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1 Introduction

Sometimes, political elections working with a district system are not as demo-
cratic as they seem. While it is true that each voter has its own choice to vote
for one or more political contenders and each vote counts, some politicians with
the right authority have the means to control the election more or less. This can
be done by designing the borders of political districts in such a way to benefit a
political contender. This type of manipulation is called gerrymandering. In this
thesis we will investigate how gerrymandering can be performed, detected and
prevented. We will not thoroughly discuss the judicial aspects of this “unfair”
procedure, namely who exactly are able to perform this and whether and to
what extent they have the right to do so. We will make some comments about
this throughout.
Chapter 2 introduces a complete definition of gerrymandering and gives some
of its history. Here, we will also discuss how gerrymandering can be performed,
i.e. how these new borders can be designed. Chapter 2 additionally introduces
some other mathematical topics that serve as relevant background for the rest
of this thesis.
Chapters 3 to 7 are dedicated to detection and prevention of gerrymandering.
Part I of this thesis includes Chapters 3, 4 and 5 and discusses three ways to help
determine whether gerrymandering has in fact occurred to alter the outcome of
a certain election. Chapter 3 discusses the e�ciency gap, a tool that measures
the vote distribution in districts. A high e�ciency gap corresponds to an unfair
distribution of voters among districts and can hint towards gerrymandering.
Chapter 4 talks about the unlikeliness of the outcome of the election, were it
not rigged by gerrymandering. This will be done with the help of Monte Carlo
simulation, which will be introduced. The literature in Chapter 5 comprises the
shape of the districts. One or more districts with a really irregular shape will
immediately give people the idea that this shape is purposely designed to alter
the outcome. Most suspicions of gerrymandering namely start by looking at the
map. Chapter 3 and 4 have a common theme: extending a method or definition
that exists for two political contenders to more contenders.
Part II of this thesis includes Chapters 6 and 7 and discusses two ways to pre-
vent gerrymandering in the future. Chapter 6 talks about adapting a new voting
system. Here we propose some other voting systems and discuss their advan-
tages and disadvantages. The theory about voting systems will be addressed in
Chapter 2. Chapter 7 discusses a solution that gets to the root of the problem:
redraw the districts in a fair way.
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2 Relevant Background

Since gerrymandering will be the core of this thesis, we will introduce the defini-
tion and main aspects of this phenomenon. We will however not give a rigorous
and mathematical definition for gerrymandering, unlike what is to be expected
in a mathematics thesis, because gerrymandering is not a purely mathemati-
cal, but rather a political or natural phenomenon. Alongside this, there are a
few other relevant matters to be addressed as well. They serve as mathemat-
ical background, which readers that are familiar with multiple basic subjects
in mathematics possibly already know. These will aid in understanding some
sections that will be encountered later on. For now, this chapter can be per-
ceived as an incoherent chapter discussing all relevant knowledge that is needed
to read the rest of the thesis, including a fairly recent research area called voting
theory.

2.1 Gerrymandering

The setting for the rest of the thesis will be as follows: a country is divided
into multiple electoral districts.1 We consider political elections with at least
two contenders, where at the end of the election one contender wins, based on
votes submitted by residents (that fulfill voting requirements, for instance in The
Netherlands this is to be at least 18 years old) in a certain country or region. We
generally refer to those contenders as political parties, such as the Republicans
and the Democrats in the presidential elections in the United States, but also
people that are running for mayor in a town. We make no distinction between
the di↵erent type of contenders, unless this is specifically noted.
After the election, in each electoral district there is a single winning political
party. Based on the winners of each electoral district in a country, a single
political party will be declared as the winner of the nationwide election and
thus is the winning contender in the whole country. In most occasions we will
assume that the political party who won most districts, is the nationwide winner.
However, in general, each district represents a seat (which is a unit of control)
and a party benefits from having as much seats as possible. For the election of
the new prime minister in The Netherlands there is only one electoral district
and this is the whole country. An interesting example and also an example that
we will reference throughout this thesis is the setting of the elections in the
United States of America.

2.1.1 American Politics

For the presidential elections in the United States, the usage of the word “elec-
toral districts” might cause confusion. There are 435 electoral districts2, but

1Sometimes we will be talking about a “county” instead of a country, or more generally a
“nation”.

2All data regarding the number of electoral districts in the United States is valid in the
decade 2010–2020.
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it only matters which presidential candidate is the winner in each of the 50
states (with the exception of Maine and Nebraska). An American state con-
tains a number of electoral districts, where this number depends on the amount
of residents in that state. Highly populated states contain a lot more electoral
districts than states with lower population, for example California contains 53
districts and Alaska only 1. In each state, residents vote for their preferred
presidential candidate, and the candidate with the largest number of votes wins
in that state (this is called plurality voting or a first-past-the-post system. This
will be clarified later on). If a state has X districts, the candidate who won
in that state receives X + 2 electoral votes, where the 2 stems from the pair of
senators each state receives, regardless of their population size. See Figure 1.

Figure 1: Electoral votes allocated to each state in the decade 2010–2020.

In this way, there are 538 electoral votes cast for presidential candidates (435
districts + 2 ⇥ 50 senators + 3 remaining votes stemming from the District of
Columbia). A candidate gets to be elected as the president and is hence declared
the winner, if he or she receives the majority of the electoral votes. In this case
this amounts to at least 270 (in the case of a tie, the House of Representatives
breaks that tie by giving each state one vote).
For these presidential elections, which are quadrennial, the shape of the electoral
districts does not influence the outcome, but only the number of districts in
each state. However, for elections held in a specific state, these shapes turn
out to have a major influence. Figure 1 shows that North Carolina has 13
congressional districts (which is essentially the same as electoral districts in the
US). In the main setting described before, North Carolina is divided into 13
electoral districts. A pre-2016 map of North Carolina that depicts the shape of
each district looks as follows, see Figure 2 [1].

8



Figure 2: North Carolina divided into 13 congressional districts.

There are some oddly shaped districts visible here, but by far the most irreg-
ular shaped district is district 12. An explanation for the weird shape that is
displayed here can be deduced from Figure 3, which shows the percentage of
African American people in each neighborhood in North Carolina.

Figure 3: A darker shade of blue displays a higher percentage of African Amer-
ican people (source: Vox).

It seems that the shape of district 12 is designed to capture three cities with pre-
dominantly black neighborhoods, which are Charlotte, Greensboro andWinston-
Salem and are circled in red on Figure 3. This is a tactic, which will be later
defined as packing, where the regional influence of black voting behaviour is re-
duced by packing as many neighborhoods of a certain demographic (in this case
black) as possible in a single district. This will prevent these neighborhoods
to influence the voting behaviour in other districts. Knowing that Thomas B.
Ho↵eler, a Republican, was in control of creating the map in Figure 2 [2] makes
this even more suspicious. It is generally known that African American people
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do not, in general, support the Republican party3. This was Ho↵elers way to
establish a political advantage for the Republican party in North Carolina and
is one of the most famous cases of gerrymandering.

2.1.2 Gerrymandering Tactics

Gerrymandering is a practice where the boundaries of electoral districts are
(re)drawn in such a way to benefit a specific political party or group. The name
is a combination of “Gerry” and “salamander”; one of the districts in Mas-
sachusetts with Governor Elbridge Gerry resembled the shape of a mythological
salamander [3].
As seen before, data regarding the distribution of certain demographic groups or
voting behaviour, based on previous elections, can be very useful in this manip-
ulation process. They allow people in control of redistricting to apply strategies
like packing and cracking. Packing is to concentrate as many voters of a certain
(demographic, political or religious) group in as few districts as possible. A few
districts will be sacrificed (the districts where these groups of voters are packed
in), but the rest will, with a high certainty, have a majority of voters of the
group or party that is trying to be aided. When each district represents a unit
of control, a party strives to win as many districts as possible. When winning
the majority of districts guarantees a party to win, it is simply enough to pack
certain voters in districts in such a way that a majority of districts will be won.
Packing is more e↵ective in combination with cracking. Cracking is to divide
as many voters of a certain group among as many districts as possible to dilute
their votes and hence deny them to have a majority, or su�ciently large enough
voting bloc, in those districts. An example of cracking done in practice is a
college campus in North Carolina split into two congressional districts [4].
To cite Thomas B. Ho↵eler, who was accused of gerrymandering:

Usually the voters get to pick the politicians. In redistricting, the
politicians get to pick the voters.

For the presidential elections in the United States it is only important what the
shapes of the states are. A notable example of gerrymandering in these type
of elections is the split of the Dakota Territory into North Dakota and South
Dakota, ensuring that each newly formed state now at least has two electoral
votes instead of one (due to each state receiving two electoral votes, regardless
of the population). Another notable result of gerrymandering is the election of
the members of congress in North Carolina in 2012. As mentioned before, the
pre-2016 map of North Carolina and its 13 congressional districts (see Figure 2)
has been gerrymandered and the results of the election are depicted in Table 1
[5].

3A famous exception is African American rapper Kanye West.
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Party Total # votes in
percentages

# districts or
seats won

Democrats 50.60 % 4
Republicans 48.75 % 9

Table 1: Results of 2012 election in North Carolina .

Even though the Democrats won the majority of the votes, they only won 4
out of 13 seats, which is not proportional to the total vote count. Another
more famous, but less extreme situation where a similar thing has occurred, is
the 2016 presidential elections in the United States. Nominee Donald Trump
received 46.1% of the total votes and nominee Hillary Clinton received 48.2%
[6], but Trump received 304 electoral votes whereas Clinton received only 227,
making Trump the president of the United States. Whether this was in fact
a result of gerrymandering is disputable and will not be in the scope of this
thesis. These types of results, however, can raise a few eyebrows and can lead
to the start of an investigation where the use of gerrymandering will be proved
(or disproved).

2.2 Voting Theory

A voting system is a rule that determines how elections are executed and how
their results are decided. More specific, a voting rule (or social choice function)
decides, on the basis of ballots that voters declare, which contenders win the
election. In these ballots, each voter chooses from a set of contenders (in voting
theory these are generally called alternatives) and states their preference in the
form of a linear order over the alternatives. After all the ballots are declared,
the voting rule decides which alternatives are the winners of the election.
In order to give a formal definition of a voting rule, we need to construct a
mathematical model related to voting theory. Let N = {1, 2, . . . , n} be the set
of voters in an election, thus we have |N | = n voters. Let P be the set of
alternatives, which we will in this thesis often refer to as the set of political
parties, with |P| = m. Let L(P) denote the set of all linear orders over P.
That is, an element of L(P) is an ordering over all m alternatives. Each voter
i, where 1  i  n, declares a ballot �i2 L(P) and this gives rise to a profile
� = (�1, . . . ,�n) 2 L(P)n.

Definition 1. A voting rule (or social choice function) F is defined by

F : (L(P))n ! }(P)\{;}

where }(X) denotes the power set of X.

So F (�) ✓ P denotes the set of alternatives that won the election according to
profile �. When |F (�)| = 1 for all profiles �, we say that F is resolute. For
resolute F , we have that

F : (L(P))n ! P.
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Resoluteness can often be achieved by using tie-breaking rules, for example
random tie-breaking or lexicographic tie-breaking.
One of the most trivial voting rules is the plurality rule, often referred to as the
first-past-the-post system. Here, the alternative that is chosen as top alternative
the most is the winner and gets elected. Another way of saying this is to
assign one point to each alternative that is ranked first on a ballot and the
alternative with the largest number of points wins. For this voting rule, the
only relevant information on a ballot is the alternative ranked first. Therefore,
a ballot can contain one alternative in this case. As mentioned before, the
presidential elections in the United States use a first-past-the-post system and
the candidate with most votes in a state receives all those electoral votes. See
Figure 4 for a general election ballot in 2016.

Figure 4: General ballot for the US presidential elections in 2016.

Formally, the plurality rule is the voting rule F with

F (�) = {P 2 P :
nX

i=1

1top(�i)=P �
nX

i=1

1top(�i)=H for all H 2 P\{P}}

where top(�i) is the top alternative of ballot �i.
Another well-known voting rule is the Borda rule. Here, each voter gives m� 1
points to the alternative she ranks first, m�2 points to the alternative she ranks
second, and so on. The alternatives with most points win. Now a declared ballot
is a full linear ordering of the alternatives instead of picking a single alternative.
For 1  k < m, k-approval voting assigns a point to each alternative placed
in the top k alternatives in a ballot and the alternatives with most points win.
Approval voting is similar, but each voter decides which and how many alter-
natives she gives a point to. It can be perceived as k-approval voting, but k is
not fixed and each voter decides for herself what k is.
The plurality rule, Borda rule and k-approval are all an example of a positional
scoring rule.
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Definition 2. A positional scoring rule is a voting rule that can be defined by
a scoring vector s = (s1, . . . , sm) 2 Rm where s1 � s2 � . . . � sm and s1 > sm.

In a declared ballot �, the alternative positioned at the i-th place according to
that ballot gets si points. The alternatives with most points win. The plurality
rule has scoring vector s = (1, 0, . . . , 0), the Borda rule has scoring vector s =
(m�1,m�2, . . . , 0) and k-approving has scoring vector s = (1, 1, . . . , 1, 0, . . . , 0)
where there is a total of k 1-s. Another example of a positional scoring rule is
the veto rule, which has scoring vector s = (1, 1, . . . , 1, 0). A few other (slightly
more complicated) voting rules will be defined in later chapters.

Example 1. Consider a household of 11 people that has to decide what to
eat for a common dinner. They can choose between chicken, salmon or spinach
(those are the only things they supplied in their fridge in large amounts). Since a
combination of these dishes sounds like too much e↵ort on this lazy sunday, they
decide to run a little election to select one single dish. Each of them declares a
ballot where the dishes are placed in descending order.

• Chicken � Spinach � Salmon (4⇥)

• Salmon � Chicken � Spinach (2⇥)

• Salmon � Spinach � Chicken (3⇥)

• Spinach � Chicken � Salmon (2⇥)

The first line displays that four people prefer chicken the most, then spinach and
salmon is the least preferred among them. Using the plurality rule, salmon wins
with a total of 5 votes. However, using the Borda rule, chicken has 12 points,
salmon 10 and spinach 11, so chicken is being served. But using 2-approval,
they enjoy a vegetarian meal of spinach.

Voting rules can satisfy certain desirable properties, called axioms. A voting
rule is considered fair if it at least fulfills the requirements of the anonymity and
neutrality axioms.

Definition 3. A voting rule F is anonymous if F (�) = F (⇡(�)) for any profile
� and permutation ⇡ : N ! N .

⇡ is a permutation over the set of voters, so ⇡(�) is defined as ⇡(�1, . . . ,�n) =
(�⇡(1), . . . ,�⇡(n)). Anonymity means that the social choice function F does not
look at which voter declares which ballot, so that any permutation over the set
of voters gives the same result. Each voter is “anonymous”.

Definition 4. A voting rule F is neutral if F (⇡(�)) = ⇡(F (�)) for any profile
� and permutation ⇡ : P ! P.

This time, ⇡ is a permutation over the set of alternatives, so ⇡(�) is defined as
⇡(�1, . . . ,�n) = (⇡(�1), . . . ,⇡(�n)), where

�i= P1 � P2 � . . . � Pm ) ⇡(�i) = ⇡(P1) � ⇡(P2) � . . . � ⇡(Pm),
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for P1, . . . , Pm 2 P. Neutrality means that the social choice function F does
not look at the “name” of each alternative, only at its respective order in the
ballots. The rule is symmetric with respect to alternatives.
All the aforementioned voting rules are anonymous and neutral. An example
of a voting rule that is not anonymous is the dictatorship. F is a dictatorship
if there exists i 2 N , such that F (�) = top(�i) for every profile �. Voter i is
called the dictator and gets to decide which alternative wins.
Another useful property for a voting rule is satisfying the Pareto Principle.

Definition 5. A voting rule F is weakly Paretian if P �i H for all 1  i 
n implies that F (�) 6= H for any profile � = (�1, . . . ,�n) and alternatives
P,H 2 P.

Being weakly Paretian means that, whenever all voters rank alternative P above
alternative H, then H will not be a winning alternative.
The last axiom that we will define is called Independence of irrelevant alterna-
tives.

Definition 6. A voting rule F is independent if, for any two profiles � = (�1

, . . . ,�n) and �2 = (�2
1, . . . ,�2

n
) and any two alternatives P,H 2 P, such that

P �i H , P �2
i
H

for all 1  i  n we have that

F (�) = P ) F (�2) 6= H.

Being independent means that, if the relative rankings of P and H are the same
in two profiles � and �2, and P keeps H from winning in �, then it also keeps H
from winning in �2. Another way of phrasing this is to say that if P is preferred
to H out of the choice set {P,H}, introducing a third option K, expanding the
choice set to {P,H,K}, must not make H preferable to P . K is in this case an
irrelevant alternative when only considering P and H.
We will state one impossibility theorem that tells us that a resolute voting rule
that satisfies some of the above axioms can only be of a certain type. This
theorem was o�cially designed for social welfare functions.

Definition 7. A social welfare function F is defined by

F : L(P)n ! L(P).

A social welfare function distinguishes from a social choice function (or voting
rule) in the sense that it ouputs all alternatives in order, instead of outputting
a list of alternatives that wins the election. It outputs a collective ballot that
represents the voting behaviour of each voter that declared a ballot.

Theorem 1. Any resolute social choice function F with at least three alterna-
tives that is weakly Paretian and independent must be a dictatorship.
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Theorem 1 is called Arrows impossibility theorem and is named after economist
and mathematician Kenneth Arrow [7]. This theorem tells us that no resolute
voting rule can satisfy three fairness criteria at the same time, which are the
Pareto Principle, being independent and non-dictatorship. This is a rather sur-
prising result with quite a long proof. A proof can be found in [7], where the
social welfare function variant has been stated and proven.

2.3 Jordan Curves

A Jordan curve, or a simple closed curve in the plane, is a non-self-intersecting
continuous loop in the plane [8]. More formally, see Definition 8.

Definition 8. A Jordan curve C is the image of a continuous map � : [0, 1] ! R2

such that �(0) = �(1) and �|[0,1) is injective.

The injectivity is needed to stipulate that C has no self-intersecting points. It
can also be defined as the image of a non-self-intersecting path from x to y in
R2 where x = y.

Theorem 2. (Jordan curve theorem) Let C be a Jordan curve. The complement
R2\C is the union of two disjoint nonempty open connected sets.

One of the sets is called the interior and is bounded, the other is called the
exterior and is unbounded, see Figure 5.

Figure 5: Example of a Jordan curve C.

The Jordan curve C is the boundary of the interior and the exterior, hence
separates these components. The result seems intuitive and perhaps trivial, but
the proof is rather technical and we refer to [9] for a proof of the Jordan curve
theorem that imitates the original proof designed by Camille Jordan himself.
The most important thing to remember about this theorem is that the interior
is the bounded region inside C and we will refer to this as the interior of C,
denoted by int(C). Since by the Jordan curve theorem, int(C) is an open set, it
is a Borel set, which implies that int(C) is Lebesgue-measurable. The Lebesgue
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measure of int(C) will be denoted by �(int(C)) and this coincides with the area
of the interior of C, denoted by A(int(C)).4

2.4 Statistical Tests

In statistical testing we try to give an a�rmative answer to certain questions
based on the result of one or more experiments. The type of questions we strive
to answer reduces to the decision between two conflicting hypotheses. One
of these hypotheses is the null hypothesis and is typically used for indicating
the default position where there is no significant relationship between certain
phenomena or a significant di↵erence. The other hypothesis, the alternative
hypothesis, usually indicates that there is a significant di↵erence or relation.
For a more formal definition of these hypotheses, we must also define what we
mean by a statistical model. This is a collection of probability distributions on
a given outcome space. When all these distributions are similar but di↵er only
in a certain parameter, the outcome space can be defined by ⇥, which is a space
of parameters ✓ and will be called the parameter space. The statistical model is
then defined by {p✓ : ✓ 2 ⇥}, where p✓ indicates a probability distribution with
parameter ✓. Let X be the outcome of an experiment, or rather an observa-
tion, where X can also be a collection of observations: X = (X1, . . . , Xn). On
the basis of X, one decides between the two conflicting hypotheses, which are
formally defined as follows.

Definition 9. The null-hypothesis H0 is defined as the event {✓ 2 ⇥0} and the
alternative hypothesis is defined as the event {✓ 2 ⇥1}, where the parameter
space ⇥ = ⇥0 [⇥1 is a disjoint union of ⇥0 and ⇥1.

So, on the basis of X, one decides whether the true parameter ✓ lies in ⇥0 or
⇥1. When |⇥0| = 1, we call the null-hypothesis a simple hypothesis. The same
holds for the alternative hypothesis.

Example 2. A typical and simple example of statistical testing is that of throw-
ing a coin with two sides called head and tails. A coin throw can be represented
by the random variable X. X can take the values 0 and 1, where 0 represents
throwing the coin and tails comes up and 1 represents throwing the coin and
heads come up. Denote P(X = 1) by ✓, this means that throwing heads with
a single coin has probability ✓, where ✓ 2 [0, 1]. In other words, the statistical
model of throwing a coin is defined by {p✓ : ✓ 2 [0, 1]}, where p✓ is Bernoulli
distributed with parameter ✓, i.e. p✓(X = 1) = ✓. In this sense, each p✓ is a
di↵erent distribution for di↵erent values of ✓ and ✓ represents the probability of
throwing heads. Assume that one would like to test whether a specific coin is
fair, which means that the probability of throwing heads is equal to the proba-
bility of throwing tails (as is the case for most coins we encounter in our daily
life). The null-hypothesis is that the coin is fair (the default position) and the

4We will from now on abbreviate A(int(C)) by A(C) when it is stated that C is a Jordan
curve.
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alternative hypothesis that it is unfair (a more “interesting” position). Then
H0 and H1 are defined as follows:

H0 :✓ =
1

2
(coin is fair)

H1 :✓ 6= 1

2
(coin is unfair).

