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Executive summary

Despite the fact that Machine Learning (ML) has been proven to be a value
generating technology for businesses, small and medium enterprises have not
yet captured its potential. One can assume that the advanced knowledge,
equipment, and software required might not be worth the resources and the
financial risk, but is such an assumption justifiable? What Machine Learning
has to offer to the companies of the domain? And, first of all, is such an
approach feasible? If so, under what conditions?

To answer these questions, we have seen that ML can facilitate growth adding
elements in the value chain of an organisation. Examples of such cases can be
found in key areas such as marketing, operations management, finance and
more. It is not a secret that ML is commonly used by companies for advanced
customer segmentation. To do so, a data driven behavioural approach based
on customers’ interaction with the firm is usually utilised. Such an approach
can result in the finest segmentation imaginable; for instance, it is possible
to classify customers based on the likelihood to buy in the near future, the
possibility to churn, or their personal preferences. As we mentioned above,
ML is also used in totally different areas, such as manufacturing. Businesses
utilised the technology to check product quality, maintain machinery, or even
improve productivity. The areas and the examples are numerous and it is
highly probable that one or many of those apply to most small and medium
companies.

Looking at feasibility and conditions, things seem to be improving lately. Re-
cent advances in computers software and hardware have widely decreased the
cost of acquisition making ML easily accessible to the public. Open source
software freely available on the web has been a great contributor to this trend.
In addition, academic institutes are showing more and more interest in sub-
jects related to Artificial Intelligence. Consequently, it is also justifiable that the
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number of graduates that possess the “know-how” on ML tools and methods
is gradually increasing. Now, given that the external factors tend to support
such an approach for Small-Medium Enterprises, we will present at a glance
the internal requirements. To begin with, a clear definition of the problem
and the project objectives are of primary importance. This will further indicate
the data needed and the methods to be tested and finally applied. Hence, the
availability of data is also crucial. Not only the size and the quality matters
but also their relevance to the given problem; this actually largely determines
the outcome of a project. Finally, a close co-operation between analysts and
managers is key in order for the former to gain insights into the company’s
operations and functions.

To test in practice the procedure we claimed above, we have conducted an ex-
periment in a real-world small business. We decided to apply a framework
for customer segmentation with respect to churn. Substantially, we studied
whether detecting customers that are going to leave the company and its ser-
vices is possible in advance. In this case, managerial actions could prevent
churn increasing company’s profitability. Despite the small amount of data
and the scattered information available in the dataset, the ML algorithms tested
performed well achieving good results. Precisely, the outcome showed that
80% of the churners can be actually detected in advance, thus supporting the
possibility of proactively preventing churn.

To sum up, we have seen that Machine Learning shows potential for small
and medium enterprises. Given that, we would like to invite companies in
the domain to take the time and effort to look into this emerging technology.
The areas of application, and the applications themselves, are numerous and
we constantly see an upwards trend. With low entry boundaries and low
financial risk, it is suggested that Small and Medium Enterprise should grasp
the opportunity and find what ML has to offer to their organisations.
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Chapter 1

Introduction

Machine learning has seen a great growth in terms of popularity, applicability
and potential during the past couple of years. To a large extent, the availability
of big data and the strong computational power present in modern computers
have facilitated this trend. Researchers utilise such models in a broad range
of problems, primarily to classify data, make predictions, discover patterns
and/or visualise data. The applications are also numerous and nowadays are
widely met in business environments. Large companies are already exploit-
ing machine learning in order to generate value in areas such as marketing,
operations management, finance and many more.

On the other hand, it seems that SMEs lack behind in the adaptation of the
new tools, leaving unexplored the potential benefits of the newly introduced
technology. This can be easily justified for the past years when machine learn-
ing algorithms were not easily accessible, required expensive hardware, could
only be implemented by field experts and in general, had not yet been proven
reliable and capable of exceptional performance. However, things seem to have
changed with the corresponding barriers decreasing substantially resulting in
a rapid growth of machine learning popularity, while new applications arise
one after the other.

Having that said, we believe that today ML can not only create value for large
corporations, but to a large extent also for smaller companies. Companies in
the SME sector should reposition themselves against the emerging technology
and become up-to-date with the possibilities the field has to offer. Given that,
we aim to investigate the SMEs landscape and investigate whether machine
learning is a suitable technology for them and their needs.
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With that in mind, and in order to form a broad overview of the topic so
that we can draw accurate conclusions for our hypothesis, we have studied
the literature in combination with empirical research. More precisely, case
studies have been utilised in the former case. For the latter, an experiment
where we tested a predictive ML framework on a real-world small business
was conducted.

The rest of the text is organised as follows. In Chapter 2, the fundamentals of
supervised machine learning are presented and two such models, the Support
Vector Machine and the Decision Trees, are strictly defined. In Chapter 3, a
similar discussion around reinforcement learning is held and Q-learning is
introduced. An in-depth analysis of examples of business problems where ML
solutions show a large potential is then performed in Chapter 4. In Chapter
5, an experiment with real-world data from an SME is presented in order to
validate the theoretical findings. The conclusion of the research is available at
the end of the thesis in Chapter 6.
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Chapter 2

Basics of Supervised Machine
Learning

2.1 Introduction

Imagine that we encounter the following problem: one needs to classify two
types of fruits, apples and bananas. According to our human experience, there
are a couple of features based on which we can distinguish those fruits, e.g.,
colour and softness. Commonly, apples are red and hard, while bananas are
yellow and soft. That is just a simple example of a classification task that
humans preform and based on this, or on similar information as an input, one
can classify objects. However, in an equivalent way, machines can learn to
perform analogous tasks. Various such algorithms have been developed in the
field of Machine Learning.

To begin, we will intuitively present some basic ML algorithms as well as
give insights in the mathematical background of the discussed methods. With
respect to that, we will first need to illustrate the framework of a learning
algorithm, the so-called statistical learning framework. Furthermore, we intro-
duce the concept of Empirical Risk Minimisation, which is fundamental in the
evaluation of the models. Then a family of linear predictors is defined so we
can lastly provide the reader with insights in the hypothesis class for binary
classification problems, the class of halfspaces.

In this chapter, the books Understanding machine learning: From theory to algo-
rithms [43] and, The elements of statistical learning: data mining, inference, and
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prediction [21] have been used as primary sources for the discussion and the
mathematical background of the methods. In addition, at this point, it is cru-
cial to highlight that the following notation will be used from now on in the
text:

[m] the set {1, . . . , m}
|c| absolute value of the scalar c

|A| cardinality of the set A
α, x, w vectors

〈x, w〉 = ∑m
i=1 xiwi (inner product)

||w|| =
√
〈w, w〉 (the l2 norm of w)

2.1.1 The Statistical Learning Framework

In order to facilitate an algorithm that learns based on previous experience
gained, a determinate learning framework is required. In an elementary such
learning framework, there are three key components that must be available to
the learning algorithm: the domain set, the label set, and the training data.
The domain set can be any arbitrary set, which is usually denoted by X . It
consists of points, or instances, that could be labelled. These domain points are
commonly vectors of features or attribute values. The label set, Y , is a fixed set
of the available labels. For instance, in a typical binary classification, the label
set is {0, 1} or {−1, 1}. Finally, we denote by S the training data. That is pairs
of a finite collection of domain points together with their corresponding labels,
i.e., S = ((x1, y1), . . . , (xm, ym)), (xi, yi) ∈ X × Y , i ∈ [m]. We regularly refer
to the training data as training set as well.

On a top level, the task of a learning algorithm is to utilise knowledge retrieved
from the training data in order to generate a prediction rule, h : X → Y , based
on which labels are assigned to new domain points. With “new” we refer to
domain points that do not belong to the training data, i.e., xi ∈ X \ S . We
commonly mention h as the predictor, or hypothesis, and since h is dependent
on the training set, S , we denote such a predictor by hS . Finally, in the case of
a classification task, a predictor is also widely called classifier.

As it has already been discussed, the training data is a collection of pairs in
X ×Y . For the selection of such a training set, we assume that domain points
have been drawn independently and identically from a probability distribution
D. In the given setting the learner has no prior knowledge of the distribution
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D. Assuming that a labeling function f : X → Y , such that yi = f (xi), for all
i ∈ [m], exists, the collected data points are then labelled. Overall, it can be
said that the objective of the learning algorithm is to approximate the function
f .

To measure the success of the approximation, an evaluation criterion is re-
quired. Given a random instance sampled from the probability distribution D,
the error of a classifier is defined to be the probability that the instance is not
correctly labelled by the predictor h. Mathematically,

LD, f (h) := P
x∼D

[h(x) 6= f (x)] .

Alternatively, we call LD, f (h) a generalisation error, risk, or true error of h.

2.1.2 Empirical Risk Minimisation

As we have seen above, a learning framework is summarised as follows: a
training set S is sampled from a certain distribution D on X , and it is then la-
belled according to some function f with labels from Y . Given that D and f are
unknown, the learning algorithm strives to find a classifier hS that minimises
the error of the labeling procedure.

Naturally it follows that in order to evaluate and compare predictors the esti-
mate of that error becomes crucial. Since the learner has no prior knowledge
about D and f , the computation of LD, f (h) is not feasible. With that in mind,
we need to determine an estimate of the error that can be useful to the learner.
That turns out to be the error of the predictor over the training data, usually
called training error or empirical risk. Formally, it is defined as:

LS (h) :=
|{i ∈ [m] : h(xi) 6= yi}|

m
.

That is a plausible approach since the training set is a window to the world
available to the learning algorithm. Given that, we can summarise that we try
to find a predictor h that minimises the training error LS (h) and from now on
we will refer to this technique as Empirical Risk Minimisation (ERM).

Despite the direct representation and the expected efficiency of the ERM learn-
ing rule, difficulties might arise. In many cases, even if we manage to minimise
the empirical risk, it is highly probable that we end up with a large true error
due to the inherent overfitting. By overfitting we refer to the situation where
the learner tends to perfectly interpret the training data, however, it fails badly
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to generalise accordingly in the given domain set. In order to solve this prob-
lem, we generally apply the ERM technique over a limited space of predictors.
To clearly illustrate this, a selection of a hypothesis class H precedes the gen-
eration of the training sample S . This approach helps the learner to avoid
overfitting, nevertheless, it biases it towards a certain set of prediction rules.
That should be carefully examined, when it comes to the selection of H.

2.1.3 Linear Predictors

We can now introduce the family of linear predictors, a family of hypothesis
classes widely used by learning algorithms. What is more, this class plays
an important role in the algorithm called Support Vector Machine, which is
discussed in the following section. To this end, we introduce the definition of
the class of affine functions, Ld ∈ H:

Ld = {hw,b : w ∈ Rd, b ∈ R} ,

where

hw,b : Rd → R

x 7→ 〈w, x〉+ b

In some cases, it is handy to omit the bias term b. That can be simply done
by inserting b as an extra coordinate in w = (w1, . . . , wd) and, simultaneously,
adding a coordinate with value 1 at all x ∈ X . That is w′ = (b, w1, . . . , wd) ∈
Rd+1 and x′ = (1, x1, . . . , xd) ∈ Rd+1. The hypothesis function hw,b can be then
represented as

hw,b(x) = 〈w, x〉+ b = 〈w′, x′〉 = hw′(x′) .

From now on, we will refer to that simplified form as the homogeneous hypoth-
esis function or just as the homogeneous case.

Halfspaces

Compositions of a function φ : R → Y with a function in Ld can generate
different predictors. In particular, in binary classification, the sign function is
often used,

sgn(x) :=

{
−1 , if x < 0
+1 , if x ≥ 0

.
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Consequently, we can define a hypothesis class for binary classification. As-
suming that X = Rd and Y = {−1,+1}, the class of halfspaces is defined to
be

HSd = sgn ◦ Ld = {x 7→ sgn(hw,b(x)) : hw,b ∈ Ld} .

Therefore, a halfspace in the hypothesis class HSd receives a vector x and out-
puts a label given by sgn(〈w, x〉+ b). As we will see in the following section,
the class of halfspaces is necessary for the formulation of the Support Vector
Machine model.

2.2 Support Vector Machine

2.2.1 Model Description

The Support Vector Machine (SVM) is a supervised machine learning tech-
nique, widely used for classification tasks. Its objective is to draw an optimal
hyperplane that distinctly classify training points in an d-dimensional space.

Let us recall the previous example. We would like to categorise fruits, apples
and bananas, based on two properties, colour and softness. Based on these
features, we can plot the data points on a plane and try to draw a line such
that to separate the two distinct classes. Obviously, there are many, actually
infinite, lines that can separate the given points (Figure 2.1). However, the
SVM algorithm strives to identify the line which yields the maximum margin,
i.e., the line that sits at the maximum distance from data points of both classes.
This thought is justifiable, since it is simply estimated that future instances will
be classified with more confidence.
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Bananas

(a) Infinite lines can separate the two classes.
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Color

Apples
Bananas

(b) The optimal line.

Figure 2.1: Apple and banana points on the plane based on the two properties,
softness and colour.

2.2.2 Linearly Separable Case

So far, for simplicity, we assumed a dataset with only two features that can be
easily depicted in a two-dimensional space, a plane. The general, d-dimensional
case as well as the formal definition of the margin and the optimal hyperplane
follow.

Let S = {(x1, y1), . . . , (xm, ym)} be a training set of examples, where xi ∈ Rd

and yi ∈ {−1,+1}, ∀i ∈ [m]. This set is linearly separable if there exists affine
function hw,b such that yi = sgn(〈w, xi〉 + b) for all i. Alternatively, we can
rewrite this condition as

∀i ∈ [m], yi(〈w, xi〉+ b) > 0 .

All halfspaces, hw,b, that satisfy this condition are ERM hypotheses. For any
linearly separable training sample, there are infinitely many ERM halfspaces.
Therefore, to make a clear decision rule we need to define additional condi-
tions. To this end, we define the margin to be the minimal distance between a
point in the training set and a given hyperplane. SVM is based on the heuristic
idea of selecting a hyperplane with the maximal margin.

The following proposition is essential for the formal definition of the SVM
algorithm.
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Proposition 2.1. The distance of a point x ∈ Rd from a hyperplane {v ∈ Rd :
〈w, v〉+ b = 0}, where ||w|| = 1, is equal to |〈w, x〉+ b|.

Given that, the minimal distance of points to the separating hyperplane, the
margin, is equal to M = mini∈[m]|〈w, xi〉 + b|. These minimising training
points, xi, are called support vectors. Finally, the SVM rule can be analytically
defined by

max
w,b

M (2.1)

subject to yi(〈w, xi〉+ b) ≥ M , i = 1, . . . , m

||w|| = 1 .

