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Abstract

We study the Just-In-Time scheduling problem minimizing
P

j wj(Cj � dj)
2 for jobs with unit

processing times. The focus lays on the problem with a single machine, but when possible, we
expand our findings to the identical parallel machine environment. It is unknown whether this
problem, for a single machine, is in NP. An application of this problem is to minimize fuel use over
all transport freighters passing a lock or parallel locks. We explain how the problem for fixed starting,
and completion times, can be solved as an assignment problem. Thus, the problem with integral
input and integral starting and completion times, can be solved in polynomial time. We give an
e↵ective so-called block merging algorithm to solve the problem for a given job sequence. We apply
this procedure to problems with unit weight. Then we show how to distribute the jobs over the m
machines, such that the problem can be solved as m single machine problems. For a single common
due date, we can e↵ectively solve the problem for a single machine. In the identical parallel machine
environment, we show how to e↵ectively solve the problem for a large enough due date. When the
due date is smaller, we will give an exponential procedure to solve the problem. For the general
problem we give a local search heuristic and a polynomial time greedy heuristic. Finally, for a fixed
number of distinct due dates, we give a fully polynomial additive approximation scheme.
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1 Introduction

For financial and environmental reasons, it is preferred to e�ciently transport goods with a low fuel
consumption. A paper by Buchem et al. [8], considers fuel consumption of vessels when passing locks for
inland waterway transportation. The paper optimizes the fuel use of a given ship, in a stochastic setting.
One can also consider to schedule the arrival of multiple vessels at a lock to minimize the total fuel use
of vessels. Let dj be the optimal time for vessel j to undock, and let the lock be scheduled such, that
vessel j undocks at time Cj . It is mentioned that fuel use is cubic in the velocity of the vessel, and as a
result, a deviation � in the planned operation time of the lock results in an extra amount of fuel needed
for the vessel, that is quadratic in �. As fuel use di↵ers between distinct vessels, the extra fuel use is
scaled by a certain weight wj for vessel j. As a result the total extra fuel necessary is wj(Cj � dj)2.
Minimizing the overall fuel use of all vessels is now equivalent to minimizing

P
j wj(Cj�dj)2. We assume

that pj , the time between docking and undocking at a lock, is a constant unit of time for any vessel j.
Furthermore, we assume that the capacity of the lock is only a single vessel, implying that the values Cj

need to di↵er by at least one.

We will formalise this problem as a scheduling problem, and present, exact solution approaches for
special cases of this problem, and heuristic algorithms and an additive approximation scheme for the
general problem.

Earlier research on the problem minimizing
P

j wj(Cj � dj)2 has not yet been focused on jobs with
unit processing times. Many special cases of the problem, including the general problem itself, are easier
to solve for jobs with unit processing times than for jobs with general processing times. As a result, we
will find a lot of new results by restricting to jobs with unit processing times. For a lot of special cases
we will find a polynomial solution method. Another distinction between this thesis and other research is
that many papers only consider heuristics that give schedules without idle time between jobs (for exam-
ple the following papers [21],[29],[35],[36],[37],[38]). By contrast we will research occurrences of idle time
between jobs in optimal schedules in order to give an additive approximation scheme. Except when all
the jobs share a common due date, idle time can occur between jobs in an optimal schedule. Therefore,
we will also consider schedules with idle time between jobs.

Furthermore Tjark Vredeveld, Moritz Buchem and I are planning to write a paper on the schedul-
ing problem researched in this thesis. This will include multiple special cases of this problem which we
have managed to solve up to optimality and the found additive approximation scheme for the general
problem. For one of the special cases we have found an exponential solution method. We will revisit this
special case in the hope to find a polynomial solution method instead.

1.1 The problem of interest

We model this lock scheduling problem as a machine scheduling problem. We have n jobs, representing
the vessels, that need to be scheduled on one machine, representing a lock. The time for the machine to
process job j is the processing time pj , which we assume to be pj = 1, for each job j. Furthermore, each
job is given a due date dj , representing the preferred time of undocking, and a weight wj , representing
the proportional fuel use. We assume that all values are positive rationals, i.e., wj , dj 2 Q+, for each job j.

A schedule � can be specified by either the starting, or completion times of all jobs. A schedule �
is feasible when each job starts at or after time 0, and every machine processes at most one job at a
time. The starting time Sj and completion time Cj of job j represent the time of docking and the
time of undocking respectively, for all j. For a given feasible schedule �, we refer to the objective valueP

j wj(Cj�dj)2 as the cost of the schedule. When a feasible schedule �⇤ attains the minimal cost over all
feasible schedules �, the schedule �⇤ is called an optimal schedule. We note that for any given instance,
an optimal schedule exists, as stated by Theorem 3.5 in Section 3.2.1.

We observe, that the cost increases when a job is scheduled further from its due date. Likewise, it
decreases when a job is scheduled closer to its due date. This is a fundamental basic property of our
objective function and for Just-In-Time scheduling problems in general. These Just-In-Time schedul-
ing problems give an incentive for jobs to be completed close to their due date. Reasons for this are
to ensure fresh goods, prevent storage costs or to deliver to clients with a limited availability for example.

In general we consider the single machine problem. Whenever it is possible to extend our findings
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to m identical parallel machines, we will do this. These m machines then represent m identical locks in
parallel.

1.1.1 Notation

We let D denote the set of di↵erent due dates, D = {d1, . . . , dn}, and k to be the number of distinct due
dates, |D| = k. The i-th distinct due date is also denoted by di, i.e., D = {d1, . . . , dk}, where we assume
that d1 < d2 < . . . < dk. When this is not the case, we can order the due dates in O(k log k) time.

We consider multiple cases for our scheduling problem.

1.1.2 The integral scheduling problem

In this thesis, we will also study the restriction to so-called integral scheduling problems, in which the
data and the starting/completion times are integers.

Definition 1.1. The integral scheduling problem is the above defined scheduling problem with
the additional restriction to integral due dates and processing times, that is dj , wj 2 N for jobs
j 2 {1, 2, . . . , n}, including the requirement that starting times and completion times must be
integral as well.

An integral schedule is a schedule � that is feasible for the integral scheduling problem.

1.1.3 Constrained vs unconstrained problems

For a schedule to be feasible, one needs all starting times to be non-negative, that is, Sj � 0 for all jobs
j 2 {1, 2, . . . , n}. It might occur that the constraints of non-negative starting times lead to a higher
optimal cost than for the same problem without these constraints.

Definition 1.2. A scheduling problem is called constrained if the optimal cost of the problem
relaxing the constraints of non-negative starting times is strictly lower than the optimal cost.
Otherwise, the problem is called unconstrained.

Only for unconstrained problems, the optimal cost can be found as the cost of an optimal schedule for the
problem without the constraint of non-negative starting times. As a result we find following corollary.

Corollary 1.3. A scheduling problem with optimal cost Z⇤ is unconstrained i↵ for for every
✏ > 0, a translation of the due dates to dj + ✏ for all jobs j, results in a problem with optimal
cost equal to Z⇤ as well.

This definition follows as a problem is constrained, if and only if, there exists a schedule � with a lower
cost than Z⇤, that becomes feasible by a large enough translation ✏ > 0 on the starting times and due
dates.

1.2 Related work

A wide variety of scheduling problems with cost for late and early jobs, has been researched. Baker and
Scudder [5] review such problems.
The scheduling problem minimizing

P
j wj |Cj � dj | for general processing times is closely related to our

problem of interest. For a common due date dj = d, Hall and Posner [18] have shown that the recognition
version of this problem is NP-complete, when the problem is unconstrained. Hall et al. [17] have shown
that the problem is also NP-complete when constrained. Alidaee [1] proved, that if weights of jobs are
proportional to their processing times, the problem minimizing

P
j wj |Cj � d| is equivalent to the total

weighted tardiness problem. This also shows that this problem is NP-hard.
Hall et al. [17] have further proved that the constrained problem minimizing

P
j |Cj �d| for general pro-

cessing times is NP-complete as well, by giving a reduction from (the) odd-even partition. Independently,
Hoogeveen and van de Velde [19] have given this reduction as well. Furthermore, they give a pseudopoly-
nomial dynamic programming algorithm to solve the problem. Bagchi et al. [3] give an algorithm that
minimizes

P
j |Cj�d| under restrictive assumptions. Likewise, Kim et al. [22] have developed an optimal
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algorithm and multiple heuristic algorithms. Computational tests indicate that optimal solutions can be
found for problems with up to 20 jobs, and that two of the heuristic procedures provide optimal or very
near optimal solutions in many instances.

For earliness Ej = max{0, d � Cj} of job j, and tardiness Tj = max{0, Cj � d} of job j, an asym-
metric objective function

P
j(↵jEj + �jTj) has been studied. Saravanan and Nooral Haq [32] give a

heuristic based on scatter search to find good solutions of this problem. For unit sized jobs and a
common due date, the unconstrained problem can be solved in O(n3) time. This applies to identical
parallel machines as well, as found by Mosheiov and Yovel [25]. Huynh Tuong et al. [20] showed that
the unconstrained problem is also solvable in O(n3) time for a single machine. The objective functionP

j ↵jEj + �jTj can be minimized for unit sized jobs and a restricted set of due dates D with |D| = k,

in O(kk+1nk+2) time, for a single machine, see the same paper by Huynh Tuong et al. [20]. Panwalker
et al. [27] have shown that the objective function

P
j ↵Ej + �Tj can be minimized in O(n log n) time,

for a single due date.

By considering the objective function
P

j(↵jE2
j +�jT 2

j ), we obtain an asymmetric version of our problem.
For a common due date dj = d, and weights ↵j = ↵, �j = �, Bagchi et al.[2] have given an exponential
procedure to solve the problem.

Bagchi et al. [4], also studied the problem with unit weights and a single due date, that is the problem
with objective function

P
j(Cj � d)2. They have suggested heuristic algorithms for this problem. Fur-

thermore, they have proved that the problem is equivalent to the Completion Time Variance problem.
This Completion Time Variance problem was later shown to be NP-hard by Kubiak [23].
In the single machine environment, this problem has been well studied in the literature, with many found
heuristics to find good solutions, for example by Ventura and Weng [40].
Several more papers give heuristic algorithms for the completion time variance problem in the identical
parallel machine environment. For example the papers by Brundavanam et al. [7], by Federgruen and
Mosheiov [11] and by Brundavanam and Srirangacharyulu [6]. The weighted variant has been studied
by Nessa and Chu [26], for a single machine. Sun et al. [34] study this problem in the identical parallel
machine environment.

Many heuristics and exponential algorithms have been found for the weighted mean squared devia-
tion problem minimizing

P
j wj(Cj � dj)2 on a single machine. In general these solution methods only

consider schedules without idle time between jobs. Kianfar and Moslehi [21] give a branch and bound
algorithm. Pereira and Vásquez [29] study upper and lower bounds of (sub)problems and follow by giving
multiple heuristic procedures. The following papers give heuristics as well [35],[36],[37],[38].

1.3 The Research

In Section 2, we consider the complexity of the lock scheduling problem. In the further literature we
have found problems that are alike and are NP-complete. For the problem with general processing times,
we give reductions from the Partition problem in Section 2.1, and from 3-Partition in Section 2.2. This
shows NP-completeness of the more general problem. For unit processing times it is unknown whether
the problem is polynomially solvable.
In Section 3.1, we consider structural properties of optimal schedules and introduce the concept of a block
structure. In Section 3.2 we find a solution method to find optimal schedules for a given sequence. Two
di↵erent methods are given, a method using quadratic programming in Section 3.2.1, and the so-called
block merging algorithm we give in Section 3.2.2. As a consequence we know that an optimal schedule
must exist. Furthermore, the findings in Section 3.2.2, give that all optimal schedules must have rational
starting, and completion times. Then, in Section 3.3, we explain how the assignment problem can be
used to solve the scheduling problem, when restricting to a fixed set of starting and completion times.
In Section 4, we consider the problem for jobs with unit weight. We start by giving structural properties
of optimal schedules in Section 4.1. As a result we can find an optimal integral schedule as explained
in Section 4.2. Then, in Section 4.3, we explain how the block merging algorithm for sequences of jobs,
can be used for unit weight problems. This gives a solution method with low running time. In Section
4.4, we consider the unit weight problem in the identical parallel machine environment. By showing an
optimal schedule exists for a certain distribution of jobs to the m machines, the problem can be solved
as m single machine problems. Furthermore, the found solution methods are applicable to the integral
scheduling problem with unit weights.
In Section 5, we consider the problem, for a single common due date d, for all jobs. For a large enough

5



due date, the problem is known to be unconstrained. This gives more freedom in constructing optimal
schedules. We give an e↵ective method to solve both unconstrained single machine problems, as explained
in Section 5.1.1, and constrained single machine problems, as explained in Section 5.1.2. In the identical
parallel machine environment, unconstrained problems can be solved e�ciently as explained in Section
5.2.1. In Section 5.2.2, we give a method that is exponential in m to find an optimal schedule for
constrained problems.
In Section 6, the general problem is studied. In Section 6.1 we define, and study, locally optimal solutions.
This gives a heuristic for the general problem with a potentially very high running time. Locally optimal
solutions are, however, not necessarily optimal. In Section 6.2, a greedy polynomial heuristic algorithm is
suggested. Thus a good solution is expected to be found. Again, the found schedules are not necessarily
optimal. Then, we study an additive approximation scheme in Section 6.3. To achieve this we first
study the positions and lengths of idle periods in optimal schedules. The additive approximation scheme
considers di↵erent schedules by fixing the starting time of the schedule, the length of the blocks of
consecutive jobs, and the length of idle periods between these blocks. For each schedule, we solve the
assignment problem between jobs and positions in the schedule. Then we pick the schedule with the
lowest cost. Finally, this chosen schedule can be improved by finding the optimal schedule for its job
sequence.
In Section 7, we revisit all special cases we considered and the found results. For the general problem
we consider the complexity of the heuristics and additive approximation scheme and whether we have a
performance guarantee. For both heuristics we shortly remark how they can be extended to the identical
parallel machine problem. Finally we state a number of possible questions for further research.
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2 Complexity

The question whether the considered problem is solvable in polynomial time is open. From the literature,
it is not known whether the problem minimizing

P
j wj(Cj � dj)2 is polynomial solvable when the jobs

have unit processing times.

From Bagchi et al. [4] and Kubiak [23], we know that for general processing times, a single common
due date, and unit weights, the problem minimizing

P
j(Cj � d)2, is NP-hard.

The problem is much simpler for unit processing times. In Section 4.3 we show that we can solve
the problem with unit processing times and unit weights, in O(k) time for k di↵erent ordered due dates.
When the weights are general, the problem becomes harder to solve. We still don’t know whether the
problem is in P or in NP.

For completeness, we do include two simple reductions to the problem minimizing
P

j wj(Cj � dj),
for general processing times.

2.1 Reduction from the partition problem

Theorem 2.1. The scheduling problem with general processing times is NP-complete.

Proof. First we consider the Partition problem, which is NP-complete.
Given a set of integers S = {a1, a2, . . . , an}, we seek a partition of S into S1 and S2 such thatP

a2S1
a =

P
a2S2

a = A.

We will reduce this problem to a problem deciding whether a single machine schedule exists with costP
j wj(Cj � dj)2  nA2.

