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We are interested in the so-called multiple-node immunization for complex net-
works under attack of a spreading agent. The latter is a hot topic in network
science and epidemiology and it consists in identifying and removing a set of
nodes of a given size in a graph to maximally impede the agent spread. Several
approaches have been proposed in the literature based on numerical and theoret-
ical insights on how classical models for virus spread (so-called compartmental
models) evolve on graphs.

Based on the stability analysis of these compartmental models, the maximal eigen-
value of the adjacency matrix of the graph has been proposed as a measure of how
resilient the network is. Thus one of the most common approach for immuniza-
tion consists in identifying the set of nodes of a given cardinality, for which the
reduced network, obtained by removing these nodes, has minimal largest eigen-
value. This spectral optimization problem turns out to be a computationally hard
problem in the well-known NP class and the available exact or proxy algorithms
offer good solutions only on certain graph instances.

We propose here a novel efficient randomized flexible method to identify these
sets of nodes based on random walk kernels and random rooted forests. We ex-
plain the theoretical results behind the method, previously derived by Avena and
Gaudilliere, and then test it via numerical experiments on classical synthetic and
real-world benchmarks. Experimental results and related performances turn to
be comparable to those obtained by implementing so-called Netshield, the cur-
rently best available algorithm. Yet, within the same running time order , for
certain graph instances, our method can find better solutions than Nethsield.

The overall idea is that the most likely outputs of our randomized forest method
concentrate on the optimal or near to optimal sets of nodes, and hence the method
can be seen as a clever procedure to explore the space of solutions of the above
mentioned optimization problem. Another advantage of our randomized method
is that it outputs several good solutions.

Furthermore, the method its flexible because relies on a suitable choice of the
graph-Laplacian, and as such, it could be adapted and used for other optimiza-
tion problems.
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Chapter 1

Introduction

Imagine a university account network that is attacked by a computer virus. The
virus spreads when emails are sent from one account to the other and the univer-
sity wants to stop the spread of the virus as soon as possible. The university does
not want to stop all communication in the network as this can have big impact
on education, collaborations and administrative matters, but the university also
cannot let the virus spread unrestricted because sensitive data could be hacked.
One way to approach this dilemma would be to select several accounts and deac-
tivate them, such that the spread of the computer virus is slowed down and the
university has more time to find a solution or to add a layer of protection to the
accounts, without collapsing the whole network. But which accounts should be
selected for temporary deactivation?

The above described situation is one example of the so-called k-node immuniza-
tion problem for which there is no unique and easy answer to that question, see
e.g. [14],[13], [11], [15]. There are many valid approaches, yet none of them offers
perfect solutions except for trying all possible combinations, which gets infeasi-
ble for moderately-sized networks already. Our work aims to explore one new
possible approach, namely using certain random rooted spanning forests to ap-
proach the k-node immunization problem. As a measure of immunization we will
look at the biggest difference in the maximal adjacency-eigenvalue of the non-
immunized graph (the original network) and the immunized graph (the reduced
network obtained by removing the k identified spreader-nodes). Such a spectral
immunization measure is by now considered a classical approach, which, as we
will see, is justified by how certain compartmental models on networks behave.

We will argue that our randomised method based on rooted spanning forests is
efficient and can perform better that existing deterministic algorithms used for
this spectral k-node immunization problem.

Thesis overview: We will start in chapter 2 by shortly describing the history of
epidemiological models, after which we will focus on to the key SIS model on net-
works and its relation to the maximal eigenvalue of the adjacency matrix. When
the basics of the model are clear, we will move on to the k-node immunization
problem and possible approaches. One of those approaches is based on the so-
called Netshield algorithm, which we will look at in more detail. Netshield is
indeed given special attention, as it is a fast and effective algorithm widely used
in the literature, and we will use is for our later experiments as a benchmark.
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In chapter 3, we will finally introduce the random object at the core of our new
method: rooted spanning forests and related properties. After the definition of
the key object, we will describe Wilson’s algorithm and how we sample the ran-
dom rooted spanning forest, such that we can get the desired number of roots,
which we will call the forest method. In the last part of the chapter, we will look
at more properties of random rooted spanning forest that make its study valuable
in the context of the k-node immunization problem.

The fourth chapter will be dedicated to looking at the random rooted spanning
forest as a tool for network immunization. We will discuss the root set and the
graph Laplacian as parameters that can be tuned to make the forest method tar-
get network immunization. We will also highlight the results from the subse-
quent chapters 5 and 6 and discuss the outcomes, mostly without providing for-
mal proofs, as empirical reasoning will follow in the subsequent chapters. Lastly,
we will touch on the topic of batches and sample size, related to performance and
efficiency analysis.

In the 5th chapter we present the first round of experiments that we performed
to empirically determine which graph Laplacian should be used to maximize im-
munization. For that, we looked at two different graphs and compared the results
of samplings using different Laplacians. We will start with a regular network and
move on to the famous, irregular Karate Club network during these experiments
and in the end formulate a conclusion based on our findings.

In the last chapter of this work, we will present more experiments, this time to
determine how well the forest method performs. For that, we will compare it to
the Netshield variants in two rounds of experiments. In the first round we just
experimented with the forest measure to see if it performs well and compare it to
Netshield. In the second round we introduce additional tuning in form of batches
to see if we can improve the sampling results of the forest method. Additionaly,
we also looked at weighted graphs for the first time. After the description of the
experiments and results, we will sum up the results and formulate our empirical
conclusions. To finalize this work, in the end of that chapter we will quickly sum
up the results of this thesis and talk about further developments that happend
after the research project was concluded.
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Chapter 2

Epidemic spreading and the
k-node immunization problem

This chapter is dedicated to introducing the k-node immunization problem. We
will start by recalling the basics of epidemiological models. In particular the focus
will lie on the SIS model on graphs, for which we will derive an epidemic thresh-
old phrased in terms of the maximal eigenvalue of the graph adjacency matrix.
Afterwards, the k-node immunization problem will be laid out and a solution
based on the epidemic threshold will be presented in relation to a so-called max-
imal eigenvalue-drop. Lastly, we will introduce the Netshield algorithm (and
Netshield+), an existing, deterministic algorithm that approximates the above-
mentioned drop in eigenvalue.

2.1 Epidemiological models

Epidemiology is the study of the patterns and effects of diseases in a certain pop-
ulation. The beginnings of epidemiology reach as far back, as the times of Ancient
Greece, nevertheless the first mathematical models trace back to the 18th century
[6].
In the early 20th century compartmental models were introduced and can now
be considered the standard framework of modern epidemiology. The key idea
behind compartmental models is, that the population is divided into compart-
ments, such as ’susceptible’ or ’infected’, and individuals can ’transition’ between
these compartments. Such an evolution is described by differential equations [6].
More precisely, compartmental models describe deterministic densities of com-
partments and how they exchange mass.
Epidemiological models are not exclusively used to model diseases, but can be
applied to processes with similar properties, such as the spread of computer
viruses in a computer network or the spread of a rumor in a social network.
There are many different compartmental models that describe the spread of a
virus, however in this thesis we will restrict ourselves to working with compart-
mental models on networks, a recent overview of which can be found here [2].
We will recall the three simplest ones tailored to a graph set up.
Before we can do that, we need to first introduce the central object of this thesis,
namely the network.
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Definition 2.1.1 (Network). We call a network a weighted and finite (directed) graph
G, that is a triple

G = (V, E, w)

where V is a finite set of n vertices, E = {(x, y) ∈ V ×V} is the set of m directed edges
and w : V ×V 7→ R+

0 is a non-negative weight function, that assigns a weight w(x, y)
to each (x, y) ∈ E. 1

For this thesis, we will use the terms graph and network interchangeably.

Definition 2.1.2 (Weighted Adjacency Matrix). Let G = (V, E, w) be a network with
|V| = n. Then the adjacency matrix is the n× n matrix A = (ax,y)x,y∈V , with entries:

ax,y =

{
w(x, y), i f (x, y) ∈ E
0, otherwise

We next give an informal description of a compartmental model on an undirected
(i.e. ax,y = ay,x) and unweighted (i.e. w(x, y) ≡ 1) graph G = (V, E). The
underlying idea is that a node x ∈ V has one of two possible states: Susceptible
(S) and Infected (I). A susceptible node can become infected by infected neighbors
at rate β times the number of infected neighbors. Starting with this configuration,
the most common compartmental models are:

1. SI model: Once a node is infected, it stays infected and keeps on infecting
its neighbors. This model corresponds to e.g. the spread of a rumor in
a social network. Once a person knows the information, they spread the
information and don’t forget it. In a connected network this will lead to all
nodes being infected at some point. 2

2. SIS model: Once a node is infected, it can recover spontaneously at rate
δ and become susceptible again. This can be compared to the spread of
diseases like the flue, that do not make the patient immune against another
infection.

3. SIR model: There is a third state, Recovered (R), sometimes also referred to
as removed. When a node is infected it can recover spontaneously at rate
δ. A recovered node cannot infect anyone or become infected again and can
be treated as if it were removed from the network. This models scenarios
like e.g. the spread of lethal diseases or diseases that cause an immunity to
further infections like mumps.

In this thesis, the main focus will lie on the SIS model on networks. The SIS model
can reflect the early stages of virus spreading rather realistically which also makes
it a relevant object for this applied work. We next describe the so-called epidemic
threshold what will allow us to define a notion of robustness of a network under
attack of a viral agent. The epidemic threshold will be derived for the SIS model,

1It is worth anticipating that in the novel experimental last chapters of this thesis, we will only
consider undirected network datasets. Nonetheless, objects and results required to derive the un-
derlying theoretical tools presented in Chapter 3 extend to the more general directed setting and it
is convenient to present them in this more general framework.

2If a network is directed, it needs to be strongly connected to reach the state "all infected".
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which we next introduce in more detail. However, this epidemic threshold can
be extended to other compartmental models.

2.1.1 SIS model on arbitrary networks

Given a graph (V, E), consider the vector ~ρ(t) = (ρx(t))x∈V ∈ [0, 1]|V|, where we
interpret each component ρx(t) ∈ (0, 1) as the probability that node x is infected
at time t.

Definition 2.1.3 (SIS model on a network). Let G = (V, E, w) be a weighted and
undirected graph. The SIS model on the network G can be defined as the system of |V| =
n coupled equations:

∂ρx(t)
∂t

= −δρx(t) + β [1− ρx(t)] ∑
y∈V

ax,yρy(t), x ∈ V, (2.1)

with given initial condition ~ρ(0) ∈ [0, 1]n and fixed parameters β, δ > 0.

Let us interpret the evolution equation in (2.1). If a node is infected it can become
susceptible with rate δ, which corresponds to a spontaneous healing event cap-
tured in the first term in the right hand side of (2.1). And if a node is susceptible,
it can be infected by its neighbors, at rate β times the number of infected neigh-
bors. This corresponds to the second term in (2.1) when ax,y are assumed to take
values only 0 or 1 (i.e. unweighted case). More generally, for a weighted and
directed graph, the interpretation would be that infections traverse edge (x, y) at
rate β× ax,y.

By rescaling the time of the equations in (2.1) by the factor 1/δ and setting r :=
β/δ, we can rewrite the equations as follows:

∂ρx(t)
∂t

= −ρx(t) + r ∑
y∈V

ax,yρy(t)− r ∑
y∈V

ax,yρx(t)ρy(t). (2.2)

Starting from a given configuration of states~ρ(0) := (ρ1(0), ..., ρn(0)), we want to
solve the system of n coupled equations to understand, how the infection evolves.
But due to non-linear terms ρx(t)ρy(t), this system does not have an explicit
closed solution. However, it is still possible to derive bounds on the value of r
which guarantees that the infection will vanish exponentially fast.
Since the adjacency matrix A as well as the ρx(t)’s are non-negative, equation
(2.2) implies the inequality:

∂ρx(t)
∂t

≤ −ρx(t) + r ∑
y∈V

ax,yρy(t). (2.3)

For (2.3) with equality, this is a standard system of ordinary linear equations
which admits a closed solution, leading to

~ρ(t) ≤ ~ρ(0)e(rA−Id)t. (2.4)
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The adjacency matrix A is diagonizable according to the spectral theorem, since it
is real and symmetric by assumption. It can be written in terms of its eigenvectors
and eigenvalues as A = UDU−1, where U is the matrix of A’s eigenvectors and
D is a diagonal matrix, that has the eigenvalues as entries. When we rewrite the
exponential term, we see that the exponential factor is dominated by the largest
eigenvalue of the adjacency matrix, which will be referred to as λmax.

Ue(rD)tU−1e−t ≤ Ue(rλmax)tU−1e−t (2.5)

Therefore, for rλmax − 1 < 0, the ρx(t) decay to 0 at least exponentially fast for all
x ∈ V. This proves the following theorem.

