z — 1) —vpt(z — 2)) — az(vi?(z — 1) —vp? (z — 2))]
Fan (s — ) o (@) — 0 (2 = 1) = (0 (& — 1) — v} (2 — 2)]
— s — ) 122 (2) — 02 (@ — 1) — (03 (& — 1) — 03 (& — 2))]
= Ao (02 (z + 1) — 02 () — a2 (0 (z + 1) — v (ar))]
+ 12 [0n (02" (2) — 08" (2 — 1)) — 4 (02%(2) — 12 (2 — 1))]
+ i [ar(vpt(z — 1) — vt (z — 2)) — az(vp?(z — 1) — vp2 (z — 2))]
<0 (by Induction Hypothesis)
e Case 2 X
vpt(z) —vt (= 1), vtz — 1) —vt(z —2) < ol =)’
v?(r—1) —v?(z —2) < ﬁ <wp?(z) —vg?(x —1).

15



Then,
Uit (@) — v (@ = 1) = (0 (2) = o (e = 1)
— ofa) - cfa — 1) - (c(x) — c(x — 1))
A [0 (0 (@ 4+ 1) = 0 (2) = @ (0 (@ + 1) = 02 ()|

[ (0 (@) = o (@ — 1) — as (o) (@) — 0§ (@ — 1))]

+ o[ (vpt(z — 1) — vt (z — 2)) — az(vp?(z — 1) — vp2 (z — 2))]
g (s — ) [0 (2) = 0 (2 — 1) — (0 (@ — 1) — 0" (& — 2))]
—aalpn = )| o = e = 1)~ e - 2)

= Aoy (02 (z + 1) — 02 () — 02 (0 (z + 1) — v (x))]
+ [ (vp (2 — 1) =o' (2 — 2)) — az (v (z — 1) —vp? (z — 2))]

i far = (o) — (e~ 1)
+ iz [(11(”?1(37) —v'(z = 1)) — 042%(};{_1“)}

< Ao (2 (z 4+ 1) — 2 (2)) — @z (022 (2 + 1) — v (m))}
+ [ (vpt(z — 1) —vpt(z — 2)) — az(vp?(z — 1) — vp? (z — 2))]

K K
+ pq (oo — Qg
Qg (p2 — p1) as(p2 — p)
K K
+ p2|ag — Qs
ay (p2 — p1) as(p2 — p1)

<0 (by Induction Hypothesis)

e Case 3:

K
vil(z) — it (z —1), v¥(z—-1) - (2 —-2) < —————,
k() k( ) k( ) L( )_al(NQ_Hl)

K

— <02 (z) — v (= 1), v (r — 1) — v 2 (z — 2).
a2(/1'2_ﬂl) k() k( ) k( ) k( )

16



Then,

o Case 4:

Then,

vt (@) — oy (2 = 1) = (0, (2) — vt (2 = 1))

=c(z) —c(z — 1) = (c(z) — c(xz — 1))
+ Ao (0 (@ 4+ 1) = 0} (2) = @s (0} (@ + 1) = 0} ()

T o (0 (&) = 0§ (2 — 1) — aa (05 (&) — v (w — 1))]

+ pafay (vt (@ = 1) — v (2 = 2)) — az(vp?(z — 1) — vp2 (2 — 2))]
a2 = ) [0 (@) = o (& = 1) = (0 (& = 1) = 0 (2 = 2))]
— ot — 1) K _ K ]

22 T 042(112—#1) 042(#2-,“1)

= Aoy (2 (z + 1) — v () — a2 (0 (z + 1) — 00 (x))]
T [ar (0 (@ = 1) — o (2 — 2)) — (00 (2) — v (2 — 1)]
+ po [al(v,':l () —vpt(z— 1)) —as(vy?(z — 1) —vg?(z — 2))]
< Ao (02 (2 +1) — 02 (2)) — @z (022 (2 + 1) — v (x))]

K K
Mo — M1 M2 — [1
<0 (by Induction Hypothesis)

+ (1 + p2)

K
vz —1) — v (z —2) < ———— < v (z) — v (z — 1),
Flem D)o@ S <o) oo )
K
v (z—1) —0v?(x —2) < ————— <02 (z) — v (xz —1).
- D= < <o) oo )

Ul?—l&-l(w) - ”/3—}-1(9” -1)- (”/3—?—1(9”) - U;:L(w —-1))

=c(z) —c(z —1) — (c(z) — c(z — 1))
+ )\[al (vpt(z 4+ 1) — v (z) — az(v?(z 4+ 1) — vg? (m))}

+ p [en (v (2) — v (2 = 1)) = a2 (vy? (2) — v (2 — 1))]
+ poar (it (z — 1) — vt (z — 2)) — as(vi?(z — 1) — vp? (z — 2))]

+ a1 (p2 — p1) |:041(H2I(_H1) —(vpt(z —1) — vt (x — 2)):|
K X2 (p—1) — 02 (z —
—az(p2 — 1) {042(/12_/‘1) = (vp*(z = 1) —v*( 2))}

= Aoy (02 (z + 1) — 02 () — a2 (0 (z + 1) — v (x))]