Given that the points are linearly separable, there is always a solution to the
aforementioned problem.

Now, we can drop the norm constraint on w, and let (w, b) be an admissible
pair for the above maximisation problem. We set w′ = w 1

M and b′ = b 1
M . It

directly derives that

yi(〈w′, xi〉+ b′) =
yi

M
(〈w, xi〉+ b) ≥ 1 .

In addition, we see that the maximisation problem of the margin, maxw,b M, is
equivalent to minimising the norm of w, that is minw,b ||w||. As a result, the
maximisation problem in (2.1) can be transformed into the following equiva-
lent quadratic minimisation problem.

min
w,b

1
2
||w||2 (2.2)

subject to yi(〈w, xi〉+ b) ≥ 1 , i = 1, . . . , m .

In the optimisation problem (2.2), the exponent and the scalar in the objective
function can be easily omitted, however they have been intentionally added
since they will significantly simplify future computations.

2.2.3 Non-linearly Separable Case

Soft-SVM

So far we have seen how to define the maximal margin in order for the SVM
algorithm to be able to classify linearly separable instances. However, things
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Figure 2.2: The support vector machines classifier. The support vectors are
denoted with red.

are not always that convenient and we commonly need to use non-linearly
separable sets. To this end, in 1995, C. Cortes and V. Vapnik introduced a “Soft
Margin Hyperplane Algorithm” [13]. The so-called soft-SVM utilises a less
strict rule in order to define the optimal hyperplane. To this end, nonnegative
slack variables, ξ1, . . . , ξm, are introduced and the strict constraints yi(〈w, xi〉+
b) ≥ 1 are substituted by the soft constraints: yi(〈w, xi〉+ b) ≥ 1− ξi. Hence,
the aim of the soft-SVM is to minimise the norm w and the average of ξi. The
first term is corresponding to the margin and the latter to the violations of the
constraints. Finally, to control the tradeoff between the aforementioned terms
a parameter C is introduced and analytically, the optimisation problem takes
the following form:

min
w,b,ξ

||w||2 + C
m

m

∑
i=1

ξi (2.3)

subject to yi(〈w, xi〉+ b) ≥ 1− ξi

ξi ≥ 0 , i = 1, . . . , m .
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Lagrange Duality

In order to solve the problem (2.2), a Lagrangian approach can be imple-
mented. The primal form of the Lagrange function is

LP(w, b, ξ, α, β)

=
1
2
||w||2 + C

m

∑
i=1

ξi −
m

∑
i=1

αi(yi

d

∑
j=1

xi,jwj + b)− 1 + ξi)−
m

∑
i=1

βiξi , (2.4)

where αi ≥ 0 and βi ≥ 0 for all i.

The α and β are the nonnegative Lagrange multipliers. In order to find the
minimum in (2.4), we apply the Karush–Kuhn–Tucker conditions [27, 31],
namely

∂LP
∂wj

= 0 , j = 1, . . . , d (2.5)

∂LP
∂b

= 0 (2.6)

∂LP
∂ξi

= 0 , i = 1, . . . , m , (2.7)

and

αi(yi〈(xi, w〉+ b)− 1 + ξi) = 0 , i = 1, . . . , m (2.8)

βiξi = 0 , i = 1, . . . , m (2.9)

αi ≥ 0, βi ≥ 0, ξi ≥ 0 , i = 1, . . . , m . (2.10)

From Equations (2.5), (2.6) and (2.7) one has

w =
m

∑
i=1

αiyixi (2.11)

m

∑
i=1

αiyi = 0 , i = 1, . . . , m (2.12)

αi + βi = C , i = 1, . . . , m . (2.13)

Substituting (2.11), (2.12) and (2.13) into LP, yields the corresponding dual
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problem:

min
α

1
2

m

∑
i,j

αiαjyiyj〈xi, xj〉 −
m

∑
i=1

αi (2.14)

subject to
m

∑
i=1

αiyi = 0

||α|| ≤ ||C|| ,

where C = (C, . . . , C) ∈ Rm.

Kernel Method

In some cases, non-linearly separable data points might have more favourable
properties when mapped into a different space. The Kernel Method is a strat-
egy that facilitates this approach. To this end, the data points are mapped into
a higher-dimensional feature space where the classification is then performed.
Consider a “feature” map ψ : X → RD and define a kernel function on X ×X
as:

K(x, x′) = 〈ψ(x), ψ(x′)〉 .

By replacing the inner product 〈xi, xj〉 in (2.14) by a kernel function K(xi, xj),
we can apply the SVM algorithm in a space of higher dimension. This enables
us to find a non-linear hyperplane, in the transformed feature space, which
can better classify points. However, the inverse image of the hyperplane to the
initial space will form a non-linear decision boundary (Figure 2.3). In Table 2.1,
we present three widely used kernel functions: linear, polynomial of degree r,
and the Radial Basis Function (RBF).

Table 2.1. Common SVM kernel functions.

Kernel function Expression

Linear K(x, x′) = 〈x, x′〉
Polynomial K(x, x′) = (γ〈x, x′〉+ c)r

Radial basis K(x, x′) = exp(−γ||x− x′||2)

Here, it is important to highlight that ψ is only used in order to define the
kernels. Effectively, we will only work with the various kernel functions and
the feature maps are left aside once the former has been formed.

Commonly, the soft-SVM and the kernel method are combined, with the ob-

11



jective function:

min
α

1
2

m

∑
i,j

αiαjyiyjK(xi, xj)−
m

∑
i=1

αi (2.15)

subject to
m

∑
i=1

αiyi = 0

||α|| ≤ ||C|| ,

where C = (C, . . . , C) ∈ Rm.

The role of C and γ hyperparameters

In order to define the optimal hyperplane, two parameters play an important
role, the regularisation term C, which was first met in the minimisation prob-
lem (2.2), and the scalar γ in the polynomial and radial basis (RBF) kernel
functions.

The regularisation term C, or simply the penalty, by definition controls the
effect of the slack variables ξi on the minimisation problem. For values C
close to zero, the optimal hyperplane algorithm tends to ignore misclassified
instances. This probably results in poor classification outcomes, usually re-
ferred to as sample underfitting. On the other hand, large values of C lead to an
increased significance of the misclassified points, which might lead to sample
overfitting. Values closer to 1 balance the norm corresponding to the margin
and the violation of the constrains. However, the right choice of C is strongly
dependent on the problem formulation and the given dataset.

Both the RBF and the polynomial kernel functions include the parameter γ.
We will discuss the radial basis function since it is more intuitive. In this case,
the squared Euclidean distance among the support vectors and the rest of the
instances controls the effect of the latter on the decision boundary. Vectors
close to a given support vector lead to kernel values close to one, while for
points further away the term goes to zero. The parameter γ determines the
speed of the aforementioned dissipation. Intuitively, low values of γ lead
to the fact that vectors further from the support vectors affect the decision
boundary. On the other hand, given high values of the parameter, a more
detailed boundary is drawn based only on the support vectors of the model.
In such a case overfitting typically occurs leading to low robustness of the
classifier.
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(a) (b)

(c) (d)

Figure 2.3: The Kernel Method. (a) Non-linearly separable instances; (b) in-
stances mapped to a higher dimension space; (c) instances are linearly sepa-
rable by a hyperplane; (d) the inverse image of the hyperplane to the initial
space is non-linear [28].

The right choice of C and γ is a major issue of the SVM model, which is
usually addressed by two techniques that we will later present in Section 2.5,
the so-called grid search and k-fold cross-validation.
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2.3 Decision Trees

2.3.1 Model Description

As we have seen, SVM is a powerful technique. However, it is clear that the
applied decision rule is not intuitive, and on top of that, the interpretation of
the model for a large number of features is rather impossible. When it comes
to problem solving, intuition and interpretability are commonly required. To
this end, we present an algorithm which is well-known for its simplicity and
its interpretation power, the Decision Tree (DT).

A Decision Tree is a predictor resembling a tree; precisely, a common repre-
sentation of the algorithm is a reverse tree with roots on top and leaves at
the bottom. To simply illustrate the DT algorithm we start with the by now
familiar fruit classification example.

We intend to classify apples and bananas using the decision tree shown in
Figure 2.4. At first, imagine that all the data points are concentrated in the
node at the top. The classification process starts by asking a simple question,
such as “What is the colour of the fruit?”. Two answers are available here,
Red and Yellow. If the answer is Red, a point reaches a terminal node labelled
as Apple. In case the answer is Yellow, we require more information since
there are both apples and bananas with yellow colour. We then pose another
question to learn more about the fruits available, e.g. regarding softness. “Is
the fruit soft or hard?”. By answering Soft a point can be finally classified as a
Banana or an Apple otherwise.

Formally, a decision tree model is a tree structured predictor, h : X → Y . The
label associated with a data point x is predicted by traveling from the so-called
root node to a terminal node or a leaf. Internal nodes represent attribute tests
or predefined splitting rules. The possible outcomes form the branches of the
tree. For simplicity reasons, we illustrated the binary classification case, i.e.,
Y = {0, 1}. However, by analogy, the model can be applied for other prediction
tasks too [43], suck as multiclass classification and regression tasks.

Now, looking back at the example, the presented tree can be interpreted as an
h : {0, 1}2 → {0, 1} classifier. Let x = (x1, x2) ∈ {0, 1}2 be a vector of features,
where in our case x1 and x2 are the colour the the softness respectively. For
the former we set 0 for Yellow and 1 for Red, while for the latter 0 for Hard
and 1 for Soft. To start the classification procedure, the binary test 1[x1=1] is
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Colour

Apple Softness

Banana Apple

YellowRed

Soft Hard

Figure 2.4: Classification of fruits with the decision tree algorithm.

applied for all the data in the root node. Observations with x1 = 1 follow the
left branch and directly reach a leaf marked as A1 (e.g. Apple). The rest of
the points follow the right branch and end up in an intermediate node where
a test on the second feature is applied, that is 1[x2=1]. Based on this rule, the
remaining points are split into two leaves which are labelled as A1 and A2.
This way each instance follows a root-to-leaf path resulting to a classification
outcome.

x1

A1
x2

A2 A1

01

1 0

Figure 2.5: Decision tree model.

The most valuable properties of the decision trees are now becoming clear.
These are their simplicity and their interpretation power. Furthermore, an-
other advantage is the ability to generate straightforward decision rules, easily
applicable in every domain.
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2.3.2 Growing Decision Trees

We can now give a general framework of how to structure a decision tree
predictor. Assume S = {s1, s2, . . . , sm}, a set of already classified points, as the
training set. A label and a d-dimensional vector of features are associated with
every training point si. Let k be the available labels, x = (x1, x2, . . . , xd) the
vector of features, and mj, j ∈ N, nodes. Then, k(mj) will denote the assigned
label to node mj, and Rmj the set of points in this node.

We start the process from the root node m1 where the full dataset is available,
i.e., Rm1 = S . We compute the proportion of the given classes in Rm1 , and
label the node according to the majority vote k(m1). Formally, the proportion
of class k in node m is defined as

pmk =
1
|Rm| ∑

xi∈Rm

1[yi=k] .

As a result of the previous notation, the class with the majority vote in node m
is equal to

k(m) = argmax
k

pmk .

In the next steps, a sequence of iterations is performed. Gradually, we apply
a splitting procedure testing attributes and attribute values. At every step
we measure the performance of the action taken and, finally, we opt for the
one resulted in the maximum gain. The data are then divided based on the
selected rule, the nodes are labelled, and the process continues. Commonly,
we force this procedure to terminate in order to avoid overfitting the given
dataset. Usually, criteria such as the depth of the tree, the maximum number
of observations in a node, or the number of features tested are applied.

According to the aforementioned procedure, we need to define a “gain” mea-
sure based on which we assess the performance of a single leaf split. A variety
of splitting criteria has been proposed, including training error, Gini index
minimisation and information gain maximisation. Overall, the gain measures
are based on the same principle, that is the gain in node purity. As purity we
describe the homogeneity of a set with regard to the labels of its members.
We briefly present the most common such measures; for more details on each
algorithm we refer to its respective reference in column 2 of Table 2.2.

Misclassification error:

E = 1− pmk(m) =
1
|Rm| ∑

xi∈Rm

1[yi 6=k(m)]
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Entropy:

G =
K

∑
k=1

pmk log pmk

Gini intex:

D = −
K

∑
k=1

pmk(1− pmk)

The misclassification error is the simplest purity measure available. However,
due to the following reasons it is rarely used in practice. Both the entropy
and the Gini-index are differentiable, which facilitates more approaches when
it comes to numerical optimisation. In addition, these two measures are more
sensitive to changes in node probabilities than the misclassification error.

Table 2.2. Decision tree algorithms.

Algorithm Author Data type Branches per node Impurity criteria

CART
Breiman et al.
(1984)

Discrete and con-
tinuous

Two Gini index

ID3 Quinlan (1986) Discrete Two or more Entropy

2.4 Evaluation Methods and Metrics

In order to assess a model and benchmark it against others, a range of eval-
uation methods and metrics are used based on different criteria. As a first
step in every method, we need to identify the number of True Positive (TP),
True Negative (TN), False Positive (FP) and False Negative (FN) instances. In
general, it holds that

TP + FN = P ,

TN + FP = N .

A model classifies TP + FP = P′ points to the positive and TN + FN = N′

points to the negative class [6]. Some widely used evaluation methods for
classification tasks are the following.

Confusion matrix: this is a matrix that summarises the prediction results of
a classification task. Usually, we find the actual values, x, in rows and the
predicted values, x′, in columns. Then, the matrix elements are count values
of the (x, x′) pairs. For instance, for a binary classification task, the confusion
matrix is:
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True
negative

n

n′

False
positive

p’ Total

N

False
negative

p

Total N’

True
positive

P

P’

Actual
value

Prediction outcome

Accuracy: this is defined as the fraction of correctly classified instances, i.e.,
the sum of true positives and true negatives over the sample size. In case of
highly imbalanced datasets, this needs extra attention; the model accuracy can
be high even if the minority class is totally misclassified.

Accuracy =
# Correct Predictions

Total # Predictions
=

TP + TN
TP + FP + TN + FN

.

Sensitivity or Recall: the percentage of correctly classified observations in the
positive class.

Recall =
TP

TP + FN
.

Specificity: the percentage of correctly classified observations in the negative
class.

Speci f icity =
TN

TN + FP
.

Precision: the percentage of correctly classified as positive over the positive
classified instances.

Precision =
TP

TP + FP
.

F1-score: the harmonic mean of precision and recall. It is widely used for
imbalanced datasets. A perfect classifier has F1-score equal to 1.

