
Analysis of the optimization used by the energy system model CEGOIA
Mourits, J.W.

Citation
Mourits, J. W. Analysis of the optimization used by the energy system model CEGOIA.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in
the Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/4171473

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/4171473

J.W. Mourits

Analysis of the optimization used by the energy
system model CEGOIA

Master thesis

April 15, 2022

Supervisors:
F.M. Spieksma (Leiden University)

M.A. Meyer (CE Delft)
E. Koster (CE Delft)

Universiteit Leiden
Mathematisch Instituut

1

Abstract

CE Delft has developed the CEGOIA-model to counsel Dutch governments and municipalities
in the energy transition. CEGOIA can be used in any area, consisting of a certain number of
neighbourhoods. Using an integer linear programming optimization, it computes an allocation
of energy systems to the neighbourhoods, such that the total cost for the area is minimized.
Di↵erent solvers have been used in CEGOIA to perform this optimization, but when the number
of neighbourhoods is too large, the problem can not be solved within a reasonable amount of
time. In combination with the fact that the problem is NP-hard, a heuristic has therefore been
constructed. This heuristic consists of three di↵erent parts that have all been developed and
implemented in the python-based CEGOIA-model currently used by CE Delft. The final goal of
this thesis was to be able to run CEGOIA on the Netherlands in its entirety.
This thesis sets the mathematical framework for the optimization problem and gives a detailed
description of the heuristic. Then, the results of the heuristic are shown and compared with
problems that have already been optimized by CE Delft. Also, an analysis of the algorithm is
given in which the complexity, existence of a solution and the general performance of the heuristic
are investigated. Finally, the results are discussed and some alternative optimization methods
are provided.

2

Contents

1 Introduction 4

1.1 Framework . 4
1.2 Problem definition . 6

2 Mathematical formulation of the problem 7

3 NP-hardness 10

4 Solution Requirements 11

4.1 Applicability . 11
4.2 Quality and runtime . 11

5 Heuristic for AGAP 12

5.1 The algorithm . 12
5.1.1 Example . 13

5.2 One step improvement (AGAP reversed) . 15
5.2.1 Example (continued) . 16

5.3 Results . 16
5.4 Multiple step improvement . 18

5.4.1 Example (continued) . 19
5.5 Results after the multiple step improvement . 19
5.6 Results for the Netherlands in its entirety . 21

6 Analysis of the heuristic 23

6.1 Existence and uniqueness of a solution . 23
6.1.1 Existence of a solution for one constraint 23
6.1.2 Existence of a solution for at least two constraints 25

6.2 Performance of the algorithm on general integer programming problems 25
6.2.1 Results for di↵erent values of m and n . 25
6.2.2 Results for di↵erent numbers of constraints 27
6.2.3 Comparison with the results found by Wilson 29

6.3 Results after di↵erent stages of the heuristic . 30
6.4 Existence of a solution for infinitely many options 30
6.5 Complexity . 31
6.6 Sensitivity analysis . 31
6.7 System limit . 33

7 Alternative methods 34

7.1 The LP-relaxation . 34
7.2 Alternatives within the heuristic . 34
7.3 Solvers . 34

8 Discussion 36

9 References 37

Appendix 38

3

1 Introduction

Over the past few years the energy and sustainability consultancy company CE Delft has devel-
oped the energy system model CEGOIA. For each neighbourhood (neighbourhoods are deter-
mined by the CBS, the Dutch Centraal Bureau voor de Statistiek) in a certain area, CEGOIA
computes the type of energy supply that minimizes the total cost for the entire area. The CE-
GOIA model has already been applied to small areas, for instance a municipality. However, for
larger areas the runtime of the model is unfeasibly large or the problem can not be solved at all.
The goal of this project is to analyzee the optimization method behind the CEGOIA model and
to lower the runtime, so that CEGOIA can also be applied to large areas.

1.1 Framework

CEGOIA globally works as follows. An area is split into CBS-neighbourhoods, with each neigh-
bourhoods consisting of dwellings and utilities. For each neighbourhood, the computations are
executed for both the dwellings and the utilities. First, the energy demand is computed, based
on data on the number of buildings, the construction year, surface of the buildings, etc. The
energy demand is combined with possible insulation levels. This leads to a set of di↵erent options
for each neighbourhood. Then, for each neighbourhood the di↵erent energy systems to fulfill this
demand are considered. There are 12 possible energy systems. The following table shows for
each energy system which energy sources are used.

E
le
ct
ri
ci
ty

G
as
/G

re
en

ga
s/
H
yd

ro
ge
n

H
ea
t
(H

T
)

H
ea
t
(M

T
)

H
ea
t
(L
T
)

H
ea
t
(Z
L
T
)

H
ea
t
(W

K
O
)

B
io

m
as
s

Condensation boiler ⇥ ⇥

Hybrid heatpump (ground) ⇥ ⇥

Hybrid heatpump (air) ⇥ ⇥

Electric heatpump (ground) ⇥

Electric heatpump (air) ⇥

Heat exchanger HT ⇥ ⇥

Heat exchanger MT ⇥ ⇥

Heat exchanger LT ⇥ ⇥

Heat exchanger LT with individual heatpump ⇥ ⇥

Heat exchanger ZLT with individual heatpump ⇥ ⇥

WKO ⇥ ⇥

Condensation boiler with bio mass ⇥ ⇥

Table 1: Possible energy systems with their corresponding energy sources

As shown in this table, all systems use electricity. Some energy systems use heat (HT, MT,

4

LT and ZLT indicates the temperature from high to very low) from collective heat sources, for
instance residual heat of industries. This also leads to more options with di↵erent corresponding
cost, because the heat sources have a certain location and reach in which it can be used. So
decisions have to be made concerning the energy system, insulation level and possibly collective
heat sources.
CEGIOA then computes the total cost of all these di↵erent options for each neighbourhood. This
is the sum of the cost for construction (including insulation), energy, distribution (if a network
for residual heat needs to be built, it will cost a certain amount per meter) and maintenance
over the period of one year.
Then there are certain constraints. Of gas, electricity, hydrogen and biomass there are limited
supplies for the entire area. Furthermore, collective heat sources contain a limited amount of
heat. Finally, using these computed cost and constraints, an integer programming problem (IP)
is constructed and solved. This solution tells which energy system needs to be assigned to which
neighbourhood in order to minimize the total cost for the entire area. The solution is usually
represented in a webtool as a map with colors indicating the type of energy system (see Figure
1). When a neighbourhood is colored grey, this means that the computations are not done for
this neighbourhood. Further information about for instance the insulation level and energy use,
can be found by selecting a neighbourhood in the webtool.

Figure 1: The output map of CEGOIA for the area of Katwijk

5

1.2 Problem definition

For smaller areas (less than 2000 neighbourhoods) the free solver CBC or GLPK MI is used in
the CEGOIA optimization. CBC[1] and GLPK MI can solve small instances of the IP problem
in a relatively short time, mostly within a few hours. These solvers use a combination of branch
and cut algorithms , the dual simplex method and the interior point method. However, for larger
areas these solvers have an unfeasibly large runtime or even fail to solve the problem. Therefore,
the paid IBM solver CPLEX is used for these large areas. Due to the cost and runtime of
CPLEX and due to the fact that even CPLEX cannot solve extremely large IP’s (for example
the Netherlands in its entirety), CE Delft wishes to find a way to solve large problems in a shorter
runtime. A faster computation will also make it possible for CE Delft to perform a more accurate
analysis of di↵erent scenario’s. One of the final goals of this project is to run CEGOIA on the
Netherlands in its entirety, which has over 13,000 neighbourhoods. This will provide insight in
the distribution of heat systems over the Netherlands. With this new information, CE Delft will
be able to give more accurate advice.

6

2 Mathematical formulation of the problem

The solution CEGOIA gives for a certain area, is currently computed using an IP-problem for-
mulation. To illustrate the formulation of this IP-problem, we use a simple example. Consider
an area consisting of three neighbourhoods. There are four possible energy systems (options) for
each neighbourhood and these energy systems can use resources A and B (for example gas and
electricity). The following table shows the amount of used resources and the cost for each option.

Neighbourhood Option A B Cost
1 1 10 0 10

2 0 0 21
3 0 7 15
4 4 4 13

2 1 8 0 8
2 0 0 34
3 0 5 18
4 6 3 17

3 1 9 0 9
2 0 0 20
3 0 6 16
4 2 6 14

Table 2: Data for IP-problem example

The availability of recources A and B is set to 10 and 12 respectively. An optimal solution to
this small problem can easily be computed and results in the allocation: neighbourhood 1 gets
option 3, neighbourhood 2 gets option 3 and neighbourhood 3 gets option 1. This solution has
total cost 42.
We will now construct an IP from this data. The variables of the IP are xij with i 2 M =
{1, 2, 3, 4} the option, and j 2 N = {1, 2, 3} the neighbourhood (we choose this notation as it is
similar to the notation in the literature). We have

xij =

⇢
1 if neighbourhood j gets option i
0 otherwise.

This leads to the following integer program.

min 10x11 + 8x12 + 9x13 + 21x21 + 34x22 + 20x23 + 15x31 + 18x32 + 16x33 + 13x41 + 17x42 + 14x43

(1)

s.t.

x11 + x21 + x31 + x41 = 1

x12 + x22 + x32 + x42 = 1

x13 + x23 + x33 + x43 = 1

10x11 + 8x12 + 9x13 + 4x41 + 6x42 + 2x43  10

7x31 + 5x32 + 6x33 + 4x41 + 3x42 + 6x43  12

xij 2 {0, 1}, for i 2 M and j 2 N.

7

This problem is of the general form.

min
X

i2M

X

j2N

cijxij (2)

s.t.
X

i2M

xij = 1, for j 2 N (3)

X

i2M

X

j2N

a(k)ij xij  bk, for k 2 K (4)

xij 2 {0, 1}, for i 2 M and j 2 N (5)

with K the set of constraints, M = {1, ...,m} the set of options and N = {1, ..., n} the set
of neighbourhoods. Also, we assume that aij , cij � 0 for all i 2 M, j 2 N . We call (3) the
assignment constraints and (4) the energy limit constraints. The assignment constraints make
sure that each neighbourhood gets exactly one option. The energy limit constraints make sure
that the energy source limits are not exceeded.