Put di↵erently, the outcome space ⇥ = [0, 1] is a disjoint union of ⇥0 = { 1
2}

and ⇥1 = [0, 1
2 )[ ( 12 , 1]. The null-hypothesis is here a simple hypothesis. ✓ = 1

2
is indeed equivalent to saying that the coin is fair, since the probability of heads
is ✓ = 1

2 and of tails is 1 � ✓ = 1
2 . One might use a binary vector of length n,

where n is the amount of throws of a coin, as the observation vector X, in order
to conclude whether H0 is more likely, or H1. For example, X = (1, 1, 0, 1) tells
us that the first two throws and the last throw resulted in heads and the third
throw resulted in tails.

The two hypotheses can also be stated verbally instead of being indicated by
di↵erent parameter values, as in the following example.

Example 3. In a household of five people, a mysterious disappearance has
happened during one night in October. One member of the household, Alizé
de Varmuennel, noticed that, from the plate in the fridge with five pieces of
fried chicken, only two pieces were left the following morning. She immediately
suspects her brother, Odin de Varmuennel, to have eaten the three pieces of
fried chicken, as the two pieces of burned chicken were left over and she knows
that he dislikes burned meat. She defines the hypotheses as follows:

H0 : Odin did not eat the fried chicken.

H1 : Odin ate some of the fried chicken.

In these kind of (legal) accusations, the observation X is usually called evidence
(hence, sometimes noted by E). The evidence is stated as follows:

E : The pieces of burned chicken were still on the plate.

E can also consist of more pieces of evidence, in which case it can be interpreted
as a vector of evidence.

It is common in statistical testing to try to accept H1, by rejecting the null-
hypothesis H0. In Example 2, one would like to presume that the coin is unfair
by rejecting the hypothesis that it is fair. In Example 3, Alizé would like to
confirm her accusation that Odin ate the chicken. So statistical analysis can
lead to two conclusions:

• Reject H0 and thus accept H1.

• Do not reject H0, but do not accept H1.
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This procedure can however lead to false conclusions, since we do not know
the true nature of ✓, or more generally, we do not know with certainty which
statement is true. There are two types of false conclusions:

1. Reject H0, while H0 is correct.

2. Do not reject H0, while H0 is incorrect.

The first false conclusion is called a type I error and the second false conclusion
is called a type II error. A type I error is usually much worse, as it can lead
to false accusations (such as in the context of Example 3 or more serious legal
contexts), whereas a type II error usually leads to no further actions, but only
a continuation of the investigation. Call the probabilities of making these types
of errors respectively ↵ := P(type I error) and � := P(type II error).
It is interesting to compute the probability of an observation (or evidence) X,
given a parameter value ✓. This probability is called the likelihood function.

Definition 10. Let X be a discrete random variable that depends on the pa-
rameter ✓, then the likelihood function is L(✓|x) = P(X = x|✓).

This function of ✓ indicates how likely a certain observation is given the param-
eter ✓. To compare the two hypotheses H0 : ✓ 2 ⇥0 and H1 : ✓ 2 ⇥1 based on
observation x, we use the so-called likelihood ratio.

Definition 11. The likelihood ratio for observation x is

LRH0,H1(x) =
sup

✓2⇥0
L(✓|x)

sup
✓2⇥ L(✓|x) .

A high likelihood ratio indicates a bigger support for H0, given x, and a low
ratio indicates a bigger support for H1. We chose to take the supremum over
✓ 2 ⇥ in the denominator instead of ✓ 2 ⇥1 to avoid dividing by zero.
When H0 and H1 are both simple hypotheses, i.e. H0 : ✓ = ✓0 and H1 : ✓ = ✓1,
we define the likelihood ratio for observation x a bit di↵erent.

Definition 12. Let H0 and H1 be simple hypotheses, then the likelihood ratio
for observation x is

LRH0,H1(x) =
L(✓0|x)
L(✓1|x)

.

The di↵erence between Definitions 11 and 12 is in the denominator.
When the two hypotheses are verbal statements, as in Example 3, and the
observation is called evidence and denoted by E, the likelihood ratio as defined
in Definition 12 takes a special form:

LRH0,H1(E) =
P(E|H0)

P(E|H1)
. (1)
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P(E|H0) is just the likelihood of the statement from the null-hypothesis H0

given the evidence E. Again, a high value of LRH0,H1(E) indicates a bigger
support for H0 and vice versa.
We would like to decide, based on the value of the likelihood ratio, whether
to reject H0 or to not yet reject it. The Neyman–Pearson test [10] is such a
procedure that works for simple hypotheses and we will formulate this test with
a likelihood in the form of Equation 1 [11] . Therefore, let H0 and H1 be simple
competing hypotheses and E be the evidence. It is always the case that H0 is
true or H1 is true. If Hi is true, we want to take some action Ai, for i = 0, 1. We
decide on the basis of evidence E whether to take action A0 or A1. We do so by
defining a region R ✓ E , where E is the set of all the evidence we might obtain.
The test is as follows: if E 2 R, we choose action A1, otherwise if E /2 R, we
choose action A0. Then the probabilities of type I and type II error are equal
to ↵ = P(E 2 R|H0) and � = P(E /2 R|H1). Define the region Rt by

Rt = {E|LRH0,H1(E)  t}. (2)

This means that, when the evidence in favour of H0 is strong enough (likelihood
ratio is strictly bigger than t) we undertake action A0, otherwise we undertake
action A1 (which is similar to rejecting H0). The following lemma tells us that,
among all such tests with region R, the Neyman–Pearson test, which is the
above test with region Rt for a fixed t, is the most “powerful”.

Lemma 1. (Neyman–Pearson Lemma.) Define ↵t = P(E 2 Rt|H0) and �t =
P(E /2 Rt|H1) for a fixed t. There can be no other test with region R (where
R 6= Rt for any t) and corresponding ↵, �, such that ↵ < ↵t and � < �t.

The most powerful test means that it ensures minimal ↵ and �, i.e. minimal
probabilities of type I and type II error. This can also be read as

↵ < ↵t ) � > �t, (3)

i.e., if another test gives a smaller probability of type I error, it gives a bigger
probability of type II error. So the likelihood ratio threshold is an optimal way
(in the sense as in Equation 3) to decide whether to take action A0 or A1, i.e.
to reject H0 or to not yet reject H0.
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3 E�ciency Gap

The e�ciency gap is the first tool we will discuss that helps determining whether
gerrymandering has occurred. It measures the amount of wasted votes for a
party, which are “redundant” votes, i.e. votes for a party that lost or would
still have won without those votes. By applying gerrymandering tactics like
packing and cracking, as discussed in Chapter 2, the party being “packed” or
“cracked” has many wasted votes. Packing ensures that this party receives
many votes more than necessary in some districts, to dilute their votes in other
districts. Cracking ensures that this party receives many votes from districts it
loses in. Hence, a party receiving many wasted votes is a good indication for
gerrymandering.

3.1 E�ciency Gap for Two Parties

We will first discuss the general definition of the e�ciency gap. The e�ciency
gap is designed as a measure for the case that there are only two (political)
parties competing against each other to win some election for a particular cause,
e.g. rule the nation. In this election, the most reasonable voting rule for two
parties will be considered: the aforementioned plurality rule. To write down
the mathematical definition of the e�ciency gap, we will first have to present a
handful of definitions and notions.
Let the two competing parties be called A and B and let there be S legislative
districts in the country. Let D be the set of (legislative) districts, denoted by
D = {d1, . . . , dS}. We denote by DP ✓ D the set of districts won by party P

(where P is A or B). Furthermore, define

S
P

i
=

(
1, if party P won in district di
0, if party P lost in district di

Then S
P :=

P
S

i=1 S
P

i
= |DP | is the number of districts won by party P in the

country. Let TP

i
be the number of votes for party P in district di. Then T

P :=P
S

i=1 T
P

i
is the number of votes for party P in the country and Ti := T

A

i
+ T

B

i

is the total number of votes in district di.
As mentioned before, a wasted vote is a vote for a losing party or a useless vote
for a winning party such that the party would still have won in that district
without that vote. Alternatively, one might consider wasted districts. This is
however not a useful notion, since a party sometimes benefits from having as
many controlled districts as possible. Here we will mostly consider the case
where a party wins if it controls the most districts in a region, i.e. party A wins
if SA

> S
B . Still, considering wasted districts is not a helpful tool to tackle

gerrymandering.
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We compute the number of wasted votes WP

i
for party P in district di as follows

W
P

i
=

(
T

P

i
� dTi

2 e, if di 2 DP

T
P

i
, if di /2 DP

(4)

= T
P

i
� S

P

i
dTi

2
e, (5)

where di 2 DP is equivalent to party P winning in district di.5 We always have
that the total number of wasted votes in di is

Wi := W
A

i
+W

B

i
= bTi

2
c = bT

A

i
+ T

B

i

2
c.

The principle of a wasted vote for party A is that, even if all of these wasted
votes would be allocated as regular votes to party B, party A would still have
the majority of the votes.6 Since a wasted vote remains a vote, this vote will
turn into a vote for the other party, ensuring both parties to have Ti

2 votes after
allocation (if Ti is odd, the winning party will still have slightly more). For
example, take a district d1 with T1 = 10 voters, suppose that 7 of these vote for
party A and 3 vote for party B. Then A wins in district d1 and W

A

1 = 2, so
that TB

1 +W
A

1 = 5 = T1
2 .

Let WP =
P

S

i=1 W
P

i
be the number of wasted votes for party P in the country

and let T = T
A+T

B be the total number of votes in the country. We have now
all the means to mathematically define the e�ciency gap [12].

Definition 13. For two parties A and B competing in a country where D is
the set of S districts, the e�ciency gap EG is

EG =
SX

i=1

W
A

i
�W

B

i

T
=

1

T
(WA �W

B). (6)

Following from this, we have that EG 2 [�1, 1].
EG being high is an unfair situation for A, as there are relatively many more
wasted votes for A than there are for B. This is possibly a result of packing, a
gerrymandering strategy. Equivalently, EG being very low (as in very negative)
is an unfair situation for B in the sense that B has much more wasted votes.
EG ⇡ 0 is a situation that is fair to both parties with respect to the wasted
votes. Note that

EG = 0 , W
A = W

B
.

5When Ti is even, we have dTi
2 e = Ti

2 . When Ti is odd, we round to the first integer above,

i.e. dTi
2 e = Ti

2 + 1
2 .

6Perhaps a better choice for WP
i would be TP

i � Ti
2 � 1 when di 2 DP and Ti is even, so

that TP
i � WP

i = Ti
2 + 1 when party P wins in district di. This ensures that P has indeed

the majority, not half of the votes. However, the wasted votes are in the literature defined as
in (5), since in applications generally the numbers are high enough to justify neglecting the
+1 for simplicity reasons.
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If there is only one district, this is the case when one party has 75% of the votes
and the other 25%. Also notice that, to work with the e�ciency gap, one has
to specify party A and party B, since it is defined associated to party A.
When is EG considered high, i.e. from what score is EG considered problematic
and could hint towards possible gerrymandering? Stephanopoulos and McGhee,
who invented the notion of e�ciency gap, argued that the right number for
gerrymandering detection is |EG| > 0.08 [5]. Hence, the situation is suspicious
whenever |EG| exceeds this threshold 0.08.

3.2 E�ciency Gap for Finitely Many Parties

As mentioned before, we are interested in tactics to tackle the problem of ger-
rymandering in more cases than just the trivial case of two competing parties.
The first generalization that comes to mind, is to include more than two parties
into the equation. In this section we will consider possible generalizations of the
e�ciency gap defined in Definition 13 to three competing parties and we will
discuss some (dis)advantages. Afterwards, an easy generalization can be made
to any finite number of parties. For now, we will consider the plurality rule
applied to three alternatives.
Let the set of parties be denoted by P = {A,B,C}. For two parties, the e�-

ciency gap has the anti-symmetric property, meaning that EG = �gEG, where
gEG is the e�ciency gap with parties A and B swapped. As a consequence,
knowing exclusively EG or gEG, one can easily calculate the other. This anti-
symmetric property gets lost for three parties. In this case, it makes sense to
define a measure EG

P to infer something about party P 2 P and not neces-
sarily about the other parties. We will discuss three possible extensions7 of the
definition of wasted votes per district and in the end define EG

P .

1. The total number of wasted votes for a party P , say A, is defined with
respect to the two remaining parties, B and C. Let di 2 D be a district. If A
lost in di, then each vote in di for party A is a wasted vote for A. If A won in
di, then a vote in di is a wasted vote for A if A would still have a majority of
the votes without that vote. Thus, the number of wasted votes by A-voters in
district di is given by

W
A

i
=

(
T

A

i
, if di /2 DA

T
A

i
�max{TB

i
, T

C

i
}, if di 2 DA

= T
A

i
� S

A

i
max{TB

i
, T

C

i
}.

When di 2 DA, then

T
A

i
�W

A

i
= T

A

i
� (TA

i
�max{TB

i
, T

C

i
}

= max{TB

i
, T

C

i
},

7The attentive reader will notice that one of them is actually not an extension, we will
come back to this.
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so A has as many votes as the runner-up.
Next, we define EG

A as follows

EG
A =

SX

i=1

W
A

i
� 1

2 (W
B

i
+W

C

i
)

T
=

W
A � 1

2 (W
B +W

C)

T
.

This is the proportional di↵erence between wasted votes for A and the average
number of wasted votes for the other parties.
More generally, if P 2 P with |P| � 3,

W
P

i
=

(
T

P

i
, if di /2 DP

T
A

i
�max

P2P
{TP

i
}, if di 2 DP

and

EG
P =

SX

i=1

W
P

i
� 1

|P|�1

P
K2P\P W

K

i

T
=

W
P � 1

|P|�1

P
K2P\P W

K

T
.

We can still conclude that EG
A
> 0, large, implies an unfair situation for A and

EG
A
< 0, with |EG

A| large, imples an unfair situation for another party. How-
ever, there are several problems rising with this extension. Firstly, as mentioned
before, the value of EG

A can be used to infer something about the fairness of
the outcome to party A, but solely to this party. It would be nice, however,
if we can make a conclusion for all the parties based on this one value EG

A,
or even based on the computation of EG

A. Secondly, we assume here that a
wasted vote in a district just vanishes, but what if it turned into a vote for
another party, just like it does in the case with two parties? These problems
(or questions) imply the essence of the following proposed extension.

2. The total number of wasted votes for a party P , say A, is defined with
respect to each party separately. Hence, a vote is wasted by A-voters against
B-voters if we restrict a district to only A and B. Thus we neglect C, and
consider the original two-party notion of wasted votes. The number of wasted
votes by A-voters in district di, with respect to party B, is then given by

Wi
A

B
=

(
T

A

i
if di /2 DA

T
A

i
� dTi�T

C
i

2 e if di 2 DA

= T
A

i
� S

A

i
dTi � T

C

i

2
e

= T
A

i
� S

A

i
dT

A

i
+ T

B

i

2
e.
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We simply compute EG
A as follows8

EG
A =

1

2
(EG

A

B
+ EG

A

C
) =

1

2
(

SX

i=1

Wi
A

B
�Wi

B

A

T � TC
+

SX

i=1

Wi
A

C
�Wi

C

A

T � TB
)

=
1

2
(
W

A

B
�W

B

A

T � TC
+

W
A

C
�W

C

A

T � TB
).

More generally, if P,K 2 P with |P| = n � 3, then

Wi
P

K
=

(
T

P

i
if di /2 DP

T
P

i
� dT

P
i +T

K
i

2 e if di 2 DP

and

EG
P =

1

n� 1

X

K2P\{P}

EG
P

K
=

1

n� 1

X

K2P\{P}

W
P

K
�W

K

P

T �
P

L2P\{P,K} T
L

=
1

n� 1

X

K2P\{P}

W
P

K
�W

K

P

TP + TK
.

We still have the same results about the fairness of the outcome to party A

being dependent on the sign of EG
A and the size of that number, but we now

have more information concerning the fairness of A relative to another party.
To give a better description of how (un)fair the outcome is to A in the case
that |P| = 3, consider the components EG

B and EG
C . Then EG

A
< 0 and

|EG
A| large gives a probable indication that the outcome is really favorable for

party A, but observing the signs and magnitude of EG
A

B
and EG

A

C
tells us at

the expense of which party this favorable outcome is. Furthermore, we can now
assume that, just as in the original model with |P| = 2, for the computation of
e.g. EG

A

B
, a wasted vote for A in a district where A won turns into a vote for

B. This extension sounds reasonable, especially by the two arguments above,
but may not be the most intuitive one.

3. The total number of wasted votes is defined as the maximum number of
votes that can be distributed over the other parties without ending in a losing
way, where we distinguish between two cases.

(a) Suppose that a party P , say A, wins in district di (hence T
A

i
>

Ti
3 ) and

the other two parties, B and C, lose with less than 1
3 of the total votes (hence

T
B

i
, T

C

i
<

Ti
3 ). Then the number of wasted votes for party A in district di

is defined as the di↵erence between T
A

i
and dTi

3 e. Divide these wasted votes

amongst the other parties such that they both have Ti
3 votes9. Calculate the

8The factor 1
2 is to ensure that EGP 2 [�1, 1].

9Or, in the case where Ti
3 is not an integer, spread these wasted votes such that no other

party exceeds dTi
3 e.
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wasted votes for B and C as their total votes. The number of wasted votes by
A-voters in district di is then given by

W
A

i
=

(
T

A

i
� dTi

3 e if di 2 DA

T
A

i
if di /2 DA

(7)

= T
A

i
� S

A

i
dTi

3
e. (8)

This may seem like the most intuitive way to extend (5) to three parties.
For example, if we fix district di and we have Ti = 900 with T

A

i
= 600, TB

i
= 100

and T
C

i
= 200, thenW

A

i
= 600� 900

3 = 300 and we allocate these wasted votes as
follows: 200 ! B and 100 ! C. The wasted votes for B and C are respectively
W

B

i
= 100 and W

C

i
= 200, since A won in di. Remember that the allocation of

wasted votes is only a procedure to ensure that these votes do not disappear and
still preserves the same winner, or at least does not result in another winning
party (this will be formally proven).
(b) Suppose that a party P , say A, wins in district di (hence TA

i
>

Ti
3 ) and one

of the other two parties, say B, has more than Ti
3 votes, while the third party

does not. Hence, TB

i
>

Ti
3 and T

C

i
<

Ti
3 . Then the number of wasted votes

for party A is defined as the di↵erence between the votes for A and the second
winner B. Allocate the wasted votes for A to the losing party C to preserve the
winner in the district. The number of wasted votes for B and C are defined as
their total number of votes. The number of wasted votes by A-voters in district
di is then given by

W
A

i
=

8
><

>:

T
A

i
� T

B

i
, if di 2 DA \DB

2

T
A

i
� T

C

i
, if di 2 DA \DC

2

T
A

i
, if di /2 DA

(9)

= T
A

i
� S

A

i
(XB

i
T

B

i
+X

C

i
T

C

i
), (10)

where we denote by DP

2 ✓ D the set of districts where party P has the second
most votes (is second winner or runner-up) and

X
P

i
=

(
1 if party P is second winner in di

0 if party P is (at most) third winner in di.
(11)

For example, if we fix district di and we have Ti = 900 with T
A

i
= 400, TB

i
= 350

and T
C

i
= 150, thenW

A

i
= 400�350 = 50 and 50 ! C (A still wins). WB

i
= 350

and W
C

i
= 150, since A won.

In general, WA

i
is given by the following formula,

W
A

i
= T

A

i
� S

A

i
max{dTi

3
e, TB

i
, T

C

i
}. (12)
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We then only need to know whether we are in case (a) or case (b) to allocate
the wasted votes via the mentioned procedures.
For both cases10 we compute EG

A as follows

EG
A =

SX

i=1

W
A

i
� 1

2 (W
B

i
+W

C

i
)

T
=

W
A � 1

2 (W
B +W

C)

T
,

where in each district di, we compute W
P

i
according to Equation 12.

More generally, let |P| = n � 3. Write P = {P1, . . . , Pn}, we again consider
two cases.

(a) Party P1 wins in district di (TP1
i

>
Ti
n
) and all other parties have less

than Ti
n

votes (T
Pj

i
<

Ti
n

for 2  j  n). Then we divide the wasted votes for

party P1 such that T
Pj

i
 dTi

n
e for 2  j  n. The number of wasted votes by

P -voters in district di is then given by

W
P

i
=

(
T

P

i
� dTi

n
e, if di 2 DP

T
P

i
, if di /2 DP

(13)

= T
P

i
� S

P

i
dTi

n
e. (14)

(b) Party P1 wins in district di (T
P1
i

>
Ti
n
) and some other (definitely not all)

parties have more than Ti
n

votes, say T
Pj

i
>

Ti
n

for 2  j  m and m < n. Then

the number of wasted votes for P1 is defined as the di↵erence between T
P1
i

and
T

P2
i

if P2 has the second most votes. These votes are then allocated to the party
with fewest votes. We then have

W
P

i
=

(
T

P

i
� T

K

i
, if di 2 DP \DK

2

T
P

i
, if di /2 DP

= T
P

i
� S

P

i

X

K2P\{P}

X
K

i
T

K

i
,

where we use the same definition of DP

2 and X
P

i
as in Equation 11.

Again, in both cases, WP

i
is given by

W
P

i
= T

P

i
� S

P

i
max

K2P\P
{dTi

n
e, TK

i
}, (15)

and we compute EG
P as follows

EG
P =

SX

i=1

W
P

i
� 1

n�1

P
K2P\{P} W

K

i

T
=

W
P � 1

n�1

P
K2P\{P} W

K

T
.