F1 =
2

recall−1 + precision−1 = 2× Precision× Recall
Precision + Recall

.

AUC: the area under the receiver operating characteristic curve (AUC). For
binary classifiers, the receiver operating characteristic (ROC) curve is defined
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as the plot of true positive rate (sensitivity) against the false positive rate (1-
specificity), with sensitivity on the y-axis and 1-specificity on the x-axis [17]. A
random classification has AUC equal to 0.5 whilst a perfect classifier, to 1 [6].

AUC =
∫ 1

0

TP
P

d
FP
N

=
∫ 1

0
Sensitivity d(1− Speci f icity) .

Top-decile lift: a metric that compares the classification achieved with the ran-
dom classifier. It is widely used for imbalanced datasets. In order to calculate
the metric, the instances are sorted in a descending order based on their prob-
ability to belong in the minority class. The ratio of true positive in the top 10%
of the list (β10%) over the percentage of positive instances (β0) is defined as the
top-decile lift. A top-decile lift of 5 means that the classifier detects 5 times
more instances than a random one [51].

Top− decile li f t = β10%/β0 .

2.5 Hyperparameter Tuning Using Grid Search and k-
fold Cross-validation

In Machine Learning, the hyperparameters of the algorithms are crucial for
the final predictive power of the models. In order to obtain those values that
optimise model’s performance on the given dataset, two techniques known as
grid search and k-fold cross validation are utilised.

Grid search is a method according to which a model is trained and evaluated
with numerous combinations of hyperparameter values. At first, these values
are derived from a n-dimensional grid, where n denotes the number of hyper-
parameters tuned (Table 2.3). Once the grid is formed, the model is trained
with every single entry of the grid searching for the optimal set of configura-
tions.

Table 2.3. (C, γ) hyperparameter grid.

γ \C C1 C2 C3 C4

γ1 (C1, γ1) (C2, γ1) (C3, γ1) (C4, γ1)

γ2 (C1, γ2) (C2, γ2) (C3, γ2) (C4, γ2)

Traditionally, ML engineers test such entries on the so-called validation set.
The validation set is formed by further dividing the training points, however,
due to the fact that this split can significantly limit the data available for model
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training (Figure 2.6) alternatives are required. k-fold cross-validation is a pro-
cess that facilitates hyperparameter tuning utilising the existing training data.
The process can be summarised as follows: (1) the training set is divided into
k sets (Figure 2.7); (2) the model is trained successively k times on k− 1 folds
and tested on the remaining one (Figure 2.8); (3) the average performance of
the model, in k rounds, is calculated. Commonly, the two techniques, grid
search and k-fold cross-validation, are used together in order to form sets of
hyperparameters and determine the optimal such configurations for the final
model.

All data

Training set Validation set Test set

Figure 2.6: Traditional approach: Dataset split in training, validation and test
set.

All data

Training set Test set

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Figure 2.7: Dataset split in training and test set. The training set is further
divided into 5-folds in order to apply cross-validation.

Split 1 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 2 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 3 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 4 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 5 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5



Hyperparameter
tuning

Figure 2.8: The training set is divided into k-folds and the model is trained
successively k times on the k− 1 folds (green) and tested on the remaining one
(red). The performance of the model is calculated as the average of k rounds.
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Chapter 3

Basics of Reinforcement
Learning

3.1 Introduction

As discussed above, in supervised learning an external supervisor that pro-
vides knowledge to the model is required. Contrary to that, in reinforcement
learning no such supervisor is required, but the model learns with respect to
its own experience. Precisely, the key element in reinforcement learning is
the learning process followed by an algorithm based on the interaction with a
given environment. Algorithms in this class are usually called learning agents
and they are characterised by their ability to perform tasks, analyse results
and search for possible ways to improve performance, just by themselves. To
further interpret, RL comprises processes in which the learning agent deter-
mines decision making rules for specific situations in order to maximise the
resulting reward (or minimise the penalty). Given that external input is not
available, the agent needs to explore and learn by making various attempts
with the reward, or penalty, to regulate the success of every step taken.

Given that the agent has no prior knowledge of the environment, it needs
to explore the options available. On the other hand, when more and more
experience on the environment is gained, it makes sense for the agent to fol-
low decisions that have been proven profitable in the past. Directly, a strong
characteristic of reinforcement learning arises, that is a trade-off between the
exploration and exploitation. Consequently, a firm balance between these two
needs to be maintained in order to create an effective model.
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We can now deepen and describe a RL system which, as we discussed, is com-
prised of two major elements, the learning agent and the environment. The
latter consists of states and sets of actions that are available to the former per
given state. The agent interacts with that environment and strives to take the
optimal actions in order to optimise a long-term incentive. In addition, the
following components are part of the system: (a) Policy: it defines the set of
actions that the agent takes in every state of the given environment. (b) Re-
ward: in every state, the reward determines the yield for the action taken.
In a RL system, the objective of the agent is to maximise the long-term over-
all return (or minimise loss). (c) Value function: it determines the expected
long-term yield. The value function maps every state to an accumulated fu-
ture reward. Finally, (d) Model of the environment: it describes a possible
underlying pattern of the learning environment. [48]

3.2 Q-learning

Q-learning is a model-free reinforcement learning method. As model free are
defined the models where no explicit knowledge on the system dynamics (en-
vironment and consequences) is available [36]. In Q-learning, the general idea
is that the agent learns the optimal policy by taking actions in a discrete, finite
world. A reward (or penalty) is directly connected to every action taken. Ac-
tions are performed repeatedly and evaluated based on a long-term reward. In
1989, C. J. Watkins and P. Dayan proved that Q-learning converges, and hence
the agent can identify the best policy by forming a look-up table [49].

According to Watkins and Dayan, the problem is formalised as follows. We
assume a discrete, finite world X where an agent is taken actions at every time
step. The actions available belong in a finite set A. Assuming that the agent
takes the n-th step, he is at a state x ∈ X and he chooses an action α ∈ A.
Based on the action selected he receives a reward, rn, which has a mean value
of Rxn(αn) depended only on the state and the action. Given that, the agent
follows a stationary policy, i.e., a non-random decision process in which the
action at time t is selected only based on the state at time t [42].

Definition 1. We call stationary policy a function π from the state space X to the
set of actions A, that is

π : X → A .
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When such a policy occurs, the sequence of states forms a Markov chain with
transition probabilities:

Pxny[αn] = Prob[xn+1 = y|xn, αn] .

Now, we need to define a metric so the learning agent can evaluate the actions
taken and, finally, determine an optimal policy. With that in mind, we intro-
duce the concept of discounted rewards; rewards that are expected to receive s
steps later worth less than rewards received now. A discount factor γs, where
0 < γ < 1, reduces their value. Hence the agent expects to receive Rx(π(x))
immediately after performing an action according to the policy π, and moves
to a state y with probability Pxy[π(x)]. The new state has a value of Vπ(y). An-
alytically, for a policy π, the value of a state is calculated by the total discounted
expected reward:

Vπ(x) := Rx(π(x)) + γ ∑
y

Pxy[π(x)]Vπ(y) .

Therefore, it makes sense to look for a policy such that maximises Vπ∗(x).

Definition 2. A policy π∗ is said to be γ-discount optimal if

Vπ∗(x) = sup
π

Vπ(x), ∀x ∈ X .

Based on the following theorem of Stochastic Dynamic Programming [42],
there is at least one optimal stationary policy for every state in the system.

Theorem 3.2.1. For every state x ∈ X, there is at least one γ-discount optimal
stationary policy, π∗ : X → A, such that,

Vπ∗(x) = max
α

{
Rx(α) + γ ∑

y
Pxy[α]Vπ∗(y)

}
.

Given thatRx(α) and Pxy[α] are known, there are a few dynamic programming
methods that can compute V∗ and π∗. However, this is not the case, so we need
to find a work-around. We define the Q-values of a state x as the expected
discounted reward for taking action α and from then on following policy π.
Analytically,

Qπ(x, α) = Rx(α) + γ ∑
y

Pxy[π(x)]Vπ(y) .
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By estimating the Q-values we can draw an optimal policy. For convenience,
we denote the Q-values obtained by the optimal policy, Qπ∗(x, α), by Q∗(x, α),
∀x, α. It follows that Vπ∗(x) = maxα Q∗(x, α). The objective of the Q-learning
is to learn those unique Q-values that maximise the expected discounted re-
ward. In order to learn, the following steps are repeatedly taken by the agent,
defining an episode (time-slot or epoch):

• observes its current state xn,
• selects and performs an action αn,
• observes the subsequent state xn+1,
• receives an immediate payoff rn, and
• adjusts its Qn−1 values using a learning factor βn, according to:

Qn(x, α) =

=

{
(1− βn)Qn−1(x, α) + βn[rn + γVn−1(xn+1)] , if x = xn and α = αn

Qn−1(x, α) , otherwise

where
Vn−1(y) := max

b
{Qn−1(y, b)}

is the best estimate for agent at state y. We also assume that initial Q-
values, Q0(x, α) are given.

The following theorem ensures convergence of the aforementioned setup. How-
ever, without the condition that for each starting state and action, the sequence
of episodes that facilitate the learning process consists of an infinite number of
episodes, convergence can not be guaranteed.

Theorem 3.2.2. Let ni(x, α) be the index of the i-th time that action α is tried in state
x. Given bounded rewards |rn| ≤ R, learning rates 0 ≤ βn < 1, with

∞

∑
i=1

βni(x,α) = ∞,
∞

∑
i=1

[βni(x,α)]
2 < ∞, ∀x, α,

then Qn(x, α)→ Q∗(x, α) as n→ ∞, ∀x, α, with probability 1.
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Chapter 4

ML Applications in Business
Domain

In this chapter, we discuss key problems in business and novel ML solutions
that can be applied to analyse these. Our research and analysis are conducted
with respect to the Small-Medium Enterprises and the special needs of busi-
nesses in this domain. As we will soon see, in comparison with large scale
organisations, multiple restrictions are present in smaller businesses when it
comes to the implementation of such novel techniques.

A condensed overview of the key issues that commonly arise when one stud-
ies such an approach can be summarised as follows: (a) Availability of data:
small and even moderate sized companies do not always collect, store and
analyse data relevant to their operations and customers, or other types of data.
(b) Quality of the data available: even when data are partially available, the
lack of systematic and strictly defined record processes can significantly de-
crease reliability. Missing values and wrong information are widely present in
such datasets. (c) Budget: to a large extent, SMEs are precautious regarding in-
vestments in novel, unfamiliar approaches. Given the hardware and software
infrastructure commonly required in an AI framework, cost is a major threat
in the domain. (d) Willingness to adopt recent technological developments:
SMEs’ management is often driven by traditional approaches and tactics. Even
when all the aforementioned components are available, the organisation needs
to have the required foundations and resilience in order to draw and apply
information-driven strategies.

On the other hand, the broad range of ML applications in business, e.g. in
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manufacturing, marketing, customer relations, e-commerce, human resources,
and the largely unexplored potential by SMEs offers tremendous opportuni-
ties. According to Jabłońska, M. R., and Pólkowski, Z. (2017) [24], SMEs striv-
ing to acquire a competitive advantage can benefit from AI technologies to “im-
prove organisational performance, lower costs, raise sells, automate customer
management, advanced data collection and processing, save time and limit
flaws”. Besides, more and more AI-based approaches are becoming widely
available and often for more affordable rates than in the past. Low-cost hard-
ware and open source software, in combination with the increased simplicity
of the implementation, have strongly supported this direction during the pre-
vious years. This eventually, establishes ML-based solutions as an emerging
trend in SMEs. What is more, on occasion, the restricted size of small-medium
businesses, including their functions and people, encloses a form of agility
that, in many cases, bigger organisations are lacking, which further leverages
their potential in the domain.

Finally, to gain more insight in the processes, the needs but also the challenges
of machine learning applications in SMEs, we present a number of successful
case studies in the rest of the chapter. Precisely, three problems are introduced
in the areas of customer loyalty, equipment maintenance and pricing. To the
extent possible, we focussed on industries and business cases that are widely
alike to the aforementioned SME format. However, since that was not always
feasible due to the limited literature related to SMEs, an easy adaptation of the
applied framework by firms in the SME field was the second criterion utilised
for the selection of the presented cases.

4.1 Customer Churn

4.1.1 Problem Description

Churn and retention rate
It is well-known from the literature that the cost to obtain a new customer is
often five times higher than the cost to retain an already existing one [12]. In
business, customer churn describes the phenomenon that a customer leaves a
company for good, usually shifting to a competitor or stop using its products
or services entirely. Churn rate is defined as the ratio of the customers who
churn during a period, usually monthly or annually, over the total number
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of customers in the beginning of that period. Similarly, the retention rate is
defined based on the loyal customers of that period. Analytically, it holds that:

Churn rate =
Churned customers

Customers at the beginning of a period
= 1− retention rate .

As it can be seen, decreasing the churn rate yields an increase in the retention
rate. This further results in an increase in Customer Lifetime Value (CLV)
(Figure 4.1), which is defined for a company to be the total worth of a customer.
CLV is one of the most crucial business indicators as it has a direct impact on
the firm’s profitability and overall performance. It simultaneously underlines
in an efficient and effective way the firm’s relationship with its customers [9].
That makes the need for companies to closely monitor and improve retention
rate clear by restricting as much as possible churn. As a matter of fact, it
has been observed that only a 5% improvement in retention rate can result in
approximately 25% increase in business profitability [10].

Figure 4.1: Customer life cycle and customer lifetime value [50, 3].

Customer segmentation based on CLV
Today companies have a variety of advanced tools to detect and analyze cus-
tomer behaviour. By applying ML algorithms, firms can obtain more in-
depth and accurate customer segmentation results. Traditional segmentation
approaches are based on descriptive factors, such as demographic and geo-
graphic information. However, modern approaches, as the one proposed in
“Analyzing the applications of customer lifetime value (CLV) based on benefit
segmentation for the banking sector” [26], utilise causal factors targeting the
estimated CLV of a customer. With respect to that, by detecting the group
of customers prone to churn, i.e., the ones with zero or low expected value,
companies can draw more effective retention strategies.

Having said that, personalisation is one of the most powerful tactics to increase
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customer loyalty and reduce churn. Personalisation builds strong bonds be-
tween the firm and its customers and makes it difficult for them to abandon
it for a new brand or another relative service. Following the trend of our
era towards one-to-one marketing, companies are called to better understand
customers and their preferences. Among marketers it is clear that different
customer segments imply the need for different marketing mixes; deeper cus-
tomer segmentation requires an individual approach tailor made for the end
customer (customised content, favorite platforms, etc). In addition, nowadays,
firms have the tools and the infrastructure to customise products and services
according to individual preferences and taste.

