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1 Introduction

The client of a criminal defence lawyer is accused of money laundering in
casinos, but according to the client himself he just won 10,000 euros each year
for five years in a row by playing simultaneously on red/black and low/high
in roulette at Holland Casino. He followed the so-called d’Alembert strategy,
which, according to him, made it possible to win that amount of money. This
thesis takes a look at this case from a probabilistic perspective.

Much work has already been done by Prof. dr. Richard D. Gill, a Dutch-
British professor emeritus of mathematical statistics at Leiden University.
Richard Gill is known for his work in forensic statistics and for his work
in fighting injustice, among other things. More information on Gill can be
found on his web page: https://pub.math.leidenuniv.nl/~gillrd.

Gill performed R simulations for the games played by the client. He also
constructed a Markov chain model for these games, which enabled him to
derive exactly the distribution of the client’s (final) capital. Zero outcomes
are disregarded so that the red/black-games and low/high-games are inde-
pendent, and it is assumed that the odds are 36:37 in favour of the house.
Gill also performed a forensic probabilistic assessment of the client’s story.
According to Gill it is most likely that the client lost more than he won and
the client’s chance of having a net gain of 10,000 euros each year for five
successive years is negligible. See [1] for more information on Gill’s work
and for some nice background information, histograms and bar charts. Gill’s
work forms an important source of inspiration for this thesis.

Let us now outline the structure of this thesis. This thesis starts with an
introductory chapter (chapter 1). Chapters 2 and 3 form the main body of
this thesis. The thesis ends with a short conclusion (chapter 4). In addition,
a reference list and an appendix are provided at the end of the thesis.

Now we will describe in more depth the purpose of each chapter. In chapter
2 we explain how the roulette game works, what the d’Alembert strategy
is, and how it can be used in roulette. We lay out the Holland Casino
rules for roulette, and we explore probabilistic properties of the d’Alembert
system.

We show in chapter 3 that the two simultaneous games (red/black and
low/high) are not independent, but that they can be approximated fairly
well by an independent coupling of these games. We construct such a cou-
pling and we show that the number of differences between the original games
and the coupling follow a binomial distribution. We also try to quantify the
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differences between these processes in terms of capital, both theoretically
and numerically (based on simulations). In doing this, we assume the use
of the d’Alembert strategy. Moreover, we formulate Markov models for the
capital/stake-levels in these games, and we use these models to get insights in
the distributional and probabilistic properties of capital and stake. We also
run simulations and compare these simulations with the theoretical results.
We end the third chapter with a forensic statistical analysis of our criminal
case. The likelihood ratio plays a central role in this analysis.

We end this thesis with a concluding chapter 4. This conclusion summarizes
the main results of our thesis and it poses some new research questions.

In addition, at the end of the thesis we provide a list of references and an
appendix. The first section of the appendix provides preliminary knowledge
on discrete-time Markov chains and their properties. This section hugely
follows chapter 12 of [2]. The second section deals with the asymptotic
properties of a test statistic used in chapter 3. The third section provides
the MATLAB codes used for this thesis.
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2 Roulette

2.1 Explanation of the roulette game

This subsection is based on [3].

Usually a roulette table has 37 or 38 numbers: 1-36 and one or two zeros (0
and 00). The zeros are green. The numbers 1, 3, 5, 7, 9, 12, 14, 16, 18, 19,
21, 23, 25, 27, 30, 32, 34, 36 are red. The other numbers are black. From
now on we assume that we are playing with 37 numbers. A roulette wheel
and roulette table look like this:

Figure 1: Roulette wheel and roulette table. Source: Wikipedia EN.
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For every positive integer n, let [n] denote the set of all positive integers up
to and including n and let [n]0 := {0} ∪ [n]. Let us represent the numbers of
roulette by the set [36]0 = {0, 1, 2, . . . , 36}.

According to the rules of roulette, the player can bet on certain subsets of
[36]0 by placing a token on the roulette table. The player can place a token
in an area, on the line between two areas, or on the corner between several
areas. One can also place a token on designated fields for playing on odd,
even, red, black, and so on. The playable subsets of [36]0 are, in terms of the
roulette table, the following: a single number, two adjacent numbers, a row,
the group 012, the group 023, a 2 × 2-submatrix of the roulette table, the
group 0123, two adjacent rows, the group 1-12, the group 13-24, the group
25-36, first column, second column, third column, low (1-18), high (19-36),
even (excluding zero), odd, red, black, two adjacent dozens (1-24 or 13-36),
two adjacent columns. In Holland Casino it is only allowed to play on subsets
of at most 18 numbers. (See [4].)

In each round the outcome of the bet is decided by the roulette wheel. We
assume that the wheel is unbiased. The outcome U follows a discrete uniform
distribution: U ∼ UNIF([36]0). When the player bets a stake s on an allowed
subset V ⊆ [36]0, she is paid

∆C =

(
36

|V |
1V (U)− 1

)
s,

where |V | denotes the cardinality of V . All rounds are assumed to be inde-
pendent from one another.

2.2 Roulette in Holland Casino

2.2.1 Holland Casino

Holland Casino is a state-owned gambling company in the Netherlands. See
[5]. This company was founded as De Nationale Stichting tot Exploitatie van
Casinospelen on January 22, 1974. The Dutch government granted Holland
Casino its casino license on December 17, 1975. Since then, Holland Casino
is the only company in the Netherlands with a casino license. The reason
for this is that the Dutch government wants to control the Dutch gambling
market in order to prevent addiction, crime, fraud, and so on. Holland Casino
opened its first casino on October 1, 1976, in Zandvoort. See [6].
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2.2.2 The rules of roulette in Holland Casino

When you play French roulette in Holland Casino and you bet on red/black,
low/high, or odd/even, the zero will not be treated as a regular loss. When
zero comes up, you have to choose between two options:

• You share half of your stake with the house.

• You put your stake ‘en prison’.

When you choose the second option, a next turn of the wheel will decide
whether you lose or win your stake. If zero comes up a second time, your
stake will lose half of its worth and you have again the choice between sharing
your stake or putting it ‘en prison’. You lose your stake when the zero comes
up a third time. See [4].

For simplicity, we start our analysis by assuming that a zero outcome is
treated as a regular loss. After this simplified analysis, we let go of this
assumption and we will treat a zero outcome in the same way Holland Casino
does. However, we will make an assumption on the behaviour of the player:
the player is not too risk-seeking and will always choose the first option
of sharing half of the stake (this option has higher expectation and lower
risk, so the utility of this option is higher for players who are not too risk-
seeking).

2.3 The d’Alembert system

The d’Alembert system is a well-known and established casino betting system
that has already been used in the 18th century [7]. It is characterised by a
set of rules.

The player starts with a unit bet. After every loss, the player increases the
bet by one unit. After every win, the player decreases the bet by one unit,
unless the size of the bet is already one unit.

This strategy is very popular because people believe that eventually the
numbers of wins and losses will equalize, leaving them with a net gain equal
to the number of wins. However, the problem with this strategy is of course
that you risk running out of money before these numbers equalize, and that
there is a positive probability that these numbers will never equalize.

We will formalize these statements in a couple of theorems.

Assume that in roulette the zero is treated as a regular loss. Also assume
that the player is playing only on red/black, low/high, or odd/even. Assume
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that the player uses the d’Alembert system to play roulette

Theorem 2.1. Suppose that at time k ∈ N≥0 the numbers of wins and losses
equalize. Then the net gain at time k equals the number of wins.

Proof. This proof follows pages 289-291 of [3].

We would like to terminate the game after an initial win, or as soon as the
numbers of wins and losses equalize.

Let V1, V2, . . . be random variables s.t. Vi = +1 when the player wins in round
i and Vi = −1 when the player loses. Moreover, defineWk :=

∑k
i=1 Vi, k ∈ N0,

where we use the convention that the empty sum equals zero.

Denote the stake that is going to be played in round n+1 by Sn. By following
the d’Alembert strategy, we would get the following stakes

Ŝn = 1−
n∑

l=1

Vl, n ∈ N0.

We immediately see that the numbers of wins and losses equalize when the
stake (which could be played in the next round) becomes one again.

Since we would like to terminate the game after an initial win, or as soon as
the numbers of wins and losses equalize, we would like a stopping rule given
by the following stopping time:

T := 1(V1 = 1) + min{n ≥ 2 | Ŝn = 1} · 1(V1 = −1).

The stakes that we actually play thus become Sn = Ŝn · 1(n < T ), n ∈ N0.

Given the event {n ≤ T} the capital level Cn in round n becomes

Cn = C0 +
n∑

l=1

Sl−1Vl = C0 +
n∑

l=1

Ŝl−1Vl

= C0 +
∑
l=1

(
1−

l−1∑
k=1

Vk

)
Vl

= C0 +
n∑

l=1

Vl −
∑

1≤k<l≤n

VkVl

= C0 +
n∑

l=1

Vl −
1

2

( n∑
l=1

Vl

)2

−
n∑

l=1

V 2
l


= C0 +Wn −

1

2
W 2

n +
1

2
n.

(1)
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When T = 1, we have WT = V1 = 1, and when 2 ≤ T < ∞, we have that
the numbers of wins and losses are equalized at time T . Therefore, on the
event {T <∞}, we have

CT = C0 + (1 ∨ (T/2)).

This shows us that we are left with a net gain equal to the number of wins
when the numbers of wins and losses equalize.

Theorem 2.2. There is a positive probability that the numbers of wins and
losses will never equalize.

Proof. Adopt the notations from the proof of the previous theorem. By
assumption the outcomes of the roulette wheel are i.i.d., so V1, V2, . . . are
i.i.d. as well. Moreover,

V1 =

{
+1, with probability 18

37
,

−1, with probability 19
37
.

Notice that the numbers of wins and losses equalize when for some k ∈ N1 it
holds that Wk = 0. Also notice that W = (Wk)

∞
k=0 is an asymmetric random

walk starting from zero.

Obviously, this random walkW is an irreducible Markov chain, and we denote
its n-step transition probabilities by p

[n]
ij with i, j ∈ Z and n ∈ N0. Notice

that p
[0]
00 = 1 and notice that for all n ≥ 1:

p
[n]
00 =

{
0, if n is odd,(
18
37

)n
2
(
19
37

)n
2
(
n
n
2

)
, if n is even.

(2)

Recall Stirling’s formula:

n! ∼
(n
e

)n√
2πn as n→∞.

By applying this formula, we find:(
2m

m

)
∼ 4m√

πm
as m→∞ (3)

This is worked out in detail in Example 1.59 from [2].
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By using (2) and (3) we find

∞∑
n=0

p
[n]
00 = p

[0]
00 +

∑
n∈1+2N0

p
[n]
00 +

∑
n∈2N1

p
[n]
00

(2)
= 1 +

∑
n∈1+2N0

(
18

37

)n
2
(
19

37

)n
2
(
n
n
2

)

= 1 +
∞∑

m=1

(
18

37

)m(
19

37

)m(
2m

m

)
(3)
≈

∞∑
m=1

(
18

37

)m(
19

37

)m
4m√
πm

=
∞∑

m=1

(
4 · 18

37
· 19
37

)m
1√
πm

≤
∞∑

m=1

(
4 · 18

37
· 19
37

)m

<∞,

(4)

where the approximation is justified because we are only interested in whether
the series diverges to ∞, and where the geometric series

∑∞
m=1

(
4 · 18

37
· 19
37

)m
converges because 4 · 18

37
· 19
37

< 1.

By applying Theorem A.4 on (4) and by using the fact that W is an ir-
reducible Markov chain, we find that W is transient. Therefore, there is
a positive probability that W never returns to zero. This shows us that
there is a positive probability that the numbers of wins and losses will never
equalize.
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3 Analysis of money laundering case

3.1 Introduction

A criminal defence lawyer says that his client is accused of laundering money.
According to the client himself, he won approximately 10000 euro each year
for five years in a row by playing red/black and low/high at roulette at
Holland Casino. The client said he used the d’Alembert system.

The client plays two simultaneous games: red/black and low/high. For each
game the following parameters are set. The initial capital is 25 units, where
each unit amounts to 50 euro. The maximum number of rounds is set to 21.
Also, the client quits the game if his capital falls below 16 units.

Throughout this chapter we assume that the roulette player is playing on
red/black and low/high, and that she is using the d’Alembert system with
the parameters mentioned above.

3.2 (In)dependence of the simultaneous games

3.2.1 The dependence of the two simultaneous games

The two simultaneous games have the following numbers of possible out-
comes.

red black zero
low 9 9 0 18
high 9 9 0 18
zero 0 0 1 1

18 18 1 37

Table 1: This table describes the number of possibilities for each pair of
outcomes of the two simultaneous games

This suggests that the two games are ‘approximately’ independent.
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Suppose that the roulette wheel has no zero. This gives rise to the following
probabilities:

P(red) = P(black) = P(low) = P(high) =
18

36
,

P(red and low) =
9

36
= P(red) · P(low),

P(red and high) =
9

36
= P(red) · P(high),

P(black and low) =
9

36
= P(black) · P(low),

P(black and high) =
9

36
= P(black) · P(high).

Moreover, all the rounds are independent. This shows us that in the case of
no zero the two games are indeed independent. However, the zero turns the
two games into dependent games, as can be seen by

P(zero and (low or high)) = 0 ̸= 1

37
· 36
37

= P(zero) · P(low or high).

3.2.2 An independent coupling of the two games

The question is how well these two dependent games can be approximated
by independent games.

We will use the following numerical identifications

zero = 0;

red = low = 1;

black = high = 2.

Denote the red/black process by X = (Xt)
n
t=1 and the low/high process by

Y = (Yt)
n
t=1, where n is some convenient time horizon.

As we have seen before, the dependence of the red/black process X and the
low/high process Y is caused by the possibility of a zero outcome, since in
each round, zero comes up in the red/black process if and only if at the same
time zero comes up in the low/high process.

This observation can be used to construct an independent coupling of X, Y .
What we can do to turn these processes into an independent coupling is the
following:

14



• Replace the ‘old zero’ in one of the processes by an independent ‘new
zero’. That is, flip an independent (unfair) coin to decide for one of
the processes in which rounds there is a zero outcome and for which
rounds there is no zero outcome.

• Consider for each round whether this coin tells us if there is a zero or
not. If there is a (new) zero, then this zero will be the new outcome
and this new outcome will replace the old outcome. If there is no (new)
zero, then keep the old outcome when this old outcome is not (an old)
zero. When the old outcome is zero, then get rid of this outcome by
flipping another (fair) coin to decide the new nonzero outcome.

