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Abstract

In this thesis we discuss the theory behind the regularizing Tikhonov func-
tional proposed by Jin and Zou [7]. We reimplement their Alternating Iterative
Algorithm. The role of the hyper-priors in the Alternating Iterative Algorithm
is reexamined, and we find cases in which convergence to a minimum is not
guaranteed. Furthermore, their method depends on the existence of the closed
form solutions. We, therefore, extend their algorithms by proposing two addi-
tional iterative methods that do not depend on the closed form solutions. The
convergence of the two methods is proven. We analyze the properties of the two
novel methods through a simple simulation study.
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1 Inverse Problems

In this chapter we give a brief introduction and motivation to functional analytic
inverse problems. We then give an overview of the research done and summarize
the goals of the thesis. At the end of this chapter an outline is provided.

1.1 Introduction

What are inverse problems? To understand what is inverse about inverse prob-
lem, we must first define the direct problem. The direct problem models the
effects from known causal factors. However, in inverse problems we observe only
the effects and want to infer the causes. It is easiest to understand by example.

Example 1.1 (Image Processing). Suppose we observe an 2-D digital image by
convolving the ground truth with some filter and added noise. We can mathe-
matically model this by the discrete model

yi =

∑
j∈Z2

ai,jxj

+ εi

where yi is the measured image, xj are the pixel values the ground truth i =
(i1, i2) and j = (j1, j2) and a : Z2 ×Z2 → R the filter. The continuous model is

y(t) =

(∫
Ω

a(t− y)x(y)dy

)
+ ε(t)

where x(y) is the image represented as a function, Ω ⊂ R2 is the image domain,
and a : Ω × Ω → R is the convolution kernel. The inverse problem is then
deconvolution.

Another common example of inverse problems is seismic inversion, where
again we wish to infer the observable underlying causes from observed measure-
ments on some subsurface. Other applications of inverse problems are in image
reconstruction, magnetic resonance imagining, tomography, and heat diffusion.
Inverse problems also arise in non-physical situations such as in root finding,
matrix inversion, and differentiation.

1.2 Basic Formulation

In inverse problems, the goal is to recover the unknown parameter x from ob-
servations y. Suppose that the problem can be modeled as

y = Ax (1)

where y ∈ Y is the observed/measured data, x ∈ X is the unknown parameter,
and A : X → Y is the forward linear operator that describes how x relates to y.
We assume there exists some ground truth x̄ ∈ X such that (1) holds, and that
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the forward problem linking x to y is well-defined. We typically observe only
noisy measurements of the x̄, so really our model should be

y = A(x, e) (2)

Solving for x in this model is not possible. For example if A is not invertible.
This is an example of ill-posedness. A formal definition of well-posedness is give
in section 2.1. It is assumed throughout this paper that e is some additive noise.
Therefore, we can write

y = Ax+ e (3)

Below we return to the example of convolution as an inverse problem that arises
in imagining and signal processing. This demonstrates that finding a solution
to (3) is not trivial.

Example 1.2. (DeConvolution [1])

Let X = Y = L2(R) be the space of square integrable functions. Let A : L2(R)→
L2(R) such that

(Af)(x) = g ◦ f =

∫
R
g(x− y)f(y)dy

Let g(x) = 1√
2π
e−x

2/2. The Fourier transform of (Af) is

F(Af)(ξ) =

∫
R
e−iξxAf(x)dx = ĝf̂(ξ)

If Af = 0 =⇒ f̂ = 0 =⇒ f = 0 so A is injective. So the solution is unique
and exists. The solution to Af = h is given by

f(x) = F−1(ĝ−1ĥ)(x)

The solution is not well defined for an arbitrary h ∈ L2(R). Suppose we observe
small errors in h. As ĝ−1 grows exponentially, h may no longer be in the range
of A. So the integral does not converge, and no solution exists.

Inverse problem can be categorized by the forward operator. They are either
linear or non-linear. Most inverse problems arising from physical systems are
non-linear, but in this thesis we will study the simpler case of discrete finite
linear inverse problems.

1.3 Previous Research

The topic of Inverse problems is well studied. A variety of classical examples
of inverse problem can be in found in [8] and [6]. These two sources also give a
thorough introduction into the topic.
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Ill-posedness is a major area of research, as inverse problems are often in-
herently ill-posed. A common method to over come the ill-posedness is regular-
ization. This is a large area of research that tries to reconstruct good estimates
of the causal parameters given the data. Regularization methods have been
studied in [6], [3], and, more recently, in [9].

One particular type of regularization is Tikhonov regularization. The regu-
larized solution is a good estimate conditional on the regularization parameter,
that balances interpolating the data points versus other desired properties such
as smoothness. The choice of regularization parameter is often ad-hoc or as-
sumes we have access to unknown information such as the noise level.

Another related, and rather new area of research in inverse problems is one
that uses Bayesian statistics. This research aims to pose the functional analytic
model that we have seen previously into a Bayesian framework. The major
benefit of this is that we can mathematically incorporate the uncertainty of the
model parameters by considering them as random variables defined by (condi-
tional) distributions. An overview of statistical inverse problems can be found
in [2], which introduces the finite/discrete setting, and [11] which is focused on
the infinite/continuous setting.

The Bayesian formulation of the inverse problem to the functional analytic
one is connected via Tikhonov regularization. In the additive independent nor-
mal noise model, the posterior distribution is normal. Gaussian distributions
are completely characterized by their mean and variance. Computing the mean
of the posterior distribution is show to be equivalent to computing the minimum
of Tikhonov regulation with `2 penalty in [11] and [2].

Another complimentary area of research is developing numerical methods,
to solve Tikhonov type regularization functionals. In [7], Jin and Zou, study the
additive normal noise case in detail, proving convergence and consistency of this
estimator as well as proposing and implementing an alternating algorithm to
numerically solve the minimization problem. This alternating algorithm relies
on the closed form solution to compute the gradient in all directions of the
unknown parameters. They prove the convergence of this method to a minimum,
without dependence on the parameters of the hyper-prior. We found, however,
that for certain parameters of the hyper-prior the functional no longer decreased
monotonically. Therefore convergence to a minimum is not guaranteed.

1.4 Research Aims

We have two main goals. They are as follows

• Present a data driven way to choose the regularization parameter in Tikhonov
regularization. We will show that this is a well-posed problem. We will
also show that the resulting estimate converges to the least squares esti-
mate as the noise level goes to zero.

• Derive numerical methods to solve the minimization problem resulting
from regularization of the inverse problem. The first method implemented
was proposed by [7]. We extend their work by proposing and implementing
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additional algorithms that are suitable for a more general case - a setting
where the noise is not normal. We will show that these methods converge
to a minimum. We then implement our methods and test them on a simple
example. Through this example we will also explore the effect of changing
the parameters of the hyper-priors on the convergence of the methods.
The implementation can be found on github.1

1.5 Outline

The outline to the thesis is as follows. In Chapter 2 we explain one of the key
questions in inverse problems. Is the formulated problem of solving for x well-
posed? We define what ill-posedness is in a specific setting, and then discus
numerous situation in which we encounter ill-posedness. This then naturally
leads us to the resolution of ill-posed problems where we explain how we can
stabilize the solution through regularization. So far everything until then has
been in the non statistical finite dimensional vector space setting, and we tran-
sition to the statistical setting in Chapters 3 and 4. Chapter 3 is a brief over
view the statistical and probability notation and definitions used to define sta-
tistical inverse problems. Then Chapter 4 briefly introduces statistical inverse
problems, and gives an overview with some examples, and how they are related
to the functional analytical setting. In Chapter 5 we explain how from the
Bayesian setting of inverse problems we can have a data driven method to infer
the regularization parameters from the observations. We prove that the purely
empirical Bayesian method is ill-posed in certain cases, and that a hierarchical
model resolves this. Chapters 6 and 7 contain the second major half of this
thesis. In this chapter, we design three different numerical algorithms to solve
the resulting minimization problem derived in Chapter 5. We show that these
converge to a critical point of the regularization functional. Then in Chapter
7 we implement the methods in python, and explain the results. We also look
at the models’ sensitively to the choice of hyper priors and the convergence
and consistency. In Chapter 8, we conclude with a discussion topics for further
research and how we can improve on the results seen in Chapter 7.

1https://github.com/Tienstra/BayesianRegularization
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2 Regularization

In Example 1.2 we have seen that solving for x is more than just inverting the
forward operator. The above example was an ill-posed problem. Ill-posedness
is a common characteristic of inverse problems. To resolve the problem of ill-
posedness, we will introduce regularization into the direct inverse problem. The
resulting problem will be well-posed and the resulting solution will be regular-
ized.

2.1 Ill-posedness

Hadamard defined a well-posed problem as one that meets all of the following
conditions [6]:

Definition 2.1. A problem is well posed if the following three conditions hold

1. Existence: There exists a solution

2. Uniqueness: The solution is unique.

3. Stability: The solution depends continuously on the observed data.

Let us return the linear setting. Let X = Rm,Y = Rn, and suppose that we
wish to solve the following for x

y = Ax

Now y ∈ Rn, x ∈ Rm, A ∈ Rn×m.