+ o fon (0 (@) — 0 (2 — 1)) — a2 (022 (2) — v (& — 1))]
+ [ (vpt(z — 1) — vt (z — 2)) — az(vp?(z — 1) — vp2 (z — 2))]
<0 (by Induction Hypothesis)
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e Case 5: K

vpt(e—1) — vt (@ —2) < (s — 1)

<wvpt(z) —vpt(z — 1),

K
—_— <% (z) — v (z— 1), v (x —1) — v (z — 2).
042(#2_/111) k() k( ) k( ) k( )
Then,

Ui (@) —vpia (@ = 1) = (v, (2) — v (2 = 1))
=c(z) —c(z —1) — (c(z) — c(z — 1))
+ Afar (02 (@ + 1) — v (2) — e (022 (z + 1) — v,?z(:n))]
T o (0 (@) — 0 (2 — 1)) — (052 (@) — 02 (@ — 1))]
+ po [ (vt (z — 1) — vt (z — 2)) — az(vp?(z — 1) — vp? (z — 2))]

K A —1) — vt (z —
m—(”k( 1) g ( 2))}

K K
el —m) {042(#2 —m)  as(us — Hl)]
< AMar(vpt(z + 1) —vpt (@) — ao(vp (@ + 1) — vy? (x))]
+ 11 [0n (2 (2) — 08 (2 — 1)) — 4 (022(2) — 122 (z — 1))]
+ po [y (vp (2 — 1) — vt (2 — 2)) — az(vi?(z — 1) —vp? (z — 2))]

+ (2 — p1) {az(v,‘;@ (z—-1)—v?(x—2) —aq (v (x — 1) — vt (z — 2))}

+ ar(p2 — ) {

< Al (6 (@ 4 1) = 0 (@) = 0a (0§ + 1) = 05 (a)

+ i [ (vt () — vt (z — 1)) — az(vp?(z) — vp2(z — 1))]

+p [ar (vt (2 — 1) —vpt(z — 2)) — az (v (z — 1) —vp2 (z — 2))]
<0 (Induction Hypothesis)

e Case 6: K
—— < (x) — vz — 1), vt (z —1) — vt (xz — 2),
041(#2—,111) L() L( ) k( ) L( )
K <wvp?(z) —vp(x — 1), v (x — 1) —v? (. — 2).
az(p2 — pa)

18



Then,
e (@) —vpi (@ = 1) = (03, (@) —vg, (@ = 1))
=c(z) —c(z —1) — (c(z) — e(z — 1))
+ M (03t (@ + 1) — vt (2)) — as(vp? (z + 1) — v (1‘))]

+ 11 [0n (52 (2) — 08 (2 — 1)) — 4 (022(2) — 122 (z — 1))]
+ poar(vp' (2 — 1) =o' (2 — 2)) — az(vi?(z — 1) — vp? (z — 2))]

+ a1 (p2 — 1) Ln(uzK— ) al(uzK— Ml)]
—az(pz — 1) LQ(MK_ ) ag(uzK— m)]

<0 (Induction Hypothesis)

Note that, each inequality holds as 0 < a3 < s < 1 and 0 < A, pq, 2 < 1. We can then determine
that

Q1 a9
Opto 2 Ops.

Conclusion. By mathematical induction, we can conclude that Equation (17) holds for all n €
No. O
Corollary 4.2. For ay,as € (0,1] with a; < ay

(0%4)" = (6%2)" (19)
holds for all n € Nqy for all initial value functions.

Proof. As for the zero initial function lim, ,. 6,%, = 6%, the proof follows directly from Theo-
rem 4.1. O

4.3 Results for different initial value functions and different parameters

Example 4.2. Choose the following parameters:

A=0.1, pp =04, ps =0.5, K =5, ¢(z) = x.

The results can be seen in the left two graphs in Figure 4. In the first graph we can see the optimal
threshold for swapping service speed occurs at 16 customers in the system: §* = 16. Furthermore,
the lower bound for squeezing the threshold has reached the optimum in it’s first iteration, yet the
upper bound reaches the optimum threshold in 43 iterations. One can notice that in the lower
graph, the optimum value per number of customers in the system seems to lie closer to the lower
initial value function.
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Figure 3: Effect of a on the threshold with quadratic holding costs.

Example 4.3. Choose the following parameters:

A=0.3, pu1 =032, puy =0.38, K =20, c¢(z) =x.

The results can be seen in the right two graphs in Figure 4. In the first graph we can see the optimal
threshold for swapping service speeds occur at 14 customers in the system: §* = 14. Furthermore,
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Value

the lower and upper bound for the optimal threshold seem to roughly follow the same pattern,
where solely the last step of the lower bound towards reaching the optimal threshold takes over
another 200 iterations to reach. In the lower graph, we notice the value per number of customers
in the system for both initial value functions lie a lot further apart than in the lower left graph in

