
Synchronized Push and Shove
Takken, R.

Citation
Takken, R. Synchronized Push and Shove.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in
the Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/4171491

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/4171491

Ronald Takken

Synchronized Push and Shove

Master thesis

November 15, 2021

Thesis supervisors: M.J.H. van den Bergh
Prof.dr. F.M. Spieksma

Leiden University
Mathematical Institute

Abstract

Combinatorial games where both players choose a move simultaneously are called
synchronized games. If we consider games where any pair of Left and Rights moves
can always be performed in some order, then a synchronized version of the game
comes naturally. As it turns out, such games are always numbers as combinatorial
games. However, games which are equal to each other as combinatorial games may
behave differently as synchronized games. We may still assign each game a numerical
value. One approach is to view synchronized games as zero-sum matrix games, and
we call the value of the zero-sum game associated to a game its Nash value. Push
and Shove are examples of rule sets which have natural synchronized versions, and
for synchronized Push and Shove we show a result which is similar to the number
avoidance theorem for combinatorial games. We also show that, for certain positions
of Push and Shove, the difference in Nash value of n copies of the position and n−1
copies of the position tends to the combinatorial value of the position as n tends to
infinity.

2

Contents

1 Introduction 4

2 Preliminaries 5
2.1 Combinatorial game theory . 5

2.1.1 Core definitions and terminology 5
2.1.2 Outcome classes and the partial order on G 8
2.1.3 Numbers . 10

2.2 Two person zero-sum games . 14
2.3 Binary search trees . 16

3 Push and Shove 19
3.1 Push . 19
3.2 Value of a Shove position . 21
3.3 Equal games and (non-)isomorphic games 23

4 Synchronized play 29
4.1 General definition of a synchronized game 29
4.2 Nash synchronization . 33

5 Synchronized Push 40
5.1 Halves . 40
5.2 Quarters . 43
5.3 Eighths . 59
5.4 Negatives . 62
5.5 Synchronized Shove . 64

6 Summary and future work 66

References 68

3

1 Introduction

In combinatorial game theory we typically study two-player sequential games, that is,
games where two players take turns moving in the game. Combinatorial game theory
started out by only considering impartial games, which are games in which any move
available to one player must also be available to the other player. This requirement is
relaxed in partisan games, which Elwyn R. Berlekamp, John H. Conway and Richard
K. Guy jointly introduced in the books Winning Ways for your Mathematical Plays
[3] and On Numbers and Games [6].

Alessandro Cincotti and Hiroyuki Iida where the first to study a rule set with the
stipulation that games are played sequentially also relaxed [5], leading to so called
synchronized games. Here, the two players move at the same time. Most of the
results of combinatorial game theory break down under synchronized play. Among
those is the equivalence relation on the group of short games, which also includes the
subgroup of numbers. In [5], games are assigned a different type of value. However,
this definition is problematic for certain synchronized games. A different approach
is to assign end positions integer values based on the winner and the number of
moves (s)he has left, and non-end positions are recursively assigned the value of the
zero-sum game of the values of its options.

For synchronized games, we will introduce the concept of separability, which relates
to the ability to perform a synchronized move by letting the players move sequen-
tially. Whether or not games are separable depends on the rule set. A key result
is that all separable games are numbers in combinatorial sense. Furthermore, we
will observe that the difference in Nash value between n copies and n− 1 copies of
certain separable games tends to the combinatorial value of the game, as n tends to
infinity.

This thesis is structured as follows. Section 2 introduces the relevant background in
combinatorial game theory, as well as some useful theorems on zero-sum games and
a brief explanation on a data storage method that we used to efficiently compute
the value of large synchronized games. In Section 3 we talk about the games Push
and Shove, which are the main rule sets that we study. In Section 4 we introduce
synchronized play and define the Nash value for synchronized games, as well as
discuss separable games. We finish by studying several positions of synchronized
Push and synchronized Shove in Section 5.

4

2 Preliminaries

2.1 Combinatorial game theory

This section introduces the topics in combinatorial game theory that are used
throughout this thesis. It has largely been adapted from Combinatorial game theory
by Siegel [9] and Lessons in Play by Albert, Nowakowski and Wolfe [2]. The world
of combinatorial game theory is much larger than what we discuss here. To read
more, as well as to find proofs of the theorems we present in this section, we refer
to the introductory chapters of these works.

2.1.1 Core definitions and terminology

In combinatorial game theory, we study games played between two players. Tradi-
tionally, these players are called Left and Right, although various other names are
used in the literature, as well. In this thesis, we will always use Left and Right. In
games with colored pieces, Left will always use the color bLue, while Right will use
the color Red.

Left and Right take turns playing a game. When it is a player’s turn to move, (s)he
can consider all possible game states that result from each respective move. These
are called the options of a game. When an option is chosen, the respective move is
made and the process repeats with the other player choosing one of the options from
the current game state. The winner of the game is the player that makes the last
move. This is called normal play, as opposed to misère play, in which the last player
to move loses the game. Because a game is characterised by the options and those
options themselves are games as well, we arrive at the following formal recursive
definition of game.

Definition 2.1. A game (or position) G is defined as the set of its options,

G =
{
GL

1 , . . . , G
L
m

∣∣GR
1 , . . . , G

R
n

}
,

where the games GL
1 , . . . , G

L
m are the Left options of G and the games GR

1 , . . . , G
R
n

are the Right options of G. More commonly, this is written as

G =
{
GL
∣∣GR} ,

where GL and GR denote the sets of Left and Right options, respectively.

The smallest game is { | }, in which neither player can make a move. We denote this
game by 0.

Remark 2.2. For a game G, we use GL resp. GR as typical representatives of
arbitrary Left resp. Right options of G. By our recursive definition, options are
themselves games and thus have their own set of options. The set of Left options
of a Left option GL is denoted by GLL and its set of Right options by GLR. Typical
representatives of these sets are GLL and GLR, respectively. For Right, an analogous
definition holds, as well as for higher order options and sets of options.

5

Example 2.3. Consider the game of Red Blue-Hackenbush G, given by

G =

For the rule set of Hackenbush, see [2, p. 309]. By looking at the options available
to each player, we find that G is formally defined as the game

G =

 , ,

∣∣∣∣∣∣∣
 .

C

By definition, each option of a game is a game as well. If one writes each option as
the set of its options, and those options as the sets of their respective options, etc., it
leads to multiple levels of brackets. As games grow, this quickly does not lend itself
well to readability. A common way to better visualize the structure of games is by
drawing them as a tree graph, known as the game tree. The game tree of a game G
is a directed tree graph with root G. From G we draw directed edges to its options,
and we draw directed edges from each option to their respective options, etc. We
draw trees downwards and, as a visual aid, we draw Left options by branching to
the left and Right options by branching to the Right. The leaves of the tree are the
games in which both players have no options, i.e., the game 0.

Example 2.4. Consider the game tree of one of the Left options from the game
from Example 2.3.

0

0

0

0

0

6

C

We say that two games are isomorphic if they have the same structure, or in other
words, if their game trees are isomorphic as graphs. A trivial example of this would
be the Hackenbush position and the Push position P . In both games, Left can
move to 0 and Right has no legal move. Therefore, they have isomorphic game trees
and we say that the two games are isomorphic, denoted by ∼= P .

The set of positions of a game are all those games which appear in its game tree,
including the game itself. We will only consider so-called short games. Short games
are games which have a finite game tree. Games where we drop this assumption are
called loopy games, as they can loop around back to themselves. Additionally, we
require that every position of a short game has only finitely many distinct options.
Short games will always end in a finite number of moves, while loopy games may go
on forever. This leads to the following useful definition.

Definition 2.5. The birthday of game G, denoted by b(G), is defined as

b(G) = 1 + max
{
b(H) : H ∈ GL ∪ GR

}
,

and b(0) = 0.

Intuitively, the birthday of a game is the height of its game tree. Short games will
always have a finite birthday, while loopy games may have infinite birthday.

We say that a game is born by day n if its birthday is at most n. The only game
born by day 0 is the game 0. Using the definition of a game, we can easily see that
there are only four games born by day 1. These games are very common and are
given their own names:

0
def
= { | },

1
def
= {0 | },

−1
def
= { | 0},
∗ def

= {0 | 0}.

We can define the set of all games born by day n,

Gn
def
= {G : b(G) ≤ n}.

The set of all short games is then given by

G def
=
⋃
n≥0

Gn.

One of the core principles in combinatorial game theory is that games can be broken
down into their components, which can be analyzed individually. The reverse of this
is that we must define what it means to add games together.

7

Definition 2.6. Let G,H be combinatorial games. The (disjunctive) sum G + H
is recursively defined as

G+H
def
=
{
GL +H,G+HL

∣∣GR +H,G+HR
}
,

where GL +H = {GL +H}GL∈GL , etc.

Intuitively, this means that the sum of two games is the same as laying the games
next to each other and allowing a move to be made on any of the components.
This is why in the game tree, we do not omit the paths where one player makes
consecutive moves; it could be the case that this game is part of a sum of games, and
the other player moved elsewhere, allowing for consecutive moves on components of
the game.

Another important definition is that of the negative of a game.

Definition 2.7. Let G be a combinatorial game. The negative of G, written as −G,
is recursively defined as

−G def
=
{
−GR

∣∣−GL} .
The negative of a game can be thought of as switching the players. For instance, in
Hackenbush, this constitutes to swapping the colors of the edges. With respect to
the disjunctive sum, we have

G−H def
= G+ (−H).

2.1.2 Outcome classes and the partial order on G

Theorem 2.8 (Fundamental Theorem of Combinatorial Game Theory). Let G be
a short combinatorial game, and assume normal play. Then, either Left can force a
win playing first on G, or Right can force a win playing second, but not both.

Proof. Consider a Left option GL. By induction on birthday, on GL, either Right
can force a win playing first, or Left can force a win playing second, but not both.
If Right can win all such GL by playing first, then he wins G playing second, since
Left must move to any GL. However, if there is a GL on which Left wins playing
second, then she wins G by moving to such a GL. Exactly one of these possibilities
must hold.

Remark 2.9. Note that in the proof of Theorem 2.8, we used induction without
specifying the base case. This type of induction is called top-down induction and is
commonly used in combinatorial game theory. With top-down induction, the base
case if often handled implicitly within the proof. For instance, in the proof above,
there is an implicit base case in which Left has no moves at all. Since Left now loses
playing first, this also satisfies the inductive hypothesis. Other times the base case
may simply be trivial. This usually happens when induction on the birthday of a
game is used. The game 0 is the only game with birthday 0, and most statements
hold trivially for 0.