Remark 2.1. We then consider the following cases:

1. If A is a square matrix, and A has full rank, then A is invertible. We then
have that x = A−1y is the solution to the above.

2. If A is a square matrix and is not full rank then then by the rank-nullity
theorem, the dimension of the null space is greater than 0. In this case the
solution may not exist and/or may not be unique.

3. if n > m, and rank(A) ≤ m, then the system of equations is overdeter-
mined. So no solution can exist, if y 6∈ Range(A).

4. if n < m, and rank(A) ≤ n, then the system of equations is underdeter-
mined, and a solution exist but is not unique.

So a unique solution exists if and only if ker(A) = 0. Then we have that

x = A−1y

To check if this solution is stable we recall the following two definitions. Since
we are in the finite dimensional case, A can be represented by a singular system.
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Definition 2.2. Let A ∈ Rn×m, then the singular value decomposition of A is
a factorization of A,

A = UΣV ∗

where U ∈ Rn×n is an orthogonal matrix, Σ ∈ Rn×m is a rectangular diago-
nal matrix with non-negative entries, and V ∈ Rm×m is an orthogonal matrix.
The diagonal entries of Σ, denoted by σi are the singular values of A, and are
listed in descending order. That is σ1 ≥ σ2 ≥ .... ≥ σm ≥ 0. We sometimes
write U = [u1, ....un] and V = [v1, ..., vm] where {ui}ni=1 and {vi}mi=1 are or-
thogonal basis for Rn and Rm respectively. The singular system of A is then
{ui, vi, σi}1≤i≤min(n,m).

and

Definition 2.3. Let A be an invertible matrix. Let σmin and σmax be the min-
imum and maximum eigenvalues of A respectively. Then the condition number
of A is

κ(A) = ||A−1|| ||A||

=
σmax
σmin

Example 2.1. Suppose we would like to solve the following equation for x,

y = Ax

Let δy be the error in y. Assume that A is invertible. Then the A(x + δx) =
y + δy, so (x+ δx) = A−1(y + δy) = A−1y +A−1δy. The error in the solution
is then A−1δy. We can compute the ratio of the relative error in the solution
compared to the the relative error in y as

||A−1δy||
||δy||

||y||
||A−1y||

Then we see from the above definition that

κ(A) = ||A−1|| ||A||

=
σmax
σmin

= max
δy,y 6=0

{
||A−1δy||
||δy||

||y||
||A−1y||

}
= max

δy 6=0

{
||A−1δy||
||δy||

}
max
y 6=0

{
||Ay||
||y||

}
where ||y|| is the euclidean norm, ||A|| is the induced matrix norm, and σmax,
σmin are the maximum and minimum singular values of A respectively. So then

||x− xδ||
||x||

≤ κ(A)
||y − yδ||
||y||

.

8



Example 2.2 (Matrix Inversion [3]). Let y ∈ Cn, x ∈ Cn, A ∈ Cn×n. Assume
that A is symmetric positive definite. From the above, we can write

A =

n∑
i=1

σiaia
T
i

where σi are the eigenvalues of A ordered such that σ1 ≥ σ2 ≥ . . . > 0, and
eigenvectors ai ∈ Rn where ai ⊥ aj for i 6= j. Assume we observe yδ where
yδ = Axδ. Then we have that

x− xδ =

n∑
i=1

σ−1
i aia

T
i (y − yδ).

The error between x and the estimate xδ is

||x− xδ||22 =

n∑
i=1

σ−2
i ||ai||

2|aTi (y − yδ)|2

≤ σ−2
n ||y − yδ||22

≤ σ−1
n ||y − yδ||22

≤ κ(A)δ

Let y = Ax and yδ = Ax + e, such that ||y − yδ||22 ≤ δκ. Suppose that
κ(A)�∞, then the solution depends continuously on the data, as the relative
error in x is bounded by the relative error in y times a small constant. On the
other hand if κ(A) is very large, in which case A is ill-conditioned, then the
solution does not depend continuously on the data as a small change in y can
result in a large change in x. Since κ(A) = σmax

σmin
we see that a large κ(A) occurs

if σmin is very small. If σmin → 0 then κ(A) → ∞. So stability is determined
by the decay of the singular values of A. To guarantee a stable solution, we
need to bound the singular values of A away from zero.

Definition 2.4. Let A ∈ Rn×m with rank(A) = r ≤ min{n,m}. Then using
SVD of A the Moore-Penrose pseudo is defined as

A† = VrΣ
−1
r U∗r (4)

where Σ−1
r the reciprocal of the first r non-zero eigenvalues. That is Σ−1

r =
diag(1/σ1, 1/σ2..., 1/σr, ...0...)

Suppose now n ≥ m and y 6∈ Range(A). Suppose also that A has full rank.
The SVD of A is

A = UmΣmV
∗
m (5)

Then

Ax = UmU
∗
my
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since Um is an orthogonal matrix UmU
∗
m projects y onto the range of A. The

solution is then given by

x̂ = VmΣ−1
m U∗my = A†y

Claim 2.1. The least squares solution to y = Ax is given by

xLS := min
x
||Ax− y||22 ≡ VmΣmU

∗
my ≡ A†y (6)

where A = UmΣmV
∗
m is the singular value decomposition of the matrix operator

A, Um = (u1, ..., um), Vm = (v1, ..., vm), are the m left and right singular vectors
and Σm is the diagonal matrix with the first m singular values. A† is the Moore-
Penrose pseudo inverse of A.

Suppose now that n < m, and A has full rank. The solution exists but is
not unique. The solution we would like then is the minimum norm solution. In
this case the solution is given by

x = x′ +

n∑
i=1

〈ui, y〉
σi

vi

where x′ ∈ ker(A). Since n < m, the ker(A) = span(vn + 1, ..., v + m). So
x′ = V c with V = [vn + 1, ..., v +m]. The solution has minimum norm in case
of x′ = 0, and the solution does not contribute to the ker(A). So the minimum
norm solution is

x̂ = VnΣ−1
n U∗ny = A†y

Is the least squares or minimum norm solution stable? Using the SVD of the
pseudo inverse of A we get that

x̂ =

r∑
i=1

〈ui, y〉
σi

vi (7)

where r = min(m,n). We see that the continuity of x̂ is depending on the
singular values σi. If σi is small, then 〈ui, y〉 can be large, amplifying the vtih
component of y. So it is possible that vtih with small singular values exaggerate
the noise of y. The solution is not continuous. When is the solution stable?

Definition 2.5. For y = Ax, y satisfies the Picard condition if the Fourier
coefficients 〈ui, y〉 as derived above decay faster than σi, the singular values
defined above. That is

r∑
i=1

∣∣∣∣ 〈ui, y〉σi

∣∣∣∣2 <∞
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2.2 Stabilization

Recall that we can decompose the mean square error of an estimator into the
bias and variance parts. For xLS , the bias is zero but the variance can be
so high that the solution is ill-posed as we have seen. To lower the variance
we can introduce a biased estimator. Ideally, we would end up with a lower
MSE over all. The high variance came from division by very small singular
values. One way to avoid dividing by small singular values is to regularize the
σ′is with some regularization functional Rα, where regularisation parameter α.
The regularized solution is then

Definition 2.6.

xα = VkRα(σk)U∗ky (8)

where Rα is the regularizing functional depending on regularization parameter
α.

Possible regularization functionals are threshold functions, such as Trun-
cated Singular value composition, which cuts off small singular values based on
the regularization parameter; or shifting functions such as Tikhonov regulariza-
tion. In this thesis we are interested in Tikhonov type regularization.

Definition 2.7. The Tikhonov regularization solution is

xα =

r∑
i=1

σi〈xi, y〉
σ2
i + α

vi (9)

such that Rα(σ) = σ/(σ2 + α), and α is the regularization parameter.

In the above we modify the pseudo inverse by adding some weight to the
singular values. The denominator is then bounded by α even if σ → 0. When

σi � α the ratio σi〈xi,y〉
σ2
i+α

≈ σi〈xi,y〉
σ2
i

. In the case where σi � α, the ratio is

decreased, thus overall decreasing the variance x̂. The consequence of this is
that resulting estimator xα will be a biased. We can compare the difference
between the non-regularized solution x̂ and the regularized solutions xα. This
difference displays the bias-variance trade.

Definition 2.8. Let x̂ = A†y, the non-regularized solution, with the A† the
pseudo inverse. Let x̂α = A†αy

δ, the regularized solution with A†α, the regularized
pseudo inverse.

||x̂− xα|| ≤ ||(A† −A†α)y||+ ||A†(y − yδ)||

The bias is measured as ||(A†−A†α)y|| and variance is measured as ||A†(y−yδ)||.
When α → 0, A† = A†α =⇒ ||(A† − A†α)|| = 0. Now that we have an

estimator we would like know how good this estimator is. To do this we can
compute the mean squared error as

Definition 2.9. Let x = Ay be the true parameter. Let xα = A†αy
δ be the

regularized solution. The mean squared error of this estimator is given by

||x− xα|| ≤ ||x−A†αy||+ ||A†α(y − yδ)||

11



2.3 Tikhonov Regularization Revisited

Above we defined everything in terms of SVD. But there is a variational formu-
lation of Tikhonov regularization that turns solving for x into an optimization
problem.