Figure 4.
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Figure 4: Optimal threshold and value of VI Algorithm for a quadratic initial value function.
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Example 4.4. Choose the following parameters:
A=0.1, 1 =04, ps =05, K =5, c(z) = 0.12% + =.
The results can be seen in the right two graphs in Figure 5. In the first graph we can see the
optimal threshold for swapping service speeds occur at 9 customers in the system: * = 9. The
lower bound for squeezing the threshold reaches the optimal threshold in the first iteration, and the
upper bound takes 12 iteration, however, only to lower the threshold by one.
Example 4.5. Choose the following parameters:
A=0.3, p1 =0.32, gy =0.38, K =20, c¢(z) = 0.12° + .
The results can be seen in the right two graphs in Figure 5. In the first graph we can see the
optimal threshold for swapping service speeds occur at 7 customers in the system: §* = 7.
Example 4.6. Choose the following parameters:
A=0.3, p1 =032, py =038, K =20, a =0.9, c(z) =0.12> + 2.
The results can be seen in the left two graphs in Figure 6. In the first graph we can see the optimal
threshold for swapping service speeds occur at 182 customers in the system: §* = 182.
Example 4.7. Choose the following parameters:
A=0.3, g1 =032, py =0.38, K =20, a =0.99, ¢(z) = 0.1z + .
The results can be seen in the right two graphs in Figure 6. In the first graph we can see the optimal
threshold for swapping service speeds occur at 17 customers in the system: §* = 17. This is the
first time we see that the value of the upper function can take negative value and decrease, even
though we see that after 50 iterations, the value is no longer negative for any number of customers
in the system.
Example 4.8. Choose the following parameters:
A=0.3, p1 =032, py =0.38, K =20, a =0.9, c(z) =0.012° + 0.1z% + =.
The results can be seen in the left two graphs in Figure 7. In the first graph we can see the optimal
threshold for swapping service speeds occur at 33 customers in the system: * = 33. Remarkably,
both the lower and upper bounds for the threshold are reached in the first iteration.
Example 4.9. Choose the following parameters:
A=0.3, p1 =032, py =038, K =20, a=0.99, ¢(z) =0.01z> + 0.12° + .
The results can be seen in the right two graphs in Figure 7. In the first graph we can see the

optimal threshold for swapping service speeds occur at 9 customers in the system: ¢* = 9. Once
again, we determine the optimal threshold to be lower for « = 0.99 than for « = 0.9.
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4.4 Effect of value of K

We have looked into the behaviour of the value of the extra costs K for the faster service.
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Figure 8: Optimal threshold of the VI Algorithm for a quadratic initial function and various values
for K.

Example 4.10. Choose the following parameters
A=0.1, 3 =04, uo =05, a =1, c(z) ==z.
Various values for K: 5, 10 and 20.

The results can be seen in Figure 8. Logically we immediately see that for a higher value of K, both
the thresholds for the upper and lower initial value functions are higher, and as such the optimal
threshold too. Remarkably, each set of thresholds for the same value of K show a similar pattern.
The lower initial value function reaches the optimal threshold in the first iteration for each value of
K. For these parameters, the lower initial value function, found in Lemma (2.2), shows to be close
to the optimal value, as can also be seen in the bottom left graph of Figure 4.
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5 Conclusion and Discussion

As seen in the result section, we can conclude that our approach in constructing initial value
functions for the Value Iteration Algorithm is successful in determining an optimal strategy for
faster service in an M /M /1 queue with two possible service speeds. This takes into account the
models with and without discounting.

In general, we see that the lower initial function reaches the optimal threshold in less iterations
than the upper initial value does, and therefore seems to be close to the optimal average cost
value function. Furthermore, from the first iteration of the VI Algorithm, it is possible to get an
upper and lower bound for the threshold, and as such provides an interval that bounds the optimal
strategy.

Also, we have chosen a polynomial in the form ! a;z’ as initial value function. It might be
interesting to look at functions of a different form, and if the lower and upper function converge
faster.

27



References

Ertiningsih D., Bhulai S., Spieksma F. (2018). A novel use of value iteration for deriving bounds
for threshold and switching curve optimal policies. Naval Research Logistics 65(8), 638-659.
https://doi.org/10.1002/nav.21824

Koole, G. (1998). Structural results for the control of queueing systems using event-based dynamic
programming. Queueing Systems 30, 323-339. https://doi.org/10.1023/A:1019177307418

Lippman, S. A. (1975). Applying a new device in the optimization of exponential queueing systems.
Operational Research 23(4), 687-710. https://doi.org/10.1287/opre.23.4.687

Serfozo, R. F. (1979). An Equivalence between Continuous and Discrete Time Markov Decision
Processes. Operations Research, 27(3), 616-620. http://www.jstor.org/stable/170221

28



A Quadratic initial value function

Proof of Lemma 2.2. For linear holding costs, we will look into an initial value function of quadratic form. Thus, let ¢(z) = ¢,z and
vo(z) = ax® + bz + ¢. We will first try to find conditions for a for the case where x > 1 and then consider the case where x = 0 and find
solutions for b and ¢ such that equations (6) and (7) hold for all z € X. Initially, we will only consider the lower initial function and
take into account that A < p; < pz. Symmetry arguments will lead to an expression for the upper function.