In a word formula:

new outcome

= first coin (0 or 1)×

{
old outcome, when old outcome ̸= 0

second coin (1 or 2) when old outcome = 0

This story inspires us to formally construct two processes X̂, Ŷ that are very
similar to X, Y . To this end, we put

X̂t := Xt,

Ŷt := Nt(Yt1(Yt ̸= 0) + Zt1(Yt = 0)),

X̂ := (X̂t)
n
t=1,

Ŷ := (Ŷt)
n
t=1,

(5)

where Nt
iid∼ Bern(36/37) are independent of X, Y , and where Zt − 1

iid∼
Bern(1/2) are independent of X, Y,N = (Nt)t≥1. We will show that (X̂, Ŷ )
is an independent coupling of (X, Y )

Theorem 3.1. The processes X̂ and Ŷ satisfy the following properties:

(i) X̂ and Ŷ are independent.

(ii) X̂, Ŷ have the same marginal distributions as X, Y .

Proof. Upon careful inspection of (5), we see that Ŷt = 0 if and only ifNt = 0.
Therefore, we have for all m ∈ [2]0:

P(X̂t = m, Ŷt = 0) = P(Xt = m,Nt = 0) = P(Xt = m)P(Nt = 0)

= P(X̂t = m)P(Ŷt = 0),
(6)
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where the second equality holds because Xt and Nt are independent.

By carefully looking at (5) we also see that

∀j ∈ [2] : Ŷt = j ⇐⇒ (Nt = 1 ∧ Yt = j) ∨ (Nt = 1 ∧ Yt = 0 ∧ Zt = j). (7)

From this follows that for all j ∈ [2]:

P(Ŷt = j) = P(Nt = 1, Yt = j) + P(Nt = 1, Yt = 0, Zt = j)

= P(Nt = 1)P(Yt = j) + P(Nt = 1)P(Yt = 0)P(Zt = j)

=
36

37
· 18
37

+
36

37
· 1
37
· 1
2
=

18

37
= P(Yt = j),

(8)

where the second equality holds because Yt, Nt, Zt are independent. From
(8) follows immediately that P(Ŷt = 0) = 1/37 = P(Yt = 0). Obviously, we
also have for all m ∈ [2]0:

P(X̂t = m) = P(Xt = m) =
18

37
(9)

From (7) follows that for all m, j ∈ [2]:

P[X̂t = m, Ŷt = j] =P[Nt = 1 ∧ (Xt, Yt) = (m, j)]

+ P[Nt = 1 ∧ Zt = j ∧ (Xt, Yt) = (m, 0)]

=P[Nt = 1] · P[(Xt, Yt) = (m, j)]

+ P[Nt = 1] · P[Zt = j] · P[(Xt, Yt) = (m, 0)]

=
36

37
· 9
37

+
36

37
· 1
2
· 0 =

18

37
· 18
37

=P[X̂t = m] · P[Ŷt = j],

(10)

where the second equality holds because Nt, Zt, (Xt, Yt) are independent.

It also follows from (7) that for all j ∈ [2]:

P(X̂t = 0, Ŷt = j) = P(Xt = Yt = 0, Ŷt = j)

(7)
= P(Xt = Yt = 0, Nt = 1, Zt = j)

= P(Xt = Yt = 0)P(Nt = 1)P(Zt = j)

=
1

37
· 36
37
· 1
2
=

1

37
· 18
37

= P(X̂t = 0) · P(Ŷt = j),

(11)
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where the third equality holds because Nt, Zt, (Xt, Yt) are independent.

We can conclude from (6), (10), (11) that Ŷt is independent of X̂t.

Put
f(x, y, z) := x(y1(y ̸= 0) + z1(y = 0)).

Notice that (Xt, Yt, Nt, Zt), t ∈ N1, are i.i.d. Therefore, X̂t = Xt, t ∈ N1,
are i.i.d., Ŷt = f(Nt, Yt, Zt), t ∈ N1, are i.i.d., and (X̂t, Ŷt), t ∈ N1, are i.i.d.
Now, we have for all x = (xt)

n
t=1 ∈ ([2]0)

n and all y = (yt)
n
t=1 ∈ ([2]0)

n,

P(X̂ = x, Ŷ = y) =
n∏

t=1

P(X̂t = xt, Ŷt = yt)

=
n∏

t=1

P(X̂t = xt)P(Ŷt = yt)

=
n∏

t=1

P(X̂t = xt) ·
n∏

t=1

P(Ŷt = yt)

= P(X̂ = x) · P(Ŷ = y),

(12)

where the first equality holds because (X̂t, Ŷt), t ∈ N1, are i.i.d., the second
equality holds because X̂t, Ŷt are independent, and the last equality holds
because X̂t, t ∈ N1, are i.i.d. and Ŷt, t ∈ N1, are i.i.d. We can conclude from
(12) that X̂, Ŷ are independent.

We can conclude from (9) and (8) that X̂t, Ŷt have the same marginal distri-
butions as Xt, Yt. Since X, X̂, Y, Ŷ are sequences of i.i.d. random variables,
it follows that X̂, Ŷ have the same marginal distributions as X, Y , because,

PX̂ =
n⊗

t=1

PX̂t
=

n⊗
t=1

PXt = PX ,

PŶ =
n⊗

t=1

PŶt
=

n⊗
t=1

PYt = PY .

(13)

3.2.3 Quantification of differences between original and coupling

Now we will try to quantify the difference between (X, Y ) and its independent
coupling (X̂, Ŷ ).

Notice that

Yt = Ŷt ⇐⇒ (Nt = 1 ∧ Yt ̸= 0) ∨ (Nt = 0 ∧ Yt = 0)
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It follows that

P(Yt = Ŷt) = P((Nt = 1 ∧ Yt ̸= 0) ∨ (Nt = 0 ∧ Yt = 0))

= P(Nt = 1 ∧ Yt ̸= 0) + P(Nt = 0 ∧ Yt = 0)

=

(
36

37

)2

+

(
1

37

)2

≥
(
36

37

)2

> 0.94.

Theorem 3.2. Suppose n <∞. Put

α := 1−

((
36

37

)2

+

(
1

37

)2
)
. (14)

Then: Dn := #{t ∈ [n] : Yt ̸= Ŷt} ∼ Bin(n, α).

Proof. Notice that

Dn = #{t ∈ [n] : Yt ̸= Ŷt} =
n∑

t=1

1(Yt ̸= Ŷt) (15)

We have already seen that (Yt, Ŷt), t ∈ N1, are i.i.d., so

1(Y1 ̸= Ŷ1), 1(Y2 ̸= Ŷ2), . . .
iid∼ Bern(P(Y1 ̸= Ŷ1)) = Bern(α). (16)

Combining (15) and (16) yields

Dn = #{t ∈ [n] : Yt ̸= Ŷt} ∼ Bin(n, α).

Theorem 3.2 tells us that after n rounds the number Dn of differences be-
tween the original simultaneous process (X, Y ) and our independent cou-
pling (X̂, Ŷ ) = (X, Ŷ ) is binomially distributed with parameters n, α, where
α ≈ 0.0526 (see (14) for the precise definition of α). Our legal client plays a
maximum number of 21 rounds, so in our case the number of differences is
distributed as described in the table below:
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p.m.f. c.d.f.
0 0.322 0.322
1 0.374 0.696
2 0.208 0.905
3 0.073 0.978
4 0.018 0.996
5 0.003 0.999
6 0.001 1.000
≥ 7 0.000 1.000

Table 2: This table describes the pmf and cdf of Dn.

3.2.4 Differences in capital between original and coupling

What does Theorem 3.2 tell us about the differences in capital gains between
the original simultaneous processes (X, Y ) and the coupling (X̂, Ŷ ) that we
have just constructed? Notice that by construction X = X̂, so there are no
capital differences between X and X̂, and we will be only looking at capital
differences in Y and Ŷ . We start with the same capital in both Y and Ŷ .
Moreover, let us assume for a moment that we can keep playing forever,
regardless of our capital levels. This assumption is made for simplifying our
analysis.

Denote the capital level for game Y in round n by Cn, and similarly use the
notation Ĉn for the process Ŷ . Denote the number of wins minus the number
of losses for game Y in round n by Wn, and similarly use the notation Ŵn

for Ŷ likewise .

It is immediate that

|Wn − Ŵn| ≤ 2Dn. (17)

By using formula (1), and by using the fact that we start with the same
capital in both Y and Ŷ , we find:

Cn − Ĉn = Wn − Ŵn +
1

2

(
Ŵ 2

n −W 2
n

)
. (18)
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Now, it follows from (17) that

|Cn − Ĉn| ≤ |Wn − Ŵn|+
1

2

∣∣∣Ŵ 2
n −W 2

n

∣∣∣
≤ 2Dn +

1

2

∣∣∣Ŵ 2
n −W 2

n

∣∣∣
= 2Dn +

1

2

∣∣∣Ŵn −Wn

∣∣∣ ∣∣∣Ŵn +Wn

∣∣∣
≤ 2Dn +Dn

∣∣∣Wn + Ŵn

∣∣∣
≤ 2Dn + 2nDn

= 2(1 + n)Dn

(19)

This shows us that the differences in capital gains between the original si-
multaneous processes and the coupling can be upper bounded by a multiple
of a binomially distributed random variable.

Our legal client plays a maximum number of 21 rounds. We derived the
upper bound (19) for the capital difference on the assumption that we can
play forever. This seems to be a problem since sometimes the client stops
before the maximum number of rounds is reached. However, for all t ∈ [n],
we have

|Ct − Ĉt|
(19)

≤ 2(1 + t)Dt ≤ 2(1 + n)Dn,

where the last inequality holds because 0 ≤ D1 ≤ D2 ≤ . . . . Thus, even
when the player stops before the maximum number of rounds is reached, we
can still use our derived upper bound.

By using the upper bound we find the following probabilities:

x P(|C21 − Ĉ21| ≤ x)
0 0.322
44 ≥ 0.696
88 ≥ 0.905
132 ≥ 0.978
176 ≥ 0.996
220 ≥ 0.999
264 and higher 1.000

Table 3: This table describes probabilities based on our theoretical upper
bound for |C21 − Ĉ21|
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However, in §3.3 we will prove a lemma (Lemma 3.3) that tells us that the
capital levels never go beyond 49 units. This, and table 3, suggest that our
theoretical upper bound is not very useful for practical purposes. The fact
that our theoretical upper bound may not work for practical purposes is

likely to be caused by the crude upper bound Dn

∣∣∣Wn + Ŵn

∣∣∣ ≤ 2nDn in our

derivation.

We could try to find a better upper bound for Dn

∣∣∣Wn + Ŵn

∣∣∣ in order to

improve the upper bound found in (19). However, this is technically tricky
because Wn, Ŵn,Dn are dependent. We will demonstrate below why Wn and
Dn are dependent.

Dependence of Wn and Dn can be shown in the following way. Suppose
Wn = −n. This means that we lose n times in a row. Each time there is a
probability of 1/19 that this loss is caused by a zero. When this loss is caused
by a zero, there is a probability of 36/37 that there is a different outcome
in the coupled game Ŷ . When this loss is not caused by a zero, there is a
probability of 1/37 that the outcome in the coupled game is different. Hence,
E[Dn | Wn = −n] = n · 1

19
· 36
37

+ n · 18
19
· 1
37

= 54
703

n. However, we win all the
time when Wn = n, so there are no zero outcomes conditional on the event
{Wn = n}. Hence, E[Dn | Wn = n] = 1

37
n ̸= E[Dn | Wn = −n]. This shows

us that Dn and Wn are indeed dependent.

Finding a better upper bound for Dn

∣∣∣Wn + Ŵn

∣∣∣ is very tricky due to the

dependence of Wn, Ŵn,Dn. That is the reason why will not endeavour
this.

We can use our upper bound found in (19) in order to bound the expectation
of the capital differences. Since Dn ∼ Bin(n, α), we have EDn = nα. Now it
follows from (19) that

E|Cn − Ĉn| ≤ 2(1 + n)nα = 2αn2 + 2αn

≈ 0.1052n2 + 0.1052n
(20)

In the case of the client, this means that the mean (final) capital difference
can be bounded from above by 48.6. This upper bound is enormous, so it
does not provide us any useful information on the mean of the (final) capital
difference.

3.2.5 Simulations of capital differences

In order to gain a deeper understanding of the distribution of |C21 − Ĉ21|
we will run computer simulations. For this purpose we adapt the .m -files of
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§3.4. We run 100000 simulations with the MATLAB-function
dalembertstatistical012adapted.m. We use the function counting.m to
do the counting for Table 4.

We find the following sample mean

|C21 − Ĉ21| ≈ 1.87,

which is of course much better than the theoretical upper bound of 48.5961.
We also find the following sample standard deviation

s|C21−Ĉ21| ≈ 4.66.

In order to get an insight into the distribution of the capital difference |C21−
Ĉ21| we plot a histogram based on our simulations.

Figure 2: Histogram based on simulations of capital difference |C21 − Ĉ21|

By counting how many times a certain value of |C21 − Ĉ21| comes up in our
simulations, we get the following table

The histogram and table show us that in two of out three cases there is no
capital difference between the original processes and the coupling. In more
than 80% of the cases, the capital difference does not exceed a single unit, and
in more than 90% the capital difference does not exceed six units. However,
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x |C21 − Ĉ21| = x |C21 − Ĉ21| ≤ x
0 66967 66967
1 13804 80771
2 3112 83883
3 1924 85807
4 2363 88170
5 1289 89459
6 1461 90920
10 793 93934
20 400 97813

Table 4: Numbers of observations. Based on 100000 simulations.

sometimes the capital difference gets terribly out of hand. In more than 2%
of the cases the difference is even larger than 20 units.

Our coupling makes it much easier to do all kinds of calculations with regards
to the money laundering case and the use of the d’Alembert system in this
case. Based on our simulations we can conclude that the coupling can be
used to approximate the original processes, but that we should do that with
some caution, since sometimes the capital differences can get terribly out of
hand.
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3.3 The roulette games as Markov process

The capital/stake levels of the simultaneous red/black and low/high games
can be thought of as a Markov process. First we look at the two games
separately.

3.3.1 One game as Markov chain

We consider the capital/stake levels (ct, st)
21
t=0 in one of the games, namely the

red/black game or the low/high game (these two games are interchangeable
when you look at them separately), where st = 0 denotes a stopped game.
Our goal is to model this as a discrete-time time-homogeneous Markov chain
with finite state space. This is possible because the transition from one
capital/stake-pair (c, s) to the next (c′, s′) only depends on the current pair
(c, s) and the outcome of the roulette wheel, which is independent for each
round, and because there are only finitely many possibilities for these pairs,
as we will see in the next lemma.

Lemma 3.3. In each game (red/black or low/high) we have in every round
t that capital c and stake s satisfy

0 ≤ c ≤ 49 and 0 ≤ s ≤ 9

when we follow the rules of the previously described d’Alembert strategy.