Using this matrix-notation, for our example we have:

(cij) =

0

BB@

10 8 9
21 34 20
15 18 16
13 17 14

1

CCA

(a(1)ij) =

0

BB@

10 8 9
0 0 0
0 0 0
4 6 2

1

CCA , (a(2)ij) =

0

BB@

0 0 0
0 0 0
7 5 6
4 3 6

1

CCA

b = (10, 12).

The formulation (2) - (5) of the problem is a variation on the Generalized Assignment Problem
(GAP), which is formulated as follows.

min
X

i2M

X

j2N

cijxij (6)

s.t.
X

i2M

xij = 1, for j 2 N (7)

X

j2N

aijxij  bi, for i 2 M (8)

xij 2 {0, 1}, for i 2 M and j 2 N. (9)

The di↵erence between the IP-problem in CEGOIA and the GAP is in the energy limit con-
straints (4) and (8). In the GAP there is a constraint for every i 2 M and we only sum over
j. In the IP-problem in CEGOIA, we have an extra variable k 2 K and for each k, there is a

8

constraint that sums over i and j. This means that the IP-problem in CEGOIA is more general
than the GAP. In terms of CEGOIA: when the problem would be written as a GAP, every option
(i 2 M) would correspond to a unique energy source. By using constraint (4), we make sure that
an option can use multiple energy sources (k 2 K), for example gas and electricity. Also, as we
are summing over i and j, an energy source can be used by multiple options. For instance, all
options use electricity (see table 1).
Because of this relation between the IP-problem in CEGOIA and the GAP, we use the following
definition.

Definition 1

The IP-problem in CEGOIA, of the form given in (2) - (5), is called the Adapted Generalized
Assignment Problem (AGAP).

9

3 NP-hardness

Using the formulation (2) - (5) we will prove that the Adapted Generalized Assignment Problem
is NP-complete. The proof is similar to the proof of NP-completeness of the Generalized Assign-
ment Problem in [3].

Consider the NP-complete Partition problem that asks whether for a given set of n real numbers
p1, ..., pn, there exists an S ⇢ {1, ..., n}, such that

P
j2S pj =

P
j 62S pj . The Partition problem

can be reduced to the AGAP the following way.

In the AGAP, let m = 2 and k = 2. Then we take a(1)1j = a(2)2j = pj and a(2)1j = a(1)2j = 0 and we
let b1 = b2 =

P
j2N pj/2.

For instance, for n = 3, the AGAP will be as follows.

x11 + x21 = 1 (10)

x12 + x22 = 1 (11)

x13 + x23 = 1 (12)

p1x11 + p2x12 + p3x13 

3X

j=1

pj/2 (13)

p1x21 + p2x22 + p3x23 

3X

j=1

pj/2 (14)

xij 2 {0, 1} for all i 2 {1, 2}, j 2 {1, 2, 3} (15)

Substituting x21, x22 and x23 in the last inequality using equalities (10) - (12), leads to the
following.

p1(1� x11) + p2(1� x12) + p3(1� x13) 
3X

j=1

pj/2

3X

j=1

pj � (p1x11 + p2x12 + p3x13) 
3X

j=1

pj/2

p1x11 + p2x12 + p3x13 �

3X

j=1

pj/2

This substitution can be executed for inequality (13) in a similar way. Therefore, we can conclude
that the inequalities (13) and (14) can be written as equalities.

Now determining the feasibility of the AGAP is equivalent with solving the Partition problem.
As the Partition problem is known to be NP-hard, so is the AGAP.

To check whether a given solution of the AGAP is feasible, we simply have to check if the solution
meets the constraints (3) - (5). This can be done in polynomial time, so together with the fact
that the AGAP is NP-hard, we can conclude that the AGAP is NP-complete.

Because the AGAP is NP-complete, computing an optimal solution to a large instance of the
problem will take an extremely long running time. Therefore, when running CEGOIA on large
areas, a heuristic may have to be used to be able to find a solution within a few days. In the
next chapters the requirements for such a heuristic and the tested heuristics are discussed.

10

4 Solution Requirements

As we have concluded in the previous chapter that problem (2) - (5) is NP-hard, we will try to
find an approximation of the optimal solution. An algorithm that computes such an approxi-
mation, a so-called heuristic, must satisfy some requirements. As the results of CEGOIA are
used in practice to give advice to governments on the heat supply in certain areas, some of these
requirements are somewhat less mathematical and more practical. In this chapter we take a look
at the requirements and wishes CE Delft has for the solution given by CEGOIA.

4.1 Applicability

The solution computed by the heuristic must still, like the original solver does for small areas,
provide an allocation of energy systems to neighbourhoods. This detailed solution is necessary
for the advice given to municipalities on which energy system to choose in which part of town.

CEGOIA does not take geographical clustering into account. This means that it is not possible
for adjacent neighbourhoods to collaborate in order to reduce cost. For instance, suppose three
adjacent neighbourhoods all use residual heat. In practice, this means that the network to trans-
port this heat from the source to the neighbourhoods can have a shorter length (the minimal
spanning tree between the source and the neighbourhoods). However, in CEGOIA, the total cost
for a neighbourhood is computed individually. So for all three neighbourhoods, the cost include
the entire length of the network from the source to the neighbourhood.

4.2 Quality and runtime

The given solution must be unique. This means that, when running CEGOIA twice on the same
instance, the results must be the same. The total cost is allowed to deviate from the optimal
cost by at most 5 percent, but of course we try to minimize this deviation as much as possible.
The runtime of the optimization must not be more than two days and preferably one day for all
problems.

11

5 Heuristic for AGAP

In Chapter 2 of his paper [6], Wilson provides a simple dual algorithm for the generalized
assignment problem. As mentioned in Chapter 2, the energy carrier constraint in the AGAP is
di↵erent from constraint (8) in the GAP. Because of the fact that constraint (4) in the AGAP

is given for each k 2 K, we define the sum of the amount of used resources: a(tot)ij =
P

k2K a(k)ij .
Using this sum, we have modified the algorithm by Wilson into an algorithm that fits the AGAP-
formulation.

5.1 The algorithm

The steps of the algorithm, applied to a problem of the form as in (2) - (5), are as follows.

Algorithm 1 AGAP heuristic
Step 1.
Let x0

ij with i 2 M and j 2 N be a solution to the relaxed assignment problem

min

⇢ Pm
i=1

Pn
j=1 cijxij

Pm
i=1 xij = 1, for j 2 N

xij 2 {0, 1}, for i 2 M and j 2 N.

�
(16)

Step 2.

If
P

i2M

P
j2N a(k)ij x0

ij  bk holds for all k 2 K, then STOP. Return x0
ij as a feasible solution to

the problem.
Otherwise, go to step 3.

Step 3.
Let k⇤ be the first1k for which

X

i2M

X

j2N

a(k
⇤)

ij x0
ij > bk⇤ .

For all j 2 N , let ij be the unique index such that x0
ijj = 1. Let N1 = {j 2 N |a(k

⇤)
ijj

> 0} and
Mj = {i 2 M |cij � cijj}. For all j 2 N1, compute for every i 2 Mj the following value:

tij =
a(tot)ijj

� a(tot)ij

�cijj + cij
,

Where we set tij = 0 if cijj = cij and a(tot)ijj
� a(tot)ij , and tij = �1 if cijj = cij and a(tot)ijj

< a(tot)ij .

Let (i0, j0) = argmax(i,j)tij .
If tij < 0 8i 2 Mj , j 2 N1 or if Mj = ;, STOP. Return: problem is infeasible.
Otherwise, reallocate an option by setting x0

i0j0 = 1 and x0
ijj0

= 0.
Go to step 2.

The idea of this algorithm is as follows. We start with the best possible assignment of options
to neighbourhoods ignoring the constraints, which means that we pick the minimal cost option

1After step 1 of the algorithm, the constraints are in non-increasing order of exceedance of the constraint limit
in the solution to (16). During the entire heuristic, this ordering remains.

12

in each neighbourhood. If the energy limit constraints (4) are not met, we reallocate an option
and we keep doing this until the solution is feasible. The reallocation is chosen in step 3 and is
based on selecting the option with the largest relative usage decrease with respect to the total
cost.

The index ij in step 3 of the algorithm exists and is unique, due to the constraints in (16). The
set Mj in step 2 of the algorithm is chosen such that infinite looping is prevented. This is done
by only considering more expensive options. Testing results from CEGOIA showed that this is
indeed an e↵ective way to prevent infinite looping and to still attain a good solution.

An alternative formula for tij is to only use a(k
⇤) instead of a(tot). However, in practice this

turns out to give a worse solution. An explanation for this is that some options use an en-
ergy system that have a very small a(k

⇤), because it uses a di↵erent energy source. Due to this
small a(k

⇤), the option is directly chosen with the alternative formula, because the t value is
very large. But this means a lot of cheaper options are skipped and this eventually leads to a
worse solution. By using a(tot) the values of tij are more balanced and this gives a better solution.

5.1.1 Example

First we compute the sum of the constraint matrices:

(a(tot)ij) =

0

BB@

10 8 9
0 0 0
7 5 6
8 9 8

1

CCA .

Running the described heuristic on the example given in table 2 now gives the following.
Step 1.

Solving the relaxed problem

min 10x11 + 8x12 + 9x13 + 21x21 + 34x22 + 20x23 + 15x31 + 18x32 + 16x33 + 13x41 + 17x42 + 14x43

s.t.

x11 + x21 + x31 + x41 = 1

x12 + x22 + x32 + x42 = 1

x13 + x23 + x33 + x43 = 1

xij 2 {0, 1} for i 2 M and j 2 N.

gives the solution x0
11 = x0

12 = x0
13 = 1 with value 27.

Step 2.

We have
P

i2M

P
j2N a(1)ij x0

ij = 10 + 8 + 9 > 10 = b1, so the solution x0
ij is not feasible and we

go to step 3.

Step 3.

Consider the constraint k⇤ = 1. Then we have N1 = {1, 2, 3} and Mj = {2, 3, 4} for all j 2 N1.