Secondly, by early detecting the segment which is not willing to pursue further
collaboration with the brand, companies can better allocate their budget and
focus on the potentially profitable future customers. There is always a propor-
tion of customers for instance, that is not interested in further purchases or, in
other cases, is definitely going to cancel its subscription for a variety of rea-
sons. It is a waste of budget and time for the firm to try to convince them with
discounts, special offers or loyalty programs. In contrast, there are always po-
tential churners who are looking for better deals. By focussing on them, firms
can boost their retention rates and have a sufficient impact on their businesses.

Finally, to conclude, the retention rate is an intangible asset of the firm. High
retention rate, hence low churn, implies a healthy and successful business
model. Customer satisfaction leads to loyalty, therefore, higher CLV. Customer
equity, the sum of CLVs, forms an interesting business indicator which holds
the following properties: transforms customers value into a countable metric
and it has the main impact on the cash flow generated. It is clear now that CLV
is immediately related to brand equity. To strengthen this point, high brand
equity attracts customers and creates loyalty. Following the same pattern, the
firm increases its brand equity and eventually its market value.

4.1.2 Customer churn detection with SVM

Given the potential of the application, analysts across the industries are called
to perform the churn detection task. The extensive research on the topic has
resulted in a sufficient body of literature for analysts to refer to. By study-
ing customer churn in different corporate environments, we end up with spe-
cific properties repeatedly appearing in the prediction task (regarding the e-
commerce industry we refer the reader to [50]). Its major characteristics can
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be described as follows: (1) the distinction of churn and loyal customers is a
typical binary classification problem; (2) the datasets are usually highly im-
balanced; i.e., in a typical corporate environment the number of the actual
churners is only a minority of the population (usually 2-10%, depending on
the industry); (3) both relative and irrelevant to churn data are included in the
datasets, that makes the integration procedure intense; (4) identifying causal
churn factors is complicated.

There has been a wide variety of binary classifiers proposed for the customer
churn prediction problem. Based on the problem’s nature and the high accu-
racy of the model across the literature, we opt for and present cases utilising
the SVM algorithm. First, the SVM classifier can work with linear and nonlin-
ear datasets. The Kernel Method is usually applied when the complexity of the
data cannot warranty linear discrimination whereas variations of the model,
like Extended Support Vector Machine (ESVM) [50], can deal with the strong
class imbalance usually present in the churn data.

The ESVM model is based on the soft-SVM algorithm with kernels and an
embedded margin calibration for improved classification results in imbalanced
sets. To briefly describe the set-up, the parameter C is replaced by C+ and C−

in order to treat loyal customers and churners respectively. To deal with the
nonlinearity of the data, similarly to the Soft-SVM model, the nonnegative
slack variables ξ1, . . . , ξm are introduced. Finally, parameters ρ1 and ρ2 are
used for margin calibration. To underline the success of the model, empirical
results for the churn detection problem have shown that Extended Support
Vector Machine outperforms Artificial Neural Networks, Decision Tree and
SVM algorithms [50].

4.1.3 Case Studies

Churn prediction in manufacturing industry
In 2012, Chen, Fan & Sun [10] studied in depth churn prediction with SVM
techniques. According to the authors, firms are in possession of a profuse
amount of both static and transactional data and with respect to that they dis-
cussed extensively data preprocessing techniques involved in churn detection.
As our main focus is on classification methods, and the final results of the re-
search for the SVM classifier are very similar, in our text we will only consider
the most simplistic and easily implementable approach in their work.
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To briefly describe the experimental design, demographic information and
transactional data of individual customers are used as an input for the learning
algorithm. Little preprocessing is required regarding the demographic part of
the data, whereas transactional records need to be converted in order to form
multivariate time series of fixed length. Following the aforementioned sim-
plistic approach, the time series are transformed into static data (usually by
applying weight averages) in order to reduce the dimensions and eventually
form the vectors of features. Concerning the target variable, churn is defined
based on CLV in a six-month interval at the end of a studying period. Analyt-
ically, CLV equal to zero indicates a churner (denoted by 1) and positive value
a loyal customer (denoted by −1).

Regarding the empirical analysis, among others, the Adventure dataset re-
trieved from AdventureWorksDW, was used. The dataset contained 701 cus-
tomers and more than 60,000 transactional records. After data cleansing, the
final set consisted of 633 customers and their purchase history. In the given set,
the churn rate found to be quite high, however churners still shape a minority
class, with the corresponding figure reaching 24%. For the implementation of
the classification, only three variables relating to customers’ transactional be-
haviour finally utilised, i.e., volume (amount of spending), frequency (number
of purchases) and variety (number of products purchased). A three-year time
frame used in the duration of which the corresponding observations recorded
in a monthly base. In addition, seven static variables holding customer per-
sonal information included in the formation of the final set as well.

Next, by applying a sampling procedure the dataset was divided in three equal
sets in order to form the training, the validation and the test set accordingly.
Due to the temporal nature of the data, the examined periods of each set differ.
For model training and hyperparameter optimisation the period between July
2002 and June 2004 was selected, while a testing period in the future was used,
January 2003 to December 2004.

Given the tendency of the SVM algorithm to perform better on balanced datasets
and the imbalanced nature of the churn data, the authors conducted the exper-
iment in both balanced and imbalanced sets. A technique, widely known as
undersampling, was applied in order to balance the observations in the train-
ing and validation sets. Substantially, with undersampling the size of a class
is limited to the desired one by sampling instances. For example, to yield bal-
ance among two classes the sample of the majority class can be limited to the
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minority class size.

Subsequently, a grid search applied in the validation set. The resulted op-
timal hyperparameters were used to train the classification algorithm before
the model is tested on the test data. To assess the performance, the authors
recorded numerous metrics, that is: Accuracy, Sensitivity, Specificity, AUC,
top-decile lift), the Maximum Profit (MP) and the H-measure (H).

Despite the relatively small number of observations used for model training,
the results for the SVM classifier on the test set showed robustness across
balanced and imbalanced data. For the balanced data, accuracy of 95.83% and
sensitivity of 93.33% were achieved. Further, the AUC is constantly higher than
90% for all the dataset indicating good generalisation properties on imbalanced
sets. The top-decile lift remained stable at 8.22 across the experiment (Table
4.1). Lastly, it is worth mentioning that a conventional laptop computer with
an Intel Core i3 processor and 2GB of RAM was utilised which highlights the
low technical requirements for such an experiment.

Table 4.1. Results on balanced and imbalanced data. The parameter
θ determines the non-churners over churners ratio [10].

Metric θ = 1 θ = 2 θ = 5 θ = 15

PCC 95.83

Sensitivity 93.33

Specificity 98.33

AUC 99.03 92.81 91.19 91.44

Lift 8.22 8.22 8.22 8.22

MP 5.30

H 95.72

Time 1.20

Churn prediction in B2B e-commerce industry
To address the research gap on churn prevention in the Business-to-Business
(B2B) area, N. Gordini and V. Veglio [19] proposed a churn prediction model
tailored for the e-commerce industry. Compared to Business-to-Customer
(B2C), B2B churn has an even more severe impact on the business. Precisely,
the customers are limited and the transactions that they generate are more fre-
quent and of higher value. With respect to that, the authors utilised a dataset
of a major Italian online fast-moving consumer goods company and studied
the transactional records of over 80,000 business customers during one year.

In order to apply a churn detection framework, two equal samples, of 20,000

observations each, have been selected and used as training and test set. Based
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on the fact that churners represent the minority class, about 10% of the data,
the authors applied sampling techniques so that balance results between loyal
and churn customers within the training set. In contrast, the test set was
sampled with respect to the original situation, i.e., 10% churn.

As remarked by the researchers, the small number of predictors selected for
the experiment makes the research robust across enterprises. Besides, the pre-
dictors used are assumed to be widely available at every company in the e-
commerce domain. In detail, the predictive variables are categorised within
four groups, that is: Customer Data, Login, Transaction and Web log. The
variables in the groups contain both socio-demographic and behavioural at-
tributes (Table 4.2). Precisely, Customer Data include personal information of
the customer, i.e., ID number, name, gender, address, profession, email, mo-
bile phone number and date of registration. Login holds information of the
customer’s registration in the system like customer id, login id, login date
and login page. Transaction summarises key information about transactional
records, namely frequency, recency, length, monetary indicator, product cate-
gories and failure. At last, Web log records behavioural data about customer’s
web visit such as date, remote host, method, page and request status. Again,
the dependent variable is churn, a binary variable based on the customers’
annual transactional history. Customers with no purchase within the year are
defined as churners and denoted by 1. Respectively, active customers (at least
one purchase during the year) are defined as non-churners and denoted by 0.

Regarding the C and γ parameter, the authors compared different optimisation
approaches. At first, the traditional approach utilising accuracy as the perfor-
mance metric in the k-fold cross-validation (SVMacc) applied, whilst the AUC
metric was selected in the second round of experiments (SVMauc). The opti-
mal C and γ pair generated by the later resulted in the highest cross-validated
accuracy in the training set. The results were similar for the test set; it was
shown that the real churners identification is highly probable, with SVMauc
outperforming SVMacc achieving 89.98% of accuracy, 88.61 AUC and 5.26 top-
decile lift (89.12, 87.95 and 4.98 for SVMacc respectively).

In addition, an evaluation of the most critical churn prediction variables was
carried out. This step provides crucial insights for further managerial actions
that can further leverage personalised content. Results inline with literature
showed that higher number of purchases (frequency), longer time since last
order (recency), length of relationship as well as predictors related to product
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category and failure attribution are of the highest importance. Contrary to that,
monetary value and descriptive data were proven to be of lower significance.
Lastly, on the technical part, the LIBSVM SVM toolbox for MATLAB, available
by Chang and Lin [8] has been utilised for the analysis.

Table 4.2. Predictor variables for churn prediction in B2B e-commerce industry [19].

Variables Attributions

Customer ID, Name, Gender, Age, Address, Profession, Email, Mobile phone,

data Register date

Login Customer ID, Login ID, Login date, Login page

Transaction Frequency (the number of transaction observed in a period)

Recency (the time of the last transaction)

Length (number of days since first log in)

Monetary indicator (total spending of a customer and total spending

per each category)

Product categories (the number of product purchased from each

category)

Failure (missing or damaged items, poor quality, return of products,

refunds)

Web log Log date, Remote host, Method, Page, Request status

Churn prediction in subscription services
In “Churn prediction in subscription services: An application of support vec-
tor machines while comparing two parameter-selection techniques” K. Cousse-
ment and D. Van den Poel [14] studied early churn detection for subscription
services. With respect to that an experiment conducted utilising a dataset
that includes customers of a Belgian newspaper publishing company. Among
other classification algorithms, SVM applied to classify subscribers into poten-
tial churners and loyal customers.

The studied company implements a tailor made subscription plan, based on
the customer’s desired subscription period and current available offers. The
customers are obliged to pay a fixed amount and cannot quit before the ma-
turity date. After that, for an additional period of four weeks the company
delivers its services free of charge giving the opportunity to the subscribers
to renew their plans. Heuristically, churn is defined as whether a customer
will renew, or not, the subscription prior the end of that additional period. In
general, data from January 2002 to September 2005 has been utilised whilst to
define churn only a time interval between July 2004 and July 2005 has been
considered. The predictive variables are based on a 30-month period with
information derived from customers’ individual activities. Information is col-
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lected in two levels, i.e., subscription-level and subscriber-level. At the former,
details about the current plan is included while the latter is mainly focussed
on customer’s personal data. The predictors are defined and divided into
four variable category groups, client/company-interactions, renewal-related
information, socio-demographics and subscription-describing information (Ta-
ble 4.3).

As it generally holds, here again churn customers comprise the minority class
of the data (11% churn). To boost algorithm performance, an undersampling
technique applied in order to form a balanced set of 45,000 instances which
was used for model training. A test set of same size was drawn with respect to
the normal distribution (11% churn) so it reflects the actual situation. As in the
previously discussed case, to define the optimal C and γ parameters, a k-fold
cross-validation with AUC as performance metric was applied. To evaluate
the performance of the classifiers three metrics has been calculated, i.e., accu-
racy, AUC and the top-decile lift. The latter has a significant role in customer
retention management due to the inherent cost in customer targeting. Again,
the SVMauc model outperformed SVMacc, and the results showed accuracy of
88.63%, AUC equal to 85% and top-decile lift 4.492.
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Table 4.3. Explanatory variables for churn prediction in subscription services [14].

Category Variables

Client/ The number of complaints

company- Elapsed time since the last complaint

interaction The average cost of a complaint (in terms of compensation newspapers)

variables The average positioning of the complaints in the current subscription

The purchase motivator of the subscription

How the newspaper is delivered

The conversions made in distribution channel, payment method & edition

Elapsed time since last conversion in distribution channel, payment method

& edition

The number of responses on direct marketing actions

The number of suspensions

The average suspension length (in number of days)

Elapsed time since last suspension

Elapsed time since last response on a direct marketing action

The number of free newspapers

Renewal- Whether the previous subscription was renewed before the expiry date

related How many days before the expiry date, the previous subscription was re-

variables newed

The average number of days the previous subscriptions are renewed before

expiry date

The variance in the number of days the previous subscriptions are renewed

before expiry date

Elapsed time since last step in renewal procedure

The number of times the churner did not renew a subscription

Socio- Age

demographic Whether the age is known

variables Gender

Physical person (is the subscriber a company or a physical person)

Whether contact information (telephone, mobile number, email) is available

Subscription- Elapsed time since last renewal

describing Monetary value

variables The number of renewal points

The length of the current subscription

The number of days a week the newspaper is delivered (intensity indication)

What product the subscriber has

The month of contract expiration
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4.2 Predictive Maintenance

4.2.1 Problem Description

In production and operations management, maintenance is a common practice
across all industries and factories. The costs and the implications associated
with it will be discussed in this section. To briefly give an overview, it has been
found that, depending on the industry, 15% to more than 40% of the produc-
tion cost is associated with the cost of maintenance [20]. All in all, maintenance
management is a complicated and costly function, the key objective of which
is to optimise equipment application and overall performance.

To clearly illustrate the impact of the maintenance management in an organ-
isation, we can focus on industrial businesses where machinery equipment is
used to a large extent. As in every company, the operating profit must capture
and exceed the corresponding cost to the maximum extent possible. Now, to
define operational cost, factors such as -but not limited to- equipment own-
ership, cost of failure and production losses are always involved. In detail,
equipment ownership expenses are based on three significant figures, the pur-
chase price, the time of use and, lastly, the costs of maintenance.