Consider = > 1.

vh(@ + 1) — vh(@) = v (@ +1) - v} (x)

= 2az +a+b>cq + AM2az + 3a +b) + p1(2az + a + b) + p2(2ax — a + b)
_ K % -
+ (g2 — p1) min{?ax+a+b, }—min{2ax—a+b, }
L M2 — [ M2 — H1) ]
= 2 +a+b>co + (A4 p1 + p2)(2ax +a+b) + 2(A — po)a
[ K _ K
+ (2 — p1) |min < 2az + a + b, —min < 2az — a + b,
L M2 — f1 M2 — 1) |
= 0>co+2(\— p2)a
[ K K
+ (g2 — 1) min{an+a+b, }—min{an—a—i—b, } .
L M2 — M2 — p1 )]
e Case 1: 2az —a+b,2ax +a+b< LK
Ho—H1
02> co+2(A = p2)a+ (p2 — u1)(2a)
— 2(m —Na > ¢,
Ca
<~ a> ———.
~2(u1 = A)
e Case 2: & < 2ax—a+b2ax+a+b
Ho—p1
0>co+2(N—p2)a
= 2(p2 — ANa > ¢
Ca
<~ a> ———.
22— A)
e Case 3: 2az —a+b< —E <2z +a+b
H2— 1
K
0>ce+2(N—p2)a+ (p2 — 1) — (2az —a+0)| .
M2 —

< 2ax +a+b.

This case reduces to Case 1, using that mlf

H1

As pg > pq, we find that when a > ﬁ, Equation (6) holds for all states z > 1.
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Consider £ =0 and let a = 2(”01‘1A).

va(1) = vp(0) > v (1) — v1(0)

K
ca+A(3a+b>+u1(a+b>+<u2—u1>min{a+b, }
M2 — [

a+b

Y%

] K
e Case 1: a+b< prEw—=

a+b> cot ABat )+ pula+b) + (2 — p)(a+b)
a+b>co+ A+ p1+p2)(a+bd) + 2 a—pi(a+d)

=
= 2(u1 — Na — pra+ b > ¢,
= 2(pu1 — N o __ Ca L ub>ec
TS =) T My T
Cq
= b> —4 .
=2 —A)

. _K
e Case 2: ey < a+b

K
/t2—ll1'

a+b>ce+ABa+b)+p(a+b)+ (2 —m)

This case reduces to Case 1, using that ”21_(“1 <a-+b.

Hence, we find that for a,b > ﬁ and c¢ arbitrary, the Equation (6) holds for all x € X. Therefore, let

! _7&1 .’1,’2 x).
UO(IL’)_Q(NI_)\)( + )

In like manner, we find that Equation (7) holds for all z € X for a,b < 2(;27"_» and ¢ = 0. Thus, let
Ca

vy (z) = m(x2 + z).

30



B Cubic initial value function

Proof of Lemma 2.3. For quadratic holding costs, we will look into an initial value function of cubic form. Thus, let c(z) = c, 22 + cpz
and vg(z) = ax® + bx? + cx + d. We will first try to find conditions for a, b for the case where z > 1 and then consider the case where
2 = 0 and find solutions for ¢ and d such that equations (6) and (7) hold for all z € X. Our approach in each case is grouping factors of
the same degree of z in the equation and then letting the structure of ¢(z + 1) — ¢(z) lead into finding expressions for a, b, ¢, d. Initially,
we will only consider the lower initial function and take into account that A < p; < ps. Symmetry arguments will lead to an expression
for the upper function.

Consider = > 1.
oh(o+1) —vh(z) > ol (2 + 1) — vl ()
= (32° + 3z + Da+ 2z + )b+ ¢ > 2z + 1)cq +
+ A((32” 4+ 92 + T)a + (27 + 3)b + )
+p1((32* + 3z + Va+ 2z + 1)b+¢)
+po((32% =3z + Da+ 2z — 1)b+¢)

. K
+ (p2 — 1) {min{(?)xz +3z+1a+ 2z +1)b+ec, P }
2 =

. K
- min{(?)mz—3:L"+1)a+(23:—1)b+c, H
M2 — M1

= (32° + 3z 4+ Da+ 2z + )b+ ¢ > 2z + 1)cq +
+ A+ + p2)((322 + 3z + Da+ 22+ 1)b + ¢)
+ A((6z + 6)a + 2b) + uz(—6xa — 2b)

K
+ (p2 — p1) {min{(?):ﬂ2 +3z+1a+ 2+ 1)b+c, e }
2 — i1

. K
- min{(?;xz—3x+1)a+(2x—1)b+c, H
M2 — M1

= 0> 2z + e, +
+ A((6z + 6)a + 2b) + pz(—6xa — 2b)

K
+ (p2 — 1) {min{(i’)x2 +3z+1)a+ 2z +1)b+ec, p— }
2 = M1

. K
—min{(Swz—3:L‘+1)a-|—(2x—1)b+c, H .
H2 — M1

o Case 1: (32° — 3z + l)a+ (2z — )b +¢,(32” + 3z + a+ 2z + )b+ ¢ < L

0> 2z + D)eg + cp + A((6x + 6)a + 2b) + po(—6xa — 2b) + (u2 — py)(6za + 2b)
= 0>z +1ecg+cp+ (A= p1)(32z +1)a+2b) + 3(A + p1)a
= 3(pr — N2z +1)a+2(ur —AN)b> (22 + 1)cg + ¢ + 3(A + p1)a.