Definition 2.10. Let λ > 0 be a a fixed constant. The Tikhonov regularized
solution xλ to (3) xλ ∈ X is the minimum of the the functional

Rλ(x) = ||Ax− y||2 + λ||x||2 (10)

assuming that such a minimizer exists. Rλ(x) : X → Y and λ is called the
regularization parameter.

Estimating x̄ is now an optimization problem, where we want to minimize
Rλ(x) for some fixed λ. We get the following scheme

1. Minimize: (||Ax− y||22 + λ||Lx||).

2. The solution is xλ = (A∗A+ λL∗L)−1A∗y. Note that if there is no noise
in the model, we need no regularization. So then, we should recover the
least-squares solution.

We will denote the functional ||Ax−y||22 +λ||Lx|| by J (x), which consist of two
portions, the data fidelity term ||Ax − y||22, and the regularization term ||x||22.
We can check that the problem of minimizing Rλ(x) for a given λ is well-posed
problem, by checking that

1. For fixed λ, Rλ(x) is well defined

2. For fixed λ, Rλ(x) is continuous in Y.

3. We can select λ such that if y → A(x̄), then Rλ(x)→ x̄.

In this setting, we can check well-posedness by looking at the SVD of the reg-
ularized solution. We can find the solution to the minimization problem by
writing down the normal equation. We get that

xα = (A∗A+ αL)−1A∗y = V (Σ2
r + αL)−1Σ∗Uy (11)

If the regularization guarantees stability, and ker A ∩ ker L = {0}, then (13)
is a well-posed problem. The estimate xλe , depends on fixed λ, so we need
some method to choose λ such that the solution to the optimization problem is
continuous (condition 3 in the above). Common methods to choose λ are the
following which we define below,

1. a-prior rules knowing the noise level

2. Discrepancy principle

3. L-curve

12



4. Cross validation 2

Definition 2.11. Assume we know the noise level, and denote the noise level by
e. We can then a-prior choose α(e), the regularization parameter now depending
on e. This is called an a-prior rule. This is called convergent if and only if

lim
e→0

α(e) = 0

lim
e→0

e||A†α(e)|| = 0

Claim 2.2. If the α(e) as defined above is convergent then the total error
||A†yeA†y||22 → 0 as e→ 0. So we have consistency.

Definition 2.12. The discrepancy principle chooses α a-posterior depending
on both ye and e, such that

||AA†ye − ye||22 ≤ ηe

for η > 1 fixed. If ye ∈ ker(A†) then no such α can exist.

Definition 2.13. The L-curve method chooses α heuristically via a minimiza-
tion problem

min
α>0
||A†α||22||AA†αye − ye||22

the optimal α should lie at the corner of the curve ||A†α||22||AA†αye − ye||22. We
do not have consistency with this choice of α.

So far we have seen a a-priori rule, a-posterior rule, and a heuristic rule, but
we now introduce data driven method using the bayesian framework for inverse
problems. We want that as σ → 0 λ→ 0, so x̂ converges to xLS should it exist.

Finally we remark that

Rλ(x) = ||Ax− y||2 + λ||x||2 (12)

for λ ∈ (0,∞) can be written as

Rλ(x) = (1− λ)||Ax− y||2 + λ||x||2 (13)

for λ ∈ (0, 1) [14]. Here we see that that regularization parameter can be seen as
balancing the data fit versus smoothing in the case that we penalize the second
derivative of x. When λ = 0 we get interpolation of the data points, and when
λ = 1 we get over-smoothing. In the rest of this thesis we explicitly define how
to choose λ from the data using a Bayesian framework for inverse problems.

2An example of choosing the regularization parameter in ridge regression can be found in
[14]
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3 Statistics and Probability

Below we review some measure theoretic probability facts and definitions that
are necessary for defining Bayes formula for inverse problems. In the second
chapter, we recap the definitions of certain distributions as characterized by their
probability density functions. We also review some algebra rules for multivariate
normally distributed vectors.

3.1 Probability Theory

Recall that a probability space consists of a sample space Ω, a σ−algebra F ,
and a probability measure P. In this thesis we consider only σ−finite mea-
sures. So, measures that are countable unions of finite measure measurable
sets. Particularly we use the σ− finite Lebesgue measure on Rn. We denote
a measurable space as (X,B(X)) where X is some (metric) space and B(X) is
the borel σ−algebra. In the case that X = R we know that B(X) is generated
by the open intervals (a, b] for a, b ∈ R. We can extend this to Rn. Also recall
that the random variable,f , is a measurable map f : Σ → X and induces a
probability measure X.

Definition 3.1. Let (Ω,F ,P) be a probability space and (X,B(X)) a measurable
space. Then the measure µ induced by the random variable f : Ω→ X is defined
as

µ(A) = P(f−1(A)) = {ω ∈ Ω | f(ω) ∈ A}, A ∈ B(X)

where µ is the distribution f . We denote this as f ∼ µ.

Definition 3.2. Let µ and ν be measures on a measure space (x,Σ). Then we
have the following

1. If ν(A) = 0 =⇒ µ(A) = 0 for all A ∈ Σ, then µ is dominated by ν and
we say that µ is absolutely continuous with respect to ν. We denote this
as µ� ν

2. If µ� ν and ν � µ then µ and ν are equivalent.

3. Let A and B ∈ B(X) be disjoint sets such that A∪B = B(X) and µ(A) = 0
while ν(B) = 0, then µ and ν are mutually singular. We denote this as
µ ⊥ ν.

We will now state the Radon–Nikodym theorem which we can use to re-
late random variables to their probability density functions, as well as proving
that the conditional posterior distribution is a solution to the Bayesian inverse
problem when Bayes rule holds.

Theorem 3.1. Let (X,Σ) be a measurable space. Then let µ and ν be σ−finite
measures defined on this space. Suppose also that ν � µ. Then there exists a
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unique up to a µ−null set Σ measurable function f : X → [0,∞) such that for
all A ⊂ X,

ν(A) =

∫
A

fdµ

We call f the Radon–Nikodym derivative and denote it as dν
dµ .

In the case that the measure space is (Rn,B(Rn)) for some finite n, and
X ∼ ν and µ = leb(·), then by the Radon–Nikodym theorem, f ∈ L1(Rn) is the
unique probability density function for X ∼ ν.

What follows is a few definitions to define conditional distributions. With
these we can precisely write down the posterior distribution as a conditional
distribution.

Definition 3.3. Let G ⊂ F be a sub−σ−algebra. Let y be a G measurable
function. We call y : Ω → X a conditional expectation of a random variable
f : Ω→ X with respect to G if ∫

G
fdP =

∫
G
ydP

Definition 3.4. Let G ⊂ F be a sub−σ−algebra. The condition probability of
B ∈ B(X), given G is

P(B | G) = E(1B | G)

Definition 3.5. Let (µ(·, ω))ω∈Ω be a family of probability distributions on
(X,B(X)). Then (µ(·, ω))ω∈Ω is a regular conditional distribution of f given
G ⊂ F if

µ(B, ·) = E(1B(f) | G) a.s.

for all B ∈ B(X). If f is defined as above then such a regular conditional
distribution exists.

Remark 3.1. Let G = σ(y) be the sub-σ−algebra generated by the observa-
tions y = AX + e in the Bayesian setting. If we let πpost denote the posterior
distribution and πprior denote the prior distribution on x, then we have that

πpost(B, y(ω) = E(1B(x) | σ(y))(ω)

for B ∈ B(X). So then

πpost(B, y) = πprior(B | y).
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3.2 A Few Statistical Definitions

We denote random variables by capital letters. For example X,Y,E. Denote
realization of these random variables by the corresponding lower case letter for
example Y = y, y is one realization of Y .

Definition 3.6. A random variable X ∼ N (µ, σ2) is normally distributed if its
probability density function is give by

fX(x) =
1

σ
√

2π
e−

1
2 (x−µ)2/σ2

(14)

for µ ∈ R and σ > 0.

Now let µ ∈ Rn and Σ ∈ Rn×n a non-negative symmetric matrix. Then we
can define X ∼ N (µ,Σ) for X a n− dimensional random vector.

Definition 3.7. A random vector X ∼ N (µ,Σ) if and only if its probability
density function is given by

fX(x) =
1

(2π)n/2
√
|Σ|

e−
1
2 (x− µ)TΣT (x− µ) (15)

for parameters µ ∈ Rn and Σ ∈ Rn×n symmetric positive definite matrix, and
|Σ| is the determinate of Σ. See [12].

Theorem 3.2. If c ∈ Rn and X is an n−dimensional random vector such that
X ∼ N (µ,Σ). Then c+X ∼ N (c+ µ, σ).

Theorem 3.3. If X is an n−dimensional random vector such that X ∼ N (µ,Σ),
and A ∈ Rm×n a fixed matrix with rank m ≤ n, then AX ∼ N (Aµ,AΣAT ) is
an m dimensional normally distributed random vector with mean Aµ and co-
variance AΣAT .