We take n jobs j1, j2, . . . , jn with unit weight, due date A+ 1, and processing times
p1 = a1, p2 = a2, . . . , pn = an. Then we introduce job jn+1 with unit processing time, due date A + 1
and weight W = 8nA2. Finally we take job jn+2 with processing time P = nA, due date 2A + P + 1
and weight W .

When a solution for the partition problem exists, we can take such a solution and schedule the jobs
in P1 = {ji : ai 2 S1} before job jn+1 and the jobs in P2 = {ji : ai 2 S2} between job jn+1 and
job jn+2, resulting in the schedule portrayed in Figure 1.

Machine 1 P1 jn+1 P2 jn+2

A A+ 1 2A+ 1 2A+ P + 1

Figure 1: A feasible schedule for the given partition

Here job jn+1 and job jn+2 are scheduled at their due date. Also (Cj � dj)2  A2 for any job. Thus this
schedule has a cost of

P
j wj(Cj � dj)2  nA2.

We now consider that no solution for the partition problem exists.
Assume that a schedule � exists with cost of at most nA2.

Jobs jn+1 and jn+2 can’t di↵er from the due date by 1
2 or more, as W · ( 12 )

2 = 2nA2 > nA2. The
total processing time of the jobs scheduled before job jn+1 can’t be A as no solution of the partition
problem exists, it also can’t be more than A as job jn+1 is then scheduled at least 1 later than its due
date. No job j can be scheduled after job jn+2 as job j would then have cost

wj(Cj � dj)
2
� wj(A+ P )2 � P 2 = n2A2 > nA2.

Thus the total processing time between job jn+1 and job jn+2 must be at least A+1. As a result either
job jn+1 or job jn+2 di↵ers by at least 1

2 from its due date. This contradicts that schedule � has cost of
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at most nA2.

We may conclude that a schedule with cost of at most nA2 exists, if and only if there exists a solu-
tion to the partition problem.
This completes the reduction from the NP-complete partition problem to the problem whether a single
machine schedule exists with cost

P
j wj(Cj � dj)2  nA2.

There does, however, exist a pseudopolynomial algorithm to solve the partition problem. This is not
possible for problems that are strongly NP-complete, unless P=NP [14].

2.2 Reduction from the 3-partition problem

Theorem 2.2. The scheduling problem with general processing times is strongly NP-complete.

Proof. We consider the 3-partition problem which is strongly NP-complete.
Given a set of integers S = {a1, a2, . . . , a3m} with

P3m
i=1 ai = mA, the goal is to find a partition of S into

S1, S2, . . . Sm such that
P

a2Si
a = A for i 2 {1, 2, . . . ,m}.

We now will reduce this problem to a problem whether a single machine schedule exists with costP
j wj(Cj � dj)2  3m2(A+ 1)2.

We consider jobs j1, j2, . . . j3m to have unit weight, due date 0 and processing times
p1 = a1, p2 = a2, . . . , p3m = a3m. Then we introduce jobs j3m+i with i 2 {1, 2, . . . ,m� 1}, to have unit
processing time, due date k(A+ 1) and weight W = 20m3(A+ 1)2. Finally job j4m has processing time
P = 2m2(A+ 1), due date m(A+ 1) + P � 1 and weight W .

Assume a solution to the 3-partition problem to exist. Considering such a solution, we can schedule
the jobs in Pi = {j` : a` 2 Si} directly before job j3m+i for i 2 {1, 2, . . . ,m}. The resulting schedule is
portrayed in Figure 2.

Machine 1 P1 j3m+1 P2 j3m+2 . . . j4m�1 Pm j4m
A A+ 1 2A+ 2 (m� 1)(A+ 1) m(A+ 1) + P � 1

Figure 2: A feasible schedule for the given 3-partition

The jobs j3m+i are completed at their due dates for i 2 {1, 2, . . . ,m}. An upperbound for the cost of
this schedule can be given by

P
j wj(Cj �dj)2 =

P3m
i=1(Cj �dj)2  3m · (m(A+1)� 1)2  3m3(A+1)2.

We now consider that no solution to the 3-partition problem exists.
Assume that a schedule � exists, with cost of at most 3m3(A+ 1)2.
As W · ( 12 )

2 = 5m3(A + 1)2 > 3m3(A + 1)2, all of the jobs j3m, j3m+1, . . . , j4m must be completed
with less than 1

2 distance from their due date. When no job with unit weight finishes after job j4m,
the total processing time between job j3m+i and j3m+i+1 must be at most equal to the integer A, for
i 2 {1, 2, . . . ,m � 1}. There does not exist a partition of jobs j1, j2, . . . j3m in m sets, such that for
each set, the total processing time of the jobs in that set is A. Thus, a job j with unit weight must be
scheduled after job j4m. The cost of this job j is

wj(Cj � 0)2 � P 2 = 4m4(A+ 1)2 > 3m3(A+ 1)2.

This contradicts the existence of �.

We can conclude that a schedule � exists with cost of at most 3m3(A + 1)2, if and only if there ex-
ists a solution to the 3-partition problem.

This completes the reduction from the strongly NP-complete 3-partition problem to the problem whether
a single machine schedule exists with cost

P
j wj(Cj � dj)2  3m2(A+ 1)2.
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3 Structural properties and solution methods for fixed order

or fixed starting times

In this section we will first give some structural properties of optimal schedules for the general problem
and introduce the concept of a block structure.
Next, we will study optimal schedules, on a single machine, for a given job sequence. For a given job
sequence, quadratic programming can be used to find an optimal schedule. Another result using the
quadratic programming formulation, is that an optimal schedule must exist.
Then we will investigate so called block structures in our problem. We derive optimal starting times of
blocks, and, as a consequence, we show that all starting times in an optimal schedule must be rational.
These findings lead to an alternative algorithm, that gives an optimal schedule for a fixed job sequence
as well. The algorithm finds the block structures, and their starting times, thus determining the optimal
schedule. With a running time of O(n), this algorithm is more e�cient than quadratic programming,
moreover, using the structure of the scheduling problem it gives more insight in optimal schedules.
Finally, in the identical parallel machine environment, we will show how to find an optimal schedule for
fixed starting and completion times. For this we explain that the problem can be solved as an assignment
problem. Background knowledge on assignment problems is provided in Appendix A.

3.1 Structural properties of optimal schedules

We first recollect that scheduling a job closer to its due date results in lower cost. This has the following
simple implication for the single machine environment and the identical parallel machine environment.

Property 3.1. Let an optimal schedule �⇤, be given. No job j with Cj < dj is followed by idle
time. Furthermore, no job j with Cj > dj is preceded by idle time.

For the single machine environment, we consider two jobs j, j0, with equal due dates dj = dj0 . Consider
job j to be scheduled directly before job j0. Then job j is completed before dj , or job j0 must be scheduled
after the common due date dj . Then Property 3.1 implies the following.

Property 3.2. In any optimal schedule �⇤, for every pair of consecutively scheduled jobs j, j0

with equal due date dj = dj0 , there will be no idle time between the processing of these two jobs.

Likewise, we will find and prove Property 6.4 in Section 6.3.1, stating that in any optimal schedule �⇤,
between any consecutive due dates d`, d`+1, there can only be one single interval of idle time.

For jobs j, j0 with a common due date, we now show that in an optimal schedule �⇤, the job with
highest weight must be scheduled with completion time closest to the common due date. If this is not
the case, interchanging jobs j and j0 improves the schedule. As every job has a unit processing time,
interchanges don’t give conflicts with other scheduled jobs.

Property 3.3. Let a pair of jobs j, j0 be given with equal due date dj = dj0 . In any optimal
schedule �⇤

wj > wj0 =) |Cj � dj |  |Cj0 � dj0 |.

For objective functions that are increasing in the completion times of the jobs (regular objective func-
tions), an optimal schedule for a single machine may be determined by giving a job sequence. The
machine will start processing the first job in the sequence and keep processing until the last job has
been processed, as idle time can’t reduce the cost. To demonstrate, job sequence [j1, j2, . . . , jn] specifies
that the machine processes job j1 first, then job j2 and so on, until job jn, which is the last job to be
processed.
For the objective function we study, idle time may in fact be beneficial. As it will be useful to study
sequences of jobs without any idle time in between consecutive jobs, we introduce the following structure.
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Definition 3.4. A block of jobs, is a (maximal) sequence of jobs that are processed without
intermediate idle time.

We will specify, whenever a job sequence [j1, j2, . . . , jn] is in fact a block of jobs.

3.2 The problem for a fixed job sequence

We now consider how to schedule jobs optimally, given a job sequence. That is to give the schedule with
lowest cost for which the jobs are processed in the order specified by a certain job sequence
JS = [j1, j2, . . . , jn]. We show that an optimal schedule can be found using quadratic programming.
We show that this implies the existence of an optimal schedule. Then we also show that we can use
the structural properties of optimal schedules to find an alternative algorithm that will give an optimal
schedule as well. Furthermore the exploited structural properties of optimal schedules also give that
every optimal schedule must have rational starting and completion times.

3.2.1 Quadratic programming for a given job sequence

First, we note that the general scheduling problem can be formulated as a quadratically constraint
quadratic program as is shown in Appendix B. In Appendix B, we also show that this does not provide
us with e�cient techniques to solve the scheduling problem in general. In this section we show that in
the specific case of a given job sequence, quadratic programming can be used to find an optimal schedule.

Consider schedules that follow the order of jobs being processed as specified by job sequence JS. For
such a schedule to be feasible, we need non-negative starting times and at most one job to be processed
at the same time.
The constraint Sj1 � 0 () Cj1 � 1 specifies that the first job to be processed has a non-negative
starting time and thus all jobs will have non-negative starting times.
Furthermore we have the constraints that no two jobs can be processed simultaneously. Thus all com-
pletion times must di↵er by at least 1. This is the case when the completion times of every pair of
consecutive jobs di↵er by at least 1. For the given order of processing, this leads to the following con-
straints: Cja�1  Cja � 1 or Cja�1 � Cja + 1  0 for a 2 {2, 3, . . . , n}.

This leads to a Quadratic Program with n linear constraints. Notice that in the literature Quadratic
Programming (QP) problems are always assumed to have only linear constraints [39]. This leads to a
problem of the following form:

min
x2Rn

xTHx+ cTx

s.t. Ax � b, for i = 1, 2, . . . ,m,
(3.1)

where H is a symmetric n⇥ n matrix, A is an m⇥ n matrix, b is an m-vector and c is an n-vector.

We let

x =

0

BBB@

Cj1 � dj1
Cj2 � dj2

...
Cjn � djn

1

CCCA
,

and the objective is then to minimize

X

j

wj(Cj � dj)
2 =

�
Cj1 � dj1 , Cj2 � dj2 , . . . Cjn � djn

�

0

BBB@

wj1 0 . . . 0
0 wj2 . . . 0
...

...
. . . 0

0 0 . . . wjn

1

CCCA

0

BBB@

Cj1 � dj1
Cj2 � dj2

...
Cjn � djn

1

CCCA
.

This is equivalent to minimizing xTHx+ cTx with c = 0 and

H =

0

BBB@

w1 0 . . . 0
0 w2 . . . 0
...

...
. . . 0

0 0 . . . wn

1

CCCA
.
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The non-negative starting time constraint takes the form

Cj1 � 1 () Cj1 � dj1 � 1 + dj1 () x1 � 1 + dj1 .

The other n� 1 constraints take the form

Cja�1  Cja � 1 () Cja � Cja�1 � 1 () Cja � dja � Cja�1 + dja�1 � 1� dja + dja�1

() xa � xa�1 � 1� dja + dja�1 .

These constraints can be expressed in the form (3.1) by constraint matrix

A =

0

BBBBB@

1 0 0 . . . 0 0
�1 1 0 . . . 0 0
0 �1 1 . . . 0 0
...

...
...

. . . 0 0
0 0 0 . . . �1 1

1

CCCCCA
,

and constraint vector

b =

0

BBBBB@

1 + dj1
1� dj2 + dj1
1� dj3 + dj2

...
1� djn + djn�1

1

CCCCCA
.

Therefore, the scheduling problem, for a given job sequence, is indeed a Quadratic Programming prob-
lem. As matrix H is positive definite, the objective function of our problem is convex. Furthermore the
set {x | Ax � b} of feasible solutions is a convex polyhedral set. This leads to our QP problem being
convex.

For QP problems, Frank and Wolfe [12] have shown that an optimal solution exists, when the set of
feasible solutions and this set is non-empty and the objective function is bounded from below on this
set. In our case, for any job sequence JS = [j1, j2, . . . , jn], we have a feasible schedule given by Cja = a
for a 2 {1, 2, . . . , n}, and thus the set of feasible solutions is non-empty. Secondly, the objective functionP

j wj(Cj � dj)2 is bounded from below by 0 on the set of feasible solutions, because all summands are
non-negative. Thus, we may conclude that for every job sequence, there exists an optimal schedule.
This leads to a fundamental property of our problem.

Theorem 3.5. For every instance of our general scheduling problem there exists an optimal
schedule.

Proof. For every given job sequence there exists an optimal feasible schedule minimizing the objective
function. There is a finite number of job sequences, n! to be exact. Then a job sequence, for which the
optimal schedule has minimal cost, must exist. This optimal solution then specifies an optimal schedule
of the general problem.

We note that this theorem still holds, when considering the identical parallel machine environment
and/or when we relax the job characteristic of unit processing times. This follows from the fact that the
constraints are linear, also without unit processing times. In the identical parallel machine environment,
there is a finite number of ways to assign the n jobs to the m machines. Given such an assignment,
the problem is equivalent to solving the now m specified single machine problems. An optimal sched-
ule, for this assignment of jobs to machines, is a combination of m optimal schedules of the m single
machine problems. Again we can conclude that the best of these finite number of optimal schedules,
given an assignment of jobs to machines, is an optimal schedule for the identical parallel machine problem.

To solve convex QP problems, the algorithm with the best known running time (as of 2001 [39]), has
running time O(m

7
2L). This is an interior point algorithm by Renegar [31]. In the running time, the

factor m denotes the number of constraints, and the factor L in the running time of this algorithm
denotes the number of digits in the input (H,A, b, c).
We note that, for the QP problem we consider, the number of constraints m is equal to the number of
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jobs n. Thus the running time of the algorithm by Renegar is O(n
7
2L).

When the number of arithmetic operations of an algorithm is polynomial in m and n, this algorithm is
said to be strongly polynomial [16]. When the number of arithmetic operations of an algorithm is not
polynomial in m and n but is polynomial in m, n and L, this algorithm is said to be weakly
polynomial [16]. Therefore, the algorithm of Renegar is weakly polynomial. As a consequence we have
a weakly polynomial algorithm to find an optimal schedule, given a job sequence.
It is still an open problem to decide whether a strongly polynomial algorithm exists to solve Quadratic
Programs, and even Linear Programs [33].

The importance of the distinction between strongly, and weakly polynomial algorithms becomes clear in
the following quote [41]: “The existence of a strongly polynomial-time algorithm for linear programming
is a cross century international mathematical problem, whose breakthrough will solve a major theoretical
crisis for the development of artificial intelligence.”
Thus, we prefer a strongly polynomial algorithm over the weakly polynomial algorithm by Renegar. To
achieve this we must further investigate block structures in optimal schedules.

3.2.2 An alternative algorithm to schedule a job sequence optimally

We will exploit the block structures within job sequence JS for optimal schedules. This will give an
alternative algorithm to find an optimal schedule given job sequence JS. The advantages of this algorithm
will be its low running time and the fact that it is strongly polynomial.