Proof. Suppose we lost n − 1 times in a row and we are still playing. Then
we lost

∑n−1
k=1 k = 1

2
n2 − 1

2
n units of capital, and in the next round we play

a stake of s = n. Notice that 1
2
n2 − 1

2
n ≥ n for all n ≥ 3. Thus, when

we already lost ≥ 2 times in a row, we cannot offset our loss by winning
the next round. This leads to the conclusion that losing ≥ 2 in a row is
always unfavourable in comparison with winning all the time. Suppose we
lose only one time and then win the next round. Then our capital gain is
−1+2 = 1. However, winning two times leads to a capital gain of 1+1 = 2.
Thus, the conclusion is again that in terms of capital, losing is unfavourable
in comparison with winning all the time. Since winning all the time is the
most favourable outcome of a game and since we play at most 21 rounds, we
have c ≤ 25 + 21 = 46 ≤ 49.

It is obvious that s ≥ 0 in every round. Suppose we have a stake of s = 10.
Then we lost the previous 9 rounds, so we already lost

∑8
k=1 k = 36 units of

capital in the first eight losing rounds. After these eight rounds, our capital
is at most 46− 36 = 10 units, so we must stop there. Hence, a stake of 10 is
impossible. In fact, a stake of 9 is impossible as well. Hence, 0 ≤ s ≤ 8 ≤ 9.
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Since s ≤ 8 in every round, and since we must stop when capital falls below
the threshold of 16, we have c ≥ 16 − 8 = 8. Thus, we can conclude that
capital c always satisfies 0 ≤ 8 ≤ c ≤ 46 ≤ 49.

Because of Lemma 3.3, we can choose a finite state space for our Markov
chain:

S = [49]0 × [9]0 = {0, 1, . . . , 49} × {0, 1, . . . , 9}. (21)

Let us assume for simplicity that a zero outcome at the roulette table means
a regular loss for the player. Then, in each game, the player loses with
probability 19/37 and the player wins with probability 18/37. Moreover, the
player must stop when she hits the maximum number of rounds, which is 21,
or when the capital falls below the threshold of 16 units. The latter is mod-
elled by setting the next stake equal to zero and by setting P ((c, 0), (c′, s′)) =
1((c′, s′) = (c, 0)), that is, nothing changes once our stake is zero. This leads
to a transition matrix P = [P ((c, s), (c′, s′))](c,s),(c′,s′)∈S given by

P ((c, s), ((c+ s) ∧ 49, (s− 1) ∨ 1)) =
18

37
if s ̸= 0,

P ((c, s), ((c− s) ∨ 0, (s+ 1) ∧ 9)) =
19

37
if s ̸= 0 and c− s ≥ 16,

P ((c, s), ((c− s) ∨ 0, 0)) =
19

37
if s ̸= 0 and c− s ≤ 15,

P ((c, s), (c, s)) = 1 if s = 0,

(22)

where all the other entries of P are equal to zero. We can use the MATLAB
function Pmatrix.m to compute the entries of P . See the appendix for the
code.

We can use the transition matrix P to compute the distribution of the fi-
nal capital level. Since we start with initial capital 25 and initial stake
1, we should take as initial distribution the probability row vector λ(0) =
(λ(0)(c, s))(c,s)∈S given by

λ(0)((25, 1)) = 1 and λ(0)((c, s)) = 0, (c, s) ̸= (25, 1). (23)

Then the distribution λ(21) = (λ(21)(c, s))(c,s)∈S at time 21 is given by

λ(21) = λ(0)P 21. (24)

25



Finally, the distribution of the final capital is given by the pmf f given
by

f(c) =
9∑

s=0

λ(21)(c, s) for c ∈ [49]0, and zero elsewhere. (25)

We can use MATLAB to do all these computations. We can use the MAT-
LAB function initialdistribution.m to define λ(0) in the MATLAB en-
vironment and we can use the MATLAB function Pmatrix.m to define P in
the MATLAB environment. We can use the build-in function reshape to
let these MATLAB objects have the appropriate dimensions, and we can use
Distr.m to aggregate probabilities in accordance to (25). See the appendix
for the code. In the MATLAB console, we type in:

>> P=Pmatrix(50,10);

>> Q=reshape(P,[500,500]);

>> v=initialdistribution(50,10,25,1);

>> w=reshape(v,[1,500]);

>> distr=w*Q^21;

>> D=Distr(distr)

Notice that the entries f(0), f(1), . . . , f(49) of the vector D together with
(25) give us the pmf of the final capital. We get:

(f(k))16k=0 ≈



0
0
0
0
0
0
0
0
0

0.0001
0.0255
0.0743
0.0821
0.0730
0.0625
0.1246
0.0003



, (f(k))33k=17 ≈



0.0001
0.0074
0.0122
0.0092
0.0045
0.0015
0.0004
0.0204
0.0214
0.0133
0.0058
0.0183
0.0306
0.0255
0.0142
0.0337
0.0366



and (f(k))49k=34 ≈



0.0396
0.0467
0.0582
0.0598
0.0474
0.0292
0.0141
0.0054
0.0016
0.0004
0.0001
0.0000
0.0000

0
0
0


The corresponding bar chart can be plotted by typing
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>> x=0:1:49;

>> bar(x,D)

We get the following bar chart:

Figure 3: Bar chart of pmf of final capital in one of the games

We type the following in the MATLAB console

>> firstmoment = x * transpose(D)

>> secondmoment = (x .^2 ) * transpose(D)

>> var = secondmoment - (firstmoment)^2

>> sd = (var)^0.5

to find that the mean of the final capital is approximately 24.0, which means
that on average we lose around 4.15% to the house, and that the standard
deviation of the final capital is around 10.6.

3.3.2 Simultaneous games as Markov chain

For the two games simultaneously we still have that in each round the two
capital levels are bounded between 0 en 49, and the two stake levels are
bounded between 0 en 9. Thus, for the two games simultaneously, we can
choose as state space

S = S × S. (26)
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Let (uX,0, uY,0), (uX,1, uY,1) ∈ S. Let EX,0 denote the event that the current
state in the X-game is uX,0, let EX,1 denote the event that the next state
in the X-game is uX,1, let EY,0 denote the event that the current state in
the Y -game is uY,0, and let EY,1 denote the event that the next state in the
X-game is uX,1. Because the two processes X, Y (red/black and low/high)
are almost independent, we can approximate the transition probability

P((uX,0, uY,0), (uX,1, uY,1)),

by

P((uX,0, uY,0), (uX,1, uY,1)) = P(EX,1 ∩ EY,1 | (EX,0 ∩ EY,0)

=
P(EX,1 ∩ EX,0 ∩ EY,1 ∩ EY,0)

P(EX,0 ∩ EY,0)

≈ P(EX,1 ∩ EX,0)

P(EX,0)
· P(EY,1 ∩ EY,0)

P(EY,0)

= P(EX,1 | EX,0) · P(EY,1 | EY,0)

= P (uX,0, uX,1) · P (uY,0, uY,1).

(27)

We would like to learn more about the accuracy of this kind of approxima-
tions.

Suppose that currently the capital/stake positions of the X- and Y -games
are uX,0 = (cX,0, sX,0) and uY,0 = (cY,0, sY,0) respectively. Denote the winning
outcome of each game by 2, the losing non-zero outcome by 1, and the losing
zero outcome by 0. Denote the new outcomes of the X- and Y -games by
Xnew and Ynew respectively.

Winning in the X-game means that the capital/stake position moves from
uX,0 = (cX,0, sX,0) to ûX,1 = (ĉX,1, ŝX,1) with ĉX,1 = cX,0+ sX,0 and ŝX,1 given
by a more complicated update rule. See (22) for a description of this update
rule. Losing in the X-game means that the capital/stake position moves
from uX,0 = (cX,0, sX,0) to ũX,1 = (c̃X,1, s̃X,1) with c̃X,1 = cX,0− sX,0 and s̃X,1

given by the update rule. The consequences of winning and losing in the
Y -game can be described in a similar manner and we use similar notations
and symbols for this.

This shows us that given current positions (uX,0, uY,0), there are only four
possibilities, with positive conditional probability, for the next positions
(uX,1, uY,1) of the X- and Y -games.

The analysis above gives us the tools to exactly compute the transition prob-
abilities and compare them with the approximated transitions probabilities.
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The transition probabilities are given by

P ((uX,0, uY,0), (ûX,1, ûY,1)) = P(Xnew = Ynew = 2) =
9

37
≈ 0.243,

P ((uX,0, uY,0), (ûX,1, ũY,1)) = P(Xnew = 2, Ynew = 1) =
9

37
≈ 0.243,

P ((uX,0, uY,0), (ũX,1, ûY,1)) = P(Xnew = 1, Ynew = 2) =
9

37
≈ 0.243,

(28)

and

P ((uX,0, uY,0), (ũX,1, ũY,1)) = P(Xnew = Ynew = 1) + P(Xnew = Ynew = 0)

=
9

37
+

1

37
=

10

37
≈ 0.270,

(29)

and all the other entries equal to zero.

Approximations of the transition probabilities, based on (27) would be

P ((uX,0, uY,0), (ûX,1, ûY,1)) ≈
(
18

37

)2

≈ 0.237

P ((uX,0, uY,0), (ûX,1, ũY,1)) ≈
18

37
· 19
37
≈ 0.250

P ((uX,0, uY,0), (ũX,1, ûY,1)) ≈
19

37
· 18
37
≈ 0.250,

P ((uX,0, uY,0), (ũX,1, ũY,1)) ≈
(
19

37

)2

≈ 0.264.

(30)

By comparing the actual transition probabilities in (28), (29) with the ap-
proximated transition probabilities in (30), we see that the approximations
based on (27) are pretty accurate. However, small differences in transition
probabilities can possibly accumulate into huge differences in capital when
we let the Markov process run 21 rounds.

Moreover, we also see that the actual transition probabilities are quite easy
to compute, so it seems that there is no need for approximating the transi-
tion probabilities. The only complication in computing the actual transition
probabilities is the fact that we have to keep track of so many indices and
that we have to reshape arrays in an appropriate way in order to do actual
calculations with them.

The initial distribution

p(0) = (p(0)(uX , uY ))(uX ,uY )∈S = (p(0)((cX , sX), (cY , sY )))cX ,cY ∈[49]0, sX ,sY ∈[9]0
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of the capital/stake levels in the two simultaneous is given by

p(0)((25, 1), (25, 1)) = 1 and

p(0)((cX , sX), (cY , sY )) = 0, ((cX , sX), (cY , sY )) ̸= ((25, 1), (25, 1)).
(31)

3.3.3 The total capital level in the two simultaneous games

Let P be the transition matrix for the capital/stake levels of the two si-
multaneous games (X, Y ). The entries of this matrix are given by (28) and
(29). We consider the initial distribution p(0) as a row vector and P as a
two-dimensional matrix. The distribution

p(21) = (p(21)(uX , uY ))(uX ,uY )∈S

= (p(21)((cX , sX), (cY , sY ))cX ,cY ∈[49]0, sX ,sY ∈[9]0

at time 21 can be computed by

p(21) = p(0)P21. (32)

The distribution p
(21)
CT = (p

(21)
CT (c))98c=0 of the total final capital level at time 21

can be computed by

p
(21)
CT (c) =

∑
k∈Ic

9∑
sY =0

9∑
sX=0

p(21)((k, sX), (c− k, sY )), c ∈ [98]0, (33)

where

Ic = {j ∈ [49]0 | 0 ≤ j, c− j ≤ 49} = [49]0 ∩ [c− 49, c]. (34)

It is possible to model the total final capital level through a Markov model,
but we have to keep track of the stakes and the capital level in at least
one of the games (X or Y ), because the stakes do not only depend on
the previous stakes and the outcomes of the games, but also on current
capital levels in each of the games, since we set the stake to zero when
capital falls below a certain threshold. Thus, states must be of the form
(cX , cT , sX , sY ), (cY , cT , sX , sY ) or (cX , cY , cT , sX , sY ), where c stands for cap-
ital, s stand for stake, X stands for the process X, Y stands for the process
Y , and CT denotes the total capital.
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3.3.4 Markov chain description of a single game under the Hol-
land Casino policy for zero outcomes

Let us assume that the zero outcome is treated in accordance to the policy
of Holland Casino. Let us further assume that the player chooses to share
half of her stake with the house when zero comes up. See §2.2.2. The policy
on allowed stakes may differ from one casino to another, but let us not be
bothered too much with minimum and maximum stakes.

Let us reformulate the d’Alembert strategy for the situation in which we
follow the Holland Casino rules. As described in §2.2.2, the player loses half
of her stake when zero comes up. However, this is still a loss, so we will label
this as a loss. Thus, a losing non-zero outcome and a zero outcome have the
same label “loss.” A winning outcome is of course still labeled as a win.

Based on our labels “loss” and “win” we follow the d’Alembert strategy,
which we will describe now. After every loss, the player increases the stake
by one unit, unless her capital has already fallen below the threshold of 16
units, in which case she will bet nothing (stake = zero). After every win, the
player decreases the stake by one unit, unless the size of the stake is already
one unit. Moreover, we have a time horizon of 21 rounds.

The main difference between treating a zero outcome as a regular loss and
treating a zero outcome in the Holland Casino way is that in the latter case
a zero outcome leads to a capital level of capital − stake

2
in the next round

instead of capital − stake. This requires us to modify the state space S as
defined in (21). For one game, red/black or low/high, the modified state
space becomes

S =

(
1

2
[98]0

)
× [9]0 (35)

and the modified transition matrix P = [P ((c, s), (c′, s′))](c,s),(c′,s′)∈S becomes
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given by

P ((c, s), ((c+ s) ∧ 49, (s− 1) ∨ 1)) =
18

37
if s ̸= 0,

P ((c, s), ((c− s) ∨ 0, (s+ 1) ∧ 9)) =
18

37
if s ̸= 0 and c− s ≥ 16,

P ((c, s), ((c− s) ∨ 0, 0)) =
18

37
if s ̸= 0 and c− s < 16,

P ((c, s), ((c− s/2) ∨ 0, (s+ 1) ∧ 9)) =
1

37
if s ̸= 0 and c− s

2
≥ 16,

P ((c, s), ((c− s/2) ∨ 0, 0)) =
1

37
if s ̸= 0 and c− s

2
< 16,

P ((c, s), (c, s)) = 1 if s = 0,

(36)

where all the other entries of P are equal to zero. For computer computations
it is convenient to subdivide each monetary unit into two sub units and to
do all the calculations with sub units. Expressed in sub units, (35) and (36)
become

S = [98]0 × (2[9]0) (37)

and

P ((c, s), ((c+ s) ∧ 98, (s− 2) ∨ 2)) =
18

37
if s ̸= 0,

P ((c, s), ((c− s) ∨ 0, (s+ 2) ∧ 18)) =
18

37
if s ̸= 0 and c− s ≥ 32,

P ((c, s), ((c− s) ∨ 0, 0)) =
18

37
if s ̸= 0 and c− s < 32,

P ((c, s), ((c− s/2) ∨ 0, (s+ 2) ∧ 18)) =
1

37
if s ̸= 0 and c− s

2
≥ 32,

P ((c, s), ((c− s/2) ∨ 0, 0)) =
1

37
if s ̸= 0 and c− s

2
< 32,

P ((c, s), (c, s)) = 1 if s = 0,

(38)

where all the other entries of P are equal to zero. Expressing the initial
distribution λ(0) = (λ(0)(c, s))(c,s)∈S, as given in (23), in terms of sub units
yields

λ(0)((50, 2)) = 1 and λ(0)((c, s)) = 0, (c, s) ̸= (50, 2). (39)

Of course, when everything is expressed in terms of sub units, the distribution
λ(21) at time 21 can still be calculated by using (24). However, the formula
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(25) for the pmf of the final capital needs a slight change:

f(c) =
∑

s∈2[9]0

λ(21)(c, s) for c ∈ [98]0, and zero elsewhere. (40)

In order to compute this pmf for the Holland Casino scenario we adapt
Pmatrix.m and Distr.m and call these adapted functions PmatrixHC.m and
DistrHC.m respectively. See the appendix. Notice that we allow stakes to
have an odd number of sub units. However, this will not affect the computa-
tions since we start with an initial stake of two sub units and since the stakes
make only even jumps (in terms of sub units).