As mentioned before, maintenance is a complicated yet critical component of
every company. Successful management keeps the operations running smoothly
and avoids direct cost and indirect implications associated with equipment
failure spreading across the organisation. Immediate costs include spare parts,
labor, downtime, overhead expenses, tools and consumables. Spare parts and
expertise availability is an issue which further increases complexity and cost.
When it comes to the associated implications, there is a plethora of details
to consider with production loss and safety coming first. Besides, customer
service and firm reputation are almost always vulnerable in such critical situ-
ations.

During the past years, two maintenance concepts were mainly met around the
industrial world. Due to their importance and extensive use, we briefly present
them and describe the key points so we can later fully illustrate the inherent
potential in the novel approach.

Traditional perspective
Firstly, we refer to the run-to-failure or reactive maintenance. This type of
maintenance is based on the reactive approach, i.e., maintenance is only carried
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out after failure of the equipment. Despite the high cost and inefficiency of this
practice, it is the most frequent one due to its simplicity. With this approach
managers are usually forced to high expenses and extended fixing time which
leads to extra production costs and lost sales during the downtime period.
Apart from that, safety issues are also present since the equipment is running
without inspection and maintained under pressure.

Secondly, a more sophisticated method, the Preventive Maintenance (PvM),
follows. Here, maintenance is scheduled in advance based on run time or
process iterations. Often, problems and failures are prevented but, on the
other hand, unnecessary service costs, including labor and spare parts, lead to
inefficient resources allocation inflating operational expenses.

Novel approach
Technological developments, especially in areas such as automation and data
exchange, have contributed to the fourth industrial revolution. Industry 3.0
began when first computers were used in the manufacturing world to ease
and increase operations and production. With the rapid raise of technology
Industry 4.0 became the new era in which further innovation and optimisation
is possible. Now, computers and machines are linked with advanced software
which performs analysis for complex decision-making tasks. The concept of
Industrial Internet of Things (IIoT) supports this approach by connecting ma-
chines with people and sharing data. Smart sensors installed in machinery
and maintenance software communicate through network and monitor per-
formance thanks to large amount of data generated. IIoT centralise control
and information in one place making it easily accessible and ready for fur-
ther processing. Given that, innovative tools and technology introduced by
Industry 4.0 have facilitated a novel approach in maintenance management,
the so-called Predictive Maintenance (PdM).

PdM is the latest approach and a breakthrough in operations management.
It is the state-of-the-art technique which makes monitoring equipment health
feasible. What is more, PdM introduces a condition-based framework which
empowers optimised maintenance budget allocation. Early functional anoma-
lies prediction is possible by utilising historical and real time data. Smart
sensors are used to monitor functionality and provide a large amount of vari-
ant data, such as vibration signals, temperature and rotation speed, in which
useful information about equipment and parts of it is inherent. The potential
can be easily seen. Not only because system breakdowns can be predicted and
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fixed in time but also because periodical unnecessary checks, present in the
PvM approach, can be avoided. Lastly, this practice can also be beneficial for
equipment performance and its lifespan.

Number of failures

Costs

Repair cost

Prevention cost

Total cost

Optimum

Preventive

maintenance

Predictive

maintenance

Reactive

maintenance

Figure 4.2: Cost of maintenance [30].

4.2.2 Predictive maintenance with the support of decision tree algo-
rithms

Across literature, multiple machine learning models have been utilised to ad-
dress the PdM challenge, however decision trees are often on top of the list.
Except for their multiclass classification ability, that one might be in favour in
a PdM framework, and their strong predictive power, decision trees have nat-
ural interpretation and explanatory properties. They can illustrate and justify
predictions based on generated rules and feature selection. The tree structure
and splitting procedure are easily understandable and naturally interpreted,
making the model preferable when it comes to problem understanding and
decision-making. In the predictive maintenance case, rule extraction is a de-
sirable feature. It leads to a better understanding of the the current machinery
condition without costly and time-consuming inspections by experts. Fur-
thermore, decision trees can underline feature significance resulting in further
information useful in maintenance management.
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During the years, advanced tree algorithms have also been introduced for pre-
dictive maintenance. For example, the Fuzzy Min–Max-CART is a hybrid tree
model which combines the predictive power of neural networks enhanced with
a rule extraction mechanism based on decision trees. The Fuzzy Min–Max-
CART model has been extensively studied and utilised for online motor fault
detection and diagnosis by M. Seera, C. P. Lim and C. K. Loo [44]. In the
study, bearings behavior was analysed by monitoring vibration signals. In or-
der to evaluate the model in variant environments, noise signals of 10%, 20%
and 30% were manually added. The predictions reached an impressive accu-
racy from 93.45 (for 30% noise) to 100 (without noise). Furthermore, a useful
and easily interpretable tree has been extracted by the model to illustrate the
classification procedure and support decision-making.

4.2.3 Case Studies

A low-cost predictive maintenance framework
As it has been so far discussed, due to increased complexity in manufacturing
ecosystems, the predictive maintenance approach gains gradually more atten-
tion. Arguing that emerging technologies of industry 4.0 facilitate PdM, E.
Sezer, D. Romero, F. Guedea, M. Macchi and C. Emmanouilidis introduced a
low-cost easy to develop PdM system tailored for the SMEs domain [46].

The study conducted was based on a Computer Numerical Control (CNC)
turning unit producing simple metal parts. For the firm, the high quality of the
product is a requirement, therefore roughness is constantly measured based
on three variables: roughness average (Ra), root mean square roughness (Rq)
and mean roughness depth (Rz). To reduce defective products and machinery
damage without unnecessary services, a PdM system was developed utilising
low cost hardware and open source software. To this end, a single board
computer (Raspberry Pi 3 model B) equipped with a compatible multi-sensor
board (Sense HAT) was installed on the CNC’s turning centre.

In order to control the production process, two are the main parameters which
determine machine’s function, speed and feed rate. The first one defines the
relative rotational speed of the workpiece, while the second one the relative
velocity of the cutting tool. The experiment was run in three cycles where
three pairs of values were used for the control parameters, one with high val-
ues ({3600, 0.3}), one with medium values ({2600, 0.2}) and one with low values
({1600, 0.1}). For each cycle of the experiment, the flawless and the total prod-
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ucts produced was counted until the cutting tool was damaged or broke. At
the same time, vibration signals and temperature figures were monitored with
the aforementioned setup and data stored in a cloud.

Subsequently, to build the desired predictive framework the following steps
were applied: the raw dataset was imported in RStudio for preprocessing.
Simple statistical features, like mean, standard deviation and maximum were
computed. A uniform data frame among different experiments and feature
types was developed, as well as data were cleansed and normalised. Data from
the second experiment (medium values) would be utilised to train the model,
whilst the decision tree model would be tested with data retrieved from the
experiments one and three. Regarding the target variable, it is defined based
on a targeted Ra threshold: 1 if Ra exceeds that threshold or 0 otherwise.

In spite of the fact that the framework was developed to illustrate the poten-
tial simplicity of the PdM approach and more sophisticated experimentation
setups can be formed, results were remarkable: (1) A strong link between tem-
perature, vibration (x-axis) and roughness (Ra variable) was observed. An in-
crease of the former two affected negatively the products surface smoothness
warning for the upcoming failure of the equipment. (2) The tree algorithm
predicted the turning point from flawless to defective products with an aver-
age accuracy of 81%. Finally, the resulting decision tree is available for a root
cause analysis by management. To briefly illustrate the decision process, the
root node was formed by a split based on temperature mean value (x1<0.687

or x1≥0.687). The rest of the nodes were created based on the same variable
(with different decision boundary) or by utilising the x-axis vibration (x3) and
temperature standard deviation (x2) variables. The tree graph is presented in
the Figure 4.3.

Online bearing fault detection
According to J. S. L. Senanayaka, H. Van Khang and K. G. Robbersmyr [45],
bearings are one of the most critical components of rotating machinery. Time-
consuming and costly service interruptions in an industrial machine must be
initiated due to a bearing failure. Hence, it is important to detect such faults
in advance and perform condition-based maintenance in early damage stages.
Given that, the authors introduced a tree classification model aiming to en-
counter the novel predictive maintenance approach. Furthermore, the frame-
work was designed with respect to the online learning approach. With the
term online learning we refer to a real-time learning, a process in which the
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≥0.687<0.687

<0.183 ≥0.183

≥0.056 <0.056

<0.587≥0.587

<0.168 ≥0.168

Figure 4.3: The decision tree formed for product defectiveness, where x1 vari-
able represents the mean temperature, x2 the standard deviation of the tem-
perature and x3 the mean X-axis vibration [45].

algorithm changes based on the available input from moment to moment. In
such an online system, the main components are the following: the data ac-
quisition system, the database to store data and the learning software installed
on a server.

Figure 4.4: Inner and outer race of a bearing.

The main objective of the project was to develop a decision tree capable to clas-
sify bearing health statuses with the training input of vibration features. To this
end, short duration vibration data was recorded and logged in the system in
fixed time intervals. Five frequency and time related features calculated from
the bearing physical characteristics, such as geometry and rotational speed,
were selected for the model training (Table 4.4). Additionally, the raw vibra-
tion signal turned out not to be as useful as the envelope of the signal; as a
result, the former was used in the proposed learning framework.
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Table 4.4. Selected features utilised in the predictive maintenance framework [45].

Feature Description

RMS Root mean square of the signal

FTF Energy in fundamental train frequency

BSF Energy in ball spinning frequency

BPFO Energy in ball pass frequency outer race (Figure 4.4)

BPFI Energy in ball pass frequency inner race (Figure 4.4)

In order to generate input data for the algorithm, a run-to-failure test was
conducted with the following set up: four bearings were installed and set to
rotate by 2000 rpm while a radial load was applied. To measure vibration
signals, eight high sensitivity accelerometers which recorded one-second data
every ten minutes and with a sampling frequency of 20kHz were installed.
Next, the predictive variables were calculated from the resulted measurements.
The dataset has been divided into two equal parts to form the training and test
sets for the model. Regarding the target variable, five classes have been formed
in order to reflect useful information about the overall health of the spare parts,
as well as specific upcoming problems. The five status classes that have been
chosen based on bearings functionality can be seen in Table 4.5.

Table 4.5. Number of samples and class accuracy [45].

Class Description
No of training/
test samples

Recall/
accuracy

Class 1 Healthy 2377 98.7

Class 2 Inner-race degradation (IR_D) 279 84.9

Class 3 Inner-race Failure (IR_F) 36 91.7

Class 4 Outer-race degradation (OR_D) 430 97.2

Class 5 Outer-race Failure (OR_F) 17 94.1

Overall 3139 97.1

The data was labeled accordingly and the model trained on the generated
training set. To ensure robustness, the model was then tested on the unseen
data. As a result, an impressive overall accuracy of 97.1% was achieved (Table
4.5). The healthy class was detected successfully with about 99% recall. The
IR_F, OR_D and OR_F classes scored 91.7, 97.2 and 94.1 in the same figure
respectively. Contrary to that, the IR_D class showed a low of 85%, where
41 out of 279 instances were classified wrong as healthy. Besides that, the re-
sults demonstrate the power of the framework and, by extension, the potential
benefits of the predictive approach in maintenance management area.

Proactive fault diagnostics of electronic gaming machines
In gaming industry, defective electronic machines not only lead to lost income
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for a business but can harm the manufacturer’s reputation too. With this in
mind, M. Butler and V. Kešelj in “Data Mining Techniques for Proactive Fault
Diagnostics of Electronic Gaming Machines” [7] introduced a framework for
timely fault detection. The model aims to provide information about the ma-
chine’s operation status and notify for upcoming abnormal function ensuring
a sufficient time to react and schedule maintenance.

To model the problem, event updates from the Electronic Gaming Machines
(EGM) were logged to a server. The raw data was collected from two non-
sequential one-week periods (Table 4.6) and was processed for features extrac-
tion. During these periods, the reported states of the machines in fixed time
intervals were counted in order to form the entries for the predictive variable.
The authors argue that the health status of a machine is inherent in the num-
ber of the occurrence of the 104 available states during these intervals. For
the studied classification task, four classes have been chosen: EGMs with no
faults (Normal-0), EGMs which end up offline (Abnormal-1), EGMs with fault
alarm other than bill acceptor (General False Alarm-98) and EGMs reported
bill acceptor problem (Specific False Alarm-99). Two alternative classification
methods, DT and SVM, were tested and evaluated in six rounds of the intro-
duced experiment. In addition, 10-fold cross validation was utilised to deter-
mine the optimal configurations for the two algorithms and subsequently, the
algorithms were trained and tested.

Table 4.6. Data used in the predictive maintenance framework [7].

Period 1 Period 2

Time 1 week 1 week

No of data entries 3,135,508 3,107,201

No of machines 7867 7660

No of potential states 104 104

For the decision tree the results showed that fault identification is highly prob-
able. A general accuracy of about 90% was achieved. Precisely, in five out of
the six datasets about 95% of the instances was classified correctly and only
for the one a low of 70% was achieved. However, within all sets the precision
for the “Abnormal” class constantly scored above 94%. That underlines the
effectiveness of the method while that is the most important metric to avoid
the downtime of a machine. Lastly, despite the fact that SVM model showed
similar results, as we have seen, the decision trees are easier to understand
and visualise. Given that, the authors underline the importance of the inter-
pretation ability of the decision tree algorithm and its capability of extracting
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simple business rules easy to approach by management teams.

4.3 Dynamic Pricing: A Promising Application

4.3.1 Problem Description

Revenue Management
In 1997, R. Cross referred to Revenue Management as “Revenue Management
ensures that companies will sell the right product to the right customer at
the right time for the right price” [15]. In general, revenue management aims
to optimise firm’s operations, including inventory management, pricing, and
the cost of production, in order to maximise its generated revenue. However,
similar approaches, focussed on turnover optimisation, was well known since
the 80’s, with the American Airlines being the first company launching such a
pricing model to control and manage reservations inventory to increase com-
pany’s profitability. As a result, the model contributed $1.4 billion over three
years at the airline [47].

The success story of the airline undoubtedly raised the popularity of the model,
however, traditionally, revenue management techniques have been only ap-
plied in airline, hotel, and car rental industries. According to S.E. Kimes
common factors of industries which facilitate revenue management are: (1)
relatively fixed capacity of the system, (2) demand can be segmented into
clearly-identified partitions (price or service time sensitive demand), (3) in-
ventory is perishable, (4) products are sold well in advance, (5) demand fluc-
tuates substantially, and (6) low marginal sale costs and production costs, but
high-capacity change costs [29].