10There are no other cases: if A won, hence TA
i > Ti

3 , we can not have that TB
i , TC

i > Ti
3 ,

since then we would have Ti = TA
i + TB

i + TC
i > Ti

3 + Ti
3 + Ti

3 > Ti. We exclude the case

TA
i = TB

i = TC
i = Ti

3 , since there is no winner here.
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Remark 1. It is easily verifiable that for |P| = 2 Extensions 2 and 3 coincide
with the original definition of EG. However, Extension 1 is not really an ex-
tension, as can be concluded from Footnote 7 and the fact that a wasted vote
vanishes instead of going to another party.

Remark 2. One may wonder whether Extension 3(b) is well-defined. That
means, does the winning party still win after the wasted votes for that party
have been assigned to another party? The following lemma tells us that this is
indeed the case.

Lemma 2. The allocation will not result in a new winner.

Proof. Say, w.l.o.g., that in district di we have T
P1
i

> T
P2
i

> . . . > T
Pn�1

i
> T

Pn
i

,
so P1 has won. Assume that the allocation in Extension 3(b) results in a new
winner. This winner can only be Pn, since that party receives the wasted votes
of P1. So T

Pn
i

+W
P1
i

> T
P1
i

, i.e. TPn
i

+ (TP1
i

� T
P2
i

) > T
P1
i

. This would mean
T

Pn
i

� T
P2
i

> 0, but TP2
i

> T
Pn
i

, hence a contradiction.

Remark 3. Other allocations of the wasted votes for the winning party do not
necessarily have this winner-preserving property. For example, in a district with
100 voters, there are 40 votes for party A, 35 for party B and 25 for party C.
According to Extension 3, we are in case b, hence party A has 5 wasted votes.
If these wasted votes were to be allocated to party B, party B would have a
total of 40 votes and party A would have 35, resulting in a new winner.

Evaluation. We have proposed three di↵erent ways to define the e�ciency gap
for any finite number of parties. There are some important aspects to regard
when using these di↵erent definitions in practice. Firstly, it will be useful that
these generalizations give rise to a well-defined extension, in the sense that the
restriction to n = 2 parties coincides with the original definition of the e�ciency
gap (see Definition 13). This is a property that the first generalization lacks, as
discussed in Remark 1. Secondly, the procedure of allocating the wasted votes
of the winning party must preserve the winning party. Lemma 2 implies that
this is the case for Extension 3b. Extensions 2 and 3a also fulfill this property.
Finally, a straightforward generalization is mostly one that is intuitive. As
intuition is usually open to discussion and not as dogmatic as the two properties
discussed above, there is still a small preference for Extension 3 when it comes
to this point. Although Extension 2 has its own benefits as explained before,
the disadvantages would be the complexity of computing each EG

P and the
lack of simplicity and intuition, in contrary to Extension 3.
We will show two examples using Extension 2: one where the distribution of
votes is proportional to the distribution of districts won by a party (the pro-
portional case) and one where there is full disproportionality between these two
distributions (the extreme case). We will see that in particular in these extreme
cases, the e�ciency gap is a good indication.
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Example 4. The Proportional Case: Say there is a country with 150, 000 voters
(T = 150, 000), 50 districts (S = 50) and three parties that can be voted on
(P = {A,B,C}). The distribution of votes in districts is as follows:

• in districts d1 to d15: TA

i
= 2, 000 and T

B

i
= 1, 000

• in districts d16 to d20: TA

i
= 2, 000 and T

C

i
= 1, 000

• in districts d21 to d35: TA

i
= 1, 000 and T

B

i
= 2, 000

• in districts d36 to d40: TA

i
= 1, 000 and T

C

i
= 2, 000

• in districts d41 to d50: TC

i
= 3, 000.

We made the simplifying assumption that votes are evenly distributed among
districts: Ti = T

S
= 3, 000, for all 1  i  50. Simple math shows that

T
A = 60, 000, TB = 45, 000 = T

C and |DA| = 20, |DB | = 15 = |DC |, i.e. there
is full proportionality between the number of votes and number of districts won
by each party. To compute EG

P for each P 2 P, we need to compute Wi
P

K

for each P,K 2 P, P 6= K and i 2 {1, . . . , 50}. For districts d1 to d15 we have
Wi

A

B
= 500, Wi

A

C
= 1, 000, Wi

B

A
= 1, 000, Wi

B

C
= 1, 000, Wi

C

A
= Wi

C

B
= 0.

Hence

EG
A

B
=

50X

i=1

Wi
A

B
�Wi

B

A

105, 000

=
1

105, 000
(15(500� 1, 000) + 5(1, 000� 0) + 15(1, 000� 500)

+ 5(1, 000� 0) + 10(0� 0))

=
10, 000

105, 000
=

10

105
⇡ 0.10.

Analogously,

EG
A

C
=

50X

i=1

Wi
A

C
�Wi

C

A

105, 000
=

15, 000

105, 000
⇡ 0.14

and

EG
B

C
=

50X

i=1

Wi
B

C
�Wi

C

B

90, 000
=

5, 000

90, 000
⇡ 0.06.

Since EG
P

K
= �EG

K

P
for P,K 2 P, we find that EG

A = 1
2 (EG

A

B
+EG

A

C
) ⇡ 0.12,

EG
B ⇡ �0.02 and EG

C ⇡ �0.10.
The threshold for the e�ciency gap in the original (two-party) case is 0.08, but
here |EG

A|, |EG
C |> 0.08.11 So even proportionality, the fairest distribution of

(wasted) votes, will not always result in a low e�ciency gap. However, this is
not due to this choice of the extension, since the same problem occurs with the
original notion for the e�ciency gap with two parties [5].

11A question is whether this threshold makes sense in the case with three (or even more)
parties. This is a relevant question, although we do not have the means to verify this.
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Example 5. The Extreme Case: Our fictional country with three parties P =
{A,B,C} that can be voted on, has the following properties: T = 20, 000,
S = 20, Ti =

T

S
= 1, 000 for all 1  i  20 and the following vote distribution:

• in districts d1 to d10: TA

i
= 334, TB

i
= 333, TC

i
= 333

• in districts d11 to d20: TA

i
= 0, TB

i
= 499, TC

i
= 501,

so that T
A = 3, 340, T

B = 8, 320, T
C = 8, 340, |DA| = 10, |DB | = 0 and

|DC | = 10, i.e. this is a really unfair seat/district distribution. We compute
Wi

P

K
again for P 6= K, 1  i  20, and from this we find EG

A ⇡ �0.61,
EG

B ⇡ 0.51 and EG
C ⇡ 0.10. These are relatively large values, certainly

exceeding the threshold. The e�ciency gap indicates that this outcome is really
unfair to party B and advantageous to party A, as can be observed from the
disproportionality between T

P and |DP |.

Examples 4 and 5 confirm a relevant comment from [14] :

“The (generalized) e�ciency gap is a measure, not a test.”

By this we mean that the e�ciency gap is one of the tools that can be used to
indicate potential gerrymandering. We can not solely use the e�ciency gap as
a test, as we saw that in the proportional case the e�ciency gap still exceeds
the threshold (this was already the case for |P| = 2). For extreme cases, like in
Example 5, the e�ciency gap tells us that this voting distribution is extremely
biased towards favoring one particular party, which refers directly to potential
gerrymandering. Hence, the e�ciency gap should be used as one of the measures
for gerrymandering detection and, together with other measures that we will
discuss, will serve as methods to make conjectures regarding the presence or
absence of political manipulation in the form of gerrymandering.

3.3 E�ciency Gap and Proportionality

Example 4 in the case of Extension 2 with |P| = 3 and in the case of |P| = 2
indicated that proportionality will not always result in an e�ciency gap that
is close to 0. It would be convenient to formalize this relation between the
e�ciency gap and proportional representation. Therefore, we first strive to find
a formula that represents the direct relation between the e�ciency gap and the
di↵erence between the vote share and district share in the case of two parties.

We will work with P = {A,B} and EG as in Definition 13. We define T B = T
B

T

and SB = S
B

S
, where we denote by S

B the number of districts won by party B.
Furthermore, define T B

d
= T B � 1

2 and SB

d
= SB � 1

2 . T B can be seen as the
fraction of votes for B and T B

d
as the deviation of 1

2 of the fraction of votes for
B, and analogously for SB and SB

d
, with votes being replaced by districts.

Lemma 3. Assume Ti =
T

S
, 1  i  S, and T >> S, then EG ⇡ SB

d
� 2T B

d
.
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Proof. Define ✏ := d T

2S e �
T

2S .

EG =
W

A �W
B

T

=
SX

i=1

W
A

i
�W

B

i

T

=
SX

i=1

(TA

i
� S

A

i
dTi

2 e)� (TB

i
� S

B

i
dTi

2 e)
T

=
SX

i=1

(TA

i
� S

A

i
d T

2S e)� (TB

i
� S

B

i
d T

2S e)
T

=
SX

i=1

T
A

i
� T

B

i

T
�

SX

i=1

S
A

i
� S

B

i

T
(
T

2S
+ ✏)

=
SX

i=1

T
A

i
� T

B

i

T
� 1

2

SX

i=1

S
A

i
� S

B

i

S
�

SX

i=1

(SA

i
� S

B

i
)✏

T

=
T

A � T
B

T
� 1

2

S
A � S

B

S
� (SA � S

B)
✏

T

⇡ T
A � T

B

T
� 1

2

S
A � S

B

S

=
1

2

S
B � S

A

S
� T

B � T
A

T

=
1

2
(
2SB

S
� 1)� (

2TB

T
� 1)

=
S
B

S
� 1

2
� 2(

T
B

T
� 1

2
)

= SB

d
� 2T B

d
.

where the fourth equality follows from Ti =
T

S
and the ninth equality from S

A+
S
B = S and T

A + T
B = T . The approximation follows from the assumption12

S >> T , hence S

T
⇡ 0 and thus (SA � S

B) ✏

T
⇡ 0, since 0 < ✏ < 1.

SB

d
⇡ T B

d
means that parties are represented proportionally to their vote share,

but from Lemma 3 we infer the important relation

EG ⇡ 0 , SB

d
⇡ 2T B

d
.

This relation tells us that, as long as both parties do not come close to having
half of the votes and half of the districts (SB

d
= T B

d
= 0), a low e�ciency gap

implies a disproportional outcome, and vice versa. Another relation that can

12This is a realistic assumption; in most real life scenarios the number of voters per districts
is quite large, so S

T = 1
Ti

is quite small.
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be inferred from Lemma 3 is

SB

d
⇡ T B

d
, EG ⇡ �T B

d
,

which means that, at proportionality, the e�ciency gap is close to �T B

d
, i.e.

the deviation of 1
2 of the fraction of votes for party A.

For |P| = n, let P = {P1, . . . , Pn} and define T P1
d

= T
P1

T
� 1

n
and SP1

d
=

S
P1

S
� 1

n
.13

Lemma 4. Consider Extension 3. Suppose that |P| = n and assume again that
Ti =

T

S
, where T >> S. Assume furthermore that the outcome is as in case (a).

Then EG
P1 ⇡ 1

n�1 (nT
P1
d

� SP1
d

).

Proof. Define ✏ := d T

nS
e � T

nS
. By Equation 14

EG
P1 =

SX

i=1

1

T
[(TP1

i
� S

P1
i

dTi

n
e)� 1

n� 1

X

K2P\{P1}

(TK

i
� S

K

i
dTi

n
e)]

=
SX

i=1

T
P1
i

� 1
n�1

P
K2P\{P1} T

K

i

T
�

SX

i=1

(SP1
i

� 1
n�1

P
K2P\{P1} S

K

i
)d T

nS
e

T

=
SX

i=1

T
P1
i

� 1
n�1

P
K2P\{P1} T

K

i

T
�

SX

i=1

(SP1
i

� 1
n�1

P
K2P\{P1} S

K

i
)

T
(
T

nS
+ ✏)

=
SX

i=1

T
P1
i

� 1
n�1

P
K2P\{P1} T

K

i

T
� 1

n

SX

i=1

S
P1
i

� 1
n�1

P
K2P\{P1} S

K

i

S

�
SX

i=1

(SP1
i

� 1
n�1

P
K2P\{P1} S

K

i
)✏

T

=
T

P1 � 1
n�1

P
K2P\{P1} T

K

T
� 1

n

S
P1 � 1

n�1

P
K2P\{P1} S

K

S
� (SP1

� 1

n� 1

X

K2P\{P1}

S
K)

✏

T

⇡
T

P1 � 1
n�1

P
K2P\{P1} T

K

T
� 1

n

S
P1 � 1

n�1

P
K2P\{P1} S

K

S

13Note that we define these notions now in terms of P1, our first party in the list, instead
of B, the second party of {A,B}.
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=
T

P1

T
� 1

n� 1
(1� T

P1

T
)� 1

n
(
S
P1

S
� 1

n� 1
(1� S

P1

S
))

=
n

n� 1

T
P1

T
� 1

n� 1
� 1

n
(

n

n� 1

S
P1

S
� 1

n� 1
)

=
n

n� 1
(
T

P1

T
� 1

n
)� 1

n� 1
(
S
P1

S
� 1

n
)

=
n

n� 1
T P1
d

� 1

n� 1
SP1
d

=
1

n� 1
(nT P1

d
� SP1

d
).

Corollary 1. For Extension 3, case (a), we have that EG
P1 ⇡ 0 , SP1

d
⇡ nT P1

d
.

Hence, if there are more parties, an e�ciency gap close to 0 results in less
proportionality.

3.4 E�ciency Gap for More Voting Rules

For two parties or alternatives {A,B}, the only deterministic voting rule that
is neutral and anonymous is the plurality rule. Hence, this is a naturally voting
rule when talking about an election with two competing parties. When we
have more alternatives however, there are many more deterministic voting rules
that are neutral and anonymous as well (two properties that we want a voting
rule to have for it being considered fair). We have seen some examples before.
The most trivial one is still the plurality rule applied to any finite number of
alternatives. All results and definitions for the e�ciency gap we have seen so far,
apply to this rule. It is also interesting to define the (generalized) e�ciency gap
when the voting rule in dispute is something other than the plurality rule. The
reasoning behind this will be clarified later. Since many deterministic, neutral
and anonymous voting rules defined for any finite number of parties reduce
to the plurality rule when we consider only two parties, we will straightaway
consider three parties and from this extend our definition to any finite number
of parties.
Let P = {A,B,C}. Recall that a ballot is an ordering over the alternatives,
for instance A � B � C, and that the Borda rule is a positional scoring rule
that assigns points to the ballot just mentioned as follows: A gets 2 points, B
gets 1 point and C gets 0 points. Suppose that we are in district di. Let Ti be
the number of votes (ballots) in district di. Each alternative receives a number
of points according to the Borda rule and the alternative with the most points
among all the votes in district di is the winner in district di. Let H

P

i
be the

total number of points for party P in district di and Hi = H
A

i
+H

B

i
+H

C

i
the

total number of points (not ballots or votes) assigned in district di. We have
that Ti =

Hi
3 , since each vote gives three points in total.

We can define the (generalized) e�ciency gap equivalently for the Borda rule
by simply considering each point for a party as a vote for that party. With
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this convention, every Borda winner is a plurality winner (a party wins in a
district if it has the largest number of votes among all parties in that district).
Hence, the generalizations of the e�ciency gap when the applied voting rule is
the Borda rule are the generalizations as seen before (1, 2 or 3), but with the
substitution T

P

i
! H

P

i
and Ti ! Hi. For example, Extension 3 translates to

(a)

W
A

i
=

(
H

A

i
� Hi

3 , if di 2 DA

H
A

i
, if di /2 DA

= H
A

i
� S

A

i

Hi

3
,

where W
A

i
is the number of wasted points for party P .

(b)

W
A

i
=

8
><

>:

H
A

i
�H

B

i
, if di 2 DA \DB

H
A

i
�H

C

i
, if di 2 DA \DC

H
A

i
, if di /2 DA

= H
A

i
� S

A

i
(XB

i
T

B

i
+X

C

i
T

C

i
),

where X
P

i
is defined analogously to (11).

More generally,

W
A

i
= H

A

i
� S

A

i
max{dHi

3
e, HB

i
, H

C

i
}. (16)

We then have

EGA =
SX

i=1

W
A

i
� 1

2 (W
B

i
+W

C

i
)

H
=

WA � 1
2 (W

B +WC)

H
,

where we compute WA

i
using Equation 16 and H =

P
S

i=1 Hi is the total number
of points.

Example 6. In a surprisingly small country with one district (which we de-
note by district 1) and 8 voters we have the following ballots (with multiplicity
indicated)

• A � B � C (2⇥)

• C � B � A (3⇥)

• B � A � C (1⇥)

• B � C � A (2⇥)

34



Then H1 = 24, T1 = 8 and furthermore A has 5 points, B has 11 points and C

has 8 points, so party B wins the district (hence wins the election).
If we consider Extension 3, it is easy to see that we are in case (a), hence
W

A

1 = 5, WC

1 = 8 and W
B

1 = 11� 24
3 = 3 wasted points. Then

EGA =
5� 1

2 (3 + 8)

24
= � 1

48
⇡ �0.02

and EGB = � 7
48 ⇡ �0.15 and EGC = 1

6 ⇡ 0.17.

Let P = {P1, . . . , Pn}, so that |P| = n. It is straightforward to generalize the
above construction to n parties, where now the total number of points assigned
to parties in one ballot is

(n� 1) + (n� 2) + . . .+ 1 + 0 =
n
2 � n

2
=

✓
n

2

◆
,

and Ti =
Hi

(n2)
= 2Hi

n2�n
, 1  i  n.

We make the important observation that we can define the (generalized) e�-
ciency gap for every positional scoring rule by applying the same idea as we did
for the Borda rule: consider each point for a party as a vote for that party. Re-
call that s = (s1, . . . , sn) 2 Rn is the scoring vector, i.e. s = (n�1, n�2, . . . , 0)
for the Borda rule. Fix a positional scoring rule with a scoring vector s, e.g.
Borda rule or (anti)plurality rule. In a ballot �, the alternative positioned at
the i-th place according to that ballot gets si points. Denote by �P the number
of points party P gets from a ballot �, i.e. �P= si if party P is positioned at
the i-th place according to ballot �. Denote furthermore by �i,j the j-th ballot
in district di for j = 1, . . . , Ti and i = 1, . . . , S. Then H

P

i
=

P
Ti

j=1 �i,j

P
is the

number of points for party P in district di and we have the following relation
between Ti and Hi: Ti =

Hi
s

where s =
P

n

i=1 si.
Obviously, the plurality rule is a positional scoring rule with s = (1, 0, . . . , 0). It
is not hard to see that the proposed generalization to any arbitrary positional
scoring rule will reduce to the e�ciency gap of the plurality rule using this
scoring vector, as Ti = Hi.

3.5 Statistical Tests using E�ciency Gap

A typical way in (statistical) science to prove the presence or absence of a certain
phenomenon is by using statistical hypotheses, as explained in Chapter 2. Here,
we would like to infer whether gerrymandering took place in a certain election,
using the outcome of that election14. This outcome includes each vote in a
country and whether that vote is for party A or B.
The null hypothesis is typically used for indicating the default position where
nothing significantly di↵erent is happening. On the contrary, the alternative

14By ’gerrymandering in an election’ we mean that the district borders have been gerry-
mandered before the election to alter the outcome of that election.
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hypothesis usually indicates that something is happening. Hence, in this case it
makes sense to construct the null hypothesis H0 and the alternative hypothesis
H1 as follows:

H0 : The outcome of the election has not been a↵ected by gerrymandering.

H1 : The election took place in a gerrymandered map.

We would like to find a test that tells us exactly when to reject H0 and thereby
strengthen the conjecture of gerrymandering, based on the results of the election.
For such a test it is beneficial to have small probabilities of type I and type II er-
rors. Recall from Chapter 2 that ↵ := P(type I error) and � := P(type II error).
The Neyman–Pearson Lemma, Lemma 1 from Chapter 2, ensures ↵ and � that
are minimal in the NP sense15. It tells us to construct a region R, so that, if
the evidence E (which are the election results) lies in the region R, we take
action A1, otherwise action A0. A0 is the action that corresponds to a true null
hypothesis and is “leaving the districts intact”. A1 corresponds to a rejection
of the null hypothesis and is “rearranging the districts” (in later chapters we
will go deeper into this topic). Recall that the rejection region R proposed by
Neyman and Pearson is

Rt = {E 2 E|LRH0,H1(E)  t}

for a fixed value t, where

LRH0,H1(E) =
P(E|H0)

P(E|H1)
.

Both probabilities are quite problematic to compute, certainly because of the
“vague” formulation of H0 and H1. Another useful way in Bayesian statistics
to compute the likelihood ratio is to divide the likelihood ratio in posterior odds
and prior odds as follows:

LRH0,H1(E) =
P(E|H0)

P(E|H1)
=

P(H0|E)

P(H1|E)
⇥ P(H1)

P(H0)

so that we have LR = posterior odds ⇥ prior odds. To compute the posterior
odds, we would need a more explicit definition of H0 and H1. We did however
not succeed in constructing Hi, i = 0, 1, so that P(Hi|E) is computable. One
way it may be computable is to let H0 and H1 only depend on the outcome E,
but that would give P(Hi|E) 2 {0, 1} for i = 0, 1. This can result in dividing by
zero, but even if we would use the convention a

0 = 1 for any a 2 R, we would
have that for every t

LRH0,H1(E)  t , LRH0,H1(E) = 0

, P(H0|E) = 0

, P(H1|E) = 1,

15Minimal in the Neyman–Pearson (NP) sense means ↵0 < ↵ ) �0 > � for a pair (↵0,�0)
from another test.
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so that

Rt = {E 2 E|P(H1|E) = 1}
= {H1},

where H1 is a hypothesis that depended solely on the outcome. This is a useless
region.
We found out that computing the likelihood ratio to define a suitable region Rt

did not help for finding a procedure to decide on the basis of evidence which
of the two actions A0 and A1 to take. We can however use the results in this
chapter to form another test. Recall that the threshold for gerrymandering
detection for the e�ciency gap is 0.08 (in the case with two parties). That
means that |EG| > 0.08 implies caution regarding potential gerrymandering
and |EG|  0.08 implies that no gerrymandering is assumed to have taken
place. From Lemma 3 we deduce the important relation EG ⇡ SB � 2T B + 1

2 ,

with T B = T
B

T
and SB = S

B

S
. This allows us to conclude that

|EG| . 0.08 () 0.21 +
SB

2
. T B . 0.29 +

SB

2
, (17)

where . denotes “smaller, equal to or almost equal to”, i.e.