Remark 3.2. If X ∼ N (µ,Σ) is an n−dimensional random vector such that
each Xi is independent from Xj for i 6= j, then Σ is a diagonal matrix with the
variance of each Xi on the diagonal.

Definition 3.8. Let α > 0, the the Gamma function Γ(α) =
∫∞

0
yα−1e−ydy.

A random variable X is Gamma distributed with parameters α, β > 0 if the pdf
is characterized by

fX(x) =
1

βαΓ(α)
xα−1e−x/β , x > 0.

We denote this as X ∼ Gamma(α, β). [13]

We can extend this definition to a random symmetric matrix X of dimension
p× p. In which case we have the Wishart distribution.
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Definition 3.9. Let M be a p×p positive definite matrix. Then the multivariate
Gamma function Γp for a given α is define as

Γp(M) = πp(p−1)/4

p∏
j=1

Γ

(
n

2
− j − 1

2

)

here |M | is the determinant of M and tr(M) is the trace. For X a random
vector then, X is Gamma distributed if the pdf is characterized by

fX(x) =
|x|(n−p−1)/2e−tr(M

−1x)/2

2
np
2 |M |n/2Γp(

n
2 )

where n > p− 1 is the degrees of freedom.
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4 Statistical Inverse Problems

In this chapter we introduce statistical inverse problems, derive Bayes formula
in this setting, give a few classical examples, and show the connection to the
functional analytic inverse problems. We will now consider y, x, e to be random
variables and A some fixed operator. The model (2) can then rewritten as

Y = A(X,E) (16)

where X,Y,E are random vectors defined on the probability space Ω = Ω1×Ω2

such that X : Ω1 → Rm, and Y : Ω2 → Rn. We want to learn the relationship
between X,Y,E, that is, determine their conditional probability distributions.
We can relate X to Y after making observations of Y using Bayes formula. First
note again some notation. As in the non-random case, Y is the observed data,
with Y = y the realization of Y . The unknown parameter is X, where X = x is
the realization of X, and E models the noise. We will now consider this noise
to be additive and Y,X,E to be random vectors in Rn,Rm and Rn respectively.
We then rewrite (16) as

Y = AX + E (17)

The solution to the above problem is a conditional posterior distribution for
X given Y = y. Two things are gained from posing the inverse problem in the
Bayesian setting. We can obtain point estimates by computing the most likely
value for X which we will see later connects the statistical inverse problem to
the Tikhonov regularized one in Chapter 2. Furthermore, we can compute the
uncertainty of this estimate by calculating the spread of the posterior distribu-
tion.

4.1 Bayes Formula

A key aspect of Bayesian statistics is that we formally include prior knowledge
or assumptions of the parameters into the model. In this setting, what we can
observe are realizations of Y , and what we assume is that we have prior assump-
tions for X. Mainly, which values of X are occurring and at what frequency. To
formally model this prior assumption, we place a prior distribution on X. We
denote this by FX with density πX . We also assume that E ∼ FE with density
πE and that E is independent of X. We will see later that independence is
important. With these assumption we can find the likelihood Y | X for X = x.

Claim 4.1. The likelihood L(Y = y | X = x) = πE(y −Ax).

Proof. [8] Since we assume that X ⊥ E, the distribution of E conditioned on
X = x is unaffected. That is

µE(B | x) = P(E ∈ B) =

∫
B

πE(e)de

where B ∈ B(Rn). If we condition Y on X = x, then Y = A(X) + E is
distributed like E, with shift A(x).
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Lemma 4.1. (X,Y ) ∈ Rm × Rn is a random variable with Lebesgue density
π(x, y) = πE(y −Ax)πX(x)

We now formulate Bayes theorem which tells us how X is depending on Y .

Theorem 4.1 (Bayes Formula). Assume that the m(y) =
∫ n
R πE(y−Ax)πX(x)dx >

0. This is called the normalizing constant. Then Y = y | X = x is a random
variable with Lebesgue density

π(x, y)
(rem3.1)

= πX(x | y) =
1

m(y)
πE(y −Ax)πX(x)

Definition 4.1. Recall that πE(y−Ax) is the likelihood of Y = y given X = x.
Let φ(y;x) = −log(πE(y − Ax)). Then φ(y;x) is called the potential function.
note that this is the negative log-likelihood.

Remark 4.1. Let Π and ΠX be measures on Rm with densities π and πX
respectively. Then from the above theorem we have

dΠX

dΠ
(x) =

1

m(y)
exp (−φ(x; y))

m(y) =

∫ m

R
exp (−φ(x; y)) dΠ(x)

so we can reformulate Bayes theorem as

1

πX
(x)πE(y −Ax)(x | y) =

1

m(y)
πX(y | x)

The result is that the posterior distribution is absolutely continuous with respect
to the prior, and the Radon-Nikodym derivative is proportional to the likelihood.

We now have a formula to find the conditional probability for X = x given
our measurements Y = y. We saw that the conditional posterior distribution is
a product of the likelihood and the prior on X.

Remark 4.2. So far we have formulated the Radon-Nikodym theorem with re-
spect the finite dimensional case. But using the formulation in remark (4.1), we
can generalize Bayes theorem to the infinite dimensional case using a Gaussian
measure. We will not cover this in this thesis as we are interested in the finite
discrete setting. To see the exact details we refer the reader to [11][2].

Before we move further, we go through two classical examples 3.

Example 4.1. Let x ∈ R, y ∈ Rn for n ≥ 1, and let A ∈ Rn − {0}. Define the
observations as

y = Ax+ e

3These examples are found in many sources but we refer to [11].
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where e ∼ N (0, δ2I). By Bayes theorem the conditional posterior distributing is
then

π(x | y) ∝ exp
(
− 1

δ2
||Ax− y||22 −

1

2
|x|2
)

The posterior is Normal and is completely characterized by its mean and co-
variance. The inner equation of exponential is quadratic. We can complete the
square and compute the mean and variance, µ and Σ2 as

µ =
〈A, y〉

δ2 + ||A||22
and Σ2 =

δ2

δ2 + ||A||2

We propose that as δ → 0, µ will converge to 〈A,y〉||A||22
(consistency) and that

the covariance will converge to 0 (convergence). Indeed by the definition of µ
and Σ we can easily see that as δ → 0, we have convergence and consistency.

Example 4.2. Let x ∈ Rn with n ≥ 2, and let y ∈ R. Let A ∈ Rn−{0}. Again
the observations are

y = Ax+ e

where e ∼ N (0, δ2I). Assume that x ∼ N (0,∆2I) By Bayes theorem the condi-
tional posterior distributing is then

π(x | y) ∝ exp
(
− 1

δ2
|〈A, y〉 − y|2 − 1

2
〈x,∆−1x〉

)
Again by completing the square we have that

µ =
x∆A

δ2 + 〈A,∆A〉
and Σ2 = ∆− (∆A)(∆A)∗

δ2 + 〈A,∆A〉

Then again we check what happens when the noise level goes to zero.

lim
δ→0

µ =
x∆A

〈A,∆A〉
and lim

δ→0
Σ2 = ∆− (∆A)(∆A)∗

〈A,∆A〉

Then the 〈µ,A〉 = x̄, the ground truth, and Σ2A = 0. So as δ → 0,
uncertainty about x̂ goes to zero in the direction of A. There is uncertainty
in the directions not aligned with A. So in the underdetermined case the prior
plays a role even as noise the goes to zero. In the overdetermined case, the prior
plays no role as the noise goes to zero.

It is now natural to ask what is the definition of well-posedness in the statis-
tical setting. The solution is no longer a point estimator, but rather an entire
distribution. Roughly, well-posedness is the same definition we saw in the func-
tional analytic case. We can still check if the solution exists, if it is unique, and
if it is stable. While this is interesting area of research, it is beyond the scope
of this thesis, but has been studied in papers [11][1].
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The solution to the statistical inverse problem is a conditional distribution.
We would now like to analyze this distribution. Already if n > 2 we cannot
graph the posterior distribution. Common methods to explore the (higher di-
mensional) posterior distribution are either computing point estimators such as
those defined below, or by MCMC sampling methods such as Gibs Sampling. In
the finite dimensional functional analytic setting the solution was a vector, and
we can produce such an estimate by computing point estimators of the resulting
posterior distribution.

Definition 4.2. The maximum a posterior estimator of x is found by maximiz-
ing the posterior distribution if the maximum exists. That is

xMAP = max
Rm

π(x | y) (18)

The computation of this point estimator is an optimization problem. An-
other point estimator is the conditional mean estimator defined as

Definition 4.3. The conditional mean estimator of x given y is

xCM = E(x | y) =

∫
Rm

x πX(x | y)dx

The computation of this point estimator is an integration problem, which can
be very difficult in high dimensional settings. When the posterior distribution is
symmetric and unimodal, the MAP estimate and the conditional mean estimate
are equivalent.

We can also compute spread estimators by computing Bayesian Credible
sets. These are defined as follows:

Definition 4.4. Let α ∈ (0, 1), then a 1− α level credible set Cα is given by

Π(Cα | y) =

∫
Cα

πX(x | y)dx = 1− α

The computation of this is a root finding problem.