13

Now we compute tij for all j 2 N1, i 2 Mj , which results in the following.

t21 = 10
11 , t22 = 8

26 , t23 = 9
11 ,

t31 = 3
5 , t32 = 3

10 , t33 = 3
7 ,

t41 = 2
3 , t42 = �

1
9 , t43 = 1

5 .

The largest tij � 0 is t21, so (i0, j0) = (2, 1). We now reallocate the option chosen for neighbour-
hood 1, so x0

21 = 1 and x0
11 = 0.

Step 2.

We have
P

i2M

P
j2N a(1)ij x0

ij = 8 + 9 > 10 = b1, so the solution x0
ij is not feasible and we go to

step 3.

Step 3.

We have N1 = {2, 3} and Mj = {2, 3, 4} for all j 2 N1. The tij for i 2 M , j 2 N1 remain the
same, so

t22 = 8
26 , t23 = 9

11 ,

t32 = 3
10 , t33 = 3

7 ,

t42 = �
1
9 , t43 = 1

5 .

Now the largest tij � 0 is t23, so (i0, j0) = (2, 3). We reallocate the option chosen for neighbour-
hood 3, so x0

23 = 1 and x0
13 = 0.

Step 2.

The solution x21 = x12 = x23 = 1 is feasible and has total cost 49.

14

5.2 One step improvement (AGAP reversed)

To improve the result of the AGAP heuristic, we have developed an algorithm that considers one
step improvements. This means that in one neighbourhood we choose a di↵erent option and all
other allocations remain the same. As the value of the objective function must be improved, the
cost of this new option must be lower and the solution must still be feasible. The implemented
one step improvement is similar to the algorithm described in Section 5.1, but now in reversed
order (this is why the algorithm is called “AGAP reversed”). This means that we consider only
the cheaper options for each neighbourhood that are still feasible and we choose the reallocation
that results in the largest relative cost decrease with respect to the total usage.

Algorithm 2 AGAP reversed
Step 1.

Let x0
ij with i 2 M and j 2 N be the solution computed by the AGAP heuristic.

Step 2.

For all neighbourhoods j 2 N let ij be the unique index such that x0
ijj = 1. For all j 2 N and

for all i 2 M for which cij < cijj , we compute the relative cost decrease:

sij =
cijj � cij

�a(tot)ijj
+ a(tot)ij

=
1

tij

(if a(tot)ijj
� a(tot)ij , let sij = 1).

Step 3.

Let (i0, j0) be the pair with the largest relative cost decrease, such that after reallocating x0
i0j0 = 1

and x0
ijj0

= 0, the solution x0
ij for all i 2 M, j 2 N is still feasible. Perform this reallocation and

go back to step 2. If such a pair (i0, j0) does not exist: STOP.

After testing the algorithm with di↵erent formulas for sij it turned out that sij = 1/tij led to
the best results. An explanation can be that we choose the option with the largest relative usage
decrease with respect to the total cost in the AGAP heuristic. Reversing this, means we choose
the option with the largest relative cost decrease with respect to the total usage. Therefore, this
formula for sij has the desired e↵ect.

If a(tot)ijj
� a(tot)ij , there is less usage of resources while the cost decrease. This means reallocating

xijj = 0 and xij = 1 would be advantageous. Therefore, when a(tot)ijj
� a(tot)ij in step 2 of AGAP

reversed, we let sij = 1.

Suppose that after this algorithm has been executed there is still a possible one step improve-
ment. This means that in one neighbourhood a cheaper option can be chosen while all other
neighbourhoods keep the same option. So there exists a pair (i, j) for which cij < cijj and such
that reallocating xij = 1 and xiji = 0 still gives a feasible solution. However, if such a pair
exists, the algorithm cannot have stopped in step 3. So we can conclude that after performing
the AGAP reversed algorithm there are no possible one step improvements.

15

The idea to reverse the AGAP heuristic and the steps of the algorithm, are not based on anything
found in the literature, but are original contributions. This also applies to the multiple step
improvement that is described later in this thesis.

5.2.1 Example (continued)

Performing the greedy improvement on the example in Section 5.1.1 gives the following.

Step 1.

The solution computed by the AGAP heuristic is x0
21 = x0

12 = x0
23 = 1 and has total cost 49.

Step 2.

For all j 2 N we compute the relative cost decreases for all i 2 M \ {ij} for which cijj � cij :

s11 = 11
10 , s13 = 11

9 ,

s31 = 6
7 , s33 = 4

6 ,

s41 = 8
8 , s43 = 6

8 .

Step 3.

Reallocating x0
11 = 1, x0

13 = 1 and x0
41 = 1 all lead to an infeasible allocation, so the feasible

reallocation with the largest cost decrease is: x0
31 = 1 and x0

21 = 0. Therefore the new allocation
is: x0

31 = x0
12 = x0

23 = 1 and we go back to step 2.

Step 2.

The relative cost decreases are:

s11 = 5
3 , s13 = 11

9 ,

s33 = 4
6 ,

s41 = 2
1 , s43 = 6

8 .

Step 3.

All corresponding reallocations are infeasible, so the algorithm stops. The allocation is: x31 =
x12 = x23 = 1 and has total cost 43.

5.3 Results

The algorithms AGAP and AGAP reversed have been implemented and tested on some problems
CE Delft has been working on. These problems have already been optimized using CBC or
GLPK MI, so the results of the heuristic can be compared to the optimal solution. In the
following table the column “Heuristic solution” shows the testing results of the entire heuristic.
So this is the AGAP heuristic given in section 5.1, followed by AGAP reversed.
In this table the first column contains the number of neighbourhoods for each problem. The
column “cost di↵” contains the di↵erence in total cost between the optimal solution and the
heuristic solution and the column ”% deviation” shows this di↵erence as a percentage of the
total cost of the optimal solution.

16

Optimal solution Heuristic solution
nbh Total cost Runtime (sec) Total cost Runtime (sec) Cost di↵. % deviation

11 68522319 0.279 68522319 0.016 0 0
42 121478550 1.683 121489071 0.200 10521 0.009
67 233752194 7.352 234171297 0.454 419103 0.179
178 262379424 18.612 263068512 0.570 689088 0.263
404 822442810 5,139.389 823395458 11.324 952648 0.116
1141 2825574770 > 10000 2835505746 39.130 9930976 0.351
1807 4888654668 > 10000 4910666315 414.695 22011647 0.450

Table 3: Results of the heuristic compared to the optimal result

After a slight change in step 2 of AGAP reversed, the runtime of the algorithm can be reduced.
This can be done by not computing all sij in every iteration. Instead only the si,j0 , with j0

the neighbourhood in which the most recent reallocation was performed in step 3, have to be
recalculated. However, this can result in a di↵erent solution. It is possible that an option (i, j)
that was not feasible, becomes feasible after a reallocation that reduces the use of an energy
source. When all sij are computed in every iteration, this option will become available. But in
the alternative, faster algorithm, this is not the case. The following table shows the results of
the faster AGAP reversed algorithm.

Optimal solution Heuristic solution
nbh Total cost Runtime (sec) Total cost Runtime (sec) Cost di↵. % deviation

11 68522319 0.279 68522319 0.030 0 0
42 121478550 1.683 121489071 0.047 10521 0.009
67 233752194 7.352 234171297 0.200 419103 0.179
178 262379424 18.612 263068512 0.464 689088 0.263
404 822442810 5,139.389 823395458 1.954 952648 0.116
1141 2825574770 > 10000 2835687824 7.958 10113054 0.358
1807 4888654668 > 10000 4910666315 60.710 22011647 0.450

Table 4: Results of the heuristic compared to the optimal result using the faster version of AGAP
reversed

It turns out that for the calculated problems, only the problem with 1141 neighbourhoods gives
a di↵erent solution. Instead of a 0.351% deviation, it is now 0.358%. However, the runtimes
have decreased significantly. Therefore, the faster version of AGAP reversed is used.

A small note: there was a certain problem consisting of 137 neighbourhoods where the deviation
from the optimal solution was more than 1%. However, this problem was quite unique due to
some demands made by the municipality. For example, the electricity limit had to be very low
and there was a minimum insulation level requirement. The reason for the deviation came from
this combination of demands and would not occur in other problems. Therefore, the results of
this problem are disregarded.

17

5.4 Multiple step improvement

After the improvement described in Section 5.2, there are no neighbourhoods in which a cheaper
option can be chosen such that the solution is still feasible. In other words, there are no one
step improvements. Hence, the only way to reach a better overall solution is to select a more
expensive option for certain neighbourhoods after which some other neighbourhoods can use
cheaper options. We call this multiple step improvements. The di�culty in this approach is
which neighbourhood should get a more expensive option and by how much the cost in this
neighbourhood must be raised, in order to decrease the total cost of the overall solution.
In the algorithm described in this section, we solve this in the following way. We define two
sets. The first set, P , contains rows corresponding to cheap options. The second set, Q contains
rows corresponding to expensive options. Then, for all neighbourhoods where an option in P is
selected in the current solution, we try replacing this option by an option from Q. Subsequently,
we perform AGAP reversed and if the total cost declines, this becomes the new solution.
But before we explain the algorithm in detail, a mention about the structure of the cost matrix
has to be made.

Note 1: Sorting the cost matrix

In the implementation of CEGOIA, the cost matrix is sorted such that cij  ci0j if and only if
i  i0 for all i, i0 2 M . So for all neighbourhoods, the options are sorted such that the cost is

ascending. Of course, the matrices (a(k)ij) are sorted in sync with the cost matrix. However, this
means that a row of a matrix does not necessarily correspond to an option. To still be able to
retrieve the final solution of CEGOIA, every matrix element in every column gets an identificator
that tells to which option it corresponds. The heuristic is implemented in the same way, so using
these sorted matrices. For Algorithms 1 and 2, it is not important whether the matrices are
sorted. However, the algorithm described in this paragraph uses the fact that the matrices in
CEGOIA are sorted.

In this section we assume that the matrices are sorted as explained in Note 1. The algorithm
will then be as follows.

Algorithm 3 Multiple step improvement
Step 1.