8

A consequence of the Fundamental Theorem is that G can be partitioned into four
distinct classes that we refer to as the outcome classes. We denote the outcome class
(or simply the outcome) of a game G by o(G). As the name suggests, the outcome
class of a game determines the winner(s) of the game, provided that both players
play perfectly. The four classes are the following:

Class Name Definition
N Fuzzy The N ext player to move can force a win.
P Zero The Previous player (or second player) to move can force a win.
L Positive Left can force a win regardless of who moves first.
R Negative Right can force a win regardless of who moves first.

Definition 2.10. Let G and H be short games. We write G = H if

o(G+X) = o(H +X) for all X ∈ G.

Note that G ∼= H implies G = H. The converse is usually not true.

Lemma 2.11. = is an equivalence relation on G.

Theorem 2.12. (G,+) is an Abelian group.

Theorem 2.13. Let G be a short game. Then, G = 0 if and only if o(G) = P.

Corollary 2.14. For short games G and H, we have G = H if and only if G−H =
0.

Theorem 2.13 and Corollary 2.14 are the main tools we use to show that two games
are equal, as working directly from the definition is often infeasible. Instead, we
only have to show that the difference game is won by the second player to move,
which we do by considering every opening move and showing that the other player
can force a win.

The outcome classes can be ordered by favorability to a particular player. As men-
tioned previously, the classes L and R are called Positive and Negative, respectively.
Therefore, it makes sense to say that L ≥ R. The classes N and P fall in between
L and R, as in those classes, both Left and Right can win depending on who moves
first. It turns out that N and P are incomparable, which we denote by N ‖ P .
This gives us the following partial order on the outcome classes:

L

N P

R

We can extend this to G.

9

Definition 2.15. Let G and H be short games. We write G ≥ H if

o(G+X) ≥ o(H +X) for all X ∈ G.

Lemma 2.16. ≥ is a partial order on G:
For all G,H, I ∈ G, we have

(i) G ≥ G.

(ii) If G ≥ H and H ≥ G, then G = H.

(iii) If G ≥ H and H ≥ I, then G ≥ I.

To fully describe the partial-order relation between any two short games we introduce
some more notation.

Definition 2.17. Let G and H be short games. We say that G is confused with H
(G ‖ H) if G � H and H � G. We say that G is greater than or confused with H
(G |. H) if H � G. Lastly, we say that G is less than or confused with H (G /| H)
if G � H.

Theorem 2.18. Let G be a short game. The outcome class of G is determined by
its partial-order relationship to 0:

G = 0 ⇔ G ∈ P , G ≥ 0 ⇔ G ∈ P ∪ L,
G > 0 ⇔ G ∈ L, G ≤ 0 ⇔ G ∈ P ∪R,
G < 0 ⇔ G ∈ R, G |. 0 ⇔ G ∈ N ∪ L,
G ‖ 0 ⇔ G ∈ N , G /| 0 ⇔ G ∈ N ∪R.

Since G is a partially ordered group, this can be extended to the partial-order
relation between any two short games. For example, one can show that G /| H by
showing that the game G−H is in N ∪R, or in other words, by showing that Right
wins G−H playing first.

2.1.3 Numbers

We begin with two methods that can be used to “simplify” games.

Theorem 2.19 (Domination). Let

G = {A,B,C, · · · | H, I, J, . . . }.

If B ≥ A, then G = G′, where

G′ = {B,C, · · · | H, I, J, . . . }.

Similarly for Right, if I ≤ H, then G is equal to G with option H removed. Here,
we say that B resp. I dominates A resp. H, as B is at least as favorable to Left as
A and I is at least as favorable to Right as H.

10

Theorem 2.20 (Reversibility). Let

G = {A,B,C, · · · | H, I, J, . . . },

and suppose that A has some Right option AR such that G ≥ AR. Suppose AR has
Left options ARL = {W,X, Y, . . . }. Then, G = G′, where

G′ = {W,X, Y, . . . , B, C, · · · | H, I, J, . . . }.

In Theorem 2.20, we say that A is a reversible option, AR is the the reversing option
and ARL is the replacement set. The intuition behind reversing is that if AR is just
as good or better than G for Right, he will move there is he gets the chance. This
means that Left should consider moving to A only if she intends to immediately
follow up Right’s move to AR with her own move to an option ARL, and therefore
she might as well consider those Left options as the Left options of G, instead of A
being a Left option of G. An analogous statement holds for Right.

Before we show an example of these techniques in action, let us first define a few
more special games. Previously, we defined the games 0, 1 and −1. Likewise, we
can define every integer as a game.

Definition 2.21. We define the game 0 as 0
def
= { | }. For a positive integer n we

define the games n and −n recursively as

n
def
= {n− 1 | }, −n def

= { | −(n− 1)}.

In the integer game n, Left has n moves, while Right has no moves, and vice versa if
n were a negative integer. The partial-order relation between the integers is exactly
as expected.

Example 2.22. Consider G = {−3, 1 | {4 | 2, 5}}. First, we use domination to find
G = {1 | {4 | 2}}. Next, we verify that 4−G ≥ 0. Indeed, Right can only move to
4 − 1 > 0, so Left wins 4 − G playing second. Since G ≤ 4, we know that {4 | 2}
is a reversible option. The reversing option is 4 = {3 | }, so the replacement set is
empty. As a result, G = {1 | }, hence G is equal to the game 2. C

Definition 2.23. Let G be a short game. We say that G is in canonical form if
no position of G has dominated or reversible options. The canonical form of G is
denoted by can(G).

The canonical form of a game G can be thought of as the “simplest” game such that
can(G) = G. The canonical form is unique.

Theorem 2.24. Let G and H be short games in canonical form and assume G = H.
Then, G ∼= H.

Integers are the simplest games of their value. Hence, if a game is equal to an
integer, than that integer is its canonical form.

Consider the game G = {0 | 1}. One can easily verify that G + G − 1 ∈ P , hence
G+G = 1. This suggests that we should call this game 1

2
, leading to the following

definition.

11

Definition 2.25. For n ≥ 1 we define the game 1
2n

recursively as

1

2n
def
=

{
0

∣∣∣∣ 1

2n−1

}
,

with 1
20

def
= 1. For m odd we also define

m

2n
def
=

1

2n
+ · · ·+ 1

2n︸ ︷︷ ︸
m times

.

Once again, these fractional games behave exactly as their rational counterparts.

Theorem 2.26. Let A,B,C ∈ G, and suppose that A = a, B = b and C = c for
some a, b, c ∈ Z ∪

{
m
2n

: m ∈ Z odd, n ∈ Z≥0

}
⊂ Q. Then,

(i) A+B = C in G if and only if a+ b = c in Q.

(ii) A ≥ B in G if and only if a ≥ b in Q.

We defined the game m
2n

for m odd as m copies of the game 1
2n

. If we have an even
number of copies, then by Theorem 2.26, it is equal to the game with the simplified
fraction. The canonical form of any fraction with odd numerator is given by the
following theorem.

Theorem 2.27. For n ≥ 1 and m odd, consider the game G = m
2n

. Then,

can(G) =

{
m− 1

2n

∣∣∣∣ m+ 1

2n

}
.

We call the set D =
{
m
2n

: m ∈ Z, n ∈ Z≥0

}
⊂ Q the dyadic rationals. D is a subgroup

of Q, and we have an injective group homomorphism D → G mapping a dyadic
rational to its corresponding game. As a result, G contains a natural subgroup
isomorphic to D. We will identify this subgroup with D itself, and refer to this
subgroup and its elements as numbers.

Consider two numbers x and y and assume x > y. The simplest number z such that
x < z < y is the smallest (in absolute value) integer, if it exists. Otherwise, z = i

2n

for some i and with n as small as possible. The following theorem tells us how to
easily spot numbers.

Theorem 2.28 (Simplest Number Theorem). Let G be a short game and suppose
that GL < GR for all GL ∈ GL, GR ∈ GR. Then, G = x, with x ∈ D the simplest
number such that GL < x < GR for all GL ∈ GL, GR ∈ GR.

Definition 2.29. Let G be a short game. The Left incentive of a move GL is GL−G.
Similarly, the Right incentive of a move GR is G − GR. The incentives of G is the
union of all Left and Right incentives of G.

Incentives can be thought of as the “amount gained” by a particular move. In the
case of numbers, all incentives are negative, and the best move (by domination) has

12

the greatest incentive. For games that are equal to integers, the best incentive is
−1, meaning that moving on an integer “costs” exactly one move. For games that
are not integers (or numbers), we always have a move that costs less than one move.

Theorem 2.30. Let G be a short game, and assume G is equal to an integer. Then,
G has both a Left incentive GL −G > −1 and a Right incentive G−GR > −1.

As a result, it is always best to save your integers and to move on other components
of a game. it turns out that one should avoid playing on any number, if possible.

Theorem 2.31 (Weak Number Avoidance). Let x,G be short games and assume
that x is a number and G is not. If Left can win moving first on x + G, then Left
can do so with a move on G.

An analogous statement holds for Right. A stronger version of this statement also
exists.

We end this section with another way to spot number games, in particular, integers.

Theorem 2.32 ([9] Exercise 3.5). Let G be a short game and suppose G has no
Right options. Then, G is an integer.

Proof. Let G be a short game with no Right options. The exact integer that G is
equal to depends on the outcome class of its Left options.

If all GL ∈ P , then G = {0 | } = 1. If all GL ∈ N , then Left loses G playing second.
Right also loses G playing second, since he has no moves to begin with, so G = 0.
The same hold true if all GL ∈ R. If all GL ∈ L, then we set

n = min{n′ ∈ Z≥0 : n′ |. GL for all GL ∈ GL}.

We have n <∞, since G is a short game and thus G must have finitely many Left
options, and each Left option must have a finite birthday. Additionally, n > 0, as
each GL > 0. Now, consider the game G − n. If Left plays first, she must move
to GL − n /| 0, which Right wins playing first, hence Left loses G playing first. If
Right plays first on G, he must move to G − (n − 1). Left responds by moving to
GL − (n − 1), where GL is such that n − 1 6|. GL. Hence, n − 1 ≤ GL and thus
GL − (n− 1) ≥ 0 and Left wins G playing second. We find that G− n ∈ P , hence
G = n.

Lastly, if the Left options of G are a mixture of outcome classes, then G us equal
to the “maximum” of the cases we discussed. If GL is a mixture of outcome classes
that includes games in L, then we still have G = n. The only extra thing we have
to check is that Left loses by moving to GL − n for GL ∈ R ∪ P ∪ N . If GL ∈ P ,
then Right wins. If GL ∈ R is a number, then GL − n < 0. If GL ∈ R ∪ N and
GL not a number, then by weak number avoidance, players can only win GL− n by
moving on GL, which Right wins playing first. If GL doesn’t have options in L, but
does have options in P , then G = 1, as GL − 1 is won by Right playing second if
GL ∈ R ∪N by the same argument. Finally, if GL is only a mixture of games in R
and N , then G = 0 since both players lose playing first.