The bar chart corresponding to the pmf can be plotted by typing

>> P=PmatrixHC(99,19);

>> d=99*19;

>> Q=reshape(P,[d,d]);

>> v=initialdistribution(99,19,50,2);

>> w=reshape(v,[1,d]);

>> distr=w*Q^21;

>> D=DistrHC(distr);

>> x=0:1:98;

>> bar(x,D)

Figure 4: Bar chart of pmf of final capital in one of the games. Holland
Casino scenario. Final capital is expressed in sub units of 25 euro each.
(1 unit = 50 euro, 1 unit = 2 sub units)
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It is striking that the bar chart for the Holland Casino scenario (figure 4)
and the bar chart for the ‘zero-treated-as-regular-loss’ scenario (figure 3) look
very similar. This indicates that the game under the Holland Casino rules can
be well approximated by a simplification in which we treat a zero outcome
as regular loss.

It is also striking that an even final capital (in terms of sub units) seems
to be more probable than an odd one (in figure 4 the bars for even capital
levels are larger than for odd ones). This can be explained by the fact that
an odd final capital can only occur when there are zero outcomes, but that
zero outcomes do not necessarily imply that the final capital is odd. For
example, a zero outcome does not lead to an odd decrease in capital when
the stake equals four. Another example, two zero outcomes can lead to two
odd decreases in capital, which amount to a an even total decrease in capital.
We have:

P(even final capital) ≥ P(no zero outcomes) =

(
36

37

)21

>
1

2
. (41)

This shows us that an even final capital is more probable than an odd
one.

We type the following in the MATLAB console

>> firstmoment = x * transpose(D)

>> secondmoment = (x .^2 ) * transpose(D)

>> var = secondmoment - (firstmoment)^2

>> sd = (var)^0.5

to find that the mean of the final capital is approximately 48.9, which means
that on average we lose around 2.11% to the house, and that the standard
deviation of the final capital is around 21.5.

3.3.5 Markov chain description of simultaneous games under the
Holland Casino policy for zero outcomes

Let us now mathematically describe the capital/stake-levels of the simulta-
neous games (X, Y ) under the Holland Casino policy, again under the same
assumptions (use of the d’Alembert strategy as described above, choice for
sharing half of the stake with the house when zero comes up). We will do
this in terms of Markov processes and their transition probabilities. This de-
scription will be very similar to the description for the simultaneous games
under the “zero-treated-as-regular-loss rule”. See §3.3.2.
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Of course we can approximate the transition probabilities of the simultaneous
processes (X, Y ) by multiplying the transition probabilities of the marginal
processes, since these processes are almost independent. However, we will
endeavor to exactly compute the transition probabilities.

The state space of the simultaneous games will again be S = S × S, but
this time S refers to (39) instead of (21). By this choice of S we implicitly
choose to express capital and stake levels in terms of sub units (1 unit = 2
sub units). We will hugely adopt the same analysis and same notations as
for the case in which a zero outcome is treated as a regular loss, but there
will be small differences.

Suppose that currently the capital/stake positions of the X- and Y -games
are uX,0 = (cX,0, sX,0) and uY,0 = (cY,0, sY,0) respectively. Denote the winning
outcome of each game by 2, the losing non-zero outcome by 1, and the losing
zero outcome by 0. Denote the new outcomes of the X- and Y -games by
Xnew and Ynew respectively.

Winning in the X-game means that the capital/stake position moves from
uX,0 = (cX,0, sX,0) to ûX,1 = (ĉX,1, ŝX,1) with ĉX,1 = cX,0+ sX,0 and ŝX,1 given
by a more complicated update rule. See (38) for a description of this update
rule. A loss caused by a non-zero outcome in the X-game means that the
capital/stake position moves from uX,0 = (cX,0, sX,0) to ũX,1 = (c̃X,1, s̃X,1)
with c̃X,1 = cX,0 − sX,0 and s̃X,1 given by the update rule. A loss caused by
a zero outcome in the X-game means that the capital/stake position moves
from uX,0 = (cX,0, sX,0) to ǔX,1 = (čX,1, šX,1) with čX,1 = cX,0 − sX,0/2 and
šX,1 given by the update rule. The consequences of winning and losing in the
Y -game can be described in a similar manner and we use similar notations
and symbols for this.
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Based on the analysis above, and table 1, we find the following transition
probabilities:

P ((uX,0, uY,0), (ûX,1, ûY,1)) = P (Xnew = 2, Ynew = 2) =
9

37
≈ 0.243,

P ((uX,0, uY,0), (ûX,1, ũY,1)) = P (Xnew = 2, Ynew = 1) =
9

37
≈ 0.243,

P ((uX,0, uY,0), (ûX,1, ǔY,1)) = P (Xnew = 2, Ynew = 0) = 0,

P ((uX,0, uY,0), (ũX,1, ûY,1)) = P (Xnew = 1, Ynew = 2) =
9

37
≈ 0.243,

P ((uX,0, uY,0), (ũX,1, ũY,1)) = P (Xnew = 1, Ynew = 1) =
9

37
≈ 0.243,

P ((uX,0, uY,0), (ũX,1, ǔY,1)) = P (Xnew = 1, Ynew = 0) = 0,

P ((uX,0, uY,0), (ǔX,1, ûY,1)) = P (Xnew = 0, Ynew = 2) = 0,

P ((uX,0, uY,0), (ǔX,1, ũY,1)) = P (Xnew = 0, Ynew = 1) = 0,

P ((uX,0, uY,0), (ǔX,1, ǔY,1)) = P (Xnew = 0, Ynew = 0) =
1

37
≈ 0.027,

(42)

and all other transition probabilities equal to zero.

In a way the transition matrix P for the Holland Casino scenario is sim-
pler than the transition matrix for the scenario in which zero outcomes are
treated as regular losses, since the transition probabilities in (42) seem to
just resemble table 1.

The initial distribution

p(0) = (p(0)(uX , uY ))(uX ,uY )∈S = (p(0)((cX , sX), (cY , sY )))cX ,cY ∈[98]0, sX ,sY ∈2[9]0 ,

in terms of sub units, is given by

p(0)((50, 2), (50, 2)) = 1 and

p(0)((cX , sX), (cY , sY )) = 0, ((cX , sX), (cY , sY )) ̸= ((50, 2), (50, 2)).
(43)

The distribution p(21) at time 21 can be computed through p(21) = p(0)P21,
where we write p(0), p(21) as row vectors and P as matrix. The distribution
p
(21)
CT = (p

(21)
CT (c))196c=0 of the total final capital level at time 21 can be computed

through

p
(21)
CT (c) =

∑
k∈Ic

∑
sY ∈2[9]0

∑
sX∈2[9]0

p(21)((k, sX), (c− k, sY )), c ∈ [196]0,

with Ic = [98]0 ∩ [c− 98, c].
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3.3.6 Doing computations with the Markov model for the simul-
taneous games

Consider the Markov chain model for the capital/stake-levels of the two si-
multaneous games (X, Y ). This model is specified by the transition matrix
P given by (42) and the initial distribution p(0) given by (43).

We have tried to write a MATLAB function PsimHC.m (see appendix) for
constructing the transition matrix P in the MATLAB environment, both
for the Holland Casino case and for the simplified case. However, we en-
countered some memory issues. We have tried to solve these issues by
using sparse arrays. For this purpose we have tried to use ndSparse, a
class written by Matt Jocobson, a research scientist at Xoran Technologies,
which is a company for CT scanners in Michigan, US. This software can
be found on https://nl.mathworks.com/matlabcentral/fileexchange/

29832-n-dimensional-sparse-arrays (including its license). Unfortunately,
we did not succeed in making this solution work.

This opens up new research questions. From a computer scientific point
of view, we could ask ourselves how to store and process enormous arrays.
How should we deal with memory allocation and what kind of objects do
we need to use? Could we construct our own classes for doing computations
with large sparse arrays or could we use someone else’s classes? Which pro-
gramming languages and statistical packages are best suited for doing this?
From a probabilistic point of view, we could ask ourselves how to refine our
coupling idea, and how to use that refinement for getting fairly accurate ap-
proximations of probabilistic properties of the simultaneous games and their
corresponding capital- and stake-levels.
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3.4 Simulations

3.4.1 Simulations when zero is treated as regular loss

For simplicity we assume in our simulations that a zero outcome at the
roulette table means a regular loss for the player. Thus, our simulations
provide lower bounds for the capital gains of the player.

We use the MATLAB function simultaneous.m for simulating the out-
comes of the two simultaneous roulette games (red/black and low/high).
With the function dalembert012.m we simulate the d’Alembert strategy for
the two games and the corresponding capitals and stakes. The function
dalembertstatistical012.m is written in order to collect the final capitals
for each game. This enables us to do statistical analysis on the d’Alembert
system applied to these two simultaneous games. See the appendix for more
details on the code of the m-files.

Performing the simulations (with n = 106 games) give rise to the following
summary statistics:

Sample average
of final capital

Sample standard deviation
of final capital

Red/black game 24.0 10.6
Low/high game 24.0 10.6
The two games combined 47.9 15.2

Table 5: Summary statistics based on 106 simulations.

These figures are completely in line with our theoretical findings about a
single game (red/black or low/high) in §3.3.1. Moreover, we see that on
average we lose approximately 4.16% to the house.

Denote the sample standard deviation of the final capital of the red/black
game by sX , the sample standard deviation of the final capital of the low/high
game by sY and the sample standard deviation of the combined final capital
by sT and notice that

s2X + s2Y ≈ 226,

s2T ≈ 230.

This suggests that the two final capitals (one for red/black and one for
low/high) are weakly correlated. The sample correlation rXY turns out to
be approximately 0.017. Under the null hypothesis of zero correlation, we

38



have that asymptotically the test statistic t = rXY

√
n−2

1−r2XY
follows a stan-

dard normal distribution. (See the appendix.) We have t ≈ 17, so the sample
correlation rXY differs significantly from zero. This makes it reasonable to
think that the two final capitals (one for red/black and one for low/high) are
weakly correlated.

We will plot a number of histograms, based on the simulations, in order to
get an idea of the distributions of the final capitals, and in order to check
the findings in §3.3.

Figures 5, 6, 7 show us histograms for the final capital of the red/black game,
the low/high game, and the two games combined:

Figure 5: Final capital in red/black game

Figure 6: Final capital in low/high game
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Figure 7: Final capital for the two simultaneous games combined

Figure (5) and (6) show us that the final capitals in the two games have
(at least almost) the same distribution. Moreover, these figures confirm
the theoretical results for a single game (black/red or low/high), since the
histograms look very similar to the bar chart of the actual pmf of the final
capital of a single game. See figure (3) for this bar chart.

The histogram in figure 7 gives us an idea of the distribution of the total
final capital. Let us look at a player who plays on red/black and low/high
in roulette, under the policy of treating zero outcomes as regular losses, and
using the d’Alembert strategy with the parameters from §3.1. By using
the MATLAB-function counting.m we find that the player loses with an
approximate probability of around 0.560. By using conditionalaverage.m we
find that a losing player loses on average 25.6% and a not-losing player wins
on average 23.2%.

3.4.2 Simulations under the rules of Holland Casino

We adapt the files dalemebert012.m, dalembertstatistical012.m in or-
der to do simulations for the case in which zero outcomes are treated in
accordance to the Holland Casino policy. See the appendix for these adapted
MATLAB-functions dalembert012HC.m, dalembertstatistical012HC.m.

Performing the simulations (with n = 106 games) give rise to the following
summary statistics:

These numbers are completely in line with our theory about a single game
(red/black or low/high) under the Holland Casino policy. See §3.3.4. On
average we lose (in total) approximately 2.10% to the house.
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Sample average
of final capital

Sample standard deviation
of final capital

Red/black game 49.0 21.5
Low/high game 48.9 21.5
The two games combined 97.9 30.5

Table 6: Summary statistics, based on 106 simulations, for the Holland
Casino policy on zero outcomes. All quantities are expressed in terms of
sub units (1 unit = 2 sub units = 50 euros).

We will plot a number of histograms, based on the simulations, in order to
get an idea of the distributions of the final capitals under the Holland Casino
policy, and in order to check the theoretical findings about this in §3.3.

Figure 8: Final capital in red/black game under the Holland Casino policy.
In sub units of 25 euros each.
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Figure 9: Final capital in low/high game under the Holland Casino policy.
In sub units of 25 euros each.

Figure 10: Final capital for the two simultaneous games combined, under
the Holland Casino policy. In sub units of 25 euros each.

Figure (8) and (9) show us that under the Holland Casino policy the final
capitals in the two games have (at least almost) the same distribution. More-
over, these figures confirm the theoretical results for a single game (red/black
or low/high), since the histograms look very similar to the bar chart for the
actual pmf of the final capital of a single game under the Holland Casino
policy. See figure 4 for this bar chart.

The histogram in figure 10 gives us an idea of the distribution of the total final
capital. Even levels of total final capital are more prevalent as a consequence
of even levels of “marginal” final capitals being more prevalent (it takes at
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least one odd “marginal” to have an odd total final capital). The reason for
more prevalent even “marginal” final capital levels is explained in §3.3.4. All
of this is of course in terms of sub units.

Let us look at a player who plays on red/black and low/high in roulette,
under the Holland Casino rules, and using the d’Alembert strategy with
the parameters from §3.1.By using the MATLAB-function counting.m we
find that the player loses with an approximate probability of around 0.527.
By using conditionalaverage.m we find that a losing player loses on average
25.1% and a not-losing player wins on average 23.6%.