Theorem 2.1.4 (Epidemic threshold and lower bound). Let~ρ(t) be the SIS dynamics
in (2.1) for some given initial condition ~ρ(0). Set

rc := sup {r : t→ ρx(t) decays at least exponentially fast for all x}

and let λmax be the largest eigenvalue of the adjacency matrix A. Then

rc ≥
1

λmax
. (2.6)

We call rc the epidemic threshold.

This means, that when λmax ≤ δ/β, the virus will die out at least exponentially
fast over time.

As shown in the next lemma, it is easy to see that λmax can not exceed the maximal
weighted degree dmax = maxx∈V ∑y 6=x w(x, y) of the graph, and we recall that it
is also possible to show that the square root of the maximal degree

√
(dmax) gives

a bound from below.

Lemma 2.1.5 (Eigenvalues bound by maximal degree). The eigenvalues of the adja-
cency matrix of a given graph are smaller or equal than the maximal degree.

Proof. Let G = (V, E, w) be a weighted graph and A be the corresponding weighted
adjacency matrix with entries ax,y for all x, y < n ∈N and maximal weighted de-
gree dmax. Let λ be an eigenvalue of A, with corresponding eigenvector u =
(u1, ..., un). Rescale u, such that |uk| ≤ 1 for all k. We get:

|λ| = |λux| = |
n

∑
y=1

ax,yuy| ≤
n

∑
y=1
|ax,y||uy| ≤

n

∑
y=1
|ax,y| ≤ dmax (2.7)

The above theorem and these relations between λmax and dmax confirm the intu-
ition that high degree nodes are the main cause for the spreading of a virus, but
as we will see in concrete examples, the picture is more subtle.

Let us also stress that the highest eigenvalue is also connected to the connectivity
of a graph and being more strongly connected makes a graph more vulnerable,
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thus lowering the epidemic threshold. It is also positively correlated with the so-
called loop capacity and path capacity [8]. These measures describe the quantity
of loops/ paths of length k = 2, 3, ..., hence when these measures are high, it indi-
cates stronger connection and therefore less robustness against a virus.
In a modified and slightly simplified version of the SIS model described above,
the authors in [7] show that for arbitrary undirected and unweighted graphs,
such an epidemic threshold is eventually equal to 1/λmax.

2.1.2 SIS and the Contact Process

We used the SIS dynamics on networks to describe evolution of infections via a
system of PDEs. From a probabilistic perspective, there is a well known stochastic
process, referred to as contact process (see e.g. [12]), which is morally analogous
to the SIS dynamics. Let us recall its definition and briefly clarify the connection
to the SIS defined above.

Definition 2.1.6 (Contact Process). Given a graph G = (V, E) and fixed parameters
β, δ > 0, the contact process is the continuous-time Markov chain (ηt)t≥0 with state
space {0, 1}V and the following local transition rates:

c(x, η) =

{
β ∑ η(y) if η(x) = 0
δ if η(x) = 1,

to go from a given configuration η ∈ {0, 1}V to the configuration ηx, obtained from η by
flipping the coordinate at node x.

This Markov process corresponds to dependent Bernoulli random variables ηt(x)’s
evolving over time, representing the state of individual x at time t (1 for infected
and 0 for susceptible). Now, fixing an initial configuration η0 and defining

ρx(t) := E [ηt(x)] = P(ηt(x) = 1), x ∈ V (2.8)

it is possible to show that these expectations satisfy the following coupled equa-
tions

∂ρx(t)
∂t

= −ρx(t) + r ∑
y∈V

ax,yρy(t)− r ∑
y∈V

ax,yE [ηt(x)ηt(y)] , x ∈ V. (2.9)

Now, the Bernoulli random variables ηt(x)’s are correlated and thus it is not pos-
sible to factorize E [ηt(x)ηt(y)] into E [ηt(x)]E [ηt(y)] =: ρx(t)ρy(t). If they were
independnet, then the factorization would hold true and the coupled system in
(2.9) would reduce to the system in (2.2), implying that the average evolution of
the contact process would be exactly the same as the SIS dynamics defined in the
previous section. Yet, these correlations are present even if they should typically
be small, in this precise sense the average contact process and the SIS dynamics
differ. Yet in practice one model approximate well the other and vice versa.
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2.2 k-node immunization problem

In this thesis, we are interested in how to make a network more resistant to the
outbreak of a virus. More precisely, we want to pick the best set of k nodes in
a network and remove them, such that the resistance against virus outbreaks is
maximized. This is called the k-node immunization problem.
For some synthetic topologies like a star graph the answer to this problem is ob-
vious, but for most graphs it is not trivial. Especially real networks rarely exhibit
regular properties and need to be examined further.
A natural suggestion would be to remove the highest degree nodes, but a simple
example shows that this can be in general suboptimal. Take a graph that consists
of two cliques that are connected by one node, that acts as the bridge between
them. It is easy to see that in terms of degree, the nodes to be removed would be
part of the cliques, but in terms of immunization it would be best to remove the
bridging node. For another example see Figure 5.1
It is evident, that there are many different approaches to the k-node immuniza-
tion problem, but they will not all be mentioned here. Instead, we will use the
previously derived epidemic threshold to construct a method that works on all
finite networks and makes them more robust, as described in the previous sec-
tion.
Since the epidemic threshold is linked to the largest eigenvalue of the adjacency
matrix of a graph, the obvious approach is to find the set of nodes, that achieves
the most significant drop in the largest eigenvalue, which will be referred to as
the eigendrop and denoted by ∆λ.
This can be done by simply computing the eigendrop for all possible sets, an al-
gorithm that we will call "Comp-EV". For very small graphs this is possible, but
due to the costly eigenvalue computations, choosing a set of k nodes already gets
problematic for say n = 50, since there are (n

k) possibilities that need to be tested.
The computational cost of this method is O((n

k) · m), which especially proofs in-
feasible when considering that we want to work with large real-world networks.
Therefore, there is a need for a different approach. For that, [8] propose the
"Shield-value".

Definition 2.2.1 (Shield-Value). Let G = (V, E, w) be a graph with adjacency matrix
A and S ⊂ V be a set of nodes. Further, let u be the eigenvector belonging to λ. Then
define the Shield-value as:

Sv(S) = ∑
x∈S

2λu(x)2 − ∑
x,y∈S

ax,yu(x)u(y) (2.10)

This score gives a set of nodes a high Shield-value, when the u(x) are high and
the ax,y are low or zero at the same time. In this, the second sum acts as a sort
of repellence that punishes nodes that are too similar. The Shield-value actu-
ally approximates the eigendrop ∆λ(S), which is the eigendrop, if the rows and
columns of the x ∈ S are removed from the adjacency matrix A [8].
We call the algorithm that computes the Shield-values of all possible sets to op-
timize the eigendrop "Comp-Sv". Its computational cost is O((n

k) · k2), but is still
very costly, since all possible sets need to be tested.

Lemma 2.2.2. Let λ(S) be the eigenvalue of Â, the adjacency matrix A without the rows
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and columns of S . Let α be the difference between the largest and the second-largest
eigenvalue of A and dmax be the highest degree of the graph. If λ is the simple largest
eigenvalue of A and α ≥ 2

√
2kdmax, then

∆λ(S) = Sv(S) + O(∑
y∈S
‖a:,y‖2)

This lemma states, that Comp-Sv is a good approximation for Comp-EV. The
proof for this can be found in [8].

2.3 Netshield and Netshield+

Approximating the eigendrop using Comp-Sv is already more preferable than
computing the eigenvalues for all possibilities, but is still too costly for actual ap-
plication. To approximate the shild-value, [8] propose two algorithms that are
significantly less costly than Comp-Sv, while providing a good approximation of
the eigendrop.

Algorithm 1 Netshield

Input: Adjacency matrix A and a number of nodes to be removed k ∈N

Output: Set S with k nodes
1: Compute the largest eigenvalue λ of A and corresponding eigenvector u.
2: Set S = ∅
3: for j = 1 to n do
4: v(j) = (2λ− A(j, j)) ∗ u(j)2

5: end for
6: for iter = 1 to k do
7: B = A(:,S)
8: b = B · u(S)
9: for j = 1 to n do

10: if j ∈ S then
11: score(j) = −1
12: else
13: score(j) = v(j)− 2b(j) · u(j)
14: end if
15: end for
16: i = argmaxj(score(j)); add i to the set S
17: end for
18: return S

The first algorithm is called Netshield. It starts by computing the largest eigen-
value and the associated eigenvector. Then it uses these to compute the indi-
vidual Shield-values of each node. Then the algorithm does k iterations, in each
adding a node to the set S . The nodes are added in a greedy manner, based on the
score of each vertex, which is comparable to the Shield-value of node sets. Finally,
the algorithm outputs the identified node set.
[8] show that Netshield has the computational complexity O(nk2 + m), where n
is the cardinality of the vertex set and m is the cardinality of the edge set of the
underlying graph. Since for the k-node immunization problems usually the k is
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much smaller than the n, the complexity can be seen as linear with respect to
the size of the input graph. Especially, when comparing it to the complexity of
Comp-Sv, this is a great improvement. Additionally, [8] prove that Netshield is
close in effectiveness to Comp-Sv.

Theorem 2.3.1 (Effectiveness of Netshield). Let S be the node set chosen by Netshield
and Ŝ be the set chosen by computing all shield-values, and ∆λ(S) and ∆λ(Ŝ) be their
respective eigendrops and e Euler’s number. Then,

∆λ(S) ≥ (1− 1/e)∆λ(Ŝ)

This theorem implies that Netshield is close to optimal in comparison to Comp-
Sv. On the other hand, Comp-Sv is an algorithm that approximates Comp-EV,
which is the exact maximal eigendrop. Thus, Netshield should provide a good
approximation of the actual maximal eigendrop ∆λ. In our applications Net-
shield achieved really good results, as we will see in chapter 6.
Still, this algorithm also has its limitations. The conditions mentioned in lemma
2.2.2 might not always be satisfied. We have shown in lemma 2.1.5 that λmax ≤
dmax, so the conditions simplify to k ≤ dmax/8, which can lead to bad approxima-
tions, when the highest degree of a graph is relatively low. For this purpose, [8]
propose a variation of Netshield that solves this problem and can even improve
the achieved eigendrop.

Algorithm 2 Netshield+

Input:Adjacency matrix A, a number of nodes to be removed k ∈ N and a
batch size b ∈N with b ≤ k
Output: Set S with k nodes

1: compute number of iterations t = b k
bc

2: Set S = ∅
3: for j = 1 to t do
4: Set S ′ = ∅
5: S ′ = Netshield(A, b)
6: S = S ∪ S ′
7: update A by deleting the rows and columns of the nodes in S ′
8: end for
9: if k > tb then

10: S ′ = Netshield(A, k− tb)
11: S = S ∪ S ′
12: end if
13: return S

Netshield+ is an iterative version of the original Netshield algorithm, that finds
the set S in batches of size b instead of finding the whole set at once. After find-
ing a batch, it removes it from the vertex set and recomputes the eigenvalues
and eigenvector. Then it computes the next b nodes and this is repeated until all k
nodes are found. The available information is updated after each round and thus,
better approximations of the eigendrop are possible.
A question that might arise at this point, namely how to choose b. The batch size b
can make a big difference when it comes to precision, but also computation time.
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The complexity of Netshield+ is of the order O(mk/b + nkb), and highly depends
on b. For b = k both Netshield and Netshield+ have the same complexity, how-
ever also the same results.
To improve the precision, a smaller b need to be chosen at the cost of greater com-
putational complexity. It would be ideal to compute batches of size b = 1, but
this will make the computations very long, especially for bigger graphs, since the
most time-consuming part is computing the largest eigenvalues and their cor-
responding eigenvectors. Experimental results from [8] suggest, that choosing
b ≈ k/10 has a good trade-off between computation time and achieved eigen-
drop. This is in particular a suggestion for large networks. For rather small
networks, as we will see in the experiments presented in chapter 6, a smaller b
should be chosen. Due to the small size of the network, the overall computation
time is not that high and normally not that many nodes need to be removed.
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Chapter 3

Random Rooted Spanning Forest

This chapter presents the theoretical framework of the novel method for the k-
immunization. The core of the method is based on a certain probability measure
on the space of spanning forests of the graph studied by Avena and Gaudilliere
in some recent works, see [4].
Firstly, mathematical objects needed to construct the forest measure will be de-
fined. We will define the rooted spanning forest and the forest measure and in-
troduce Wilson’s algorithm, an algorithm that allows us to sample a rooted span-
ning forest from the forest measure. Next, we will expand on the properties of
the forest and its root set.
All together, this chapter will contain the basis of the experimental work that will
be presented in chapters 5 & 6.