Let x0
ij with i 2 M and j 2 N be the solution computed by the AGAP heuristic followed by the

AGAP reversed heuristic. Fix p, q � 1 such that p+ q  m.
Let P = {1, ..., p} ⇢ M . Let R = {i 2 M |x0

ij = 1 for some j 2 N} = {r1, ..., rs} and let
Q = {rs�q+1, ..., rs}. Note that q must be chosen such that q  s+ 1.

Step 2.

For all neighbourhoods j 2 N let ij be the unique index such that x0
ijj = 1. Let x⇤

ij = x0
ij for

i 2 M, j 2 N and let c⇤ be the corresponding total cost.
For all j 2 N with ij 2 P do:

For all i 2 Q do:

Let x0
ijj = 0 and x0

ij = 1. If
P

i2M

P
j2N a(k)ij x0

ij  bk holds for all k 2 K, perform
AGAP reversed with this solution as starting solution.
If the resulting total cost is less than c⇤:

x⇤
ij = x0

ij for i 2 M, j 2 N , let c⇤ be the corresponding total cost.
Otherwise: x0

ij = x⇤
ij for i 2 M, j 2 N .

STOP. Return x⇤
ij as a feasible solution.

18

As the matrices are sorted as mentioned in note 1, the set Q contains the q most expensive
chosen rows. We only consider the chosen rows, because in CEGOIA there is usually a limited
set of selected rows that correspond to practically advantageous combinations of energy systems
and insulation levels. Be aware that p and q must be chosen such that P \Q = ;. To illustrate
how this algorithm works, we again take a look at the example.

5.4.1 Example (continued)

After sorting the options, we get the following cost matrix and corresponding constraint matrices.

(cij) =

0

BB@

10 8 9
13 17 14
15 18 16
21 34 20

1

CCA ,

(a(1)ij) =

0

BB@

10 8 9
4 6 2
0 0 0
0 0 0

1

CCA , (a(2)ij) =

0

BB@

0 0 0
4 3 6
7 5 6
0 0 0

1

CCA , (a(tot)ij) =

0

BB@

10 8 9
8 9 8
7 5 6
0 0 0

1

CCA ,

b = (10, 12).

Step 1.

The starting solution is now x0
31 = x0

12 = x0
43 = 1. This is the same solution as the one obtained

by AGAP reversed, but as the matrices are sorted, the order of the indices changes. For this
example, we fix p = 1 and q = 2, so P = {1}. From the starting solution it follows that
R = {1, 3, 4}. As q is equal to 2, this means that Q = {3, 4}.

Step 2.

We fix x⇤
31 = x⇤

12 = x⇤
43 = 1 and c⇤ = 43. The only neighbourhood j 2 N with ij 2 P is j = 2.

For all i 2 Q we now have:

• For i = 3, we let x0
12 = 0 and x0

32 = 1. The solution is still feasible, so we perform
AGAP reversed. This results in the solution x0

31 = x0
12 = x0

43 = 1, which has total cost
43 ⌅ 43 = c⇤. This means x0

ij is automatically restored to x⇤
ij , so x0

31 = x0
12 = x0

43 = 1.

• For i = 4, we let x0
12 = 0 and x0

42 = 1. The solution is still feasible, so we perform
AGAP reversed. This results in the solution x0

31 = x0
12 = x0

43 = 1, which has total cost
43 ⌅ 43 = c⇤. This means x0

ij is automatically restored to x⇤
ij , so x0

31 = x0
12 = x0

43 = 1.

The algorithm finishes and there has been no improvement. The solution is: x31 = x12 = x23 = 1
with total cost 43.

5.5 Results after the multiple step improvement

After applying the AGAP heuristic and the AGAP reversed heuristic on the problems shown in
Section5.3, the multiple step improvement has been executed with di↵erent parameters p and q.
For p = q = 3 it turned out that the total cost was the same for all problems as for p = q = 2.
Logically, for p = q = 2 the runtime was less than for p = q = 3 (for 1807 neighbourhoods it is
2127 seconds against 4349 seconds) as fewer alternative options had to be considered. The cases

19

p = 1, q = 2 and p = 2, q = 1 have also been tested, but they both had higher total cost for
some of the problems and the running time did not di↵er much from the case of p = q = 2 (all
running times were between 2000 and 3000 seconds). Therefore taking p = q = 2 led to the best
results, which are shown in the following table.

Optimal solution Heuristic solution
nbh Total cost Runtime (sec) Total cost Runtime (sec) Cost di↵. % deviation

11 68522319 0.279 68522319 0.098 0 0
42 121478550 1.683 121489071 1.181 10521 0.009
67 233752194 7.352 234171297 1.403 419103 0.179
178 262379424 18.612 262614249 6.676 234825 0.089
404 822442810 5139.389 823092468 38.253 649658 0.079
1141 2825574770 10000+ 2834971564 389.347 9150783 0.333
1807 4888654668 10000+ 4910484399 1,713.640 21829731 0.447

Table 5: Results of the heuristic after the multiple step improvement with p = q = 2 compared
to the optimal result

If these results are compared to the results shown in Section 5.3, it can be noticed that for the
problems with 11, 42 and 67 neighbourhoods there is no di↵erence, but the other problems have
a better solution after the multiple step improvement. However, the running time also increases
significantly: from 61 seconds for 1807 neighbourhoods to 1714 seconds. A running time of 1714
seconds is still acceptable, but when running CEGOIA on the Netherlands in its entirety, the
runtime is too large. As the heuristic is only used in very large problems, the multiple step
improvement is therefore usually not used. This means that the heuristic stops after the AGAP
reversed algorithm.

20

5.6 Results for the Netherlands in its entirety

The final goal of this project was to run CEGOIA on the Netherlands in its entirety. Unfortu-
nately, it turned out that the memory space of the input matrices for the constraints was too
large and overloaded the RAM. Especially for the constraints regarding the residual heat sources,
there were too many large matrices: more than 2000 13952 ⇥ 448-matrices. This problem did
not occur in the optimization itself, but in the computations before the optimization that were
already implemented by CE Delft. After unsuccessfully trying several methods to reduce this
memory space, we had to conclude that the input for the Netherlands was simply too large and
a simplification of the problem had to be used. This problem did not contain a constraint matrix
for each residual heat source, but one matrix for each municipality containing the combined
quantities of all heat sources within the municipality. Also some heat systems that are not fre-
quently used were left out, resulting in less rows for each matrix. Due to these changes in the
problem, the optimization could be performed and this resulted in the following map.

Figure 2: Result of CEGOIA for the Netherlands

Of course, we could not compare these results to the optimal solution. However, we were able to
compare these results of the heuristic to the optimal solution of certain parts of the Netherlands.
For example, for Zuid-Holland

Also, it seems that in practice, these results are quite logical. In the large cities, such as Rotter-
dam, Den Haag, Amsterdam and Utrecht, a heat exchanger is used. This is because a network
needs to be installed to use residual heat and in densely populated areas this is cheaper. Also,
in these cities, there is much residual heat available from industries. In the less populated areas,
such as the east of the Netherlands, a heatpump is used. This is because a heat network is too
expensive in these areas and for a heatpump only the heatpump itself is needed for each building.
In Friesland and the south of Limburg, a hybrid heatpump is often selected. We suspect that
this is because the buildings in these areas are quite old. This means it is more expensive to

21

increase the insulation. A hybrid heatpump is an option that does not need the buildings to be
well insulated, so therefore a hybrid heatpump is often the best option in these areas.

22

6 Analysis of the heuristic

The results found in Table 3 meet the requirements set in chapter 4, but it is also interesting
to know something about the performance of the heuristic on general integer programming
problems. Therefore, in this section we investigate whether the algorithm always gives a unique
solution and we take a look at the quality of the solution of general integer programs. Also, the
complexity of the algorithm is computed and the results of a small sensitivity analysis are given.

6.1 Existence and uniqueness of a solution

The solution given by the heuristic is unique. That is, when running the heuristic several times
on the same data, the result is always the same. The only part of the algorithm where it is not
immediately clear that this is the case, is in the beginning of step 3 where a constraint k⇤ is
chosen. However, in the programming code the constraints are checked one by one and k⇤ is the
first constraint that is exceeded, so this always results in the same solution for each run.

To investigate the existence of a solution, we distinguish two cases: when there is only one
constraint and when there are at least two constraints.

6.1.1 Existence of a solution for one constraint

In this paragraph, we assume that there is only one constraint, so k = 1. This means we can

write a(tot)ij = aij . We will show that, if a feasible solution exists, the AGAP heuristic will return
a feasible solution. Consider the following lemma.

Lemma

Suppose that k = 1. If an AGAP has a feasible solution, the AGAP heuristic (Algorithm 1) will
result in a feasible solution.

Proof

Let an AGAP be given such that a feasible solution x⇤ exists. Now suppose the heuristic returns
that the AGAP is infeasible. This means that in the last iteration we have an infeasible solution
x. For all neighbourhoods j 2 N let ij be the unique index such that xijj = 1. As x is returned
as an infeasible solution, we have:

X

i2M

X

j2N

xijaij > b, (17)

and for all i with cij � cijj (if any) we have:

tij =
aijj � aij
�cijj + cij

< 0, so aijj � aij < 0. (18)

As a feasible solution x⇤ exists, there must exist a j 2 N with x⇤
i⇤j j

= 1 and:

a) ai⇤j j < aijj (because x⇤ is feasible and x is infeasible),

and therefore:

b) ci⇤j j < cijj (follows from property a and (18)).

23

Note that from property b, it automatically follows that in this neighbourhood j, option ij
can not already be selected in the first step of the AGAP heuristic. So, suppose that for this
neighbourhood j, the option ij in the infeasible solution is selected in iteration h > 1. Then in
iteration h� 1, we have xlj = 1 for l 2 M , l 6= ij , i⇤j .
So this means that in iteration h� 1 by property a, we have:

alj � ai⇤j j > alj � aijj .

And by property b, we have:

�clj + ci⇤j j < �clj + cijj .