13

2.2 Two person zero-sum games

In this section, we take a step out of the world of combinatorial game theory and
dive into economic game theory. We will consider the two person zero-sum game,
which is a type of non-cooperative game. This is going to be the foundation of
Nash-synchronization for combinatorial games, which is the main topic of the thesis
and which will be introduced in Section 4.

Definition 2.33. Consider an m× n matrix A with real coefficients. A two-person
zero-sum game is a non-cooperative two-player game in which two players, say Left
and Right, each independently of one another choose a row resp. column of A. If
Left chooses row i and Right chooses column j, then Left receives a payout of aij
from Right.

Zero-sum refers to the sum of the payouts being zero (Right “gains” a payout of
−aij). Left wants to maximise the money she will receive, while Right wants to min-
imize the money he will spend. One can make the distinction between deterministic
strategies and mixed strategies. With deterministic strategies, we only allow each
player to choose an option with probability 1, while with mixed strategies we allow
players to make their choice based on a probability distribution on their options.
For our purposes, we will allow mixed strategies. Left chooses a strategy x ∈ ∆m

and Right chooses a strategy y ∈ ∆n, where ∆k is the k-dimensional unit simplex:

∆k =

{
(x1, x2, . . . , xk)

>: xi ≥ 0 for all i and
k∑
i=1

xi = 1

}
.

Since Left and Right choose their option based on some chosen probability distri-
bution, it makes sense to talk about the expected payout of the zero-sum game,
which is given by

∑m
i=1

∑n
j=1 xiaijyj = x>Ay. Let us consider what the minimal and

maximal expected payouts are when that we allow mixed strategies. Left can force
an expected payout of at least

v
¯
(A) = max

x∈∆m
min
y∈∆n

x>Ay,

by simply considering Right’s best response to any x ∈ ∆m. Similarly, Right loses
at most

v
¯
(A) = min

y∈∆n
max
x∈∆m

x>Ay,

by considering Left’s best response to any y ∈ ∆n.

Theorem 2.34 (Fundamental Theorem of Matrix Games). For any real matrix A,
we have v̄(A) = v

¯
(A).

Proof. See [7].

We call v(A)
def
= v̄(A) = v

¯
(A) the value of the game.

Definition 2.35. A pair of strategies (x∗, y∗) ∈ ∆m×∆n is called a Nash equilibrium
if

(x∗)>Ay∗ ≥ x>Ay∗ and (x∗)>Ay∗ ≤ (x∗)>Ay for all x ∈ ∆m, y ∈ ∆n.

14

Theorem 2.36 (Nash [8]). Every matrix game has at least one Nash equilibrium.

Proof. See [8].

Consider the following linear program, given by

min

y0

y0 ≥
∑n

j=1 aijyj, 1 ≤ i ≤ m,∑n
j=1 yj = 1,

yj ≥ 0, 1 ≤ j ≤ n.

,
with its dual linear program given by

max

x0

x0 ≤
∑m

i=1 aijxi, 1 ≤ j ≤ n,∑m
i=1 xi = 1,

xi ≥ 0, 1 ≤ i ≤ m.

.
Suppose (y∗0, y

∗) and (x∗0, x
∗) are solutions to the LP and dual LP respectively. For

all x ∈ ∆m and y ∈ ∆n, we have

x>Ay∗ ≤ y∗0 = x∗0 ≤ (x∗)>Ay.

Hence, v(A) = y∗0 = x∗0 and (x∗, y∗) is a Nash equilibrium. Moreover, we now know
that every zero-sum game will have at least one Nash equilibrium. Since the set
solution set of a LP is convex, we find that the set of Nash-strategies is convex as
well. In Section 4, we will compute the the Nash equilibrium of zero-sum games
by solving the associated LP. For the remainder of this section, we will show a few
ways to more easily find a Nash equilibrium.

Definition 2.37. Let A be a real matrix. We call an entry aij a saddle point if

aij ≥ akj for k = 1, . . . ,m,

and
aij ≤ aik for k = 1, . . . , n.

I.e., aij is larger resp. smaller than or equal to any other entry in its column resp.
row.

Lemma 2.38. If a matrix A has a saddle point aij, then Left choosing row i with
probability 1 and Right choosing column j with probability 1 is a Nash equilibrium.

Proof. Let x∗ resp. y∗ be the strategies of choosing row i resp. column j with prob-
ability 1. For all x ∈ ∆m we have

(x∗)>Ay∗ = aij ≥
m∑
k=1

xkakj = x>Ay∗.

Analogously for y∗.

Another useful result is presented in [4].

15

Theorem 2.39. Let A be a n× n square matrix of the form

A =


a b · · · b

b
.

...
...

. b
b · · · b a

 ,

for some a, b ∈ R. Then, for Left and Right, choosing any row or column, respec-
tively, uniformly at random is a Nash equilibrium. Moreover, the value of the game
is 1

n
a+ n−1

n
b.

So, if all rows and columns are permutable, we know that simply choosing any
uniformly at random is a Nash equilibrium. Now, consider a more general case.

Theorem 2.40. Let G be a block matrix of the form

G =

(
A W
V B

)
,

where A is as in Theorem 2.39, V is a m1 × n matrix with identical columns v =
(v1, . . . , vm1)

>, W is a n ×m2 matrix with identical rows w = (w1, . . . , wm2) and B
is any m1 ×m2 matrix. Consider the zero-sum game G′, given by

G′ =


1
n
a+ n−1

n
b w1 · · · wm2

v1
... B
vm1

 ,

If (x, y) ∈ ∆n+m1×∆n+m2 is Nash equilibrium for G with value v(G), then (x′, y′) ∈
∆1+m1×∆1+m2 is a Nash equilibrium for G′ with value v(G′) = v(G), where x′1 = nx1

and x′i = xn−1+i for i = 2, . . . ,m1, analogously for y′.

In other words, the rows resp. columns containing A are all identical, so we may
consider them as one row resp. column, replacing A with its expected payout. Any
Nash equilibrium would have the same probability for the rows resp. columns con-
taining A, so we can take those together as the probability to play on any row resp.
column of A. For a proof of Theorem 2.39 and Theorem 2.40, see [4].

2.3 Binary search trees

In Section 5, we will do a large number of recursive computations, and to greatly
reduce computation time we can store each computed value and simply recall it later
when needed. We will use self-balancing binary search trees to accomplish this. In
this section we will briefly talk about how they work.

A binary search tree (BST) is a rooted binary tree. Each node stores a key and
possibly other data as well. Each node has two sub-trees, which we denote by the
left sub-tree and the right sub-tree. The key of a node is always greater than any
key in its left sub-tree and less than any key in its right sub-tree. This is referred

16

to as the binary search property. As the name implies, this is what allows us to find
or add a node with a given key. To find a node, we start at the root of the tree. If
this node has the key we are looking for, then we are done. If not, we check whether
our key is greater or less than the key of the current node. If our key is less than
the node key, we traverse to the root node of its left sub-tree, and if our key was
greater, then we traverse to the root node of its right sub-tree. We repeat until we
either find a node with our key or until we get sent into an empty sub tree. If this
happens, we know that there is no node with our given key present in the BST, and
it should be added here if we wished to do that.

The shape of a binary search tree depends entirely on the order in which the nodes
are added. The shape greatly impacts the lookup efficiency. Consider the following
two binary search trees:

6

2

1 4

3 5

8

7

(A)

1

2

3

4

5

6

7

8

(B)

Both trees contain the keys 1 up to and including 8. Tree A is the result of adding
the nodes in the order 6,2,1,4,3,5,8,7 (this is not the only order that produces this
tree), while tree B is the result of adding nodes in the order 1,2,3,4,5,6,7,8. A has a
depth of 3, while B has a depth of 7. This means that we need 3 resp. 7 comparisons
to find the deepest node(s). As a result, the worst-case time complexity is O(n) for
both searching and inserting nodes.

For our use, we will recursively compute values of synchronized combinatorial games.
When a value is computed, we store it in a node whose key is a number that is
based on the structure of the game. Because we work recursively, the values will
be computed more or less in the order of their keys, leading to an unbalanced tree
similar to tree B we saw earlier. A solution to this problem is to use a modification
of the BST, the self-balancing binary search tree. Several data structures exist that
implement self-balancing binary search trees, one of them being the AVL tree [1]
(named after inventors Adelson-Velsky and Landis), which is the particular variant
that we used. In an AVL tree, we try to keep the height of the tree at a minimum
using transformations known as tree rotations. For the details, see [1]. Important is
that, for as tree with n nodes, the depth of a BST will be at least blog2(n)c. Since
self-balancing binary search trees transform the tree to have this depth for every

17

inserted node, we find that AVL trees have a worst case time complexity of O(log n)
for search and insertion.

18

3 Push and Shove

Push and Shove are two games with similar rule sets. In both games, a position is a
finite board or strip of squares, where each square is empty or occupied by a blue or
red piece. No more than one piece is permitted per square. We denote the pieces by
colored letters P and S for Push and Shove, respectively. A move consists of taking
a piece of your color and moving it one space to the left. The games differ in how
the other pieces on the strip behave after a move. In Push, other pieces move one
square to the left if and only if another piece threatens to occupy the same space,
i.e., all pieces directly left of the piece that intends to move, up to the first empty
space, all move one space to the left. In Shove, all pieces left of the piece intended
to move get moved one space to the left, regardless of whether they would interfere
with other pieces. In both games, pieces may be pushed off the end of the strip and
are then removed from the game.

Example 3.1. Example of a move in Push and a move in Shove. In both games,
Left moved its rightmost piece.

P P PP P P P PP P

S S SS S S S SS

C

3.1 Push

We first compute the value of a few simple games. For this we use the notation

�n P = . . .︸ ︷︷ ︸
n

P ,

where we use a superscript to denote repeated blank squares. Note that the negative
of a game is the same game with the colors reversed. The following lemma, taken
from an exercise in Lessons in Play [2], provides us with the values of a few basic
Push positions.

Lemma 3.2. The values of a few simple games of Push.

(i) �n P = n+ 1,

(ii) �n P P = 2− 1
2n+1 ,

(iii) �n P �m P = m+ 1 (for m > 0).

Proof. (i) The canonical form of �n P is

�n P =
{
�n−1 P

∣∣∣ } , n > 0

and for n = 0 we have �0 P = P = {0 | }, so the claim follows by induction.

19

(ii) We proceed by induction. P P =
{

P
∣∣ P

}
= {1 | 2} = 3

2
. For n > 1 we

have

�n P P =
{
�n−1 P P

∣∣∣�n−1 P P
}

=

{
2− 1

2n

∣∣∣∣�n−1 P P

}
.

It remains to show that �n−1 P P = 2. We will show that the game
�n−1 P P − 2 is a second player win.