These numbers are better under the Holland Casino policy than under the
policy of treating zero outcomes as regular losses since Holland Casino pe-
nalizes zero outcomes less severely.
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3.5 Forensic statistical analysis

The client told his lawyer and the court that he had a net profit of about
10,000 euro a year for five years in a row by simultaneously playing red/black
and low/high in roulette at Holland Casino. He used the d’Almbert strategy
with the parameters from §3.1. The client supported his claims by showing
a booklet of notes from the casino.

This booklet shows us that in each year he attended the casino 25 evenings
and he had a net profit of 10,000 euros in total. Moreover, the booklet shows
us that there is no evening in which he lost more than 10% of his start
capital.

However, the booklet is undated and it is not sure whether this booklet tells
us the complete truth. We will try to statistically investigate how convincing
his story is by comparing his hypothesis with a relevant competing hypoth-
esis:

H1 : The client tells the truth.

The booklet tells us the complete truth.

H2 : The client does not tell the truth.

The booklet is not complete.

He attended the casino 40 times each year,

and he also lost a lot of money.

(44)

Before we do that we will first have a look at the likelihood ratio, a very
important forensic concept, which we will use in our analysis.
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3.5.1 The likelihood ratio

This part is based on [8], [9], and [10].

In forensic science the likelihood ratio is often used in evaluating evidence.
According to [8] the likelihood ratio can even be used when there is no pos-
sibility to express likelihoods and/or likelihood ratios numerically.

The likelihood ratio shows up when writing Bayes’ theorem in the so called
odds-form. See (45). There are many formulations of Bayes’ rule. Let us
first mention a simple version of Bayes’ rule.

Theorem 3.4 (Bayes’ rule). Let A and B be events such that P(A) > 0 and
P(B) > 0. Then:

P(A | B) =
P(B | A)P(A)

P(B)
.

Let us now formulate a definition of the likelihood ratio.

Definition 3.5. Let H1 and H2 be two competing (mutually exclusive) hy-
potheses. Let E be the observed data. Then the likelihood ratio LR of H1

versus H2 is defined as

LR :=
P(E | H1)

P(E | H2)
.

The likelihood ratio is a measure for the evidence provided by the data E
for the first hypothesis H1 relative to the second hypothesis H2. Notice
that

P(H1 | E)

P(H2 | E)
Thrm.3.4

=
P(E | H1)P(H1)/P(E)

P(E | H2)P(H2)/P(E)
= LR · P(H1)

P(H2)
. (45)

This is the odds-form of Bayes’ theorem. The ratio P(H1)/P(H2) tells us
something about our judgement of the probability of H1 relative to that of
H2 before we have seen the data E. This ratio is called the prior odds of H1

and H2. The fraction P (H1 | E)/P(H2 | E) tells us the same thing after we
have seen the data. This fraction is called the posterior odds. The likelihood
ratio tells us how the evidence changes our judgement of the probabilities of
H1 versusH2. Thus the likelihood ratio can be seen as a measure of evidential
strength.

45



3.5.2 Analysis of the client’s story

Let us use the likelihood ratio in order to compare the two hypotheses from
(44). The data E are given by the possibly incomplete booklet. By using
counting.m we find that there is an approximate probability of 0.650 that
you do not lose more than 10% of your start capital in one evening. The
probability that you can play 25 evenings without losing more than 10% in
any evening is thus extremely low, and the probability that you can do that
five years in a row is even much smaller. Therefore,

P(E | H1) ≤ (0.6525)5 ≈ 4.11 · 10−24. (46)

Notice that when you play 40 evenings in a row, the number of evenings in
which you do not lose more than 10% follows an Bin(40, 0.650)-distribution.
With probability 0.695 this number of evenings is at least 25 so that you can
just choose to record the right 25 evenings. By using the MATLAB function
conditionalaverage.m we find that if you do not lose more than 10% in
an evening, then the average net profit is about 15.7%, so for the recorded
evenings the expected profit can be approximated by

25 · 15.7 = 392.5 sub units ≈ 9, 800 euros.

If you just record 25 evenings in which you do not lose more than 10% of
your start capital, then with a approximate probability of 0.869 your total
net profit (of all these evenings combined) is at least 7,000 euros (which is
close enough to 10,000 euros). We used dalembertstatistical012HC.m,
sumfinalcapital.m and counting.m for approximating these probabilities.
See the appendix. Now we have

P(E | H2) ≈ (0.695 · 0.869)5 ≈ 0.0804. (47)

Combining (46) and (47) yields

LR =
P(E | H1)

P(E | H2)
≤ 5.12 · 10−23.

This shows us that the data (the booklet) provides strong evidence in favor
of the second hypothesis (client played 40 evenings) in comparison to the first
hypothesis (client only played the evenings that are recorded in the booklet).
Without any prior knowledge on the client, we may assume that the prior
odds are P(H1)/P(H2) ≈ 20. Then the posterior odds become

P(H1 | E)

P(H2 | E)
= LR · P(H1)

P(H2)
≤ 1.02 · 10−21.

Thus, given the evidence, the first hypothesis (booklet is everything) is very
unlikely in comparison to the second hypothesis (client played 40 evenings).
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4 Conclusion

A crime suspect is accused of money laundering in casinos, but he told his
criminal defence lawyer that he just won 10,000 euros each year for five years
in a row by playing simultaneously on red/black and low/high in roulette at
Holland Casino, and that this was possible due to the use of the d’Alembert.
The lawyer’s client used this strategy with parameters mentioned in §3.1: a
start capital of 25 units, at most 21 rounds, and a stopping rule for when
the capital drops too low. The suspect supported his claims by showing a
booklet of notes from the casino. The question is of course how convincing
his story actually is.

Holland Casino is a state-owned gambling company. It is the only company in
the Netherlands with a casino license. When you bet on red/black, low/high
or odd/even in French roulette at Holland Casino, and when zero comes up,
you have to choose between sharing half of your stake with the house or
putting your stake ‘en prison.’ We assume that the first choice is always
made. The d’Alembert system is a gambling strategy in which the player
starts with a unit bet, increases the stake by one unit after every loss, and
decreases the stake by one unit after every win, unless the stake is already
one unit. By following this strategy, the net gain equals the number of wins
when the numbers of wins and losses equalize. However, the problem with
this strategy is that there is a positive probability that these numbers will
never equalize.

The red/black-outcomes X = (Xt)
n
t=1 and low/high-outcomes Y = (Yt)

n
t=1

are dependent, which makes it more difficult to do computations with these
processes. That is why we construct an independent coupling (X, Ŷ ) to
approximate (X, Y ). It turns out that (X, Ŷ ) approximates (X, Y ) pretty
well. The number Dn of differences between Y and Ŷ follows an Bin(n, α)-
distribution with α ≈ 0.0526. The difference in capital gains can be bounded
from above by 2(1 + n)Dn, but this upper bound is not sharp enough for
practical purposes. It would be nice if further research could improve this
upper bound. Simulations show that for n = 21 rounds the average dif-
ference in capital gains is about 1.87 units. However, the sample standard
deviation of about 4.66 units is pretty large and there is a small (approx-
imated) probability that the difference in capital gains can get completely
out of hand.

It is possible to model the capital/stake-levels of the two games X, Y as a
Markov chain with transition matrix P and initial distribution λ(0). This
model enables us to compute exactly the distribution of the final capitals
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and to use that distribution to compute all kinds of probabilistic properties
of the final capitals. This results in some beautiful concrete results for a
single game. However, we did not succeed in doing the computations for the
two gamesX, Y simultaneously, because the arrays turn out to be too large to
work with. Luckily, by performing simulations we can still get some insights
into the distribution of the total final capital for the two simultaneous games.
See §3.4 for our simulation results.

The transition probabilities for the simultaneous games can be approximated
accurately by the products of the transition probabilities for the single games.
However, small differences in transition probabilities can possibly accumulate
into large differences in capital and distribution when we let the Markov
process run 21 rounds. Moreover, we still need to store and book-keep these
products. The memory issues with large arrays may motivate future research
into refining the coupling idea and into the computational use of sparse arrays
for the topics of this thesis.

We did a forensic statistical analysis to investigate how convincing the story
of the suspect is. We used the likelihood ratio to compare the hypothesis of
the suspect (he tells the truth and the booklet is complete) with an alternative
hypothesis in which the booklet is not complete. The booklet forms the
evidence. We found a very low likelihood ratio (< 10−22) and very low
posterior odds (< 10−20). Therefore we come to the conclusion that the
story of the suspect is not convincing.
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A Preliminary material

A.1 Discrete-time Markov chains

This section follows chapter 12 of [2]. For more information on Markov
chains, see also [11].

A.1.1 Distributions and transition probabilities

Let X = (Xk)
∞
k=0 be random sequence with countable state space S. We call

X a Markov chain if it satisfies the Markov property, that is,

P(Xn+1 = xn+1|X0 = x0, . . . , Xn = xn) = P(Xn+1 = xn+1|Xn = xn)

for every non-negative integer n and all states x0, . . . , xn+1. We say that X
is homogeneous if in addition

P(Xn+1 = x1|Xn = x0) = P(X1 = x1|X0 = x0)

for every non-negative integer n and all states x0 and x1.

In the sequel, we will assume that X is a homogeneous Markov chain.

The transition matrix P of X is given by the 1-step transition probabilities
pi,j := P(X1 = j|X0 = i). This matrix is a stochastic matrix, i.e.

pi,j ≥ 0, and
∑
j∈S

pi,j = 1.

The n-step transition probabilities are given by pi,j(n) := P(Xn = j|X0 = i),
and they form the n-step transition matrix P (n).

Theorem A.1 (Chapman-Kolmogorov Equations). For all i, j ∈ S and
m,n ∈ N≥0,

pi,j(m+ n) =
∑
k∈S

pi,k(m) · pk,j(n),

and P (m+ n) = P (m)P (n).

The Chapman-Kolmogorov equations provide us with an easy way to com-
pute n-step transition matrices, namely P (n) = P n.

The distribution at time n is a probability row vector λ(n) given by λ
(n)
i =

P(Xn = i). We call λ(0) the initial distribution. We have λ(n) = λ(0)P n.
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A.1.2 Communicating classes and their class properties

For i, j ∈ S, we say that i leads to j, written i −→ j, if pi,j(n) > 0 for some
n ≥ 0. If i leads to j, we may also say that j is accessible from i. We say
that i and j communicate, written i←→ j, if i −→ j and j −→ i .

Proposition A.2. The relation ←→ is an equivalence relation.

The equivalence relation ←→ defines equivalence classes of the following
form Ci = {j ∈ S : i ←→ j}, i ∈ S. These equivalence classes are called
communicating classes. The chain X or the state space S is called irreducible
if there is a single communicating class, i.e. i←→ j for all i, j ∈ S. A subset
C ⊆ S is called closed if for all i ∈ C, i −→ j ⇒ j ∈ C. If a singleton set
{i} ⊆ S is closed, we call i an absorbing state.

Proposition A.3. A subset C ⊆ S is closed if and only if

pi,j = 0 for i ∈ C, j ̸∈ C.

Define the first-passage time to state j by Tj := min{n ≥ 1 : Xn = j}. Define
the first-passage probabilities by fi,j(n) := Pi(Tj = n) := P(Tj = n|X0 = i).
Define fi := P(∃n ≥ 1 : Xn = i|X0 = i) = Pi(Ti < ∞) =

∑∞
n=1 fi,i(n).

A state i is called recurrent if fi = 1 and it is called transient if it is not
recurrent. The mean recurrence time is µi = Ei(Ti). If i is recurrent, we call
it null if µi =∞ and positive or non-null if µi <∞.

Theorem A.4. The state i is recurrent if and only if

∞∑
n=0

pi,i(n) =∞.

Theorem A.5 (Pólya’s Theorem). The symmetric random walk on Zd is
recurrent if d = 1, 2 and transient if d ≥ 3.

Theorem A.6. Suppose X0 = i and let Vi := #{n ∈ N≥1 : Xn = i}. Then,

Pi(Vi = r) = (1− fi)f
r
i for r ∈ N≥0,

with fi being the return probability fi = Pi(Ti <∞).

The period di of the state i is given by di = gcd{n ∈ N≥1 : pi,i(n) > 0}. The
state i is called aperiodic if di = 1, and periodic if di > 1. State i is called
ergodic if it is aperiodic and positive recurrent.
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If a communicating class contains a recurrent state, then the class is closed.
Periodicity, (positive/null) recurrence, transience, and ergodicity are class
properties. See Theorems 12.37, 12.39, 12.75 of [2] for more information on
recurrence and transience.

A.1.3 Stationary distributions and limiting behavior

The probability row vector π = (πi)i∈S is called an invariant distribution of
X if π = πP .

Theorem A.7. Consider an irreducible Markov chain X.

There exists an invariant distribution π if and only if X is positive recurrent.
If there exists an invariant distribution π, then

πi =
1

µi

, i ∈ S,

where µi = Ei(Ti) (mean recurrence time).

Theorem A.8. Consider an irreducible, ergodic (aperiodic, positive recur-
rent) Markov chain X, and let π = (πi)i∈S be the unique invariant distribu-
tion of X. Then, for all i, j ∈ S,

lim
n→∞

pi,j(n) = πj.

Theorem A.9. Let X be an irreducible, recurrent Markov chain. Then, the
following are equivalent.

(1) ∃i ∈ S : lim
n→∞

pi,i(n) = 0

(2) Every state is null recurrent.

Theorem A.10. Let X be an irreducible, positive recurrent Markov chain
and let i ∈ S. Then, irrespective of the initial distribution of the chain,

1

n

n∑
k=1

1{Xk=i} coverges in distribution to
1

µi

(= πi),

where µi = Ei(Ti).
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Theorem A.11. Let X be an irreducible Markov chain. Suppose π = (πi)i∈S
is a probability row vector satisfying the detailed balance equations:

∀i, j ∈ S : πipi,j = πjpj,i.

Then, π is the unique invariant distribution of X. Furthermore, X is re-
versible in equilibrium.

See §12.11 of [2] for a more in-depth explanation of time reversal.
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B Testing significance of sample correlation

Let (Xi, Yi), i ∈ [n] be a random sample drawn from an uncorrelated bivariate
normal distribution. Let rXY be the sample correlation based on this random
sample. According to Wikipedia, which cites [12], the test statistic t =

rXY

√
n−2

1−r2XY
follows a t-distribution with n−2 degrees of freedom. Wikipedia

also mentions that t ≈ t(n− 2) in case of non-normal observations when n is
sufficiently large, and references to [13]. The fact that t ≈ t(n− 2) suggests
that t converges in distribution to a standard normal random variable.