So combining this leads to the following.

ti⇤j j =
alj � ai⇤j j

�clj + ci⇤j j
>

alj � aijj
�clj + cijj

= tijj . (19)

However, in step 3 of the AGAP heuristic, we select the option with the largest positive t-value.
So this means that for neighbourhood j, we do not choose option ij in iteration h � 1. This
contradicts what we previously stated. Therefore, we can conclude that the AGAP heuristic will
return a feasible solution, if there exists one. ⇤

We can ask ourselves if, for k = 1, this feasible solution is also the optimal solution. However,
this does not have to be the case and we can show this by the following counterexample. Consider
the IP-problem with one constraint:

(aij) =

✓
8 7
2 3

◆
, (cij) =

✓
1 2
6 6

◆

b = 11.

In this example, the AGAP heuristic selects the second option for the first neighbourhood in the
first iteration. This means that the feasible solution given by the heuristic is x21 = x12 = 1 with
total cost 8. However, the optimal solution is x11 = x22 = 1 with total cost 7.

24

6.1.2 Existence of a solution for at least two constraints

When there are at least two constraints, an example can be constructed in which a feasible
solution exists, but is not found by the AGAP heuristic described in Section 5.1. Consider the
following problem.

min 7x11 + 6x12 + 9x21 + 12x22 (20)

s.t.

x11 + x21 = 1

x12 + x22 = 1

4x11 + 5x12  4

3x21 + 4x22  5

xij 2 {0, 1} for i 2 {1, 2} and j 2 {1, 2}.

This problem has a feasible solution (which is also the optimal solution): x11 = x22 = 1. However,
when performing the algorithm on this problem, it concludes that it is infeasible. The starting
solution is x11 = x12 = 1 (which is infeasible due to the first inequality) and in the first iteration
the gains are t21 = 1/2 and t22 = 1/6. So after reallocating, the new solution is x21 = x12 = 1,
which is still infeasible. In the next iteration, as only options with higher cost are considered,
the only gain is t22 = 1/6. After reallocating, the final solution x21 = x22 = 1 is infeasible as the
constraint 4x21 + 5x22  4 is exceeded.
In the heuristic for the Generalized Assignment Problem given in [6], this is prevented by chosing
ti0j0 such that

P
j2N ai0jxi0j + ai0j0  bi0 . However, as the integer programming problem in

CEGOIA is not an actual GAP, this does not work.
An alternative way to simulate this step, has been tested by only choosing reallocations that
do not have a negative e↵ect on other constraints. However, it turns out that the algorithm
described in the previous sections has led to the best results. Also, it very rarely happens that
an infeasible solution is returned, while there exists a feasible solution; for all tested problems
in CEGOIA, this never occurred. Therefore, these versions of the AGAP heuristic and AGAP
reversed heuristic have been used in CEGOIA.

6.2 Performance of the algorithm on general integer programming
problems

To test the performance of the heuristic on general integer programming problems, a simulation
has been implemented. In the simulation a m⇥ n cost matrix is generated with cij drawn from
a uniform distribution over the interval [100, 500). Also a predetermined number of constraints

is generated where each constraint consists of an m⇥ n constraint matrix with a(k)ij drawn from
a uniform distribution over the interval [1, 20) and a corresponding constraint limit bk drawn
from a uniform distribution over the interval [a, b) where a = 10 · n

2 and b = 10 · n. The bounds
of the intervals of the uniform distribution have been chosen in such a way that in most cases
the problem is neither infeasible, nor choosing the cheapest option for each neighbourhood is
immediately a feasible solution.

6.2.1 Results for di↵erent values of m and n

In the following table the percentage deviation from the optimal total cost of a simulation with 3
constraints is shown for di↵erent m (number of options) and n (number of neighbourhoods). Due

25

to running time issues, these simulations only use the AGAP heuristic and the AGAP reversed
heuristic, so not the multiple step improvement. The results are obtained by taking the average
of the percentage deviation from the total cost of the optimal solution of 500 simulations.

m \ n 10 20 30 40 50 60 70

10 3.883 2.720 2.611 2.348 2.422 2.281 2.446
20 3.925 3.554 3.210 2.821 3.431 3.273 3.337
30 4.509 3.210 2.528 2.648 2.701 2.521 2.522
40 3.107 2.331 2.259 1.969 2.418 2.044 2.010
50 2.823 1.958 1.950 1.680 1.861 1.607 1.716
60 2.488 1.955 1.573 1.579 1.294 1.392 1.345

Table 6: Percentage diviation of the heuristic from the optimal solution for di↵erent m and n,
based on 500 simulations with 3 constraints, using the AGAP and AGAP reversed heuristic.

We see that for these randomly generated integer programming problems, the percentage devia-
tion from the optimal solution is larger than for the CE-problems. These problems are smaller
than the CE-problems; in the simulation there are at most 70 neighbourhoods and 60 options.
This is because otherwise the simulation takes too long (for 70 neighbourhoods and 60 options
it already takes several hours). However, from the table it seems that the larger the problem,
the better the solution. Therefore, we did some simulations in which only the number of options
and the number of neighbourhoods varied.
First, the number of options is fixed on 30 and we vary the number of neighbourhoods. Again,
there are 500 simulations and 3 constraints. The following figure shows the percentage deviation
from the optimal solution for di↵erent numbers of neighbourhoods.

Figure 3: Percentage deviation from the optimal cost for a varying number of neighbourhoods
with 30 options and 3 constraints based on 500 simulations.

Indeed, a larger number of neighbourhoods usually results in a better solution. However, at more
than 70 neighbourhoods, the decrease is not significant anymore.
When the number of neighbourhoods is fixed on 42 (we chose 42 because it is the number of

26

neighbourhoods of an existing CE-problem) and we vary the number of options, the results are
as follows.

Figure 4: Percentage deviation from the optimal cost for a varying number of options with 42
neighbourhoods and 3 constraints based on 500 simulations.

In this figure it is clear that the deviation from the optimal solution decreases, when the number
of options increases. This leads to the conclusion that the results of the heuristic are slightly
worse on general linear programming problems compared to CE-problems. However, when a
general problem is large enough, the deviation of the heuristic from the optimal solution reaches
the same value as for CE-problems.
A somewhat unexpected result is that the results in the simulation are better when the problems
are larger. This is in contradiction with the results of the CE-problems, where the larger problems
have slightly worse results. An explanation can be that in this simulation we only consider
di↵erent m and n, but the number of constraints is always 3. This does not match with CEGOIA,
because a larger area (more neighbourhoods) usually contains more residual heat sources, so more
constraints. Therefore, we take a look at the results for di↵erent numbers of constraints.

6.2.2 Results for di↵erent numbers of constraints

First, we consider the simulation with an increased number of constraints. However, increasing
the number of constraints from 3 to 4, leads to a lot more simulations in which the heuristic
does not find a solution, while there does exist one. To investigate how often this happens, a
simulation has been performed in which the number of constraint varied. Table 7 shows the
number of infeasible solutions for 1 to 5 constraints. The size of the problems ranged from 10 to
50 and we let m = n.

So indeed, the number of infeasible solutions increases for a larger number of constraints. Also,
the smaller the problems, the more infeasible solutions there are. Intuitively, this is a logical
result; a problem with many constraints and few options and neighbourhoods is hard to solve.
As the percentage of infeasible solutions is already quite large for 4 constraints, this simulation
is less representative. Therefore, we performed a simulation with less than 3 constraints. This
led to the results for two constraints shown in Table 8.

27

m \ k 1 2 3 4 5
10 0 18 137 181 193
20 0 0 26 138 265
30 0 0 3 50 180
40 0 0 0 17 123
50 0 0 0 2 81

Table 7: Number of times the heuristic returns an infeasible solution, while there does exist a
feasible solution. Based on 500 simulations with m = n and di↵erent numbers of constraints.

m \ n 10 20 30 40 50 60 70

10 3.088 2.473 2.052 1.860 1.964 1.786 1.526
20 1.911 1.631 1.359 1.223 1.254 1.150 1.049
30 1.468 1.188 1.107 0.923 0.912 0.934 0.862
40 1.227 0.867 0.764 0.778 0.697 0.622 0.675
50 0.926 0.792 0.657 0.639 0.543 0.558 0.536
60 0.821 0.592 0.596 0.504 0.508 0.501 0.493

Table 8: Percentage diviation of the heuristic from the optimal solution for di↵erent m and n,
based on 500 simulations with 2 constraints, using the AGAP and AGAP reversed heuristic.

Comparing these results to Table 6, shows that less constraints leads to a smaller deviation
from the optimal solution. For larger problems, the percentage deviation of the simulation even
reaches the percentage deviation of the CE-problems. When there is only one constraint, the
results of the simulation are as shown in Table 9.

m \ n 10 20 30 40 50 60 70

10 0,268 0,173 0,112 0,082 0,065 0,049 0,038
20 0,207 0,107 0,069 0,048 0,043 0,029 0,027
30 0,162 0,072 0,047 0,036 0,026 0,022 0,018
40 0,131 0,055 0,043 0,030 0,022 0,017 0,015
50 0,097 0,046 0,029 0,021 0,017 0,013 0,011
60 0,082 0,036 0,025 0,017 0,016 0,011 0,010

Table 9: Percentage diviation of the heuristic from the optimal solution for di↵erent m and n,
based on 500 simulations with 1 constraint, using the AGAP and AGAP reversed heuristic.

The deviation for 1 constraint is clearly less than for 2 or more constraints. It is even better
than some of the results of the CE-problems.

Now we can take a look at the question mentioned in Section 6.2.1: Why does increasing the
number of neighbourhoods lead to better results in the simulation and worse results in CEGOIA?
In the simulations for 1, 2 and 3 constraints, we saw that less constraints leads to better solu-
tions. In the CE-problems the number of constraints can be quite large. Table 10 shows for some
problems how many constraints there are.

28

Number of neighbourhoods (n) Number of constraints (k)

42 9
67 13
178 12
404 35
1141 43
1807 47

Table 10: Number of constraints for some CE-problems

So the number of constraints in CE-problems increases for a larger number of neighbourhoods.
As we saw in Tables 6, 8 and 9, the deviation from the optimal solution is smaller when there
are less constraints. This explains why the results in CEGOIA are worse for larger problems.