4.2 Connection to Tikhonov Regularization

Now that we have seen some examples, we will explain under which conditions
we can return to the Tikhonov regularization. We will consider the independent
Gaussian noise model with a normal prior. Suppose that we model the noise
E as additive Gaussian noise with each ei i.i.d and independent of X. Suppose
also that we assume X is Gaussian, and that X is smooth. We formally write
this as

E ∼ N (0, αI) (19)

X ∼ N (0, βΣ) (20)

21



for fixed α, β,Σ. Note that here α, β are precision parameters. Using Bayes
formula we find that posterior distribution of X = x | Y = y to be proportional
to

π(x, α, β) ∝ α/2||Ax− y||2 − β/2||Lx||2 +m/2log(α) + n/2log(β) (21)

where ker(A) ∩ ker(L) = {0}, rank(L) = m, and the potential, which is the
negative log-likelihood, is

J (x, α, β)) = α/2||Ax− y||2 + β/2||Lx||2 −m/2log(α)− n/2log(β) (22)

The resulting posterior distribution x is Gaussian with mean µ and variance Σ.
A Gaussian distribution is completely characterized by its mean and variance.
For these parameters we compute the MAP estimate of π(x | α, β). We have
that

µ = (αA∗A+ βL∗L)−1αA∗y (23)

Σ = (αA∗A+ βL∗L)−1 (24)

We can further write

µ = (A∗A+ β/αL∗L)−1αA∗y (25)

(26)

We see that µ = x̂λ in (11) where, from the above formulation of µ, we see
that the regularization parameter λ is equal to β/α. The computation of λ thus
requires estimating the precision parameters. To find the MAP estimates we
compute the minimum of the potential function. We can now easily see that
computing the MAP estimate is equivalent to computing the Tikhonov solution
given by

min
x
||Ax− y||2 + β/α||Lx||2 −m/2log(α)− n/2log(β) (27)
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5 Bayesian Regularization

In the previous chapter, we have seen that in the independent additive Gaus-
sian noise model computing the MAP estimate is equivalent to computing the
Tikhonov regularized solution. We can find the MAP estimate by minimizing
the objective function J(x, α, β) over all parameters. The result is that we find
estimates for the underlying ground truth x̄, while simultaneously estimating
the precision parameters α, β of the noise and of x̄ respectively.

5.1 Empirical Bayesian Method

Our first proposed method is an empirical Bayesian method that would allow
us to determine α and β. The parameters of the priors are not set a-priori, but
are thus estimated from data. To do this we minimize the objective function
over all three parameters. Let A,L ∈ Rn×m, such that ker(A) ∩ ker(L) = {0}.
Suppose also that Rank(L) = m, then

(xMAP , αMAP , βMAP ) = min
x,α,β
J (x, α, β) (28)

= min
x,α,β

α/2||Ax− y||2 + β/2||Lx||2 −m/2log(α)− n/2log(β)

(29)

We model the noise as Gaussian with mean zero. We call the noise level the
variance of the noise, which we will sometimes denote by σ2. As the mean is
zero if σ2 → 0, then there is no noise in the model. We say that the noise level
goes to zero. We propose that

(1) E||Ax̂(α̂, β̂)− y||22 = nσ2 (2) lim
σ2→0

β/α→ 0 (30)

If (1) holds, then we can consistently estimate the noise level as the noise level
converges to zero. If (2) holds then as the noise level converges to zero, the
regularization converges to zero, and the estimate for x converges to the least
squares estimate.

5.2 Well-posedness, Consistency, and Convergence

We will now show that the empirical Bayesian method is not well-posed.

Claim 5.1. The empirical Bayesian method is ill-posed. Moreover (1) and (2)
do not hold in general.

Proof. We want to find

(x̂, α̂, β̂) = min
x,α,β

α/2||Ax− y||2 + β/2||Lx||2 −m/2log(α)− n/2log(β)

Suppose that A is invertible and ill-conditioned. Recall that y = Ax+ e. Then
||Ax̂ − y|| = 0, and minimizing J happens when α → ∞ and β → 0. Recall
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Figure 1: Here we plot the convergence and consistency of Empirical Bayesian
method for each σ ∈ [1e−10, 1e−3]. On the left hand side, we plot regularization
parameter found given σ. We want to see that as the noise level decrease, the
regularization decreases with it. We see however that this is not the case. On
the right hand side we plot the residuals versus the noise level. The dashed line
represents ||Ax − y||22 = nσ2. However, we see this is not the case, as the red
lines are very far off.We repeat the two simulation above, ten times, and plot
the results. The results are represented by the red lines.

that λ = β/α. If α → ∞, and β → 0, no regularization occurs as λ → 0. The
bias goes to zero, but the variance is high. If β → 0 then x̂ goes to the zero
vector. So the method is not well-posed exactly when A−1x = y.

Example 5.1. Let A = In the identity matrix. This is invertible. Let

y = Asin(x) + e

for x ∈ [−4π, 4π], e ∼ N (0, σ2). We want that

lim
σ→0

β/α = 0

E||Ax− y||22 = nσ2

We expect however that β/α = λ→ 0 regardless of the σ.

We see that this is indeed the case in Figure (1). The problem is then that
the minimum occurs at the extreme values for α, β, which we have seen results
in ill-posedness.

5.3 Hierarchical Bayesian Method

We have seen that the empirical Bayesian method of regularization is not a well-
posed problem. Failure occurred exactly when A is invertible, leading to the
solution A−1y = x̂, so that α→∞ and β → 0. It did not hold in general, that
if the noise level went to zero, the regularization went to zero at the same rate.
The estimate for residuals was not always consistent. In [7] they prose that to
turn the empirical Bayesian method into a well-posed problem, we need to place
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hyper-priors on the precision parameters α and β. Since we assume a Gaussian
prior on X and E the natural (conjugate) hyper-priors are Gamma distributions.
The resulting functional is called the augmented Tikhonov functional. In [7],
Jin and Zou prove that at least one minimum exists, and that the augmented
Tikhonov functional converges monotonically to a minimum.

We now reconstruct the augmented Tikhonov functional. Suppose we place
the following hyper priors on the precision parameters

α ∼ Gamma(a0, b0) (31)

β ∼ Gamma(a1, b1) (32)

Then the posterior becomes

p(x, α, β | y) ∝ ρ(Ax− y | α)× π(α)π(x | β)× π(β) (33)

∝ αn/2e−α/2||Ax−y||
2

αa0−1e−b0αβn/2e−β/2||Lx||
2

βa1−1e−b1β (34)

The resulting potential function i.e. the augmented Tikhonov functional is

J (x, α, β) = α/2||Ax− y||2 − (n/2 + a0 − 1)log(α) + b0α+

β/2||Lx||2 − (n/2 + a1 − 1)log(β) + b1β

The resulting minimization problem is

min
x,α,β

J (x, α, β) = α/2||Ax− y||2 − (n/2 + a0 − 1)log(α) + b0α+

β/2||Lx||2 − (n/2 + a1 − 1)log(β) + b1β

Notice that if we let a0, a1 = 1 and b0, b1 → 0 then we recover the objective
function given no hyper-priors.

5.4 Well-posedness, Consistency, and Convergence

In the paper by Jin and Zou [7], they prove that the hierarchical Bayesian
method, is well-posed. They also prove that the method can estimate the noise
level and that as the noise level goes to zero, the method converges to the
minimum norm solution.

We now state two main lemmas (Lemma 2.2 and 2.6 in [7]) and one main
theorem (Theorem 2.3 in [7]). Together Lemma 5.1 and Theorem 5.1 prove
conditions (1) and (2) in (30). We refer the reader to the paper for the proofs.

We first set some notation from the paper. Let λ = β/α. Recall that
E ∼ N (0, αI), where α was the precision parameter. Let σ2

0 be the true variance
of E. We have that

αλ =
(n/2 + a0 − 1)

1/2||Ax(λ)− y||2 + b0
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and that 1
αλ

is the estimate for σ2
0 . Denote the estimate of σ2

0 as σ2(λ) := 1
αλ

so then

σ2(λ) =
||Ax(λ)− y||2 + 2b0

n+ 2a0 − 2

Now let A ∈ Rn×m, L ∈ Rp×m, where m � n � p. Then the generalized
singular value decomposition of the matrix pair (A,L) can be written as

A = U

(
Σ 0
0 In−p

)
X−1, L = V (M0p×(n−p))X

−1 (35)

where U ∈ Rm×n, V ∈ Rp×p, X ∈ Rn×n, are orthogonal matrices. Σ ∈ Rn×n,M ∈
Rp×p are rectangular diagonal matrices with non-negative entries. The diagonal
entries of Σ, denoted by σi are the singular values of A, and are listed in ascend-
ing order. The diagonal entries of M , denoted by µi are listed in descending
order. We also define γi = σi/µi, where σi, and µi are as above. We call γi the
generalized singular values of (A,L). Furthermore, we normalize σi and µi such
that σ2

i + µ2
i = 1.