3.1 Key objects

Definition 3.1.1 (Strongly Connected or Irreducible Network). Let G = (V, E, w)
be a (directed) network. We call G strongly connected or irreducible, if for every pair
x, y ∈ V there is a sequence {(xi, yi)}l

i=1 ∈ E for some l ∈N, such that x1 = x, yl = y
and yi = xi+1.

Thus, a directed graph is strongly connected, when there is a directed path con-
necting any two vertices.

Definition 3.1.2 (Graph Laplacian). Given a graph G on n vertices, the (weighted)
graph Laplacian is a matrix L defined as

L = A− D

where A is the weighted adjacency matrix of G and D is a n× n diagonal matrix with
entries D(x, x) = ∑y 6=x w(x, y) := w(x).

The weighted graph Laplacian1 only differs from the weighted adjacency matrix
by the diagonal. We notice in particular that all rows of a graph Laplacian sum
up to zero.
The Laplacian allows us to define a random walk associated to a graph G.

Definition 3.1.3 (Random walk associated to a graph). Let G = (V, E, w) be an
irreducible, finite, directed and weighted graph. We call the random walk associated to

1In the literature, sometimes the matrix −L is also called combinatorial Laplacian.
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G the continuous-time Markov chain X = {X(t) : t ≥ 0} with state space V and
infinitesimal generator the graph Laplacian L.

This stochastic process has a variable jump rate which depends on the current
state of the chain. If the Markov process is in position x, the next jump will hap-
pen at an exponential time of rate w(x) = ∑y∈V\{x} w(x, y)
Because the network is irreducible and finite by definition, there exists a unique
invariant measure µ for the Markov process X.

In what follows, we will use the so-called hitting times as defined next.

Definition 3.1.4 (Hitting time of a set). For a subset A ⊂ V the hitting time of A is
defined as

TA = in f {t ≥ 0 : X(t) ∈ A}

and when A is empty, the hitting time is T∅ = ∞

The hitting time of a set is the time it takes the Markov process X to reach a state
that is part of the set A.

3.2 Rooted forest measure and sampling

Coming to the more interesting part of this chapter, we will now define the rooted
spanning forest and its root set.

Definition 3.2.1 (Rooted Spanning Forest). Given a (directed) graph G = (V, E),
a rooted spanning forest φ = (Vφ, Eφ) is a (directed) subgraph of G, that has the
following properties:

1. Vφ = V, so the set of vertices is identical for both graphs.

2. φ is acyclic.

3. For all x ∈ V , there is at most one y ∈ V, such that (x, y) ∈ Eφ

The root set R(φ) of a rooted spanning forest φ is the subset of vertices x ∈ V, for which
there is no (x, y) ∈ Eφ.

FIGURE 3.1: Random rooted spanning forest: The different rooted
trees are colored in different colors with the big dots being the

roots of each tree
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The connected components of a rooted spanning forest are called rooted trees.
The edges of each tree are directed towards the tree’s root and every tree has ex-
actly one root. The cardinality of the root set is thus equal to the cardinality of the
trees. We stress that a rooted tree can be degenerate, i.e. it may consist of only
one vertex, the root of the tree.
The set of all spanning rooted forests of a given graph G is denoted by F . We
also notice that since rooted spanning forests φ ∈ F only differ by their edge set,
within F they can be characterized by their respective (directed) edge sets Eφ.

In the context of the immunization problem, we will use certain random points
(see Section 3.3) corresponding to the root set of a parametric random forest on F
which we next describe.

Definition 3.2.2 (Random Forest of parameter q). Fix q ≥ 0. We call random forest
the random variable Φq with values in F characterized by the following distribution:

P(Φq = φ) =
w(φ)q|R(φ)|

Z(q)
, φ ∈ F , (3.1)

with w(φ) = ∏e∈φ w(e), the weight of a given forest, |R(φ)| the cardinality of the root
set, and Z(q) = ∑φ∈F w(φ)q|R(φ)| the normalization constant referred to as partition
function.

We note that even the degenerate case q = +∞ can be included, which yields the
deterministic degenerate forest Φ∞ = ∅ ∈ F , consisting of n roots and no edges
(i.e. degenerate trees).

There exists a classical method that allows to sample a random rooted spanning
forest according to the forest measure. This method is known as Wilson’s Algo-
rithm, see [16], and it is based on so-called loop-erasure of the random walk X
associated to the graph. A version of this algorithm, that samples Φq for q > 0 is
briefly described next in the spirit of [4].

Algorithm 3 Wilson’s Algorithm

Input: q > 0, G = (V, E, w).
Output: Random rooted spanning forest Φq

1: Set i = 0, Bi = ∅, φi = ∅
2: while Bi 6= V do
3: Chose arbitrary x ∈ V\Bi
4: Run Markov process X :

[
0, Tq ∧ TBi

]
→ V starting in x

5: Erase the loops of the process X to obtain the trajectory (x0, x1, ..., xk)
6: Bi = Bi ∪ {x0, x1, ..., xk} . add the nodes and
7: φi = φi ∪ {(x0, x1), (x1, x2), ..., (xk−1, xk)} . the edges of the trajectory
8: i = i + 1
9: end while

10: return Φq = φi
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Wilson’s Algorithm adds nodes and edges to a forest in an iterative manner. We
begin with an empty set Bi of nodes and an empty forest φi. Starting with a
random node x ∈ V the algorithm runs the Markov process X associated to the
graph and records the trajectory. In line 4 of the algorithm, Tq stands for an in-
dependent exponential random variable with parameter q and TBi is the hitting
time of the set Bi. In the next step, the loops of the trajectory are erased, which
gives a trajectory of the form:

Γx
q,Bi

= (x0, x1, ..., xk) ∈ {x} × (V\(Bi ∪ {x}))k−1 × (V\{x}),

where all the nodes are different from each other. These nodes and the edges re-
sulting from the trajectory are added to Bi and φi respectively. The steps in lines
3 - 8 are repeated with an x ∈ V\Bi until φ is a spanning forest, so until all nodes
in V are also in Bi.
The roots in this algorithm can be obtained by examining the resulting Φq. The
roots will correspond to the random walks that were terminated by Tq and the
importance of the choice of q is evident once again.
It is possible to prove that this algorithm samples the random rooted spanning
forest according to the right distribution, i.e. the distribution in equation (3.1). In
particular, this algorithm is exchangeable, that is, does not depend on the specific
choice of starting point in line 3. A proof of this can be found in [16] or in [3].

For our application it is important that the number of sampled roots can be con-
trolled. Wilson’s Algorithm is a randomized procedure, so the number of sam-
pled roots is random. However, there is an iterative method presented in [4], that
allows to sample the desired number of roots. In particular, this method is fast
when one wants an approximate given number m with an error of size

√
m. By

solving the equation

∑
j<n

q
q + λj

= m,

where the λj are the eigenvalues of −L, we can find the desired q∗. But com-
puting the eigenvalues is costly, especially for big networks. [4] proposes a fast
algorithm, that allows to sample Φq with m± 2

√
m roots.

Algorithm 4 Recursive Algorithm for root approximation

Input: q > 0, V
Output: Random rooted spanning forest Φqi , qi

1: Set i = 0, qi = q
2: repeat
3: Sample Φqi with Wilson’s Algorithm
4: if |R(Φqi)| /∈

[
m− 2

√
m, m + 2

√
m
]

then
5: qi = mqi/|R(Φqi)|
6: i = i + 1
7: end if
8: until |R(Φqi)| /∈

[
m− 2

√
m, m + 2

√
m
]

9: return Φqi , qi

The non-negative input parameter q can be picked arbitrarily, since the algorithm
converges rather fast. We also stress that in concrete examples Algorithm 4 re-
turns the exact number of desired roots.
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3.3 The set of roots as important nodes in a network

We have established what the forest measure is and also how to sample a random
rooted spanning forest with the desired amount of roots. However, we still did
not expand on the properties of the forest measure and its root set, which is actu-
ally the main object of interest for this research.

Theorem 3.3.1 (Partition function). For any q > 0, the normalizing constant Z(q) in
(3.1) is given by the characteristic polynomial of the graph Laplacian L evaluated at q,
that is:

Z(q) = det [q · Idn − L] .

This is a version of the so called matrix-tree theorem, which in its origin can be
traced back to Kirchhoff [10]. It states that the partition function can be character-
ized in terms of the eigenvalues of the Laplacian. See [4] for the proof of a more
general version of this theorem.

We can now finally discuss the random root set R(Φq) which is the main tool
we will use in the experiments to come. A crucial property of this set is that its
distribution is explicit and give rise to a so-called determinantal process related
to how the random walk X observes the graph on timescale 1/q. This is described
in the next theorem.

Theorem 3.3.2 (Determinantal roots with killed random walk kernel). For a fixed
q > 0,

P(A ⊂ R(Φq)) = det
[
Kq
]

A ,

with
Kq(x, y) := Px(X(Tq) = y), x, y ∈ V

for any A ⊂ V. Here P denotes the probability w.r.t. to the distribution of the forest and
Px denotes the probability w.r.t. to the random walk X starting in x ∈ V. Further,

[
Kq
]

A
stands for the matrix Kq restricted to the rows and colums of the set A ⊂ V.

The above statement allows for explicit computations and its derivation can be
found in [4]. In particular, the theorem implies that if w(x, y) = w(y, x), then
the roots repel each other and are pairwise negatively correlated. In fact, for all
x, y ∈ V we get:

det[Kq]{x,y} = Kq(x, x)Kq(y, y)− Kq(x, y)Kq(y, x)

= Kq(x, x)Kq(y, y)− Kq(x, y)2 ≤ Kq(x, x)Kq(y, y),

and thus P(x, y ∈ R(Φq)) ≤ P(x ∈ R(Φq))P(y ∈ R(Φq)), which shows the
negative correlation.
For the next property, a new object needs to be introduced.

Definition 3.3.3 (Partition induced by the forest). For a spanning forest φ, P(φ) is
the disjoint partition of V associated with the spanning forest φ. Two elements x, y ∈ V
are in the same block of the partition, if they are part of the same tree.
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Theorem 3.3.4 (Roots at restricted equilibria). Let [A1, ..., Am] be an arbitrary parti-
tion of V with m ≤ n subsets and and fix ri ∈ Ai, i = 1, ..., m. Then

P(R(Φq) = {r1, ...rm}|P(Φq) = [A1, ..., Am]) =
m

∏
i=1

µAi(ri)

given that the event, that is conditioned on, has a non-zero probability. Here, µAi is the
invariant measure of the continuous-time random walk associated to the graph restricted
to the points in Ai.

This theorem implies that if we condition on the induced partition P(Φq), where
the vertices are partitioned into k blocks that correspond to the spanning trees, we
can conclude that within the spanning trees, the k roots are distributed according
to the invariant measures µ of the random walk X restricted to these blocks. That
also means that if conditioning on having only one tree, which is the case for suf-
ficiently small q, the sampled root will be distributed according to the invariant
measure of the random walk X on the whole graph.
Furthermore, we can express the cardinality of the root set as a sum of indepen-
dent Bernoulli distibuted variables, given that all eigenvalues of −L are real.

Theorem 3.3.5 (Number of roots). For a fixed q > 0. Set

pj(q) =
q

q + λj
, 0 ≤ j ≤ n− 1,

Split the eigenvalues in
J = {j ≤ n− 1 : λj ∈ R},

and define independent random variables Bj with distribution:

P(Bj = 1) = pj(q), P(Bj = 0) = 1− pj(q), j ∈ J

When q > 0 then |R(Φq)| is distributed as

Sq = ∑
j∈J

Bj

Since in this thesis we work with symmetrical adjacency matrices and thus a real
spectrum, we restricted the message to real eigenvalues only. However, this theo-
rem, including the proof, can be found in [4] in a more general form for both, real
and complex, eigenvalues.

We notice that since λ = 0 is always an eigenvalue of the Laplacian, the last the-
orem is consistent with the fact that at least one root is present. More generally,
since the quantity of zero eigenvalues of Laplacians equals the number of con-
nected components, every connected component will have at least one root.
Also, by differentiating the normalization partition function Z(q) with respect to
q, the momenta of |R(Φq)| can be obtained and we get the mean number of roots

E
[
|R(Φq)|

]
= ∑

j<n

q
q + λj
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and the variance

Var
[
|R(Φq)|

]
= ∑

j<n

q
q + λj

− (
q

q + λj
)2
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Chapter 4

Using the rooted spanning forest
to maximize the eigendrop

After the formal introductionin to the forest method in the previous chapter, we
will take an applied standpoint. In particular, we will deepen the understanding
of the root set and then continue with the choice of Laplacian, that is crucial for
the outcome of the sampling. We will close the chapter with results and conclu-
sions about the forest method that were gained in the course of experiments on
artificial and real networks.