Only recently, similar techniques have been adapted from other industries as
well. The main reasons contributed in this are: (1) demand data are widely
available, (2) prices can easily change with the adoption of new technologies,
and (3) the development of advanced software for analyzing demand and dy-
namic pricing [16]. The most well-known attempt of a smart pricing model in
another industry occurred in 2000 when Amazon.com was spotted fluctuating
DVD prices based on customer’s willingness-to-pay [18]. In 2012, the price
of a microwave oven was recorded changing 11 times in single day, fluctuat-
ing between $744.46 and $871.49 [5]. By 2014, L2 Think Tank estimated that
Amazon.com was adjusting prices 2,500,000 times per day [33].
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The potential of smart pricing
Assuming a product or service, a decrease in price usually yields, more or
less, an increase in demand. Therefore a downward-sloping demand curve in
general holds (Figure 4.5). Since the sales generated revenue is the product
of price and quantity sold, it is justifiable to try to maximise the revenue by
adjusting the price. However, even when optimisation is feasible, the monetary
potential of the market cannot be fully captured from a single offer. During the
years it was obvious that a better, a smart pricing model needs to be defined.
Nowadays, there are two fundamental approaches of Smart Pricing, that is
differential and dynamic pricing.

0

Quantity
0

Price

Demand
Revenue

Figure 4.5: Demand curve [2].

Differential pricing aims to charge different prices to different customers. Com-
panies tend to differentiate their products/services in order to meet the de-
mand of different customer segments (Figure 4.6). A typical example of this
strategy is met in the airline industry. Companies differentiate the ticket price
based on customer type, leisure and business travellers. By providing addi-
tional flexibility and comfort, airlines differentiate their services and capture
the high-end market resulting in extra profits. Pricing differentiation strate-
gies are applied in other markets as well. Supermarkets and clothing stores
use loyal cards so customers can collect points and benefit from future dis-
counts. Frequently, only a segment of the market follows the procedure since
it is time consuming and requires effort. This way firms sell the same product
on different price capitalising customers’ willingness-to-pay.

Now, it gets clearer that in order to apply such strategies a fine partition of the
market is needed. Usually, price or service time sensitivity criteria are utilised.
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Furthermore, for such an effective strategy, firms need to draw barriers among
segments that customers cannot easily cross. The business class benefits and
the point collection procedure are “fences” that companies build in order to
discourage customers to migrate among segments.

Strategies widely applicable in the Differential Pricing scheme are the follow-
ing: (1) group pricing (e.g., student discounts and ladies’ nights), (2) channel
pricing (e.g., online vs brick and mortgage price), (3) regional pricing (based
on location), (4) time-based differentiation (e.g., express delivery), (5) product
versioning (e.g., leisure and business tickets), and (6) coupons and rebates.
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Figure 4.6: Price differentiation.

Dynamic pricing is a strategy where firms charge different prices over time.
The demand rarely remains stable and adjustments in pricing are required to
maximise revenue in new environments (Figure 4.7). The urge to apply usually
lies on market’s and industry’s potential. Markets with arbitrary or seasonal
demand variability, and industries with limited capacity or (short) defined
planning horizon belong in the most promising cases. Even the optimal fixed
pricing model cannot but capture a moment in time since they remain station-
ary based on a past state of the market. Dynamic pricing models take into
consideration a large number of variables, such as demand, interdependent
products, competitor’s behavior, customer segment, and inventory in order to
define the optimal pricing model in real time.

Internet enables this approach. E-commerce firms track a large number of
data, including website traffic, consumer preferences, demographics, inven-
tory, even information regarding their competitors. The ability for fast and,
sometime, easy data analysis makes the real-time dynamic pricing feasible
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Figure 4.7: Demand fluctuation. An increase or decrease in demand results
in suboptimal revenue generation. Prices need to be adjusted dynamically to
follow the curve.

[25]. Additionally, the strategy is an emerging trend in brick-and-mortar stores
as well [1]. Advanced analytics and technological innovations like electronic
shelf labels and smart shelves can bring the opportunities of dynamic pricing
to physical stores [4, 41].

According to W. Reinartz [40], there are two forms of dynamic pricing: the
weak and the strong form. In the first prices are adjusted over time but remain
consistent across customers. The second form describes a practice where prices
change over time and among customers. Finally, personalised pricing is the
ultimate goal of the strong form. In this case, firms try to define customers’
willingness-to-pay and draw personal pricing plans.

4.3.2 Dynamic pricing enabled by Q-Learning

By closely studying the dynamic pricing problem and the available literature,
we can derive that Q-learning shows the most reliable approach. The main
property that leads to this outcome is that Q-learning is a model-free algo-
rithm, hence no prior knowledge of the environment is needed. In the case of
dynamic pricing, that is no assumption about the demand curve is required.
The model can be trained online and learn the demand dynamically as well as
the effect of the price on it. Additionally, the model shows a large possibility
for adaptation in a given setting. Despite the long (theoretically infinite) and
costly period the model needs to converge, Q-learning seems that detects the

47



most reliable approximation of the optimal pricing policy.

During the years, many variations have been proposed with respect to differ-
ent industries or markets, but two are the most recurrent assumptions in the
Q-learning approach; monopolistic markets and perishable goods. However,
there is a large number of articles that encounters more complex settings, e.g.,
oligopolies [11, 32], non-perishable goods [11, 34], and interdependent prod-
ucts [38].

4.3.3 Limitations in Small-Medium Enterprises

As we have discussed, dynamic pricing has a large potential and it is definitely
the future for both e-commerce and physical stores, but when it comes to the
implementation, managers have a considerable number of issues to consider
before put hands on the project [22].

• Despite the fact that Q-learning algorithms are a very promising solu-
tion, they need an extended, and probably costly, training period. Such
algorithms have to extensively explore the business landscape and exper-
iment with price variations in order to find the optimal pricing pattern.
This, requires long time and firm’s tolerance in temporary profit loses.

• At the moment there are no empirical evidences of revenue increase by
utilising machine learning dynamic pricing models. A large number of
articles present ready (more or less) to implement models but does not
evaluate their performance on a real market. Usually, simplified simu-
lations with numerous market assumptions are constructed. Common
assumptions authors make are:

– The market consists of myopic (not strategic) consumers.
– Weak dynamic pricing models are mostly utilised overlooking the

potential for finer segmentation of the market.
– Customers arrive to the store according to a homogeneous or inho-

mogeneous Poisson process. However, in real life assumptions in
both cases are violated.

– Customers buying behaviour is poorly formed in simplistic market
environments.

• There is a lack of standard and universal evaluation metrics. In the litera-
ture, many times Q-learning approaches outperform simple static pricing
models. However, a comparison study among machine learning models
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is not available.
• Every single market has its own characteristics. Due to the multidisci-

plinary nature of the problem, the contribution of economists, computer
scientists and marketers is crucial.

• The customers need to have a perception of fairness. Pricing policies
transparency is a crucial issue while poor approaches can damage badly
firm’s reputation.

4.3.4 Case Studies

Dynamic Pricing in E-commerce
Online retail markets show a large potential for revenue management. In 2006,
C. V. L. Raju, Y. Narahari, and K. Ravikumar [37] described a Reinforcement
Learning setting for dynamic pricing with customer segmentation. Two cus-
tomer types were studied based on their willingness-to-pay; captives and shop-
pers. As captives are defined the mature, loyal to the seller customers whereas
shoppers are price sensitive and attracted by offers.

For simplicity, a monopolistic market with a single retailer with a unique prod-
uct is examined. However, the seller has two offers available, i.e., a single
product at the base price and a “buy three-pay two” promotion. The cus-
tomers arriving at the store are categorised based on their preference in the
aforementioned offers. Captives are interested in the first ignoring the quan-
tity discount, while shoppers would opt for the latter.

Additionally, a limited inventory is assumed which is replenished based on
a fixed policy. Since captives are of higher than the shoppers to the seller
value, they experience a priority in the available stock as well as a lead time
commitment in case of lack of items. In such a case, two virtual queues are
formed with a maximum of N backlogged requests to be allowed. The retailer
can observe the waiting list but the customers have no information about it.

Finally, customers make a purchase decision only if they derive strictly positive
utility. The utility function is defined differently for the two customer types,
but, overall, it compares the seller’s offer with customers’ standards. Captive
to the seller customers have the benefit to evaluate both price and lead time
quotes provided by the retailer. Additionally, customers in this category are
modeled to learn these benefits and tend to revisit the store for future pur-
chases as well. In contrast, shoppers can only compare the price with their
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willingness-to-pay. In case of no inventory available, they need to place their
order in the shopping cart and to revisit the store again later. Then, they check
the status of their order. In the case of stock-out, they leave for good. Other-
wise, they only buy the items if the price quote provided leads to a positive
utility. Finally, they exit the system.

Online retailers with apparel, food, and other types of products could easily
fit in the given, or similar, formulation. To test the model in a realistic environ-
ment, a simulation of the aforementioned system was designed. Two different
evaluation metrics were utilised by the learning agent (the retailer) to define
the optimal pricing and the optimal inventory replenishment policy.

The following modeling assumptions were used: the price set available to the
seller is set to be A = {8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 12.0, 13.0, 14.0} and the
maximum number of 10 customers per queue is allowed. The maximum in-
ventory capacity is fixed at 20 units and the reorder point at 10. The 40% of the
customers is assumed to be captives, and customers arrive in the store based
on a Poisson distribution with mean inter-arrival time 15 minutes. Captives af-
ford to buy an item based on a uniform distribution U(8, 14) and, respectively,
U(5, 11) holds for shoppers. Similarly, captives’ acceptable lead time follows
a U(0, 12) distribution. The inventory gets replenished with an exponential
lead time with a mean of 3 hours. Shoppers exit the system after waiting more
than a time interval exponentially distributed with a mean of 1,5 hours. The
inventory holding cost is 0.5 per unit per day and the backlog costs 0.5 per
backlogged order per day. Finally, the merchandise costs a rate of 4 per item
to the seller.

f

1−
f

Poisson
process

Queue 1: Captives

. . .

Queue 2: Shoppers

. . .

p

2p

BP

Seller

Inventory

Order

Supply

Figure 4.8: The model of the retail store with two customer segments and
inventory replenishment [37].

The system consists of a finite number of states which are defined by three pa-
rameters: Xi(.) the number of backlogged orders in queue i = 1, 2, and I(.) the
inventory level at time t. Hence a state is given by a vector (X1(t), X2(t), I(t)).
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Given that setting, a partially observable Markov decision process is formed.
An adjustment of the Q-learning algorithm, in order to fit in the continuous
time setting, is utilised to learn the best strategy for every estate in the system.

The first experiment was conducted with respect to the long-term discounted
profit. The outcome is plotted in Table 4.7 showing the optimal pricing strategy
per state. By closely examining the table, three remarks can be made:

1. The price level is high when the inventory level is high as well. This
decision seems straight forward since higher holding costs are present.

2. In states (k, 0, 0), k > 0 two price groups are observed. In case of low
or high number of captives in queue 1, the price is higher compared
to the modest case. That is reasonable because in a no inventory and
low demand state, the seller can afford to wait for a customer with high
willingness-to-pay. On the other hand, when high demand is observed
it is reasonable to increase the price as well. However, given a modest
situation, due to the inventory holding and backorder costs, the seller
will try to increase the demand by lowering the price.

3. Similarly, in case of the states (0, k, 0), k > 0, low prices are observed
when a low number of shoppers is waiting in the queue 2 and higher for
k > 5. That is explained simply by assuming that in case of high demand
there are shoppers who are willing to pay a higher price.

These trends are directly connected to the studied problem. By adjusting the
parameters of the system, we can simulate another market and the opposite
trends might be found. That is the power of the model which can adapt to the
given environment and provide decision support in non-trivial settings.

For the second group of experiments, the same setting is retained except that
now shoppers’ willingness-to-pay fluctuates uniformly in (8, 14] ((5, 11] previ-
ously), and the long run average profit per unit time is used as the evaluation
metric. The authors tend to examine different inventory policies in order to
find the optimal reorder point. Based on the dynamics of the system, it was
found that the seller should place an order of 18 items when his inventory
drops at the level of 2. The new policy resulted in a long run average profit
per unit time of 8.410. In contrast, the previous (10, 10) policy showed a way
lower rate of 5.748.

Furthermore, one more case, in which the promotion is also dynamically ad-
justed, was studied. That leads to a more complex, two-dimensional A× Av
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Table 4.7. The optimal stationary pricing policy learned by the agent. We underline with
blue, green and red the states which correspond to the remarks 1, 2 and 3 respectively [37].

Best price States of the system

8.0 (0,0,0), (0,1,0), (0,2,0), (0,3,0), (0,4,0), (0,5,0), (1,1,0), (1,3,0), (1,6,0), (1,7,0),
(2,3.0), (2,5,0), (2,6,0), (2,7,0), (2,8,0), (2,10,0), (3,1,0), (3,3,0), (3,10,0),
(4,2,0), (4,3,0), (4,4,0), (4,5,0), (4,8,0), (4,10,0), (5,0,0), (5,4,0), (6,4,0), (6,9,0),
(7,2,0), (7,4,0), (8,3,0), (8,5,0), (9,3,0), (10,1,0), (0,5,1), (0,6,1), (0,7,1), (0,0,2),
(0,1,2), (0,3,2), (0,4,2), (0,5,2), (0,10,2)

8.5 (1,4,0), (1,5,0), (1,9,0), (2,4,0), (2,9,0), (3,2,0), (3,7,0), (3,8,0), (4,7,0), (5,5,0),
(5,7,0), (5,9,0), (6,0,0), (6,1,0), (6,2,0), (6,3,0), (6,6,0), (7,1,0), (7,7,0), (7,9,0),
(8,6,0), (8,7,0), (10,4,0), (0,2,1), (0,3,1), (0,2,2), (10,6,2), (0,7,2), (0,9,2),
(0,0,3)

9.0 (1,2,0), (1,8,0), (3,4,0), (3,5,0), (5,2,0), (5,3,0), (5,6,0), (6,5,0), (7,0,0),

(7,6,0), (8,2,0), (9,4,0), (0,8,2)

9.5 (2,0,0), (2,1,0), (3,6,0), (4,1,0), (5,1,0), (6,8,0), (7,10,0), (8,1,0), (8,8,0), (9,1,0),

(10,8,0)

10.0 (3,9,0), (4,0,0), (5,8,0), (9,2,0), (9,5,0), (0,1,1)

10.5 (2,2,0), (4,6,0), (6,10,0), (7,5,0), (9,6,0), (9,7,0), (9,8,0), (10,2,0), (0,10,1)

11.0 (1,7,0), (6,9,0), (8,4,0), (8,0,0)

12.0 (0,8,0), (5,10,0), (6,7,0), (8,9,0), (10,0,0)

13.0 (0,7,0), (7,3,0), (7,8,0), (9,10,0), (10,5,0), (0,0,6), (0,0,16)

14.0
(0,6,0), (0,9,0), (0,10,0), (1,0,0), (3,0,0), (4,9,0), (9,0,0), (8,10,0), (9,9,0),
(10,6,0),
(10,7,0), (10,9,0), (0,0,1), (0,8,1), (0,9,2), (0,0,4), (0,0,5), (0,0,7), (0,0,8),
(0,0,9), (0,0,10), (0,0,11), (0,0,12), (0,0,13), (0,0,14), (0,0,15), (0,0,17),
(0,0,18), (0,0,19), (0,0,20)

grid, where Av = {2.0/3, 2.1/3, 2.2/3, 2.3/3, 2.4/3} is the promotion offered.
In every epoch, the seller chooses a pair (p, dv) ∈ A× Av. Finally, in this sce-
nario the inventory replenishment (15, 5) policy is selected. The resulted long
run average profit per unit time found to be 11.515.
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Chapter 5

Experiment with SME Data

5.1 Introduction

To gain further insights regarding the potential, but also the challenges in
SME domain, in this chapter, we apply a customer churn prediction frame-
work with real world SME data. To this end, data from a small company in
Greece producing handcrafted articles is utilised. The company holds no more
than the trivial information on its customers and their transactional behaviour.
Therefore, a small amount of data, concerning both entries and features, is
available for processing. Mainly, customer orders stored in the firm’s archive
are used to form the input of the learning algorithms. Having that said, two
models widely used in the literature for churn detection are utilised in the ex-
periment, the SVM and the decision tree algorithms. Regarding the proposed
experimental design, both the nature of the business and the data available
have been taken into consideration. With the given setting, the results showed
that detecting potential churners is highly probable with the algorithms per-
forming overall similarly well.