Lemma 5.1. Denote the Fourier coefficients of x̄, the ground truth parameter,
by f̄i = 〈ui, x̄〉 for i ∈ {1, ..., n}. Then we have that

E||Ax̂λ − x||2 =

p∑
i=1

λ2f̄i
(λ+ γ2

i )2
+ ||P⊥U x̄||2 +

[
(m− n)

p∑
i=1

λ2

λ+ γ2
i

]
σ2

0

where P⊥U = Im −UU∗, is the orthogonal projection onto the complement of U .

It is also shown in the paper by Jin and Zou, that estimate σ2(λ) is ”relatively
independent of the regularisation parameter [...] and of order σ2

0” ([7] p. 9). We
denote this by cEσ

2
0 .

Lemma 5.2. Assume that η is a random vector such that |ηi| ≤ cEσ
2
0 for i ∈

{1, ..., n}. Then there exist two constants cr,0 and cr,1 depending on n/2+a1−1
such that

cr,0σ
2
0 ≤ λ∗ ≤ cr,1σ2

0

where λ∗ = β∗/α∗, and (x∗, α∗, β∗) is a minimum of J .

Theorem 5.1. Let σ2
0 denote the variance. Assume that the random variable

ηi is such that |ηi| ≤ cEσ
2
0 for i = 1, ..., n. Fix b1 and let n

2 + a1 − 1 ∼ σd0 for
0 < d < 2. Then

lim
σ2
0→0
||x̂λ − xLS ||22 = 0

that is, as the variance goes to zero, the regularization should also go to zero.

The key tool of the proofs of the Lemma 5.1 and the Theorem 5.1 is writing
out x̂λ and xLS as a summation using the generalized singular value decompo-
sition. In the case where L = I, we can replace the equations in (35) by the
singular value decomposition from (9) and (7) respectively.
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6 Numerical Methods

In this chapter we propose three different iterative methods to numerically find
min
x,α,β
J (x, α, β). We begin by computing the partial derivatives which are given

below

∂/∂x(J(x, α, β)) = (A∗A+ β/αL∗L)x−A∗y (36)

∂/∂αJ(x, α, β) = 1/2||Ax− y||2 − (n/2 + a0 − 1)/α+ b0 (37)

∂/∂βJ(x, α, β) = 1/2||Lx||2 − (n/2 + a1 − 1)/β + b1 (38)

By setting the partial derivatives to zero, we define a set of normal equations.
The optimal solutions are the roots of the of the normal equations, which we
compute below

x = (A∗A+ β/αL∗L)−1A∗y (39)

α =
(n/2 + a0 − 1)

1/2||Ax− y||2 + b0
(40)

β =
(n/2 + a1 − 1)

1/2||Lx||2 + b1
(41)

As our function is only bi-convex, we cannot simply implement coordinate
descent over all three parameters, x, α, β. We can still implement a similar
algorithm to coordinate descent by splitting J into the two strictly convex
parts, and do an alternating minimization. This method was proposed by ([7]).
Below we rederive it.

6.1 Method 1: Alternating Algorithm in the Case of Closed
Form Solutions

In this method the estimates are found by simultaneously minimizing over all
three parameters. We want to find

min
x,α,β
J (x, α, β) (42)

This is done by an alternating method, where at each iteration we define either
a normal equation for x or a normal equation for α, β. The next best guess for
x, respectively α, β is then the root of the normal equation. Recall that these
roots are the optimal solutions (41) to the partial derivatives. So the estimates
are given by

x(β/α) = (A∗A+ β/αL∗L)−1A∗y

α(x) =
(n/2 + a0 − 1)

1/2||Ax− y||2 + b0

β(x) =
(n/2 + a1 − 1)

1/2||Lx||2 + b1
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For fixed a0, b0, a1, b1, these define closed form solutions for x, α, β. Suppose,
then, that we start with some initial values α0, β0. Then using the optimal
solution for x, we can define an estimate

x0 = x(β0/α0)

= (A∗A+ β0/α0L
∗L)−1A∗y

Notice that this is the normal Tikhonov regularized solution with regularization
parameter β0/α0. To find the next estimates for α, β we compute

α1 = α(x0)

=
(n/2 + a0 − 1)

1/2||Ax0 − y||2 + b0

β1 = β(x0)

=
(n/2 + a1 − 1)

1/2||Lx0||2 + b1

We can repeatedly alternate between minimizing over x versus minimizing over
α, β until some stopping criterion is met. The resulting algorithm is given in
Algorithm (1), where I is the maximum number of iterations, and ε is the
tolerance level. These definitions will be the same for the additional algorithms.

Algorithm 1 Alternating Algorithm

Require: I, x0, α0, β0, ε ≥ 0

Require: a0, b0, a1, b1 > 0

i← 1

g ← ||∇J (x0, α0, β0)||22
while i ≤ I & g < ε do

xi ← (A∗A+ βi−1/αi−1L
∗L)−1A∗y

αi ← (n/2+a0−1)
1/2||Axi−y||2+b0

βi ← (n/2+a1−1)
1/2||Lxi||2+b1

g ← ||∇J (xi, αi, βi)||22
i← i+ 1

end while

In [7] the following two theorems are proven for Algorithm 1.

Theorem 6.1. (Theorem 3.1 in [7]) Let {xi, αi, βi}i∈I be the sequence of es-
timators generated by Algorithm 1. Then the sequence {J (xi, αi, βi)}i∈I con-
verges monotonically.

Theorem 6.2. (Theorem 3.2 in [7]) Let {xi, αi, βi}i∈I be the sequence of esti-
mators generated by Algorithm 1, then this sequence converges to a critical point
of J (x, α, β).
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This method works when we can compute the partial derivatives of x, α, β,
and have closed form solutions. This is the case when the model is an additive
normal noise model with independent normal prior on X, and Gamma priors on
α, β. The result is the Tikhonov regularization with `2 penalty on x. We now
propose two additional methods, for which we do not need to assume existence of
the closed form solutions. This way we can still numerically solve min

x,α,β
J (x, α, β)

in case where different prior assumptions result in different penalties.

6.2 Method 2: Gradient Descent in α, β

Suppose now that we do not have closed form solutions for α, β. Define

J1(α, β) = J (α, β;x) = α/2||Ax̂(α, β)− y||2 − (n/2 + a0 − 1)log(α) + b0α+

β/2||Lx̂(α, β)||2 − (n/2 + a1 − 1)log(β) + b1β

for fixed x̂(α, β). First, supposing that α, β, are fixed we can then minimize J
with

x
set
= (A∗A+ β/αL∗L)−1A∗y.

So the inner minimization fixes x at the Tikhonov estimate for some given initial
values of α, β. We now want to find

min
α,β

[
min
x
J (x, α, β)

]
The inner minimization can be done using the closed form solution of x, but to
minimize over α, β we must use gradient descent. That is

αi+1 = αi − µ∂αJ1(αi, βi)

βi+t = βi − µ∂βJ1(αi, βi)

Thus to solve this joint minimization problem we start with an initial α, β,
compute x(β/α), then solve for α̂, β̂ by taking one step along the gradient in
the direction α, β. The resulting algorithm is given in Algorithm (2). Note that
we chose different steps sizes for α and β to account for the different scales.

We now prove convergence of Algorithm 2 to a minimum of J (x, α, β). First
recall the following theorems:

Definition 6.1. Let (X , || · ||X ) and (Y, || · ||Y) be metric space with distance
metrics || · ||X and || · ||Y respectively. Let f : X → Y. Then f is Lipschitz
continuous if there exists a K ∈ R with K ≥ 0 such that for all x1, x2 ∈ X

||f(x1)− f(x2)||Y ≤ L||x1 − x2||X

L is then called the Lipschitz constant of f .
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Algorithm 2 Gradient Descent in α, β

Require: x0, α0, β0, ε > 0

Require: a0, b0, a1, b1 > 0

Require: I > O(1/ε)

i← 1

g ← ||∇J (x0, α0, β0)||22
while i ≤ I & g < ε do

xi ← (A∗A+ βi−1/αi−1L
∗L)−1A∗y

Lα ← 1
2 ||Axi − y||2 − (n/2 + a0 − 1) + b0

Lβ ← 1
2 ||Lxi||2 − (n/2 + a1 − 1) + b1

µα ← ε/L2
α

µβ ← ε/L2
β

αi ← αi−1 − µα∂αJ1(αi−1, βi−1)

βi ← βi−1 − µβ∂αJ1(αi−1, βi−1)

g ← ||∇J (xi, αi, βi)||22
i← i+ 1

end while

Remark 6.1. Then for all x1, x2 ∈ X

||f(x1)− f(x2)||Y
||x1 − x2||X

≤ L

Remark 6.2. Let X ,Y, f be defined as in the previous remark. Suppose that X
is closed and that f is differentiable on X o. Then by the mean value theorem,

f(x1)− f(x2)

x1 − x2
≤ f ′(z)

for all x1 < z < x2 ∈ X o. This implies that we can find L such that ||f ′(z)||Y <
L.