The last inequality holds for a > g+, b > c”';?’ﬁi‘f’;)l)a for all states z > 1.
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e Case 2: uzlfm <(B2?=3z+1la+ 2z —1b+c,(32° + 3z + 1)a+ 2z + 1)b +c
0> (2x + 1)eq + ¢y + A((6z + 6)a + 2b) + pa(—6za — 2b)
= 0> 2z + ey +cp+ (A= p2)(3(2x + 1)a + 2b) + 3(\ + p2)a — 2usb
= 3(pz — N2z + Da+ 2(u2 — A)b > (22 + 1)cg + ¢ + 3(A + p2)a.

+3(At-u2)
2(u2—X)

<322 +3z+1a+ 2z +1)b+c

2 for all states = > 1.

The last inequality holds for a > 5t b > L

e Case 3: 322 —3z+ 1)a+ (22— 1)b+c¢ < m[—{m

K

— (322 =3z+1a+ 2z —1)b+c
= Ja+ (20— Db+ 0)

0> (2z+ 1)ca + cp + A((62 + 6)a + 2b) + po(—6za — 2b) + (2 — 1)

This case reduces to Case 1, using —£— < (322 + 3z + 1)a + (22 + 1)b + ¢. As such, the inequality holds for a >

H2— 1
b > @t3Qtmla gy a1 states > 1.
2(p1—A)

Ca
3(u1—A)°

co+(A+z) =%

z

To determine if one of the values of b found in the three cases is greater or equal to the other, we will see if the function f(z) := 5=V

for z € (\, 1) is an increasing or decreasing function in z. As, z > A > 0 we find that
ca(—22 =202+ 3X0%) —cp(z2 = N2 ca(—A2 =202 + 3)2) — cp(2 — N)? Ch

) == EEY < EEY = eow <Y

Therefore, we can conclude that as 1 > ps > p1 > A > 0, we obtain that

o +3N+pm)a _ cp+ 3N+ u)a
2(p1 — A) 20p2 =)

resulting in all three cases to hold for a > 3(,161(1)\) and b > % for all states z > 1.

. _ 30+
sy and b= Sggidle

Consider z =0 and let a =

= a—{—b—i—czca—l—cb—i—/\(7a+3b+c)+p1(a+b+c)+(p2—ul)min{a+b+c,

)
Mo — 1 .

a+b+c>co+cep+ANTa+3b+c)+pi(a+b+c)+ (u2 — pr)(a+b+c)

. K
e Case 1: a+b+c< yrEv—S

= a+b+ec>cotep+ A+ p +p2)(a+b+c)+ A6a+2b) — pi(a+b+c)
= 3 — Na+2(pr —Nb+piec>cq+cp+ 3N+ p1)a — pra+ b
b—a
— pic > ——
%1
= c>b—a.
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K

e Case 2: ey < a+b+c
K
a+b+c>co+ep+AMTa+3b+¢)+p(a+b+c)+ (p2 —ul)u e
2 — M1
This case reduces to Case 1, using uzl—(m <a+b+ec.
Hence, we find that for ¢ > Cb+(;z:fi)>\*)‘1a—* - 3(,;1“7)\) and d arbitrary, Equation (6) holds for all x € X. Therefore, let
vh(z) = Ca :U3+Cb+(/\+ﬂl)”fi>‘ 2 Cb+(>\+'u1)'“cz>‘ - Ca
3(m — A) 2(p1 — A) 2(p1 — A) 3(p — A)
In like manner, we find that Equation (7) holds for all z € X for a < 3(M(;(L>\)’ b< cb;?}g:‘ff)z)a, c< cb“;;:fi))f)‘?b - 3(;2‘1)\) and d = 0.
Thus, let
o) = a3 Cb+(/\+,U«2)u;i)\ 22 Cb+()\+,u2)u2ci>\ 3 Ca .
3(p2 — A) 2(p2 — A) 2(p2 — A) 3(p2 = A)
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C Discounting with a quadratic initial value function

Proof of Lemma 3.1. For a system with discounting with quadratic holding costs, we will look into an initial value function of quadratic
form. Thus, let c¢(z) = c 2% + cpx and vo(z) = az? + bz + c¢. We will first try to find conditions for a,b for the case where z > 1 and
then consider the case where z = 0 and possibly adjust the solution for b and find an expression for ¢ such that equations (6) and (7)
hold for all 2 € X. Our approach in each case is grouping factors of the same degree of z in the equation and then letting the structure
of ¢(xz + 1) — ¢(z) lead into finding expressions for a, b, c. Initially, we will only consider the lower initial function and take into account
that A\ < p; < ps and that a € (0,1). Symmetry arguments will lead to an expression for the upper function.