A . B , (A < B) _ (A ⇡ B).

This is equivalent to

|EG| . 0.08 () �0.58 + 2T B . SB . �0.42 + 2T B
. (18)

As argued before, the null hypothesis is rejected if the data suggests that it is
unlikely for the statement in the null hypothesis to hold. For simplicity, we will
fully rely on the aforementioned threshold for the e�ciency gap, namely 0.08.
This means that we work with the following inference:

Reject H0 , |EG| > 0.08

, T B
/2 [0.21 +

SB

2
, 0.29 +

SB

2
]

, SB
/2 [�0.58 + 2T B

,�0.42 + 2T B].

This coincides with the following rejection region R ⇢ E ,

R = {(s, t) 2 E : 0.29 < t� s

2
< 0.21}, (19)

where the evidence E = (s, t) has s = SB as first component and t = T B

as second component. This region tells us that, if E 2 R (which means that
|EG| > 0.08), we take action A1 and if E /2 R (which means that |EG| . 0.08),
we take action A0.
It is clear that there is a strictly positive probability of a type I error , i.e. a false

37



positive: in some proportional instances there is no gerrymandering (H0 is true),
while we reject H0 (|EG| > 0.08). For example, if SB = 0.8, which means that
party B won in 80% of the total districts, then |EG| . 0.08 , 0.61  T B .
0.69. However, full proportionality (T B = 0.08) yields that |EG| > 0.08. We
saw a similar scenario in Example 4. There is also a positive probability of a
type II error, i.e. a false negative.
The Neyman–Pearson test did not help for finding a suitable rejection region
R, but the test based on the threshold for the e�ciency gap and Equation 17
gave us a suitable region R as defined in 19. We only need evidence consisting
of the fraction of the votes a party has and the fraction of the districts a party
won. We do however still have that ↵,� > 0 and those probabilities are not
minimal in the NP sense. Therefore, we conclude again that the e�ciency gap
can not be solely used to indicate or prove gerrymandering. It is mere a helpful
tool, along with other measures that will be discussed in the following chapters.
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4 Probabilistic Methods

A di↵erent approach to indicate potential gerrymandering is to highlight the
“unlikeliness” of the outcome. A highly unlikely outcome of an election, meaning
that the probability of the outcome given the vote distribution is very low,
will give rise to the suspicion of authorities having deliberately designed the
borders to achieve this outcome. For calculations, or rather approximations, of
this probability, we will make use of the Monte Carlo method: an algorithmic
method that uses random sampling for numerical results.

4.1 Monte Carlo for Two Parties

In this section we assume that there are two (political) parties competing against
each other. The slight di↵erence with the previous section is, that we now con-
sider (legislative) districts as before and Voting Tabulation Districts (VTD’s).
Each voting tabulation district is fixed. In this sense, VTD’s are never prone to
change, whereas districts are. Let V = {x|x is a VTD} be the set of VTD’s and
D = {d1, . . . .dS} be the set of districts, such that we have S legislative districts
in the country. The number of VTD’s |V|, denoted by V , is at least S, since
each district consists of at least one VTD.

Definition 14. A redistricting plan is a surjective function ⇠ : V ! D that
assigns each VTD to a district di 2 D, such that ⇠�1(di) 6= ; for all 1  i  S.

See Figure 6 for an illustrative image of a redistricting plan where |V| = 7 and
|D| = 3 (this is not by any means a geographic representation).

Figure 6: Example of a redistricting function ⇠.

⇠
�1(di) ⇢ V is the set of VTD’s contained in district di for redistricting plan ⇠.
We denote the set of districts that are now fixed according to redistricting plan
⇠ by D⇠ := {⇠�1(d1), . . . , ⇠�1(dS)}. For each 1  i  S, di can be seen as the
i-th district and ⇠

�1(di) as the set of all VTD’s that are assigned to district di.
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The following lemma tells us how many di↵erent redistricting plans there are.16

Lemma 5. The number of redistricting plans ⇠ is

SX

n=0

(�1)n
✓
S

n

◆
[(S � n)V ]. (20)

Proof. Without the requirement that ⇠
�1(di) 6= ; for every 1  i  S, this

number is simply S
V : for each VTD (of which there are V ), you can choose

either of the districts (of which there are S). With the requirement however,
there are less such redistricting plans. In all SV redistricting plans (without the
requirement), we counted every function where each district is empty. Hence,
we have to subtract all functions where a single district is empty. The number of
redistricting plans where di is empty, for a 1  i  S, is (S�1)V . Thus the total
number of such redistricting plans with the requirement is S

V � S[(S � 1)V ].
But now we have to add every occasion where a combination of two districts is
empty, of which there are

�
S

2

�
. The number of redistricting plans where di and

dj are empty, for some 1  i < j  S is (S � 2)V . From this total number, we
have to subtract again every occasion where a combination of three districts is
empty, and so forth. Continuing this alternating process, which is known as the
inclusion-exclusion principle [15] , we get a total number of

S
V � S[(S � 1)V ] +

✓
S

2

◆
[(S � 2)V ]�

✓
S

3

◆
[(S � 3)V ] + . . .+ (�1)S · 0

=

✓
S

0

◆
[(S � 0)V ]�

✓
S

1

◆
[(S � 1)V ] +

✓
S

2

◆
[(S � 2)V ]� . . .+ (�1)S

✓
S

S

◆
[(S � S)V ]

=
SX

n=0

(�1)n
✓
S

n

◆
[(S � n)V ].

Note that the cardinality of the set of redistricting plans expressed in Lemma 5
is a very large number, as V is usually quite large (in 2012, the American state
North Carolina counted a total of 2,500 VTD’s [5]). Obviously, not every such
assignment of VTD’s to the set of districts makes sense. Hence, we want to
reduce the set of redistricting plans to a much smaller but more meaningful set.
To this end, we need the concept of a legal redistricting plan.

Definition 15. A legal (or fair) redistricting plan is a redistricting plan that
is geocompact, contiguous and balanced.

By these notions, we mean the following:

16In practice, it makes a di↵erence in which district the VTD’s are placed,
i.e. the permutations of the districts di↵er from each other. For example,
the redistricting plan {{V TD1, V TD2}, {V TD3, V TD4} is essentially di↵erent than
{{V TD3, V TD4}, {V TD1, V TD2}}. This is because each district has already a fixed “name”.
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• Geocompactness: this includes the shape of each district. If there is at
least one district with a really odd or irregular shape, this would be suspi-
cious and could hint towards potential gerrymandering. We will dedicate
a whole section to this aspect and investigate it more mathematically and
rigorously. Briefly speaking, a district di is geocompact, short for geomet-
rically compact, when gcomp(di) � C for a threshold C 2 (0, 1).17

• Contiguity: or the connectedness of districts. A legal redistricting plan
ensures that each district is coherent, which means that you can travel
from each point in that district to any other point in that district without
leaving the district. From a graph-theoretical point of view, this means
that the subgraph of the whole network corresponding to a district is
connected. More precisely, let G⇠ = (V, E⇠) be the graph representing
the network of the country after applying redistricting plan ⇠. V, the set
of nodes, is the set of VTD’s as before. E⇠ is the edge set consisting of
edges that connect two VTD’s when they are adjacent in geographical
sense and belong to the same district in D⇠. It means that, for two VTD’s
j and k, (j, k) 2 E⇠ if and only if j and k are adjacent and 9i such that
j, k 2 ⇠

�1(di). G⇠ then consists of at least S connected components. A
district is coherent if all the nodes corresponding to the VTD’s assigned
to that district belong to the same connected component. If every district
is coherent, i.e. full contiguity in the country, G⇠ consists of exactly S

connected components.When there is at least one VTD belonging to a
district that is not connected to the other VTD’s belonging to that district,
one of the obvious reasons will be political manipulation, which we want
to manifest.

• Balancedness: meaning that the population distribution among the dis-
tricts is balanced. This is a property that we assumed multiple times last
section to make calculations easier. But most importantly, this is also fair
from a political point of view, since we usually do not want to distinguish
between the importance of di↵erent districts. Each district results in one
seat and therefore each seat should represent the same amount of voters.
Allowing unequal populations is unfair for people voting in a larger dis-
trict, as they have relatively less influence on the voting outcome. Hence,
we will call a redistricting plan fair or legal if each district has roughly the
same population count. More mathematically, let C⇠

i
denote the popula-

tion count of district ⇠�1(di). We do not want the population counts from
each district to deviate too much from each other. Therefore, we define
a threshold for the largest di↵erence. Let K > 0 be an integer threshold,
then whenever

max
1iS

C
⇠

i
� min

1iS

C
⇠

i
 K (21)

we say that redistricting plan ⇠ is balanced.

17gcomp will be defined later. For now, regard it as a measure of geocompactness.
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We are interested in the probability that there is a certain outcome (i.e. number
of districts won by parties A and B), given a legal redistricting plan and given
a distribution of the votes in the VTD’s. It is important that we know the
given distribution of votes beforehand, but that we do not know which (legal)
redistricting plan was used. This probability is equal to the number of legal
redistricting plans that result in the corresponding outcome given the distribu-
tion of votes in VTD’s, divided by the total number of legal redistricting plans.
As mentioned before, the number of redistricting plans expressed in Lemma 5
is usually very large (C · 10k where C < 10 and k > 100 is no exception). The
aforementioned restrictions reduce the set of redistricting plans, but the set of
legal redistricting plans is still too large to do computations with. To compute
the numerator in the previously mentioned probability would be already infea-
sible. However, by simulations we can estimate the probability in dispute when
the outcome space is unreasonably large. Here we will make use of a Monte
Carlo method : take a large sample from the space of feasible outcomes (legal
redistricting plans) and count how many times you get a certain (desirable)
result. The estimated probability would then be the frequency of the outcome
that is investigated. The idea behind this simulation is the following [16]

Bizarre outcomes will be very unlikely.

This could strengthen the conjecture one has regarding the unlikeliness of a
certain outcome.

Example 7. An election in North Carolina in 2012, a state with 13 congres-
sional (legislative) districts, between the Democrats and the Republicans re-
sulted in ±51% of the votes for the Democrats (party D) and ±49% of the

votes for the Republicans (party R) [5]. This means that T D = T
D

T
⇡ 1

2 and

likewise T R = T
R

T
⇡ 1

2 . A proportional seat distribution, SD ⇡ SR ⇡ 1
2 , would

suggest that either R or D won 6 districts and the other one 7. In reality, R
won 9 districts and D won 4 districts. This is suspicious, certainly given the
fact that the Republicans drew the district boundaries after the 2010 Census.
100 samples drawn uniformly from the space of legal redistricting plans give
the result as seen in Histogram 7 [17]. In these simulations, the distributions of
votes per VTD are fixed and known beforehand.
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In none of the 100 simulated redistricting plans the Democrats have won only
4 districts. Thus, such an event could be regarded as highly unlikely. In more
than 80% of the cases, the Democrats have won 7 districts or more.

This Monte Carlo simulation is based on (a corollary of) the Law of Large
Numbers: the frequency of an outcome converges to the probability of that
outcome, given that the outcome is in the space of legal redistricting plans.
More precisely, denote by ⌅ the set of redistricting plans and by ⌅0 ⇢ ⌅ the set
of legal redistricting plans. Furthermore, let DA

X
denote the number of districts

won by party A using a redistricting plan from set X ✓ ⌅ (DA

X
is a random

variable for a fixed X). Then

#simulations where A won x districts

#simulations
! P(DA

⌅0
= x),

as #simulations ! 1. So, another strategy for gerrymandering detection for a
certain election would be:

• Simulate a large number of legal redistricting plans.

• Calculate the frequency of the real outcome (hence DA = x for a 0 
x  S) among all simulations. This is close to the probability of the real
outcome.

• Verify whether this frequency is lower than a certain threshold t 2 (0, 1).

This verification can also be done by plotting a histogram (as in Histogram 7)
and checking whether the bar corresponding to the real outcome has a value
below t. The lower the threshold, the stronger the conjecture that this very
unlikely outcome is a result of gerrymandering. As for the e�ciency gap, this
does not prove gerrymandering, but could be used as one of the measures for
gerrymandering detection.
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4.1.1 The Simulation

There are multiple ways to simulate a legal redistricting plan. The trivial way
would suggest to generate a function ⇠ by randomly assigning a v 2 V to a d 2 D
for all v 2 V. That means that, for any v 2 V, we choose a random d 2 D and let
⇠(v) = d. After doing this, ⇠(v) is defined for every v 2 V and takes value in the
set of districts D. Hence, we get a function ⇠ that is not yet surjective. Then,
a legal redistricting plan can be simulated by generating functions ⇠ as above
until a function is generated that is surjective, geocompact, contiguous and
balanced. The downside is that this is computationally very heavy, certainly
if we wish to do a large number of simulations. Since almost every random
assignment of VTD’s to districts does not create a map in which each district is
geocompact, connected and su�ciently large, one would have to generate many
such functions ⇠ in order to simulate a legal redistricting plan. Therefore, we
look for another way of assigning VTD’s to districts.
We propose Algorithm 1 as a more e�cient way to simulate legal redistricting
plans.

Algorithm 1. Construction of ⇠
for d 2 D

choose v 2 V randomly;

count = 0;

⇠
�1(d) = {v};

while pop(⇠�1(d)) < T

S
� K

2

for w 2 �(⇠�1(d)) \ V

count ! 0;

if gcomp({⇠�1(d), w}) � C and pop({⇠�1(d), w}) < T

S
+ K

2

⇠
�1(d) ! {⇠�1(d), w};

�(⇠�1(d)) ! �(⇠�1(d))\{w};

V ! V \{w};

count ! 1;

if �(⇠�1(d)) == ; and pop(⇠�1(d)) < T

S
� K

2

STOP, NO REDISTRICTING PLAN;

if count == 0

STOP, NO REDISTRICTING PLAN;

A couple of things need to be clarified about this pseudocode.

• pop(U), where U ✓ V , denotes the population count of a subset of VTD’s
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U . More formally, pop({v1, . . . , vn}) =
P

n

i=1 pop(vi) where pop(vi) is the
population count of VTD vi 2 V .

• �(U), where U ✓ V , denotes the set of VTD’s that are adjacent to a VTD
v 2 U . More formally, �({v1, . . . , vn}) =

S
n

i=1{w 2 V : w is adjacent to
vi}, where we consider adjacency in the geographical sense.

• gcomp(U), where U ✓ V , denotes the ratio of geocompactness of a subset
of VTD’s U . This is a value between 0 and 1 and tells us how geocompact
a certain district or set of VTD’s is. There are multiple ways to define
this ratio, we will discuss this in the next chapter.

• C 2 (0, 1) is a threshold value for the geocompactness. When gcomp(U) �
C, we can consider U as a geocompact set of VTD’s, i.e. the area enclosed
by the closed curve that represents the border of U is geocompact. The
constant C is dependent of the choice of the function gcomp: 2V ! [0, 1].

• K > 0 is the integer threshold for the largest di↵erence in population size
as encountered in Equation 21.

• T is the total number of people (not voters!) in the country and S is the
number of districts.

The construction of each district d starts from a random VTD that is not yet
assigned to another district. The while loop ensures that Equation 21 always
holds for each district. Then we check for each VTD that is adjacent to the
set of VTD’s that we have assigned so far, whether the addition of this VTD
preserves geocompactness and still satisfies Equation 21. If this is the case, we
add this VTD and remove it from V and �(⇠�1(d)), so that it will not be picked
again. count is a Boolean variable that verifies if such a VTD can be added.
When this is not the case, the algorithm stops (by the command STOP, NO
REDISTRICTING PLAN) and fails to terminate.
If Algorithm 1 terminates, it does so with ⇠

�1(d) for each d 2 D, thus a set
of districts D⇠. By construction, this ⇠ is a legal redistricting plan. However,
in most such constructions it will not terminate, due to count staying at the
value 0. This happens when, at the construction of ⇠

�1(d) for a particular
d 2 D, there is no other VTD left that can be added preserving geocompactness
and connectedness. It also fails to terminate when the set of VTD’s to be
added is empty and the population count in the district is still too low. The
amount of times the algorithm fails to terminate is expected to be lower than
the amount of times a random assignment of VTD’s (as seen before) fails to
be a legal redistricting plan. Hence, this method is computationally less heavy
than the method described before. The price we have to pay for that is a fairly
complicated construction of ⇠ compared to the ⇠ that is generated by randomly
assigning VTD’s to districts.
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4.2 Monte Carlo for Finitely Many Parties

This concept can be easily extended to any finite number of parties (while, for
now, still using the plurality rule). First, let P = {A,B,C}. Again, each VTD is
fixed and the definition of a (legal) redistricting plan is analogous. An outcome
now consists of the number of districts won by A, B and C. Similarly, sample a
large number of elections, using legal redistricting plans, and plot the frequency
of the number of districts won by each party in the same histogram. Distinguish
di↵erent parties by bars of di↵erent colors, to keep an overview.18 When either
of the bars corresponding to a real outcome is below a certain threshold, this
could again indicate possible gerrymandering.

Example 8. The following results are not from a real election. Imagine that,
besides the Democrats (D) and the Republicans (R), there is a third party
(T ). There is an election in a state with 20 districts and each of these districts
contain many VTD’s. The outcome from a certain election is such that ±40%
from the votes are for D, ±30% are for R and ±30% are for T . Also, following
the current redistricting plan, 11 districts are won by R, 6 districts are won by
D and 3 districts are won by T . This seems unfair and not proportional at first
sight. The following histogram illustrates the frequencies of the districts won
by each party in 100 simulated elections.
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Again, there are no cases registered where T wins 3 districts and R wins 11
districts (the latter falls outside the scope of the histogram). There are just
a few cases, approximately 5, where D wins 6 districts. Hence, such an event
can be regarded as highly unlikely. With even more simulations and the same

18In this case, we have three bars in each column. For the case P = {A,B}, there were not
two bars, but only one in each column. This is because the other bar would be redundant, as,
for instance, the frequency of the outcome with x Republican districts is the frequency of the
outcome with S � x Democratic districts. Thus the frequency of x Republican districts can
be deduced from the histogram.
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result (or a result that is even less similar to the real outcome), the conjecture
of gerrymandering would be even stronger.

The generalization to any number of parties, |P| = n � 3, is straightforward.
Keep in mind that a histogram will be hectic and cluttered when many parties
are considered, thus another form of data representation could be useful in that
case.

4.3 Monte Carlo for More Voting Rules

This can also easily be extended to any number of parties and any (resolute)
voting rule that is neutral.19 A VTD contains many people that all declare their
own ballot, i.e. an ordering over the parties. Using any voting rule, the national
result of the election can be decided in two ways.

1. This is when we still want to preserve one winning party for each district.
The district winner is the output of the social choice function, with as input
the ballots from each voter in that district. More precisely, we say that person
j is a voter in district di if j 2 di. Then the winning party in district di is
F ((�j)j2di), where F is the social choice function and �j the ballot of voter j.
The winner in the country can be chosen as the party that won most districts, or
via a more advanced system as in the presidential elections in the United States.

2. This is when we want every district to end with a collective ballot after
there has been voted, that represents the ballots from each voter in that dis-
trict. Recall from Definition 7 that a social welfare function takes a profile of
ballots as input, but outputs a full ordering over the alternatives, whereas a
social choice function (a voting rule) outputs a set of alternatives. The follow-
ing lemma guarantees the extension to a social welfare function, so that each
district can be represented by a fully ordered ballot.

Lemma 6. Let F : L(P)m ! P be a neutral voting rule for any integer m

and any set of parties P, then F can be extended to a social welfare function
F

⇤ : L(P)m ! L(P) such that F (�) = top(F ⇤(�)) for any � 2 L(P)m.

Proof. Let � = (�1, . . . ,�m) 2 L(P)m be a profile of m di↵erent ballots, i.e.
orderings over P, where P is the set of parties. Use the voting rule F to select a
single winner, i.e. F (�) = P for a P 2 P. This will be the highest ranked party
in the ballot F

⇤(�), hence we have F (�) = P = top(F ⇤(�)). Define a new
profile �1 = (�1

1, . . . ,�1
m
), where �1

i
is the same as ballot �i but with party P

removed, for 1  i  m. Hence, �1
i
is a ballot over the set of parties P\{P}, i.e.

�1
i
2 L(P\{P}). Use F again to select a winner from profile �1, i.e. F (�1) = K

for a K 2 P\{P}. Note that neutrality of F is required in order to do this,

19Recall, that resolute means that the outcome of the voting rule is always exactly one party.
However, the applications are usually with such high numbers that with very low probability
there will be two or more winners. When not convinced by this argument, use a random
tie-breaking rule to always select a unique winner.
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since F must work similarly when picking a winner from �1 2 L(P\{P})m
and thus can not have a ’preference’ for party P , which is the case when F is
neutral. Place K below P in the ballot F ⇤(�). Now define profile �2 similarly
with ballots ordered over P\{P,K} and proceed iteratively until there is a full
ballot F

⇤(�). Thus we have constructed a F
⇤ such that F

⇤(�) 2 L(P) and
F (�) = top(F ⇤(�)), so F

⇤ is a social welfare function and naturally extends
F .