Theorem 6.3. Let {xi, αi, βi}i∈I be the sequence of estimators generated by
Algorithm 2. Then the sequence {J (xi, αi, βi)}i∈I converges monotonically.

Proof. For fixed a0, b0, a1, b1, recall that we defined

J1(α, β) = J (x̂, α, β) = min
x
J (x, α, β)

So then

xi+1 = argmin
x
J (xi, α, β)(

αi+1

βi+1

)
=

(
αi − µ∂αJ1(αi, βi;xi+1)
βi − µ∂βJ1(αi, βi;xi+1)

)
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Fix a0, b0, a1, b1 such that J1(α, β) and J2(x) are convex. Let L be such that
||∇J1(α, β)||2 < L and ε > 0. Set µ = ε/L2. Then

J1(αi+1, βi+1;xi+1) ≤ J1(αi, βi;xi+1)

This implies that

J (xi+1, αi+1, βi+1) ≤ J (xi+1, αi, βi) ≤ J (xi, αi, βi).

Then J is monotonically decreasing and bounded below (Theorem 2.1 in [7]).
Consequentially, we have that J converges.

Theorem 6.4. Let {xi, αi, βi}i∈I be the sequence of estimators generated by
Algorithm 2, then this sequence converges to a critical point {x∗, α∗, β∗} of
J (x, α, β).

Proof. Fix a0, b0, a1, b1 such that J1(α, β) and J2(x) are convex. Let L be such
that ||∇J1(α, β)||2 < L and ε > 0. Set µ = ε/L2.

J2(αi, βi)→ J2(α∗, β∗)

Recall that x̂i(αi−1, βi−1) = (A∗A+ βi−1/αi−1L
∗L)−1A∗y. Then

J2(αi, βi; x̂(αi, βi))→ J2(α∗, β∗; x̂(α∗, β∗)) = J (x∗, α∗, β∗)

6.3 Method 3: Gradient Descent in x

Suppose now that we do not have a closed form solution for x. Then define

J2(x) = J (x; α̂(x), β̂(x)) = α̂(x)||Ax− y||22 + β̂(x)||Lx||22

for fixed α̂(x), β̂(x) and constants a0, b0, a1, b1 such that a0, a1 6= 1 and b0, b1 6=
0. Similar to method 2 we compute estimates for x by taking one step along
the gradient of J in the direction of x. Our minimization problem is then

min
x

[
min
α,β
J (x, α, β)

]
The inner minimization can be solve by using the closed form solution for α, β
given some fixed x. For the outer minimization we need to use a gradient
method. To do this we compute

∇xJ2(x) = (A∗A+ β(x)/α(x)L∗L)y −A∗.

Next, take one step along the gradient thereby finding the next best guess for
x given α, β

xi+1 = xi − µ∇xJ2(xi)
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Algorithm 3 Gradient Descent in x

Require: x0, α0, β0, ε > 0

Require: a0, b0, a1, b1 > 0

Require: I > O(1/ε)

i← 1

g ← ||∇J (x0, α0, β0)||22
while i ≤ I & g < ε do

αi ← (n/2+a0−1)
1/2||Axi−1−y||2+b0

βi ← (n/2+a1−1)
1/2||Lxi−1||2+b1

.

L← ||A∗A+ βi−1/αi−1L
∗L||2

µ← ε/L2

xi ← xi−1 − µ∇J2(xi−1)

g ← ||∇J (xi, αi, βi)||22
i← i+ 1

end while

where i denotes the iteration. To solve this joint minimization problem we start
with an initial x, then minimize over α, β by computing their optimal solutions.
Then iteratively solve for x̂ and update α, β. The resulting algorithm is given
in Algorithm (3). We now prove convergence of Algorithm 3 to a minimum of
J (x, α, β).

Theorem 6.5. Let {xi, αi, βi}i∈I be the sequence of estimators generated by
Algorithm 3. Then the sequence {J (xi, αi, βi)}i∈I converges monotonically.

Proof. For fixed a0, b0, a1, b1, recall that we defined

J2(x) = J (x, α̂, β̂) = min
α,β
J (x, α, β)

So then

(αi+1, βi+1) = argmin
α,β

J (xi, α, β)

xi+1 = xi − µ∇J2(xi;αi+1, βi+1)

Fix a0, b0, a1, b1 such that J1(α, β) and J2(x) are convex. Let L be such that
||∂J2(x)||2 < L and ε > 0. Set µ = ε/L2. Then

J2(xi+1;αi+1, βi+1) ≤ J2(xi;αi+1, βi+1)

This implies that

J (xi+1, αi+1, βi+1) ≤ J (xi, αi+1, βi+1) ≤ J (xi, αi, βi).

Then J is monotonically decreasing and bounded below (Theorem 2.1 in [7]).
Consequentially, we have that J converges.
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Theorem 6.6. Let {xi, αi, βi}i∈I be the sequence of estimators generated by
Algorithm 3, then this sequence converges to a critical point of J (x, α, β).

Proof. Fix a0, b0, a1, b1 such that J1(α, β) and J2(x) are convex. Let L be such
that ||∂J1(α, β)||2 < L and ε > 0. Set µ = ε/L2. Then

J1(xi)→ J1(x∗)

Recall that

α̂i(xi−1) =
(n/2 + a0 − 1)

1/2||Axi−1 − y||2 + b0

β̂i(xi−1) =
(n/2 + a1 − 1)

1/2||Lxi−1||2 + b1

Then

J1(xi; α̂i(xi−1), β̂i(xi−1))→ J1(x∗; α̂i(x∗), β̂i(x∗)) = J (x∗, α∗, β∗)
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7 Implementation

7.1 Example

In this chapter we show the results of a particular example we use to test our
implementation in Python. The inverse problem we are interested in is to recover
sin(x) with x ∈ [−4π, 4π]. We observe

y = A(sin(x)) + ε (43)

where

Af(t) =

∫ 1

0

f(y)

((1 + (t− y)2)3/2)
dy (44)

for our implementation we discretize the the interval [−4π, 4π] into n evenly
spaced points, and discretize A by letting the step size be equal to m. The
resulting forward problem A(sin(x)) is a system of equations with m equations
and n variables which is well defined if the number of columns of A equals the
number of rows of sin(x). We set n = m = 200. We observe y with additive
random Gaussian noise centered at 0, and variance σ2 = 0.1. We set L to be
the discretized second order differential operator that imposes smoothness on
X. We have that ker(A)∩ ker(L) = {0}, so a unique solution exists. In Figure
(2) we plot x̄, the ground truth parameter we wish to recover, and ȳ = Ax̄.

Figure 2: Plot of the ground truth x̄, and the non-noisy observations where
ȳ = Ax̄. In this case the observational operator, A, does not have much effect.
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Figure 3: Plot of noisy observation with noise level σ2
0 = 0.1.

Figure 4: Plot of the decay of Singular Values of A. We see that many of the
singular values are close to zero.

7.2 Ill-posedness

In this section, we look at the ill-posedness of the least squares estimator. The
conditioning number of A is 4887979232 ≈ 109.689 which is much larger than 1.
Therefore, A is ill-conditioned. In Figure (4), we plot the decay of the singular
values of A. We can see that the eigenvalues quickly decay to zero. We now
examine the Picard condition, where we see that the Picard condition is not
met as seen in Figure (5). Thus, the direct inverse problem is ill-posed. If we
were to ignore the ill-posedness and directly invert A, which we can do since A
is full rank and det(A) 6= 0, the resulting solution is the least squares solution
which we plot below in Figure (6). We see that this solution has high variance
and does not accurately recover x̄.
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Figure 5: Plot of the Picard Condition.

Figure 6: Plot of A−1y = x, the least squares solution, which we see does not
closely resemble the ground truth x̄.
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tol (ε) 1e− 5
max iter (I) 100,000
n 200
αinitial 10
βinitial 1

xinitial κ =
||A∗yδ||22
||AA∗yδ||22

, x = κA∗yδ

a0 = a1 1 + 1e− 6
b0 = b1 1e− 6

Table 1: Initial parameters

7.3 Regularization

Since the problem of recovering x̄ by simply inverting A is ill-posed, we can use
Tikhonov regularization with `2 penalty. We justify this choice of penalty as we
can see in Figure (2), that x̄ is smooth. The resulting problem is

min
x,α,β

J (x, α, β) = `(x, α, β | y) = α/2||Ax−y||2−(n/2+a0−1)log(α)+b0α+

β/2||Lx||2 − (n/2 + a1 − 1)log(β) + b1β

and is well-posed as we have seen in the previous sections. We numerically solve
this by the three proposed methods we proposed in section 6.1. The stopping
condition is the first order condition

||∂xJ ||22 + ||∂αJ ||22 + ||∂βJ ||22 ≤ ε

If the stopping condition is met, then we say that the algorithm has con-
verged. The parameters were set to the initial values in Table (4).

Recall that J (x, α, β) is convex in α, β. In Figure (7) we fix x and plot
the contour plots. We see that the contour lines are slightly non-circular. The
gradient is steeper in β than it is in α. The red dot approximates the minimum
of J (x̂(α, β), α, β). Finally, taking advantage of the Bayesian framework, we
can see these contour plots as highest posterior density confidence intervals for
α, β fixed x.