Optimal starting time of a block of jobs

We will give the optimal starting time of any block of jobs. These optimal starting times will be rational,
resulting in the fact that all jobs in an optimal schedule have rational starting and completion times.

We consider one fixed block [j1, j2, . . . , j`] of ` > 0 jobs. We will first give the optimal starting time t̂ of
this block, without the non-negativity constraint t̂ � 0. This is not a feasible starting time of the block
but this value will be needed in later calculations like Equation (3.4).

Let t be the starting time of j1, and thus the starting time of this block. This block has cost:

X̀

a=1

wja(t+ a� dja)
2.

This is a quadratic function in t and the minimum is obtained by setting the derivative to zero, which
yields

d

dt

X̀

a=1

wja(t+ a� dja)
2 =

X̀

a=1

2wja(t+ a� dja) = 0 =)

t
X̀

a=1

wja =
X̀

a=1

wja(dja � a).

And thus the optimal starting time t̂ is attained for

t̂ =

P`
a=1 wja(dja � a)
P`

a=1 wja

. (3.2)

For general processing times, we note that the value a needs to be replaced with ⇧a =
Pa

i=1 pji . This
yields the following equation.

t̂general =

P`
a=1 wja(dja �⇧a)P`

a=1 wja

. (3.3)

Note that t̂ must be rational, as the weights, due dates and values of a are rational as well.

The quadratic function is increasing after the optimum t̂. Thus, when including the constraint of a
non-negative starting time of the block block, this gives the optimal feasible starting time t⇤ = max{0, t̂}.
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Furthermore, as an optimal schedule consists of multiple blocks at their optimal rational starting time,
this has the consequence that an optimal schedule on a single machine must be rational.
In the identical parallel machine environment, all m single machine schedules must be optimal. As a
result all jobs have rational starting and completion times.

Proposition 3.6. Any optimal schedule �⇤ of the scheduling problem, in the identical parallel
machine environment, has only rational starting times and completion times.

We will try to find the subsequences of JS that form a block. Thus an optimal schedule is found by
scheduling these blocks optimally. At first we don’t know which subsequences of JS must form blocks
to be optimally scheduled, therefore we start by assuming that every job is a block by itself. For all of
the blocks we have an optimal starting time, being max{0, dj � 1} for the block only consisting of job j.
When possible we schedule every block at its optimal starting time. If some of the block-starting times
are conflicting, i.e., block `+1 would start before block ` is completed, this choice of starting times does
not give a feasible schedule.

We will show that in this case, in an optimal schedule, these conflicts can be resolved by merging two
blocks such that they form one larger block for which the optimal starting time can be found. Repeating
this procedure results in a schedule in which there are no conflicting blocks. Then a feasible optimal
schedule is found. We show how this can be done e�ciently in O(n) time.

Merging blocks of jobs together

We consider block A = [j1, j2, . . . , jna ] and block B = [jna+1, jna+2, . . . , jna+nb ], consecutively scheduled
in an optimal schedule, such that block A is scheduled first. When block A has optimal starting time
t⇤a and block B has optimal starting time t⇤b < t⇤a + na, we know by convexity that no idle time exists
between these blocks in an optimal schedule. Thus we can merge block A and block B resulting in the
new block C = [j1, j2, . . . , jna+nb ] of jobs that are scheduled together in an optimal schedule. This leads
to the following theorem.

Theorem 3.7. Let block A and block B be scheduled consecutively, in that order, in an optimal
schedule consisting of na and nb jobs respectively. When these blocks have optimal starting times
t⇤a and t⇤b respectively and t⇤b  t⇤b + na, block A and block B must be scheduled without idle time
in between.

In other words, this theorem states that, the merged block C must be processed as such in an optimal
schedule.

We will now show, how to find the optimal starting time of block C after merging blocks A and B.
When t⇤a = 0, the new optimal starting time of block C is t⇤c = 0 as well. Otherwise the new optimal
starting time t⇤c can be constructed from the (possibly negative) optimal starting times t̂a, t̂b and number
of jobs na, nb for block A and block B respectively. The total weight of a blocks A and B will be denoted
by Wa and Wb respectively. The total number of jobs in block C is na + nb.
As in Equation (3.2) we can derive the optimal starting time t̂c as follows

t̂c =

Pna+nb

i=1 wji(dji � i)

Wa +Wb

=
Wa

Wa +Wb
·

Pna

i=1 wji(dji � i)

Wa
+

Wb

Wa +Wb
·

Pna+nb

i=na+1 wji(dji � i)

Wb

=
Wa

Wa +Wb
· t̂a +

Wb

Wa +Wb
·

Pnb

i=1 wji+na
(dji+na

� (i+ na))

Wb

=
Wa

Wa +Wb
· t̂a +

Wb

Wa +Wb
· (t̂b � na).

(3.4)

This is a weighted average of t̂a and the translated t̂b, where this translation follows as, after merging,
block B starts na time units later than block A.

13



For general processing times, the optimal starting time (t̂c)general after merging is similar. It is given by

(t̂c)general =
Wa

Wa +Wb
· (t̂a)general +

Wb

Wa +Wb
· ((t̂b)general �⇧na), (3.5)

here ⇧na is the total processing time of block A. For completeness, the derivation is included in
Appendix C.2.

The block merging algorithm

We now show that these findings lead to an algorithm for an optimal schedule given job sequence
JS = [j1, j2, . . . , jn].

As explained, we start with the n blocks B1, B2, . . . , Bn of jobs where block B` only consists of
job j`. We find the n optimal (possibly negative) starting times t̂` = dj` � 1 for each block B`.
Furthermore we keep track of the total weight W` and the number of jobs n` of the blocks.
We will consider the optimal schedule �⇤

` , for subsequence JS` = [j1, j2, . . . , j`] only, for ` = 1, . . . n.
We start with schedule �⇤

1 , only scheduling job j1 with starting time max{0, dj1 � 1}. Iteratively we
expand the subsequence to schedule until having found optimal schedule �⇤

n = �⇤, given job sequence
JS. Having found schedule �⇤

` , we include the block consisting of job j`+1 and try to schedule it as well.
The block we are pursuing to schedule is called the active block. This active block is possibly merged
multiple times until it does not conflict anymore with blocks of lower index, and is then scheduled at
its optimal starting time becoming inactive. We note that when a block merges with the active block,
the new block may conflict with an earlier block. After scheduling the active block the optimal schedule
�⇤
`+1 is found.

This leads to the following algorithm.

Algorithm 1: The block merging algorithm for sequences of jobs

Initialize the n blocks B1, B2, . . . , Bn with as data the optimal starting times
t̂` = dj`�1, t⇤` = max{0, d` � 1}, and weights W` = wj` . Every block consists of 1 job.
Schedule block B1 at its optimal starting time;
for ` = 2, 3, . . . , n do

ActiveBlock = B`;
while Optimal starting time of ActiveBlock conflicts with the block directly before it in job
sequence JS do

Merge ActiveBlock with the conflicting block creating NewBlock;
Update data of NewBlock and find its optimal starting time using Equation (3.4);
ActiveBlock = NewBlock;

end

Schedule block containing block B` at its optimal non-negative starting time;
end

The initialization of the original n blocks takes O(n) time. We enter the for loop n � 1 times. The
while-loop can be entered multiple times in the same iteration of the for-loop. In a given iteration the
while-loop can be entered at most `�1 times. Over all iterations of the for-loop, however, the while-loop
can be entered only a total of at most n � 1 times, as after n � 1 iterations we merged blocks a total
of n � 1 times. When this has happened, the schedule would consist of a single block and is not able
to merge with other blocks. Including a new block or merging two blocks takes O(1) time of updating
data, this leads to the algorithm having running time O(n).

This algorithm can be applied to instances with general processing times as well. As changes, we
need to keep track of the total processing times of the blocks. The optimal starting times after merging
then result from Equation (3.5) instead. These changes have no e↵ect on the time complexity of the
algorithm.

Theorem 3.8. An optimal schedule �⇤, given a fixed job sequence, can be found in O(n) time.

14



Thus we have found a strongly polynomial algorithm to schedule a given job sequence optimally. Also
the complexity of Algorithm 1 is lower than the complexity for the quadratic programming formulation.
These are two reasons that we will use Algorithm 1 instead of quadratic programming to find an optimal
schedule given a job sequence.

We can adapt Algorithm 1 to solve the integral scheduling problem.

The block merging algorithm for the integral scheduling problem

Again we start with n ordered blocks to be scheduled and their (integral) optimal completion times.
Consider an active block. Consider the block directly before it in job sequence JS, to have completion
time z 2 N, and the active block to have optimal starting time t⇤ 2 Q+. By integrality and convexity
the optimal feasible starting time of the active block is either bt⇤c or dt⇤e. When t⇤  z we know that
the optimal feasible starting time of the active block is at most z and we merge the active block with
the block directly before it in job sequence JS. When t⇤ > z we know that the optimal feasible starting
time of the active block is at least z and we will not (yet) merge the two blocks.
Then we choose the starting time bt⇤c or dt⇤e, that results in the least cost. As the quadratic cost of
a block is symmetric around its optimum, the value of bt⇤c or dt⇤e closest to t⇤ is the optimal integral
starting time. The resulting block merging algorithm for the integral scheduling problem is given below.

Algorithm 2: The block merging algorithm for the integral scheduling problem

Initialize the n blocks B1, B2, . . . , Bn with as data the optimal starting times
t̂` = dj` � 1 2 Z, t⇤` = max{0, d` � 1} 2 Z, and weight w` = wj` . Every block consists of 1 job.
Schedule block B1 at its optimal starting time;
for ` = 2, 3, . . . , n do

ActiveBlock = B`;
while Optimal (rational) starting time of ActiveBlock conflicts with the block directly before
it in job sequence JS do

Merge ActiveBlock with the conflicting block creating NewBlock;
Update data of NewBlock and find its optimal (rational) starting time using
Equation (3.4);

ActiveBlock = NewBlock;
end

Schedule ActiveBlock at its optimal non-negative integral starting time;
end

Likewise this algorithm has time complexity O(n) as well.

3.3 Fixed starting and completion times

Consider the general scheduling problem on identical parallel machines.
Assume that we restrict the problem to the case that for each machine i a set of completion times Ti is
known at which the jobs are allowed to complete. We will show that when there are in total at least n
available completion times, the scheduling problem reduces to an assignment problem. We will then give
the complexity in which we can solve these reduced problems. Such an application of the assignment
problem for job scheduling has been used earlier [20].

We consider the sets of allowed completion times Ti for machine i. These sets can arise, for instance, by
integrality constraints. W.l.o.g. we may assume these sets to be finite as, of all completion times smaller
than the earliest due date, the largest n completion times need to be taken into account. Likewise only
the n smallest completion times, larger than the largest due date need to be considered.
We take the union T =

S
i{(t, i) : t 2 Ti} as set of completion times to assign to the n jobs. Then

a = (t, i) 2 T corresponds to specified completion time t on machine i. To be able to process each job
we need |T | � n.

We consider a schedule �. Then we define job jti as the job that finishes at time t on machine i,
and jti = ⇥ if no job is completed at time t on machine i. Then the cost of the schedule � is given byP

(t,i)2T wjti(t� djti)
2, where wjti = 0 whenever jti = ⇥.
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When job j is assigned to slot (t, i) this adds wj(t � dj)2 to the cost. We seek the minimum cost
over all possibilities of assigning all n jobs to a unique time slot. This minimization problem is a match-
ing problem between jobs and time slots.

When the number of available time slots is equal to the number of jobs, |T | = n, this matching problem
is known as the balanced assignment problem. The Hungarian method solves this problem to optimality
in O(n3 + n2 log n) = O(n3) time, as given in Section A.1. The assignment of completion times to jobs
then specifies an optimal schedule under the restricted completion times.

When the number of available time slots is larger than the number of jobs, |T | > n, the matching
problem is known as the unbalanced assignment problem. As found in Section A.2, this problem can be
solved to optimality with computation time of complexity O((n · |T |)n+n2 log n) = O(n2

|T |), where this
last equality uses |T | > n. Again, this assignment of completion times to jobs, then specifies an optimal
schedule under the restricted completion times.

For very large sets T , we will show that we can restrict ourselves to a relatively small subset of T .
Consider consecutive due dates di, di+1. When there are more than 2n time slots in A, between di and
di+1, we note that we only need to consider the n earliest, and n latest of these time slots. The other
time slots between di and di+1 can be excluded from T . Any of the excluded time slots is further away
from any due date, than n of these included time slots. For the same reason, we only need to consider
the n latest time slots before d1. Likewise, we only need to consider the n earliest time slots after dk.
Thus w.l.o.g. we may assume |T | = O(kn) for any instance with k distinct due dates.

In general this gives the following theorem.

Theorem 3.9. The scheduling problem over a restricted set T of completion times, can be solved
in O(min{|T |n2, kn3

}) time as an assignment problem for |T | � n.

The integral scheduling problem is a scheduling problem over the restricted set Z⇥m. As a consequence
of Theorem 3.9, any integral scheduling problem can be solved in O(kn3) time, both for a single machine
and in the identical parallel machine environment.

While the use of the assignment problem on scheduling problems with unit sized jobs is not new, this
solution method we found is the solution method with lowest complexity as far as we know.

16



4 Unit weight problems

In this section we will consider the scheduling problem with unit weights. Thus the objective function isP
j(Cj � dj)2. Taking the jobs to have unit weights models that for every job it is equally important to

be completed close to its due date.

We will start by considering the single machine environment for this problem. For this machine en-
vironment we will give some structural properties of optimal schedules for the problem. Then we will
use the known properties to find an optimal integral schedule. After this, we will show that
Algorithm 1 can be used to find an optimal schedule for general starting times and completion times.
By using the structural properties of optimal schedules for the unit weight problem we can improve the
algorithm to have lower running time. This algorithm can be adapted to determine an optimal integral
schedule. Finally, we will extend the previous results to the identical parallel machine environment. Here
we find that there must exist an optimal schedule where the jobs are distributed in a balanced matter
between the m machines. Finally we find an exact distribution of jobs to machines for which an optimal
schedule must exist. This optimal schedule can be found by solving m single machine problems.

We assume an instance I to be given by the k due dates d1, d2, . . . , dk and for each due date di the
number of jobs with this due date to be given by ni.
Again, we take d1, d2, . . . , dk to be ordered increasingly. Ordering the k due dates can be done in
O(k log k) time.

4.1 Structural Properties

The first structural property for unit weights is a general property that even holds in the identical parallel
machine environment.

Property 4.1. For any optimal schedule �⇤, it holds that, for every pair of jobs j 6= j0:

dj < dj0 =) Cj  Cj0

Proof. Let �⇤ be an optimal schedule. Suppose that there exists a pair of jobs j and j0 with dj < dj0 ,
such that Cj0 < Cj .
Now, we construct a new schedule �0 in which we swap jobs j and j0. The di↵erence in objective values
is given by:

(Cj � dj0)
2 + (Cj0 � dj)

2
� (Cj0 � dj0)

2
� (Cj � dj)

2

= �2Cjdj0 � 2Cj0dj + 2Cj0dj0 + 2Cjdj

= 2(dj � dj0)(Cj � Cj0) < 0,

as dj � dj0 < 0 and Cj � Cj0 > 0.
Thus, this interchange of jobs would lead to an improvement contradicting the optimality of �⇤.