Now another question remains: Why is the deviation from the optimal solution in CEGOIA
always less than 0.5%? Considering the fact that these problems have many constraints, this
seems rather low compared to the simulation results. An explanation for that is the following.

In CEGOIA the number of constraints corresponds to the number of energy sources. So this
can be electricity or gas, but also collective heat sources like residual heat of industries. The
number of heat sources given in the table above appear to be too much to find a solution with
the heuristic, based on the results of the simulation. However, only electricity is used in every
option. All other constraints correspond to energy sources that can only be applied in a limited
area (for instance residual heat) or in a few options (for instance bio mass). In conclusion, only
one constraint limits all combinations (i, j). The remaining constraint matrices contain mainly
zeroes.
In addition, the constraint matrices in CEGOIA have a certain structure. This structure is
based on the fact that rows correspond to options. As a result, the numbers in the constraint
matrices are in the same range when they correspond to the same heat system. Also, there is
an interrelationship between the constraints as they correspond to certain energy sources. This
means that the information in Table 1 is reflected in the constraint matrices. Even after sorting
the matrices as explained in Note 1, this structure remains roughly the same.

In conclusion, problems in CEGOIA have many interconnected constraints that all have a certain
structure. In Table 4 we can see that the heuristic works well for these types of problems. In
the simulation, we do not have this structure; the matrix elements are chosen randomly from a
certain distribution. Here the number of neighbourhoods, options and constraints all a↵ect the
quality of the heuristic solution. This leads to a certain balance between the characteristics of
an AGAP and the quality of the solution. So for some simulations the heuristic works as good
as it does for CEGOIA. For other simulations, usually simulations with many constraints and
few options and neighbourhoods, the heuristic performs worse.

6.2.3 Comparison with the results found by Wilson

Finally, the simulation has also been executed with the variable values given by Wilson in Section

3 of [6]. The matrices (a(k)ij) have been implemented in such a way that they match the form
of the GAP-constraints as in (8). This is done by letting k be equal to the m in [6] and setting

29

(a(k)ij) = 0 for all i 6= k. With this implementation, the simulation matches the design of the test
performed in [6] and the results can be compared. However, the simulation results are a factor
100 larger than the results given in Table 1 of [6]. By computing some ranges of values for pij
given the formulas in the article, we found that an optimal value of 10422 for n = 500 is too
small. So this raises the question whether the data in Table 1 of [6] is correct.

6.3 Results after di↵erent stages of the heuristic

As the heuristics solves the IP-problem in di↵erent steps, it is interesting to take a look at the
total cost of the solution after each step. We distinguish the following steps:

1. The solution without constraints (the solution of (16) in step 1 of algorithm 1);

2. The solution when the AGAP algorithm has been completed;

3. The solution when AGAP reversed has been completed.

For the total cost of these solutions, we have in general: c(1)  c(OPT)  c(3)  c(2) with
c(OPT) the total cost of the optimal solution.
For problems with many neighbourhoods and constraints, the di↵erence between c(1) and c(OPT)
is usually relatively large. This is because for c(1) there are no constraints, so in each neighbour-
hood the cheapest option can be selected. The di↵erence between c(OPT) and c(3) is equal to
the di↵erences found in Table 4, so these di↵erences are relatively small. The di↵erence between
c(3) and c(2) are larger, because AGAP reversed reduces the total cost significantly.

6.4 Existence of a solution for infinitely many options

Paragraphs 6.1 and 6.2.1 raise the following question: For a fixed number of neighbourhoods,
does the heuristic always find a feasible solution when m tends to infinity (assuming a feasible
solution exists)? Unfortunately, this is not the case. This can easily been shown by expanding
the options in Example 20 of Paragraph 6.1. In this example, the matrices defining the problem
are as follows.

(a(1)ij) =

✓
4 5
0 0

◆
, (a(2)ij) =

✓
0 0
3 4

◆
, b = (4, 5), (cij) =

✓
7 6
9 12

◆

If we now let the number of options tend to infinity and we simply copy the last rows of each
matrix, we get the following problem.

(a(1)ij) =

0

BBB@

4 5
0 0
0 0
...

...

1

CCCA
, (a(2)ij) =

0

BBB@

0 0
3 4
3 4
...

...

1

CCCA
, b = (4, 5), (cij) =

0

BBB@

7 6
9 12
9 12
...

...

1

CCCA

The only feasible solutions are x11 = xi2 = 1 with i � 2. But when performing the AGAP
heuristic on this problem, the first iteration results in a reallocation such that xi1 = x12 = 1
with i � 2. And as the AGAP heuristic is formulated such that only more expensive options are
considered in next iterations, we can never have x11 = 1 after the first iteration. Therefore, a
feasible solution will not be found using the heuristic.

30

6.5 Complexity

It is useful to analyze the complexity of the algorithms. The complexity of the AGAP heuristic
is as follows.

• Step 1 has complexity O(m · n), because for each neighbourhood j 2 N we have to find
the minimum cost option out of the m options.

• Step 2 has complexity O(k ·n), because all k constraints have to be checked and each check
can be done by adding up the n chosen options.

• Step 3 has complexity O(m), because for every column in which a reallocation has been
executed in the previous iteration, the tij have to be computed (only in the first iteration
all tij have to be computed).

Step 1 is only performed in the first iteration. Step 2 and 3 have to be executed at most
(m � 1) · n times, because every iterations ends with a reallocation and there are (m � 1) · n
possible reallocations in total. This means that the total complexity of the AGAP algorithm is:

C(AGAP) = O(m · n+m · n(k · n+m)) = O(m · n(k · n+m))

Now we compute the complexity of AGAP reversed (the fast version).

• Step 2 has complexity O(m), because for every column in which a reallocation has been
executed in the previous iteration, the tij have to be computed (only in the first iteration
all tij have to be computed).

• Step 3 has complexity O(n · k), because the constraints have to be checked. As we use the
fast version of AGAP reversed, the feasibility of every combination (i, j) is checked at most
once.

These steps are executed at most (m � 1) · n times, because that is the number of possible
reallocations. Therefore, the total complexity of the algorithm is:

C(AGAPr) = O(m · n(m+ n · k)).

The complexity of the multistep improvement is as follows.

• Step 1 has complexity O(n(m logm)), because for each neighbourhood all options have to
be sorted.

• Step 2 has complexity O(n ·q ·C(AGAPr)), because for each neighbourhood with an option
in P (which are all neighbourhoods in the worst case), we perform AGAP reversed for all
options in Q (which consists of q options)

As step 1 is only executed once, the total complexity of the multistep improvement is:

C(MI) = O(n(m logm) + n · q · C(AGAPr)) = O(n · q · C(AGAPr))

6.6 Sensitivity analysis

To investigate the influence of the constraint limits, a sensitivity analysis has been performed. In
this analysis, we ran CEGOIA on di↵erent scenarios of one problem (Katwijk, with 42 neighbour-
hoods) and compared the total cost of the heuristic and the optimal solution. These scenarios
are defined by di↵erent parameters, such as the target year and constraint limits, that are de-
termined before running CEGOIA. These parameters can have any number of possible values,

31

depending on what scenarios are useful to investigate by CE Delft. If a certain parameter is not
taken into account, the limit can be set to infinity. Table 11 shows which parameters can be
modified for the Katwijk project and their corresponding di↵erent values.

Parameter Possible values Explanation

Target year 2030, 2050 The Dutch government stated that
in 2030 at least 1.5 million dwellings
should be carbon neutral, in 2050 all
buildings should be carbon neutral

Electricity limit 753750, 850000, 1 The amount of available electricity for
the entire area

Gas limit 0, 1 The amount of available gas for the
entire area. This is a combination of
green gas and fossil gas; the target year
(2030 or 2050) determines the ratio.

Geothermal energy 518000, 1 Geothermal energy is a collective heat
source that can be used in Katwijk.
The amount can be set to the esti-
mated available amount or infinity.

Insulation level Current, 70 kWh/m2, 50
kWh/m2

The minimum insulation level deter-
mines the maximum amount of en-
ergy that can be used in buildings per
square meter. So a level of 50 kWh/m2
means that all buildings must have an
insulation level such that at most 50
kWh energy per square meter is used.
When the insulation level is “current”,
this means that there is no requirement
on the insulation level.

Table 11: The di↵erent parameters in the sensitivity analysis and their possible values

All possible combinations of values for the parameters have been tested, so a total of 72 scenarios.
As the table containing the results of all these scenarios was very large, it has not been added
to this report. However, the results will be discussed here.
The first thing that stood out was that for an electricity limit of infinity, the heuristic solution
and the optimal solution were the same. All options for a neighbourhood use electricity and the
cheapest options are usually all-electric heat systems. So when there is an unlimited amount of
electricity, the optimal solution is simply selecting the cheapest option in each neighbourhood.
The AGAP heuristic starts by taking the cheapest option in each neighbourhood and then checks
the feasibility. As these cheapest options are all-electric and the electricity limit is infinite, this
starting solution is already feasible and therefore the heuristic solution is the same as the optimal
solution.
When only scenarios with an electricity limit of 753750 and 850000 are considered, it is di�cult
to draw conslusions from the results. When the amount of gas is infinite, most scenarios have
heuristic cost equal to the optimal cost. However, for some scenarios (6 out of 24) this is not the
case and it is unclear what causes this di↵erence. This is even more complicated as the available
gas is a mix of green gas and fossil gas, which have di↵erent cost. For the other parameters, there

32

does not seem to be a connection between the value of the parameter and the cost di↵erence
between the heuristic and optimal solution.
Another reason to perform a sensitivity analysis, was to check the performance of the heuristic
on di↵erent scenarios. It turns out that all 72 tested scenarios result in a di↵erence of less than
0.5% between the heuristic and the optimal solution. In 63 scenarios the di↵erence is even less
than 0.05%. So we can conclude that the heuristic performs well on all di↵erent scenarios.