Example 9. In this simplistic scenario there are 4 voters and P = {A,B,C,D}
is the set of parties with the following ballots

• A � B � C � D

• D � B � C � A

• A � C � D � B

• B � A � C � D.

The Borda winner is party A with 8 points, so A will be the top party in the
collective ballot. Removing A from each ballot results in the following four
ballots

• B � C � D

• D � B � C

• C � D � B

• B � C � D.

The Borda winner is now party B with 5 points. Removing B from each ballot
results in four ballots in which three have the order C � D and one D � C, so
C wins. The collective ballot is then A � B � C � D.

m voters in a district give rise to a profile (�j)j2di = (�1, . . . ,�m) 2 L(P)m of
m di↵erent ballots (if the voters in district di are denoted by 1, . . . ,m). Extend
the neutral voting rule F that is applied in the country to a social welfare
function F

⇤ as constructed in Lemma 6. The collective ballot that district di

represents, is �di= F
⇤((�j)j2di). Then we apply the voting rule F to each

ballot represented by a district, i.e. the winner is P = F ((�di)1iS) for a
party P 2 P.
In the first case, applying the Monte Carlo method works analogously, since the
result is that each district is won by a single party. However, this is infeasible
in the second case, as each district is represented by a full ordering over the
alternatives instead of a single alternative.
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5 Geometry

Designing the shapes of districts specifically to include or exclude certain neigh-
borhoods can result in irregular shaped districts. We have seen in Figure 2 that
North Carolina consisted of 13 districts in 2012, where there was one district
with a particularly odd shape. This was proven to be indeed the result of ger-
rymandering. In this chapter we will investigate and quantify the concept of
shapes of districts. We will use this as last resource to help determine whether
gerrymandering has occurred.

5.1 Geocompactness of a District

Roughly speaking, the geocompactness of a district tells us how similar the
shape of a district is to a perfectly geocompact shape, namely a circle. Ex-
amples of reasonably geocompact shapes in R2 are ellipses and regular convex
n-gons for n large enough, e.g. n � 5. An example of a barely geocompact
shape in R2 is a regular pentagram, which is just the shape of a star. We will
quantify these shapes below. Note that (usually) the shape of a district has
non-intersecting edges, so we consider shapes that are not self-intersecting.
As mentioned in the previous chapter, gcomp(U) denotes the ratio of geocom-
pactness of a subset of VTDs U ✓ V . There are multiple ways to define this
ratio, hence multiple ways to measure the geocompactness of a district.

5.1.1 Polsby-Popper Test

The Polsby-Popper test was developed by lawyers Daniel D. Polsby and Robert
Popper [18] and is based on Theorem 3, which is called the isoperimetric in-
equality. In the proof, we make the following assumption.

Assumption 1. The straight line connecting every two points on Jordan curve
C has finitely many intersections with C, i.e.

{l(p, q) [ C : p, q 2 C} < 1,

where l(p, q) is the straight line connecting p and q.

Theorem 3. (Isoperimetric inequality.) Let C be a Jordan curve of finite
length20 that satisfies Assumption 1, L(C) be the length of C and A(C) be the
area of the interior of C. Then

4⇡A(C)

L(C)2
 1 (22)

and equality holds whenever C is a circle.
20In Chapter 2 we defined what a Jordan curve C is and that we denote the Lebesgue

measure �(int(C)) of the interior of C, int(C), by A(C).
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Proof. We will prove the slight reformulation of (22), namely A(C)  L(C)2

4⇡
with equality when C is a circle [19].
First of all, let C be a circle. Then C has a radius R(C) and we know that
the circumference L(C) is equal to 2⇡R(C) and the area A(C) enclosed by C is
equal to ⇡R(C)2. Then

A(C) = ⇡R(C)2 =
4⇡2

R(C)2

4⇡
=

L(C)2

4⇡
,

so equality holds.
We will now prove that, for any closed curve C with length L(C), the closed
curve with maximum area is the circle C

⇤ with circumference L(C⇤) = L(C).
Then

A(C)  A(C⇤) =
L(C⇤)2

4⇡
=

L(C)2

4⇡
for any such C and Theorem 3 is proved.

Lemma 7. C
⇤ = argsup

C:L(C)=L

A(C) is a circle with circumference L.

Proof. This will be proven on the basis of three small claims. Let A
⇤ =

sup
C:L(C)=L

A(C) be the area of the interior of C⇤ = argsup
C:L(C)=L

A(C).

Claim 1. int(C⇤) is convex.

Proof. Assume int(C⇤) is not convex. Then there are infinitely many pairs of
points p and q on C

⇤ such that the straight line l(p, q) connecting p and q

belongs to R2\int(C⇤) (see Figure 7).

Figure 7: Example of a non-convex C
⇤.

Pick such a pair p and q such that the piece of the curve C
⇤ connecting p and

q, C⇤(p, q), reflected with respect to l(p, q) creates another curve Ĉ that does
not intersect C⇤ itself (this is possible by Assumption 1). Note that Ĉ also has
a length of L. But then

A(Ĉ) > A(C⇤) = A
⇤ = sup

C:L(C)=L

A(C).
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Claim 2. int(C⇤) can be divided into two equally sized parts with equal perime-
ters.

Proof. Pick an arbitrary point p on C
⇤. Now let q be the (unique) point on C

⇤

such that C
⇤ is bisected into C

⇤
1 and C

⇤
2 , where C

⇤
1 is a path over C

⇤ from p

to q and C
⇤
2 is the other path over C⇤ from q to p, and L(C⇤

1 ) = L(C⇤
2 ). Since

L(C⇤
1 )+L(C⇤

2 ) = L(C⇤) = L, we know that L(C⇤
1 ) = L(C⇤

2 ) =
L

2 . Let l(p, q) be
the straight line connecting p and q. Notice that l(p, q) is contained in int(C⇤)
by the convexity of int(C⇤). We obtain two new areas A⇤

1 and A
⇤
2, where A

⇤
i
is

the area of the interior of the closed (Jordan) curve C
⇤
i
� l(p, q), for i = 1, 2,

and � denotes the concatenation of two connected curves.

Figure 8: Bisection of int(C⇤).

Then we have that A
⇤
1 + A

⇤
2 = A

⇤ with A
⇤
1 = A

⇤
2. Assume that this is not the

case, then without loss of generality A
⇤
1 > A

⇤
2. We can then reflect C

⇤
1 with

respect to l(p, q), call the resulting curve Ĉ1. C
⇤
1 � Ĉ1 is then a closed curve

with length L and the area Â enclosed by C
⇤
1 � Ĉ1 is 2A⇤

1. But then

Â = 2A⇤
1 > A

⇤
1 +A

⇤
2 = A

⇤ = sup
C:L(C)=L

A(C),

so this can not happen.

A semicircle is a closed shape consisting of half a circle and a diameter of that
circle.

Claim 3. C
⇤
1 and C

⇤
2 as defined in the proof of Claim 2 are semicircles.

Proof. A
⇤
1 = A

⇤
2 by Claim 2, so without loss of generality we will prove that C⇤

1

is a semi-circle. Assume therefore that C⇤
1 is not a semi-circle. Then according

to Thales Theorem there is a point r on C
⇤ such that the angle 6 prq, with p and

q as in the proof of Claim 2, is not 90�. We fix the lengths of l(q, r) and l(p, r),
but allow 6 prq to change, thereby changing l(p, q) too, in order to maximise the
area of 4pqr. By doing this, the length L(C⇤

1 ) stays the same, but the area of
4pqr changes. But area(4pqr) = 1

2⇥ length(l(p, r))⇥ length(l(q, r))⇥sin( 6 prq)
is maximised for 6 pqr = 90�, contradicting our assumption of allowing 6 pqr to
change in order to maximise the area of 4pqr. So C

⇤
1 is a semi-circle.
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By Claim 3, C⇤ is a circle with circumference L(C⇤
1 ) + L(C⇤

2 ) = L

2 + L

2 = L,
proving Lemma 7.

Definition 16. Let di be a district. Then the Polsby-Popper score of di is

PP (di) =
4⇡A(di)

L(di)2
,

where A(di) is the area of district di and L(di) is the perimeter of district di.21

If we regard the border of a district as a Jordan curve, then the district itself
is the interior of the Jordan curve. By the area of the district and perimeter of
the border being non-negative and by Theorem 3 we have that PP (di) 2 [0, 1].
This score is a ratio and tells us how geocompact district di is: a score close to
1 (looks like the shape of a circle) means that di is a geocompact district and a
score close to 0 (large perimeter, small area) means that di is not a geocompact
district. The higher the score, the more the shape looks like a circle and the
more geocompact the district is.

5.1.2 Reock Test

Another way to measure geocompactness of a district is to compare the area of
the district to the area of the smallest circle containing that district. Denote by
S
i

C
the set of circles in R2 containing district di and C

i

min
= argmin

C2S
i
C

A(C) is the

smallest circle containing di. In Appendix A will be proven that C
i

min
indeed

exists.

Definition 17. Let di be a district. Then the Reock score [20] of di is

Reock(di) =
A(di)

A(Ci

min
)
,

where A(di) is the area of district di and A(Ci

min
) is the area of Ci

min
.

Of course, A(Ci

min
) � A(di), so Reock(di) 2 [0, 1] and is a ratio denoting

geocompactness of district di as well. A score close to 1 means that the smallest
circle containing di is approximately as large as di itself, hence that implies
that di is a geocompact district. A score close to 0 indicates a less geocompact
district.

21The interpretation of PP (C) is the ratio between the area and the perimeter of C. L(C)
is squared to compare with the two-dimensional notion of area A(C). 4⇡ is a normalization
such that PP (C) = 1 for a circle C.
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5.1.3 Reverse Reock Test

The method applied for the Reock test can be naturally reversed to create
another method for measuring the geocompactness of a district. Instead of
comparing the area of a district to the area of the smallest circle containing
that district, one can compare it to area of the largest circle contained in that
district. Denote by S

C

i
the set of circles in R2 contained in district di (note

that this is di↵erent from S
i

C
) and C

i

max
= argmax

C2S
C
i

A(C) is the largest circle

contained in di. In Appendix B will be proven that Ci

max
indeed exists.

Definition 18. Let di be a district. Then the Reverse Reock score of di is

RR(di) =
A(Ci

max
)

A(di)
,

where A(di) is the area of district di and A(Ci

max
) is the area of Ci

max
.

Since A(di) � A(Ci

max
), RR(di) 2 [0, 1] and analogously to Definitions 16 and

17, it is a ratio denoting geocompactness of district di.

5.1.4 Examples of the Three Tests

Example 10. Let the Jordan curve C be an ellipse with width 2a and height
2b (see Figure 9). If the ellipse is centered at the origin, then we have

C = {(x, y) 2 R2 :
x
2

a2
+

y
2

b2
= 1}. (23)

The area of the interior of C, which we denote by A(C), can be found formally,
but can also be deduced informally from the area of a circle. A circle with radius
b has area ⇡b

2, if we scale this by a factor a

b
in the direction of the x-axis, we

get ellipse C, hence the area is A(C) = ⇡b
2 a

b
= ⇡ab. The perimeter L(C) of the

ellipse, or in this case the circumference of C, has a slightly more complicated
formula and we will give this without deduction:

L(C) = 4a

Z ⇡
2

0

p
1� e2 sin(✓)d✓

where e =
q

1� b2

a2 is the eccentricity of C, assuming a > b, that measures the

elongation of the ellipse. Then

PP (di) =
4⇡A(di)

L(di)2
=

4⇡2
ab

16a2[
R ⇡

2

0

p
1� e2 sin(✓)d✓]2

,

if di is a district with the shape of the ellipse given by Equation 23. When
a = b, the ellipse described in Equation 23 is a circle, and indeed PP (di) = 1.
Take now, for example, the values a = 4 and b = 2 (the unit of these distances
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can be regarded as kilometers or miles in the context of real world districts).
Then a district di with the shape of an ellipse with the above values has area and
perimeter A(di) = 8⇡ and L(di) ⇡ 19.38, respectively. So the Polsby-Popper
score of di is

PP (di) ⇡
32⇡2

(19.38)2
⇡ 0.84,

which is reasonably close to 1.

Figure 9: Smallest circle outside and largest circle contained in an ellipse.

The smallest circle containing an ellipse given by Equation 23 is the circle with
radius max{a, b} also centered at the origin. If di is a district with the shape of
the ellipse given by Equation 23, then the Reock score of di is

Reock(di) =
A(di)

A(Ci

min
)
=

⇡ab

⇡max{a, b}2 =
min{a, b}
max{a, b}

In case a = 4 and b = 2, we have Reock(di) =
1
2 .

Conversely, the biggest circle contained in the ellipse given by Equation 23 is
the circle with radius min{a, b} also centered at the origin. If di is a district
with the shape of the ellipse given by Equation 23, then the Reverse Reock score
of di is

RR(di) =
A(Ci

max
)

A(di)
=

⇡min{a, b}2

⇡ab
=

min{a, b}
max{a, b} .

We see that in the case of an ellipse, the Reock and Reverse Reock scores
coincide. In case a = 4 and b = 2, we have RR(di) =

1
2 .

Example 11. Let the Jordan curve C be a concave decagon in the shape of a
star, i.e. a regular pentagram. All the metric properties of the star, including the

54



area of the interior and perimeter of C, can be deduced from the single parameter
a, which is the distance between the two points D and F (see Figure 10).

Figure 10: Smallest circle outside and largest circle contained in a star.

The area of the interior of a regular pentagram with parameter a can be found
as follows

A(C) = A(regular pentagon) + 5⇥A(4DEF )

The area of a regular pentagon with side length a is 5a2/(4 tan(36)). Using
some elementary geometric computations, it can be shown that b, the length
from E to F, is also the length from F to G. According to Ptolemy’s Theorem, a
and b are in the golden ratio, which means that b/a = ', where ' = (1+

p
5)/2

is the golden ratio. The area of 4DEF is twice the area of 4DEH, where H
is the midpoint of line DF, see Figure 11.

Figure 11: 4DEH

Using the Pythagorean Theorem and using b = a(1 +
p
5)/2, we find that EH
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has length 1
2a

q
(1 +

p
5)2 � 1. Therefore,

A(4DEF ) = 2A(4DEH) = 2(
1

2
DH ⇥ EH)

=
1

2
a⇥ 1

2
a

q
(1 +

p
5)2 � 1 =

1

4
a
2
q

(1 +
p
5)2 � 1,

where the second equality follows from Herons formula for the computation of
the area of a triangle. Hence, the area of the interior of C is

A(C) =
5a2

4 tan(36)
+

5

4
a
2
q

(1 +
p
5)2 � 1.

Further, since L(C) equals ten times the length of EF, we get L(C) = 10b =
5(1 +

p
5)a.

A district di with the shape of a star C with parameter a = 5 has area and
perimeter A(di) ⇡ 139.19 and L(di) ⇡ 80.9, respectively. So the Polsby-Popper
score of di is

PP (di) =
4⇡A(di)

L(di)2
⇡ 556⇡

(80.9)2
⇡ 0.27, (24)

which is much closer to 0 than to 1.
Writing out the exact formula of the Polsby-Popper score for any a leads us to
an important observation:

PP (di) =
5a2⇡( 1

tan(36) +
q
(1 +

p
5)2 � 1)

(5(1 +
p
5))2a2

=
5⇡( 1

tan(36) +
q
(1 +

p
5)2 � 1)

(5(1 +
p
5))2

.

This outcome is independent of a, hence equal to the outcome in (24). We see
that the Polsby-Popper score of a star shaped district is approximately 0.27, for
any choice of a.
For convenient calculations, we first start with the computation of the Reverse
Reock score of a star-shaped district. The largest circle contained in the interior
of C is the inscribed circle of the pentagon inside the star polygon. The radius
of this circle is the apothem of the pentagon, which is the distance from the
center to the midpoint of one of its sides (see Figure 10). The formula for the
apothem ↵ of a regular pentagon with side length a is ↵ = a

2 tan(
3
10⇡). Hence,

the area of the largest circle containing C, the shape of district di, is

A(Ci

max
) = ⇡↵

2 = ⇡
a
2

4
tan(

3

10
⇡)2.

A district di with the shape of a star C has Reverse Reock score

RR(di) =
A(Ci

max
)

A(di)
=

⇡ tan( 3
10⇡)

2

5 tan(36)�1 + 5
q
(1 +

p
5)2 � 1

⇡ 0.37.
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where, again, the outcome is not dependent on the parameter a.
To compute the Reock score, we need to find the area of the smallest circle which
circumscribes the star polygon C. The circumscribing circle intersects each of
the five endpoints of the star, hence the radius is the distance from the center
point to any endpoint. The distance from the center to the top point is equal to
the apothem ↵, as described before, plus the height of the upper triangle. This

height is equal to the length EH as found before and equals a

2

q
(1 +

p
5)2 � 1.

Thus the area of the smallest circle with C contained in, where C is the shape
of district di, is

A(Ci

min
) = ⇡(

a

2
tan(

3

10
⇡) +

a

2

q
(1 +

p
5)2 � 1)2.

A district di with the shape of a star C has Reock score

Reock(di) =
A(di)

A(Ci

min
)
=

5 tan(36)�1 + 5
q
(1 +

p
5)2 � 1

⇡(tan( 3
10⇡) +

q
(1 +

p
5)2 � 1)2

⇡ 0.26.

An important result is that, for any parameter a > 0, the Polsby-Popper,
Reock and Reverse Reock scores are constants. This is not the case for ellipse
shaped districts, see Example 10. We will investigate the dependency on a
single parameter, when the shape is defined by two parameters, in the following
example.

Example 12. Let the Jordan curve C be a rectangle with height a and width
b.22 We will find out what happens when we keep the height fixed and vary
the width of the rectangle. The area of this rectangle is A(C) = ab and the
length of C is L(C) = 2(a+ b). A district di with the shape of a rectangle with
parameters a and b has Polsby-Popper score

PP (di) =
4⇡A(di)

L(di)2
=

4⇡ab

(2(a+ b))2
=

⇡ab

(a+ b)2
.

The smallest circle containing a rectangle with parameters a and b has radius
equal to the distance from the midpoint of the rectangle to one of the four
corners. More formally, the radius r is d(M,Hi), where M is the midpoint and
Hi is the i-th corner of the rectangle, for i = 1, 2, 3, 4 (see Figure 12).

22The original notions for the measurements of a rectangle are length and width. However,
this can cause ambiguity between this length and the length of the perimeter, so we will use
height and width just like for the ellipse in Example 1.
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Figure 12: Smallest circle outside and largest circle contained in a rectangle.

This distance is equal to
q

a2

4 + b2

4 . Hence, the area of the smallest circle that

contains district di, where di has the shape of rectangle C, is

A(Ci

min
) = ⇡r

2 = ⇡
a
2 + b

2

4
.

Therefore, district di has Reock score

Reock(di) =
A(di)

A(Ci

min
)
=

ab

⇡
a2+b2

4

=
4ab

⇡(a2 + b2)
.

Conversely, the biggest circle contained in such a rectangle has radius equal to
1
2 min{a, b}, see Figure 12. Hence, the area of the largest circle that is contained
in district di is A(Ci

max
) = ⇡

4 min{a, b}2. Therefore, district di has a Reverse
Reock score of

RR(di) =
A(Ci

max
)

A(di)
=

⇡

4 min{a, b}2

ab
=

⇡

4
⇥

(
b

a
, if b  a

a

b
, if b > a

.

As mentioned in the begin of this example, we want to find out how the di↵erent
scores behave for a di↵erent parameter.
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The above plot showcases this for a rectangle with fixed height a = 5 and varying
width b. We immediately see that all scores have a maximum for b = 5. This
makes sense intuitively, the rectangle with the best geocompact shape is the
square (a = b). All three scores have di↵erent ways of attending the maximum
b = 5. The kink we observe in the green line is caused by the di↵erence in the
RR score for b  a and b > a. By comparing the red and blue line, we see that
C always has a higher Polsby-Popper score than the Reock score (this will be
the case for all realisations of a, hence for all rectangles). Another observation
is that the Polsby-Popper score and Reverse Reock score coincide at b = 5. A
square thus always has the same PP and RR score and this score is relatively
high (in this case ⇡/4 ⇡ 0.79).

Example 13. This example includes no calculations, but indicates the impor-
tance of using di↵erent measures for geocompactness of a district with an odd
or irregular shape. Consider a district which is shaped as a circle, but with a
long, narrow cove in each “side”, such that it is similar to the shape of a clover,
see Figure 13.

Figure 13: Clover-like shape.
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The Reock score is then close to 1, as those coves themselves do not have a
large area and the di↵erence between the area of the district and the smallest
circumscribing circle is the total area of the four coves. However, the Reverse
Reock score is rather low, as there are five possible locations for the largest
circle contained in the district: either in one of the four “leafs” of the shape or
right in the middle. The area of this circle is significantly smaller than the area
of the district itself, therefore having a small Reverse Reock score.
Conversely, consider a district that is shaped as a circle, but now has long,
narrow protrusions on each “side”. By similar arguments, it follows that the
Reverse Reock score is close to 1 and the Reock score is small and this will be
smaller for longer protrusions.

5.1.5 The Weighted Average Test

In the figure in Example 12 it is shown that the three scores behave quite dif-
ferently for the rectangle. In Example 11, the scores were all constant, but the
three scores di↵ered from each other. In Example 10, for specific choice of the
parameters a and b, the Polsby-Popper score of an ellipse shaped district is quite
large, while the Reock and Reverse Reock scores are both exactly a half. The dif-
ferent outcomes between these tests indicate that it is, in most instances, quite
important to consider all three scores when constructing a statement or conjec-
ture about the geocompactness of a district. Especially Example 13 showcases
this, as the Reock score and Reverse Reock score di↵er very much for those two
particular shapes. However, those three tests have the following desired prop-
erty in common: they are typically low for non-geocompact shapes (for example
a star shape) and typically high for geocompact shapes (for example an ellipse
or a rectangle with the right parameters). That is why it may be useful to
define the following score when we can only consider one score, i.e. one choice
for gcomp(di) (as is the case in the algorithm in the previous chapter).