However, the proofs in [12] and [13] seem to be daunting and tedious. There-

fore, we will do an effort in constructing an understandable proof of t
d−→

N (0, 1) based on standard statistical techniques: the (Strong) Law of Large
Numbers ((S)LLN), the Central Limit Theorem (CLT), the continuous map-
ping theorem, and Slutsky’s theorem. These techniques are extensively de-
scribed in [14], so we mention them only shortly. We will construct such a

proof of t
d−→ N (0, 1) in order to gain a better understanding of the statis-

tical asymptotic properties of the test statistic t.

Theorem B.1 (SLLN ). Let Xn be the sample mean based on the first n
observations of a random sample drawn from a (multivariate) distribution
with finite mean µ. Then Xn

a.s.−→ µ as n→∞. [14]

Theorem B.2 (CLT ). Let Xn (n ∈ N1) be i.i.d. Rk-valued random vectors

with finite mean µ and finite covariance matrix Σ. Then
√
n(Xn − µ)

d−→
Nk(0,Σ) as n→∞. [14]

Theorem B.3 (Continuous Mapping Theorem). Let X,Xn (n ∈ N1) be
random vectors and let g be a continuous map. If Xn converges to X, then
g(Xn) converges to g(X) for the following modes of stochastic convergence:
a.s.-convergence, convergence in probability and weak convergence. [14]

Theorem B.4 (Slutsky). Let X,Xn, Yn (n ∈ N1) be random variables and

let c be a number s.t. Xn
d−→ X and Yn

d−→ c. Then Xn + Yn
d−→ X + c,

XnYn
d−→ cX, and XnY

−1
n

d−→ c−1X (provided c ̸= 0). [14]

From now on, let (Xi, Yi), i ∈ N≥1, be a random sample drawn from a
joint distribution P = PX ⊗ PY with independent components, finite mean
(µX , µY ), and finite variances σ2

X , σ
2
Y . Let rXY be the sample correlation

based on the sample (Xi, Yi), i ∈ [n], with sample size n.
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Lemma B.5.

1√
1− r2XY

d−→ 1.

Proof. Notice that rXY = sXY

s
1/2
XXS

1/2
Y Y

with sXY = n−1
∑

(Xi − X)(Yi − Y )

(similarly for sXX , sY Y ). By taking a careful look, we see that

sXY = n−1
∑

XiYi − Y n−1
∑

Xi −Xn−1
∑

Yi +X · Y

= X · Y −X · Y .

Since we have finite first two moments, we can apply the (S)LLN. Applying
(S)LLN and Slutsky yields:

sXY
d−→ E(X1Y1)− EX1EY1 = cov(X1, Y1) (similarly for sXX , sY Y ).

Since X1, Y1 are independent and since the first two moments are finite, we

have sXY
d−→ 0 and sXX

d−→ σXX < ∞ (similarly for Y ). By continuous

mapping and Slutsky, we have rXY
d−→ 0. Again by continuous mapping

and Slutsky we have 1√
1−r2XY

d−→ 1.

Proposition B.6.

rXY

√
n

d−→ N (0, 1).

Proof. By the proof of the previous lemma and the continuous mapping
theorem, we have

s
1/2
XXs

1/2
Y Y

d−→ σXσY ,

where σX , σY are the standard deviations of X1, Y1 respectively. By Slutsky
the only thing left to prove is thus

sXY

√
n

d−→ N (0, σ2
Xσ

2
Y ). (48)

By the CLT we have asymptotic normality of sXY

√
n. Since Xi are indepen-

dent of Yi, we have E(sXY

√
n) =

√
nE(sXY ) = 0. By using the fact that the
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random vectors (Xi, Yi), i ∈ N≥1, form a random sample with independent
components, the variance of sXY

√
n can be calculated as

var[sXY

√
n] =nvar[sXY ]

=nvar
[
XY −X · Y

]
=nE

[(
XY −X · Y − E

[
XY −X · Y

])2]
=nE

[(
XY −X · Y

)2]
=nE

[
XY

2 − 2X · Y ·XY +X
2
Y

2
]

=nE

[
n−2

∑
i

(
X2

i Y
2
i +

∑
j ̸=i

XiXjYiYj

)

− 2n−3
∑
k

(
X2

kY
2
k +

∑
j ̸=k

X2
kYjYk +

∑
i ̸=k

(
XiXkY

2
k +

∑
j ̸=k

XiXkYjYk

))

+n−4

(∑
i

(
X2

i +
∑
j ̸=i

XiXj

)∑
i

(
Y 2
i +

∑
j ̸=i

YiYj

))]

=n

((
1

n
− 1

n2

)
E
[
X2

1

]
E
[
Y 2
1

]
− n− 1

n2
E
[
X2

1

]
(EY1)

2

−n− 1

n2
E
[
Y 2
1

]
(EX1)

2 +
n− 1

n2
(EX1)

2 (EY1)
2

)
n↑∞−→ E

[
X2

1

]
E
[
Y 2
1

]
− E

[
X2

1

]
(EY1)

2 − E
[
Y 2
1

]
(EX1)

2 + (EX1)
2 (EY1)

2

=
(
E
[
X2

1

]
− (EX1)

2) (E [Y 2
1

]
− (EY1)

2)
=σ2

Xσ
2
Y .

Hence, we conclude that the convergence (48) indeed holds. This completes
the proof.

Proposition B.7.

t := rXY

√
n− 2

1− r2XY

d−→ N (0, 1).

Proof. Notice that t = rXY

√
n ·

√
n−2√
n
· 1√

1−rXY
. By Proposition B.6 we have

rXY

√
n

d−→ N (0, 1), obviously
√
n−2√
n
−→ 1, and by Lemma B.5 we have

1√
1−r2XY

d−→ 1. Applying Slutsky yields the desired result.
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C m-files

C.1 simultaneous.m

1 function [X,Y] = simultaneous(N)

2
3 X=zeros(N,1);

4 %declaration and initialization of vector X

5
6 Y=zeros(N,1);

7 %declaration and initialization of vector Y

8 %X represents the red/black -game ,

9 %Y represents the low/high -game

10
11 D=binornd (1,36/37 ,N,1);

12 %vector of i.i.d. bernoulli (36/37) variables

13 %with probability 1/37 ZERO will come up

14
15 for i=1:N

16 if D(i)==0

17 X(i)=D(i);

18 Y(i)=D(i);

19 %If ZERO comes up at the roulette wheel ,

20 %both games have ZERO as outcome

21 else

22 U=binornd (1 ,1/2);

23 V=binornd (1 ,1/2);

24 X(i)=D(i)+U;

25 Y(i)=D(i)+V;

26 %Conditional on "not ZERO":

27 %w.p. 1/2 you win the red/back -game ,

28 %w.p. 1/2 you win the low/high game ,

29 %both games are (cond) indepdendent.

30 end

31 end
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C.2 dalembert012.m

1 function [CX, SX , CY , SY]= dalembert012(tstop ,

Ctreshold , Cstart)

2 %Two games are played:

3 %red/black (X) and low/high (Y).

4 %Cstart is start capital.

5 %Each game has start capital Cstart.

6 %Player always stops at/before time tstop.

7 %Player always stops when cap. falls below Ctreshold

.

8
9 [X,Y] = simultaneous(tstop);

10 %the two games are simulated

11
12 CX = zeros (1+tstop ,1);

13 %declaration and initialization of vector CX

14 %vector of capital in game X

15
16 SX = zeros (1+tstop ,1);

17 %declaration and initialization of vector SX

18 %vector of stakes in game X

19
20 CY = zeros (1+tstop ,1);

21 %declaration and initialization of vector CY

22 %vector of capital in game Y

23
24 SY = zeros (1+tstop ,1);

25 %declaration and initialization of vector SY

26 %vector of stakes in game Y

27
28 CX(1) = Cstart;

29 %at beginning , capital game X = start capital

30
31 CY(1) = Cstart;

32 %at beginning , capital game Y = start capital

33
34 SX(1) = 1;

35 %first stake equals one unit in game X

36
37 SY(1) = 1;
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38 %first stake equals one unit in game Y

39
40 for i=1: tstop

41 %Game X

42 if X(i) == 2 %Winning outcome in round i

43 CX(i+1) = CX(i) + SX(i);

44 %new capital = capital + stake

45 if SX(i)>1

46 SX(i+1) = SX(i) - 1;

47 %if stake >1, next stake = stake - 1

48 else

49 SX(i+1) = SX(i);

50 %if stake <=1, next stake = stake

51 end

52 else %Losing outcome in round i

53 CX(i+1) = CX(i) - SX(i);

54 %new capital = capital - stake

55 if CX(i+1) <Ctreshold

56 SX(i+1) = 0;

57 %if new capital below level Ctreshold

58 %the player stops (so next stake = 0)

59 else

60 SX(i+1) = SX(i) + 1;

61 %if new capital => Ctreshold

62 %new stake = stake + 1

63 end

64 end

65
66 %Game Y

67 %Game Y is treated in the same way as X

68 if Y(i) == 2

69 CY(i+1) = CY(i) + SY(i);

70 if SY(i)>1

71 SY(i+1) = SY(i) - 1;

72 else

73 SY(i+1) = SY(i);

74 end

75 else

76 CY(i+1) = CY(i) - SY(i);

77 if CY(i+1) <Ctreshold

78 SY(i+1) = 0;
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79 else

80 SY(i+1) = SY(i) + 1;

81 end

82 end

83 end
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C.3 dalembert012HC.m

1 function [CX, SX , CY , SY]= dalembert012HC(tstop ,

Ctreshold , Cstart)

2 %Two games are played:

3 %red/black (X) and low/high (Y).

4 %Cstart is start capital.

5 %Each game has start capital Cstart.

6 %Player always stops at/before time tstop.

7 %Player always stops when cap. falls below Ctreshold

.

8
9 [X,Y] = simultaneous(tstop);

10 %the two games are simulated

11
12 CX = zeros (1+tstop ,1);

13 %declaration and initialization of vector CX

14 %vector of capital in game X

15
16 SX = zeros (1+tstop ,1);

17 %declaration and initialization of vector SX

18 %vector of stakes in game X

19
20 CY = zeros (1+tstop ,1);

21 %declaration and initialization of vector CY

22 %vector of capital in game Y

23
24 SY = zeros (1+tstop ,1);

25 %declaration and initialization of vector SY

26 %vector of stakes in game Y

27
28 CX(1) = 2* Cstart; %THIS HAS BEEN CHANGED , IN SUB

UNITS

29 %at beginning , capital game X = start capital

30
31 CY(1) = 2* Cstart; %THIS HAS BEEN CHANGED , IN SUB

UNITS

32 %at beginning , capital game Y = start capital

33
34 SX(1) = 2; %THIS HAS BEEN CHANGED , IN SUB UNITS

35 %first stake equals one unit in game X
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36
37 SY(1) = 2; %THIS HAS BEEN CHANGED , IN SUB UNITS

38 %first stake equals one unit in game Y

39
40 for i=1: tstop

41 %Game X

42 if X(i) == 2 %Winning outcome in round i

43 CX(i+1) = CX(i) + SX(i);

44 %new capital = capital + stake

45 if SX(i)>2 %THIS HAS BEEN CHANGED ,

IN SUB UNITS

46 SX(i+1) = SX(i) - 2; %THIS

HAS BEEN CHANGED , IN SUB

UNITS

47 %if stake >2, next stake = stake - 2 THIS

HAS BEEN CHANGED , IN S

48 else

49 SX(i+1) = SX(i);

50 %if stake <=2, next stake = stake %THIS

HAS BEEN CHANGED , IN SUB

51 end

52 %THIS PART HAS BEEN ADDED/CHANGED

53 elseif X(i) == 1 %Loss due to non -zero outcome

in round i

54 CX(i+1) = CX(i) - SX(i);

55 %new capital = capital - stake

56 if CX(i+1) <2* Ctreshold

57 SX(i+1) = 0;

58 %if new capital below level 2* Ctreshold

59 %the player stops (so next stake = 0)

60 else

61 SX(i+1) = SX(i) + 2;

62 %if new capital => 2* Ctreshold

63 %new stake = stake + 2

64 end

65 else %Loss due to zero outcome in round i

66 CX(i+1) = CX(i) - (SX(i))/2;

67 %new capital = capital - stake/2

68 if CX(i+1) <2* Ctreshold

69 SX(i+1) = 0;

70 %if new capital below level 2* Ctreshold
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71 %the player stops (so next stake = 0)

72 else

73 SX(i+1) = SX(i) + 2;

74 %if new capital => 2* Ctreshold

75 %new stake = stake + 2

76 end

77 end

78 %END OF 'THIS PART HAS BEEN ADDED/CHANGED '
79
80 %Game Y

81 %Game Y is treated in the same way as X

82 %THE SAME CHANGED HAVE BEEN APPLIED TO THE Y-

PART OF THIS CODE

83 if Y(i) == 2

84 CY(i+1) = CY(i) + SY(i);

85 if SY(i)>2

86 SY(i+1) = SY(i) - 2;

87 else

88 SY(i+1) = SY(i);

89 end

90 elseif Y(i) == 1

91 CY(i+1) = CY(i) - SY(i);

92 if CY(i+1) <2* Ctreshold

93 SY(i+1) = 0;

94 else

95 SY(i+1) = SY(i) + 2;

96 end

97 else

98 CY(i+1) = CY(i) - (SY(i))/2;

99 if CY(i+1) <2* Ctreshold

100 SY(i+1) = 0;

101 else

102 SY(i+1) = SY(i) + 2;

103 end

104 end

105 end
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C.4 dalembertstatistical012.m

1 function [CXfinal , CYfinal , CTfinal] =

dalembertstatistical012(tstop , Ctreshold , Cstart ,

n)

2
3 %CXfinal: final capital levels w.r.t X,

4 %CYfinal: final capital levels w.r.t Y,

5 %each entry represents one game of (at most) tstop

rounds ,

6 %CTfinal = CXfinal + CYfinal.

7 %When the player plays X and Y simultaneously ,

8 %then CTfinal = total final capital levels

9
10 CXfinal=zeros(n,1);

11 %declaration and initialization of vector CXfinal

12
13 CYfinal=zeros(n,1);

14 %declaration and initialization of vector CYfinal

15
16 for i=1:n

17 [CX , SX, CY, SY]= dalembert012(tstop , Ctreshold ,

Cstart);

18 CXfinal(i)=CX(1+ tstop);

19 %CX(1+ tstop) is final capital in "i-th X-game"

20 CYfinal(i)=CY(1+ tstop);

21 %CY(1+ tstop) is final capital in "i-th Y-game"

22 end

23 CTfinal=CXfinal+CYfinal;

24 %total capital = capital X + capital Y
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C.5 dalembertstatistical012HC.m

1 function [CXfinal , CYfinal , CTfinal] =

dalembertstatistical012HC(tstop , Ctreshold ,

Cstart , n)

2
3 %CXfinal: final capital levels w.r.t X,

4 %CYfinal: final capital levels w.r.t Y,

5 %each entry represents one game of (at most) tstop

rounds ,

6 %CTfinal = CXfinal + CYfinal.