�n−1 P P − 2

�n−1 P P − 2
= − 1

2n+1 < 0
by induction

�n−2 P �2 P − 2

�n−2 P P − 2

�n−1 P P − 1

�n−1 P P −1
= 1− 1

2n+1 > 0
by induction

By a separate induction argument, �n−2 P P − 2 = 0, since for n = 0 we
have

P P =
{
P P

∣∣∣�2 P
}

=

{
3

2

∣∣∣∣ 3

}
= 2,

completing the proof of (ii).

(iii) Induction on m. We proved the base case in the proof of (ii). For m > 1 we
consider the game �n P �m P − (m+ 1).

�n P �m P − (m+ 1)

�n P �m−1 P −(m+1)
= m− (m+ 1) = −1
by induction

�n−1 P �m+1 P − (m+ 1)

�n−1 P �m P − (m+ 1)

�n P �m P −m

�n P �m−1 P −m
= m−m = 0
by induction

We now do induction on n to show that �n−1 P �m P − (m+ 1) = 0, since for
n = 0 we have

P �m P =
{
P �m−1 P

∣∣∣�m+1 P
}

= {m | m+ 2} = m+ 1,

20

completing the proof.

Lemma 3.2 tells us that any Push position consisting of two pieces somewhere on
the board is a number. It is possible to show that any Push position is a number.

Theorem 3.3. All Push games are numbers.

Proof. Consider an arbitrary Push game G. We will show that GL < GR for any
arbitrary Left and Right options of G. By induction, all GL and all GR are numbers.
We distinguish three cases.

First, suppose that the piece that Left intended to move in GL gets pushed by
Right’s move to GR. In other words, GR ∈ GLR. GL is a number by induction, so
GR > GL.

Secondly, suppose Right’s piece gets pushed by Left, or GL ∈ GRL. By the same
argument, GR > GL.

Lastly, suppose both piece do not interfere with each other. Then, Left can move
from GR to a position GRL by moving the same piece that she moves to get from
G to GL, which in this case should have remained in the same square. However,
Right can do the same with his piece, moving from GL to GLR, and we find that
GLR = GRL. By induction,

GL < GLR = GRL < GR.

Thus, GL < GR for all GL ∈ GL and all GR ∈ GR. By the simplest number theorem,
G is a number as well.

3.2 Value of a Shove position

In [2] a formula is given to calculate the value of any Shove position.

Theorem 3.4. Let G be a Shove position consisting of n pieces on a single strip.
For piece i = 1, . . . , n let p(i) be the position of i on the strip (counting from the
left, with the leftmost square being position 1) and let r(i) be the number of pieces
strictly to the right of i up to and including the last color alteration. Furthermore,
we define c(i) by

c(i) =

{
1 if i is blue,

−1 if i is red.

Then the value of G is given by

G =
n∑
i=1

c(i)
p(i)

2r(i)

Example 3.5. Using Theorem 3.4, we find that the following game of Shove has
value 1215

16
.

21

S S SS S S

− 1
16
−2

8
+3

4
−5

2 +6 +9 = 1215
16

C

For synchronized play, it would be nice to find positions of certain values that are
contained on a single strip. However, Theorem 3.4 shows that certain values are
impossible to attain. Namely, we would like to study powers of 1

2
, but for Shove this

is impossible on a single strip. To see that this is true, we consider the following
position:

Mm = S S . . . S S︸ ︷︷ ︸
m

The value of Mm can be computed recursively. By Theorem 3.4 we have

Mm = m− m− 1

2
− m− 2

4
− · · · − 1

2m−1

= m− 1− m− 2

2
− m− 3

4
− · · · − 1

2m−2

+ 1− 1

2
− 1

4
− · · · − 1

2m−1

= Mm−1 +
1

2m−1
.

With M1 = S = 1 this gives us the following recurrence relation:{
Mm = Mm−1 + 1

2m−1 , m > 1,

M1 = 1.

The solution of this equation is given by

Mm = 2− 1

2m−1
.

Mm is the smallest positive (in value) position containing m pieces. To see that
this is true, suppose we have a game with m pieces occupying the first m squares
of the strip. There has to be at least one blue piece, otherwise the game would be
negative and there must be a blue piece occupying the last square, as otherwise the
game would be bounded from above by −Mm < 0. For the smallest positive value,
the remaining pieces should be red. Finally, if M ′

m is a game with a blue piece in
position m′ > m and m − 1 red pieces placed to the left of it, then M ′

m ≥ Mm′ ,
as the latter game has more red pieces, which makes the game more favorable for
Right, while nothing changes for Left. As Mm′ > Mm, this game in not smaller than
Mm.

We can conclude that any game with m pieces that has positive value smaller than
Mm does not exist on a single strip. In particular this implies that, for Shove, no
single strip game G can have value G ∈ (0, infm{Mm}) = (0, 1).

22

3.3 Equal games and (non-)isomorphic games

Theorem 3.3 and Theorem 3.4 tell us that all Push games and all Shove games are
numbers. The same holds true for RB-Hackenbush games [3]. For all three rule sets,
we can find a position with the value of any power of 1

2
. Consequently, by taking

sums, we can find a position with any numerical value. This means that for any two
of these rule sets we can find two games, one of either rule set, such that they are
equal in the combinatorial sense. However, it turns out that for some positions, an
isomorphic position in one of the other rule sets does not exist. In this chapter, we
will show examples of such games.

Work on the behavior of synchronized Hackenbush has already been done [10]. One
might assume that all statements about synchronized Hackenbush hold for the corre-
sponding synchronized Push or Shove positions as well, since after all they are equal
in the combinatorial sense. However, it turns out that two synchronized games,
which may be equal in canonical form, can behave differently when played syn-
chronized. This will be further discussed in Section 4. While not strictly necessary,
isomorphic games would behave the same under synchronized play. Since an isomor-
phic game might not exist, finding a Hackenbush position that is equal to a Shove
position may not be useful, but we will still demonstrate it as a fun exercise. In this
section we identify the colors blue and red with the signs + and –, respectively.

Suppose S is a Shove position. We assume S consists of a single strip with n pieces.
If S is a sum of Shove games, we may construct a Hackenbush position for each
component and then take the sum of all these positions. We construct a Hackenbush
position H as follows: We connect p(n) edges of color c(n) to the ground. Then,
for i = 1, . . . , n − 1, we connect an edge of color c(n − i) to p(n − i) out of the
p(n − (i − 1)) edges of color c(n − (i − 1)). This gives us a forest of Hackenbush
stalks.

Example 3.6. The Shove position below consists of three pieces. The third piece
is blue and p(3) = 5, so we start with 5 blue stalks connected to the ground. The
second piece is red, so on top of the blue stalks we place p(2) = 4 red stalks. The
last piece is blue, so we place p(1) = 2 blue stalks on top of the previously placed
red stalks.

SS S

C

We see that is we started with n pieces in a Shove game, we obtain n unique
Hackenbush strings x1, . . . , xn, and there are p(1) copies of x1 and p(i) − p(i − 1)
copies of xi, i = 2, . . . n. We can use Thea van Roode’s method [11] to compute the

23

value of each string. We find that, for i = 1, . . . , n:

xi =
n∑
k=i

c(k)
1

2r(k)
.

This gives us the following expression for H (putting p(0) = 0):

H =
n∑
i=1

(p(i)− p(i− 1))xi

=
n∑
i=1

p(i)xi −
n∑
i=1

p(i− 1)xi

=
n∑
i=1

p(i)

(
n∑
k=i

c(k)
1

2r(k)

)
−

n∑
i=1

p(i− 1)xi

=
n−1∑
i=1

p(i)

(
n∑

k=i+1

c(k)
1

2r(k)

)
−

n∑
i=1

p(i− 1)xi +
n∑
i=1

c(i)
p(i)

2r(i)

=
n−1∑
i=1

p(i)xi+1 −
n∑
i=1

p(i− 1)xi +
n∑
i=1

c(i)
p(i)

2r(i)

=
n∑
i=1

c(i)
p(i)

2r(i)
.

Thus, by Theorem 3.4, H = S.

In this Hackenbush representation, each piece of our Shove game is represented by a
layer of edges in our forest of strings, where the “thickness” of the layer represents
the position of the piece on the strip. Moving a piece then corresponds to cutting
one of the edges, and since in Shove all pieces to left of a moving piece move as well,
one must cut the edge that is part of the largest string. It is, however, immediately
clear that the games are not isomorphic, since H has many more options which are
invalid as Shove positions.

Going from Hackenbush to Shove is more difficult, given that there does not exist a
formula for the value of a general RB-Hackenbush game, so one must first compute
the canonical form. We know that the canonical form of H is some dyadic rational
x. It turns out for any dyadic rational there exists a game of Shove of equal value.
First, we need to introduce the concept of sign expansion.

Definition 3.7. Consider a string of signs s = s1s2 . . . sn, where n ∈ N, si ∈
{−,+}, i = 1, . . . , n. Let k be the smallest index for which sk 6= sk+1. We say
that s is the sign expansion of the dyadic rational x ∈ D =

{
m
2n

: m ∈ Z, n ∈ Z≥0

}
if x can be written as

x = skk +
n∑

i=k+1

si
1

2i−k
.

The sign expansion of a number can be used to find games of this value. For Push,
Shove and Hackenbush, we know how to construct any power of 1

2
as a game, and

24

can use the sign expansion to construct any number as a sum of powers of 1
2
. For

Hackenbush, an alternative method is to use Van Roode’s method, which can give
any number as a Hackenbush string. For Shove, we also found a better method,
allowing us to construct any number as a sum of up to three games.

Example 3.8. Let x ∈ D, with sign expansion s = s1s2 . . . sn , with k the smallest
index for which sk 6= sk+1. We then construct the following Shove positions:

S1 = sn sn−1 sn−2 . . . sk+1 sk

S2 = sn−1 sn−2 . . . sk+1 sk

By definition of sign expansion, we know that the last color alteration in both S1

and S2 are at sk+1 and sk. Using Theorem 3.4 we then find the values for both
positions,

S1 =
n∑
i=k

si
n− i+ 1

2i−k
, S2 =

n−1∑
i=k

si
n− i
2i−k

.

Subtracting S2 from S1, we find

S1 − S2 =
n∑
i=k

si
1

2i−k

= sk +
n∑

i=k+1

si
1

2i−k
.

If k = 1, then we have found a Shove game of equal value to H. For k > 1, we need
to add a third game S3 = �k−2 sk = sk(k − 1). C

As mentioned before, we have only constructed S based on the combinatorial value
of H, so in general they would not be isomorphic and there is no relation between
a move on S and a move on H. A valid question now would be if it is even possible
for any Shove game to find an isomorphic Hackenbush game and vice versa. As we
will now demonstrate by example, there do exist games for which this is impossible.