5.2 Modeling Techniques

As it has been seen, the SVM algorithm has shown a large potential in binary
customer classification tasks such as churn detection. However, more factors
need to be considered in order to take full advantage of the model. Based
on the discussion held in Section 2.2.3, the structure of the classes within the
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dataset varies, and commonly the two classes might overlap; therefore, there
is a need for various kernel functions to be tested when a selection for the
SVM algorithm is made. The Kernel is a crucial component that can drastically
affect the classification outcome and hence model’s reliability; given that, three
different functions are tested for the SVM model, that is linear, radial basis and
a third-degree polynomial function, with the corresponding models denoted
as SVMlinear, SVMrb f and SVMpoly respectively. In addition, since C and γ

parameters also play a major role in the decision boundary formed, a 5-fold
cross validation on the training set is utilised to tune and eventually optimise
models’ performance in the available dataset.

Furthermore, another model extensively discussed for its accuracy, simplicity
and interpretability, the decision tree algorithm, will be benchmarked against
the SVM classifiers. Also in this case, given the different gain criteria available,
a 5-fold cross validation technique will be applied on the training set. Dur-
ing the process, the maximum depth of the generated tree is also examined.
This is in order to avoid overfitting the training set that could result in poor
generalisation power of the model.

5.3 Empirical Analysis

5.3.1 Data

In this experiment, real world data from a small manufacturing unit in Greece
is utilised. The raw data available is stored in a Microsoft Access database
which is mainly used by the firm to monitor customer orders. The database
consists of 827 unique customers and about 3000 transactions. The company
serves both individuals and business customers therefore information regard-
ing both is present in the database. Given the scope of the project, only infor-
mation regarding business customers was extracted and processed. In addi-
tion, only data from 2016 to 2019 has been retrieved for the experiment. Ob-
servations with missing information, and those with no valid orders in years
2016, 2017 and 2018 were deleted as well.

The final dataset includes 530 unique retailers, from 32 countries around the
globe, and their transactional records from January 1, 2016 to December 31,
2018. During this three-year period, 1740 orders, including a couple of can-
celled ones, had been placed.
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Due to simplicity, the limited data available and the fact that the firm operates
based on an annual pattern (participation in international trade shows with
seasonal peaks and lows), we have decided to split the dataset based on years
and consider the customers present in multiple ones as unique per year. By
utilising this approach, the final dataset consists of N = 869 customers and
their one-year purchases.

5.3.2 Experimental Design

Mathematical framework: For each customer i, i ∈ [m], we define xi to be a
d-dimensional vector of features, and denote with xi,j the j− th entry for the
i − th customer. This results in a two-dimensional matrix with customers in
rows and predictive variables in columns. To define the prediction classes, we
simply denote loyal clients as y = 0 and churners as y = 1. This leads to a
typical binary classification problem from X → {0, 1}.

Definition of churn: Due to the nature of the products, i.e., towards high-
end, long shelf life and particular designs, and firm’s strategy, non-advertising
and preference for local stores and boutiques, a low order frequency is typical
across clientele. Additionally, the fact that the firm ensures competition-free
exclusiveness in retailers’ areas for a year, leaded to the decision not to define
churn in a period shorter than this time interval. What is more, to formulate
our churn prediction framework, transactional records from a single year were
used for each customer and we defined churn based on their transactional
behavior on the following year. Therefore, those with at least one transaction
in the second consecutive year are defined as loyal customers, and those with
no valid orders are considered as churners.

Training and test set: In this study, contrary to the typical case, the dataset
seems to be balanced with respect to churn. With the aforementioned design,
the churn rate has been calculated to be pretty high, close to 40%. Precisely,
for the years 2017, 2018 and 2019 the actual numbers are 43%, 46%, and 35%
respectively. To reflect the temporal nature of the data and test the robustness
of the model, we have decided to train our models in the first two years and
test them in the most recent one. Eventually, this leads to two sets with 588

training and 281 test points respectively (Table 5.1).

Data preprocessing: Both personal and transactional information is stored in
company’s data warehouse. Regarding personal information, almost no work
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needed to be done. However, transactional data needed extra attention in
order to retrieve the required information and form the predictive variables.
Subsequently, simple statistical features, like mean and maximum, have been
computed to form predictive variables. Finally, the aforementioned variables
are prepared according to algorithms’ specific requirements to ensure a reliable
outcome.

Table 5.1. Training and test set distribution with respect to churn variable.

Class Number of observations Relative percentage

Training set
Churners 262 45

Loyal customers 326 55

Total 588 100

Test set
Churners 99 35

Loyal customers 182 65

Total 281 100

Model selection: In order to find the optimal hyperparameters for the mod-
els we apply a 5-fold cross-validation on the training set. For every model, a
multidimensional grid that contains all the possible combinations of hyperpa-
rameter values is constructed. The algorithms are trained with all the available
combinations, and the final configurations for the models are selected based
on the maximum cross-validated accuracy.

Model testing: To benchmark the final classifications, four evaluation metrics
are utilised: accuracy, f1-measure, recall and precision. Accuracy, the percent-
age of correctly classified observations is our main criterion. Since detection of
the churn class is our primal concern, recall plays a significant role in model
evaluation as well.

Software and hardware: Microsoft Access is used to retrieve the raw data
from the company’s database. The predictive variables are formed in Microsoft
Excel and exported as csv format in order to import them in Python with the
support of Pandas toolkit [39]. The Scikit-learn, a machine learning package
for Python, is finally used for the implementation of the experiment [35]. For
all the experiments, a gaming laptop with an Intel Core i7 processor operating
at 2.60GHz and a 16GB RAM has been utilised.
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5.3.3 Data Preprocessing and Variables Formation

In the company’s data warehouse information regarding both customers and
orders is stored. The customer related data available is the following: customer
id, company name, country, city, address, post code, email, phone number and
VAT id. Regarding their orders we have: order id, date of order, value, freight
costs, execution date, way of order, products, quantities and cost per unit. That
information is preprocessed for variable extraction that will be later utilised in
the prediction model. Overall, mainly behavioral data is utilised, since the
company does not hold more than the trivial personal information about its
customers. Precisely, only the address, in country level, can provide extra
insights given that EU customers experience lower freight and tax rates and
no quotas. No other useful information can be leveraged from these figures,
therefore, we mainly focussed on the behavioral data from orders available.

We divided the predictive variables into four categories as follows: personal in-
formation, orders-related, product-related and service-related variables (Table
5.2). In the first one, little information regarding the customer itself is present,
only customer id, country and region. The second group includes all the fea-
tures related to customers transactional behaviour during the studied time in-
terval. That is: frequency, spending rate, annual spending and order cycle. The
products-related variables are the following: product categories, quantity rate
and quantity. Lastly, the service-related variables are service speed, maximum
delay, freight rate, total freight, ordering ways and abandoned transactions.
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Table 5.2. Variables used for the churn prediction framework

Category Variables

Independent variables
Personal Customer id (the unique number associated with every customer in firm’s

information database)

Country (the country where a customer mainly operates at)

Region (whether customer’s country belong to EU or not)

Order Frequency (number of valid transactions during a year)

-related Spending rate (average value spent per transaction)

variables Annual spending (total value of transactions within a year)

Order cycle (average elapsed time between two consecutive transactions)

Products Product categories (number of different categories products have been pur-

-related chased from)

variables Quantity rate (average number of products purchased per transaction)

Quantity (number of products purchased in a year)

Service Service speed (average elapsed time from order to dispatch)

-related Maximum delay (maximum elapsed time from order to dispatch)

variables Freight rate (average freight cost per dispatch)

Total freight (total freight cost paid by the customer in the given period)

Ordering ways (number of different ways used for placing an order)

Abandoned transactions (number of transactions cancelled before execution)

Dependent variables
Churn (whether a customer leaves company for good or not)

Both categorical and continuous variables are used in the study. In order to
visualise the influence of the categorical features on the target classes, side-
by-side bar charts of relative frequencies are plotted (Figure 5.1). Similarly, for
the continuous variables, the density functions are benchmarked against churn
(Figure 5.2). In both cases, extreme values have been removed for the better
interpretation of the data points.

Finally, given that the SVM algorithm is distance sensitive, i.e., strives to max-
imise the distance between the decision boundary and the support vectors, it
performs better on data that have the properties of a standard normal distribu-
tion with mean equal to 0 (µ = 0) and, standard deviation to 1 (σ = 1). Given
that this condition is not always met by default, a technique called standardi-
sation is applied. According to it, the predictive variables xj are mapped to zj

through the transformation zj =
xj−µj

σj
. To improve performance, standardis-

ation is applied on the dependent variables prior to feeding the SVM models
(Figure 5.3).
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(a) Product categories (b) Ordering ways

Figure 5.1: Side-by-side bar charts of relative frequencies with respect to the
target class.

(a) Service speed (b) Total freight

Figure 5.2: Side-by-side plots of density functions with respect to the target
class.

5.3.4 Hyperparameter Tuning

Now, in order to find the optimal hyperparameters for the models, we apply
a grid search and a 5-fold cross-validation on the training set. To this end,
two grids were constructed for the SVM models. A grid search on C and
class weights utilised for the linear SVM, while for the radial and polynomial
models the hyperparameter γ was added in the grid. In both cases, we chose
exponential sequences of C and γ, i.e., C = 2−5, 2−3, 2−1, 21, 23, 25, 27, 29, 213

and γ = 23, 21, 2−1, 2−3, 2−5, 2−7, 2−9, 2−11, 2−13, 2−15. This is a typical
choice in churn prediction frameworks [19][14] and a practical solution for
SVM hyperparameter tuning in general [23]. All the (C, γ) pairs were tested
for different class weights to find the optimal configurations for each model.
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(a) Initial distribution (b) Standardised distribution

Figure 5.3: Density function of annual spending variable with respect to target
class, before and after standardisation of the data.

Respectively, for the decision tree algorithm we tested various values for the
following hyperparameters: gain criterion, max tree-depth and class weights.
The sets which resulted in the highest cross-validated accuracy were used to
finally train and test the models.

5.4 Results

5.4.1 Cross-validation Results

From the hyperparameter tuning for the linear SVM, it yields that 2−5 is the
optimal value for C, with a cross-validated accuracy of 70.91%. Additionally,
no class weight should be used to train the model. Table 5.3 shows the re-
sults of the grid search on C where the cross-validated accuracy used as the
evaluation metric.

Table 5.3. Cross-validated accuracy for SVMlinear per C (no class weight).

C 2−5 2−3 2−1 21 23 25 27 29 213

70.91 70.73 70.56 70.40 58.67 50.33 52.71 55.43 52.89

Regarding SVMrbf, no class weights should be used according to the results.
In addition, the optimal (C, γ) pair appears to be (2, 2−7), with the maximum
accuracy observed to be 70.91%. The cross-validated accuracy for all the pairs
can be found in Table 5.4. Similarly, the selected hyperparameters for the
SVMpoly are (2−1, 2−3), which resulted in a 70.05% score of the same metric
(Table 5.5). However, in this case, the model seems to be in favor of balanced
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classes, so that configuration was utilised during the model training. Finally,
grid search for the tree algorithm showed that entropy should be used as a
gain criterion, and the maximum depth of the tree should be 3.

Table 5.4. Cross-validated accuracy for SVMrbf per (C, γ).

γ \C 2−5 2−3 2−1 21 23 25 27 29 213

23 55.47 55.13 60.56 62.25 61.74 61.06 61.75 61.75 54.42

21 55.47 59.21 62.59 63.44 63.10 62.59 61.73 61.74 43.85

2−1 55.47 62.26 66.32 64.28 62.25 61.05 61.22 61.56 55.78

2−3 54.96 66.83 68.02 68.02 64.62 61.73 60.02 56.95 57.82

2−5 55.47 66.16 69.72 69.72 69.04 68.52 66.48 64.44 50.87

2−7 55.47 55.13 69.89 70.91 70.56 69.55 68.87 68.36 50.49

2−9 55.47 55.47 56.66 70.06 70.57 70.57 69.89 69.20 53.39

2−11 55.47 55.47 55.47 56.32 69.89 70.91 70.56 70.40 63.43

2−13 55.47 55.47 55.47 55.47 56.32 69.89 70.91 70.73 70.40

2−15 55.47 55.47 55.47 55.47 55.47 56.49 69.89 70.91 70.56

Table 5.5. Cross-validated accuracy for SVMpoly per (C, γ).