7 %When the player plays X and Y simultaneously ,

8 %then CTfinal = total final capital levels

9
10 CXfinal=zeros(n,1);

11 %declaration and initialization of vector CXfinal

12
13 CYfinal=zeros(n,1);

14 %declaration and initialization of vector CYfinal

15
16 for i=1:n

17 [CX , SX, CY, SY]= dalembert012HC(tstop , Ctreshold

, Cstart);

18 %For the Holland Casino scenario we use

19 %dalembert012HC.m instead of dalembert012.m

20 CXfinal(i)=CX(1+ tstop);

21 %CX(1+ tstop) is final capital in "i-th X-game"

22 CYfinal(i)=CY(1+ tstop);

23 %CY(1+ tstop) is final capital in "i-th Y-game"

24 end

25 CTfinal=CXfinal+CYfinal;

26 %total capital = capital X + capital Y
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C.6 coupling.m

1 function [hatX , hatY] = coupling(X,Y)

2
3 %This function constructs a coupling of the X- and Y

-games.

4
5 N=length(Y);

6
7 M=binornd (1,36/37 ,N,1);

8 %Random vector for deciding when there is a zero in

the coupled Y-game.

9
10 Z=binornd (1,1/2,N,1);

11 %Random vector for constructing new non -zero

outcomes to replace old

12 %zero outcomes in the original Y-game.

13
14 hatX=X;

15 %The coupled X-game is by construction equal the

original X-game.

16
17 hatY=zeros(N,1);

18 %Declaration and initialisation of coupled Y-game.

19
20 for t=1:N

21 if M(t,1)==0

22 %Vector M tells us that there is a zero in

the coupled Y-game.

23 hatY(t,1)=0;

24 else

25 %Vector M tells us there is no zero in the

coupled Y-game.

26 if Y(t,1)==0

27 %When there is a zero in the original Y-

game ,

28 %replace that old zero by a non -zero

outcome.

29 hatY(t,1)=1+Z(t,1);

30 else
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31 %When there is a non -zero outcome in the

original Y-game ,

32 %retain that non -zero outcome in the

coupled Y-game.

33 hatY(t,1)=Y(t,1);

34 end

35 end

36 end
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C.7 countingdifferences.m

1 function D = countingdifferences(X1,X2)

2
3 %Function for counting the number of difference

components between two

4 %vectors of equal dimension.

5
6 D=0;

7 %Counting starts with 0.

8
9 N=length(X1);

10 %Dimension of the vectors.

11
12 for i=1:N

13 if X1(i,1)==X2(i,1)

14 D=D;

15 %We do not count a difference when there is

no difference.

16 else

17 D=D+1;

18 %We do count a difference when there is a

difference.

19 end

20 end
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C.8 dalembert012adapted.m

1 function [X, CX , SX, WX, hatX , hatCX , hatSX , hatWX ,

Y, CY, SY, WY , hatY , hatCY , hatSY , hatWY ]=

dalembert012adapted(tstop , Ctreshold , Cstart)

2 %

3 % This function can be used for

4 % simulating random walks related to X,Y, coupled Y.

5 %

6 % Random walk: #wins - #losses.

7 %

8 % This function can be used for

9 % simulating capital/stake -levels of X, Y, coupled Y

.

10 %

11 % This function is an adaptation of dalembert012.m

12 %

13 % Two games are played: red/black (X) and low/high (

Y).

14 % Cstart is the start capital. Each game has start

capital Cstart.

15 % Player always stops at/before time tstop.

16 % Player always stops when capital falls below

Ctreshold.

17 % These rules also apply to the coupling (hatX , hatY

).

18 %

19
20 [X,Y] = simultaneous(tstop);

21 %the two games are simulated

22
23 [hatX , hatY] = coupling(X,Y);

24 %independent coupling of X,Y

25
26 hatWX=zeros (1+tstop , 1);

27 WX=zeros (1+tstop , 1);

28 %declaration and initialization of random walk for (

coupled) X-game

29 %declaration and initialization of random walk for

X-game

30
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31 hatCX = zeros (1+tstop ,1);

32 CX = zeros (1+tstop ,1);

33 %declaration and initialization of vectors hatCX , CX

34 %vectors of capital in (coupled) X-game and X-game

resp.

35
36 hatSX = zeros (1+tstop ,1);

37 SX = zeros (1+tstop ,1);

38 %declaration and initialization of vectors hatSX , SX

39 %vectors of stakes in (coupled) X-game and X-game

resp.

40
41 hatWY=zeros (1+tstop ,1);

42 WY=zeros (1+tstop , 1);

43 %declaration and initialization of random walk for

coupled Y-game

44 %declaration and initialization of random walk for

Y-game

45
46 hatCY = zeros (1+tstop ,1);

47 CY = zeros (1+tstop ,1);

48 %declaration and initialization of vectors hatCY , CY

49 %vectors of capital in coupled Y-game and Y-game

resp.

50
51 hatSY = zeros (1+tstop ,1);

52 SY = zeros (1+tstop ,1);

53 %declaration and initialization of vectors hatSY , SY

54 %vectors of stakes in coupled Y-game and Y-game resp

.

55
56 hatCX (1) = Cstart;

57 CX(1) = Cstart;

58 %at beginning , capital (coupled) X-game = start

capital

59 %at beginning , capital X-game = start capital

60
61 hatCY (1) = Cstart;

62 CY(1) = Cstart;

63 %at beginning , capital coupled Y-game = start

capital
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64 %at beginning , capital Y-game = start capital

65
66 hatSX (1) = 1;

67 SX(1) = 1;

68 %first stake equals one unit in (coupled) X-game

69 %first stake equals one unit in X-game

70
71 hatSY (1) = 1;

72 SY(1) = 1;

73 %first stake equals one unit in coupled Y-game

74 %first stake equals one unit in Y-game

75
76 for i=1: tstop

77 %Game X

78 if X(i) == 2 %Winning outcome in round i

79 CX(i+1) = CX(i) + SX(i);

80 WX(i+1) = WX(i) + 1;

81 %new capital = capital + stake

82 %random walk makes a move upwards

83 if SX(i)>1

84 SX(i+1) = SX(i) - 1;

85 %if stake >1, next stake = stake - 1

86 else

87 SX(i+1) = SX(i);

88 %if stake <=1, next stake = stake

89 end

90 else %Losing outcome in round i

91 CX(i+1) = CX(i) - SX(i);

92 WX(i+1) = WX(i) - 1;

93 %new capital = capital - stake

94 %random walk makes a move downwards

95 if CX(i+1) <Ctreshold

96 SX(i+1) = 0;

97 %if new capital below level Ctreshold

98 %the player stops (so next stake = 0)

99 else

100 SX(i+1) = SX(i) + 1;

101 %if new capital => Ctreshold

102 %new stake = stake + 1

103 end

104 end
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105
106 %Game Y

107 %Game Y is treated in the same way as X

108 if Y(i) == 2

109 CY(i+1) = CY(i) + SY(i);

110 WY(i+1) = WY(i) + 1;

111 if SY(i)>1

112 SY(i+1) = SY(i) - 1;

113 else

114 SY(i+1) = SY(i);

115 end

116 else

117 CY(i+1) = CY(i) - SY(i);

118 WY(i+1) = WY(i) - 1;

119 if CY(i+1) <Ctreshold

120 SY(i+1) = 0;

121 else

122 SY(i+1) = SY(i) + 1;

123 end

124 end

125 end

126
127 % Same iterations for the coupling (hatX , hatY).

128 % Read "( coupled) X-game" when you read "X-game".

129 % Read "coupled Y-game" when you read "Y-game".

130 for i=1: tstop

131 %Game X

132 if hatX(i) == 2 %Winning outcome in round i

133 hatCX(i+1) = hatCX(i) + hatSX(i);

134 hatWX(i+1) = hatWX(i) + 1;

135 %new capital = capital + stake

136 %random walk makes a move upwards

137 if hatSX(i) >1

138 hatSX(i+1) = hatSX(i) - 1;

139 %if stake >1, next stake = stake - 1

140 else

141 hatSX(i+1) = hatSX(i);

142 %if stake <=1, next stake = stake

143 end

144 else %Losing outcome in round i

145 hatCX(i+1) = hatCX(i) - hatSX(i);
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146 hatWX(i+1) = hatWX(i) - 1;

147 %new capital = capital - stake

148 %random walk makes a move downwards

149 if hatCX(i+1) <Ctreshold

150 hatSX(i+1) = 0;

151 %if new capital below level Ctreshold

152 %the player stops (so next stake = 0)

153 else

154 hatSX(i+1) = hatSX(i) + 1;

155 %if new capital => Ctreshold

156 %new stake = stake + 1

157 end

158 end

159
160 %Game Y

161 %Game Y is treated in the same way as X

162 if hatY(i) == 2

163 hatCY(i+1) = hatCY(i) + hatSY(i);

164 hatWY(i+1) = hatWY(i) + 1;

165 if hatSY(i) >1

166 hatSY(i+1) = hatSY(i) - 1;

167 else

168 hatSY(i+1) = hatSY(i);

169 end

170 else

171 hatCY(i+1) = hatCY(i) - hatSY(i);

172 hatWY(i+1) = hatWY(i) - 1;

173 if hatCY(i+1) <Ctreshold

174 hatSY(i+1) = 0;

175 else

176 hatSY(i+1) = hatSY(i) + 1;

177 end

178 end

179 end
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C.9 dalembertstatistical012adapted.m

1 function [WX21absolute , WY21absolute , CXfinal ,

CYfinal , CTfinal , hatWX21absolute ,

hatWY21absolute , hatCXfinal , hatCYfinal ,

hatCTfinal ,D] = dalembertstatistical012adapted(

tstop , Ctreshold , Cstart , n)

2 %

3 % This function is meant for doing multiple

simulations of the X-,Y-, and

4 % coupled -Y-games , and to collect a data set (based

on simulations) of

5 % associated features of these games:

6 % - final capital levels of (X,Y) and their sum (the

total final capital);

7 % - final capital levels of the coupling , and their

sum;

8 % - number of difference between original (X,Y) and

coupling;

9 % - 'final distance ' from origin of corresponding

random walks ,

10 % - position random walk = net number of wins.

11 % CXfinal: vector of final capital levels w.r.t X;

12 % CYfinal: vector of final capital levels w.r.t Y;

13 % CTfinal = CXfinal + CYfinal = vector of total

final capital levels;

14 % hatCXfinal , hatCYfinal , hatCTfinal are defined

similarily , but based on

15 % coupling of (X,Y);

16 % each entry of such a vector represents

17 % one game of (at most) tstop rounds.

18 %

19 hatCXfinal=zeros(n,1);

20 CXfinal=zeros(n,1);

21 %declaration and initialization of vectors

hatCXfinal , CXfinal.

22
23 hatCYfinal=zeros(n,1);

24 CYfinal=zeros(n,1);

25 %declaration and initialization of vectors

hatCYfinal , CYfinal.
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26
27 hatWX21absolute=zeros(n,1);

28 WX21absolute=zeros(n,1);

29 %declaration and initialization of vectors

hatWX21absolute , WX21absolute.

30
31 hatWY21absolute=zeros(n,1);

32 WY21absolute=zeros(n,1);

33 %declaration and initialization of vectors

hatWY21absolute , WY21absolute.

34
35 D=zeros(n,1);

36 %declaration and initialization of vector D

37
38 for i=1:n

39 [X, CX, SX, WX, hatX , hatCX , hatSX , hatWX , Y, CY

, SY, WY, hatY , hatCY , hatSY , hatWY]=

dalembert012adapted(tstop , Ctreshold , Cstart)

;

40 %[hatX , hatY] is coupling of (X,Y);

41 CXfinal(i)=CX(1+ tstop);

42 hatCXfinal(i)=hatCX (1+ tstop);

43 WX21absolute(i)=abs(WX(1+ tstop));

44 hatWX21absolute(i)=abs(hatWX (1+ tstop));

45 %CX(1+ tstop) is final capital in "i-th X-game"

46 %abs(WX(1+ tstop)) is distance from origin at the

end of "i-th X-game"

47 CYfinal(i)=CY(1+ tstop);

48 hatCYfinal(i)=hatCY (1+ tstop);

49 WY21absolute(i)=abs(WY(1+ tstop));

50 hatWY21absolute(i)=abs(hatWY (1+ tstop));

51 D(i)=countingdifferences(Y,hatY);

52 %CY(1+ tstop) is final capital in "i-th Y-game"

53 %abs(WY(1+ tstop)) is distance from origin at the

end of "i-th Y-game"

54 end

55 CTfinal=CXfinal+CYfinal;

56 hatCTfinal=hatCXfinal+hatCYfinal;

57 %total capital = capital X + capital Y
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C.10 Pmatrix.m

1 function P = Pmatrix(m,n)

2 % m = maximal capital + 1

3 % n = maximal stake + 1

4 %indices start by one

5 %so index 1 stands for capital/stake 0,

6 % index 2 stands for capital/stake 1,

7 %and so on.

8 P=zeros(m,n,m,n);

9 for i=1:m

10 for j=1:n

11 c=i-1;

12 %capital = capital index - 1

13 s=j-1;

14 %stake = stake index -1

15 if s==0

16 P(i,j,i,j)=1;

17 %zero stake means that nothing changes

18 else

19 %when stake is not zero ,

20 %so when you are still playing ,

21 %cpositive = new capital after winning

22 %ipositive = new capital index after

winning

23 %cnegative = new capital after losing

24 %inegative = new capital index after

losing

25 %spositive = new stake after winning

26 %jpositive = new stake index after

winning

27 %snegative = new stake after losing

28 %jnegative = new stake index after

losing

29 cpositive = c+s;

30 cpositive = min(cpositive , m-1);

31 spositive = s-1;

32 spositive = max(spositive , 1);

33 ipositive = cpositive + 1;

34 jpositive = spositive + 1;

35 P(i,j,ipositive , jpositive)=18/37;
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36 %probability that you win is 18/37

37 cnegative = c-s;

38 cnegative = max(cnegative , 0);

39 if cnegative < 16

40 snegative = 0;

41 %stop playing when new capital falls

42 %below treshold of 16,

43 %that is , choose zero as new stake.

44 else

45 snegative = s+1;

46 snegative = min(snegative , n-1);

47 %when you lose and you still have

48 %capital of at least 16 (our

treshold),

49 %increase stake with 1

50 end

51 inegative = cnegative + 1;

52 jnegative = snegative + 1;

53 P(i,j,inegative , jnegative)=19/37;

54 %probability that you lose is 19/37

55 end

56 end

57 end
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C.11 PmatrixHC.m

1 function P = PmatrixHC(m,n)

2 % m = maximal capital + 1

3 % n = maximal stake + 1

4 %indices start by one

5 %so index 1 stands for capital/stake 0,

6 % index 2 stands for capital/stake 1,

7 %and so on.