Example 3.9. Consider S = S S . The game tree of S is as follows,

S S

S S

S

25

Our goal is to find a Hackenbush position H with a game tree of the same shape,

H

HL

0

HR

HRL

0

Working our way up from the leaves we can try to fill this tree. We find

HL = HRL = ,

since this is the only position in which Left can only play to 0 and Right has no
move at all (remember that we look at the game tree as is, i.e., without dominating
or reversing any options). Then, HR must be a position in which Left can only play
to HRL and Right again has no move, so the only possibility is

HR = .

So, H must be a Hackenbush position with the following options,

H =

{ ∣∣∣∣∣
}
.

Such a position H does not exist: it would need to have a red edge somewhere, which
when cut by Right should lead to HR. But, the red edge should also disappear as
a result of Left moving to HL, so it should be connected to one of the two blue
edges and not to the ground. Since Left has one unique Left option, it should be
connected to both edges, but such a position does not have HL as Left option. C

Now, we might try to do it the other way around.

Example 3.10. Consider

H = .

26

The corresponding game tree is

0

0

We are looking for a Shove game S with the following game tree,

S

0 SR

0

The only possible game for SR is SR = S . The only game is which Right can only
move to SR is S = S + S . However, his gives us SL = S 6= 0, hence there is no
Shove game isomorphic to H. C

Example 3.9 and Example 3.10 also show that finding an isomorphic Hackenbush
game cannot be done for certain Push games, as all the Shove positions used are
isomorphic to their Push counterparts. Lastly, we will show that there also exist
Shove games which do not have an isomorphic Push game and vice versa.

Example 3.11. Consider S = S S . The two upper layers of the game tree of S
are given by

S S

S S
.

Since S ∼= P and S ∼= P , we are looking for the Push game
P =

{
P
∣∣ P

}
, which does not exist: Right needs a piece somewhere and

Left’s move to P must push this red piece off the board, meaning that Left needs
to have a piece on the leftmost square of the strip, which she does not have.

Vice versa, for P = P P , we have the game tree

P P

P P P

27

and we are looking for the Shove game S =
{

S S
∣∣ S

}
, since again the Left

and Right options are isomorphic to their Shove counterparts. We see that S is
impossible as a Shove position, since the only Shove games with S as Right
option are S S and S + S , neither of which have S S as a Left option. C

28

4 Synchronized play

In [5], the concept of synchronized play is introduced. Synchronized games differ
from regular combinatorial games in that we consider both players to move simulta-
neously. This requires us to define what a synchronized move does, which for some
games might be tricky. However, for Push and Shove it turns out we can do it in
a fairly natural way. When presented with a game of either Push or Shove, both
players will have to decide which piece to move. The synchronized move will then
consist of moving both pieces. If the pieces are located on different strips, then they
can be moved in any order. If the two pieces to move lie on the same strip, then
we move the leftmost piece first, ensuring that each player may move their intended
piece from their original position.

4.1 General definition of a synchronized game

In Section 1 we introduced combinatorial games, which are defined as its sets of Left
and Right options,

G =
{
GL | GR

}
.

We now define the concept of synchronized games in a similar fashion.

Definition 4.1. A synchronized game G is a triple {GL | GS | GR}, where GL =
(GL

1 , . . . , G
L
m) is a sequence of m synchronized games (the Left options of G), GR =

(GR
1 , . . . , G

R
n) is a sequence of n synchronized games (the Right options of G) and

GS = (GS
ij)ij is a m× n matrix of synchronized games (the synchronized options of

G).

Once again we denote the smallest synchronized game by 0
def
= { | | }. Sometimes,

synchronized moves are denoted by GL+R, instead of GS, to emphasize that it is
the synchronized move of a particular Left move GL and a particular Right move
GR. We may also represent a synchronized game using a matrix representation. In
matrix representation, a game G is given by

G =

(
GR

GL GS
)
.

Here, each row corresponds to a move by Left and each column corresponds to
a move by Right, with the first row and column corresponding to the respective
player passing to account for solo moves. Later, we will introduce the concept of
synchronized value, for which we use GS as a matrix with its rows and columns
defined in this manner.

Definition 4.2. Let G and H be synchronized games, and set |GL| = m and |GR| =
n. We define the (disjunctive) sum K = G+H as follows: KL is the concatenation
of GL and HL; KR is the concatenation of GR and HR; and

KSij =


GSij +H if i ≤ m, j ≤ n,

G+HS
i−m,j−n if i > m, j > n,

GLi +HR
j−m if i ≤ m, j > n,

GRj +HL
i−n if i > m, j ≤ n.

29

In matrix notation, this is expressed as

G+H =

 GR +H G+HR

GL +H GS +H GL +HR

G+HL GR +HL G+HS

.
Definition 4.3. Let G be a synchronized game. We define the negative of G by

−G =
{
−GR

∣∣∣ − (GS)> ∣∣∣ −GL}.
Definition 4.4. Let G be a combinatorial game. We call G separable if, for every
position H of G, for every HL and HR, it holds that HL ∈ HRL or HR ∈ HLR or
HLR ∩HRL 6= ∅. If, for all HL and HR, it holds that HLR ∩HRL 6= ∅, then we call
G strongly separable.

Example 4.5. Consider the following position of Domineering (see [2, p. 307]):

G =

Under non-synchronized play, both players have a move which places a domino on
the centre square, after which the other player cannot place any more dominoes.
As a combinatorial game it is equal to ∗ = {0 | 0}. As a synchronized game, it is
unclear what the synchronized move should be. We could define the synchronized
move to have both players overlap their dominoes, in which case GS = 0. By this
definition, G is not separable. C

Definition 4.6. Let G be a separable combinatorial game. We inductively construct

a synchronized version of G, say Ĝ = {ĜL | ĜS | ĜR}, as follows:

• ĜL = ĜL ;

• ĜR = ĜR ;

• For every GL
i ∈ GL, GR

j ∈ GR, if GLR ∩GRL 6= ∅, pick GS
ij ∈ GLR ∩GRL and set

ĜS
ij = ĜS

ij. Otherwise, if GL
i ∈ GRL, set ĜS

ij = ĜL
i . Otherwise, GR

j ∈ GLR and

set ĜS
ij = ĜR

j .

Push and Shove are both rule sets in which every position is separable. For Push, if
the two pieces to move by Left and Right do not interact with each other, meaning
moving one of them does not push the other, then we have a unique GLR = GRL,
which will be our synchronized option for this pair of options. If one of the pieces to
move does get pushed by the other, then we have either GL ∈ GRL or GR ∈ GLR and
we set the synchronized option to this option. We do the same for Shove, except
here he also have GLR = GRL if one piece to move gets shoved by the other piece.
GL ∈ GRL or GR ∈ GLR only happens when a piece gets moved off the board.

Definition 4.7. We call a synchronized game G = {GL | GS | GR} decided if GS is
the empty matrix.

30

In combinatorial games, we defined the outcome classes N ,P ,L and R. We will
now define a similar concept for synchronized games. Similarly to combinatorial
games, a synchronized game belongs to class L resp. R, if Left resp. Right has a
winning strategy, regardless of the other player’s strategy. The classes N and P do
not make sense for synchronized play, since both players move at the same time.
This means that a game is either won by Left or Right, or both players run out of
moves at the same time: a draw. Games that always result in a draw if both players
play optimally belong to the class D.

While the classes L and R appear both in regular combinatorial game theory and
in synchronized game theory, games that belong to either of those categories as
combinatorial games do not necessarily belong to them as synchronized games.

Example 4.8. Consider the synchronized version of the Push game

P P .

By Lemma 3.2, this game has combinatorial value 3
2
, hence it is in L (as a combina-

torial game). As a synchronized game it is in L as well: Both players only have one
legal move, resulting in the game P , in which only Left can move. Now consider
the game

P + P P ,

which has combinatorial value 1
2
, hence it is in L (as a combinatorial game) as well.

Right now has two legal moves, however Right knows that Left must move the only
piece she has. Left’s move will cause one of Right’s pieces to fall off the board,
so Right’s optimal move is to move that piece first, since it is guaranteed to move
anyway. Indeed, the resulting game is P + P (a draw) if Right moves that piece,
while moving the other piece results in the game P (a Left-player win). Right
can at best force a draw, hence this game is in D as a synchronized game. C

In the game 1
2

in Example 4.8, Rights knows exactly what Left will do and can plan
accordingly. In general, this is not the case. Optimal play may therefore involve
mixed strategies. As a result, we must introduce more classes. Games that, under
optimal play, have a positive chance to result in a draw and a positive chance to
result in a Left-player win belong the the class LD. The class RD is similarly
defined, but with either a draw or a Right-player win. Lastly, there exists the class
LR for games that result in a Left-player or Right-player win and the class LRD
for games that have a positive chance to end with any result.

Example 4.9. Consider two copies of the game from Example 4.8,

P + P P + P + P P .

Both players now have multiple options. The matrix if synchronized moves for this
game is as follows, P + P + P P P + P + P + P P P + P + P + P

P P + P + P P + P + P + P P + P P + P + P

 ,

31

where we have omitted the column belonging to Right’s third piece, as the resulting
synchronized moves are identical to those of his first piece. For Right, two of his
pieces are in danger of being pushed off the board by Left. If Right moves the
piece that would be pushed by Left, the resulting game is P + P + P + P P .
Since P + P adds exactly one move for both players, the outcome of the game
is the same as the outcome of P + P P , i.e., a draw. However, in Left’s case,
it is optimal to move on a strip on which Right does not move, since in this case
two red pieces will move, costing Right an additional move. This results in the
game P + P + P + P , which is guaranteed to be won by Left. We see that
Right wants to move on the same strip as Left, while Left wants to avoid moving
on the same strip as Right. It follows that choosing either of the strips P P with
probability 1

2
for both players is a Nash equilibrium. As the outcome of the game is

either a Left-player win or a draw, the game is in LD. C

Lemma 4.10. Let G be a separable game in canonical form. Then, G is a number.

Proof. Induction on the birthday of G. The only game with birthday 0 is 0 itself,
which is a number in canonical form. Now let G be a separable game in canonical
form of birthday larger than 0. If GL = ∅ or GR = ∅, then we know G is an
integer (Theorem 2.32) and we are done. Now suppose G has both Left and Right
options. By the definitions of separability and canonical form, all options of G are
also separable games in canonical form. Then, by induction, all options of G are
numbers. Since G is in canonical form, by domination, we have a unique Left option
GL and a unique Right option GR. Using the simplest number theorem, G is a
number if GL < GR. Using the separability of G there are three possible ways in
which GL and GR are related. If GR ∈ GLR or GL ∈ GRL, then we immediately have
GL < GR by induction. If GLR ∩ GRL 6= ∅, then we have GL < GLR = GRL < GR.
Thus, in any case we find GL < GR, hence G is a number.

The last part of this proof is very similar to our reasoning in the proof of Theorem
3.3. Indeed, every Push game is separable, so the upcoming Theorem 4.12 can be
used as an alternative argument to show that all Push games are numbers.

Lemma 4.11. Let G be a separable game. Then, can(G) is separable.