The guiding question of the research that lead to this thesis was: Can the for-
est measure and in particular, the root set be used for network immunization
problems? This question arose before we researched other methods of network
immunzation or how this immunzation can be measured, but was purely moti-
vated by the remarkable features of the root set.
In Chapter 2 we already established, that the eigendrop is a meaningful charac-
teristic when immunizing a network and presented a fast algorithm that works
by approximating the maximal eigendrop. Now, we will return to the random
rooted spanning forest and dive into why it is meaningful for network immu-
nization and how it can be tuned to deliver good results in the context of maximal
eigendrop. For that we will inspect the forest from a more applied perspective.

4.1 The root set and its complement

In the previous section we described the main properties of the root set R(Φ)
that make it an interesting object per se. However, from a heuristic perspective,
what characterizes a good set of nodes to be removed from a network to increase
robustness? These nodes need to be well-distributed throughout the network.
Additionally, usually these nodes should have a relatively high degree such that
they eliminate many links and paths when removed.
Indeed, when looking at theorem 3.3.2 we obtain that the roots in R(Φ) are well-
distributed and even repel each other under the right conditions. Also, theo-
rem3.3.4 indicates that with the right choice of graph Laplacian well-connected
nodes are more likely to be a root than nodes of relatively low degree.
These properties and the versatility of the forest measure were the reason that ini-
tiated this research project. However, after experimenting with the roots we also
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considered another set, namely the complement of the root set. The properties of
the root set described in the previous section can be extended to the complemen-
tary set: As well as the actual root set R(Φ), its complement R(Φ)C = V\R(Φ) is
also determinantal, which is a known property of determinantal point processes.
In addition to that, the complementary root set is also well-distributed within the
graph and its distribution can be explicitly characterized , see section 3.4.2 in [5]
for details. These properties make it a valuable object to consider for the exper-
iments. Ultimately, we found that either set can be relevant, depending on the
choice of Laplacian.

4.2 Manipulating the random rooted forest through choice
of a graph Laplacian

One property that makes the forest method so versatile is the possibility to adjust
the measure to the problem by choosing a graph Laplacian. The graph Laplacian
assigns a weight structure to the network and thus has a significant influence on
the outcomes of the sampling and the related random walk (see 3.1.3). Therefore,
making the right choice is crucial. This will be even further illustrated in the next
chapter.
Throughout the experiments, we tried three different Laplacians, out of which
two delivered good results under the right conditions. We will first introduce the
two promising variants and lastly, shortly describe the last option and why we
decided to discard it in the context of network immunization.

4.2.1 (Original) Graph Laplacian

We started the experiments with the original (weighted) graph Laplacian L =
A − D where A is the adjacency matrix with entries ax,y and D is a diagonal
matrix with entries D(x, x) = ∑n

y=1 ax,y. As captured in the next lemma, if the
original network is undirected then the correspondent random walk has uniform
invariant measure on the vertex set of the graph (and hence so it is distributed the
unique root of the random spanning tree obtained for q sufficiently small with the
rooted forest).

Lemma 4.2.1. Consider an undirected weighted connected network G = (V, E, w), that
is, with w(x, y) = w(y, x) for any x, y ∈ V. Then the associated random walk with
infinitesimal generator given by the graph Laplacian has uniform invariant measure.

Proof. We first observe that the Markov chain is finite and irreducible, hence the
classical Perron-Frobenious theorem guarantees that there exists a unique non-
degenerate invariant measure. Further, it is easy to see that the random walk
satisfied the detailed balanced equation with respect to the uniform measure
π(x) = 1/|V|, ∀x ∈ V, in fact:

π(x)w(x, y) = w(y, x)π(y) for all (x, y) ∈ E

if and only if π(x) = π(y), since w(x, y) = w(y, x). We have thus showed that
π(x) = 1/|V| is a reversible measure for the random walk. Due to the uniqueness
of the invariant measure and the fact that a reversible measure is invariant, we get
the claim



4.2. Manipulating the random rooted forest through choice of a graph Laplacian23

The first experiments using the graph Laplacian were discouraging, since for
small k (with respect to the graph size), the most likely sets were indeed well
spread within the graph and the nodes were repelling each other, but their eigen-
drop was always very low.
For the purpose of network immunization small k are far more interesting, since
in practice immunization often comes with some kind of cost function and the
cost needs to be kept at a minimum. However, for large k close to n we found that
the forest measure was choosing some sets with significantly higher frequency
than others. This encouraged us to do the same experiments, but instead of sam-
pling k roots, we sampled a set of kC = |V| − k roots and looked at the non-root
nodes. The latter would correspond to consider R(Φq) as the set of suscepti-
ble individuals to be kept in the network and R(Φq)C as the set of “dangerous-
spreader” nodes to be removed. This variant indeed produced more relevant
results, as the algorithm started to discriminate between sets and the most cho-
sen sets were often corresponding to the set with the highest eigendrop of the
example graphs.
In particular, when using the complement set R(Φq)C associated to the graph
Laplacian to sample a single vertex, has captured in the next lemma, this node is
distributed proportionally to the (weighted) degrees.

Lemma 4.2.2. Let G = (V, E, w) be an undirected weighted connected network and Φq,
for some q > 0, be the rooted forest associated to the graph Laplacian of this graph. Then

P(R(Φq)
C = {x}) = w(x)

∑y∈V w(y)
, ∀x ∈ V.

Proof. The probability that x is the only element in the complementary of the root
set coincides with the event that all roots are degenerate, except x, and there is a
single edge in the whole spanning tree. From the distribution of the forest we can
thus compute

P(R(Φq)
C = {x}) = ∑

F∈F :R(Φq)C={x}
P(Φq = F)

= ∑
y∼x

qn−1w(x, y)
Z(q)

=
w(x)qn−1

Z(q)
.

The second equality is according to definition 3.2.2 and the last equality is because

the sum of all weights connecting x to its neighbours is exactly w(x). w(x)qn−1

Z(q) is
then distributed proportional to the outgoing weights of the x ∈ V.

4.2.2 Degree-Biased Laplacian

As in the beginning the experiments with the simple graph Laplacian showed
little prospect, we started thinking about a different Laplacian that would put a
stronger focus on the degrees. Therefore, a Laplacian which leads to degree bi-
ased sampling of the roots was included into the experiments.
This graph Laplacian is of the form L̃ = D−1A− Id, where as usual A is the adja-
cency matrix and D the diagonal matrix with entries D(x, x) = ∑y∈V ax,y = w(x)
and Id is the identity matrix of size V × V. In the case that the graph is un-
weighted, we notice that the matrix D−1 has the inverse degrees on the diagonal.
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We will call this normalized Laplacian L̃ the degree-biased Laplacian. In particular,
as the next lemma shows, if the given weighted network is undirected, then the
invariant distribution of the associated random walk with generator L̃ is propor-
tional to the weighted degree

Lemma 4.2.3. Let G = (V, E, w) be an undirected weighted connected network and let
L̃ denote the degree-biased Laplacian of this graph. Then the random walk on V with
infinitesimal generator given by L̃ has invariant measure proportional to the weighted
degree.

Proof. We can argue as in Lemma 4.2.1 and check that the unique invariant mea-
sure is characterized by a reversible measure given the degree-biased distribu-
tion. In fact, detailed balanced with respect to this generator L̃ reads as

π(x)L̃(x, y) = L̃(y, x)π(y) for all (x, y) ∈ E.

By definition of L̃, this is equivalent to

π(x)
w(x, y)
w(x)

=
w(y, x)
w(y)

π(y),

which due to the assumption that w(x, y) = w(y, x) can be re-written as

π(x)
π(y)

=
w(x)
w(y)

,

from which, using that π must be a non-degenerate probability measure, we con-
clude that π(x) = w(x)/ ∑y∈V w(y), ∀x ∈ V.

We notice that in view of this lemma, when sampling a unique node with root
set associated to L̃, it is distribution is proportional to the weighted degree of
the network. As we saw in Lemma 4.2.2 this is exactly the same as when using
the complementary set associated to L, yet this equivalence in distribution is true
only for k = 1. As we will see in the experiments, the results of the sampling for
small k have in fact similarities to the results of the complement root set associated to
the original graph Laplacian, but they are not the same. For the example graphs that
we used for the experiments, both degree-biased Laplacian and the complement
of the simple graph Laplacian lead to comparable decisions in terms of node im-
munization.
Out of curiosity, we also performed experiments with the complementary root
set associated to L̃, just like we did for the graph Laplacian. Related experiments
performed badly for the eigendrop immunization problem, so this variant was
not pursued any further.

4.2.3 Eigenvalue-Biased Graph Laplacian

The last graph Laplacian was the most experimental. The other variants were al-
ready producing good results, but it was not directly evident why they found the
highest eigendrop sets with higher frequency than others. The thought behind
the eigenvalue-biased Laplacian was to construct a Laplacian that was directly con-
nected to the eigenvalues. This had the goal to tailor the Laplacian to the problem
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to be solved, but also to determine if we correctly understand the mechanisms of
the forest method.
The idea was to have a Laplacian with two absorbing states. It is set up the fol-
lowing way: First, we construct a Sublaplacian of the form L′ = A − dmax · Id,
where d is the maximal out degree of the graph. To make this Sublaplacian into
a Laplacian we need to find bi for all rows, such that the row sums are all equal
to zero. Adding the column vector b and a zero row vector to L′ makes it into a
Laplacian L̂, with the bi being an absorbing state.
Now, by subtracting a diagonal matrix with q on the diagonal , and linking a col-
umn vector with entries q and a zero row vector to the Laplacian L̂, we get the
final Laplacian L̇.
Contrary to the theory, this Laplacian did not produce good results. It seemed to
prefer the high eigendrop sets, but they were relatively only slightly more likely
than bad sets. The results were thus not very clear and for real application this
method would be a lot more risky than the simple graph Laplacian and degree-
biased Laplacian. In the end, this variant is more complicated and less reliable
than the other options, thus we decided to discard it.
Of course, we also tested Option 3 complement, but the results were even worse
and always somewhat close to uniform sampling and therefore useless in the
context of maximal eigendrop.

4.3 Applying the forest method to node immunization prob-
lems

To get the best results when applying the forest method to eigendrop maximiza-
tion problems, it is necessary to implement it the right way. There are several
choices that need to be made, e.g. about the Laplacian, but also how big to
choose the sample and other factors that can influence the end result. We stress
that we report here the first experimental findings of the forest approach and that
improvements of the method are in progress in a joint collaboration with Luca
Avena, Alexandre Gaudillière and Michael Emmerich.

4.3.1 Complement of the simple graph Laplacian vs. degree-biased
Laplacian

Both, the complement of the simple graph Laplacian and degree-biased Laplacian
showed good results during the initial experiments. However, the complement of
the simple graph Laplacian finally had more advantages than the degree-biased
Laplacian and subsequent research conducted by Luca Avena and Alexandre
Gaudillière confirmed the value of the complement of the simple graph Lapla-
cian. The differences between the two Laplacians will be further elaborated in
the next chapter and a detailed comparison will be presented for better under-
standing.

4.3.2 Sample size

For some of the experiments in this thesis, a sample size of 500.000 was used. This
is of course ideal if you have a small graph and want to gain a lot of insight about
the method, but for real world application this would be simply infeasible.
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The dilemma is, that with a bigger graph and especially a bigger k you need a
bigger sample, purely because there are so many possibilities. The forest method
is a random algorithm, so having more samples is more preferable to increase the
probability of sampling a ’good’ set.
But also, the bigger the graph, the more complex it gets in a computational sense.
In addition to that, for all the samples the eigenvalue needs to be computed or
at least approximated, which adds vastly to the computation time. This is a big
limitation when it comes to this method and finding a balanced sample size is
necessary to achieve good results.
For the small graphs in chapter 5 we used very big samples, since the purpose of
the experiments was to explore the mechanisms of the forest method and to find
a graph Laplacian that can be used for eigenvalue maximization problems.
Taking such big samples was however not an option for the experiments in chap-
ter 6. We wanted to see how the algorithm performs on bigger, real networks and
also to compare its performance to the Netshield algorithms. Netshield and Net-
shield+ are computationally relatively fast and the challenge was to have compa-
rable results with comparable or even better computation times.
To find a balance between sample size and precision, the idea was to use a spar-
sity parameter to decide about the size of the sample. The sparsity of a network
is

c = dm/ne,

and the number of samples should be equal to c. Using this approach it was
possible to achieve computation times similar to the Netshield algorithms.