This means that in an optimal schedule, jobs have to be scheduled in order of non-decreasing due dates.
For completeness we have derived when exactly an improving pairwise interchange of jobs is possible in
Appendix C.3.

We will now further study the problem, restricting to the single machine environment.

Property 4.1, in combination with Property 3.2 give the following structural property of an optimal
schedule.

Property 4.2. In any optimal schedule, jobs with the same due date are consecutively scheduled
in a single block of jobs.

Note, that the order between jobs of the same due date, does not a↵ect the cost of a schedule, as all
jobs are of unit weight. Thus the specific order between these jobs does not matter and can be taken in
increasing order of index.
With this known optimal sequence of jobs, the problem can either be solved by Algorithm 1. Using
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Property 4.2 and the fact that the jobs have unit weights makes it possible to simplify Algorithm 1,
resulting in a block merging algorithm for unit weights.

Using Property 4.2, we can portray an optimal schedule di↵erently by giving the starting time of each
block of jobs with a common deadline. For this matter we let ti denote the starting time of the block
of jobs with deadline di for i = 1, 2, . . . , k. This notion results in a method to find an optimal integral
schedule.

4.2 Finding an optimal integral schedule

We will show a way to find an optimal integral schedule. First we consider instances where all jobs j
share a common due date dj = d. Then we consider instances with k > 1 distinct due dates.

Consider a block of jobs having common due date d. These jobs need to be scheduled in a single
block of jobs by Property 3.2. For constrained problems, the number of jobs finishing before the due
date di↵ers by at most one from the number of jobs that complete after the due date. This can be easily
seen by moving a job from one side of the due date to the other side when this is not the case. This
means that either we start the first job at the end of the block instead or start the last job 1 time unit
before the start of the block instead (such that it is completed at the start of the block). Hence, we have
the following property.

Property 4.3. Consider the integral scheduling problem, where all jobs j have common due
date, i.e., dj = d. Then an optimal schedule consists of a single block that starts at time
t = max{0, d �

n+1
2 } when n is odd, and starts at time t 2 {max{0, d � 1 � n

2 },max{0, d �
n
2 }}

in case n is even.

A short formal proof is included in Appendix C.1.

Let an instance I of the integral scheduling problem be given. Then we let Ia be an instance de-
rived from I by only considering jobs j with due date dj  da. We will now consider schedule �⇤

a as
optimal integral schedule of instance Ia. An optimal integral schedule for jobs with the smallest due
date, �⇤

1 , is given by Property 4.3. Then in an iterative manner we can find an optimal schedule �⇤
k,

which is an optimal schedule of instance I.

Theorem 4.4. Given an optimal schedule �⇤
` , of instance I`, an optimal schedule �⇤

`+1 can be
found in O(n2) time.

Proof. Let t` be the starting time of the first job with due date d`, to be processed in schedule �⇤
` . Let

t be the largest optimal starting time, of the block of jobs corresponding to due date d`+1, as given by
Property 4.3. When t � t` + n`, an optimal schedule �⇤

`+1 is found by including this block with starting
time t in schedule �⇤

` . Now we consider when this is not the case.
As in �⇤

` no idle period can exist after dl, we know that t`+n`  dl+n < d`+1+n. Furthermore, earlier
scheduled jobs will never decrease the optimal starting time of later jobs. Thus one of the O(n) starting
times t, t+ 1, . . . , t` + n` must be optimal for instance I`+1. For these starting times, the starting times
of earlier jobs may need to shift to the left. Then for the O(n) schedules resulting from the di↵erent
choices of starting times t, t+ 1, . . . , t` + n`, we can find the cost in O(n) time, resulting in O(n2) time
to find the optimal starting time t`+1, and its corresponding schedule.

As a result, we can iterate until finding optimal schedule �⇤
k in O(kn2) time.

In the following section we show how Algorithm 1 can be implemented for unit weight instances to
have running time O(k). We will show that this algorithm can be extended to find an optimal integral
schedule in O(k) time. This algorithm is given in Appendix D.1.

4.3 Finding an optimal schedule for general starting times

In this section, we consider the general unit weight problem, that is, the starting and completion times
do not need to be integral. We use Property 4.2 and the optimal starting times of blocks of jobs given
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in Equation (3.2) in Section 3.2.2 to improve the running time of Algorithm 1.
When, in an optimal schedule, ti > ti�1 + ni�1, the block of jobs with due date di can be scheduled at
its optimal starting time. For a block of n` jobs with due date d`, the optimal starting time t⇤` , can be
simplified to

t⇤` = max

⇢
0,

Pn`

a=1(d
`
� a)

n`

�
= max

⇢
0, d` �

n` + 1

2

�
. (4.1)

If some of these block-starting times are conflicting, i.e., t`+1 < t` + n` for one or more values of `, the
choice of these starting times for the k blocks does not give a feasible schedule. Then, we can start the
block merging algorithm with the k blocks B1, B2, . . . , Bk of jobs having a common due date, ordered
on increasing due date. This gives a computational advantage over starting with n blocks. We find
the k optimal (possibly negative) starting times t̂1, t̂2, . . . , t̂k for each block. Again we keep track of the
number of jobs and the optimal starting time of each block. As the total weight of block Bi is equal to
the number of jobs it contains, this gives another computational advantage. When merging block A of
na jobs and with optimal starting time t̂a with block B of nb jobs and with optimal starting time t̂b, the
new optimal starting time of block C follows from equation (3.4) and is equal to

t̂c =
na

na + nb
t̂a +

nb

na + nb
(t̂b � na) (4.2)

This leads to the following algorithm

Algorithm 3: The block merging algorithm for unit weights

Initialize the k blocks B1, B2, . . . , Bk with as data the optimal starting times t̂, t⇤ and the
number of jobs. Schedule block B1 at its optimal starting time;
for ` = 2, 3, . . . , k do

ActiveBlock = B`;
while Optimal starting time of ActiveBlock conflicts with the block directly before it in job
sequence JS do

Merge ActiveBlock with the conflicting block creating NewBlock;
Update data of NewBlock and find its optimal starting time using Equation (4.2);
ActiveBlock = NewBlock;

end

Schedule block containing block B` at its optimal non-negative starting time;
end

The initialization of the original k blocks takes O(k) time. We enter the for loop k � 1 times. Over all
iterations of the for-loop, the while-loop can be entered a total of k � 1 times, as this would mean we
merge blocks a total of k� 1 times. When this happens, the schedule would consist of a single block and
is not able to merge with other blocks. Including a new block or merging two blocks takes O(1) time of
updating data, this leads to the algorithm having running time O(k) for ordered due dates.

Theorem 4.5. The scheduling problem with unit weights can be solved in O(k) time for ordered
due dates.

In general the idea of starting with b 6= n blocks in sequence [j1, j2, . . . , jn] gives a running time of O(b)
to find an optimal schedule.

Again, Algorithm 3 can be adapted to the integral scheduling problem, much like explained in
Section 3.2.2, adapting Algorithm 1. This adapted algorithm is displayed in Appendix D.1. As this
scheduling problem has a running time of O(k) as well for ordered due dates, the integral scheduling
problem with unit weights can be solved in O(k) time as well.

4.4 Extension the identical parallel machine environment

We consider the same problem for unit weights, but in the identical parallel machine environment.
We have shown that on a given machine we can solve the unit weight problem in O(k) time for ordered
due dates. Therefore, for any distribution of jobs over the m machines, we can solve the m single machine
problems to get the optimal schedule for the identical parallel machine problem given that distribution.
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In this section we give some properties of an optimal solution, from which we can easily derive an optimal
assignment of the jobs to the machines.

First, we define a structure for schedules, wherein jobs with a common due date are spread evenly
over the machines.

Definition 4.6. A balanced schedule, is a schedule such that, for any due date d`, the number
of jobs with due date d` to be processed on any machine is either bn`

m c or dn`
m e.

We now show that there exists an optimal schedule with this structure.

Lemma 4.7. There exists an optimal schedule that is balanced.

Proof. Given any optimal schedule �⇤, we can construct an optimal schedule �⇤
b that is balanced.

If there exists a due date d` and a machine i that processes less than b
n`
m c jobs, then there must exist a

machine that processes more than b
n`
m c jobs and vice versa.

Therefore, the schedule is not balanced, if and only if there exists a due date d`, and machines i, i0, such
that machine i processes at least two jobs more with due date d` than machine i0 does.

Thus, when optimal schedule �⇤ is not balanced, we consider a due date d`, and machines i, i0, such
that machine i processes at least two jobs more with due date d` than machine i0 does.
Let job jf , jlast be the first and last jobs with due date d` to be processed on machine i respectively.
Note, that Sjlast is the completion time of an earlier scheduled job with due date d`. Proposition 4.1 gives
that no job j with due date dj 6= d` can be processed at time Cjf , and no job j with due date dj 6= d`

can be processed at time Sjlast . Machine i processes at least 2 jobs with due date d` more than machine
i0 does, then by Property 3.2, machine i0 has not started processing jobs with due date d` before Cjf ,
or has ended processing jobs with due date d` before Sjlast . The former is illustrated in Figure 3, and
the latter in Figure 4. Here we use the convention that jobs with earlier due date are colored (dimmed)
blue, and jobs with later due date are colored (dimmed) red.

Machine i jf
Machine i0

Cjf

Figure 3: Late start on machine i0

In the situation in Figure 3 the schedules from Cjf onwards can be exchanged between the machines,
without a↵ecting the cost or the number of jobs with due date other than d`. This reduces the di↵erence
between the number of jobs with due date d` that machine i and machine i0 process.

Machine i jlast
Machine i0

Sjlast

Figure 4: Early completion on machine i0

In the situation in Figure 4 the di↵erence between the number of jobs with due date d` that machine i
and machine i0 process, can be reduced by exchanging the schedules, from Sjlast onwards between the
machines. This does not a↵ect the cost or the number of jobs with due date other than d`.

We can repeat this procedure until we obtain a schedule �⇤
b , for which there does not exist a due

date d` and two machines i, i0, such that machine i0 processes at least two jobs with due date d` more
than machine i0 does. Schedule �⇤

b must be an optimal schedule that is balanced.
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Thus, by Lemma 4.7 there exists a balanced schedule that is optimal.

We note that any distribution of jobs for a balanced schedule, can be found as follows.
We first distribute b

n`
m c jobs with due date d` to every machine for ` = 1, 2, . . . , k. Note, that we have

n`�m·b
n`
m c remaining jobs with due date d` for ` = 1, 2, . . . , k. In total this gives r =

Pk
`=1(n`�m·b

n`
m c)

remaining jobs to distribute over the m machines. As we can find the number of remaining jobs for each
due date in O(1) time, we can give the remaining jobs j1, j2, . . . , jr ordered on non-decreasing due date
in O(k) time.

We introduce an assignment of remaining jobs j1, j2, . . . , jr to the machines. Consider a partition of the
set of remaining jobs {j1, j2, . . . , jr} defined by Ji = {ja : 1  a  r, i ⌘ a mod m} for i = 1, 2, . . . ,m.
Thus Ji = {ji, ji+m, ji+2m, . . .} ✓ {j1, j2, . . . , jr} . Then we assign the job set Ji to machine i. Thus the
remaining jobs are distributed evenly between the m machines. We now claim that an optimal balanced
schedule �⇤ exists for this assignment of the jobs to the machines.

Lemma 4.8. There exists an optimal balanced schedule �⇤, where machine i processes the
remaining jobs in Ji = {ja : 1  a  r, i ⌘ a mod m}, for i = 1, 2, . . . ,m.

Proof. We consider ` < r to be the maximal value for which there exists an optimal balanced schedule,
such that machine i processes the jobs in {ja 2 Ji : a  `} for i = 1, 2, . . . ,m.
W.l.o.g. machine 1 processes job 1, and thus ` � 1.
Let an optimal balanced schedule �⇤ be given, such that machine i processes the jobs in {ja 2 Ji : a  `}
for i = 1, 2, . . . ,m. Let i be the machine that processes job j`+1, and let i0 2 {1, 2, . . . ,m} such that
i0 ⌘ `+ 1 mod m. We consider machine i and machine i0.
Note that j`+1 is not the remaining job with lowest index scheduled on machine i or machine i0, as
otherwise we can exchange the schedules between the machine, creating an optimal schedule that con-
tradicts the maximality of `. We note that the remaining jobs that are assigned to machines i, i0, are
alternatingly assigned in index to machine i and machine i0 until machine i processes job j`+1 as well as
the remaining job before it jprev.
We proceed by showing that an optimal schedule �̂ must exist where the remaining jobs are alternatingly
assigned to machine i and machine i0, at least until machine i processes job j`+1.

When the remaining job jnext following job j`+1 has the same due date as j`+1, job jnext must be
scheduled on machine i0 as the schedule �⇤ is balanced. We can switch jobs jnext and j`+1 in schedule
�⇤, resulting in optimal schedule �̂.

Otherwise, let J`+1, J 0
`+1 be the blocks of jobs with due date dj`+1 scheduled on machine i and machine i0

respectively. As �⇤ is balanced and jobs jprev and j`+1 are both scheduled on machine i, djprev < dj`+1 .
Thus J`+1 consists of one job more than J 0

`+1 does. Consider that J 0
`+1 does not start processing later

than J`+1. W.l.o.g. job j`+1 is the latest scheduled job in J`+1. Then no job in J 0
`+1 is scheduled at

time Sj`+1 , and by Property 4.1, no job is scheduled on machine i0 at Sj`+1 . This is illustrated in Figure 5.

Machine i J`+1 j`+1

Machine i0 J 0
`+1

Sj`+1

Figure 5: Early start of J 0
`+1

In this case we swap the schedules from Sj`+1 onwards, between the machines , giving optimal schedule �̂.

Then we consider that J 0
`+1 does start processing later than J`+1. W.l.o.g. j`+1 is the job to be

processed first, of the jobs in J`+1. Here we distinguish between two cases.

Case 1

Suppose that no job j0 is being processed at Sj`+1 on machine i0. This is illustrated in Figure 6.
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Machine i j`+1 J`+1

Machine i0 J 0
`+1

Sj`+1

Figure 6: Case 1

We swap the schedules from Sj`+1 onwards between the machines, giving optimal schedule �̂.

Case 2

Suppose that a job j0 is being processed at time Sj`+1 on machine i0. This is illustrated in Figure 7.

Machine i j`+1 J`+1

Machine i0 j0 J 0
`+1

Sj`+1 Cj0

Figure 7: Case 2

Note that there is at most one remaining job with due date dj0 assigned to machine i, and at most one
such remaining job to machine i0. Let jsecprev be the remaining job second in index to remaining job
jprev (that was the job second in index to remaining job j`+1) As djsecprev  djprev , Property 4.1 gives
dj0 = dj0secprev =) dj0 = djprev .
We now show that dj0 = djprev =) dj0 = djsecprev .
Consider to contradiction that dj0 = djprev 6= djsecprev , then machine i processes one job more with due
date dj0 and completes processing the jobs with due date dj0 before machine i0 does. We consider job
jprev to be the first processed job of its due date on machine i. This is illustrated in Figure 8.