In Figure (8), we plot the results of running all 3 algorithms. We ran a fourth
algorithm that was a modification of method 1, where we replaced the closed
form solution to x in method 1, with that of a gradient method implemented
from python.
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Figure 7: Contour plots of J(x̂(α, β), α, β) = z. We also plot the estimated

optimal parameter, λ̂∗, as found by all four algorithms.

Figure 8: Plot of Objective function over all iterations. On left we plot results
from Algorithm 1 and 4. On the right we plot the results of Algorithm 2 and 3.

38



(a) Algorithm 1 (b) Algorithm 4

(c) Algorithm 2 (d) Algorithm 3

Figure 9: Plots of regularization parameter over the iterations run, where λi is
the regularization parameter at iteration i.

In Figure (8) we plot the path of the objective function over all iterations
that the algorithms ran. We want that they are monotonically decreasing. This
is indeed the case in Algorithms 1 and 4. However, this is not the case in
Algorithms 2 and 3. In Algorithm 1 and 4, the objective function converged
in less than 10 iterations. We can see in the left hand plot in figure (8) that
after 3 iterations the graph of J is very flat. Algorithm 2 and 3 also converged
but at a much slower rate. These two algorithms converged in under 10,000
iterations. We can also see that the slope of J in Algorithm 1 and 4 is very
steep in comparison to that of Algorithm 2 and 3. The slope of J is steeper in
Algorithm 2, than in Algorithm 3. In Figure (9), we plot the optimal parameter
found at each iteration. We see that in Algorithm 1 and 4, we jump very quickly
to the minimum. In Algorithm 2 we have a relatively continuous path to the
minimum. However in Algorithm 3, we see there is a small jump to the left.
Further exploration would be needed to explain this result. In [7], they prove
that for the Alternating Algorithm, for any initial λ0, the sequence of {λi}
generated by the Alternating Algorithm is monotonic. Moreover, they prove
that {α}i, {β}i converges monotonically to critical points α∗, β∗. In Figure

(10), we plot the α̂, β̂, x̂, and λ̂ over all iterations for Algorithms 1 and 4. We
see that besides the initial guess for β the sequence of {αi, βi, λi} is monotonic.

In Figure (11) we again plot the estimates α̂, β̂, x̂, and λ̂ over all iterations for
Algorithms 2 and 3. We see that in Algorithm 2, the sequence of {αi, λi} is
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(a) Algorithm 1

(b) Algorithm 4

Figure 10: Convergence plots of the estimators computed in Algorithm 1 and 4
over all iterations run.
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(a) Algorithm 2

(b) Algorithm 3

Figure 11: Convergence plots of the estimators computed in Algorithm 2 and 3
over all iterations run.
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Figure 12: The top two plots show the estimator x̂ found by each algorithm
versus the ground truth x̄.The bottom two plots compare the noisy observations
versus Ax̂ for each algorithm. On the left column we compare Algorithm 1 and
4, and on the right column we compare Algorithm 2 and 3.

monotonic. However {β}i is not. In the bottom plots of Figure (11), we see the
jump that was also seen in figure (d) of Figure (9).

In the upper plots of Figure 12, we see that all estimates of x̄ are close to the
ground truth, and even hard to distinguish from each other. We also see that
each estimate has much lower variance than that of the least squares estimate
(Fig. 6). In Table (2) we summarize the results. Overall Algorithms 1,2, and 4
found roughly the same regularization parameter. Algorithm 4 found a higher
regularization parameter and resulted in a lower error.

α β λ J (x, α, β) ||x− x̂||22 niter
Algo1 122.06212 2.13766 0.01751 -233.60244 0.18775 4
Algo2 117.01666 2.15817 0.01844 -235.73951 0.18871 6598
Algo3 107.86797 2.14434 0.01988 -235.74297 0.20619 6302
Algo4 88.73767 2.12964 0.02400 -234.66994 0.18082 4

Table 2: Results of All Four Algorithms. Here we compare the computed mini-
mizers (x̂∗, α̂∗, β̂∗) of the functional J .
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7.4 Convergence and Consistency

In this section we examine consistency and convergence of Algorithm 1. Recall,
that we proposed that

E||Ax̂(α̂, β̂)− y||22 = nσ2 lim
σ2→0

β/α→ 0

We see that as the noise level of the model goes to zero, so does the regular-

Figure 13: On the left hand side we plot of the level of regularization as noise
level decreases. On the right hand side we plot of the estimate of residuals as
noise level decreases.

ization. We also see the effects of bounding β/α on the right hand side in the
Figure 13 where at small level of noise Algorithm 1 slightly over estimates the
noise level as it is bounded from below and away from zero.

7.5 Sensitivity

In this section we reexamine the sensitivity of the Alternating Algorithm from
[7]. We found that for certain values of the hyper parameters the objective
function increased rather than decreased to the minimum. See Figures (14,
15) in appendix. Because of this, is not guaranteed that they converged to a
minimum.

We see that varying b0, b1 does seem to affect convergence. We see that too
large b0 = b1 led to relatively large λ. For b0 = b1 < 1e− 4 we see little change.
On the other hand, it does seem to be the case that a0 = a1 can be chosen more
freely, ([7] pages 16-18), i.e. small or large values lead to similar regularization
and convergence. See appendix for plots of the objective function. In certain
extreme cases for b0, b1, a0, a1 the objective function increased. We also see that
for extreme values of b0, b1 the algorithm did not find the estimate with low
error.
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b0 = b1 α β λ J (x, α, β) ||x− x̂||22 niter
1e4 0.010 0 0.010 0 0.999 5 47086.284332 15.344035 3
1e2 0.896 7 0.843 4 0.940 5 156.021743 14.264391 7
1e1 45.548 7 2.173 5 0.047 7 -259.513647 0.246932 4
1e− 2 87.911 3 2.130 3 0.024 2 -235.477913 0.181100 4
1e− 4 88.729 5 2.129 6 0.024 0 -234.678019 0.180828 4
1e− 6 88.737 7 2.129 6 0.024 0 -234.669902 0.180825 4
1e− 8 88.737 8 2.129 6 0.024 0 -234.669821 0.180825 4

Table 3: Results of varying hyper priors b0 = b1, a0 = a1 = 1 + 1e− 6

a0 = a1 α β λ J (x, α, β) ||x− x̂||22 niter
1e4 9 206.617 7 216.801 7 0.023 5 9.200286e+07 0.1785 4
1e2 182.309 3 4.293 1 0.023 5 1.762785e+04 0.1785 4
1e1 92.066 2 2.168 0 0.023 5 -1.472485e+02 0.1785 4
1e− 2 91.163 7 2.146 8 0.023 5 -2.348479e+02 0.1785 4
1e− 4 91.154 7 2.146 6 0.023 5 -2.357148e+02 0.1785 4
1e− 6 91.154 6 2.146 6 0.023 5 -2.357235e+02 0.1785 4
1e− 8 91.154 6 2.146 6 0.023 5 -2.357236e+02 0.1785 4

Table 4: Results of varying hyper priors a0 = a1, b0 = b1 = 1e− 6

8 Conclusions

We showed that under the additive independent Gaussian noise model, with the
assumption that X is smooth, computing the MAP estimates of the posterior
distribution p(x, α, β | y) is equivalent to minimizing the functional J (x, α, β).
By solving the minimization problem, we can simultaneously estimate the un-
derlying parameter x, the regularization parameter λ, and the noise level.

We have developed and implemented numerical methods to compute the es-
timates, x̂ and λ̂, in the case that no closed form solution exists for x, or for α, β.
Furthermore, we showed their convergence to a minimum of J (x, α, β). We have
shown in a simple simulation, that these algorithms work well, suggesting that
using a gradient method in the place of root finding should work. Additionally,
while implementing Method 2, we saw that step size played an important role
in the convergence. We used an ad-hoc fixed step size in Method 2. The step
size in Method 2 is a weighted step size that accounts for the different scales of
α, β.

We reexamined the influence of the hyper-prior on the Alternating Algorithm
from [7], and saw that in fact, they play an important role in the convergence.
For some choices of hyper-priors the functional no longer decreased monoton-
ically. Thus, the convergence to a minimum was no longer guarantee. We
saw that for some choice of hyper-priors the functional actually increased (see
plots in appendix). Perhaps this is because a saddle point exists or for some
hyper-priors J is no longer convex.
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However, we were not able to investigate all details of the proposed methods.
Further research should be done in the following topics:

• Analyzing the role of the hyper-priors and develop a method to choose
them without knowledge of the noise level or the variance of the underlying
parameter.

• Extending Method 2 and 3 to the non-normal setting such as non-smooth
and sparse priors, as well as large scale settings where n� 200.

• Developing and implementing an adaptive step size for faster convergence
of Method 2 and 3.
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9 Appendix

9.1 Sensitivity Plots

Figure 14: Results when b0 = b1 = 1e4

Figure 15: Results when b0 = b1 = 1e− 8
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Figure 16: Results when a0 = a1 = 1e4

Figure 17: Results when a0 = a1 = 1e− 8
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