4.3.3 Batches

Inspired by Netshield+, we also tried sampling the nodes in batches. Instead of
sampling all k nodes at once, only b nodes are sampled in each round and the
graph gets updated after each iteration. Just as it is with Netshield+, this way the
algorithm works with the most current information when choosing nodes, which
can lead to better results.
The experimentation with batches in the course of this research project was only
limited, however it was later further explored by Luca Avena and Alexandre
Gaudillière.
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Chapter 5

Experiments on small graphs for
different graph Laplacians

In this chapter the behaviour of the forest method on small regular and irregular
graphs will be explored. Different variants of graph Laplacians were compared to
each other in order to better understand their mechanisms and find a Laplacian
that produces the best results in the context of network immunization.
In the first section the focus is on a very regular graph. The results of the first
experiments will be used to form assumptions about the mechanisms of the dif-
ferent Laplacians. Thereafter, in the second section of this chapter, the previ-
ously made assumptions will be tested using an irregular social network. After
analysing the results of both experiments, we will form a heuristic conclusion
about which of the proposed Laplacians-root-sample combinations is most rel-
evant for network immunization. This Laplacian will then be used for further
experiments on bigger complex networks in chapter 6. We will use abbrevia-
tions for the different variants, so the simple graph Laplacian becomes SGL, the
degree-biased graph Laplacian becomes DBGL and the eigenvalue-biased graph
Laplacian becomes EBGL. When we take the complement of the root set, these
abbreviations will start with a "C", e.g. CSGL for taking the complement of the
root set sampled using the simple graph Laplacian.
The analysis of the data and in particular the eigenvalues was performed using
MatLab.

5.1 The Synthetic Graph

For the first experiments we chose a graph that is easy to comprehend, but yet
complex enough to be a valuable test subject. The graph that will be referred to
as the Synthetic Graph has 16 vertices, 15 undirected edges and is unweighted.
The maximal eigenvalue of this graph is 2.3028.

The Synthetic Graph is small enough to compute all possible combinations of node
sets and their respective eigendrops. This makes the Synthetic Graph ideal to il-
lustrate, how the forest method works and to explore different graph Laplacians.
For all variants of the experiment discussed here, we performed 500.000 exper-
iments for the roots and the complement of the roots. The large sample size is
mostly due to eigenvalue-biased graph Laplacian and to find out if the frequen-
cies would eventually converge, while the other variants converged for samples
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FIGURE 5.1: The Synthetic Graph

of significantly smaller size.
The sets are not labeled in the graphs, since for k > 1 that would make the plots
unreadable. However, the sets are in increasing order, e.g. first {(1, 2, 3)}, then
{(1, 2, 4)} and so on, for the regular cases, and in decreasing order, e.g. first
{(10, 9, 8)}, then {(10, 9, 7)} and so on, for the complementary case. On the left
axis, the number of counts is displayed, which corresponds to the height of the
bars and represents how often a set was sampled. On the right axis, the achieved
eigendrop is displayed, which corresponds to the orange line in the plot.
Here, the results of the experiments for k = 1, 3, 4 will be presented. We per-
formed the experiments for all k, but these cases were the most insightful and
meaningful. In particular, for k ≥ 4, removing the optimal sets results in a graph
with no edges and the eigendrop is equal to the maximal eigenvalue. Therefore,
there is no necessity to look at k > 4 in the context of immunization.

5.1.1 Removing 1 node

In the case of k = 1 the best node to be removed is node 13, which achieves an
eigendrop of 0.3028. In total, there are 16 different sets that the algorithm can
sample.
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Sets Counts Eigendrop Set Counts Eigendrop
1 31485 0.0667076602322045 9 66895 0.0667076602322054
2 31428 0.0289932192437967 5 66617 0.0667076602322054

11 31417 0.0289932192437976 1 66457 0.0667076602322045
8 31356 0.0289932192437976 13 50231 0.302775637731994
15 31347 0.12744789057092 16 33681 0.127447890570919
13 31335 0.302775637731994 15 33388 0.12744789057092
5 31323 0.0667076602322054 14 33327 0.12744789057092
6 31287 0.0289932192437976 2 16744 0.0289932192437967
14 31268 0.12744789057092 4 16725 0.0289932192437967
16 31262 0.127447890570919 8 16674 0.0289932192437976

TABLE 5.1: 10 most removed sets for SGL (left) and CSGL (right)

We can see that for the SGL all sets are chosen with approximately the same fre-
quency and that the algorithm does not discriminate between sets. For node im-
munization this is a bad factor.
However, for the CSGL the plot is very different. We can clearly see that the
magnitude of the different bars is proportional to their degrees. When also tak-
ing into account Table 5.1., the frequencies of the different sets are approximately
w(x)/ ∑x∈V w(x), just as stated in theorem 4.2.2.
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Sets Counts Eigendrop Set Counts Eigendrop
9 66939 0.0667076602322054 7 31611 0.0289932192437976
1 66822 0.0667076602322045 16 31557 0.127447890570919
5 66682 0.0667076602322054 14 31386 0.12744789057092

13 49701 0.302775637731994 9 31384 0.0667076602322054
16 33437 0.127447890570919 15 31356 0.12744789057092
15 33381 0.12744789057092 11 31282 0.0289932192437976
14 33251 0.12744789057092 3 31259 0.0289932192437967
7 16856 0.0289932192437976 4 31219 0.0289932192437967

12 16781 0.0289932192437976 10 31206 0.0289932192437976
11 16744 0.0289932192437976 13 31172 0.302775637731994

TABLE 5.2: 10 most removed sets for DBGL (left) and CDBGL
(right)

Just like the SGL, the CDBGL samples all sets with approximately equal fre-
quency and is not very interesting to look further into in this context. The samples
of the DBGL are very similar to the ones of the CSGL, even in frequencies of the
different sets. In the case of k = 1 both these Laplacians produce the same degree
biased results, with approximately the same relative frequencies.
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Sets Counts Eigendrop Set Counts Eigendrop
1 36457 0.0667076602322045 4 31537 0.0289932192437967
5 36313 0.0667076602322054 13 31422 0.302775637731994
9 36075 0.0667076602322054 6 31413 0.0289932192437976
13 33607 0.302775637731994 5 31407 0.0667076602322054
16 31801 0.127447890570919 14 31314 0.12744789057092
14 31566 0.12744789057092 8 31298 0.0289932192437976
15 31490 0.12744789057092 16 31264 0.127447890570919
12 29383 0.0289932192437976 9 31245 0.0667076602322054
11 29315 0.0289932192437976 3 31231 0.0289932192437967
7 29298 0.0289932192437976 7 31211 0.0289932192437976

TABLE 5.3: 10 most removed sets for EBGL (left) and CEBGL
(right)

The CEBGL exhibits the same uniform sample as the SGL and the CDBGL. How-
ever, the EBGL is very interesting. It does some discrimination based on the
degree, but it is not proportional. We tried increasing the sample to see if the
frequencies would converge towards a specific ratio, but even for samples bigger
than 500.000 the outcomes looked similar. It seems like this Laplacian is manipu-
lating the algorithm towards a degree biased sample, but there also seems to be a
lot of noise.

5.1.2 Removing 3 nodes

In the case of k = 3 there are eight sets that achieve an eigendrop of 0.5707. The
best sets to be removed are all combinations of the peripheral center nodes 1, 5
and 9 and the bridge nodes 14, 15 and 16, where each node is in a different arm
of the graph. In theory, the forest measure should prefer the set {(1, 5, 9)}, since
the roots repel each other. In total, there are 560 different possibilities to pick a set.
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Sets Counts Eigendrop Set Counts Eigendrop
3 6 11 2929 0.127447890570919 1 5 9 10552 0.570724830163117
3 7 10 2929 0.127447890570919 1 9 13 8043 0.302775637731995
3 6 12 2915 0.127447890570919 5 9 13 7808 0.302775637731995
4 7 11 2905 0.127447890570919 1 5 13 7800 0.302775637731995
4 7 10 2898 0.127447890570919 1 9 14 5328 0.570724830163117
2 6 10 2897 0.127447890570919 1 5 16 5316 0.570724830163117
4 8 11 2897 0.127447890570919 5 9 15 5230 0.570724830163117
2 8 10 2885 0.127447890570919 1 9 15 4752 0.201772648116536
3 7 11 2880 0.127447890570919 5 9 16 4645 0.201772648116536
2 6 12 2869 0.127447890570919 5 9 14 4637 0.201772648116536

TABLE 5.4: 10 most removed sets for SGL (left) and CSGL (right)

The most chosen sets of the SGL all exclusively consist of peripheral nodes with
low eigendrop, as is clear from the table. However, this also beautifully illustrates
the mechanisms of the forest method, since the algorithm preferred nodes with
the highest distance possible. In the plot we can also see that sets with a high
eigendrop have mostly low frequencies and the counts vs. the eigendrops seem
negatively correlated.
On the other hand, when looking at the CSGL, the most likely set is the predicted
set {1, 5, 9}, which is also one of the highest-eigendrop sets. The three next most
likely sets can be grouped together, since they consist of two peripheral centers
and the central node. This indicates that the forest method indeed prefers high
degree sets. That pattern also repeats for the next three sets, that consist of two
peripheral centers and one bridging node. Also, just like in the SGL, for more
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likely sets the nodes are distributed well within the graph.

Sets Counts Eigendrop Set Counts Eigendrop
1 5 9 18214 0.570724830163117 1 10 13 1070 0.302775637731994
2 5 9 6157 0.302775637731994 8 10 13 1060 0.302775637731994
1 8 9 6087 0.302775637731995 3 8 12 1059 0.127447890570919

1 5 11 6061 0.302775637731993 2 8 12 1047 0.127447890570919
1 5 16 6042 0.570724830163117 2 9 15 1037 0.201772648116536
1 5 10 6035 0.302775637731993 6 12 13 1033 0.302775637731994
1 9 14 6030 0.570724830163117 2 3 16 1033 0.18589247985766
1 6 9 6014 0.302775637731995 3 6 13 1031 0.302775637731995

5 9 15 5995 0.570724830163117 12 14 16 1030 0.228462344680052
1 5 12 5989 0.302775637731993 8 10 16 1030 0.173905306725911

TABLE 5.5: 10 most removed sets for DBGL (left) and CDBGL
(right)

The case k = 3 is very interesting in terms of comparing the different Laplacians,
because the samples for the variants significantly differ from each other. The
DBGL has the same most likely set as the CSGL, however, in the DBGL it is cho-
sen far more likely than in the CSGL. The other most chosen sets can be grouped
together again, however in contrast to the CSGL, they are not the highest cumu-
lative degree sets. These sets consist of two peripheral centers and either one
peripheral node from an opposite arm or the opposite bridging node. All these
sets are chosen with approximately the same frequency, but a lot less likely than
the most likely set.
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In the sample of the CDBGL, the most likely sets all have approximately the same
frequencies, and from the plot we can conclude that there are generally many
sets with approximately the same frequency. The sets can be grouped into three
groups, with each group having approximately the same frequency. Looking at
the plot, the high eigendrop sets seem to be less likely than other sets. This looks
very different from the SGL, but generally, both these variants seem unsuitable
for eigendrop maximization as for now.

Sets Counts Eigendrop Set Counts Eigendrop
1 5 9 1468 0.570724830163117 3 6 9 1009 0.201772648116537
1 5 13 1365 0.302775637731995 1 10 12 1000 0.127447890570919
5 9 13 1328 0.302775637731995 4 8 15 999 0.17390530672591
1 9 14 1314 0.570724830163117 1 11 13 991 0.302775637731994
1 9 13 1268 0.302775637731995 3 7 16 986 0.302775637731994
5 9 15 1249 0.570724830163117 4 10 14 981 0.302775637731994
4 5 9 1237 0.302775637731994 10 12 13 979 0.302775637731995
1 5 16 1218 0.570724830163117 4 6 13 979 0.302775637731995
1 6 9 1214 0.302775637731995 3 11 13 978 0.302775637731994
1 5 15 1209 0.201772648116536 3 7 14 978 0.173905306725911

TABLE 5.6: 10 most removed sets for EBGL (left) and CEBGL
(right)

The EBGL has the same highest frequency set as the other two promising vari-
ants, but in the case of the EBGL this set is only slightly preferred. The most
chosen sets are somewhat similar to the CSGL, but again, their relative frequency
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is almost similar to insignificant sets. We see the same results as in the case k = 1,
where the most chosen sets are ’good’, but there is just a lot of noise that makes
this variant less preferable than the others.
The CEBGL exhibits an almost uniform frequency distribution with some noise.
It does not give a lot of insight about the maximal eigendrop set.