6.7 System limit

In CEGOIA it is also possible to set a limit on the number of dwellings using a certain heat
system. For instance, at most 50% of the dwellings can use a hybrid heatpump. CE Delft has
been working on one problem with 910 neighbourhoods that has such limits. In these problems
the limits (as a percentage of the total number of dwellings) are as follows

System Limit (%)
Green gas 15
Heat exchanger LT or MT 40
Heat exchanger HT 20
Electric heatpump 10
Condensation boiler 45

The heuristic has been tested on this problem and a feasible solution has been found with total
cost 1655 million. The total cost of the optimal solution is 1641 million, so the deviation from
the optimal solution is a bit more than 0.5%. This is a larger deviation than for the problems
in Table 4. However, it is still quite small and it is useful to know that the heuristic can even
solve problems with these limits. Note that in this problem the sum of all limits is more than
100%. This means there is a flexibility that is probably needed to find a feasible solution. The
expectation is that the closer the sum of the limits gets to 100%, the smaller the probability that
a feasible solution is found.

33

7 Alternative methods

The results of the AGAP heuristic meet all requirements set in Chapter 4, but other methods
have also been tested. These methods and their results are described in this chapter.

7.1 The LP-relaxation

A way to gain more knowledge about the linear programming problem and to find a lowerbound
for the problem is to solve the LP-relaxation. This means that the integrality constraint 5 is
changed into xij � 0 and xij  1 for all i 2 M, j 2 N . In other words, the variables do not have
to be integer anymore. However, solving the LP-relaxation still takes a long time, sometimes
even longer than the original problem. An explanation for this, is that the solvers used for the
IP-problem have special tricks for IP-problems that result in a faster computation. Therefore
other solvers have been tested on the LP-relaxation, but none of them found a solution to the
large problems (more than 1000 neighbourhoods) within a reasonable time.

7.2 Alternatives within the heuristic

In the AGAP heuristic and the AGAP reversed heuristic, a formula is used to decide which
reallocation to perform. For both algorithms some alternative formulas have been tested. Fur-
thermore, as mentioned in Paragraph 5.1, step 3 of the AGAP heuristic uses the sum of the
constraint coe�cients, a(tot). The same algorithm has also been tested with only the coe�cients
of the exceeded constraint instead of the sum. AGAP reversed has also been tested with only
the coe�cients of the exceeded constraint in the formula instead of a(tot). However, for both
the AGAP heuristic and AGAP reversed, the current method led to the best results and has
therefore been used for CEGOIA.

Furthermore, in AGAP reversed, a di↵erent method has been tested in which the slack of each
constraint is considered to decide which reallocation to perform. This means that after the
AGAP heuristic, for all constraints the used amount of resource has been substracted from the
limit. The result of this computation is called the slack of the constraint and this slack shows
how much of the resource is still available. Then, in the formula in step 2 of AGAP reversed,
di↵erent formulas have been tested in which options using resources with large slack are more
likely to be selected than options using resources with a low slack. However, this method also
led to worse results than the method that was eventually used in CEGOIA.

7.3 Solvers

To compute the optimal solution, CE Delft has been using the CBC and GLPK MI solvers for
small problems and CPLEX for larger problems. These solvers are part of CVXPY (see [4]), a
modeling language for optimization problems. There are a number of solvers that can be called
by CVXPY and some of them have been tested on the IP problem in CEGOIA. The current
solvers led to the best results.

In [2] (Chapter 11) and [5], column generation is mentioned as a solving method for large linear
programming problems. To implement this method independently in CEGOIA is not practical,
as it is very complex. However, column generation can already be used in CPLEX. As large

34

problems, for instance the Netherlands in its entirety, cannot be solved using CPLEX, a heuristic
has more chance of success than column generation.

35

8 Discussion

After analyzing the results of the heuristic, we can conclude that a major improvement has been
made. It is now possible to run CEGOIA on the Netherlands in its entirety, which has been
the main purpose of this project and which is something that can be very useful for CE Delft.
However, the heuristic does not lead to the optimal solution, but an approximation of the opti-
mal solution. Although the deviation from the optimal cost has never exceeded 0.5 percent of
the total cost, there is still a risk that for the Netherlands in its entirety, the deviation is larger.
An attempt to improve the results of the heuristic has already been made in the multiple step
improvement. However, this improvement increased the runtime significantly and has therefore
not been used on very large problems. This means that in further research to find solutions
closer to the optimum, a di↵erent approach is probably necessary.

For CE Delft, it is important to know when to use the heuristic. When a problem is small,
and the optimal solution can therefore been found in a reasonable time, there is no use in
running CEGOIA with the heuristic. However, on a large problem with many neighbourhoods,
the heuristic can be used to find a good solution. Also, the heuristic can be used to perform
an analysis on di↵erent scenarios of a large problem. Of course, there usually still is a small
deviation from the true optimal solution. This is generally not a problem, as the solution found
in CEGOIA is not directly interpreted as a blue print for which energy system should be used in
which neighbourhood. For small areas this sometimes is the case, but for large areas, CEGOIA is
used more as a general idea for the distribution of systems. This means that the goal of running
CEGOIA on large areas is to decide roughly where the di↵erent systems are used. Not on a
neighbourhood level, but more on a town level or even a larger area. This then gives insight in,
for instance, where the green gas should be supplied. It is very useful for CE Delft to be able to
answer such questions.

36

9 References

[1] Robin Lougee-Heimer John Forrest. Cbc user guide, 2005. https://www.coin-or.org/Cbc
/cbcuserguide.html#heuristics.

[2] M. Schouten-Straatman L.C.M. Kallenberg. Geavanceerde onderwerpen in de besliskunde.
Universiteit Leiden, 2019.

[3] Luk N. Van Wassenhove Marshall L. Fisher, R. Jaikumar. A multiplier adjustment method
for the generalized assignment problem. Management science, 32(9), 1986.

[4] Stephen Boyd Steven Diamond. Cvxpy user guide, 2016. https://www.cvxpy.org/tuto
rial.html.

[5] Thomas Stützle Vittorio Maniezzo, Marco Antonio Boschetti. Matheuristics: Algorithms and

Implementations. Springer, 2021.

[6] John M. Wilson. A simple dual algorithm for the generalized assignment problem. Journal

of Heuristics, 2:303–311, 1997.

Figure 5: See Donald Duck nr. 5 2022

37

Appendix A

This appendix contains the code of the implementation of the heuristic in CEGOIA. At the start
of this graduation project, there was already a Python-based model for CEGOIA. All code shown
in this chapter is self developed and added to the existing CEGOIA-model. For the implemen-
tation of the heuristic, one function and one file were added. The function, heuristic solve, is
added to call the di↵erent algorithms: AGAP, AGAP reversed and possibly the multiple step
improvement. These algorithms are called Wilson and Wilson reversed in the programming code.
The added file, heuristic.py, then contains the code of the seperate algorithms.

The Python-code for the function is as follows.

1 # Input: characteristics of optimization problem (constraints , limits and

costs).

2 # Computes an approximation of the optimal solution using the Wilson

heuristic , which consists of

3 # Wilson , Wilson reversed and, if enabled , the multiple -step improvement.

4 # Output: a feasible solution (result matrix , selected options) and total

costs

5 def heuristic solve (a l l constraints unsorted , constraint limits unsorted ,
cost , neighbourhood options matrix) :

6 ce log (” s t a r t h e u r i s t i c s o l v e ”)
7 start timestamp = time . time ()
8 neighbourhood options ids selected = []
9 costs no constraints = np .sum(cost [0 , :])

10 # sort all constraints unsorted such in order of exceedance

11 a l l constraints = []
12 constraint limits = []
13 number of constraints = len (constraint limits unsorted)
14 slack = np . zeros (number of constraints)
15 for i in range (0 , number of constraints) :
16 slack [i] = constraint limits unsorted [i] − np .sum(a l l constraints

unsorted [i] [0 , :])
17 slack order = np . argsort (slack)
18 for i in range (0 , number of constraints) :
19 a l l constraints .append(a l l constraints unsorted [slack order [i]])
20 constraint limits .append(constraint limits unsorted [slack order [i

]])
21 # start algorithm

22 result matrix = wilson (a l l constraints , constraint limits , cost) #

Wilson heuristic

23 result matrix = wilson reversed (result matrix , a l l constraints ,
constraint limits , cost , 1) # Wilson reversed

24 # the multiple -step improvement (meerstapsverbetering): increases

running time significantly , can be commented

25 # result matrix = multiple step improve(result matrix , all constraints ,

constraint limits , cost)

26 # end algorithm

27 end timestamp = time . time ()
28 d i f f time = end timestamp − start timestamp

29 ce log (’ end h e u r i s t i c s o l v e in ’ + str (d i f f time) + ’ seconds ’)
30 chosen options costs = np . multiply (result matrix , cost)
31 total costs = int (round(chosen options costs .sum()))

38

32 rows = result matrix . shape [0]
33 cols = result matrix . shape [1]
34 # # print per column the row of the chosen option

35 # for column in range(0,cols):

36 # for row in range(0,rows):

37 # if result matrix[row][column] == 1:

38 # print("(" + str(row) + ", " + str(column) + ")")

39 # write result matrix to file result matrix.txt

40 with open (’ r e s u l t matrix heur . t x t ’ , ’w ’) as testfile :
41 for row in result matrix :
42 testfile .write (’ ’ . join ([str (a) for a in row]) + ’\n ’)
43 ce log (’RESULT MATRIX’)
44 print (result matrix)
45 # ce log(result matrix)

46

47 # Format result matrix

48 # [

49 # [buurt1optie1 buurt2optie1]

50 # [buurt1optie2 buurt2optie2]

51 #]

52

53 for option row count , option row in enumerate (range (0 , rows)) :
54 for neighbourhood column count , neighbourhood column in enumerate (

range (0 , cols)) :
55 i f result matrix [option row , neighbourhood column] == 1 :
56 neighbourhood options id = neighbourhood options matrix [

neighbourhood column count] [
57 option row count]
58 neighbourhood options ids selected .append(neighbourhood

options id)
59

60 ce log (’ r e s u l t count ’ + str (len (neighbourhood options ids selected)))
61 print (’ t o t a l c o s t s {} , neighbourhood op t i ons i d s s e l e c t e d {} ’ . format (

total costs , neighbourhood options ids selected))
62

63 return neighbourhood options ids selected , total costs , result matrix

The Python-code for the file is as follows (above each function, a block of comments explains
what that function does).