γ \C 2−5 2−3 2−1 21 23 25 27 29 213

23 48.27 51.02 52.38 53.90 53.90 53.90 53.90 53.90 52.89

21 55.59 47.95 48.62 48.27 51.02 52.38 53.90 53.90 53.90

2−1 68.18 64.95 59.16 55.59 47.95 48.62 48.27 51.02 53.90

2−3 58.49 69.03 70.05 68.18 64.95 59.16 55.59 47.95 48.27

2−5 45.89 46.74 52.36 58.49 69.03 70.05 68.18 64.95 55.59

2−7 43.34 43.51 45.38 45.89 46.74 52.36 58.49 69.03 68.18

2−9 48.80 48.80 48.80 43.34 43.51 45.38 45.89 46.74 58.49

2−11 48.80 48.80 48.80 48.80 48.80 48.80 43.34 43.51 45.89

2−13 48.80 48.80 48.80 48.80 48.80 48.80 48.80 48.80 43.34

2−15 48.80 48.80 48.80 48.80 48.80 48.80 48.80 48.80 48.80

In Table 5.6, all the cross-validation results, i.e., the capability of the learn-
ing algorithm to fit the training data, can be found. We see that the linear
and radial SVM performed similarly, with 70.91% accuracy, while they slightly
outperformed the polynomial model which barely reached 70%. Finally, the
decision trees showed same accuracy with the former SVM models (70.90%).
All the classifiers, except SVMpoly, seem to fit the target class relatively well
with the scored recall equal to 80.20%.

Table 5.6. Cross-validation results based on accuracy as evaluation metric.

Model Configurations Recall Precision F1 score Accuracy

SVMlinear (2−5,−), None 80.20 63.05 70.39 70.91
SVMrbf (2, 2−7), None 80.20 63.05 70.39 70.91
SVMpoly (2−1, 2−3), Balanced 75.44 63.40 68.57 70.05

DT entropy, 3, None 80.20 63.09 70.40 70.90
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As we have extensively discussed, analysts are commonly in favor of decision
tree models due to their advantage, which is no other than the clear interpreta-
tion of the classification procedure. With respect to that, the resulted decision
tree, with the split criteria and the training instances per node, can be found in
Figure 5.4. As it can be seen, order cycle, i.e., the average elapsed time between
two consecutive transactions, is the most significant variable since it is placed
at the root of the generated DT. In detail, the first question is formed as “Is
the order cycle less or equal to 252.5 days?”. For those cases that the answer
is “True”, they are moving to the next node where loyal customers outnum-
ber churners. Whereas, the remaining instances are driven to another node
mainly consisting of churners. Similarly, other criteria such as spending rate,
frequency, and region of the customer follow in the splitting process. Finally,
seven leaves are formed with three of them being labelled as Loyal, including
256 data points, and the rest four as Churner, consisted of 332 samples.

An additional useful insight that can be gained from the plot is the confidence
of a classification based on the purity of the nodes. For instance, entropy close
to 0 indicates homogeneous leaves and the corresponding points are more
likely to be correctly classified. On the other hand, entropy figures closer to 1
correspond to leaves containing points with mixed labels and high uncertainty
regarding the classifications outcome.

Figure 5.4: Resulted decision tree classifier.
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5.4.2 Test Results

All four models were tested on the unseen data of 2018. The linear SVM
reached slightly lower accuracy than the cross-validation testing, whereas it
outperformed the other methods in all four metrics. Precisely, the accuracy
of the model resulted in being 70.46% while the recall reached 82.83%. The
SVMrbf and the tree relatively underperformed the linear model with accuracy
for both close to 70%. Nevertheless, SVMrbf seem to detect the churn class
analogously well to the first model with recall at the same level. The DT
model almost reached 82% at the same metric. Concerning SVMpoly, all the
aforementioned models outperformed this algorithm. It barely missed 70%
of accuracy and scored a low of 76.77% of recall. A summary of the precise
figures per classifier is presented in Table 5.7.

Table 5.7. Test results.

Model Recall Precision F1 score Accuracy

SVMlinear 82.83 55.41 66.40 70.46
SVMrbf 82.83 55.03 66.13 70.11

SVMpoly 76.77 55.07 64.14 69.75

DT 81.82 55.10 65.85 70.11

The actual classification achieved from the SVMlinear is shown in a confusion
matrix (Figure 5.5). 82 out of 99 churners were correctly classified whereas, 116

loyal customers (64%) was placed in the right class as well. The corresponding
RBF model almost achieved identical results, with only one additional loyal
customer being misclassified as a churner. Similarly, benchmarking the deci-
sion tree against the linear SVM, the classified instances overlapped with only
one churner less being detected in the tree case. The corresponding confusion
matrix is shown in Figure 5.6. Finally, when it comes to the SVM polynomial
model, results varied significantly. Again, with respect to the linear model,
17 instances were reversely classified. In detail, SVM poly missed 6 churners
and 4 loyal customers in addition. However, the classifier managed to detect 7

specific loyal clients that the rest of the models failed. Given the overall perfor-
mance and the increased significance of the recall, the poly algorithm achieved
the weakest classification.
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(a) Number of customers (b) Normalised values

Figure 5.5: Confusion matrix of linear SVM on unseen data.

(a) Number of customers (b) Normalised values

Figure 5.6: Confusion matrix of decision trees on unseen data.

5.5 Conclusions and limitations in the experimental de-
sign

Overall, the selected classifiers showed robustness with the results being sim-
ilar across the SVM and the tree algorithms. Given that the dataset was rela-
tively balanced with respect to churn, and despite the limitations of the data,
all models managed to cope reasonably well with the given problem. The most
scored above 70% accuracy and about 82% recall. These results highlight the
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effectiveness of the methods applied and validate our initial assumption that
the firm can potentially detect customers prone to churn in advance. For the
experiment, any specific data collection routine prior to the implementation
was absent, and only data that the company held at hand was utilised for fea-
ture extraction. To a large extent, this reflects the actual situation in MSEs, so
the results confirm that even such an approach can potentially generate value
for businesses in the domain.

To further comment on the data, limitations were faced regarding both qual-
ity and quantity, thus, we highlight the following points. The fact that the
company only partially records personal information about its customers, ex-
cluding relevant features, such as gender and age, eliminates churn determi-
nant insights that might potentially arise from the corresponding underling
patterns. The company should take actions to improve this part since such
information is easy to obtain during the creation of customer profile and could
also directly benefit the firm in its corporate communication. In the same di-
rection concerning behavioural data, in Section 4.1.3 we discussed the potential
towards churn identification hidden in customers’ online behaviour. However,
in our set of data such information is not at all present. Nowadays, numerous
low-cost or even free platforms and applications enable the approach of on-
line behaviour tracking. The company should grasp that opportunity that will
not only improve the discussed classification task but, will lead to a deeper
customer understanding overall and support decision making as well.

What is more, the small size of data available significantly limited our alter-
natives in the experimental design. Based on our approach, we considered
customer annual entries as independent from the previous years. As a result,
past knowledge that could have been accumulated and utilised in the predic-
tion task is eliminated due to the definition of the studied instances. However,
the results showed that churn determinant information was present in the
data. With respect to the literature, we have also confirmed the importance of
the data and the formed features, which finally, end up being two of the most
critical elements of a predictive framework.

The simplicity of the implementation of the application is another remarkable
point. Once the objective and the desired approach was determined, the im-
plementation of the predictive framework itself was a simple, straightforward
and free of cost procedure. An analyst with relatively little study on the prob-
lem and the firm specifics can successfully complete such a task. To strengthen
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this point, the source code developed in Python for the radial SVM model can
be found in Appendix B. The simplicity of the approach is also highlighted by
the relatively small size of the script and the small number of steps followed
to the final results.
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Chapter 6

Conclusions

To conclude our long discussion on the machine learning applications in Small-
Medium Enterprises, we can primarily remark on the large potential laying on
the business domain. Precisely, we have seen that SME ML solutions have been
only researched and applied to a small extent. This encloses the prospective of
a competitive advantage against competition in key operation areas.

Looking at the literature, SMEs remain widely an unexplored area, however
we can highlight the following points that show that the trend cannot but
grow in the future. To begin, referring back to the case studies but also to
the experiment, we saw that machine learning models have the power to learn
how to perform complex -for the humans- tasks resulting in reliable outcomes
valuable in businesses’ decision-making. Furthermore, the rapid growth of
technological equipment as well as open-source applications have made ML
extensively accessible with low cost. Given that, small and medium businesses
can approach the new for them technology with the minimum risk inherent
in the investment. Finally, ML has been proven to be intuitive. The relatively
easy interpretation of the algorithms and their outcome makes them suitable
for the business management that often lacks deep scientific background.

Concerning the requirements, in a very high level, we can say that the proper
problem identification, the set of a clear objective, and the availability of data
are crucial elements for a successful implementation of ML techniques in
SMEs. Once again, we would like to mention the importance of studying the
problem’s nature and highlight that different type of problems required differ-
ent solution methods. Nowadays, a large range of ML algorithms is available
to encounter an extensive number of problems. Now, it is worth mentioning
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that we should not trust results blindly, and analysts need to be aware of the
problem, the objectives set, and the models’ specifics in order to form a valu-
able for the firm framework. Of course, the maturity of a company regarding
data collection is another critical factor that can determine the outcome of such
an approach. However, we have seen that it is probable the right information
to be present in the small and little data that SMEs hold. It is then analysts’
job to dig in the datasets and leverage any useful information that the set can
provide.

As a concluding reflection, we would like to encourage small and medium
companies to approach machine learning technologies and discover them-
selves possibilities to improve operations and strategic decision-making. As
an outcome of this thesis, we can confirm the positive perspective that busi-
nesses in the domain have with no other than their own willingness to discover
the potential of this emerging technology being the most crucial factor.
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Appendix A

Proofs of the theorems,
propositions, and lemmas

Proposition 2.1

Proof. The distance between the point x and the hyperplane is given by

min{||x− v|| : 〈w, v〉+ b = 0} .

By setting v = x− (〈w, x〉+ b)w we observe that

〈w, v〉+ b = 〈w, x− (〈w, x〉+ b)w〉+ b = 〈w, x〉− 〈w, x〉||w||2− b||w||2 + b = 0 .

Therefore x− (〈w, x〉+ b)w is laying on the hyperplane and its distance from
x is

||x− v|| = ||x− x− (〈w, x〉+ b)w|| = |〈w, x〉+ b|||w|| = |〈w, x〉+ b| .

Now, we just need to show that this is the minimal distance. To this end, we
assume any other point u on the hyperplane, hence 〈w, u〉+ b = 0. It derives
that

||x− u||2 = ||x− v + v− u||2

= ||x− v||2 + ||v− u||2 + 2〈x− v, v− u〉

≥ ||x− v||2 + 2〈x− v, v− u〉

= ||x− v||2 + 2(〈w, x〉+ b)〈w, v− u〉

= ||x− v||2 + 2(〈w, x〉+ b)(〈w, v〉 − 〈w, u〉)

= ||x− v||2 + 2(〈w, x〉+ b)(−b + b)

= ||x− v||2
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Appendix B

Source code

#import packages
import numpy as np
import pandas as pd

#preprocessing
from sklearn.compose import make_column_transformer
from sklearn.preprocessing import OneHotEncoder, StandardScaler

#models selection
from sklearn.model_selection import ParameterGrid, KFold

#import classifiers
from sklearn import svm

#import metrics
from sklearn.metrics import accuracy_score, f1_score, recall_score,

precision_score, confusion_matrix

#import train and test sets
train_set = pd.read_csv('train_set.csv')
test_set = pd.read_csv('test_set.csv')

#define predictive and target variables in the train and test sets
X = train_set.drop(['customer_id', 'country', 'churn'], axis=1)
y = train_set['churn']
X_test = test_set.drop(['customer_id', 'country', 'churn'], axis=1)
y_test = test_set['churn']
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#define columns transformation function for standardisation and
one-hot-encoding

svm_columns_trans = make_column_transformer(
(OneHotEncoder(), ['region']),
(StandardScaler(), X.columns[1:]),
remainder='passthrough')

#define k-fold cross-validation
nfolds = 5
kf = KFold(n_splits=nfolds, shuffle=True, random_state=1992)

#insert metrics for model evaluation
metrics = [recall_score, precision_score, f1_score, accuracy_score]

#apply columns transformation
X = svm_columns_trans.fit_transform(X)
X_test = svm_columns_trans.fit_transform(X_test)
y=y.to_numpy()
y_test=y_test.to_numpy()

#define hyperparameters grid
svm_param_grid = {

'C': [ 2**(-5), 2**(-3), 2**(-1), 2**(1), 2**(3), 2**(5),
2**(7), 2**(9), 2**(13)],

'gamma': [2**(3), 2**(1), 2**(-1), 2**(-3), 2**(-5), 2**(-7),
2**(-9), 2**(-11), 2**(-13), 2**(-15)],

'class_weight' : [None, 'balanced', {0:1, 1:2}]}
hyperpar = ParameterGrid(svm_param_grid)

#k-fold cross-validation
res = np.zeros((nfolds, len(metrics), len(hyperpar)))

for fold, (train_index, val_index) in enumerate(kf.split(X), 1):
for index in range(len(hyperpar)):

print('Splitting the validation set....')
X_train = X[train_index]
y_train = y[train_index]
X_val = X[val_index]
y_val = y[val_index]

print('Model training....')
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model = svm.SVC(C=hyperpar[index]['C'], kernel='rbf',
gamma=hyperpar[index]['gamma'],
class_weight=hyperpar[index]['class_weight'],
random_state=1992, max_iter=1000)

model.fit(X_train, y_train)

print('Inference phase....\n')
y_pred = model.predict(X_val)
res[fold-1,:,index] = [metric(y_val, y_pred) for metric in

metrics]

#average over k-folds to obtain cross-validation results
res = np.mean(res, axis=0)

#optimal results based on cross-validated accuracy
res[:,np.argmax(res[3,:])]

#optimal hyperparameters for SVM
opt_index = np.argmax(res[3,:])
C_opt = hyperpar[opt_index]['C'];
gamma_opt = hyperpar[opt_index]['gamma']
weight_opt = hyperpar[opt_index]['class_weight']
print(' C = ', C_opt, '\n',

'gamma = ', gamma_opt, '\n',
'class weight = ', weight_opt)

#train and test model with optimal hyperpameters
svm_rbf = svm.SVC(C=C_opt, kernel='rbf', gamma=gamma_opt,

class_weight=weight_opt, random_state=1992, max_iter=1000)
svm_rbf.fit(X,y)
y_pred_test = svm_rbf.predict(X_test)

#test results
print(' Recall: ', recall_score(y_test, y_pred_test),'\n',

'Precision: ', precision_score(y_test, y_pred_test),'\n',
'F1 measure: ', f1_score(y_test, y_pred_test),'\n',
'Accuracy: ', accuracy_score(y_test, y_pred_test),'\n',
'Confusion matrix:\n', confusion_matrix(y_pred_test, y_test))
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