Proof. We need to show that G remains separable when options are removed by
domination, or when a reversible option in replaced by the options in its replacing
set. Because G is separable, so too is every position of G, so it is enough to check that
for every Left option GL and every Right option GR of can(G) we have GL ∈ GRL
or GR ∈ GLR or GLR ∩ GRL 6= ∅.

Domination is trivial, as we know that every pair of left and right options of G can
be performed in any order, so removing options still means that any pair of Left and
Right options can be performed in some order. By induction, all options of G can
be brought into canonical form and remain separable, so by Lemma 4.10, all options
of G are numbers. Using domination we then find a unique left option GL and a
unique right option GR and, since every position of G is separable, by induction all
positions of G (except G itself) are numbers, either in canonical form or not. So,

32

we can assume every position of G to have at most one option for Left and at most
one option for Right.

Now, suppose that GL is reversible. Then GLR ≤ G and we replace GL with GLRL,
and we need to check the aforementioned condition for GLRL and GR. If GLRL = ∅,
then we are done. If it’s not, then we consider the three possible ways in which GR

can relate to GL.

If GR ∈ GLR, then GR = GLR. As a result, GLRL ∈ GLRL = GRL.

If GL ∈ GRL, then GL = GRL, so GL < GR. Then, we must also have GL < G < GR

and, since GLR ≤ G, GL is also a reversible option of GR and by reversing it we find
GLRL ∈ GRL.

Finally, if GLR ∩ GRL 6= ∅, then GLR = GRL. We first show that in this case, we
must have GLR = G, by showing that the game GLR −G is a second player win. If
Left begins, she can play to GLRL − G < 0, since GLRL < GLR ≤ G, or she could
play to GLR −GR, from which Right can play to GLR −GRL = 0. If Right begins,
he can either make the same mistake, moving to GLR −GL, where Left can answer
with GLR −GLR = 0. Alternatively, Right can play to GLRR −G, from which Left
can respond by moving to GLRR −GR = GRLR −GR. By induction, we can assume
that GR has no reversible options. Hence, GRLR > GR resulting in a win for Left.
So, G = GLR = GRL, meaning that GR is a reversible option for Right and GR

gets replaced by GRLR. The separability of G then follows by the separability of
GLR = GRL.

Theorem 4.12. If G is a separable game, then G is a number.

Proof. This follows from Lemma 4.10 and Lemma 4.11.

While every separable game is a number, the converse is not true.

Example 4.13. Consider the game G = {−2 | 2}. By the simplest number theorem,
G = 0 as a combinatorial game, hence G is a number. As a synchronized game,
however, G is not separable; we have GL = { | −1} and GR = {1 | }, however,
1 6∈ GLR, −1 6∈ GRL and GLR ∩ GRL = ∅.

C

4.2 Nash synchronization

We have seen that, with synchronized play, numbers behave differently depending
on their game tree. This means that numbers do not form a ring or even a subgroup,
like they do for regular short games. One might still wish to assign some sort of
value to synchronized games. [5] proposes a method where values are determined
by considering sums of moves. However, this method turns out to be problematic
for certain synchronized rule sets. In particular, the Push position

P + P P

33

is a draw and should be given a synchronized value of 0. However, as we will see
later, adding this game to itself gives us a game that is in LD, meaning that it should
be given a value greater than 0. A different approach is to consider a synchronized
game as a zero-sum game.

Definition 4.14. Let G be a synchronized version of a combinatorial rule set, with
decided positions D. We call f : D → R a value function if it has the following
properties.

(i) For H ∈ D with H ∈ L, we have f(H) > 0. Moreover, if every position of H
is a decided win for Left, we have f(H) = can(H).

(ii) For H ∈ D with H ∈ R, we have f(H) < 0. Moreover, if every position of H
is a decided win for Right, we have f(H) = can(H).

(iii) For H ∈ D with HL = HR = HS = ∅, we have f(H) = 0. In other words,
f(0) = 0.

(iv) For H ∈ D, we have f(−H) = −f(H).

Definition 4.15. Let G be a synchronized game and let f be a value function for the
game. For every position H of G, we define its Nash value v(H) to be v(H) = f(H)
if H is decided, or the Nash value of H as a zero-sum game otherwise.

Example 4.16. We compute the synchronized value of the games in Example 4.8.
In the game P P both players have only one option, so GS is a 1 × 1 matrix and
the value of the game is equal to the value of the only possible resulting game,

v
(
P P

)
= v

(
P
)

= 1.

For the game P + P P we have that GS is a 1× 2 matrix, since Right now has two
options. However, we already determined that this game is in D, hence

v
(
P + P P

)
= 0.

C

Theorem 4.17. Let G be a separable synchronized game. Then v(GL) ≤ v(G) ≤
v(GR) for all Left options GL and Right options GR of G.

Proof. Consider an arbitrary Left option GL. Knowing GL, we can determine GR

such that the synchronized move GL+R is the best-case outcome for Right. This
implies that v(GL+R) ≤ v(G). Now we consider the two ways in which we can
perform the move GL+R. First, suppose that GL ∈ GRL, in which case GL+R = GL

by definition and we are done. If this is not the case, then we must have either
GR ∈ GLR or GLR ∩ GRL 6= ∅ by separability, and then GL+R = GLR is a legal
way to perform the synchronized move. From GL we now consider an arbitrary
Left move and assume it is synced with Right’s move, i.e., we consider (GL)L+R.
Then again, either (GL)L+R = GLRL or (GL)L+R = GLLR (or both). If GLRL is
legal, we note that GLRL = (GLR)L and, by induction, v((GLR)L) ≤ v(GLR). If
GLRL is not legal, then GLR ∈ GLLR, hence (GL)L+R = GLR. Thus, in any case we

34

have v((GL)L+R) ≤ v(GLR) ≤ v(G) for any Left move from GL, which implies that
v(GL) ≤ v(G). A symmetric argument holds for GR.

Definition 4.18. Let G be a decided synchronized game. We say that G is terminal
if for all positions H of G, we have that H is decided and o(H) = o(G).

For Push and Shove, the synchronized versions of the integer games are all terminal.
In fact, these are the only terminal positions, since any non-integer game has at
least one piece of each color, meaning that a synchronized move exists and, as a
result, the game is not decided.

Definition 4.19. Let G be a synchronized game. If every decided position of G is
terminal, we call G rebound-free.

Since for Push and Shove, all terminal positions are integers, we know that all
synchronized Push and Shove games are rebound-free. An example of a synchronized
rule set which has non-rebound-free positions is Cherries [2, p. 305]. In Cherries,
there exists positions where one player cannot make a legal move, but every option
of the other player does allow the first player to move. This means that the original
position is decided, while it has options that are not decided, hence the position is
not terminal.

Say that we have a separable synchronized game G + H, where G is not decided
and H is terminal for Left. Then, every position of H is decided for Left. Since
all separable games are numbers, we find that H must be an integer. For regular
combinatorial games, we have seen that Left has a higher incentive to play on G
than on H. This leads to the following conjecture for separable synchronized games.

Conjecture 4.20. Let G,H be separable synchronized games, and assume H is
terminal. Then,

v(G+H) = v(G) + v(H).

In isolation, moving on H decreases its Nash value by 1. Similar to Theorem 2.30,
we would expect G to have a synchronized option which decreases the Nash value
by less than 1. If this is the case for every non-decided game, than Left will ignore
moving on H, from which the above statements follows. However, it turns out
difficult to show the existence of such a move for a general synchronized game. For
Push and Shove, it can be shown.

Theorem 4.21. Let G,H be synchronized versions of Push (or Shove) games, and
assume H is terminal. Then,

v(G+H) = v(G) + v(H)

Proof. We will only show the case for Push. All arguments also hold for Shove.

If G is also terminal, then the statement is trivial. Assume G to be non-terminal and
assume H to be won by Left. We will first show that Left has a move on G which
is at least as good as a move on H, resulting in the move on H getting dominated.

35

Then, we will show that the Nash value of G + H is indeed the sum if the Nash
values of G and H.

Consider the non-terminal game G. Since G is non-terminal, there must be some
move for Left. Consider Left moving her leftmost blue piece on any particular strip
of G. For any arbitrary Right move, the resulting synchronized move will result in

G1 = GL+R +H,

while moving on H will result in

G2 = GR +HL.

By induction, G1, G2 have Nash values

v(G1) = v
(
GL+R

)
+ v(H),

v(G2) = v
(
GR
)

+ v
(
HL
)

= v
(
GR
)

+ v (H)− 1.

There are several cases we need to consider. If the blue piece Left intended to move
would already be moved as a result of Right’s move, i.e., GL+R = GR, then we have

v(G1) = v
(
GL+R

)
+ v(H) = v

(
GR
)

+ v (H) > v
(
GR
)

+ v (H)− 1 = v(G2).

Next, consider the case if Right’s move does not push Left’s piece to move and
Left’s move will not push any other pieces. The resulting games G1 and G2 are then
identical, with the only difference being one blue piece having moved one square to
the left on G in G1 and on H in G2:

G1 = . . . P . . . +�n P ,

G2 = . . . P . . . +�n−1 P ,

where, without loss of generality, we have assumed G to be a single strip and have
written H = �n P , for some n ∈ Z≥0, n = can(H)− 1. First, we need to introduce
some notation. Let A be some game with an m× n matrix AS of synchronized op-
tions. Let pL ∈ ∆m, pR ∈ ∆n be arbitrary strategies for Left and Right, respectively.
Then, we define the value corresponding to these strategies as

vpL,pR(A) =
m∑
i=1

n∑
j=1

pLi p
R
j v(ASij)

Note that for the Nash equilibrium (πL, πR) we have

vπL,πR(A) = v(A).

Since pL and pR possibly non-Nash strategies for each respective player, we have

vpL,πR(A) ≤ v(A) ≤ vπL,pR(A).

36

Now, we couple G1 and G2; we compute the Nash equilibrium for both games. Let
π1 = (πL1 , π

R
1) be the Nash equilibrium of G1 and let π2 = (πL2 , π

R
2) be the Nash

equilibrium of G2. Then, Left will play the Nash strategy of G2 on both games and
Right will play the Nash strategy of G1 on both games. This means that Left will
select the “best” piece to move on G2 and also move the corresponding piece on G1,
and vice versa for Right. By induction, both players will only play on G. We repeat
for each pair of resulting games and stop when the blue piece moved by Left on G1

has fallen off the board, meaning that, eventually, G1 and G2 will be played to

G′1 = . . . +�n P ,

G′2 = P . . . +�n−1 P ,

if this blue piece stays ahead by one square on G1 and, as a result of that, will fall
off the board first, or they will be played to

G′1 = . . . +�n P ,

G′2 = . . . +�n−1 P ,

if some move pushed the corresponding piece on G2 to catch up with the blue piece
on G1, in which case they leave their respective boards in the same turn. In the
second case, it is easy to see that v(G′1) ≥ v(G′2). In the first case, this is also true;
we couple G′1 and G′2 the same way as before, except we say that Left also moves
on �n P in G′1 if Left moves on the leftover blue piece in G′2. If we continue playing
until the leftover blue piece falls off, then we we either arrive at a situation like the
second case or we arrive in a situation where G′1 = G′2. As v(G′1) ≥ v(G′2) holds for
all couples, we have vπL

2 ,π
R
1

(G1) ≥ vπL
2 ,π

R
1

(G2) and thus

v(G1) ≥ vπL
2 ,π

R
1

(G1) ≥ vπL
2 ,π

R
1

(G2) ≥ v(G2).