5.1.3 Removing 4 nodes

In the case of k = 4 there is one best set, which achieves an eigendrop of 2.3028,
which is also the maximal eigendrop that is possible. The best set is {1, 5, 9, 13}
and consists of the four peripheral centers and the central node. There are 1820
possible sets in total.
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Sets Counts Eigendrop Set Counts Eigendrop
3 7 8 11 1010 0.153814495982358 1 5 9 13 6196 2.30277563773199
2 4 8 12 1006 0.153814495982359 1 5 9 14 3679 0.888562075358899

3 8 10 12 993 0.15381449598236 1 5 9 15 3625 0.888562075358899
4 8 11 12 988 0.15381449598236 1 5 9 16 3614 0.888562075358899
3 8 11 12 986 0.15381449598236 5 9 13 15 2622 0.570724830163117
3 6 8 12 984 0.153814495982358 1 9 13 14 2580 0.570724830163117
2 3 7 12 981 0.153814495982359 1 5 13 16 2578 0.570724830163117
4 6 8 11 977 0.153814495982358 1 5 13 15 2333 0.302775637731995
2 3 6 12 972 0.153814495982359 1 9 13 16 2292 0.302775637731995
2 4 7 10 970 0.153814495982359 1 5 13 14 2271 0.302775637731995

TABLE 5.7: 10 most removed sets for SGL (left) and CSGL (right)

The SGL seems to prefer combinations of peripheral nodes with low eigendrop
and the plot shows that the highest eigendrop set is a quite unlikely set com-
pared to the others. These results confirm again, that the SGL should not be used
to maximize the eigendrop.
For the CSGL the results are the opposite. The best set is also the most chosen set
with almost twice the frequency compared to the next most chosen set. The next
three most chosen sets can again be grouped together and are the sets with the
next highest cumulative degree. This pattern continues for the remaining most
chosen sets.
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Sets Counts Eigendrop Set Counts Eigendrop
1 5 9 13 4716 2.30277563773199 3 10 11 16 390 0.173905306725909
1 5 9 16 3097 0.888562075358899 6 8 9 15 384 0.570724830163117
1 5 9 15 3068 0.888562075358899 3 8 14 15 376 0.228462344680051
1 5 9 14 2975 0.888562075358899 10 12 14 16 371 0.228462344680053
1 3 5 9 2441 0.570724830163117 8 10 11 16 371 0.17390530672591
1 2 5 9 2344 0.570724830163117 3 4 8 13 371 0.302775637731995
1 5 9 10 2332 0.570724830163117 3 4 7 8 371 0.0980521056056411
1 4 5 9 2327 0.570724830163117 6 8 10 15 369 0.352919813368347
1 5 8 9 2321 0.570724830163117 4 6 14 16 369 0.45501657270942
1 5 7 9 2276 0.570724830163117 2 11 14 15 368 0.45501657270942

TABLE 5.8: 10 most removed sets for DBGL (left) and CDBGL
(right)

For the DBGL the results are similar to the CSGL. The most chosen set is the best
possible set and the next three sets have the highest cumulative degree. In com-
parison to the CSGL however, the best set is chosen relatively less frequently. The
other difference is in the sets that come after that. The DBGL picked sets that con-
sist of the peripheral centers and one peripheral node in contrast to the highest
degree sets that were picked by the CSGL.
The plot of the CDBGL looks a bit similar to the respective k = 3 plot, with a ma-
jority of sets being chosen with roughly the same frequency and some sets having
lower frequencies. The preferred sets have low eigendrops and the highest eigen-
drop set has way lower frequency than the most likely sets.
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Sets Counts Eigendrop Set Counts Eigendrop
1 5 9 13 483 2.30277563773199 4 8 9 13 347 0.570724830163117
1 5 9 16 440 0.888562075358899 2 6 8 12 345 0.153814495982358
1 5 9 14 426 0.888562075358899 7 11 12 15 342 0.352919813368348
1 5 9 15 424 0.888562075358899 4 5 11 12 341 0.241955508822762
3 5 9 13 414 0.570724830163117 1 7 9 13 341 0.570724830163117
4 5 9 13 414 0.570724830163117 4 5 12 13 332 0.570724830163117
1 5 12 13 412 0.570724830163117 2 10 12 15 330 0.185892479857659
1 6 9 13 403 0.570724830163117 4 9 14 15 329 0.570724830163117
1 5 9 12 401 0.570724830163117 3 14 15 16 329 0.570724830163117
1 6 9 14 400 0.888562075358899 2 3 4 8 329 0.0897206853195351

TABLE 5.9: 10 most removed sets for EBGL (left) and CEBGL
(right)

As we seen in the previous samples of the EBGL, the most chosen sets correspond
to the most chosen sets of the CSGL to a great part, but with way lower rela-
tive frequencies. The distinction between more and less significant sets is barely
present, even with a very large sample. This variant does not converge like the
others do and it is only slightly more likely to find a good set rather than a bad
one.
The CEBGL is not significantly differentiating between sets and looks random. It
is not clear on what grounds the sets are chosen and the frequencies do not seem
to have any correlation to the eigendrop.

5.1.4 Remarks and assumptions

The first round of experiments validated properties of the forest method, but also
provided ground for new assumptions. We saw that the chosen nodes repel each
other and some variants of sampling show interesting results.
The most promising methods seem to be the CSGL and the DBGL, since they are
differentiating between the sets and manage to find high eigendrop sets more of-
ten. The CSGL seems to be strongly connected to the cumulative degree of node
sets. In the performed experiments, the most chosen sets were always ordered
according to the degree of the sets, even for k > 1.
The DBGL had similar results as the CSGL for k = 1, which leads to the assump-
tion that this could always be the case k = 1. For k > 1 however, these variants
differed and the DBGL seemed to not be connected to the degree as much. The
most chosen set was still the highest degree set, but the other sets did not always
follow that pattern, like e.g. in the case k = 3. This means we need to further
understand the DBGL and raises the question, how does it function?
The EBGL definitely performed differently that expected prior to the experiments.
It is good and bad in the context of eigendrop maximization at the same time. In a
large sample, it would most likely lead to the same decisions as the CSGL and the
DBGL, but its relatively less likely to pick a good set than in the other variants.
The EBGL is interesting, because there is something right about its mechanisms,
but also the final results are not quiet good.
The SGL, the CDBGL and the CEBGL showed less relevant results. All these vari-
ants do not seem suitable for eigendrop maximization. This also makes sense to
some degree, since their respective complements perform well.
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Even though some of the described variants are significantly worse at identifying
relevant sets in a network, we decided not to discard any of them for the next
round of experiments. The main reason being, that the Synthetic Graph is very
symmetrical and does not resemble a real network. These properties could have
been tied to the topology of the Synthetic Graph, and might not be valid for less
ordered networks. Yet, there are hypotheses about the performance of the dif-
ferent options that we will test by performing similar experiments on a different
graph. This will show if we correctly understand the underlying mechanisms
and also provide a base to decide, which option should be used for further exper-
iments.

5.2 The Karate Club Network

After the experiments on the Synthetic Graph gave us an insight in how the for-
est method performs, we conducted the same experiments on an irregular, more
complex graph. We chose the well known network of Zachary’s Karate Club,
a small social network which models the relationships of karate club members.
Two nodes are connected, if the respective club members interacted with each
other outside the karate club. Interestingly, the network consists of two groups
surrounding the two leaders, node 1 and node 34, that represent the instructor
and the president of the club, who are in an argument and thus not directly
linked. However, there are also nodes that are part of both groups and bridge
the gap between the two leaders and make this network so interesting to analyze.
The unweighted graph consists of 34 nodes and 76 undirected edges and its max-
imal eigenvalue is 6.6728. We will refer to this network as "Karate Club".

FIGURE 5.2: The Karate Club Network

Just like for the Synthetic Graph, we performed 500.000 experiments for all vari-
ants of graph Laplacian. Also, similarly to the Synthetic Graph, the sets in the
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plots are sorted in increasing order for the regular options and in decreasing or-
der for the reverse options. The bars represent the frequencies of the sets and the
orange line is the respective eigendrop.
Further, we only include the experiments for k ≤ 3 in this thesis, since the other
experiments did not offer additional insight, while taking a lot of time to compute
the eigendrops of all possible sets.

5.2.1 Removing 1 node

In the case of k = 1 the best node to be removed is node 3, with an eigendrop
of 0.6696. Interestingly, this is not the highest degree node and also neither the
president nor the instructor, but someone, who is on a path between these two
nodes, thus not the trivial choice.
In total, there are 34 different sets that the algorithm can sample. Given the in-
sights from theorem 4.2.2 and the previous experiments, we expect the CSGL and
The DBGL to sample the sets according to their relative degree, and thus not to
detect the highest eigendrop set as the most likely set.
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Sets Counts Eigendrop Set Counts Eigendrop
33 15021 0.443485957637915 34 52056 0.584749560379755
34 14979 0.584749560379755 1 51795 0.621300659442355
1 14901 0.621300659442355 33 38767 0.443485957637915
24 14886 0.124005157709807 3 32353 0.669618922959452
3 14859 0.669618922959452 2 29174 0.421758110889268
29 14843 0.109579107317447 32 19634 0.222238619473861
31 14839 0.19216420482459 4 19490 0.27765305653167
18 14826 0.059401299239191 9 16397 0.343431646284466
11 14819 0.0388164045542814 14 16211 0.347022628052687
9 14812 0.343431646284466 24 16161 0.124005157709807

TABLE 5.10: 10 most removed sets for SGL (left) and CSGL (right)

For the SGL all sets are chosen with approximately the same frequency and the
algorithm does not distinctively discriminate between the sets. The three highest
degree sets are also the three most chosen sets, but this could also be a coinci-
dence, since they only lead by a few samples.
For the CSGL we find exactly what was expected, namely that the frequencies
are distributed as the relative degrees. Thus, the highest eigendrop set is only the
fourth most chosen set.
These results confirm what was expected of this experiment and thus show con-
sistency in the forest method.
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Sets Counts Eigendrop Set Counts Eigendrop
34 52064 0.584749560379755 11 14990 0.0388164045542814
1 52008 0.621300659442355 33 14896 0.443485957637915

33 39242 0.443485957637915 4 14893 0.27765305653167
3 32473 0.669618922959452 20 14864 0.14734832918326
2 29121 0.421758110889268 7 14848 0.041148972815833

32 19568 0.222238619473861 17 14839 0.00393807610205332
4 19470 0.27765305653167 25 14838 0.0202755961136312

14 16402 0.347022628052687 30 14833 0.101189161472203
24 16279 0.124005157709807 26 14823 0.0215171587130829
9 16142 0.343431646284466 22 14783 0.0594012992391892

TABLE 5.11: 10 most removed sets for DBGL (left) and CDBGL
(right)

As expected, the plot of the DBGL looks just like the mirrored version of the
plot of the CSGL. The frequencies are approximately the same as in the CSGL
and overall it seems like the DBGL always produces a degree biased sample in
the case of k = 1. Also, as expected, the CDBGL samples all sets almost uni-
formly. Thus, both these experiments confirm the assumptions made about the
forest measure after the experiments on the Synthetic Graph.
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Sets Counts Eigendrop Set Counts Eigendrop
34 15624 0.584749560379755 20 14929 0.14734832918326
1 15574 0.621300659442355 28 14922 0.109431800217018

33 15277 0.443485957637915 23 14903 0.0129722953670823
2 15027 0.421758110889268 16 14891 0.0608931474919814
3 15019 0.669618922959452 27 14830 0.0337205548202215
29 14935 0.109579107317447 6 14826 0.0411489728158259
30 14856 0.101189161472203 5 14803 0.0388164045542805
24 14832 0.124005157709807 4 14801 0.27765305653167
32 14804 0.222238619473861 9 14792 0.343431646284466
8 14780 0.192506101537525 12 14791 0.019931184055511

TABLE 5.12: 10 most removed sets for EBGL (left) and CEBGL
(right)

The EBGL seems to sample the highest degree sets more often, but only barely,
with the 5th highest degree set being sampled more often then the 4th highest
degree set. We find the same diluted results as in the experiments of the Synthetic
Graph.
The CEBGL is similar to a uniform sample and does not give any insight. Overall,
we can clearly see that the forest method is consistent in these variants as well.