Definition 19. Let di be a district. Then the Weighted Average Geocompact-
ness score of di is

WAG(di) =
1

3
(PP (di) +Reock(di) +RR(di)),

where PP (di), Reock(di) and RR(di) are the Polsby-Popper score, Reock score
and Reverse Reock score of di respectively.

The WAG score serves as an average of the three aforementioned geocom-
pactness scores and has therefore the desired property explained before: the
score will be higher for a more geocompact district. We also still have that
WAG(di) 2 [0, 1] and WAG(di) = 1 if and only if di has the shape of a cir-
cle. As mentioned in the previous chapter, we will regard a district di as a
geocompact district when WAG(di) � C for a suitable C 2 (0, 1). The geocom-
pactness of a district will be the last measure of gerrymandering detection we
will discuss. The key concept behind this is that a district with a “normally
structured” shape should be geocompact and a district with a shape created as
a result from gerrymandering is typically not geocompact.
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5.1.6 Regional Score of Geocompactness

We have found several ways to quantify the measure of geocompactness for each
congressional district, after the districts are drawn according to a Census. After
fixing a geocompactness score and fixing a suitable C 2 (0, 1), each district is
classified as geocompact or non-geocompact. It is still disputable how many
non-geocompact districts need to be located in a certain nation or region, so
that it might suggest that gerrymandering has taken place in that region. A
possible way to infer that partisan gerrymandering has been taken place in a
certain region, would be to give the region as a whole a geocompactness score.
Therefore, we might take the average of the geocompactness scores of all the
districts in that region. More mathematically, if D is the region in dispute,
consisting of districts d1, . . . , dS , then the geocompactness score of region D is

gcomp(D) =
1

S

SX

i=1

gcomp(di), (25)

where gcomp(di) is the geocompactness score in consideration of district di,
quite possibly the WAG score. The region D would then be a geocompact region
if and only if gcomp(D) � Ĉ, in which Ĉ 2 (0, 1) and can be chosen equal to C.
Although this is an average and hence takes into account the geocompactness
score of each relevant district, this number may not be as representative as
it sounds. If gcomp(D) is (slightly) above Ĉ, it might still be the case that
there is one or more district with a very low geocompactness score, but enough
geocompact districts to elevate the average above the threshold. However, those
districts with a very low score are probably the ones that are constructed by
gerrymandering (keep in mind that this will not always be the case). Hence, it
may be more meaningful to consider the district with the lowest geocompactness
score and associate the geocompactness of the region with this score. More
mathematically, if D = {d1, . . . , dS}, then the geocompactness of region D is

gcomp(D) = min
i=1,...,S

gcomp(di). (26)

The region D would again be called a geocompact region if gcomp(D) � Ĉ for
a suitable Ĉ 2 (0, 1). When Ĉ is chosen equal to C, this means that a region
D is geocompact if and only if all the districts in D are geocompact. Hence,
by violation of one of the districts, we would consider that region as not being
geocompact. Therefore, it is useful to pick a low value for C, as usually very
“weird-looking” districts are non-geocompact and can make the whole region
look suspicious. For example, in Figure 14 the American state Pennsylvania is
depicted that consists of 18 congressional districts, where these districts were
drawn according to the 2010 Census [21]. This redistricting was valid from 2011
to 2018. The districts di↵er in size because of the equal population regulation:
even though district 5 is much larger than district 2, they have roughly the
same population count, because district 2 is much more densely populated than
district 5 (mainly because of the big city Philadelphia located in district 2, with
currently over 1.5 million inhabitants).
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Figure 14: The 18 congressional districts of Pennsylvania

It is immediately visible that none of these districts have a geocompactness score
of close to 1. This indicates that a relatively low choice for C, e.g. C = 0.1, is
not ruled out. However, by a quick scan one could conclude that by far the most
“interestingly shaped” district is district 7, at the bottom right. The shape is
similar to a cartoon in which Goofy kicks Scrooge McDuck23 at the buttocks,
such a description alone would make for a suspiciously shaped district. Hence,
a strategic choice for defining the geocompactness of a region would be the
definition in (26) with C = Ĉ relatively low.

23Goofy and Scrooge McDuck are both fictional characters that live in the cartoonish town
Duckburg, known by the famous cartoon Donald Duck.
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Part II

Prevention
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6 Prevention by Voting System

Part II of this thesis discusses two ways that aid in preventing gerrymandering
in the future. In this chapter we will look at the benefits of adapting a voting
system other than the plurality rule. In Part I we have generalized a few notions
to more voting systems, here we will discuss a few of them and their ability to
help prevention of gerrymandering.

6.1 Changing the Voting System

If a party can somehow predict the preferences of certain demographic groups,
such as political, ethnic or religious groups, it is relatively easy to establish a
political advantage by manipulating district boundaries. Gerrymandering oc-
curs when this manipulation of the district boundaries can actually be realised.
One of the possible strategies for gerrymandering prevention is a nationwide
change in the electoral system that has been applied to select a winning party.
The voting system for two or more alternatives, that we have mainly assumed
to be the one applied, is the plurality rule. Applying other voting rules makes it
harder to predict the voting behaviour of certain groups, certainly when requir-
ing each voter to fill in a whole ballot instead of only picking a favourite party
(as is the case for the plurality rule). Therefore, in this section we will consider
a number of other voting rules and look at the trade-o↵ between e↵ectiveness
and applicability. By e↵ectiveness we mean the extent to which the voting rule
a↵ects potential gerrymandering. By applicability we mean the possibility to
apply the voting rule in the nation for the election in dispute and whether this
is realistic to implement.
We will still assume that a nation consists of di↵erent districts. Each district still
gives rise to a single winning party. These are called single-member districts.
The voting rule decides which party wins in each district, hence we are only
considering resolute voting rules24. A district still consists of multiple VTD’s.
In some simple cases each VTD is just a voter.

6.1.1 Borda Rule

This voting rule probably needs no introduction by now, but here is still a quick
recap of how it works. Assuming there are m parties, each voter gives m � 1
points to the party she ranks first, m� 2 points to the party she ranks second,
and so on. The party with the most points wins.
The most notable di↵erence with the plurality rule is, that voters need to de-
clare a whole ranked ballot in which they rank all parties instead of picking
one party. This serves as an advantage for e↵ectiveness, but a disadvantage for
applicability. The former will be clarified later. The impracticalities from using
this voting system are especially present, when there is a large amount of par-
ties to choose from. Declaring an ordering over all parties requires much more

24Again, when a voting rule is naturally irresolute, use random tie breaking.
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work than picking one favourite and this will likely a↵ect the voter turnout, the
amount of people who turn up to vote, in a negative way. Implementing the
Borda rule has some nice properties, besides gerrymandering reduction, from a
social choice theoretic point of view. Each ranked ballot represents the voters
true preferences better than picking only their favourite, as most voters already
implicitly have a partial linear ordering over the parties.25 For example, most
opinionated voters have a favourite party (or more), but also one or more least
favourite parties. Those are mostly the parties with opinions opposite to their
favourite party. This can be expressed in a ranked ballot by ordering their
least favourite at the bottom of their ranking and their most favourite ones at
the top. It is still a debate whether those advantages, possible gerrymandering
reduction and better representation of voters’ opinions, are worth the di�cul-
ties of declaring much more advanced ballots. When there are, for instance,
approximately 15 political parties and each of these parties has at average 20
representatives, it is already infeasible to construct a full linear ordering over all
representatives. This is the case for the second parliamentary elections (“tweede
kamerverkiezingen” in Dutch) in the Netherlands [22]. See Figure 15.

Figure 15: Voting list for the second parliamentary elections in the Netherlands
on March 15, 2017.

To see why this is an advantage regarding e↵ectiveness, notice that it is harder
for parties to predict the voting behaviour of certain demographic groups now.
Predicting the favourite party of a demographic group can be slightly problem-
atic by itself, but predicting the preference of an ordering of a certain demo-
graphic group is of course a more di�cult task. We will come back to this in
more detail.

25Assuming the voter is truthful, i.e. the ballot a voter reports coincides with her actual
preference order. In some cases, the voter has a incentive to misrepresent her preferences, this
is called strategic voting.
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6.1.2 Two-Round Rule

The two-round rule, also called runo↵ voting, is a voting rule for two or more
alternatives which requires, as the name suggests, two voting rounds for a single
election. In the first round, each voter votes for one alternative (hence, they do
not declare a ranked ballot, but a single vote). If after this round, there is an
alternative with the majority of votes, this alternative is the winner. Otherwise,
in the second round, each voter votes for one of the two top alternatives as a
result from the first round. The second round is a simple majority contest
between two alternatives, hence the winner is the alternative that receives the
most votes in this contest. It is commonly used to select a president, for example
in France, or to select a mayor, for example in Italy [23]. It may be the case
that the top alternative from the first round loses from the second most voted
alternative, see Example 14.

Example 14. Suppose a small village decides to select a mayor by running
a two-round rule among the candidates Anderson, Bennett and Charles. The
450 voters vote in the first round as follows: 200 voters pick Anderson, 150
voters pick Bennett and the remaining 100 voters pick Charles. Anderson has
most votes, but not an absolute majority (which would be over 225 votes), so
we require a second round. This is a majority contest between Anderson and
Bennett. Of course the Anderson voters and Bennett voters will not change their
vote, but the Charles voters need to alter their vote. Say, 90 of these voters
prefer Bennett and the remaining 10 prefer Anderson. Hence, in the second
round, 210 voters pick Anderson and 240 voters pick Bennett, thus electing
Bennett as the mayor of the village. Such a 90/10 split seems odd, but it could
be the case that Charles and Bennett have similar opinions or characteristics,
so that Charles voters prefer voting for Bennett instead of for Anderson.
Note, that this two-round system involves at most two rounds (a single round
in the case that in the first round an alternative has an absolute majority). But
it can also be done in one round by requiring each voter to declare a full ranked
ballot. Here, the following ballots will imply the same winner, with a second
round being held implicitly.

• Anderson � Bennett � Charles (120⇥)

• Anderson � Charles � Bennett (80⇥)

• Bennett � Anderson � Charles (65⇥)

• Bennett � Charles � Anderson (85⇥)

• Charles � Anderson � Bennett (10⇥)

• Charles � Bennett � Anderson (90⇥)

It follows that Anderson and Bennett will make it to the second round. Also
the result of the second round can be implied by these ballots, as we see that
10 Charles voters pick Anderson as second favourite mayor (ballot 5) and 90
Charles voters pick Bennett (ballot 6).
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The following important observation thus follows from Example 14: declaring
full ranked ballots will ensure that only one round is required in order to have the
same result as holding two rounds. However, in practice, the two-round system
with actually two rounds is preferred, certainly when considering a large amount
of alternatives. The reasoning is the same as for the Borda rule: constructing
ranked ballots is much more advanced than picking a favourite alternative, even
when picking a favourite must be done twice. Therefore, the two-round ap-
proach is even more desirable in practice than the Borda rule.
Also, it is more e↵ective for gerrymandering prevention compared to the plu-
rality rule, as predicting the voting behaviour becomes harder: the two winners
from the first round can be predicted, however this is more di�cult than predict-
ing only the most voted alternative, but predicting the outcome of the second
round will be harder. This may be easier to predict than the Borda rule, as the
Borda rule requires all information from a ballot and this rule does not. As
in Example 14, it does not utilize the fact that from the 200 Anderson voters,
120 prefer Bennett and 80 prefer Charles. This property is also desirable from
the same social choice theoretic point of view as explained before, as the Borda
rule utilizes all information from a declared ballot. Therefore, it represents the
opinions better and also takes into account every party in a ballot, whereas this
rule does not. See the following table for a comparison of di↵erent properties
from the plurality rule, Borda rule and the two-round system.

Property Plurality rule Two-round sys-
tem

Borda rule

Utilization Uses very little
information

Uses partial in-
formation

Uses all infor-
mation

E↵ectiveness Not very e↵ec-
tive

More e↵ective Most e↵ective

Applicability Very easy to im-
plement

Not di�cult to
implement

Di�cult to im-
plement

Table 2: Comparison of voting rules.

Hence, the choice of the voting rule to apply is a trade-o↵ between utilization
of information from ballots, e↵ectiveness for gerrymandering prevention and
applicability in the nation. However, there are more voting rules to consider.

6.1.3 Cumulative and Preference Voting

In cumulative voting, also called range voting, each voter divides a fixed amount
of points among all alternatives. For instance, when a voter gets 100 points
to assign and there are five alternatives, she can assign all 100 points to her
favourite alternative or spread those points more uniformly, respecting a certain
(partial) ordering over the alternatives. A fully uniform division, 20 points to
each alternative, can also be submitted by an indi↵erent voter, but this does
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not have any influence on the outcome. This method gives each voter usually
more “freedom” than the plurality rule or even the Borda rule. That is, if the
number of points to be assigned is large enough. If there are m alternatives, the
number of points needs to be at least 2 to be more flexible than the plurality
rule and at least

�
m

2

�
to be more flexible than the Borda rule. This is because

(m�1)+(m�2)+ . . .+1 =
�
m

2

�
is the total number of points assigned to parties

from each ballot by using the Borda rule. This method is commonly used to
select multiple winners. However, since we work with single-member districts,
the district winner can be chosen as the alternative that receives most points.
Preference voting, also called single transferable voting, is a voting rule for two
or more alternatives that requires a series of rounds. Each voter submits a
ranked ballot, but only for as many candidates as she wishes. E.g., out of a
total of 8 candidates, she may only select 4, see Figure 16 [24].

Figure 16: Voting list for the Scottish elections in 2007 using the STV system.

Let T be the number of voters. The preference voting algorithm is as follows:

1. The alternative that has at least bT

2 c+1 votes26 is the winner. If there is
no such alternative, go to step 2.

2. The alternative with the fewest votes is eliminated. A vote for this losing
alternative is allocated to the next choice on the ballot (that has not
been eliminated). If there is no next choice, the vote is lost. If only one
alternative is left, this is the winner. Otherwise, go to step 1.

The number bT

2 c + 1 is called the Droop quota. Clearly, there can be at most
one alternative with at least bT

2 c+ 1 votes.

26The number of votes is the number of first-choice votes plus the number of votes that are
allocated from eliminated alternatives in step 2.
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The STV system is mainly used in multi-member districts, i.e. it is mainly
used to select a team of representatives instead of only one representative [25].
The description above only applies to one winning alternative. This can be
modified to any number of winning alternatives, say k, by iterating as many
rounds as necessary to elect k alternatives that exceed the Droop quota or are
remaining. Whenever an alternative exceeds the Droop quota and is elected, the
excess votes (the number of votes they receive above the quota) are reassigned
to other alternatives in a proportional way based on their next votes. However,
in this case

Droop quota = b T

k + 1
c+ 1,

where T is the total number of voters and k the number of seats/winners. In
the case of single-member districts, this reduces to bT

2 c+1, as in the algorithm.

Example 15. The set of parties is P = {A,B,C,D}. There is a total of 100
voters that declare the following ballots:

• A � B � D (6⇥)

• A � C (11⇥)

• A � C � D (2⇥)

• B � A (15⇥)

• B � C � A � D (15⇥)

• C (6⇥)

• C � B � A (20⇥)

• D � A � C (8⇥)

• D � B (16⇥)

• A (1⇥)

The Droop quota is 51 votes. No party has at least 51 first-choice votes, so
there is no direct winner in round 1. In round 2 we eliminate A, as this party
has the fewest first-choice votes with a total of 20. Then, 6 of these votes go to
party B, 13 go to party C and one vote gets lost, which brings B and C at a
total of 36 and 39 votes, respectively. In round 3, party D is eliminated with a
total of 24 votes. Party B gets 16 of these votes and party C the remaining 8.
In round 4, party B and C have a total of 52 and 47 votes respectively. Party
B is the winning party, as 52 votes exceeds the Droop quota.

Evaluation. We will discuss some pros and cons of preference voting and cu-
mulative voting.
1. Minority vote dilution. In his article [26], Steven J. Mulroy proposed
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these two voting systems as a remedy for minority vote dilution, which is closely
related to racial gerrymandering. Minority vote dilution occurs when, in the
current electoral system used, no minority group has any real influence in the
electoral outcome. Think of a racial or ethnic group forming a minority of the
total population, e.g. blacks or Mexicans living in the United States. By gerry-
mandering the districts in such a way that a certain demographic group forms
a minority in any district, the voting behaviour of that group can be expelled
in those districts, if a voting rule is being used that allows for this. However,
minority vote dilution is mainly an issue in multi-member districts, where there
are multiple winning alternatives. By any real influence we mean then the abil-
ity to assure the election of at least one winner.
The threshold of exclusion is defined to be the minimum percentage a minority
group needs to be in order to have any real influence. For preference voting
and cumulative voting, the threshold of exclusion is 1

k+1 , where k is the number
of alternatives to be elected [26]. E.g., when preference voting or cumulative
voting is used in a district where they want to select a committee of 5 alterna-
tives, a politically cohesive group needs to consist of at least 17% of the district
population to have the ability to elect one candidate in the committee. When
k = 1, as is the case in single-member districts, the threshold of exclusion is 1

2 .
In other words, only a majority has the ability to select the winning alternative
and hence regulate the whole outcome. This is not the case for the Borda rule
for example, where a minority (which is still a relatively large minority, such
as 40%) can counteract the voting behavior of a majority (which is a not too
large majority, such as 60%). To see this, let n = 100 and P = {A,B,C}. 60
voters (i.e. 60%) vote as follows: A � B � C, so party A is expected to win the
election. However, when the remaining 40 voters (i.e. 40%) have the preferences
B � C � A, party A will get 120 points and party B 140. Hence, party B wins.
Furthermore, the article by Mulroy mentions a few other advantages of prefer-
ence voting and cumulative voting.
2. Implementation and flexibility. Firstly, as opposed to the Borda rule
where each voter has to declare a full ordering over all alternatives, here each
voter declares a less advanced ballot. For cumulative voting, each voter can
construct a ballot as advanced or as simple as she wishes. This is also the case
for preference voting, although a linear ordering over the selected alternatives
is required, as opposed to cumulative voting. Intuitively, the simpler the con-
struction of a ballot, the less flexibility and freedom a voter has to express her
preferences. The rationale behind this, is that giving more information on a bal-
lot allows for better representing your opinion. However, for these two systems
each voter can decide how much information she gives, giving her even more
freedom at constructing a ballot. Cumulative voting has a strong appeal in this
case; it provides voters the flexibility to express the intensity of their preferences
by regulating the number of points one can give to each alternative. Preference
voting in some sense has the same advantage, as it lets one pick alternatives
for ranking, however with less flexibility than in cumulative voting. Although
preference voting might sound complicated at first sight, each voter only needs
to know how to fill in such a ballot, as in Figure 16. Both systems are thus
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not problematic to implement and still gives the voter enough flexibility and
freedom.
3. Strategic voting. An advantage of preference voting only is that filling in
your true preferences is also strategically the smartest thing to do, i.e. no voter
has an incentive to misrepresent her preferences [27]. For cumulative voting,
strategic voting can be eliminated by adapting the rule as follows: each voter
marks one or more alternatives and each marked alternative gets an equal share
of the total number of points given. E.g., when 100 points are to be distributed
and a voter marks 5 alternatives, each alternative receives 20 points. This may
result in a non-integer amount of points cast to an alternative, but this does
not need to be problematic. This method is called equal and even cumulative
voting.
4. Reduction of wasted votes. Another important advantage of these two
systems is that they are designed to reduce wasted votes [27]. Initially, they
are designed for multi-member districts, where the reduction of wasted votes is
even “better” than for single-member districts. This is because these two vot-
ing systems ensure a more “proportional” representation, meaning that if n%
of the voters support a set of candidates, then roughly n% of the committee
(candidates to be elected) will consist of these candidates. For most voting sys-
tems, including plurality and Borda, a vote cast for an alternative that is less
well-known or non-mainstream is one less vote available for a more electable
candidate and can be interpreted as a wasted vote. In preference voting, the
voter can also vote for such a long-shot candidate, while the rest of the ballot
stays invariant, and thus support this candidate. Whenever this candidate is
not elected, which is to be expected, this vote is less wasted in a sense. The
same holds for equal and even cumulative voting.
5. Less predictability. Lastly, one can argue that, by implementing either
of these two systems, it makes it harder to predict the voting behaviour than
for the plurality rule. As mentioned before, cumulative voting gives each voter
almost a maximum amount of flexibility, certainly when the number of points to
be assigned is very large. Preference voting requires multiple rounds and ballots
where the amount of votes to be assigned is not fixed beforehand and can be
di↵erent per person. It is disputable whether these systems make it harder to
predict the voting behaviour than for, e.g., the Borda rule or the two-round
rule. In the next subsection we give a more formal discussion on this type of
predictability.

6.1.4 Predictability of Di↵erent Voting Systems

By predictability we mean the ability to predict the voting behaviour of cer-
tain (demographic) groups and therefore to predict the outcome of an election.
When using plurality rule, for example, it comes down to computing the indi-
vidual probabilities of a party to win the election when voting behaviour can be
predicted by sampling some voters from each specific, politically cohesive group
(representative sampling). We will then use the relative frequency that a group
voted for party P as the probability that a person from this group will vote for
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P in a future election.

Example 16. In a district with three electoral candidates, P = {A,B,C}, and
5 politically cohesive groups, the plurality rule is used to select a winner. By
sampling a set of voters from each group, the following results are obtained:

% 1 2 3 4 5

A 70 30 0 50 20
B 20 30 10 50 70
C 10 40 90 0 10

Table 3: Relative frequencies for each group and party.