Lastly, consider the case where, again, Right’s move does not push Left’s piece to
move, but Left’s move now also pushes some other pieces. Because we assumed Left
to move its leftmost blue piece, these pieces can only be red:

G1 = . . . P . . . P P . . . +�n P ,

G2 = . . . P . . . P P . . . +�n−1 P .

We apply the same coupling argument. However, because on G1 some red pieces
have moved one square to the left compared to G2, it is possible that one of such
pieces will fall off the board on G1 first. This does not pose a problem, since Right
plays the Nash equilibrium strategy of G1, therefore he can always move a piece in
both games. We can then continue until we reach one of the pairs G′1, G

′
2 from above

and we are done.

Now that we have shown that a move on H is dominated by moving on G, we will
show that v(G+H) = v(G) + v(H). By definition of Nash value, v(G+H) is given
by the following linear program:

v(G+H) = min

y0

y0 ≥
∑|GR|

j=1 v
(
KSij
)
yj, 1 ≤ i ≤ |GL|+ |HL|,∑|GR|

j=1 yj = 1,

yj ≥ 0, 1 ≤ j ≤ |GR|.

,
37

where KSij is as defined in Definition 4.2. Dominating moves on H means that we
may remove the restrictions corresponding to the rows in the zero-sum game that
correspond to moves on H, giving us the equivalent linear program

v(G+H) = min

y0

y0 ≥
∑|GR|

j=1 v
(
GSij +H

)
yj, 1 ≤ i ≤ |GL|,∑|GR|

j=1 yj = 1,

yj ≥ 0, 1 ≤ j ≤ |GR|.

.
By induction, we have v(GSij +H) = v(GSij)+v(H), so rewriting the restrictions gives
us

v(G+H) = min

y0

y0 ≥ v(H) +
∑|GR|

j=1 v
(
GSij
)
yj, 1 ≤ i ≤ |GL|,∑|GR|

j=1 yj = 1,

yj ≥ 0, 1 ≤ j ≤ |GR|.


= v(H) + min

y0

y0 ≥
∑|GR|

j=1 v
(
GSij
)
yj, 1 ≤ i ≤ |GL|,∑|GR|

j=1 yj = 1,

yj ≥ 0, 1 ≤ j ≤ |GR|.


= v(H) + v(G),

completing the proof.

Example 4.22. We use Theorem 4.21 to simplify the computation of the synchro-
nized value of the game from Example 4.9. We find that

v
(

2 ·
(
P + P P

))
= v

(
2 · P P

)
− 2,

and we now only have to consider the game G = 2 · P P = P P + P P . GS is
now a 2 × 2 matrix, with the diagonal being given by the option of both players
move on the same game and the anti-diagonal being given by the option of moving
on different games,

GS =

 P + P P P + P

P + P P P + P

 .

Using Example 4.16 and Theorem 4.21, we replace each game by its synchronized
value to obtain the zero-sum game associated to G,(

2 3
3 2

)
.

By Theorem 2.39, for both players, choosing either game with probability 1
2

is a
Nash-equilibrium, and the value of the Nash-equilibrium is 5

2
. Thus, we find that

v
(

2 ·
(
P + P P

))
=

5

2
− 2

=
1

2
.

Note that 2v
(
P + P P

)
6= v

(
2 ·
(
P + P P

))
. C

38

Remark 4.23. Because of Theorem 4.21, from now on we will write the game P

as 1. In general, for n > 0, we define the synchronized Push games

n
def
= �n−1 P , −n def

= �n−1 P .

Because every such game n is terminal with Nash value n, we may “add” the games
together like we would regular integers. For example, we write P + P = 2−1 = 1.
While these games are not technically isomorphic, this has no impact on Nash value
and Nash equilibria by Theorem 4.21.

39

5 Synchronized Push

5.1 Halves

We will consider synchronized Push games of combinatorial value 1
2
. To this end,

consider the games

H ′ = −1 + P P and H = 2 + P P ,

where the games −1 and 2 are as defined in Remark 4.23. From H ′, Left can
move to H ′L = −1 + P = −1 + 1 = 0. Right technically has two options,
but by Theorem 4.21, we know Right will not move on −1, hence we only consider
H ′R − 1 + P = −1 + 2 = 1. This also leaves us with the synchronized option
H ′S = −1 + P = 0. In matrix form,

H ′ =

(
1

0 0

)
.

Similarly, for H we find

H =

(
1

0 1

)
.

Using Lemma 3.2 we see that that H ′ = H = 1
2

as combinatorial games. However,
we see that they behave differently as synchronized games; A synchronized turn on
H ′ results in the game −1+1 = 0, a draw, while a synchronized turn on H results in
the game 2 + 1 = 1, a Left-player win. Moreover, we find v(H ′) = 0 and v(H) = 1.

We will now consider n ∈ N copies of either game. It turns out the synchronized
values of n copies satisfy a recurrence relation. The exact recurrence relations differ
between both games, but we will see that the difference between n and n− 1 copies
tends to 1

2
, for both games. In the case of H ′, the recurrence relation of v(nH ′) is

the same as for n copies of a Hackenbush position consisting of a red edge on top of
a blue edge [10], a position which also has combinatorial value 1

2
.

Theorem 5.1. Let un = v(nH ′). Then un satisfies the following recurrence relation:{
un = 1

n
un−1 + n−1

n
(un−2 + 1), n ≥ 3,

u1 = 0, u2 = 1
2
.

Proof. u1, u2 follow from Example 4.16 and Example 4.22, respectively. Now, con-
sider n ≥ 3 copies of H ′. By Theorem 2.39, picking any copy of H ′ with equal
probability is a Nash equilibrium for both players. If both players move on the same
copy of H ′, then the resulting game is

(n− 1)H ′ +H ′S = (n− 1)H ′ + 0 = (n− 1)H ′.

If both players play on different copies of H ′, the resulting game is

(n− 2)H ′ +H ′L +H ′R = (n− 2)H ′ + 0 + 1 = (n− 2)H ′ + 1.

As the former happens with probability 1
n

and the latter with probability n−1
n

, we
arrive at the desired recurrence relation.

40

This recurrence relation is rather ill-behaved. However, it is possible to find a direct
solution for the difference un−un−1. Before we examine the difference sequence, we
will first find a recurrence relation for the Nash value of nH.

Theorem 5.2. Let vn = v(nH). Then, vn satisfies the following recurrence relation.{
vn = 1 + 1

n
vn−1 + n−1

n
vn−2, n ≥ 3,

v1 = 1, v2 = 3
2
.

Proof. We have already seen that v1 = 1. For v2, we know that choosing either copy
of H with probability 1

2
is a Nash equilibrium, so

v2 = 1
2
v
(
H +HS

)
+ 1

2
v
(
HL +HR

)
= 1

2
v (H + 1) + 1

2
v (0 + 1)

= 1
2
v(H) + 1

2
+ 1

2

= 3
2
.

Now, consider n ≥ 3 copies of H. Again, choosing any copy with equal probability
is a Nash equilibrium for both players. Thus, we arrive with probability 1

n
at the

game
(n− 1)H +HS = (n− 1)H + 1,

and with probability n−1
n

at the game

(n− 2)H +HL +HR = (n− 2)H + 0 + 1 = (n− 2)H + 1,

giving us the desired recurrence relation.

This recurrence relation is difficult to solve as well. We see that, even though the
games H and H ′ are equal in the combinatorial sense, the Nash value of n copies of
the games behaves differently.

We will now analyze the difference sequences dn = vn − vn−1 and d′n = un − un−1,
n ≥ 1. We write

d′n = un − un−1

= n−1
n

(1 + un−2) + 1
n
un−1 − un−1

= n−1
n

+ n−1
n
un−2 − n−1

n
un−1

= n−1
n
− n−1

n
d′n−1

= n−1
n

(1− d′n−1).

This gives us the following recurrence relation for d′n,{
d′n = n−1

n
(1− d′n−1), n ≥ 2,

d1 = 0.

41

(a) (b)

Figure 1: Plots of dn (Figure 1a) and d′n (Figure 1b) for n ∈ {1, . . . , 100}. Points
are colored green for n even and blue for n odd.

Similarly for dn we find

dn = vn − vn−1

= 1 + 1
n
vn−1 + n−1

n
vn−2 − vn−1

= 1− n−1
n

(vn−1 − vn−2)

= 1− n−1
n
dn−1,

giving us the recurrence relation{
dn = 1− n−1

n
dn−1, n ≥ 2,

d1 = 1.

The recurrence relations for dn, d
′
n do behave nicely, and we can find a direct formula

for both. As it turns out, both dn, d
′
n will tend to 1

2
, the combinatorial value of both

H and H ′, as n tends to infinity.

Theorem 5.3. For the Push games H and H ′ as defined above, we have limn→∞ v(nH)−
v((n− 1)H) = limn→∞ v(nH ′)− v((n− 1)H ′) = 1

2
.

Proof. Solutions to the recurrence relations of dn and d′n are given by

dn =
2n+ (−1)n−1 + 1

4n
, d′n =

2n+ (−1)n − 1

4n
,

which can be verified by substituting the solutions into their respective recurrence
relation. One can easily see that limn→∞ dn = limn→∞ d

′
n = 1

2
. In fact, for n even

we have dn = d′n = 1
2

exactly.

In Figure 1 we have plotted dn and d′n. In Figure 1a, we see that the subsequence
(d2k+1)k∈Z0 converges to 1

2
from above, while in Figure 1b, we see that the subse-

quence (d′2k+1)k∈Z0 converges to 1
2

from below. This is ultimately caused by the

42

difference in behaviour of H and H ′ when we play synchronized. For both games,
v(H ′L) = v(HL) = 0 and v(H ′R) = v(HR) = 1. However, a synchronized move on
H ′ results in the game 0, while a synchronized move on H results in the game 1.
Consequently, when n is small and the probability to play on the same copy is large,
nH ′ will be more favorable to Right and nH will be more favorable to Left.

We end this section with a small corollary that will be useful in sections to come.

Corollary 5.4. Consider vn = v(nH), n ∈ Z≥0. Then,

vn + 1
2
≤ vn+1 ≤ vn + 1.