Consider z > 1:

0 (@ +1) = vp (@) > vy (@ + 1) — vy (2)

= 2ax + a+b > 2¢,x + ¢q + ¢p + aX(2ax + 3a + b) + apy (2ax + a + b) + apz(2ax — a + b)
_ K K -
+ a(us — p1) min{?ax-{—a-{—b,}—min{?ax—a+b,}
L a(p2 — p1) a(pz — p11)
= 2az +a+b>2cx +cq +cp + (A + 1 + pe)(2az + a + ) + 20X — po)a
_ K K -
+ a(pe — p1) min{2ax+a+b,}—min{an—a+b,}
i a(pa — p1) ape — p1)
= (1 —a)(2az + a+b) > 2c,x + ¢ + cp + 20(N — pi2)a
. K K -
+ a(us — py) min{an+a+b,}—min{an—a+b,}
I a(ps — ) a(p2 — )
e Case 1: 2ax —a+b,2ax +a+b< ——
Mz B1)

o + € + b + 2a(X\ — p2)a + 2a(us — p1)a
2z + D)eg + ¢p + 2a(X — pr)a.

(1-a)(2azx+a+b

) > 2c
1-a)2z+1a+ (1 —a)b>

—

w for all states =z > 1.

The last inequality holds

e Case 2: 771)§2am—a+b,2am+a+b

alpz—p

(1-a)(2az+a+b

) > 2c,x + ¢ + cp + 2a(X\ — p2)a
1-a)2z+1)a+ (1 —a)b

>2
= > 2z + 1)cg + e + 2a(A — po)a.

‘Ww for all states =z > 1.

The last inequality holds for
e Case 3: 2ax —a+b< ﬁ <2ar+a+b

K

(1 —a)(2ax +a+b) > 2cex + ¢4 +cp + 20N — p2)a+ a(us —p1) | ——— — (2ax —a +b)
a(pe — p1)
This case reduces to Case 1, using m < 2ar + a +b. As such, the inequality holds for a > ;% and b > W for

all states = > 1.

co+2a(d—p1)a
-«

As pz > py > A we find that all three cases hold for a > for all states =z > 1.
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Ca .
.
—a

Consider » = 0 and let a = ;

up® (1) — 5 (0) > v} (1) — vb*(0)

= a+b>c,+cp+ar(3a+b)+ aui(a+bd)
K
+a(> — ) min {a+b,}
a(pe — p1)
= a+b>cq+cp+alXA+ pr + po)(a+b) + 2ara — aps(a+b)
K
+as — ) min {a+b,}
alpe — pa)
= (I —-a)(a+b) >cq+cp+ 2aha — apz(a +b)
K
+a(u2—u1)min{a+b,}.
a(pz = pa)
) K
e Case 1: a+b < a2 —1i1)
(1 —-a)(a+b) >c,+cp+2ara —aps(a+b) + alus — pu1)(a+b)
= (1 —a)(a+b) >cqa+cp+2ara — ap(a+ D)
= (1 —a+au)b>cy+ a2\ — p)a.
. . cota(2XA—p1)a
The last inequality holds for b > W for state 0.
. k
e Case 2: m<a+b
K
(l—a)(a-l-b)2ca+cb+2a)\a—o¢u2(a+b)+a(u2—,u1),u .
2 — [

This case reduces to Case 1, using m < a+b. As such, the inequality holds for b > % for state 0.

Now, we have found two different expressions for b. However, neither expression is greater or equal to the other for all ps > ;.
Therefore, we will choose the maximum between the two choices depending on the parameter input. This way we can stay as close as
possible to equality in Equation (6).

Therefore, let

Lo Ca o ey 4 20X — p1) 75 cp + a2X — ) 77
vy = ——Z" + max , z,
l—« l-«o l—a+awm
and . .
oo = Ca 22 4 min cp + 2a(\ — p2) T , cp + a2\ — p2) T .
1-a 1-a 1—a+aps
such that equations (6) and (7) hold for all z € X. O
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D Discounting with a cubic initial value function

Proof of Lemma 3.2. We are interested in a cubic vg for the VI Algorithm with discounting when the holding costs are of cubic form.
Thus, let c(z) = co2® + cyz? + cex and vo(z) = az® + bx? + cx + d. We will first try to find conditions for a, b for the case where z > 1
and then consider the case where z = 0 and possibly adjust the solution for ¢ and find an expression for d such that equations (6) and
(7) hold for all x € X. Our approach in each case is grouping factors of the same degree of = in the equation and then letting the
structure of ¢(z + 1) — ¢(z) lead into finding expressions for a, b, ¢, d. Initially, we will only consider the lower initial function and take
into account that A\ < pu; < ps and that a € (0,1). Symmetry arguments will lead to an expression for the upper function.

Consider z > 1:

v (@ + 1) = vg* (2) > o (2 + 1) =0} (2)

= (32 + 3z + Da+ (22 + 1)b+c> (322 + 3z + 1)cg + (22 + 1)ep + ¢,
+aX((32% + 9z + T)a + (22 + 3)b + ¢)

+ o ((3z% + 3z 4+ )a+ 2z + 1)b+¢)

+aps((32° =3z + Da+ 2z — )b+ ¢)