From this we see that, e.g., 70% of the voters in the sample selection from group
1 voted for party A. When each group has roughly the same amount of voters,
an educated guess would be that party B wins the election, as it has an average
frequency of 180/5 = 36%. But what would be the actual probability that a
party wins, given the results from the sample? In what follows we strive to find
explicit bounds for this probability, when we drop the requirement that each
group has the same population count.

Let there be M politically cohesive groups and let n be the number of voters
in a district. Denote by Tg the number of voters in group g and by PP

g
the

frequency of P -voters in group g, according to the sample, where P 2 P and g 2
{1, . . . ,M}. For example, PA

1 = 0.7 in Table 3. Let XP

g
be the random variable

denoting the number of P -voters in group g. Then we have that X
P

1 , . . . , X
P

M

are independent and distributed as follows: X
P

g
⇠ B(Tg,PP

g
), where B(n, p)

is the Binomial distribution with parameters n 2 N and p 2 [0, 1]. This is
because a voter from group g votes for P with probability PP

g
. Furthermore,

P
M

g=1 X
P

g
= T

P , where T
P is the number of votes for party P in the district.

The following theorem provides a lower bound for the probability that a party
wins, using the plurality rule, in the case of two parties.

Theorem 4. When |P| = 2,

P(party P wins) �

8
<

:
0, if

P
M

g=1
Tg

n
PP

g
<

1
2

1�
QM

g=1[(1�PP
g )CP+PP

g ]Tg

(CP )
n
2

, if
P

M

g=1
Tg

n
PP

g
� 1

2

(27)

where CP =

P
M

g=1
Tg

n
PP

g

1�
P

M

g=1
Tg

n
PP
g

. (28)

72



Proof.

P(party P wins) � P(at least n

2
people vote for P )

= P(TP � n

2
)

= P(n� T
P
<

n

2
)

= P(
MX

g=1

(Tg �X
P

g
) <

n

2
)

= 1� P(
MX

g=1

(Tg �X
P

g
) � n

2
)

= 1� P(
MX

g=1

Y
P

g
� n

2
)

= 1� P(Y P � n

2
), (29)

where Y
P

g
:= Tg � X

P

g
is the number of non P -voters in group g and Y

P :=
P

M

g=1 Y
P

g
. Y

P

1 , . . . , Y
P

M
are independent and distributed as follows: Y

P

g
⇠

B(Tg, 1� PP

g
).

Chebyshev’s inequality [28] states that

P(Y � a)  E[f(Y )]

f(a)
(30)

for a random variable Y , constant a and non-decreasing and non-negative func-
tion f . We will use Equation 30 to find an upper bound for P(Y P � n

2 ), hence
a lower bound for P(party P wins). We will consider multiple options for the
function f .

Case 1: f(x)=x.

P(Y P � n

2
)  E[Y P ]

n

2

=

P
M

g=1 E[Y P

g
]

n

2

=

P
M

g=1[Tg(1� PP

g
)]

n

2

=
n�

P
M

g=1 TgPP

g

n

2

= 2(1� 1

n

MX

g=1

TgPP

g
),
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where the second equality follows because E[X] = np, when X ⇠ B(n, p).

Case 2: f(x)=x2.

P(Y P � n

2
)  E[(Y P )2]

(n2 )
2

=
Var[Y P ] + (E[Y P ])2

(n2 )
2

=

P
M

g=1 Var[Y
P

g
] + (

P
M

g=1 E[Y P

g
])2

(n2 )
2

=

P
M

g=1 TgPP

g
(1� PP

g
) + (n�

P
M

g=1 TgPP

g
)2

(n2 )
2

=
4

n2
(
MX

g=1

TgPP

g
(1� PP

g
) + (n�

MX

g=1

TgPP

g
)2),

where the first equality follows because Var[X] = E[X2] � E[X]2 for a random
variable X and the third equality follows because Var[X] = np(1 � p) when
X ⇠ B(n, p).

Case 3: f(x)=esx.

P(Y P � n

2
)  E[esY P

]

e
s
n
2

=
E[es

PM
g=1 Y

P
g ]

e
s
n
2

=

Q
M

g=1 E[e
sY

P
g ]

e
s
n
2

,

where s � 0.
Write Y

P

g
=

PTg

i=1 Ui, where

Ui =

(
1, with probability 1� PP

g

0, with probability PP

g
.

This is true, since every voter in group g votes not for P with probability 1�PP

g

(success) and votes for P with probability PP

g
(failure). We have

E[esUi ] = P(Ui = 1)⇥ e
s + P(Ui = 0)⇥ e

0

= (1� PP

g
)es + PP

g
.
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Hence,

E[esY
P
g ] =

TgY

i=1

E[esUi ]

=

TgY

i=1

[(1� PP

g
)es + PP

g
]

= [(1� PP

g
)es + PP

g
]Tg .

Thus we conclude

P(Y P � n

2
) 

Q
M

g=1[(1� PP

g
)es + PP

g
]Tg

e
sn
2

. (31)

We will be looking for the value of s that minimizes this upper bound, as a tighter
upper bound for P(Y P � n

2 ) gives a tighter lower bound for P(party P wins).
Therefore, write

hg(s) := [(1� PP

g
)es + PP

g
]Tg .

The derivative of this upper bound to s is equal to

d

ds
[
Q

M

g=1 hg(s)]e
sn
2 �

Q
M

g=1 hg(s)[
n

2 e
sn
2 ]

esn
. (32)

Using

d

ds
[
MY

g=1

hg(s)] = (
MY

g=1

hg(s))(
MX

g=1

h
0
g
(s)

hg(s)
)

and setting (32) equal to 0, we find

MX

g=1

(1� PP

g
)Tge

s

((1� PP
g
)es + PP

g
)
=

n

2
.

The latter equation for s is di�cult to solve, unless we use the simplifying
condition Tg = n

M
, PP

g
= PP for all g = 1, . . . ,M (which means that there is

only one group). Then, we infer the following

(1� PP )esn

(1� PP )es + PP
=

n

2

)2(1� PP )es = (1� PP )es + PP

)e
s =

PP

1� PP

)s = ln(
PP

1� PP
).
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The problem with this choice of s is that s < 0 whenever PP
<

1
2 . Indeed,

f(x) = e
sx, x 2 R, is decreasing for s < 0, so Chebyshev’s inequality to find an

upper bound can not be used. We fix this by defining

s
0 = max{0, s}

= max{0, ln( PP

1� PP
)}

=

(
0, if PP

<
1
2

ln( PP

1�PP ), if PP � 1
2 ,

so that s0 coincides with s on positive values.
Using this simplifying condition again, we find the following bounds for the
di↵erent choices of f :

• f(x) = x gives 2(1� PP ).

• f(x) = x
2 gives 4

n
PP (1� PP ) + 4(1� PP )2.

• f(x) = e
sx gives ( (1�PP )es+PP

e
s
2

)n.

• f(x) = e
s
0
x with s

0 = max{0, ln( PP

1�PP )} gives
(
1 if PP

<
1
2

2n(PP )
n
2 (1� PP )

n
2 if PP � 1

2

We will be looking for the function that is generally (which means for most
realizations of n) the smallest. A plot for n = 100 looks as follows
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For n = 100, the upper bound for f(x) = e
s
0
x is everywhere (except for PP = 1

2 )
lower than for f(x) = x and f(x) = x

2. This turns out to generally be the
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case, hence we will choose (31) to be the best upper bound. However, we chose

s
0 = max{0, ln( PP

1�PP )}, where each group has frequency PP . In the general case,

groups do not have the same frequency, but we can incorporate PP

1 , . . . ,PP

M
into

one “collective” PP by simply putting

PP =
MX

g=1

Tg

n
PP

g
. (33)

This coincides with PP by using the simplifying conditions and also incorporates
the number of voters, Tg, in each group g, hence using (33) for PP is still a good
choice. Hence,

P(Y P � n
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,
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and we use the PP as in (33). Equivalently,
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The result then follows from Equation 29.

Theorem 5. When |P| = m,

P(party P wins) 

8
<
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QM
g=1[PP
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PP  m� 1
(34)

where

C̃P =
1

m� 1

1�
P

M

g=1
Tg

n
PP

g

P
M

g=1
Tg

n
PP
g

.

Proof. The proof is analogous to the proof of Theorem 4.
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Example 17. We will try to find upper and lower bounds for the probability
that a party wins in the district from Example 16. In Table 3 the frequencies
are specified, but not the respective size of the groups, which are T1 = 10, T2 =
20, T3 = 20, T4 = 30 and T5 = 20, so that n = 100. According to Equation 33, we
find that PA = 0.32, PB = 0.39 and PC = 0.29. However, none of theme exceed
1
2 , such that the lower bound is 0. Of course, this lower bound does not give us
helpful information on the probability that a party wins. Nevertheless, we are

able to find some helpful upper bounds. Since 1�PA

PA = 2.125, 1�PB

PB ⇡ 1.564 and
1�PC

PC ⇡ 2.448, we can find non-trivial upper bounds for parties A and C. Since

C̃A = 1.0625, we find

P(party A wins) 
Q

M

g=1[PA

g
⇥ 1.0625 + (1� PA

g
)]Tg

(1.0625)
100
3

⇡ 0.95

and likewise we find

P(party C wins) 
Q

M

g=1[PC

g
⇥ 1.224 + (1� PC

g
)]Tg

(1.224)
100
3

⇡ 0.50

This tells us that the odds of party C winning the election, using plurality, is
not bigger than 50%.

Example 17 giving us no essential information on the lower bound of the win
probabilities is not really coincidental. Since

X

P2P
PP =

X

P2P

MX

g=1

Tg

n
PP

g

=
1

n

MX

g=1

X

P2P
TgPP

g

=
1

n

MX

g=1

Tg

X

P2P
PP

g

=
1

n

MX

g=1

Tg

=
1

n
⇥ n

= 1,

PP
>

1
2 can occur for at most one party. Also, when m > 3, it will sporadically

be the case that there is one party P with PP
>

1
2 . When there is actually such

a party, we can already expect it beforehand to have a high lower bound. This
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tells us that we typically can extract more information from the upper bounds,
as they are more often non-trivial (as Example 17 also tells us).
Since the outcome of an election in single-member districts is solely the winning
of a single party, the ability to predict the outcome of an election, given the
relative frequencies of voters for each party in each group (as in Table 16), is
proportional to the probability that the party wins that is most likely to win,
i.e.

Predictability ⇠ max
P2P

P(party P wins).

The logic behind this is that, when there is a party with a high percentage
chance of winning, the prediction that this party wins is quite likely to happen.
Gerrymandering partly comes down to the addition or deletion of groups (columns
from a frequency table as in Table 16) to a certain district to increase the
probability that a specific party wins. A straightforward “strategy” for gerry-
mandering (note that we are not talking about a strategy for gerrymandering
prevention now, as is the topic of this chapter) would be either of the following
options, when using plurality rule and striving to benefit party A in district di:

1. Replace (if possible) group g 2 di with group h /2 di if PA

h
> PA

g
.

2. Delete (if possible) group g 2 di from di if PA

g
<

1
m
.

3. Add (if possible) group g /2 di to di if PA

g
> 0.5.

Of course, these options are dealing with geographic restrictions. For example,
the first option is only possible when groups g and h are at the border of the
district, to retain connectedness and geocompactness of the district. For further
discussion on this, we refer to the chapter “Probabilistic Methods”, where we
defined a legal redistricting plan to be any redistricting of groups or VTD’s that
satisfy criteria such as contiguity and geocompactness in an appropriate way.
This strategy will indeed aid in manipulating district boundaries for a specific
cause, in this case to increase the probability of a party winning in a specific
district di. This may already be clear by intuition: including a demographic
group that frequently votes for party A, or is known to have many supporters
for party A, in a district increases the odds of party A winning in that district.
This is also clear by implementing the probability PA

g
in the equations corre-

sponding to the lower and upper bound for the probability that party A wins,
see Theorem 4 and Equation 34. By following the options above it follows that
the lower and upper bounds for P(party A wins) indeed do not decrease. Option
2 does not directly have this result, but states that a group g does certainly not
“help” in electing party A when the frequency of A-voters in that group is less
than one divided by the number of parties.
We have no proof that this strategy is indeed followed by those accused of ger-
rymandering, but implicitly this must be the train of thought when trying to
perform gerrymandering.27 In order to do this, one must have good or at least

27That is, when the goal of gerrymandering is to increase the chance for a party to win in
specific district(s).
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reasonable predictions of the relative frequencies that a party is voted on by
voters from di↵erent regions or groups, such as in Table 16. When we extend
this reasoning to the Borda rule for example, we have other (possibly more
complicated-looking) bounds for the probability that a party wins in a district,
but similar results as how to strategically perform gerrymandering. A frequency
table as in Table 16 is not su�cient as basis for decisions regarding the three
options of the aforementioned strategy plan. Rather, we need a table with more
information as in the following example.

Example 18. In the same district as in Example 16, with P = {A,B,C} and
5 politically cohesive groups, the Borda rule is now used to select a winner. By
sampling a set of voters from each group, the following results are obtained:

% 1 2 3 4 5

A � B � C 30 10 0 20 15
A � C � B 40 20 0 30 5
B � A � C 15 10 5 30 50
B � C � A 5 20 5 20 20
C � A � B 0 20 60 0 0
C � B � A 10 20 30 0 10

Table 4: Relative frequencies for each group and party.

It is easy to check that those results are consistent with the results in Table 3.

When there are |P| = m parties and M demographic groups, such a frequency
table consists of m!M entries. This is because we have to include every possible
voting ballot, of which there are m! in total. Hence, for the plurality rule it is
easier to sample, i.e. make a table with all corresponding PP

g
, than for any other

voting rule, since each other voting rule requires at least mM entries (which is
the number of entries for the plurality rule). A second observation is, that for
the plurality rule sampling is less necessary to predict frequencies. When one
has some impression of the voting behaviour of a specific group, a frequency
table as Table 3 can be predicted much easier than a table as Table 4. Of
course, sampling results in better predictions, but this is not always realisable.
All in all, we can conclude that predicting the voting behaviour and utilizing
that to benefit a specific party is easier to perform for the plurality rule than
for the Borda rule. But what if we compare the other aforementioned voting
rules?
As implicitly argued before, the number of entries in a frequency table is M

times the number of di↵erent ballots. The more di↵erent ballots are possible,
the harder it is to construct a frequency table. Even without using a frequency
table, it is still true that the number of di↵erent ballots is proportional to
the “di�culty” of predicting the voting behaviour and therefore predicting the
outcome. We therefore look at the number of di↵erent ballots for each of the
five voting rules mentioned in this chapter, in terms of the number of parties m
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(in the case of cumulative voting, there is an additional parameter).
As mentioned before, for the plurality rule and the Borda rule, this number
is respectively m and m!. For the two-round rule, there are (at least) two
ways to submit your vote. We have seen before that it is possible to deduce
the winner, using the two-round rule, when each voter declares a full ranked
ballot as for the Borda rule. In this case there are m! di↵erent ballots, but this
method is not desirable in practice when m is large. In the original case, each
voter declares her favourite choice twice, where at the second time she chooses
between two parties. A possible voting ballot for the two-round rule, where
P = {P1, . . . , Pm}, is

P1, P2 _ P3 ! P2

meaning that the voters first choice is P1 and, when in the second round she
has to choose between P2 and P3, she chooses P2. Her declared ballots will then
only be P1 and P2, but it is important to specify which two parties “survive”
the first round in order to distinguish between declared ballots. Since there are
m options in the first round,

�
m

2

�
possible contenders to survive to the second

round and 2 options in the second round, the number of di↵erent ballots28 is
m⇥

�
m

2

�
⇥2 = m

3�m
2. The cumulative voting rule involves a more complicated

explanation, therefore we state the number in the following lemma.

Lemma 8. For the cumulative voting rule, where each voter divides Y points
among m parties, the number of di↵erent ballots is

�
Y+m�1

Y

�
.

Proof. First assume that every party must have at least one point in each ballot,
later we will drop this assumption. The number of di↵erent ballots is equal to
the number of di↵erent allocations of points to the parties. The number of ways
these points can be assigned is equal to the number of m-compositions of the
integer Y : a m-composition of Y is a way of writing Y as the sum of m positive
integers, i.e. Y = a1 + . . .+ am where aj > 0 for j = 1, . . . ,m. This is because
of the following interpretation of the composition problem: aj can be seen as
the number of points party Pj gets in a ballot, where P = {P1, . . . , Pm}. The
number of m-compositions of Y is

�
Y�1
m�1

�
. A visual explanation for this is as

follows: draw Y identical stripes next to each other, where in the gap between
two consecutive stripes a bar can be placed. Fill m� 1 of these Y � 1 gaps with
bars to indicate what each number aj is: aj is the number of stripes between
the j � 1-th and j-th bar, where a1 is the number of stripes before the first bar
and am the number of stripes after the last bar. See Figure 17 for an example
where m = 5, P = {A,B,C,D,E} and Y = 10. Here, a1 = 3 for example, so A

gets 3 points.

28In this computation, we allow ballots like P1, P1 _ P2 ! P2. This can be the result of
strategic voting (the voter voted for P1 in the first round to “bother” another party, say P3)
or a voter that changed her mind between the first and second round.

81



Figure 17: A 5-composition of 10.

In this way, each allocation of bars to the gaps is a m-composition of Y , and
there are

�
Y�1
m�1

�
ways to do this.

We are in fact looking for the number of weak m-compositions of Y : that is,
the number of m-compositions of Y , but we drop the requirement that aj > 0,
i.e. a way of writing Y as the sum of m non-negative integers. This is equal
to the number of di↵erent ballots without the assumption that every party
must have at least one point, hence the number we are looking for. Because
a1+. . .+am = Y +m implies that (a1�1)+. . .+(am�1) = Y , we have that every
m-composition of Y + m corresponds to a weak m-composition of Y . Hence,
the number of weak m-compositions of Y equals

�
Y+m�1
m�1

�
=

�
Y+m�1

Y

�
.

For preference voting, a ranked ballot contains as many parties as the voter
wishes to include. When a voter wants to declare a full ordering over all m
parties, the number of di↵erent orderings is m!, as for the Borda rule. When a
voter wants to declare an ordering over m� j parties, where 0  j  m� 1, the
number of di↵erent orderings is (m � j)!

�
m

m�j

�
. For j = 0, . . . ,m � 1, each of

these orderings of m� j parties is possible, hence the total number of possible
ballots is

m�1X

j=0

(m� j)!

✓
m

m� j

◆
=

m�1X

j=0

(m� j)!
m!

(m� j)! j!

=
m�1X

j=0

m!

j!

= m!
m�1X

j=0

1

j!

⇠ m! e.

For a comparison of this property for the five voting rules, see Table 5.
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Rule # ballots in m m = 5 m = 10

Plurality m 5 10
Borda m! 120 3,628,800

Two-round m
3 �m

2 100 900

Cumulative
�
Y+m�1

Y

�
1
24

Q4
i=1(Y + i) 1

9!

Q9
i=1(Y + i)

Preference m!
P

m�1
j=0

1
j! 325 9,864,100

Table 5: Comparison of the number of di↵erent ballots for five voting rules.

There is no direct comparison between cumulative voting and each of the other
four voting rules, because of the parameter Y . When Y = 1, then

�
Y+m�1

Y

�
=�

m

1

�
= m. Hence, it has the same number of di↵erent ballots as the plurality

rule. This makes sense, since cumulative voting coincides with plurality voting
for Y = 1.
It can be verified from Table 5, that cumulative and preference voting are the
voting rules that are hardest to predict in terms of the number of possible
ballots, if Y is not too small. The question remains which of these two numbers
of di↵erent ballots is larger for Y fixed. In the case of m = 5, one can deduce
that cumulative voting has a bigger number than preference voting for Y > 7.
For m = 10, this is the case for Y > 20. For general m, we have that the number
for preference voting is bigger than for cumulative voting when

✓
Y +m� 1

Y

◆
< m!

m�1X

j=0

1

j!

, 1

(m� 1)!

m�1Y

i=1

(Y + i) < m!
m�1X

j=0

1

j!

,
m�1Y

i=1

(Y + i) < m! (m� 1)!
m�1X

j=0

1

j!

,Y
m�1 + C1Y

m�2 + . . .+ Cm�1 < m! (m� 1)!
m�1X

j=0

1

j!
,

where C1, . . . , Cm�1 are the corresponding coe�cients. This implies that

Y
m�1

< m! (m� 1)!
m�1X

j=0

1

j!

,Y <
m�1

vuutm! (m� 1)!
m�1X

j=0

1

j!
.

Hence, by using the logical relation (A ) B) , (¬B ) ¬A), we find that the
number for cumulative voting is higher than the number for preference voting
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when

Y >
m�1

vuutm! (m� 1)!
m�1X

j=0

1

j!
.

This is of course not the best bound, by the omission of
P

m�1
j=1 CjY

m�j�1 in
the fourth line, but we at least have a bound.
We can find a more precise bound by noting that

m�1Y

i=1

(Y + i) =
m�1X

k=0

Y
k(m� 1)!

X

1i1<i2<...<ikm�1

1

i1i2 · · · ik
.

So we have that

Y < k

s
m!

k!
(

X

1i1<i2<...<ikm�1

1

i1i2 · · · ik
)�1, for all k = 1, . . . ,m� 1

,Y
k
<

m!

k!
(

X

1i1<i2<...<ikm�1

1

i1i2 · · · ik
)�1

, for all k = 1, . . . ,m� 1

,Y
k

X

1i1<i2<...<ikm�1

1

i1i2 · · · ik
<

m!

k!
, for all k = 1, . . . ,m� 1

implies that

m�1X

k=0

Y
k

X

1i1<i2<...<ikm�1

1

i1i2 · · · ik
<

m�1X

k=0

m!

k!

, 1

(m� 1)!

m�1X

k=0

Y
k(m� 1)!

X

1i1<i2<...<ikm�1

1

i1i2 · · · ik
< m!

m�1X

j=0

1

j!