Machine i jprev
Machine i0 j0

Cjprev

Figure 8: Case 2: dj0 = djprev 6= djsecprev

By Property 4.1, no job is being processed on machine i0 at time Cjprev . Thus we can exchange the
schedules from time Cjprev onwards, between the machines, resulting in the schedule in Figure 9.

Machine i jprev j0

Machine i0

Cjprev

Figure 9: Case 2: dj0 = djprev 6= djsecprev

This schedule has the same cost as �⇤ and is not optimal by Property 3.1.
Thus also dj0 = djprev =) dj0 = djsecprev and therefore dj0 = djprev () dj0 = djsecprev .
We conclude that the two machines process equally many jobs with due date dj0 . Either both machines
process 1 remaining job with due date dj0 or no such remaining job. We illustrate case 2 with this
expanded knowledge in Figure 10.

Machine i jf
Machine i0 j0

Sjf

Figure 10: Case 2: expanded
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Here jf is the first job to be processed on machine i with due date dj0 . When reaching case 2 we try to
swap the schedules from Sjf onwards, between the two machines. Again we are either in case 1 and it
can be done, or we reach case 2 again. Whenever we reach case 2 we repeat this procedure until reaching
case 1. This process will terminate as there are only finitely many jobs scheduled of unit size, when there
are no jobs before jf we are in a case 1 situation.
After execution of this method, we will swap the pairs of remaining jobs with equal due date in case 2
situations back and have found the optimal schedule �̂.

The existence of optimal schedule �̂ contradicts the maximality of `, and thus ` = n.

Finding a distribution of jobs between the m machines for which an optimal schedule exists is an im-
portant step in determining an optimal schedule. By Lemma 4.4 an optimal balanced schedule can be
found by first distributing b

n`
m c to each machine for ` = 1, 2, . . . , k, then distributing the remaining job

set Ji to machine i, after which, we solve the m single machine problems optimally. With
Algorithm 3, the block merging algorithm for unit weights, we can find the optimal schedule for each
machine in O(k) time. Therefore the identical parallel machine problem can be solved to optimality in
O(mk) time. Another approach is to use the job sequences for every machine. Every machine processes
O( n

m ) jobs, and thus for every machine an optimal schedule can be found in O( n
m ) time using

Algorithm 1, the block merging algorithm for sequences. Thus the identical parallel machine problem
can also be solved in O(m ·

n
m ) = O(n) time.

Theorem 4.9. An optimal balanced schedule �⇤ for the identical parallel machine problem with
unit weights, can be found in O(min{mk, n}) time, for ordered due dates.

Likewise, for the integral scheduling problem both Algorithm 6 and Algorithm 2 can be used to find
optimal integral schedules. These algorithms do not di↵er in complexity from the algorithms with
general starting and completion times. Thus, in the parallel machine environment, the integral scheduling
problem with unit weights can be solved in O(min{mk, n}) time as well.
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5 Single due date problems

In this section we consider all jobs j to share a single due date dj = d. The jobs are assumed to have
general weights. First, we show that an optimal schedule of the integral scheduling problem can be
found in O(n log n) time. Then we study the problem with general starting times. First we consider
unconstrained problems. Then we consider constrained problems. In both cases, an optimal schedule can
be found in O(n log n). We will extend these findings to the identical parallel machine environment. For
unconstrained problems we can find an optimal schedule in O(n log n) time. For constrained problems
we can find an optimal schedule in O(m2

· 2mn+ n log n) time.

For the integral scheduling problem with identical parallel machines, there is no distinction between
the machines: every machine has the same set of completion times. According to Property 3.3, in an
optimal schedule, the jobs with highest weight must be completed closest to d. This means that the m
jobs with highest weight must be scheduled to be completed at time d, the jobs with next highest weight
must be scheduled directly afterwards or (if possible) directly before these m jobs. This process can be
continued until all jobs are scheduled.

Theorem 5.1. An optimal schedule �⇤ for the integral scheduling problem with a single common
due date d, can be found in O(n log n) time.

Proof. We order the n jobs on non-increasing weight, this can be done in O(n log n) time (for example
using block sort). Then we schedule the jobs, in this order, over the available completion times closest
to due date d, over all of the m machines, which can be done in O(n) time.

This gives a solution method for the problem with general starting and completion times and d  1 as
well. Whenever d  1, Property 3.1 gives that in any optimal schedule, all machines start processing at
time 0 without idle time between consecutive jobs. Thus, every optimal schedule is an integral schedule.
Therefore we assume d > 1 for the rest of Section 5.

We recall that we only demand integral starting and completion times when explicitly stating that
we consider an integral scheduling problem. We now will proceed with single due date problems in the
single machine environment (with general starting and completion times).

5.1 Optimal schedules in the single machine environment

We will start by introducing a certain symmetry around the due date.

Definition 5.2. Given a schedule � we define the mirrored schedule �M by CM
j = 2d� Cj .

We will explain the reasoning for the new completion time CM
j = 2d� Cj .

Note that 2d� Cj = d� (Cj � d) = d+ (Ej � Tj). That is, when job j is late, we subtract the lateness
of job j from d, when job j is early the earliness of job j is added to d. For early jobs j, the earliness in
� will be the lateness in �M , for late jobs j, the lateness in � will be the earliness in �M .
The cost of � is equal to the cost of �M as for every job j the cost wj(Cj � d)2 = wj(CM

j � d)2 is not
a↵ected by mirroring.

We will show how this works by giving an example:
Let a single due date problem be given with four jobs and common due date d = 18

5 .
Let the schedule � be defined by C1 = 8

5 , C2 = 17
5 , C3 = 22

5 and C4 = 31
5 .

This schedule is illustrated in Figure 11.

Machine 1 1 2 3 4

d = 18
5

Figure 11: Schedule �
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The completion times of the mirrored schedule are CM
1 = 28

5 , CM
2 = 19

5 , CM
3 = 14

5 and CM
4 = 5

15 . The
mirrored schedule �M is illustrated in Figure 12.

Machine 1 1234

d = 18
5

Figure 12: The mirrored schedule �M

By Property 3.2 any optimal schedule � consists of one single block of jobs to be scheduled.
Consider an optimal schedule � with job jf to be processed first and job j` to be processed last.
We note that Cj` = Sjf + n. Then the mirrored schedule �M starts processing at time
SM
j` = CM

j` �1 = 2d�(Sjf +n)�1. When Sjf  d� n+1
2 we have SM

j` � 2d�(d� n+1
2 +n)�1 = d� n+1

2 .
We note that jf is the first job to start processing in � and j` is the first job to start processing in
the mirrored schedule �M . Therefore for any optimal schedule � the first job does not start processing
before time d� n+1

2 or for its mirrored schedule �M , the first job does not start processing before time
d� n+1

2 . As the mirrored schedule �M is also optimal and when d �
n+1
2 , Sjf � 0 or SM

j` � 0, this gives
the following theorem.

Theorem 5.3. The single due date problem with d �
n+1
2 is unconstrained.

Furthermore, by definition of unconstrained problems, increasing the due date of a problem will not
reduce the optimal cost of the problem. Thus, in order to find the cost of an optimal schedule, we may
assume d �

n+1
2 for unconstrained problems.

We will first show how unconstrained problems with a single common due date can be solved up to
optimality. Then we will show how to solve constrained problems with a single common due date.

5.1.1 The unconstrained problem

We consider an unconstrained problem, for which we may assume d �
n+1
2 . We will show how to find

an optimal schedule �⇤. As seen before we can disregard the non-negativity constraints for the starting
times as this will result in an optimal schedule �⇤ for which the constraints hold or otherwise these
constraints hold for the mirrored schedule (�⇤)M .

Let an optimal schedule �⇤ be given. Let job j be a job that is scheduled with completion time closest
to d from all completion times in �⇤. This job can not be completed too far away from d.

Property 5.4. For an optimal schedule �⇤, where job j is a job scheduled with completion time
closest to the due date, it holds that |Cj � d|  1

2 .

W.l.o.g. such a job j is scheduled in �⇤, to be late or completed at its due date. When this is not the
case job j is scheduled late in the mirrored schedule (�⇤)M , which is optimal as well.
We consider job j to have completion time d+ ✏ with 0  ✏  1

2 .
By Property 3.3, job j must be the job of highest weight. Furthermore this property gives that the job
completed second closest to d must have second highest weight and so on.
Let the n jobs j1, j2, . . . , jn ordered on non-increasing weight. Then the single block of jobs that is
scheduled in �⇤ is [jn�1, . . . , j2, j1, j3, . . . , jn] for odd n and [jn, . . . , j2, j1, j3, . . . , jn�1] for even n. Thus
the order of jobs in this block can be find in O(n log n) time, as this is the time it takes to order the jobs.
Given the composition of the block of jobs scheduled in �⇤, we can find the optimal starting time as in
Equation (3.2) given in Section 3.2.2 in O(n) time. This optimal starting time is given by

t̂ =

Pn
a=1 wja(d� a)Pn

a=1 wja

= d�

Pn
a=1 wjaaPn
a=1 wja

.

And thus we have shown how to find an optimal schedule �⇤ e↵ectively.
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Theorem 5.5. An optimal schedule �⇤ for the scheduling problem with a single common due date
d �

n+1
2 , can be found in O(n log n) time.

5.1.2 The constrained problem

Now we consider constrained problems for which necessarily d < n+1
2 , by Theorem 5.3.

Let 1 < d < n+1
2 . We consider an optimal schedule �⇤ that consists of a single block of jobs to be

processed. The first job jf must have starting time 0  Sjf  1. Otherwise the last job j` has com-
pletion time Cj` � n + 1 and |Cj` � d| � n + 1 � d > n+1

2 . Thus, job j` could instead be processed at
the start with completion time C 0

j` = 1, so that |C 0
j` � d| = d � 1 < n+1

2 � 2 < |Cj` � d| contradicting
optimality of schedule �⇤.
As 0  Sjf  1, either bdc or bdc � 1 jobs must be completed at time d. Furthermore job j1 can be one
of the jobs completed at time d, or it can be completed late such that it isn’t.

This leads to four possible cases for the block in an optimal solution. For each case, a di↵erent block is
optimal. We will construct these four blocks. One of these blocks must be the block scheduled in �⇤,
thus we can find an optimal schedule.

Theorem 5.6. An optimal schedule �⇤ for the scheduling problem with a single common due date
d < n+1

2 , can be found in O(n log n) time.

Proof. Consider bdc jobs are completed at time d, including job j1. Property 3.3 then gives that the
optimal block must be [j2bdc�1, . . . , j3, j1, j2, j4, . . . , j2bdc, j2bdc+1, j2bdc+2, . . . , jn].

Secondly we consider that bdc jobs are completed at time d, and this doesn’t include job j1. Prop-
erty 3.3 shows that the optimal block must be [j2bdc, . . . , j4, j2, j1, j3, . . . , j2bdc+1, j2bdc+2, j2bdc+3, . . . , jn].

Then we consider that bdc � 1 jobs are completed at time d, including job j1. Property 3.3 then
gives that the optimal block must be [j2bdc�3, . . . , j3, j1, j2, j4, . . . , j2bdc�2, j2bdc�1, j2bdc, . . . , jn].

Finally, we consider that bdc�1 jobs are completed at time d, and this does not include job j1. Property
3.3 then gives that the optimal block must be [j2bdc�2, . . . , j4, j2, j1, j3, . . . , j2bdc�1, j2bdc, j2bdc+1, . . . , jn].

Let �1,�2,�3 and �4 be the schedules resulting from scheduling these blocks at their optimal start-
ing time given by Equation (3.2). As these four schedules are the optimal schedules for each of the four
possible cases of an optimal schedule, one of the schedules �1,�2,�3 and �4 must be optimal. Thus, we
may take any of these schedules with minimal cost compared to the other 3 schedules to be the optimal
schedule �⇤.
After sorting the jobs in non-increasing weight in O(n log n) time, these four blocks can be found and
then scheduled at their optimal starting time in O(n) time.

In the following section we will use these methods to find an optimal schedule for the single machine
case to find an optimal schedule for m identical parallel machines.

5.2 Optimal schedules in the identical parallel machine environment

Much like the unit weight problem in the identical parallel machine environment, there exists an optimal
schedule that is balanced. As defined in Definition 4.4, this means that every machine processes either
b
n
mc or d n

me jobs.

Theorem 5.7. For the problem with a single due date, in the identical parallel machine environ-
ment, any optimal schedule �⇤ is balanced.

Proof. Let an optimal schedule � be given that is not balanced. Assume machine i processes at least two
jobs more than machine i0, we note that either machine i starts processing at least 1 time unit earlier,
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or it ends at least 1 time unit later.
In this first case, let job j0 be the first job to be processed on machine i. In the latter case, let j0 be the
last job to be processed on machine i. Job j0 can be processed at the same time on machine i0 instead.
Let schedule �0 be the optimal schedule that results from this change. Note that Cj0 6= d as otherwise
a job j 6= j0 scheduled on machine i can be scheduled at its due date instead lowering cost. This
contradicts optimality. Let B be the block of jobs on machine i in schedule � Then Cj0 6= d implies that
when removing job j0 from block B, the optimal position of the block of all other jobs in B must be
di↵erent than before, as can be seen in Equation (3.2). This constradicts optimality of �0 and therefore
also of schedule �.

This leads that in an optimal schedule with m1 = n mod m machines that process d
n
me jobs, and

m2 = m�m1 machines that process b n
mc jobs.

As d �
d n
m e+1
2 =) d �

b n
m c+1
2 , Theorem 5.3 gives that all single machine problems are unconstrained

when d �
d n
m e+1
2 . As a result the identical parallel machine problem with d �

d n
m e+1
2 is unconstrained.

Again, to find the optimal cost of unconstrained problems we may assume d �
d n
m e+1
2 (if this is not the

case we may increase the due date to any arbitrary value). We first consider unconstrained problems.
Then we consider constrained problems.

5.2.1 The unconstrained problem

Let the problem be unconstrained. We may assume d �
d n
m e+1
2 .

Consider an optimal schedule �⇤.
Property 5.4 gives that on every machine i we may assume that the job scheduled to complete closest to
its due date completes at time d+✏i with �

1
2  ✏i 

1
2 . For negative values of ✏i we consider the mirrored

schedule, and thus 0  ✏i 
1
2 . W.l.o.g. we assume 0  ✏1  ✏2  . . .  ✏m. From Property 3.3 it follows

that job ji is scheduled on machine i to be completed at time d + ✏i. Job jm+1 must be scheduled to
complete in the next closest position. This is directly before job jm on machine m. Likewise, job jm+`

is scheduled on machine m + 1 � ` before job jm+1�` for ` 2 {1, 2, . . . ,m}. Then job j2m+1 must be
scheduled on machine 1 directly after job j1. Job j2m+` is schedule on machine ` directly after job j` for
` 2 {1, 2, . . . ,m}. Continue this procedure until the job sequence is known for all m machines.
For machine i the job sequence is [. . . , j4m+1�i, j2m�i+1, ji, j2m+i, j4m+i, . . .]. The m sequences can be
found in a total of O(n) time. Then the blocks that consist of these job sequences can be scheduled at
their optimal starting time given in Equation (3.2). This takes in total O(n) time. We do need the jobs
to be ordered however, which can be done in O(n log n) time.

Theorem 5.8. An optimal schedule �⇤ for the unconstrained problem, in the identical parallel
machine environment, can be found in O(n log n) time.

5.2.2 The constrained problem

Let the problem be constrained, then we may consider 1 < d <
d n
m e
2 .