5.2.2 Removing 2 nodes

In the case of k = 2, out of the 561 possible different sets, there is a single set
that achieves the highest eigendrop. That set consists of the instructor and the
president, so the two group leaders, which are also the two nodes with the same
higehst degree in this network. The eigendrop of the set {1, 34} is 2.0508.
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Sets Counts Eigendrop Set Counts Eigendrop
12 23 2324 0.0333134365166687 1 34 11394 2.05076034312303
17 23 2160 0.0170140888800354 1 33 8678 1.63653590180451
11 23 1872 0.052662176460994 33 34 8583 0.712440207962737
12 27 1864 0.0547736061527786 1 3 7166 1.00471744952109
22 23 1864 0.0736230900934824 3 34 7075 1.39224673128535
12 17 1838 0.023731632767376 1 2 6396 0.760428343082276
12 19 1805 0.0827793991365873 2 34 6340 1.3853998554762
17 27 1795 0.0379415814875914 3 33 5375 1.16425467061656
12 15 1789 0.0827793991365908 2 33 4811 1.16405551000038
12 16 1789 0.0827793991365908 4 34 4320 1.15242638323867

TABLE 5.13: 10 most removed sets for SGL (left) and CSGL (right)

The SGL produces a random looking plot that offers no insight into important
nodes. The plot of the SGL makes it evident, that this variant should not be used
for node immunization. The eigendrop line and the height of the bars seem neg-
atively correlated and it is clearly visible that the set with the highest eigendrop
has one of the lowest frequencies.
On the other hand, the plot of the CSGL looks very beautiful. It almost looks like
the bars follow the eigendrop plot and the frequencies and the eigendrop plot
are positively correlated. The by far most chosen set is also the highest eigendrop
set. The preferred sets are the sets with the highest cumulative degree, with equal
cumulative degree sets having similar frequencies.
These results are consistent with the other experiments and further confirm our
understanding of the forest method.
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Sets Counts Eigendrop Set Counts Eigendrop
1 34 5009 2.05076034312303 4 31 988 0.514665898734785
1 33 4420 1.63653590180451 8 27 981 0.23771945280041
6 34 3473 0.675383358988293 4 22 979 0.321286046314601
7 34 3385 0.675383358988293 13 25 977 0.0709752312442342
2 34 3145 1.3853998554762 4 16 973 0.367489411524112
1 24 2796 0.911448227910191 27 29 965 0.141487386221694
2 33 2775 1.16405551000038 21 34 963 0.589398807273771
11 34 2699 0.669076654401801 2 16 962 0.525091827883919
4 34 2696 1.15242638323867 12 16 961 0.0827793991365908
17 34 2686 0.59497742963834 1 34 959 2.05076034312303

TABLE 5.14: 10 most removed sets for DBGL (left) and CDBGL
(right)

The plot of the DBGL has some similarities with the CSGL, but the lower eigen-
drop sets are chosen more often relative to the higher eigendrop sets. Both these
options would lead to the same decisions if you perform many experiments, but
it seems that with the CSGL it is more likely to find a high eigendrop set with few
samples.
The CDBGL is close to uniform sampling and does not provide insight into high-
est eigendrop sets.
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Sets Counts Eigendrop Set Counts Eigendrop
1 34 1030 2.05076034312303 14 34 984 0.973568996160933
31 33 1001 0.539294559665838 2 33 974 1.16405551000038
1 3 997 1.00471744952109 2 11 973 0.449453738713016
3 33 991 1.16425467061656 15 16 970 0.115519187710932
1 25 988 0.653274385964236 19 23 961 0.0724116110575137

33 34 987 0.712440207962737 14 29 961 0.471448650554144
15 34 985 0.589398807273777 15 20 959 0.212584363892751
1 14 984 0.78891449194975 20 32 956 0.380261781801421
1 31 983 0.897062906126692 23 31 953 0.20327453262076
2 33 977 1.16405551000038 7 10 952 0.112310376884447

TABLE 5.15: 10 most removed sets for EBGL (left) and CEBGL
(right)

For the EBGL and the CEBGL the plots look rather similar. The most likely set in
the EBGL it indeed the highest eigendrop set, but it is only barely in the lead. Both
these variants seem not to be suitable for eigendrop maximization, even though
the EBGL seems to have a slight preference towards high degrees.

5.2.3 Removing 3 nodes

For the case of k = 3, the best set in terms of eigendrop is {1, 3, 34}with an eigen-
drop of 2.9786. This set is a combination of the best sets for k = 1 and k = 2.
There are 5984 possible sets in total.
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Sets Counts Eigendrop Set Counts Eigendrop
12 17 23 472 0.0372167687401967 1 33 34 2980 2.44155072494438
12 23 27 410 0.0678992090946693 1 3 34 2550 2.97857321473091
12 13 23 405 0.0823152156074736 1 2 34 2155 2.50988023709698
17 23 27 385 0.0507534476090914 3 33 34 1848 1.43272717034605
12 16 23 378 0.0946893356660992 1 3 33 1777 2.13350769688457
12 19 23 373 0.0946893356661 2 33 34 1661 1.57995893073488
12 22 23 373 0.0923617950365863 1 2 33 1629 1.9509368691861
16 17 23 372 0.0769549631177497 1 32 34 1545 2.12996656532036
7 12 23 371 0.0736785923288421 2 3 34 1500 2.08909843897758
12 18 23 371 0.0923617950365809 1 4 34 1448 2.38862356466713

TABLE 5.16: 10 most removed sets for the SGL (left) and CSGL
(right)

Again, the results of the SGL do not offer a lot of insight and the most chosen sets
do not achieve a high eigendrop. For the CSGL, the most chosen set is also the
highest cumulative degree set. The best possible set {1, 3, 34} is only the second
choice of the algorithm and also the set with the second-highest cumulative de-
gree. The list of most chosen sets continues in the same manner and genereally,
the frequency of the chosen sets seems to depend on the cumulative degree for
this variant.
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Sets Counts Eigendrop Set Counts Eigendrop
1 33 34 456 2.44155072494438 3 13 30 128 0.900729823448794
1 7 34 449 2.05076034312302 5 9 27 122 0.426021482391695

1 17 34 411 2.05076034312303 15 17 34 121 0.599712509617064
1 6 33 403 1.63653590180452 18 26 32 114 0.296156363411571
1 6 34 397 2.05076034312302 10 26 27 113 0.12174688948514
1 26 34 386 2.0777060837942 10 12 30 113 0.191602648786304
1 2 34 383 2.50988023709698 3 9 23 113 0.98289531602127
1 3 34 380 2.97857321473091 16 21 31 112 0.291880875204018
1 7 33 375 1.63653590180452 14 17 26 112 0.381986801837182
1 17 33 374 1.63653590180451 7 25 31 112 0.266812989837361

TABLE 5.17: 10 most removed sets for DBGL (left) and CDBGL
(right)

The DBGL also chose the highest degree set with the highest frequency. However,
the other sets are not ordered as they were for the CSGL, and the best set is barely
among the most chosen sets. The likelihood of a set sampled with the DBGL
seems to be less dependent on the degree of the set than the CSGL, however
this raises the question on what basis sets are chosen instead. It seems like the
sampling is still connected to the degree to some extent, since all of the most
chosen sets contain at least one, most of them even both, maximal degree nodes.
Also, the DBGL is less distinct, meaning that low degree and eigendrop sets are
more likely compared to the CSGL.
The CDBGL does not offer any insight in terms of maximal eigendrop.
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Sets Counts Eigendrop Set Counts Eigendrop
1 19 27 117 0.829510395116735 1 14 22 123 0.791713858390211
7 27 33 117 0.537384486567071 10 27 30 120 0.181285627937247

10 16 19 117 0.179999296429967 3 6 33 117 1.28140618758244
3 6 33 115 1.28140618758244 19 20 26 114 0.236064581467928
2 17 18 114 0.438521295143921 7 10 15 114 0.176446627611258

13 17 34 114 0.697785471872392 13 24 27 113 0.212971546520688
13 28 34 114 0.722395476445894 12 25 32 113 0.247857200181854

4 8 24 113 0.596618468323527 11 24 25 113 0.188038749481635
1 2 13 112 0.761342258313495 8 15 20 113 0.422593309371783
1 20 28 112 0.872894333637231 6 9 10 113 0.4647010008704

TABLE 5.18: 10 most removed sets for EBGL (left) and CEBGL
(right)

As in the case k = 2, the plots for both the EBGL and the CEBGL look very similar.
The most sampled sets seem random and do not achieve a high eigendrop in both
cases. For eigendrop maximization these variants do not seem suitable.

5.3 Conclusion

Both experiment series presented in this chapter were meant to explore the differ-
ent variants of sampling that were previously introduced. Ultimately, the exper-
iments helped in understanding the forest method and showed that some sam-
pling variants were more suitable for eigendrop maximization than others.
The experiments on the Synthetic Graph already showed that the SGL, the CD-
BGL and the CEBGL were completely invaluable in the context of the problem,
and the Karate Club experiments only confirmed this even further.
The EBGL was very interesting to look into, since it was a completely different
approach in terms of Laplacian and in theory should have been linked directly
to the eigenvalues. However, the experiments showed, that despite finding some
high eigendrop sets, the EBGL was inferior to other variants.
Only the CSGL and the DBGL created results that were relevant in the context
of eigendrop maximization. From the experiments it is clear that these variants
have different sampling mechanisms and can lead to different decisions in a small
sample. With the exception of the Synthetic Graph k = 3 case, the CSGL always
had a bigger difference in frequency for high and low degree sets and was thus
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more distinct. That means that in most cases the likelihood to sample a set with
high degree was higher for the CSGL than for the DBGL.
Another advantage of the CSGL is the computation time. Sampling many nodes
is less computationally costly than sampling only few, because usually fewer ex-
periments need to be performed to get the desired number of roots. For the CSGL
n− k roots need to be sampled, which should usually be a bigger number than k,
and thus the sampling is faster than for the DBGL.
Finally, although both the CSGL and the DBGL showed promising results, we
concluded to continue with experiments on bigger graphs only using the CSGL.
The main reasons for that were the computation time, the more distinct results
in comparison to the DBGL and the fact that we understood the mechanisms of
the CSGL better than the ones of the DBGL. Even though the CSGL seems to pick
node sets based on their cumulative degree only, this does not have to be a bad
thing. It is still a random algorithm and explores the whole graph and eigendrop
maximizing sets are very likely to be high degree sets, especially in real world
networks with irregular structures.
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Chapter 6

Experiments on real networks

In this chapter we will have a look at how the forest method performs on real net-
works as well as compare it to both Netshield algorithms. For this we used four
networks that model the connections between airports and a social networks that
model contact between attendees of a conference. Besides illustrating how the
forest method is performing on real networks with Netshield as a sort of bench-
mark, we will also look into what happens when we introduce the concept of
batches, as seen in Netshield+, to the forest method.

We will start with describing the airport networks and why they are relevant for
this experiment. After that, a selection of the experiments performed on these
networks will be described in detail, as well as conclusions drawn. After that,
we will move on to the conference networks. First, the selected network will also
be presented. After that, we will introduce the batch method and analyze how
it performed in comparison to no batches and in comparison to the Netshields.
Finally, we will sum up the results from the chapter and formulate a conclusion.

Throughout this chapter, when we talk about using the forest method, we will use
the complement of the roots sampled using the simple graph Laplacian (CSGL).
For the forest method variants, only the higehst eigendrop set will be reported
here. Additionally, we will apply the rule of a good sample size, but also do an
additional check by taking tenfold that number and compare the best result for
each with the Netshields.
Comparing the results with Netshield is done for two reasons: The main reason is
that we cannot compute the eigendrop for all possible sets to find the "true" best
eigendrop set. The second reason is that comparing to Netshield is like compar-
ing to a golden standard, since it is a fast and quite reliable algorithm. This way
we can immediately see the deficiencies of the forest method in terms of time and
performance.
We will report a measure of time, just to be able to have another parameter to
compare the two approaches. However, these times should not be given too large
of a weight, as they are based on a single run of the programme. They could
probably be improved through better programming and could be made more re-
liable through averaging out multiple runs. We paid attention that the times we
reported were not outliers, but finally they are merely a rough measures and are
only meant for a relative comparison of the methods.
We expect the forest method to have a disadvantage in running time when com-
paring it to Netshield, as for every sampled set the eigenvalues of the resulting
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network need to be calculated. This is the costliest part of the forest method and
can only be minimized when reducing the sample size of the forest method.
Similar to the previous chapter, the analysis of the experiment was performed
using MatLab.

6.1 Airport Networks

We performed experiments on four different real networks that we will call Air-
port 1 through Airport 4, sorted by their size from smallest to largest. We decided
to perform experiments on networks modelling airport connections, as we ex-
pected them to have a structure similar to social networks. In addition to that, we
could also observe how the forest method handles networks increasing in size
with roughly similar structure.
In the following we will shortly describe each network and include a plot for bet-
ter understanding. For the bigger networks we will not provide a plot, since there
are too many nodes to get an insightful picture. We will also sum up the results
of our experiments in a table and analyze the outcome. In the end of this section
we will also formulate a first conclusion.
The airport data sets can be found in [1]

6.1.1 Airports 1

The Airports 1 network is a subset of the the Airports 2 network, containing only
the 50 highest degree nodes. It is highly connected with 1756 out of 2450 possible
edges and the maximal eigenvalue is 37.301. We included this network into the
experiments to see how the forest method will perform on a small, densely con-
nected real network.
We conducted experiments for the case of removing one, five and ten nodes, for
which we used Netshield, Netshield+ with batch size b = 1, the forest method
with dm/ne = 36 runs and dm/ne · 10 = 360 runs respectively.