, 1

(m� 1)!

m�1Y

i=1

(Y + i) < m!
m�1X

j=0

1

j!

,
✓
Y +m� 1

Y

◆
< m!

m�1X

j=0

1

j!
.

Together with the earlier bound for Y , we have two bounds which imply a
strict ordering between the number for cumulative voting and the number for
preference voting.
Even when sampling a group of voters is not possible or realisable, the numbers
in the second row of Table 5 indicate how easy or complicated it can be to
predict frequencies of certain groups or, more in the context of gerrymandering
in general, certain VTD’s. For voting rules with a low number of di↵erent
ballots, such as the plurality rule, sampling is not even necessary to predict
frequencies, although it of course gives a better prediction to do so. We conclude
that voting rules such as cumulative voting and preference voting are, in this
sense, the hardest to predict.
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6.1.5 Conclusion

When comparing the Borda rule, two-round rule, cumulative voting and pref-
erence voting as potential substitutes of the plurality system, we find that the
last two stand out as contenders. This is not even because of the reason that
Steven J. Mulroy explained in his article, namely that they serve as a remedy
for minority vote dilution. We find that they o↵er advantages from a social-
choice theoretic point of view and, because of the reduction of wasted votes and
di�cult predictability, also serve as a remedy for gerrymandering with single-
member districts. Preference voting even has a slight favour between the two.
This voting rule is naturally strategyproof, a problem that can only be avoided
for cumulative voting by adapting it to equal and even cumulative voting. Also,
the reduction of wasted votes in single-member districts only makes sense for
cumulative voting when adapting it to this special case. Equal and even cu-
mulative voting, however, gives the voters less flexibility than for cumulative
voting and for preference voting. As mentioned before, a possible disadvantage
of preference voting is, that it sounds rather complicated and not every voter
will immediately understand this procedure. However, each voter only needs to
know how to construct a ballot and this is not as troublesome as understanding
how preference voting operates.
With this solution in the form of alternative electoral systems extensively dis-
cussed, there is one more remedy for potential gerrymandering to be addressed.
This is a district remedy and focuses on adjusting the redistricting map instead
of adjusting the electoral system. In the next chapter we will give some insight
about what remedy plan, i.e. district remedy or electoral system remedy, will
be practical to use and will thoroughly discuss what a possible district remedy
is. We will introduce an algorithm that composes a “fair” redistricting map.
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7 Prevention by Redistricting

In the last chapter we addressed a way to reduce gerrymandering by altering
the voting system. In this chapter we present another way that gets to the root
of the problem, namely by redrawing the districts. First we discuss which of the
two solutions to use in which case. Then we look at two methods concerning
the redistricting of the map.

7.1 Choosing Between Solutions

We will briefly address the question when courts should impose a district so-
lution, or when to impose an alternative system solution, as discussed in the
last chapter, without discussing the judicial aspects of this question too much
in detail. For a more extensive discussion on this, we refer again to the article
of Steven Mulroy [26].
In the United States, the Decennial Census is the once-a-decade population
count of all the 50 states and the results are used to (re)draw legislative districts
[29].29 Implementing an alternative system, instead of redrawing the districts,
is a potentially more attractive approach in the sense that it circumvents the
burden of a redistricting every decade after the Decennial Census. However,
an alternative system solution can be troublesome in its own way, depending
on the voting system being applied. In the previous chapter we concluded that
preference voting would serve as the best alternative voting system among the
four described. For pure gerrymandering prevention, changing the nationwide
voting system from plurality voting to preference voting might seem like a big
leap. Proponents of district solutions will probably state that redistricting every
ten years is the more practical solution.
Not only this practical reasoning can be decisive for the choice between these
two solutions, there are also legal considerations. For example, a district so-
lution must be scrutinized to verify whether it fully complies with the Voting
Rights Act, an act in the United States that prohibits racial discrimination in
voting [30]. Another remark is, that the court should choose the solution that
conflicts with the state law the least, i.e. does the least violence to state law
[26].
In the case that the court chooses to go for a prevention (or reduction) tactic in
the form of redistricting, we will present a way to draw districts that is supposed
to be fair. The key point is to introduce precise criteria with which any district
map should comply.

7.2 Changing the Map

Firstly, we introduce the Shortest Splitline Algorithm, an algorithm that out-
puts a fair redistricting map without using election results from the past, but

29In the rest of this discussion, we solely consider the situation in the United States. There-
fore, names like the Decennial Sensus or U.S. Supreme Court only apply to this scenario, but
the reasoning is the same for (perhaps hypothetical) countries other than the United States.
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incorporating the population distribution. Then we make the (trivial) obser-
vation that an independent commission would eliminate the partisanism from
redrawing districts. Related to this is the competitive district method, where
the commission prioritizes districts that satisfy a certain criterion (competitive-
ness) and chooses the best among those suitable redistricting plans.

7.2.1 Shortest Splitline Algorithm

We will describe a simple algorithm, designed by the Center of Range Voting
[31], that outputs a district map with simple-looking districts, such that each of
these districts have roughly the same population count. The input required is
the shape of the county with the distribution of residents (not necessarily voters)
and the number of districts S. For a more formal algorithm, we will use the
mathematical convention of district shapes as used in Chapter 5. Therefore, let
C denote the Jordan curve representing the border of a region. The interior of
C, denoted by int(C), now incorporates additional data, namely the distribution
of residents. Let there be n residents in the county.
Algorithm 5 provides such a construction. We denote by S(C) the number of
districts that has to be contained in int(C) and by N(C) the number of residents
living in int(C).

Algorithm 2. Shortest Splitline Algorithm

1. Let C be the Jordan curve representing the county border, so that int(C)
is the county. Initialize S(C) = S, N(C) = n and C = {C}.

2. Define A(C) = dS(C)
2 e and B(C) = bS(C)

2 c.

3. For C 2 C : From all pairs of points p and q on C such that

• N(C1 � l(p, q)) = N(C)⇥ A(C)
S(C) ,

• S(C1 � l(p, q)) = A(C),

• N(C2 � l(p, q)) = N(C)⇥ B(C)
S(C) and

• S(C2 � l(p, q)) = B(C)

where l(p, q) is the straight line segment from p to q that lies in int(C),
C1 is a path over C from p to q and C2 is the other path over C from p

to q, choose the pair p and q with shortest length l(p, q). If S(C) is even,
l(p, q) divides the region into two parts with same population count. If
there is an exact length-tie for ”shortest” then break that tie by using the
line closest to North-South orientation (explained why below).

4. C = C [ {C1 � l(p, q), C2 � l(p, q)}\{C}.

5. Continue from step 3 until |C| = S. Each element of C is now a district in
the county.30

30If anybody’s residence is split in two by one of the splitlines, then they are automatically
declared to lie in the most-western of the two districts.
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In the case of multiple shortest lines, the tie-breaking rule in step 3 tells us to
choose the line that is closest to a fully vertical line. In other words, choose
the line that has the smallest positive (counterclockwise) angle with a vertical,
straight line. If there is still a tie between multiple lines, then they must all be
parallel. Because they split the population in exactly the same way, there are
no inhabitants between these parallel lines, hence the choice between these is
indi↵erent for the outcome.
This algorithm comes down to splitting each region approximately in half, so
that we end up with exactly S districts which all roughly have the same size.
Note that each district is not built up from VTD’s as encountered in Chapter 4.
See Figure 18 for a sketch of the state Missouri, if it has to be divided into 13
districts. After one iteration of Algorithm 5, the state has been divided by the
green line into two regions, where the region above will contain 7 districts and
the other region 6 districts. Six highly populated cities in Missouri are depicted,
that clarify the placement of the green line a little.

Figure 18: A sketch of the American state Missouri.

The reasoning behind the choice to pick the shortest straight line with smallest
positive angle, and not just any straight line that divides the region in the right
way, is to ensure that this algorithm generates a unique map31 and stays non-
partisan. To clarify this, look at Figure 19, where a fictional state is sketched.
There are six towns in this state (the rest of the state is uninhabited), where
each town has a population count that is roughly a thousand times the number
depicted on the map. In this state, there is a plurality contest between the
red and the blue parties. The color of the circle corresponding to the town
represents the voting behaviour of a large majority in that town, e.g. it is likely

31Unique up to parallelity as discussed before.
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that a large group of residents living in the town in the upper left corner is
going to vote for the red party. If the state has to be divided into two districts,
the straight line bisects the state such that each district has roughly 10,000
residents. Without the requirement of choosing the shortest such line, there are
multiple placements of this line. The vertical green line is the shortest, hence
will be picked by the algorithm. However, the blue party benefits from the
horizontal green line, as this increases the probability of winning at least one
district (the lower district in this case), while the vertical line almost ensures
that the red party wins in both districts. This example shows that dropping
the requirement of choosing the shortest line (with a certain angle)32 can result
in multiple options, leaving the algorithm open for bias.

Figure 19: A fictional state with six towns. Population count ⇥1, 000.

The advantages of this algorithm and the map it produces, are i) the simplicity
of the shapes of the districts, ii) the uniqueness of the map (partly due to the
tie-breaking rule in point 3 of Algorithm 5) and iii) the fact that it is created
following an objective and non-partisan procedure. See Figures 20 and 21 for
the di↵erence between the map of Tennessee in 2004 without using the Shortest
Spitline Algorithm and using it [31].

32To see that it also di↵ers to pick the (shortest) line with smallest positive angle, picture
a state with the shape of a square. Among two straight lines with even length, a horizontal
and a vertical one, the algorithm picks the vertical one.
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Figure 20: Tennessee divided into 9 congressional districts.

Figure 21: A sketch of Tennessee after applying SSA.

However, the simplicity is also due to ignoring geographical features, such as
rivers, cli↵s or lakes, which is a drawback of this algorithm. Another (minor)
drawback is that the line sometimes cuts through a large metropolis, dividing
residents from this metropolis into di↵erent districts. We nonetheless think
that the reduction of gerrymandering, by creating a map that prevents bias and
corruption33 in the process, preponderates the disadvantages.

7.2.2 Redistricting by Neutral Commission

A straightforward solution of gerrymandering is to create an independent and
non-partisan (boundary) commission that has the authority to redistricting,
hence determining the boundaries. This is a way to remove the bias from the
decision of adopting a certain redistricting plan. The U.S. state of Ohio pro-
posed a constitutional amendment, where, with a majority of yes-voters, a state
redistricting commission would be accepted [33]. One of the requirements is that
the new commission would be composed of five members, two of whom would be

33In 2001, California State Democrats paid political consultant Michael Berman 1.36 million
USD to draw the US House district map for California [31]
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chosen by sitting judges, and the remaining members appointed by the first two
or chosen by lot, as cited from the second bullet point in [33]. Another exam-
ple is Australia, where the independent Australian Electoral Commission is in
charge of determining electoral boundaries [34].
The amendment of Ohio gives us another method of altering the map, by cre-
ating criteria that the map should satisfy. Those criteria relate to the so-called
competitiveness of a district.

7.2.3 Competitive District Method

The independent commission, created by the amendment of Ohio, has a prior-
ity to accept a redistricting plan where each district is competitive. Broadly
speaking, a district is competitive, when there is a close competition between
the party that won and the party that finished second, the runner-up, based on
results from the previous election. More formally, a district is competitive if the
ratio of competitiveness in a district is not too large34. Blais and Lago argued in
their article [32], that a general measure of district competitiveness in an SMP
system (Single Member Plurality) is proportional to the margin of victory. The
margin of victory in an SMP system indicates the additional number of votes
the runner-up would have needed to win the election35. However, the more com-
petitive a district (in the sense that there is a close competition between the
winner and the runner-up), the less the margin of victory. Therefore, a general
measure of district competitiveness will be called Lack of Competitiveness of a
district, say di, denoted by LoC(di)36.
LoC(di) is equal to the margin of victory divided by the number of votes cast
in district di. More mathematically, recall that

S
P

i
=

(
1 if party P won in district di
0 if party P lost in district di,

and

X
P

i
=

(
1 if party P is runner-up in di

0 if party P is (at most) third winner in di,

based on previous election results. Define P again to be the set of parties, TP

i

to be the number of votes for party P in district di and Ti =
P

P2P T
P

i
to be

the total number of votes in district di, where P 2 P and 1  i  S.

34One can already sense a contradiction between the terms “competitive” and “ratio of
competitiveness”. We will come back to this.

35Unlike the calculation of wasted votes, these additional votes are not from voters who
change party. The margin of victory can be interpreted as the number of additional voters,
who vote for the runner-up, needed to be added to the district to guarantee the runner-up to
win.

36The “reverse logic” encountered earlier now makes sense: the less competitive a district,
the more the Lack of Competitiveness is.
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Definition 20.

LoC(di) =

P
P2P S

P

i
T

P

i
�
P

P2P X
P

i
T

P

i

Ti

The numerator can be rewritten as
P

P2P T
P

i
[SP

i
�X

P

i
]. This is just the dif-

ference between the number of votes of the winner and runner-up.
We consider a district di competitive if LoC(di)  R for a suitable R 2 (0, 1),
based on the results of the previous election. Thus, when the runner-up needed
at most RTi additional votes to win district di, the district is called competitive,
due to a close competition. A qualifying plan is a redistricting plan where every
district is competitive.
We consider a district di balanced when LoC(di)  Q for a suitable Q 2 (0, 1),
where Q < R. In this sense, a district being balanced is a stronger requirement
than its being competitive. In a balanced district di, the runner-up needed at
most QTi points to win, which is smaller than RTi, resulting in an even closer
competition.
Referring back to the amendment of Ohio, we find a new method in which
a (preferably independent) commission can accept or construct a certain re-
districting plan. This method is to find the redistricting plan with the highest
competitiveness number. According to [33] the competitiveness number of a plan
is defined as follows: The Amendment defines the “competitiveness number” of
a plan by a mathematical formula, that is the product of the number of balanced
districts multiplied by two, plus the total number of other remaining competitive
districts, minus the total number of unbalanced uncompetitive districts multi-
plied by two. To phrase this more mathematically, recall from Chapter 3 that
D = {d1, . . . , dS} is a set of S districts according to a given redistricting plan37.
Define DC to be the subset of D consisting of all competitive districts and DB to
be the subset consisting of all balanced districts, then DB ✓ DC ✓ D. Then the
verbal phrase converts to defining the competitiveness number of a (redistrict-
ing) plan as 2|DB |+(|DC |� |DB |)�2|D\DC |, where |A| denotes the cardinality
of set A. Rewriting this, we get the following definition.

Definition 21. The competitiveness number CN(D) of a redistricting plan D
is

CN(D) = 3|DC |+ |DB |� 2|D|.

Hence, among all redistricting plans D, choose the D with highest competitive-
ness number CN(D). In other words, choose

D⇤ = argmax
D

CN(D). (35)

37Moreover, D itself can be seen as a redistricting plan, since each district in D is uniquely
determined by its shape resulting from the redistricting plan.
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Additionally, this method picks a qualifying plan, i.e. a plan D where every
district is competitive, if it exists. Among all qualifying plans, it will then look
for the one that has the highest competitiveness number, which then reduces to
CN(D) = |D|+ |DB |, since D = DC . So, if there is at least one qualifying plan,
(35) reduces to

D⇤ = argmax
qualifying D

|DB |.

If there are more choices for D⇤, the commission has to decide which plan to
adopt. Here it is of course preferred to let an independent commission do this,
to prevent any bias when picking between di↵erent alternatives. However, even
though there may be a choice between di↵erent redistricting plans at the end,
the commission will never have as much freedom as without using this method.
Thus this method has a certain objectivity to it, but also ensures that each
district does not have too much dispersion with respect to voters for di↵erent
parties.

7.2.3.1 Constructing a Redistricting Plan

Consider each district as a collection of VTD’s as explained in Chapter 4. A
VTD, or voting district, is fixed and can be interpreted as a municipality that
can not be divided into several districts. Let V be the set of VTD’s and
D = {d1, . . . , dS} denote the set of districts. A redistricting plan is formally
a surjective function ⇠ : V ! D. Recall from Chapter 4 that D⇠ is the set
of districts after applying redistricting function ⇠. In this chapter however, we
considered D as a redistricting plan. In the case that a district is built up of
multiple VTD’s, we actually mean the redistricting plan ⇠ that has been implic-
itly applied to V to get a set of districts D, where D = {⇠�1(d1), . . . , ⇠�1(dS)}.
As an extra requirement, we can look for all legal redistricting plans and pick
the one with the highest competitiveness number, while still being a qualifying
plan if possible. This will reduce the total number of qualifying plans we have to
choose from drastically and leaves us with a set of redistricting plans that have
purposeful properties, such as contiguity and (geo)compactness of the districts.
Therefore, run Algorithm 1 for the construction of a redistricting plan ⇠ a large
amount of times. The algorithm does not always terminate, but when it does, it
does so with a legal redistricting plan ⇠. We denote by ⌅ the set of legal redis-
tricting plans as output from the algorithm, i.e. ⌅ = {⇠1, . . . , ⇠k}, where k is the
number of outputted plans. Define Di such that Di = {⇠�1

i
(d1), . . . , ⇠

�1
i

(dS)}
for 1  i  k and let D = {D1, . . . ,Dk}. Then define DC ✓ D to be the set of
qualifying plans. For the construction of DC , check Algorithm 3.38

38Algorithm 3 always terminates, but can terminate with DC being an empty set.
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Algorithm 3. Construction of DC

DC = {};

for D 2 D

comp = 1;

for d 2 D

if LoC(d)  R

comp ! 1;

else

comp ! 0;

if comp == 1

DC ! {DC ,D};

Then construct D⇤ according to Algorithm 4 (which is in pseudocode).

Algorithm 4. Construction of D⇤.
if DC 6= ;

D⇤ ! argmax
D2DC

|DB |;

else

D⇤ ! argmax
D2D

3|DC |+ |DB |;

The dichotomy in Algorithm 4 comes from the fact that CN(D) = |D| + |DB |
when D 2 DC . When Algorithm 3 leaves DC empty, there are no qualifying
plans in the simulated set D and we choose D⇤ as in Equation 35. D⇤ is the
“best choice” among all k simulated legal redistricting plans.

94



8 Appendix

8.1 Appendix A

We will formally prove here that Ci

min
= argmin

C2S
i
C

A(C) indeed exists, as encoun-

tered in Section 5.1.2. Recall that we denote by S
i

C
the set of circles in R2

containing district di.
Let A

⇤ = infC2S
i
C
A(C), say A

⇤ = ⇡(r⇤)2. This exists, since surfaces are
bounded below by 0.
A circle C in R2 can be defined by the pair (r,m), where r 2 R+ is the radius
of C and m 2 R2 is the centre. Choose a sequence of circles (Cn)n�0 ⇢ S

i

C

where Cn = (rn,mn), with the property that A(Cn) # A
⇤ as n ! 1. Then,

since r
⇤ =

q
A⇤

⇡
, we have that rn # r

⇤. In other words, limn!1 rn = r
⇤.

Since each district is bounded and the centre of a circle in S
i

C
must be contained

in district di, we know that (mn)n�0 is a bounded sequence. By the Bolzano-
Weierstrass theorem (mn)n�0 has a convergent subsequence. Denote this subse-
quence by (mnk)k�0. For example, the sequence (mn)n�0 = (1, 2, 3, 1, 2, 3, 1, . . .)
is bounded (it contains only three elements in R). It has thus a convergent sub-
sequence, e.g. (mnk)k�0 = (1, 1, 1, . . .), where n0 = 0, n1 = 3, n2 = 6 and so
forth. The subsequence (mnk)k�0 has a limit, i.e. limk!1 mnk = m

⇤. We also
have that limk!1 rnk = r

⇤, by picking any subsequence (rnk)k�0.
We now have that (rnk ,mnk) ! (r⇤,m⇤) for k ! 1. Does this also mean that
Cnk ! C

⇤ for k ! 1, where C
⇤ = (r⇤,m⇤)? The answer is yes; every point

p
↵

nk
on a circle Cnk can be described by

p
↵

nk
= mnk + rnk ⇥ (cos(↵), sin(↵)), 0  ↵  2⇡.

So, for k ! 1, every such point converges to

p
↵ = m

⇤ + r
⇤ ⇥ (cos(↵), sin(↵)), 0  ↵  2⇡,

which is a point on C
⇤. Furthermore, C⇤ is a circle containing di, i.e. C⇤ 2 S

i

C
.

To see this, note that every point p
↵

nk
on Cnk lies in R2\di, the closure of the

complement of di. This is a closed set, so every limit point p
↵ = limk!1 p

↵

nk

lies in R2\di as well, concluding that C⇤ contains di (see Figure 22).
Hence (Cnk)k�0 is a sequence with limk!1 Cnk = C

⇤. Therefore

inf
C2S

i
C

A(C) = inf
C2S

i
C

⇡r(C)2 = ⇡r(C⇤)2 = ⇡(r⇤)2,

where r(C) is the radius of circle C. Hence, argmin
C2S

i
C

A(C) exists, since the

minimum and infimum coincide as C⇤ 2 S
i

C
.
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8.2 Appendix B

The proof of the existence of C
i

max
= argmax

C2S
C
i

A(C) has a similar approach

as Appendix A. Here we choose a sequence of circles (Cn)n�0 ⇢ S
C

i
where

Cn = (rn,mn), but with the property that A(Cn) " A
⇤ as n ! 1, where

A
⇤ = sup

C2S
C
i
A(C). Via similar arguments we conclude that C

⇤ = (r⇤,m⇤),
where r

⇤ = limk!1 rnk and m
⇤ = limk!1 mnk , has the maximum area of all

circles in S
C

i
.

Figure 22: District di with two circles in S
i

C
. The green circle is Cn7 and the blue

circle is C⇤. The green dot is point p
5
18⇡

n7 and the blue dot is point p
5
18⇡. Both

circles lie in R2\di, which is the region outside di (but including the border).
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