K
+ a(pz — ) [min {(3%2 +3z+1)a+ 22+ 1)b+e, }
alpz — 1)
— min {(3.232 —3z+1)a+ 2z —-1)b+c KH
Co(py — )
= (327 + 3z + Da+ (22 + )b+ ¢ > (32 + 3z + 1)ca + (22 + 1)cp + c.
+a\+puy +p2) (32 + 32+ Va+ 2z + 1)b+¢)
+ aX((6z + 6)a + 2b) + aps(—6za — 2b)
K
+ a(pz — 1) [min {(32:2 +3z+1)a+ 2z +1)b+ec, }
a(pz = pu)
— min {(3372 —3z+1)a+ 2z —-1)b+c KH
T — )
= (1—a)((3z> +3z+1Da+ 2z + 1)b+¢) > (322 + 32 + 1)ca + (22 + 1)cp + ¢,
+ aX((6z + 6)a + 2b) + aps(—6za — 2b)
K
+a(puz — ) [min {(?;m2 +3z+1)a+ 22+ 1)b+c, }
a(pz — pn)

- min{(3x2 —3z+1)a+ 2z — 1)b+c’a(uzK—ul)H .
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e Case 1: (322 =3z + 1)a+ (22 — 1)b + ¢, (32%> + 3z + )a+ (2z + )b+c<m

(1—a)(32°> + 3z +1Da+ 2z +1)b+c) > (32> + 32+ 1)cy + (22 + 1)cp + ¢,
+ aX((6z + 6)a + 2b) + aus(—6za — 2b)
+ a(us — p1)(6za + 2b)
= (1—a)((32® + 3z +1a+ 2z +1)b+c) > (32> + 32 + 1)cg + (22 + 1)(cp + 3a(X — p1)a)
+ e+ 3a(A + pr)a + 2a(A — pq)b.

atded—m)a o o > CetBaltu)at2aQd=p)b g o)) states o > 1
- 11— - 11—« =

The last inequality holds for a > 1=

<Bz?2-3z+a+ 2z —1)b+c,322 +3z+1)a+ 2z +1)b+c

e Case 2: ——=
alpe—p1) —

(1—a)((3z° +3z+1a+ 2z +1)b+c) > (32> + 32+ 1)cg + (22 + 1)cp + ¢
+ aX((6z + 6)a + 2b) + aus(—6za — 2b)
= (1—a)((32z* +3z+ Da+ 2z + 1)b+¢) > (327 + 3z + 1)cg + (22 + 1)(cp + 3a(\ — p2)a)
+ ce + 3a(A + p2)a + 2a(A — p2)b.

76”3&()‘7”2) and ¢ > CCH&()‘JF“?““&()‘ 12)b for all states z > 1.
> - - >

e Case 3: (322 — 3z + )a+(2w—1)b+c> < (B2>+3z+1)a+ 2z +1)b+c

- a(lw 1)

(1—a)((32® +3z+1Da+ 2z + 1)b+c¢) > (32% + 3z + 1)cg + (22 + D)cy + co + ar((6z + 6)a + 2b) + oz (—6za — 2b)
K

m—((?ﬁ: —3z+1)a+ (22 —-1)b+¢)

+ a(p2 — )
This case reduces to Case 1, using ﬁ < (822 4+ 3z + 1)a + (2z + 1)b + ¢. As such, the inequality holds for a > %=,

b> W and ¢ > & +3a<A+ﬂi>a;20‘<A 14 for all states z > 1.

As pz > p1 > A we find that all three cases hold for a > 1%, b > w for all z > 1. For the different expres-
sions of ¢ we cannot determine one or the other to be greater or equal for all values of us > pq, therefore we determine that
¢ > max { cetBaAtim)at2a(A=u)b c“+3a(>‘+”f)“+2a(>‘ “2)b} and d arbitrary for all states z > 1.

l-—a —a

_ cp3a(A—p1)a,
and b = 1-a

Consider z = 0 and let a = %=

vp™ (1) = 0% (0) > v (1) —vy*(0)
= a+b+e>co+ep+c.+aNTa+3b+c)+au(a+b+c)

. K
+ aps —ul)mln{a+b+c, }
apz — )

S (I-—a)(a+b+c)>cq+cp+ce+ a(6a+2b) — ux(a+b+c)

. K
a(pe —ul)mln{a—l—b—f—c, } .
a(pz — pn)
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. K
e Case l: a+b+c< =)

(I-—a)(a+b+c)>cq+cp+cc+arba+2b) —ap(a+b+c)

= (I—a)(b+c)>cp+ce+a(6h—p)a+ a2X — p)b—apc
= 3a(A—p)a+ (1 —a)e > c.+ a(6h — pr)a+ a(2X — pu1)b — apc
= (I—a+ap)e>c.+aBA+2u1)a+ a(2X — up)b

The last inequality holds for ¢ > Cc+a(3>‘ﬁ2_”ot_)i_a;a(2)‘7“1)b for state 0.
M1

e Case 2: m<a+b+c

K

(I-—a)(a+b+c)>co+cp+c.+aba+2b) — aps(a+b+c)+alps — ) ———.
a(p2 — )

This case reduces to Case 1, using ﬁ < a+b+c. As such, the inequality holds for ¢ > CC+a(3>"§2ngraL?(2)‘_”l)b for state 0.