1 # Checks if current solution (result matrix) satisfies all constraints.

2 # Output: 0 if solution is feasible , index of exceeded constraint if

solution is unfeasible

3 def check feasibility (a l l constraints , constraint limits , result matrix ,
cost) : # returns rows and columns that cause the constraints to be

exceeded

4 number of constraints = len (constraint limits)
5 # check if constraints are met, if not: return index of constraint that

is exceeded

6 for i in range (0 , number of constraints) :
7 matrix product = np . multiply (a l l constraints [i] , result matrix)
8 i f matrix product .sum() > constraint limits [i] :
9 return np . nonzero (matrix product)

10 return 0

39

11

12 # Returns a feasible solution (result matrix) using matrix T that contains

the relative gain of each option

13 def wilson (a l l constraints , constraint limits , cost) :
14 ce log (” s t a r t w i l son ”)
15 number of constraints = len (constraint limits)
16 sum constraints = a l l constraints [0] # matrix containing the sum of

all constraint -matrices

17 for i in range (1 , number of constraints) :
18 sum constraints = np .add(sum constraints , a l l constraints [i])
19 result matrix = np . zeros ([a l l constraints [0] . shape [0] , a l l constraints

[0] . shape [1]] , dtype=np . int)
20 rows = result matrix . shape [0]
21 cols = result matrix . shape [1]
22 # create initial relaxation , columns of cost matrix must be sorted

ascendingly !
23 for i in range (0 , cols) :
24 result matrix [0 , i] = 1
25 # fill T (proportional gain matrix) for the first time

26 T = np . zeros ([rows , cols])
27 for j in range (0 , cols) :
28 for i in range (1 , rows) :
29 i f cost [0] [j] == cost [i] [j] :
30 i f sum constraints [0] [j] − sum constraints [i] [j] >= 0 :
31 T [i] [j] = 0
32 else :
33 T [i] [j] = −99
34 else :
35 T [i] [j] = (sum constraints [0] [j] − sum constraints [i] [j]) /

(−cost [0] [j] + cost [i] [j])
36 # while no feasible solution: reallocate

37 feasible = False

38 while not feasible :
39 slack = np . zeros (number of constraints , dtype=float)
40 for i in range (0 , number of constraints) :
41 matrix product = np . multiply (a l l constraints [i] , result matrix)
42 slack [i] = constraint limits [i] − matrix product .sum()
43 constr exceed = check feasibility (a l l constraints , constraint

limits , result matrix , cost)
44 i f constr exceed == 0 : # solution is feasible

45 feasible = True

46 else :
47 i f np . a l l (T <= 0) : # if all elements in T are negative , the

problem is infeasible

48 print (”Problem i s i n f e a s i b l e ! ”)
49 return 0
50 else : # find the best reallocation

51 max in T = 0
52 for j in range (0 , cols) : # find max T over all columns

where constraint is exceeded

53 i f j in constr exceed [1] :
54 max in column = np .max(T [: , j])
55 i f max in column > max in T :

40

56 max in T = max in column

57 max row = np . argmax (T [: , j])
58 max col = j

59 # reallocate

60 for i in range (0 , rows) :
61 i f result matrix [i] [max col] == 1 :
62 result matrix [i] [max col] = 0
63 result matrix [max row] [max col] = 1
64 # update T (cost matrix must be sorted !)
65 for i in range (0 , max row + 1) : # after reallocation don’t

compute t again for cheaper options

66 T [i] [max col] = −99
67 for i in range (max row + 1 , rows) :
68 i f T [i] [max col] != −99:
69 i f cost [max row] [max col] == cost [i] [max col] :
70 i f sum constraints [max row] [max col] − sum

constraints [i] [max col] >= 0 :
71 T [i] [max col] = 0
72 else :
73 T [i] [max col] = −99
74 else :
75 T [i] [max col] = (sum constraints [max row] [max

col] − sum constraints [i] [max col]) / (
76 −cost [max row] [max col] + cost [i] [

max col])
77 return result matrix
78

79 # Improves solution obtained by function "wilson" (result matrix) using

matrix better options (S in report).

80 # Output: improved result matrix

81 def wilson reversed (result matrix , a l l constraints , constraint limits , cost

, fraction) :
82 ce log (” s t a r t w i l son reve r s ed ”)
83 rows = result matrix . shape [0]
84 cols = result matrix . shape [1]
85 number of constraints = len (constraint limits)
86 sum constraints = a l l constraints [0]
87 for i in range (1 , number of constraints) :
88 sum constraints = np .add(sum constraints , a l l constraints [i])
89 # fill chosen rows with index of the chosen row for each column

90 chosen rows = np . zeros (cols , dtype=np . int)
91 for j in range (0 , cols) :
92 for i in range (0 , rows) :
93 i f result matrix [i , j] == 1 :
94 chosen rows [j] = i

95 # fill better options with relative gain for the first time

96 better options = np . zeros ([rows , cols] , dtype=float)
97 for j in range (0 , cols) :
98 i = 0
99 while result matrix [i , j] != 1 :

100 i f sum constraints [chosen rows [j] , j] == sum constraints [i , j] :
101 better options [i , j] = 99
102 else :

41

103 i f fraction :
104 better options [i , j] = (−cost [chosen rows [j] , j] + cost

[i , j]) / (
105 sum constraints [chosen rows [j] , j] − sum

constraints [i , j])
106 else :
107 better options [i , j] = −cost [chosen rows [j] , j] + cost [

i , j]
108 i += 1
109 finished = False

110 while not finished :
111 # compute slack for each constraint (how much of each constraint is

still available)

112 slack = np . zeros (number of constraints , dtype=float)
113 for i in range (0 , number of constraints) :
114 matrix product = np . multiply (a l l constraints [i] , result matrix)
115 slack [i] = constraint limits [i] − matrix product .sum()
116 # try to reallocate

117 reallocation feasible = False

118 while not reallocation feasible :
119 # find maximal s

120 max in better options = np . argmax (better options)
121 max row = math . f loor (max in better options / cols)
122 max col = max in better options % cols

123 # if there are no positive s: stop

124 i f better options [max row , max col] == 0 :
125 finished = True

126 reallocation feasible = True

127 else :
128 result matrix [max row , max col] = 1 # try reallocation

129 result matrix [chosen rows [max col] , max col] = 0
130 check constraints = True

131 for constraint in range (0 , number of constraints) :
132 constraint difference = a l l constraints [constraint] [max

row , max col] − a l l constraints [constraint] [
133 chosen rows [max col] , max col]
134 i f constraint difference > slack [constraint] :
135 check constraints = False

136 i f not check constraints : # not feasible -> undo

reallocation

137 better options [max row , max col] = 0
138 result matrix [max row , max col] = 0
139 result matrix [chosen rows [max col] , max col] = 1
140 else :
141 # update chosen rows

142 chosen rows [max col] = max row
143 # update better options

144 for i in range (0 , max row) :
145 i f sum constraints [max row , max col] == sum

constraints [i , max col] :
146 better options [i , max col] = 99
147 else :
148 i f fraction :

42

149 better options [i , max col] = (−cost [max row
, max col] + cost [i , max col]) / (

150 sum constraints [max row , max
col] − sum constraints [i ,
max col])

151 else :
152 better options [i , max col] = −cost [max row ,

max col] + cost [i , max col]
153 for i in range (max row , rows) :
154 better options [i , max col] = 0
155 reallocation feasible = True

156 return result matrix
157

158 # Improves solution obtained by "wilson" and "wilson reversed" (result

matrix). Tests different reallocations

159 # and accepts them if total costs are reduced. For large projects this can

take a long running time with no large

160 # improvement , so this function is usually turned off. Output: improved

result matrix

161 def multiple step improve (result matrix , a l l constraints , constraint limits

, cost) :
162 ce log (” s t a r t mu l t i p l e s t ep improvement”)
163 rows = result matrix . shape [0]
164 cols = result matrix . shape [1]
165 cheap rows range = 2 # number of tested cheap rows

166 exp rows range = 2 # number of tested expensive rows

167 number of constraints = len (constraint limits)
168 sum constraints = a l l constraints [0]
169 for i in range (1 , number of constraints) :
170 sum constraints = np .add(sum constraints , a l l constraints [i])
171 chosen options costs = np . multiply (result matrix , cost)
172 best total costs = int (round(chosen options costs .sum()))
173 best result matrix = copy . deepcopy (result matrix)
174 for j in range (0 , cols) : # for each column test more expensive option

175 chosen rows = np . zeros (cols , dtype=np . int)
176 # fill chosen rows with index of the chosen row for each column

177 for k in range (0 , cols) :
178 for i in range (0 , rows) :
179 i f result matrix [i , k] == 1 :
180 chosen rows [k] = i

181 # make copy of chosen rows that is sorted in descending order

182 chosen rows sorted = copy . deepcopy (chosen rows)
183 chosen rows sorted . sort ()
184 chosen rows sorted = chosen rows sorted [: : − 1]
185 # if exp rows range = x, we test row indices of the first x+1

elements of chosen rows sorted

186 i f chosen rows [j] <= cheap rows range : # if cheap option has been

chosen -> try more expensive option

187 for new row in range (0 , exp rows range+1) :
188 # try reallocation

189 result matrix [chosen rows [j] , j] = 0
190 result matrix [chosen rows sorted [new row] , j] = 1
191 # check feasibility

43

192 constr exceed = check feasibility (a l l constraints ,
constraint limits , result matrix , cost)

193 i f constr exceed == 0 : # feasible -> do Wilson reversed

194 result matrix = wilson reversed (result matrix , a l l
constraints , constraint limits , cost , 1)

195 chosen options costs = np . multiply (result matrix , cost)
196 total costs = int (round(chosen options costs .sum()))
197 i f total costs < best total costs : # better solution

198 best result matrix = copy . deepcopy (result matrix)
199 best total costs = total costs

200 else : # worse solution -> make reallocation undone

201 result matrix = copy . deepcopy (best result matrix)
202 else : # unfeasible solution -> make reallocation undone

203 result matrix = copy . deepcopy (best result matrix)
204 return best result matrix

44