In an optimal schedule �⇤, every machine processes either d n
me, or b n

mc jobs. By adding m · d
n
me�n jobs

with weight 0, we may consider every machine to process d n
me jobs in an optimal schedule.

Consider optimal schedule �⇤.
Again, Property 5.4 gives that on every machine i we may assume that the job scheduled to be completed
closest to its due date completes at time d+ ✏i with �

1
2  ✏i 

1
2 . This time, mirrored schedules might

be infeasible however, and thus we consider the order of |✏i| for i = 1, 2, . . . ,m.
W.l.o.g. we assume 0  |✏1|  |✏2|  . . .  |✏m|.
From Property 3.3 it follows again, that job ji is scheduled on machine i to be completed at time d+ ✏i.

The job sequences on any of the machines, must take one of the 4 forms discussed in Section 5.1.2.
For machine i, job ji can be scheduled late or early. Furthermore, either bdc or bdc�1 jobs are scheduled
early.
Thus, there are 4m possible combinations of these cases, for the m single machine schedules. By fixing
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a combination, the order of the machines and Property 3.3, the m job sequences can be found in O(n)
time for ordered jobs. Then any job sequence can be scheduled optimally as a block in O( n

m ) time, and
the whole schedule can be found in O(m ·

n
m ) = O(n) time. Thus, any combination of cases for the m

machines, gives a candidate for an optimal schedule in O(n) time.
By considering the 4m distinct possibilities, an optimal schedule can be found in O(4mn) time.

We will show, however, that it su�ces to consider a subset of m2
· 2m combinations of cases.

Let Mearly be the set of machines where the job scheduled to complete closest to the due date (job
ji for machine i) is scheduled early or on time. Likewise, let Mlate be the set of machines where the job
scheduled to complete closest to the due date is scheduled late.

Lemma 5.9. An optimal schedule �⇤ and integers 0  `1, `2  m exist, such that the first `1
machines in Mearly, and the last `2 machines in Mlate process bdc jobs before d, and all other
machines process bdc � 1 job before d.

Proof. Let an optimal schedule �⇤ be given.
Consider machines i, i0 2 Mearly with i < i0 such that machine i processes bdc � 1 jobs before d and
machine i0 processes bdc jobs before d.
Note that jobs ji and ji0 are the jobs scheduled to complete closest to due date d on machine i and
machine i0 respectively. As both i, i0 2 Mearly jobs ji, ji0 are scheduled early. Then, by the ordering
between the machines, the fact that i < i0 implies that job ji is completed at least as close to the due
date d as ji0 does, i.e., Cji0  Cji . Machine i must process bdc � 2 jobs before job ji and machine i0

must process bdc � 1 jobs before job ji0 . As every machine processes a single block of jobs the first job
on machine i0 is processed during idle time on machine i. Thus we will process this job on
machine i instead. As a result machine i processes bdc jobs before d and machine i0 processes bdc � 1
jobs before d.

Likewise, we consider machines i, i0 2 Mlate with i < i0 such that machine i processes bdc jobs before d
and machine i0 processes bdc�1 jobs before d. As i < i0 we have completion times Cji  Cji0 for the late
jobs ji and ji0 . This time we can process the first job on machine i on machine i0 instead. In the result-
ing optimal schedule, machine i processes bdc�1 jobs before d and machine i0 processes bdc jobs before d.

By repeating these procedures, we can alter the optimal schedule �⇤, until we find an optimal schedule
as specified in Lemma 5.9.

As a result, we can consider the 2m partitions of the machines in Mearly and Mlate. Then we may
consider the O(m2) possible values of `1 and `2. This specifies a subset of the 4m combinations that we
considered at first. By virtue of Lemma 5.9, these O(m2

· 2m) combinations are su�cient to consider.
Thus, after ordering the jobs in O(n log n) time, a total of O(m2

·2m) combinations are considered giving
O(m2

· 2m) candidates for an optimal schedule. Every candidate can be constructed in O(n) time using
Property 3.3.

Theorem 5.10. An optimal schedule �⇤ for the constrained problem, in the identical parallel
machine environment, can be found in O(m2

· 2mn+ n log n) time.

For many machines and a very small due date 1 < d <<
d n
m e
2 , we would advice a simple heuristic to find

a schedule with reasonable cost in polynomial time. The assumption of many machines implies that the

running time to find an optimal schedule is high. The assumption d <<
d n
m e
2 will lead us to believe that

the heuristic finds a good result. In fact we will use the same method as for instances with d  1.
Just like before we schedule a single block of jobs on every machine. Many jobs must be late, every late
job reduces the optimal starting of the block of jobs that contains it. As a result we expect every block
to start at, or close to, 0. Therefore we choose to consider every machine to start processing at time 0.
As every job sequence forms a single block, this means we seek an optimal integral schedule which can
be found in O(n log n) time. This optimal integral schedule is then the schedule we expect to have a
reasonable cost for the problem with general starting and completion times.

28



6 The general single machine problem

In this section we consider the general problem on a single machine and introduce two heuristics and an
additive approximation scheme.

6.1 A local search heuristic

Minimization problems can sometimes be solved by local search techniques. In local search, a neigh-
bourhood for a given solution is considered. The simplest form of local search; iterative improvement,
moves from one solution to an improving neighbour until no improving neighbours exist. A well-known
example of iterative improvement is the simplex algorithm. By convexity, the simplex algorithm will
terminate with an optimal solution. For the scheduling problem we will define the neighbourhood of a
schedule, thus giving a local search algorithm. Then, we point out certain disadvantages of this approach.

First, we note that we can represent candidates of optimal schedules by a single job sequence JS. This
follows as we can find an optimal schedule given job sequence JS in only O(n) time using Algorithm 1.
When saying that a schedule � is represented by a job sequence, we will in turn mean that schedule � is
an optimal schedule given that job sequence.

Definition 6.1. Let a schedule � be represented by job sequence JS = [j1, j2, . . . , jn]. The
neighbouring schedules �0 are the schedules represented by JS0, where JS0 results from a single
interchange of jobs in JS.

Thus, one could start with an arbitrary schedule that is optimal given its sequence and keep moving
from schedule to neighbouring schedule with lower cost (as soon as we find one) until no neighbour with
lower cost exists. A choice of schedule to start with could be in order of non-decreasing due dates to
possibly reduce the number of iterations.
The resulting Algorithm is given below.

Algorithm 4: The local search algorithm

Let JS be the initial job sequence and let � be the optimal schedule given job sequence JS,
found with Algorithm 1.
while There exists an improving neighbouring schedule �0 of schedule � do

Replace schedule � with schedule �0;
end

Here we note, that all neighbouring schedules � can be found by performing a job interchange in JS,
and running Algorithm 1 on the newly found job sequence JS0.

The number of iterations of this algorithm is bounded by the number of possible job sequences given
by n!. This would lead to the algorithm having worst case complexity O(n · n!) as Algorithm 1 has
running-time O(n). In O(n ·n!) time we could also calculate the cost of all n! schedules that are optimal
given their sequence, thus finding an optimal schedule in O(n · n!) time.

With an example we will show that for our definition of neighbouring schedules, a locally optimal
solution does not have to be optimal.

6.1.1 Counterexample of optimality

By a counterexample, we show that locally optimal solutions are not necessarily optimal.

Consider the problem with the 6 jobs j1, j2, . . . , j6. Let d1 = �4, d2 = 1 5
11 , d3 = 2 4

11 , d4 = 4,
d5 = 5, d6 = 6. For jobs j4, j5 and j6 we let the weight j4 = j5 = j6 = W approach infinity such that
these jobs need to be completed at their due date (which is equal to their index) in an optimal schedule.
Furthermore we take w1 = 1, w2 = w3 = 110.
Note that this problem is equivalent to the problem translated 5 to the right with 5 added jobs with
due date 1 and weight W . Thus a counterexample with only positive due dates exist. For simplicity we
prefer the counterexample with 5 jobs and d1 = �4, as only 6 jobs need to be scheduled instead of 11.

Now we consider the schedule �1 given by Cji = i for i 2 {1, 2, . . . , 5}. This schedule is shown in
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Figure 13.

Machine 1 1 2 3 4 5 6

d2 = 1 5
11 d3 = 2 4

11
d4 = 4 d5 = 5 d6 = 6

Figure 13: Schedule �1

This schedule has cost
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If job j1 would be scheduled after job j6 in an optimal schedule it would have cost of at least
w1(7� (�4))2 = 121 > 102 3

11 . For job j2 and j3 we also see that scheduling one of these jobs after
job j6 gives cost of at least 110(7� 2 4

11 ) > 77 3
11 .

Thus it is clear that in an optimal schedule jobs j1, j2 and j3 need to be scheduled between time 0 and
job j4 starting at time 3. This is the case in �1.

A pairwise interchange with at least one of the jobs j4, j5 and j6 will not give a better schedule (the cost
will approach infinity). Thus, we consider the pairwise interchanges of jobs j1, j2 and j3.

First, we look at the interchange of jobs j1 and j2. This gives schedule �2 illustrated in Figure 14
.

Machine 1 12 3 4 5 6

d2 = 1 5
11 d3 = 2 4

11
d4 = 4 d5 = 5 d6 = 6

Figure 14: Schedule �2

Schedule �2 has cost
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Thus this interchange does not reduce the cost.

Then we consider the interchange of jobs j1 and j3. As both jobs will be completed farther from
their respective due dates, this pairwise interchange will not decrease the cost.

Finally, we consider the interchange of jobs j2 and j3 resulting in schedule �3 illustrated in Figure 15.

Machine 1 1 23 4 5 6

d2 = 1 5
11 d3 = 2 4

11
d4 = 4 d5 = 5 d6 = 6

Figure 15: Schedule �3

Schedule �3 has cost
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Thus this last interchange does not reduce the cost either.

This shows that schedule �1 is locally optimal.

We can however consider schedule �⇤ illustrated in Figure 16.

Machine 1 12 3 4 5 6

d2 = 1 5
11 d3 = 2 4

11
d4 = 4 d5 = 5 d6 = 6

Figure 16: Schedule �⇤

This schedule �⇤ is not the result of a pairwise interchange of schedule �.

Schedule �⇤ has cost
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Therefore the locally optimal schedule � is not an optimal schedule.
It can in fact easily be verified that schedule �⇤ is the (unique) optimal schedule of this problem.

6.2 A greedy heuristic

We present a polynomial time, greedy heuristic to find a schedule �̂ with low cost. First, we sort the jobs
j1, j2, . . . , jn in order of non-increasing weight. Then the heuristic iteratively includes the unscheduled
job with highest weight and inserts it at a place in the job sequence of scheduled jobs such that, when
scheduled by Algorithm 1, the cost is minimal.

To initialize, the job sequence JS = [j1] is taken. Then job j2 is either inserted in the first or sec-
ond position giving job sequences [j2, j1] and [j1, j2] respectively. The job sequence JS is then updated
with the new job sequence of lowest cost. Then this insertion is done for job j3 and so on, until we have
found a job sequence that includes all n jobs and is scheduled optimally by Algorithm 1.
This gives the following algorithm.

Algorithm 5: The greedy heuristic algorithm

Start with job sequence JS = [j1].
for ` = 2, 3, . . . , n do

ActiveJob = j`;
for a = 1, 2, . . . , ` do

Insert job j` at position a in the job sequence, find the optimal schedule and its cost with
Algorithm 1.

end

Insert job j` in job sequence JS at the position that results in the lowest cost.
end

We note that the jobs can be sorted in O(n log n) time. Then we have O(n) jobs to add to the job
sequence. For each of the job we test O(n) positions, and find the optimal schedules and cost of these
sequences which takes O(n) time each, thus every insertion is done in O(n2) time. This leads to running
time O(n3) for this greedy algorithm.

As the jobs with highest weight are scheduled at the best possible place in the sequence, we hope
to achieve that the jobs with highest weight are correctly ordered relatively to each other. When jobs
with lower weight are not scheduled at the same position as in an optimal schedule, this does not a↵ect
the cost that much. Thus we hope to find a schedule with relatively low cost.
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We do note however that this heuristic does not always give an optimal solution, as the following example
shows.

6.2.1 Counterexample of optimality

We take 6 jobs. Let w1 = w2 = w3 = w4 = W with W approaching infinity, and let the last 2 jobs have
weights w5 = 10 and w6 = 9 respectively. Then as due dates we take d1 = 2, d2 = 3, d3 = 4,
d4 = 6, d5 = 5.8 and d6 = 4. After 3 iterations the job sequence [j1, j2, j3, j4] is found, the corresponding
optimal schedule is illustrated in Figure 17.

Machine 1 1 2 3 4

d6 = 4 d5 = 5.8

Figure 17: Job sequence [j1, j2, j3, j4]

These four jobs are scheduled with zero cost, as they also must be in the optimal schedule.

Algorithm 5 proceeds by inserting job j5 at the fourth position giving sequence [j1, j2, j3, j5, j4], with
optimal schedule illustrated in Figure 18.

Machine 1 1 2 3 45

d6 = 4 d5 = 5.8

Figure 18: Job sequence [j1, j2, j3, j5, j4]

We note that scheduling job j5 at any other position gives |C5 � 5.8| � 1.2 > 0.8, and thus gives higher
cost. Algorithm 5 proceeds by inserting job j6 at the first position giving sequence [j6, j1, j2, j3, j5, j4],
with optimal schedule illustrated in Figure 19.

Machine 1 1 2 3 456

d6 = 4 d5 = 5.8

Figure 19: Job sequence [j6, j1, j2, j3, j5, j4]

This schedule � has cost w5 · 0.82 + w6 · 32 = 6.4 + 81 = 87.4.

Another feasible schedule is given in Figure 20.

Machine 1 1 2 3 4 56

d6 = 4 d5 = 5.8

Figure 20: Alternative schedule with [j1, j2, j3, j6, j4, j5]

This schedule has cost w5 · 1.22 + w6 · 12 = 14.4 + 9 = 23.4, which is lower than schedule � found by
Algorithm 5. Thus Algorithm 5 does not always give an optimal schedule.

6.3 An additive approximation scheme

We give an additive approximation scheme to find a solution with cost close to the optimal cost. Unlike
the previously introduced heuristics, this will yield a performance guarantee. The additive approxima-
tion scheme will construct many schedules by picking a starting time of the schedule and fixing several
idle periods. The starting time of the schedule and the lengths of the constructed idle periods will be
multiples of a suitably chosen value ↵. To know which possible starting times and idle periods su�ce,
we first need to give further structural properties of idle periods in optimal schedules.
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The definition we use of an additive approximation scheme is taken from a paper by Buchem et al. [9].

Definition 6.2. An additive approximation scheme is a family of algorithms that finds on any
instance I and for every ✏ > 0 a solution with value A(I) satisfying

|A(I)�OPT(I)|  ✏h,

where h is a suitable chosen parameter of instance I.

Often this choice of h arises naturally for a problem. In our case we let h = W with W the maximal
weight W = maxj{wj} of the jobs in the given instance. When all the weights in instance I are mul-
tiplied by a certain value �, both the value |A(I) � OPT (I)| and the value h will be multiplied by �.
Thus, this does not have an e↵ect on the performance guarantee.

In order to derive the additive approximation scheme, we first need some structural remarks on idle
periods.

6.3.1 Idle periods and structural properties

The concept of idle periods helps to find the structure of (near) optimal schedules.