Now, we have found three expressions for ¢, however, the maximum of the three is dependent on the parameter choices. Therefore, let

Lo Ca cp + (A — pr) 7%
0 (w)zl_ax3+ s 22
c a(A— Ca
Ce + 3a(/\ + Hl) lcja -+ 20{(A — Ml)%
+ max ’
l1—«
c a(A— Ca
ce + 3a(\ + o) 12 + 2a(X — W)%
1—« ’
Sa(A—p1) e
co + (3N + 2u1) 72 + a(2X — Ml)%
l—a+am z.
In a like manner, let
u, 0 _ Cq 3 Cp + 30{(}\ — /,L2) 107“& 9
c alA— _Ca
) ee 3+ ) e + 2a(N - ul)%
+ min ,
11—«
3a(A—po) 52
Co + 30\ + i) 12 + 20 (A — pp) HFEAT ) TS
1—a )
c a(A— Ca
e+ aBA+2u2) 1% + a(2X — M)%
1—a+ o T.
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E MATLAB code

% Input paramaters

lambda = ...; %arrival speed

mul = ...; %serving speed slow

mu2 = ...; %serving speed fast

K= ...; %extra cost for faster service

alpha = ...; %discounting factor

ca = ...; %caxz’3

cb = ...; %cbxz "2

cc = ...; %cexx

endi = ...; % #iterations

endj = + endi + 1; %customers in system + compensation for lambdaxv_n(z+1)

%storage arrays for results
A = zeros(endi,endj+1); B = zeros(endi,endj+1); Deltal = zeros(endi,1); Deltau = zeros(endi,1);

% calls the value iteration algorithm and the computation of the threshold
% for swapping server speeds
for i = 0:(endi-1)

for j = 0:(endj—1)

A(i+1,j+1) = v(i,j,lambda,mul,mu2,K,A  alpha,ca,cb,cc,1);
if (Deltal(i+1,1) = 0)

Deltal (i+1,1) = lu(i,j,mul,mu2,K,A  alpha);
end

B(i+1,j+1) = v(i,]j,lambda,mul,mu2,K,B,alpha,ca,cb,cc,2);
if (Deltau(i+1,1) = 0)
Deltau(i+1,1) = lu(i,j,mul,mu2,K,B,alpha);

end
end
end

% takes the infinity wvalue into account for the threshold of swapping
% server speeds

for i = 1:endi
if (Deltal(i,1) == 0 && Deltau(i,1) == 0)
Deltal(i,1) = nan;
Deltau(i,1) = nan;
elseif (Deltal(l, ) 0)
Deltal (i,1) = na
elseif (Deltau(l, ) 0)
Deltau(i,1) = na
else
break;
end
end
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% computation of threshold (delta)

function luout = lu(n,x,mul ,mu2,K A alpha)
luout = 0;
if (n<1 || x<1)
luout = 0;
else
if (A(n,x+1) — A(n,x) > (K/(alpha*(mu2-mul))))
luout = x;
end
end
end

% cxx for the initial value function
function clout = cl(ca,cb,cc,alpha,lambda,mub,mu)
clout = (cc 4+ alphax(3xlambda + 2xmu)x(ca/(1 — alpha))
+ alphax*(2xlambda — mu)*((cb + 3%alphax(lambda — mub)*(ca/(1 — alpha)))/(1 — alpha)))
/(1 — alpha + alphaxmu);
end

% cxx for the initial wvalue function
function c2out = c2(ca,cb,cc,alpha,lambda,mub,mu)
c2out = (cc + 3xalphax(lambda + mu)x(ca/(1 — alpha))
+ 2xalphax(lambda — mu)«*((cb + 3xalphax(lambda — mub)x(ca/(1 — alpha)))/(1 — alpha)))
/(1 — alpha);
end

% initial value function

function vnulout = vnul(x,lambda ,mul,mu2,alpha,ca,cb,cc,lu)
if lu =1
vnulout = (ca/(1 — alpha))*x"3
+ ((cb + 3xalphax(lambda — mul)*(ca/(1 — alpha)))/(1 — alpha))xx"2
+ max ([ cl(ca,cb,cc,alpha,lambda,mul,mul) |,

cl(ca,cb,cc,alpha,lambda,mul ,mu2) |,
c2(ca,cb,cc,alpha,lambda,mul,mul) ])*x;

else
vnulout = (ca/(1 — alpha))*x"3
+ ((cb + 3xalphax(lambda — mu2)*(ca/(1 — alpha)))/(1 — alpha))xx"2
+ min([ cl(ca,cb,cc,alpha,lambda,mu2,mul) |,
cl(ca,cb,cc,alpha,lambda,mu2,mu2) |,
c2(ca,cb,cc,alpha,lambda,mu2,mu2) ])*x;
end

end
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% holding costs
function cout = c(x,ca,cb,cc)

cout = caxx"3 + cbxx"2 + ccx*x;
end

% value iteration

function vout = v(n,x,lambda,mul,mu2,K,A, alpha,ca,cb,cc,lu)

if n<1
vout = vnul(x,lambda,mul,mu2,alpha,ca,cb,cc,lu);
else
if x <1
vout = c¢(x,ca,cb,cc) + alphax(lambdaxA(n,x+2) + mul*A(n,x+1) + mu2+A(n,x+1));
else
vout = c(x,ca,cb,cc) + alphax(lambdaxA(n,x+2) + mul*A(n,x+1) + mu2+A(n,x)
+ (mu2-mul)*min(A(n,x+1)—-A(n,x), K/(alphax(mu2-mul))));
end
end

end
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