8 P=zeros(m,n,m,n);

9 for i=1:m

10 for j=1:n

11 c=i-1;

12 %capital = capital index - 1

13 s=j-1;

14 %stake = stake index -1

15 if s==0

16 P(i,j,i,j)=1;

17 %zero stake means that nothing changes

18 else

19 %when stake is not zero ,

20 %so when you are still playing ,

21 %cpositive = new capital after winning

22 %ipositive = new capital index after

winning

23 %cnegative = new capital after non -zero

loss %HAS BEEN CHANGED

24 %inegative = new capital index non -zero

loss %HAS BEEN CHANGED

25 % czero = new capital after zero

outcome %HAS BEEN ADDED

26 % izero = new capital index after

zero outcome %HAS BEEN ADD

27 %spositive = new stake after winning

28 %jpositive = new stake index after

winning

29 %snegative = new stake after non -zero

loss %HAS BEEN CHANGED

30 %jnegative = new stake index after non -

zero loss %HAS BEEN CHAN
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31 % szero = new stake after zero

outcome %HAS BEEN ADDED

32 % jzero = new stake index after zero

outcome %HAS BEEN ADDED

33 cpositive = c+s;

34 cpositive = min(cpositive , m-1);

35 spositive = s-2; %THIS HAS BEEN CHANGED.

36 spositive = max(spositive , 2); %THIS HAS

BEEN CHANGED.

37 ipositive = cpositive + 1;

38 jpositive = spositive + 1;

39 P(i,j,ipositive , jpositive)=18/37;

40 %probability that you win is 18/37

41 cnegative = c-s;

42 cnegative = max(cnegative , 0);

43 if cnegative < 32 %THIS HAS BEEN CHANGED

44 snegative = 0;

45 %stop playing when new capital falls

46 %below treshold of 16 (32 sub units)

, %THIS HAS BEEN ...

47 %that is , choose zero as new stake.

48 else

49 snegative = s+2; %THIS HAS BEEN

CHANGED

50 snegative = min(snegative , n-1);

51 %when you lose and you still have

52 %capital of at least 16 (32 sub

units) (our treshold),%THIS

53 %increase stake with 1 (2 sub units)

%THIS HAS BEEN CHANGED

54 end

55 inegative = cnegative + 1;

56 jnegative = snegative + 1;

57 P(i,j,inegative , jnegative)=18/37; %THIS

HAS BEEN CHANGED

58 %probability of non -zero loss is 18/37 %

THIS HAS BEEN CHANGED

59
60 %THIS HAS BEEN ADDED%

61 czero = c-ceil(s/2);

62 czero = max(czero , 0);
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63 if czero < 32

64 szero = 0;

65 %stop playing when new capital falls

66 %below treshold of 16 (32 sub units)

,

67 %that is , choose zero as new stake.

68 else

69 szero = s+2;

70 szero = min(szero , n-1);

71 %when you lose and you still have

72 %capital of at least 16 (32 sub

units) (our treshold),

73 %increase stake with 1 (2 sub units)

74 end

75 izero = czero + 1;

76 jzero = szero + 1;

77 P(i,j,izero , jzero)=1/37;

78 %probability of zero outcome is 1/37

79 end

80 end

81 end
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C.12 PsimHC.m

1 function P = PsimHC(h)

2 n = 99*19*99*19;

3 P = sparse(n, n);

4 P = reshape(ndSparse(P) ,[99 ,19 ,99,19,99 ,19,99,19]);

5 for i=1:99

6 for j=1:19

7 for k=1:99

8 for l=1:19

9 cX = i-1;

10 sX = j-1;

11 cY = k-1;

12 sY = l-1;

13 sXwin = max(sX -2,2);

14 sYwin = max(sY -2,2);

15 sXloss= min(sX+2 ,18);

16 sYloss= min(sY+2 ,18);

17 cXwin = max(cX+sX ,98);

18 cYwin = max(cY+sY ,98);

19 cXloss= min(cX -sX ,0);

20 cYloss= min(cY -sY ,0);

21 if h==1 %zero outcome treated as

regular loss

22 P(i,j,k,l,cXwin+1,sXwin+1,cYwin

+1,sYwin +1) = 9/37; %++

23 if cX-sX <32

24 P(i,j,k,l,cXloss+1,1,cYwin+1,

sYwin +1)= 9/37; % -+

25 if cY-sY <32

26 P(i,j,k,l,cXloss+1,1,

cYloss +1,1) = 10/37; %

--

27 P(i,j,k,l,cXwin+1,sXwin

+1,cYloss +1,1) = 9/37;

%+-

28 else

29 P(i,j,k,l,cXloss+1,1,

cYloss+1,sYloss +1)

=10/37; %--
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30 P(i,j,k,l,cXwin+1,sXwin

+1,cYloss+1,sYloss +1)

=9/37; %+-

31 end

32 else

33 if cY-sY <32

34 P(i,j,k,l,cXloss+1,sXloss

+1,cYloss +1,1) =

10/37; %--

35 P(i,j,k,l,cXwin+1,sXwin

+1,cYloss +1,1) = 9/37;

%+-

36 else

37 P(i,j,k,l,cXloss+1,sXloss

+1,cYloss+1,sYloss +1)

=10/37; %--

38 P(i,j,k,l,cXwin+1,sXwin

+1,cYloss+1,sYloss +1)

=9/37; %+-

39 end

40 end

41 else %h=2, Holland Casino policy

42 cZ=min(cX-ceil(sX/h) ,0);

43 P(i,j,k,l,cXwin+1,sXwin+1,cYwin

+1,sYwin +1) = 9/37; %++

44 if cX-sX <32

45 P(i,j,k,l,cXloss+1,1,cYwin+1,

sYwin +1)= 9/37; % -+

46 if cY-sY <32

47 P(i,j,k,l,cXloss+1,1,

cYloss +1,1) = 9/37; %

--

48 P(i,j,k,l,cXwin+1,sXwin

+1,cYloss +1,1) = 9/37;

%+-

49 else

50 P(i,j,k,l,cXloss+1,1,

cYloss+1,sYloss +1)

=9/37; %--

51 P(i,j,k,l,cXwin+1,sXwin

+1,cYloss+1,sYloss +1)
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=9/37; %+-

52 end

53 else

54 if cY-sY <32

55 P(i,j,k,l,cXloss+1,sXloss

+1,cYloss +1,1) = 9/37;

%--

56 P(i,j,k,l,cXwin+1,sXwin

+1,cYloss +1,1) = 9/37;

%+-

57 else

58 P(i,j,k,l,cXloss+1,sXloss

+1,cYloss+1,sYloss +1)

=9/37; %--

59 P(i,j,k,l,cXwin+1,sXwin

+1,cYloss+1,sYloss +1)

=9/37; %+-

60 end

61 end

62 if cX-sX/h<32

63 if cY-sY/h<32

64 P(i,j,k,l,cZ+1,1,cZ+1,1)

=1/37; %zz

65 else

66 P(i,j,k,l,cZ+1,1,cZ+1,

sYloss +1) =1/37; %zz

67 end

68 else

69 if cY-sY/h<32

70 P(i,j,k,l,cZ+1,sXloss+1,

cZ+1,1) =1/37; %zz

71 else

72 P(i,j,k,l,cZ+1,sXloss+1,

cZ+1,sYloss +1) =1/37;

%zz

73 end

74 end

75 end

76 end

77 end

78 end
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79 end
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C.13 initialdistribution.m

1 function v = initialdistribution(m,n,startC ,startS)

2 % m = maximal capital + 1

3 % n = maximal stake + 1

4 %indices start by one

5 %so index 1 stands for capital/stake 0,

6 % index 2 stands for capital/stake 1,

7 %and so on.

8 %startC = start capital ,

9 %startS = start stake.

10 v=zeros(m,n);

11 for i=1:m

12 for j=1:n

13 c=i-1;

14 %capital = capital index - 1

15 s=j-1;

16 %stake = stake index -1

17 if c== startC

18 if s== startS

19 v(i,j)=1;

20 %W.p. 1 we start in (StartC , StartS)

21 end

22 end

23 end

24 end
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C.14 Distr.m

1 function D = Distr(k)

2
3 %k must be a row vector with 500 components , giving

the stationary

4 %distribution of the possible capital/stake -pairs.

5 %k must be organised in such a way that the first

block of 50 components

6 %stands for stake 0, the second block for stake 1

etcetera , and that the

7 %first component of a block stands for capital 0,

the second component for

8 %capital 1 and so on.

9
10 D=zeros (1 ,50);

11 %Declaration and initialization of row vector with

50 components , each

12 %component for each possible value of our capital

level.

13
14 for j=1:50 %This loop runs through all possible

values of capital

15 for i=1:10

16 D(1,j)=D(1,j)+k(1, j+50*(i-1));

17 end

18 end

19
20 %We end up with a row vector D giving the stationary

distribution of the

21 %capital levels.
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C.15 DistrHC.m

1 function D = DistrHC(k)

2 %THE NUMBERS IN THIS PROGRAM HAVE BEEN MODIFIED

3 %k must be a row vector with 99*19 components ,

giving the stationary

4 %distribution of the possible capital/stake -pairs.

5 %k must be organised in such a way that the first

block of 99 components

6 %stands for stake 0, the second block for stake 1

etcetera , and that the

7 %first component of a block stands for capital 0,

the second component for

8 %capital 1 and so on.

9
10 D=zeros (1 ,99);

11 %Declaration and initialization of row vector with

00 components , each

12 %component for each possible value of our capital

level.

13
14 for j=1:99 %This loop runs through all possible

values of capital

15 for i=1:19

16 D(1,j)=D(1,j)+k(1, j+99*(i-1));

17 end

18 end

19
20 %We end up with a row vector D giving the stationary

distribution of the

21 %capital levels.
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C.16 counting.m

1 function [count , countcum] = counting(x,y)

2
3 %x must be a column vector.

4 %y must be a number.

5 %count is the number of times that y appears in the

components of x.

6 %countcum is the number of components that are less

or equal to y.

7
8 l=length(x);

9 %Length/dimension of vector x.

10
11 count =0;

12 %Counting starts with 0.

13
14 countcum =0;

15 %Counting start with 0.

16
17 %Loop for counting the number of times that y

appears in x.

18 for i=1:l

19 if x(i,1) == y

20 count = count + 1;

21 %Count when component of x equals y.

22 else

23 count = count;

24 %Do NOT count component of x does NOT equal

y.

25 end

26 end

27
28 %Loop for counting the number of components that are

less or equal to y

29 for i=1:l

30 if x(i,1) <= y

31 countcum = countcum + 1;

32 %Count when component of x is less or equal

to y.

33 else

88



34 countcum = countcum;

35 %Do NOT count when component of x is larger

than y.

36 end

37 end
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C.17 conditionalaverage.m

1 function [ccL , ccl , cch , ccH] = conditionalaverage(x

,y)

2 % N is the number of observations

3 % NL is the number of observations below y

4 % Nl is the number of observations below or equal to

y

5 % Nh is the number of observations above or equal to

y

6 % NH is the number of observations above y

7 % sumL is the sum of all observations below y

8 % suml is the sum of all observations below or equal

to y

9 % sumh is the sum of all observations above or equal

to y

10 % sumH is the sum of all observations above y

11 % ccL is the average of all observations below y

12 % ccl is the average of all observations below or

equal to y

13 % cch is the average of all observations above or

equal to y

14 % ccH is the average of all observations above y

15 N=length(x);

16 NL = 0;

17 sumL =0;

18 Nl = 0;

19 suml =0;

20 Nh = 0;

21 sumh =0;

22 NH = 0;

23 sumH =0;

24 for i=1:N

25 if x(i,1) < y

26 NL=NL+1;

27 Nl=Nl+1;

28 sumL=sumL+x(i,1);

29 suml=suml+x(i,1);

30 elseif x(i,1) == y

31 Nl=Nl+1;

32 Nh=Nh+1;
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33 suml=suml+x(i,1);

34 sumh=sumh+x(i,1);

35 else

36 NH=NH+1;

37 Nh=Nh+1;

38 sumH=sumH+x(i,1);

39 sumh=sumh+x(i,1);

40 end

41 end

42
43 if sumL ==0

44 ccL = -10^12;

45 else

46 ccL=sumL/NL;

47 end

48
49 if suml ==0

50 ccl = -10^12;

51 else

52 ccl=suml/Nl;

53 end

54
55 if sumh ==0

56 cch = -10^12;

57 else

58 cch=sumh/Nh;

59 end

60
61 if sumH ==0

62 ccH = -10^12;

63 else

64 ccH=sumH/NH;

65 end
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C.18 sumfinalcapital.m

1 function CTT = sumfinalcapital(CTfinal , y,

nrsummands , n)

2 CTT=zeros(n,1);

3 j=1;

4 for i=1:n

5 t=0;

6 while t<nrsummands

7 if CTfinal(j,1) > y

8 CTT(i,1)=CTT(i,1)+CTfinal(j,1);

9 j=j+1;

10 t=t+1;

11 %If final capital is large enough ,

record evening

12 else

13 j=j+1;

14 %Else , move on to next evening

15 end

16 end

17 end

92


	Introduction
	Roulette
	Explanation of the roulette game
	Roulette in Holland Casino
	Holland Casino
	The rules of roulette in Holland Casino

	The d'Alembert system

	Analysis of money laundering case
	Introduction
	(In)dependence of the simultaneous games
	The dependence of the two simultaneous games
	An independent coupling of the two games
	Quantification of differences between original and coupling
	Differences in capital between original and coupling
	Simulations of capital differences 

	The roulette games as Markov process
	One game as Markov chain
	Simultaneous games as Markov chain
	The total capital level in the two simultaneous games
	Markov chain description of a single game under the Holland Casino policy for zero outcomes
	Markov chain description of simultaneous games under the Holland Casino policy for zero outcomes
	Doing computations with the Markov model for the simultaneous games

	Simulations
	Simulations when zero is treated as regular loss
	Simulations under the rules of Holland Casino

	Forensic statistical analysis
	The likelihood ratio
	Analysis of the client's story


	Conclusion
	References
	Preliminary material
	Discrete-time Markov chains
	Distributions and transition probabilities
	Communicating classes and their class properties
	Stationary distributions and limiting behavior


	Testing significance of sample correlation
	m-files
	simultaneous.m
	dalembert012.m
	dalembert012HC.m
	dalembertstatistical012.m
	dalembertstatistical012HC.m
	coupling.m
	countingdifferences.m
	dalembert012adapted.m
	dalembertstatistical012adapted.m
	Pmatrix.m
	PmatrixHC.m
	PsimHC.m
	initialdistribution.m
	Distr.m
	DistrHC.m
	counting.m
	conditionalaverage.m
	sumfinalcapital.m