Definition 6.3. An idle period is a maximal time interval between the processing of two jobs on
a machine.

We will give an example of an optimal schedule with an occurrence of an idle period.
We consider 7 jobs to be scheduled with (integral) due dates d1 = d2 = d0 = 7 and
d3 = d4 = d5 = d6 = d7 = d = 5. Let w1 = w2 = w3 = 1 and w4 = w5 = w6 = w7 = ✏, where ✏
approaches 0.
To find the optimal schedule, we start by scheduling the first 3 jobs optimally. The block with due date
d and the block with due date d0 can be scheduled at their optimal starting times given by Equation
(3.2). This gives the partial schedule �0 illustrated in Figure 21.

Machine i 1 23

d0 = 7d = 5

Figure 21: Partial schedule �0

We note that there is an idle period between job 3 and job 1.

As ✏ approaches 0, the latter 4 jobs will not a↵ect the scheduled starting times of the first 3 jobs.
Now the latter 4 jobs will be scheduled before job 3 and after job 2 without any more idle periods (by
Property 3.1). Doing this such that these 4 jobs are scheduled as close to d as possible gives the optimal
schedule �⇤ illustrated in Figure 22.

Machine i 1 23456 7

d0 = 7d = 5

Figure 22: Optimal schedule �⇤

Now we know that idle periods can occur in optimal schedules, we will study where idle periods can
occur and with what length.

There will not be an idle period between jobs before the smallest due date (otherwise shifting the
jobs before the idle period to the right reduces the value of the objective function). Likewise there will
not be an idle period between jobs after the largest due date. Furthermore by Property 3.1 we know
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that there is no idle time between two consecutively scheduled jobs with the same due date. Related to
this property, we also find that there is at most one idle period between two consecutive due dates.

Property 6.4. For any optimal schedule �⇤, there will be at most one idle period intersecting
with the interval (d`, d`+1).

Proof. Let �⇤ and ` be given such that the theorem does not hold.
As there are multiple idle periods between d` and d`+1, there must be a block of jobs B between two idle
periods. The last job in B, denoted by jlast must have a due date from at most d`, as otherwise jlast can
be scheduled later and closer to its due date. Likewise the first job in B denoted by jfirst must have a
due date from at least d`+1. Thus a pairwise interchange between jobs jfirst and jlast reduces the cost.
This contradicts optimality of �⇤.

Recall that there are no idle periods before d1 or after dk in an optimal schedule. Together with Property
6.4, this gives the following corollary.

Corollary 6.5. For any optimal schedule �⇤, there will be at most k � 1 idle periods.

Then, we consider the length of idle periods. When an idle period [a, b] is of length at least 1 and a job j
scheduled before this idle period has due date of at least b, it can be processed in the idle period instead,
reducing the cost. Likewise, when a job j scheduled after this idle period has due date of at most a, it
can be processed in the idle period instead, again reducing the cost. This gives the following property.

Property 6.6. Let idle period [a, b] be of length 1 or more in optimal schedule �⇤. Every job
scheduled before time a must have due date of at most a and every job scheduled after time b
must have due date of at least b.

6.3.2 The additive approximation scheme

The additive approximation scheme we introduce, fixes the starting time of the schedule, the length of
the blocks, and the positions of the (at most k � 1) idle periods. This in turn fixes all possible starting
and completion times, such that we can use the assignment problem as explained in Section 3.3. This
gives an optimal assignment of jobs to time slots, which then specifies a schedule. For the job sequence
that is processed in this schedule we can find the optimal schedule with Algorithm 1.

Let ↵ = min{1, ✏
2n2 }, with

1
✏ being integral. When 1

✏ is not integral, we choose ✏0 instead, such that
1
✏0 = d

1
✏ e. Then we note that ✏0 < ✏ and |A(I)�OPT (I)|  ✏0W =) |A(I)�OPT (I)|  ✏W .

Given an optimal schedule �⇤, we note that we can round all starting times up to the nearest mul-
tiple of ↵, and this will result in a schedule �0 with cost of at most ✏W more than the optimal cost.

Theorem 6.7. Let an optimal schedule �⇤ be given with cost OPT(I) and the schedule �0 be the
result of rounding the starting times of the jobs up to the nearest multiple of ↵. Schedule �0 has
a cost of at most OPT(I) + ✏W .

Proof. First, we show that �0 is a feasible schedule. As 1 = 2n2
·
1
✏ · ↵, the value 1 must be an integer

multiple of ↵. Consider two jobs j and j0 such that job j is processed before job j0 in schedule �⇤. In
schedule � we have Sj + 1  Sj0 and as 1 is an integer multiple of ↵ we know S0

j + 1  S0
j0 in �0. Thus

the machine will process at most one job at a time. Of course the starting times are still non-negative
and thus �0 is feasible.

We recall the assumption of positive (rational) due dates. An important observation for the approx-
imation scheme is, that in an optimal schedule for any job j, for 0 < ↵0

 ↵  1 we have

((Cj + ↵0)� dj)
2 = (Cj � dj)

2 + 2(Cj � dj)↵
0 + (↵0)2

(1)
 (Cj � dj)

2 + (n+ k � 1)↵0 + ↵0

 (Cj � dj)
2 + 2n↵0

 (Cj � dj)
2 + 2n↵,

(6.1)
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where inequality (1) uses the fact that there can be at most k � 1 idle time intervals of (the k � 1
idle periods of Corollary 6.5) after dj before processing job j. Each of these have length less than 1 as
otherwise job j can be scheduled closer to its due date. Finally, the time the machine is not idle the
machine must be processing jobs which takes a total of n time.
By rounding up the starting times to the nearest multiple of ↵, the jobs are shifted at most ↵ to the
right. Thus Equation (6.1) gives that the cost for any job increases by at most wj · 2n↵  2Wn↵ 

W ✏
n ,

thus the total cost increases by at most n ·
W ✏
n = W ✏.

When in a schedule, the starting and completion times of jobs are multiples of ↵, the starting time of
the schedule and the length of the idle periods are multiples of ↵, and vice versa (as the processing time
of jobs is 1 which is a multiple of ↵).

Consider the schedule �0, as specified in Theorem 6.7. In the additive approximation scheme we consider
several schedules, including a schedule with the same starting and completion times as �0. For these
starting, and completion times we assign the jobs optimally to these completion times. As a result the
found schedule does not have a higher cost than the schedule �0. We will explain how the additive
approximation scheme constructs these schedules.

We let s denote the starting time of the first block, and let zi 2 N denote the number of jobs in
the i�th block of jobs for 1  i  k. Then we let `i denote the length of the i-th period for 1  i  k�1.
As explained we let s and `1, `2, . . . , `k�1 be multiples of ↵. We will now further specify which possible
values we need to consider for these variables.

First, we note that in an optimal schedule �⇤ the first block does not start processing before d1 � n.
Recall that d1 2 Q+. The first block can’t start after d1 + 1, as then a job with due date d1 can be
processed earlier, from d1 to d1 + 1 instead, reducing the cost. When rounding the starting time up to
a multiple of ↵, resulting in starting time s, we know ↵dd1�n

↵ e  s  ↵dd1+1
↵ e.

Next, we consider the number of jobs in the first block, given by z1. As the first idle period can
not take place before d1, we let zmin

1 be the smallest non-zero value such that s+ zmin
1 � d1. This leads

to zmin
1  z1  n.

For the i�th block with i 2 {2, 3, . . . , k � 1}, we need to choose its length zi after the (i � 1)�th
idle period has ended. We consider values up to n �

Pi�1
p=1 zp. We know the i�th block does not fully

lay between two consecutive due dates d`, d`+1 for ` = 1, 2, . . . , k � 1. Otherwise two idle periods would
intersect with (d`, d`+1) contradicting Property 6.4. This gives a lower bound (except when the block
starts at a due date), that may be stronger than the lower bound 1. Thus, we consider the resulting
lower bound restricting zi to 1  zmin

i  zi.
For the choice zi = n �

Pi�1
p=1 zp, the size of all the blocks up to the i�th block is n in total and we

stop constructing blocks and idle periods. As a result we have now specified the n starting and com-
pletion times for the n jobs. When choosing the length of the k�th block, we will always choose length
zk = n�

Pk�1
p=1 zp, such that n jobs will be processed in total.

After constructing the i�th block with i 2 {1, 2, . . . , k � 1} and with completion time t, we need to
choose the length ↵  `i of the i�th idle period. When the i�th idle period is longer than 1, we know,
by Property 6.6, that the already scheduled blocks consist of only jobs with due dates of at most t. We
note that this is only possible when the total size of the scheduled blocks is equal to the number of jobs
with due date of at most t. The problem to find a schedule for the jobs with due date higher that t,
can be seen as a scheduling problem where these jobs may only start at time t + 1 or later. After a
translation of t + 1 to the left on the due dates, this is equivalent to the non-negativity of the starting
times. Thus, when an idle period, starting at time t, is longer than 1, we see the problem after time t+1
as a separate instance. We leave the earlier jobs to be assigned at the end, when we assign all jobs to
the fixed starting, and completion times.

Summarizing the procedure; we will construct schedules, by choosing the starting time s, and then,
alternatingly choosing the length zi of the i�th block and the length `i of the i� th idle period (which
follows the i�th block), until the total length of the blocks is n. When the total length of the blocks
before the k � th block is less than n, the length of the k�th block is chosen such that the total length
of these k blocks is n. The possible values of the choices for the variables is specified above. After
constructing the blocks and idle periods, all starting times and completion times are fixed. Thus, an
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optimal solution over these starting, and completion times can be found in O(n3) time, by solving a
balanced assignment problem, as explained in Section 3.3. Of all these found schedules we choose the
schedule with lowest cost. Finally, we will schedule the job sequence in this schedule optimally using
Algorithm 1. The resulting schedule �✏ is our final schedule with a cost that is an approximation of the
optimal cost.

Theorem 6.8. The described procedure is an additive approximation scheme, in the sense that,
for any ✏ > 0 with 1

✏ integral, a schedule �✏ is found with cost at most ✏W higher than the cost of

an optimal schedule �⇤. Furthermore, the running time of this procedure is O((n
4

✏ )k�1
·
n6

✏ ).

Proof. First, we show that this algorithm is indeed an additive approximation scheme.
Let �0 be a schedule as in Theorem 6.7.
As explained, the procedure will find a schedule with the same starting, and completion times, for all
jobs, that �0 has. The assignment problem, for these starting, and completion times, is solved up to
optimality. Thus the constructed schedule with lowest cost must have cost less than or equal to the cost
of �0. Scheduling the job sequence in this schedule optimally using Algorithm 1, can only reduce the cost
and results in schedule �✏. Theorem 6.7 yields that the procedure finding �✏ is an additive approximation
scheme.

By induction we will show this additive approximation scheme has a running time of O((n
4

✏ )k�1
·
n6

✏ ).

For k = 1, we note that we check O(n↵ ) = O(n
3

✏ ) di↵erent starting times of the single block. For
every starting time we solve the balanced assignment problem in O(n3) time. Thus the procedure has a

processing time of O(n
6

✏ ).

As induction hypothesis, we suppose the procedure to have running time of O((n
4

✏ )k�1 n6

✏ ), for k  ` < n.
Then we consider the case k = `+ 1.
Again we check O(n

3

✏ ) starting times for the first block. Then we consider O(n) possible lengths of this

first block. Combined, this gives O(n
4

✏ ) possible combinations for the first block.
If the first block is followed by an idle period with length of at least 1, we use Property 6.6 and construct
the later blocks and idle periods as a separate problem after which the assignment is done once for all
jobs. We only need to consider solving this separate problem when the size of the already constructed
blocks is equal to the number of jobs with due date before this idle period. Then, when starting to
construct the blocks of this separate problem, the iteration is completed in O((n

4

✏ )`�1
·
n6

✏ ) time, as given
by the induction hypothesis.
When the first block is followed by an idle period that is shorter than 1, we consider O( 1

↵ ) = O(n
2

✏ )

distinct lengths of that idle period. For any of the O(n
2

✏ ) optional lengths of this first idle period, the

complexity to complete the iteration is O(((n
4

✏ )`�1
·
n6

✏ )/(n
3

✏ )) = O((n
4

✏ )`�1
· n3), as the starting time of

the second block is already fixed at s+ z1 + `1.
Thus after fixing the first block the remaining running time of that iteration is
O((n

4

✏ )`�1
·
n6

✏ + n2

✏ · (n
4

✏ )`�1
· n3) = O((n

4

✏ )`�1
·
n6

✏ ). As we have O(n
4

✏ ) iterations fixing the first block,

this gives a total running time of O(n
4

✏ · (n
4

✏ )`�1
·
n6

✏ ) = O((n
4

✏ )` · n6

✏ ).
Finally, we run Algorithm 1 once to optimally schedule the job sequence in the constructed schedule
with lowest cost, resulting in �✏. This is done in O(n) time.
By induction, we may conclude that the running time of the additive approximation scheme, is
O((n

4

✏ )k�1
·
n6

✏ ), for 1  k  n.

We note that the running time of this additive approximation scheme is polynomial in n, 1
✏ , but is ex-

ponential in k. This means we have a fully polynomial time additive approximation scheme when k is a
constant.

Furthermore, we note that there are a finite number of possible job sequences. Thus, we may con-
sider JS2 to be the job sequence that, when scheduled optimally, gives cost that is closest to, but not
equal to, the optimal cost. Let g be the gap between this cost and the cost of an optimal schedule.
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When ✏W < g, we can conclude that the additive approximation scheme yields an optimal schedule.
The value of g is however unknown. When a lowerbound of g is found in further research, this additive
approximation scheme can be used as an algorithm solving the general problem up to optimality instead.
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7 Concluding remarks

In this thesis we studied the scheduling problem minimizing
P

j wj(Cj � dj)2 for unit sized jobs. This
problem can be used to model the fuel use of all vessels passing a lock. We have found many special
cases to be polynomially solvable.

Special cases

We have been able to solve all special cases up to optimality. The found results for the special cases are
summarized in Table 1.

Table 1: Results for special cases of the scheduling problem

Complexity in the single machine
environment

Complexity in the identical par-
allel machine environment

The problem for a fixed job se-
quence

O(n)1 O(n) for m job sequences1

The problem for a set T of fixed
completion times

O(min{|T | · n2, kn3
}) O(min{|T | · n2, kn3

})

The unit weight problem O(k), for ordered due dates O(min{mk, n}), for ordered due
dates

The unconstrained single due
date problem

O(n log n) O(n log n)

The constrained single due date
problem

O(n log n) O(m2
· 2mn+ n log n)

For a set of fixed starting, and completion times, the problem can be solved as an assignment problem.
For a fixed sequence, we gave a O(n) block merging algorithm to solve the problem. For m job sequences
this algorithm can be used on all job sequences in O(n) time as well. We showed how to apply the block
merging algorithm to unit weight problems. For a single due date we scheduled a single block of jobs on
every machine. The order of jobs in these blocks can be found e�ciently, except when constrained in
the identical parallel machine environment.

The integral scheduling problem is generally easier to solve. In this thesis we have found the results
as summarized in Table 2.