FIGURE 6.1: Airports 1 Network

In table 6.1 the results of the experiments are summed up. In the header row, the
abbreviations "ED" stand for eigendrop and the abbreviations "T" stand for time
in seconds.



6.1. Airport Networks 53

TABLE 6.1: Airports 1 Experiments

1 ED 1 T 5 ED 5 T 10 ED 10 T
Forest Method 1.2288 0.24 5.4533 0.24 10.8889 0.25
Forest Method x10 1.2288 0.29 5.8831 1.41 10.8109 1.7
Netshield 1.2288 0.13 6.0935 0.11 12.1241 0.13
Netshield+ 1.2288 0.25 6.0935 0.31 12.1717 0.43

We can see the the forest method always takes approximate the same amount of
time to find a good eigendrop, however finds an at least as good eigendrop in a
faster time. The extended forest method with a bigger sample finds a better eigen-
drop in the case of 5 nodes, but also takes significantly longer doing so and still
does not get as high as Netshield. Nevertheless, the sets that the forest method
finds have a relatively high eigendrop.

6.1.2 Airports 2

The Airports 2 network consists of 500 nodes that are connected by 5960 edges.
The maximal eigenvalue of this network is 48.074. This network was the smallest
of the airport data sets. The structure of Airports 2 is comparable to one big clique
of highly connected nodes and most other nodes have relatively low degree.
For the Airports 2 network we performed experiments for removing one node,
five nodes and 10 percent of the networks nodes. Similar to the previous example
we used Netshield, Netshield+ with batch size b = 1, the forest method with
dm/ne = 12 runs and dm/ne · 10 = 120 runs respectively.

FIGURE 6.2: Airports 2 Network

TABLE 6.2: Airports 2 Experiments

1 ED 1 T 5 ED 5 T 10 % ED 10 % T
Forest Method 1.3689 0.23 4.9291 0.21 26.1324 0.23
Forest Method x10 1.7706 0.62 6.4912 0.79 27.8537 0.82
Netshield 1.7706 0.11 8.2353 0.17 41.7404 0.27
Netshield+ 1.7706 0.16 8.2353 0.19 43.3176 0.44
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In table 6.2 we see that in general the forest method achieves worse eigendrops
than Netshield and also takes longer to compute. Still, we see that on a much less
dense graph, the forest method still finds relatively high eigendrop sets with very
few samples required.

6.1.3 Airports 3

The Airports 3 network consists of 1858 nodes and 28236 edges. The highest
eigenvalue of the adjacency matrix is 99.118.
For this network we performed exactly the same experiments as for Airports 2,
the only difference being that the sample size for the forest method is dm/ne = 16.

TABLE 6.3: Airports 3 Experiments

1 ED 1 T 5 ED 5 T 10 % ED 10 % T
Forest Method 1.0559 0.46 4.5699 0.29 64.2104 0.45
Forest Method x10 1.5837 2.32 5.7140 3.32 69.1802 3.05
Netshield 1.5837 0.25 7.7191 0.28 75.8286 0.31
Netshield+ 1.5837 0.23 7.7191 0.32 92.7816 2.13

Similar to the previous two data sets, we can see in table 6.3 that the eigendrop
that the forest method achieves stays below the one that can be achieved using
Netshield. Using the forest method with tenfold sampling starts taking signifi-
cantly longer, since we are dealing with quite a large graph, but we also see that
Netshield+ gets very slow for the 10 percent removal, as eigenvectors need to
be recalculated for each node removed. And we see that the gap between forest
method and Netshield for the 10 percent of nodes remove is smaller than in the
previous cases which might be related to the structure of the network. There are
hub-nodes with high degree and this network has some resemblance with a social
network.

6.1.4 Airports 4

The Airports 4 network is the biggest network in the set and consists of 7976
nodes and 30501 edges. It is also the sparsest network out of the set. The max-
imal eigenvalue here is 62.280. For this network we again performed the same
experiments as for the last two. The sample size here was dm/ne = 4. Also, for
the removal of 10 percent of the nodes we used Netshield+ with a batch size of
one, but also took the batch size recommended in [8] of b ≈ k/10 = 80.

TABLE 6.4: Airports 4 Experiments

1 ED 1 T 5 ED 5 T 10 % ED 10 % T
Forest Method 0.1473 2.11 2.6209 1.84 51.1380 0.55
Forest Method x10 0.7448 5.48 2.0312 6.14 53.1875 4.04
Netshield 2.0793 0.57 8.2629 1.99 57.1967 0.60
Netshield+ 2.0793 0.32 8.2944 0.38 61.27 / 58.05 38.68 / 0.73

In the above table, in the line of Netshield+, the two results in the 10 percent
columns stand for the 2 results we got using Netshield+ with different batches.
The first result is for batch size b = 1 and the second result is for b = 80.
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In this experiment we see that for removing a small amount of nodes, Netshield
performs significantly better. However, when we removed 10 percent of the
nodes, the relative gab between the forest method and Netshield got smaller and
the running times of both algorithms were approximately the same for the simple
versions of the algorithms. This also shows how Netshield+ with batches of one
can explode when it comes to running time, when dealing with a large network.

6.1.5 Conclusive remarks

After the first round of experiments, which we performed on airport data sets, we
can already draw some empirical conclusions. We saw that with the simple setup
of the forest method that we used here, the forest method will in general reach
worse results than Netshield or Netshield+. Both in terms of running time and
eigendrop, the forest method performed worse than the Netshield algorithms.
Nevertheless, these experiments still showed us that the forest method is effec-
tive. Even if it does not find the highest eigendrop sets, it still consistently finds
sets that contribute to a good eigendrop. Given that the forest method is a ran-
dom algorithm and given how many possible sets there are for e.g. removing 5
out of almost 8000 nodes, the algorithm definitely has a tendency towards better
sets.
Another observation that we made, is that in sparser networks like Airports 2 to
Airports 4, when we removed 10 percent of the nodes, the results of Nethsield
and forest method did not differ too much. The bigger the graph became, the
better the forest method performed in comparison to Netshield.

6.2 Conference Networks

The networks and their description can be found in [9] In light of the global pan-
demic that has changed many lives since the year 2019, experimenting with the
forest method on a social network seem like a very natural choice. We picked a set
of three networks called the conference networks, that recorded the interactions
between conference attendee in the course of two and a half days. Every time the
participants were facing each other for 20 seconds, a connection was recorded by
devices worn by them. Out of this data, we constructed three weighted networks,
each network representing a day of the conference. We performed similar experi-
ments on the unweighted conference networks to the ones that we performed on
the airport networks, with comparable results, thus we will not duplicate these
efforts in this chapter.
In addition to the aforementioned experiments, we wanted to explore two other
things, namely the forest method on a weighted graph and the forest method
including batches. For this we restricted ourselves to the first of the conference
networks, as they were quite similar in all aspects, with the only significant dif-
ference being the weight structure of the third network. But since the first two
networks were more representative of meeting new people in a closed setting,
we decided to pick the network Conference Day 1.

The Conference Day 1 network consists of exactly 100 nodes and 946 undirected
edges. In the following, we will sum up the experiments that we did for the un-
weighted graph, including batches and later do the same for the weighted graph.
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FIGURE 6.3: Conference Day 1 Network

6.2.1 Conference Day 1 unweighted

If we look at the Conference Day 1 network in an unweighted setting, its highest
eigenvalue is 26.9197. We performed experiments to remove 5, 10 and 25 nodes,
for which we used the forest method with a sample size of dm/ne = 10, as well
as the tenfold sample size and a batch size of bFM1 = 1 for 5 and 10 nodes and
a batch size of bFM2 = 2 and bFM3 = 5 for 25 nodes. As a benchmark, we again
used Netshield and Netshield+ with batch size bNS1 = 1 for all, and additionally
bNS2 = 3 for the case of removing 25 nodes. Where there are multiple eigendrops
/ times recorded in a cell, the smaller batch size is the first and the larger the
second.

TABLE 6.5: Conference Day 1 unweighted Experiments

5 ED 5 T 10 ED 10 T 25 ED 25 T
FM 3.3245 0.125 7.4922 0.119 12.9096 0.146
FM Batch 4.2801 0.163 7.1824 0.158 12.59 / 13.75 0.178 / 0.157
FM x10 5.5567 0.440 8.5811 0.489 14.3515 0.489
FMx10 Batch 5.0856 0.536 9.9643 0.650 15.24 / 15.35 0.575 / 0.617
NS 7.6531 0.163 12.7244 0.153 18.8100 0.080
NS+ 7.6531 0.106 12.7244 0.128 19.02 / 19.02 0.157 / 0.164

In the experiments that we recorded, using batches lead to better results more
often than not, however it was also a bit more costly that not using batches in
terms or running time, which it to be expected. Even with batches, the eigendrop
and running time were not reaching the levels of Netshield, but especially for
the bigger sample, the gap became closer and batches seemed to offer a bigger
improvement.

6.2.2 Conference Day 1 weighted

The weighted Conference Day 1 network was the first network that we included
in the experiments that was not unweighted. In the weighted case, the highest
eigenvalue of the network is 367.028.
We also have not used Netshield for a weighted network before, as the algorithm,
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as per [8] is meant for unweighted graphs. However, weights don’t seem to pose
a restriction given the proofs, so it is valid to compare the two methods. We will
also compare the below data to table 6.5, to see if the methods perform differently
on weighted vs. unweighted networks.

TABLE 6.6: Conference Day 1 weighted Experiments

5 ED 5 T 10 ED 10 T 25 ED 25 T
FM 138.69 0.162 154.73 0.223 231.98 0.203
FM Batch 112.48 0.173 158.06 0.170 264.42 / 239.99 0.167 / 0.144
FM x10 114.97 0.617 207.41 0.610 265.80 0.596
FMx10 Batch 157.32 0.659 212.25 0.670 283.89 / 278.85 0.718 / 0.657
NS 78.77 0.178 78.80 0.149 231.76 0.108
NS+ 196.34 0.109 244.85 0.175 323.56 / 321.23 0.191 / 0.153

The first thing we notice is that the regular Netshield algorithm seems to perform
worse than all other methods. Based on this single network, we cannot say if this
is generally true, still this is one of our observations that should be further inves-
tigated in the future.
Netshield+ is still achieving better eigendrops than the different variants of the
forest method, but the gaps are generally smaller for the weighted graph when
comparing to the unweighted case. We can also see that except for the case of
using the forest method to remove 5 nodes (the first result seems like an outlier),
the eigendrop is improving with each additional layer of complexity, be it more
sample and / or batch sampling, similar to the unweighted case.
When using batches we (almost) always see an improvement, with only a small
increase in cost, as the costliest part of the computation is the evaluation. Thus,
batches need to be investigated in more detail in the future, to see if this is gener-
ally true.

6.2.3 Conclusive remarks

We introduced two new factors into the experiments: weight structure and batches.
We saw that relatively, the forest method performed better on the weighted graph,
and also that the regular Netshield was performing worse on the weighted net-
work than the unweighted in our experiment. These findings open up new tracks
to research the forest method and require further investigation to see if this is true
in general.
We also discovered, that batches offered an improvement in eigendrop, especially
for the weighted graph, with only a slight increase in running time. If these re-
sults can be confirmed in more generality, sampling in batches can be used as a
"cheap" way to improve the outcomes of the sampling.

6.3 Conclusion

After looking at the forest method from different angles and comparing it to Net-
shield and Netshield+, we can say that none of the variations and methods used
by us could keep up with Netshield(+). Does it mean, we should discard this
research and move on to something different? - No!
We saw many very promising qualities that the forest methods has to offer. Even
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if the random set that the forest method picks is usually not the highest eigendrop
set, it still shows a clear preference towards "good" sets and there might be op-
portunities for improvement in that regard. There are many ways to fine tune the
forest method to the k-node immunization problem, some of which we merely
touched upon in the second part of this chapter.
Another advantage of the forest method is that e.g. in comparison to Nethshield,
the forest method explores the space of possible solutions. This could be used to
a great advantage, as the forest method offers many good solutions in contrast to
one (almost) perfect one. In cases, where immunizing a network would come at a
cost per node, the forest method allows to compare different solutions and chose
the one with the best trade-off, where Netshield is missing this flexibility.
But the research does not end here. After the finalization of the author’s research
project, Luca Avena and Alexandre Gaudillière continued the researching and
improving the forest method. They could mathematically confirm e.g. that in-
deed the complementary root set of the simple graph Laplacian was the optimal
option when it comes to sampling the highest eigendrop set, as well as other find-
ings that we empirically concluded during the experiments. They also continued
developing the batch sampling and the forest method in general, such that now
the forest method can achieve at least the same eigendrops as Netshield+ with
a comparable complexity. These findings will soon be published in a separate
paper.
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