Table 2: Results for special cases of the integral scheduling problem

Complexity in the single machine
environment

Complexity in the identical par-
allel machine environment

The problem for a fixed job se-
quence

O(n)1 O(n) for m job sequences1

The problem for a set T of fixed
completion times

O(min{|T | · n2, kn3
}) O(min{|T | · n2, kn3

})

The unit weight problem O(k), for ordered due dates O(min{mk, n}), for ordered due
dates

The single due date problem O(n log n) O(n log n)

The general problem O(kn3) O(kn3)

These findings resulted either from the found results for general starting, and completion times, or by
solving an assignment problem.

1 Also for general processing times
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The general problem

For the general single machine problem, we have given a local search heuristic, a greedy heuristic and
an additive approximation scheme, the results of which are summarized in Table 3.

Table 3: Results for the heuristics and approximation scheme

Complexity Performance guarantee

The local search heuristic O(n · n!) No

The greedy heuristic O(n3) No

The approximation scheme O((n
4

✏ )k�1 n6

✏ ) Within ✏W of optimum

By representing schedules by a job sequence and defining a neighbourhood we have given a local search
heuristic. This heuristic has a bad worst case running time. We have also given a greedy heuristic,
iteratively inserting jobs into sequences. Finally, we have given an additive approximation scheme, using
the position of blocks and idle periods. This additive approximation scheme is exponential in the number
of distinct due dates, but polynomial in all other input. Furthermore, the two heuristics and the additive
approximation scheme will always give a schedule that is optimal given the sequence of jobs.

Extension of the heuristics to the identical parallel machine environment

We note that the additive approximation scheme can not easily be extended to the identical parallel
machine environment. The starting times of the first block on any machine, are not as restricted for a
single machine. Furthermore, the consequences of an idle period with length of 1 or more, are di↵erent.

The local search heuristic and the greedy heuristic can easily be extended to give schedules with a
reasonable cost in the identical parallel machine environment.

In order to do this we let a schedule be represented by m job sequences JS1, JS2, . . . , JSm for the m
machines. These can be optimally scheduled in O(n) time by running Algorithm 1 on allm job sequences.

The local search heuristic

To extend the definition of a neighbouring schedule, a neighbouring schedule is either a schedule that
is the result of a single interchange of jobs within a job sequence, or the result of an insertion of a job
in another job sequence. For this extended notion, Algorithm 4 gives a locally optimal schedule for
the identical parallel machine environment. We note that a neighbouring schedule can be found after
running Algorithm 1 at most twice.

We note that there are n! di↵erent ways to order the n jobs in a single job sequence. Then, there
are O(nm) ways to split the job sequence in m consecutive subsequences for the m machines. As there
are m! distinct orders between the m machines, this gives O(n

m

m! · n!) possible schedules to consider
with distinct weight. Each needing O(n) computation time. Therefore this heuristic can have the long

running time of O(n
m+1

m! · n!).

The greedy heuristic

For the parallel machines, we construct the m job sequences by allowing insertions in any of the m
job sequences.

At any time there are O(m + n) = O(n) possible places to insert a new job, this is the same as in
the single machine environment. We keep track of the cost on all m machines. The cost on a machine
after an insertion can be found by running Algorithm 1 only on the a↵ected job sequence.
Thus, none of the computational properties is di↵erent from the greedy heuristic in the single machine
environment. Therefore, the running time of this extension is O(n3) as well.

For completeness, the algorithm resulting from this extension is displayed in Appendix D.2.
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The result for the two extended heuristics are summarized in Table 4.

Table 4: Results for the extended heuristics

Complexity Performance guarantee

The local search heuristic O(n
m+1

m! · n!) No

The greedy heuristic O(n3) No

Open problems

The results in this thesis leave open a number of possible questions for further research.

1. Find a polynomial algorithm to solve the general scheduling problem for a single machine, or prove
this problem is in NP.

2. Find a polynomial algorithm to solve the general scheduling problem in the identical parallel
machine environment, or prove this problem is in NP.

3. Find a polynomial algorithm to solve the unconstrained single due date problem in the identical
machine environment, or prove this problem is in NP.

Furthermore, the found additive approximation scheme, for the general problem with a single machine,
is not polynomial in k. An additive approximation scheme that is fully polynomial when k is part of the
input would be preferred.

In the identical parallel machine environment, an open problem is to give an additive approximation
scheme.
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Appendices

A The assignment problem

In this section the balanced and unbalanced assignment problems are given. These are of use for finding
optimal schedules for fixed starting and completion times.

A.1 The balanced assignment problem

In 1951 D.F. Votaw and A. Orden introduced the balanced assignment problem [10]. Later on, a more
general assignment problem has been studied. Which we will now give.

Let a set of agents A be given, and a set of tasks T . We want to assign agents to tasks. An edge
set E ✓ A ⇥ T , with cardinality |E| = m, models which tasks can be done by which agent. When
|A| = |T | = n, the assignment problem is balanced. For each edge (i, j) 2 E we have cost cij and the
problem is given by

min
X

(i,j)2E

xijcij

s.t.
X

j:(i,j)2E

xij = 1 for i 2 {1, 2, . . . , n},

X

i:(i,j)2E

xij = 1 for j 2 {1, 2, . . . , n},

xij � 0 for (i, j) 2 E,

xij 2 Z for (i, j) 2 E.

(A.1)

This assigment problem models, that we seek a maximal matching (of cardinality n), with minimal cost.

The first polynomial algorithm to solve this balanced assignment problem is known as the Hungar-
ian method [24]. Using Fibonacci heaps it is also, the algorithm with the best known running time,
given by O(mn+ n2 log n) [13].

A.2 The unbalanced assignment problem

When the amount of agents |A| is not equal to the amount of tasks |T |, the assignment problem is called
unbalanced. For unbalanced assignment problems we take n = max{|A|, |T |} and r = min{|A|, |T |}.
Again we have a set E ✓ A⇥ T of edges with cardinality |E| = m. Each edge (i, j) has cost cij .

In this case the goal of the assignment problem is to give a matching of cardinality r, with minimum
total cost of its edges. When n = r, this is equivalent to formulation (A.1).

For such unbalanced assignment problems, the Hungarian method can be extended and computes an
optimal solution in time O(mr + r2 log r) [30].
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B The problem formulated as a quadratically constrained

quadratic program

We can formulate the general problem as a Quadratically Constrained Quadratic Program (QCQP). To
do this we use the following formulation of Quadratically Constrained Quadratic Programs from [28]:

min
x2Rn

xTP0x+ qT0 x+ r0

s.t. xTPix+ qTi x+ ri  0 for i = 1, 2, . . . ,m,
(B.1)

with Pi 2 Rn⇥n, qi 2 Rn and ri 2 R for i = 1, 2, . . . ,m.

In our problem we want to minimize

X

j

wj(Cj � dj)
2 =

�
C1 � d1, C2 � d2, . . . Cn � dn

�

0

BBB@

w1 0 . . . 0
0 w2 . . . 0
...

...
. . . 0

0 0 . . . wn

1

CCCA

0

BBB@

C1 � d1
C2 � d2

...
Cn � dn

1

CCCA
.

Thus minimizing
P

j wj(Cj � dj)2 is equivalent to minimizing xTP0x where

x =

0

BBB@

C1 � d1
C2 � d2

...
Cn � dn

1

CCCA

and P0 is the matrix given by

P0 =

0

BBB@

w1 0 . . . 0
0 w2 . . . 0
...

...
. . . 0

0 0 . . . wn

1

CCCA
.

We can complete the objective function of the form as in formulation (B.1) by taking q0 = 0 and r0 = 0.

We note that in this case P0 is a diagonal positive definite matrix. The Hessian matrix of xTP0x is
equal to P0 and therefore also positive definite. Functions with a positive semidefinite Hessian matrix
are convex and therefore the objective function of our general problem is convex.

In our general scheduling problem we have non-negativity constraints of the starting times. These
constraints are

Si � 0 () Ci � 1 () xi + di � 1 () �xi + (1� di)  0, for 1  i  n.

In formulation (B.1) this corresponds with Pi = 0, qi = �ei and ri = 1� di for i = 1, 2, . . . , n.
Here ei denotes the i�th standard unit vector. Furthermore, we have the constraints that no two jobs
can be processed at the same time, meaning that the completion times must di↵er by at least 1.
This is equivalent to

|Ci � Cj | � 1 () |(Ci � di) + di � ((Cj � dj) + dj)| � 1 () (xi + di � (xj + dj))
2
� 1

() 1� (xi � xj + (di � dj))
2
 0 for 1  i < j  n.

To write our problem in the form of formulation (B.1), we note that

1� (xi � xj + (di � dj))
2 = 1� (x2

i + x2
j � 2xixj + 2(xi � xj)(di � dj) + (di � dj)

2).

Let ai,j be the index of this constraint for pair 1  i < j  n.
Thus in formulation (B.1) constraint ai,j corresponds with Paij = �(eieTi � eieTj � ejeTi + ejeTj ), using
the outer product of standard unit vectors, qaij = �2(ei � ej)(di � dj) and ri = 1� (di � dj)2.

The number of constraints of this type is equal to
�n
2

�
= (n�1)n

2 .
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Thus the total number of constraints is c = n + (n�1)n
2 = (n+1)n

2 , which completes the Quadratically
Constrained Quadratic Programming formulation of our general scheduling problem.

Quadratically Constrained Quadratic Programs have been shown to be NP-hard in general [15].
There are, however, multiple special cases of Quadratically Constrained Quadratic Programs that are
polynomially solvable. Special cases given in [28] are;

1. QCQP with one variable,

2. QCQP with one constraint,

3. QCQP with one interval constraint,

4. Convex QCQP,

5. QCQP with homogeneous constraints with one negative eigenvalue.

The QCQP formulation of our problem is clearly not of the form of special cases 1, 2 or 3. We can also
show, that our QCQP is neither of the form of special case 4. For an optimization problem to be convex,
the objective function has to be a convex function and the set of feasible solutions has to be convex.
We can show that our problem is not a convex QCQP in general, by showing that the set of feasible
solutions does not have to be convex. We do this by giving a simple counterexample.

Let n = 2, d1 = d2 = 0. In this case we have solutions of the form x =

✓
C1 � d1
C2 � d2

◆
=

✓
C1

C2

◆
.

Then x1 =

✓
4
2

◆
and x2 =

✓
2
4

◆
are feasible solutions for our problem. Consider the convex combination

x3 of x1 and x2 given by x3 = 1
2x

1 + 1
2x

2 =

✓
3
3

◆
. This solution x3 is not feasible, as x3 corresponds to

C1 = C2 = 3. Thus the constraint |C1 � C2| � 1 is not met as |C1 � C2| = 0.

Finally, special case 5 is only applicable when there are only (non-trivial) constraints of the form
xTPix  0. The constraints of our QCQP are not of this form and therefore we can conclude that
our QCQP is none of these 5 special cases.

Thus, using this approach, we can not determine whether there exists a polynomial algorithm to solve
our scheduling problem.
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C Formal proofs

C.1 Formal proof of Property 4.3

Proof. It is already given that the optimal schedule consists of a single scheduled block.
For n odd and d 2 Z we have as optimal starting time t⇤ = max{0, d �

n+1
2 } for the block, as given

in Section 3.2.2 by Equation (3.2), this value of t⇤ is integral. For even n we have that the optimum
t⇤ = max{0, d� n+1

2 } is not integral when d �
n+1
2 . As the objective function of the block is symmetric

and increasing after its optimum, we get that t1 = d� n+1
2 �

1
2 = d�1� n

2 and t2 = d� n+1
2 + 1

2 = d� n
2

are the integral optimal starting times.

C.2 Optimal starting time after merging for general processing times

We consider blocks A = [j1, j2, . . . , jna ] and B = [jna , jna+1, . . . , jna+nb ] to be merged, resulting in block

C. Let Pa be the total processing time of block A, and let ⇧` be
P`

i=1 pji . Then the optimal starting
time of block C is given by

(t̂c)general =

Pna+nb

i=1 wji(dji �⇧i)

Wa +Wb

=
Wa

Wa +Wb
·

Pna

i=1 wji(dji �⇧i)

Wa
+

Wb

Wa +Wb
·

Pna+nb

i=na+1 wji(dji �⇧i)

Wb

=
Wa

Wa +Wb
· (t̂a)general +

Wb

Wa +Wb
·

Pnb

i=1 wji+na
(dji+na

� (⇧i+na �⇧na))

Wb

=
Wa

Wa +Wb
· (t̂a)general +

Wb

Wa +Wb
· ((t̂b)general �⇧na).

C.3 Improving pairwise interchanges

Theorem C.1. For a schedule � and jobs j, j0with Cj0 = Cj + �, a pairwise interchange reduces
the cost i↵

wj(�2�Cj � �2 + 2�dj) > wj0(�2�Cj � �2 + 2�dj0).

Proof. Jobs j and j0 have cost wj(Cj � dj)2 +wj0(Cj + �� dj0)2 in �. After a pairwise interchange, jobs
j and j0 have cost wj(Cj + � � dj)2 + wj0(Cj � dj0)2. Thus the pairwise interchange reduces the cost i↵

wj(Cj � dj)
2 + wj0(Cj + � � dj0)

2 > wj(Cj + � � dj)
2 + wj0(Cj � dj0)

2

() wj(C
2
j � 2Cjdj + d2j ) + wj0((Cj + �)2 � 2(Cj + �)dj0 + d2j0)

> wj((Cj + �)2 � 2(Cj + �)dj + d2j ) + wj0(C
2
j � 2Cjdj0 + d2j0)

() wj(C
2
j � 2Cjdj + d2j )� wj((Cj + �)2 � 2(Cj + �)dj + d2j )

> wj0(C
2
j � 2Cjdj0 + d2j0)� wj0((Cj + �)2 � 2(Cj + �)dj0 + d2j0)

() wj(C
2
j � (Cj + �)2 + 2�dj) > wj0(C

2
j � (Cj + �)2 + 2�dj0)

() wj(�2�Cj � �2 + 2dj) > wj0(�2�Cj � �2 + 2�dj0).
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D Algorithms

D.1 The block merging algorithm for the integral scheduling problem with

unit weights

Again we say that the optimal (rational) starting time t⇤ conflicts with the (integral) completion time
z of the previously scheduled block when t⇤  z. Also the optimal integral starting time is the value of
bt⇤c and dt⇤e closest to t⇤.

Algorithm 6: The block merging algorithm for the integral scheduling problem with unit
weights

Initialize the k blocks B1, B2, . . . , Bk with as data the optimal starting times t̂, t⇤ and the
number of jobs;
Schedule block B1 at its optimal starting time;
for ` = 2, 3, . . . , k do

ActiveBlock = B`;
while Optimal (rational) starting time of ActiveBlock conflicts with the block directly before
it in job sequence JS do

Merge ActiveBlock with the conflicting block creating NewBlock;
Update data of NewBlock and find its optimal starting time using Equation (3.4);
ActiveBlock = NewBlock;

end

Schedule ActiveBlock at its optimal non-negative integral starting time;
end

D.2 The greedy heuristic for identical parallel machines

Algorithm 7: The greedy heuristic algorithm for identical parallel machines

Start with job sequences JSi = [ji], for i = 1, 2, . . .m. Keep track of the total cost and of the
cost for each of the machines.
for ` = m+ 1,m+ 2, . . . , n do

for All possible insertions of job j` do

Find the cost after insertion by running Algorithm 1 on the a↵ected job sequence.
end

Insert job j`, in the job sequence, at the position in that job sequence, that result in the
lowest cost.

end
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