Proof. Using the solution to the recurrence relation of dn from the proof of Theorem
5.3, we find that

vn+1 − vn =
2(n+ 1) + (−1)n + 1

4(n+ 1)
≥ 2(n+ 1)

4(n+ 1)
=

1

2
.

For the second inequality, we note that from (n+ 1)H, Right can move to

nH + 1,

which, by Theorem 4.21, has Nash value vn+1. By Theorem 4.17, vn+1 ≤ vn+1.

5.2 Quarters

Now that we have seen how Push games of combinatorial value 1
2

behave, we will
move on to higher powers of 1

2
. To do this, we first define for i, j ∈ N0 the game

Hi,j, given by

Hi,j = 2 +�i P �j P .

Using Lemma 3.2, we see that Hi,0 has combinatorial value 1
2i

, while Hi,j, j ≥ 1 has

combinatorial value 1 − j. The 2 = P component of each Hi,j only serves to
“even the playing field” for Left and to give us the powers of 1

2
. By Theorem 4.21,

Left will always ignore moving on this component until no other possible moves
remain, and it has no impact on the Nash equilibrium, only raising the Nash value
by 2 for each copy of Hi,j. When we mention Left “moving on” a game Hi,j it is
therefore unambiguous what this entails.

In this section we will start by considering the game

H1,0 = 2 + P P ,

which has combinatorial value 1
4
. Possible followers of H1,0 are

H0,0 = 2 + P P ,

which is the result of Right’s solo move or the synchronized move, and

H0,1 = 2 + P P ,

43

the result of a Left solo move. In matrix form,

H1,0 =

(
H0,0

H0,1 H0,0

)
.

In order to compute the Nash value of any number of copies of H1,0, we need to know
the Nash value games consisting of copies of H1,0 and copies of its followers. Note
that H0,0 is the same game as H from Section 5.1, and we have seen how multiples
of this game behave (Theorem 5.2). The game H0,1 is a draw and therefore has
Nash value 0. In fact, any number of copies of H0,1 is a draw, which we prove in the
following lemma.

Lemma 5.5. For all k ∈ N, we have v(kH0,1) = 0.

Proof. We will show that kH0,1 ∈ D for all k ∈ N by induction on k.

The game H0,1 is a draw: Left will not play on her terminal position, so the resulting
game will be

2 + P = 2− 2 = 0 ∈ D.

If we have k > 1 copies of H0,1, then the game is still a draw, as both players pick a
copy uniformly at random. If they play on the same copy, then the resulting game
is

(k − 1)H0,1 + 2 + P = (k − 1)H0,1 + 2− 2 = (k − 1)H0,1,

which is a draw by induction. If they play on different copies, then the resulting
game is

(k − 2)H0,1 + 2 + P + 2 + P P = (k − 2)H0,1 +H0,0 − 1.

Here, Left can force the game to end in a draw at worst by moving on H0,0. If Right
follows suit by moving on H0,0 as well, then the resulting game is

(k − 2)H0,1 + 2 + P − 1 = (k − 2)H0,1,

which is a draw by induction. Finally, if Right moves on a copy of H0,1, then the
resulting game is

(k − 3)H0,1 +H0,0 + 2 + P − 1 = (k − 3)H0,1 +H0,0 − 1,

once again, by induction, ending in a draw.

Having calculated the Nash value of games of the form kH0,1, k ∈ N, the next step
will be to consider games of the form nH0,0 + kH0,1, n, k ∈ N. Since H0,1 is a draw,
one might expect that adding copies of H0,1 has no impact on the Nash value. We
will see that this is indeed the case.

Lemma 5.6. For n, k ∈ Z≥0, we have v(nH0,0 + kH0,1) = v(nH0,0).

44

Proof. We write v(nH0,0) = vn. Using induction on the birthday, we will compute
the zero-sum game a associated with nH0,0 + kH0,1. We will use Theorem 2.40 to
decrease the size of our zero-sum game. Instead of having having, say, n rows and n
column, one for each copy of H0,0, we will only have one row and column for the event
where a player chooses to play on any copy of H0,0. Since all copies are identical,
we know that choosing any copy with equal probability is a Nash equilibrium. By
Theorem 2.40, we replace the matrix block corresponding to both players moving
on H0,0 by the average over all coefficients of this block. We do the same for H0,1

and will do so for any game we might encounter in the future, of which we have
multiple copies.

So, for n, k ∈ Z≥0, consider

nH0,0 + kH0,1 = n ·
(

2 + P P
)

+ k ·
(

2 + P P
)
.

First, consider the event where both players play on a copy of H0,0. If both players
play on the same copy of H0,0, the resulting game will be

G1 = (n− 1)H0,0 + 1 + kH0,1,

while moving on different copies results in the game

G2 = (n− 2)H0,0 + 0 + 1 + kH0,1,

Since each player chooses any copy uniformly at random, the expected Nash value
is, by induction,

1
n
v (G1) + n−1

n
v (G2) = 1

n
(vn−1 + 1) + n−1

n
(vn−2 + 1)

= 1 + 1
n
vn−1 + n−1

n
vn−2

= vn,

where the first equality follows Theorem 4.21 and the second equality follows from
Theorem 5.2.

If Left moves on a copy of H0,0, while Right moves on a copy of H0,1, then the
resulting game is

(n− 1)H0,0 + 0 + (k − 1)H0,1 + 2 + P P = nH0,0 + (k − 1)H0,1,

which has Nash value vn by induction. If Right moves on H0,0, while Left moves on
H0,1, then the resulting game is

(n− 1)H0,0 + 1 + (k − 1)H0,1 + 2 + P = (n− 1)H0,0 + (k − 1)H0,1,

which has Nash value vn−1 by induction.

Lastly, suppose both players play on a copy of H0,1. If they play on the same copy,
the resulting game is

G3 = nH0,0 + (k − 1)H0,1 + 2 + P

= nH0,0 + (k − 1)H0,1,

45

while moving on different copies results in the game

G4 = nH0,0 + (k − 2)H0,1 + 2 + P + 2 + P P

= (n+ 1)H0,0 + (k − 2)H0,1 − 1.

By induction, the expected Nash value is

1
k
v (G3) + k−1

k
v (G4) = 1

k
vn + k−1

k
(vn+1 − 1) .

With these four values, we find the following zero-sum game corresponding to nH0,0+
kH0,1: (

vn vn
vn−1

1
k
vn + k−1

k
(vn+1 − 1)

)
,

where the first row and column correspond to moving on any copy of H0,0 uniformly
at random and the second row and column correspond to moving on any copy of
H0,1 uniformly at random. By Corollary 5.4, vn ≥ vn−1 and vn ≥ vn+1 − 1, so for
Left, moving on a copy of H0,0 dominates moving on a copy of H0,1. As a result,
this zero-sum has a Nash equilibrium with a value of vn.

Now, we are almost ready to examine how copies of the game H1,0 behave. First,
we must consider games consisting of copies of H1,0, H0,0 and H0,1. Once again, the
copies of H0,1 do not contribute to the Nash value of this game.

Lemma 5.7. For m,n, k ∈ Z≥0, we have v(mH1,0 + nH0,0 + kH0,1) = v(mH1,0 +
nH0,0).

Proof. Consider G = mH1,0 +nH0,0 +kH0,1. This proof is similar to that of Lemma
5.6; using induction on the birthday of G, we will compute the Nash values of the
3×3 zero-sum game corresponding to G. Then, we will show that, for both players,
moving on H1,0 dominates moving on H0,1.

We have the following table of synchronized options:

H1,0 H0,0 H0,1

H1,0 Same copy:
(m− 1)H1,0 + (n+ 1)H0,0 + kH0,1

(m−1)H1,0 + (n−1)H0,0 + (k+ 1)H0,1 + 1 (m− 1)H1,0 + (n+ 1)H0,0 + kH0,1

Different copy:
(m− 2)H1,0 + (n+ 1)H0,0 + (k + 1)H0,1

H0,0 (m− 1)H1,0 + nH0,0 + kH0,1 + 0 Same copy:
mH1,0 + (n− 1)H0,0 + kH0,1 + 1

mH1,0 + nH0,0 + (k − 1)H0,1 + 0

Different copy:
mH1,0 + (n− 2)H0,0 + kH0,1 + 0 + 1

H0,1 (m−1)H1,0 + (n+ 1)H0,0 + (k−1)H0,1−1 mH1,0 + (n− 1)H0,0 + (k − 1)H0,1 + 1− 1 Same copy:
mH1,0 + nH0,0 + (k − 1)H0,1 + 0
Different copy:
mH1,0+(n+1)H0,0+(k−2)H0,1−1

Writing vm,n = v(mH1,0 + nH0,0), we can compute the Nash values of the above

46

games. The zero-sum game associated with G is then given by

1
m
vm−1,n+1 vm−1,n−1 + 1 vm−1,n+1+m−1
m
vm−2,n+1

vm−1,n

1
n
(vm,n−1 + 1)

vm,n+n−1
n

(vm,n−2 + 1)

vm−1,n+1 − 1 vm,n−1

1
k
vm,n

+k−1
k

(vm,n+1 − 1)

 .

We will start by showing that the first column dominates the third column, which
corresponds to moving on H1,0 dominating moving on H0,1 for Right. To do this,
we will first show that vm,n is non-decreasing in m.

For arbitrary m′, n′ ∈ Z≥0, we have that from (m′ + 1)H1,0 + n′H0,0, Left can move
to m′H1,0 + n′H0,0 + H0,1. By induction, this game has Nash value vm′,n′ and, by
Theorem 4.17, we find vm′,n′ ≤ vm′+1,n′ .

Now, by the above statement, for the first two rows we find

1
m
vm−1,n+1 + m−1

m
vm−2,n+1 ≤ vm−1,n+1,

and

vm−1,n ≤ vm,n.

For the third row, we only have vm−1,n+1−1 ≤ vm,n+1−1. To see that also vm−1,n+1−
1 ≤ vm,n, we use that vm,n+1 ≤ vm,n + 1. To see that this is true, consider a game
with m copies of H1,0 and n+ 1 copies of H0,0, and consider Right moving on a copy
of H0,0. As a result,

vm−1,n+1 − 1 ≤ vm,n+1 − 1

≤ vm,n,

hence the third column gets dominated by the first column. We will now show
domination for Left. Similarly to the columns, the first row dominates the third
row. Because the third column has been removed, we only have to check the first
two columns. To this end, we first show the following.

For arbitrary m′, n′ ∈ Z≥0, consider (m′+1)H1,0 +n′H0,0. Using two Right moves on
a copy of H1,0, we arrive at the game m′H1,0+n′H0,0+ P + P . Consequently,
vm′+1,n′ ≤ vm′,n′ + 1 for any m′, n′ ≥ 0.

As a result of the above, we find

1
m
vm−1,n+1 + m−1

m
vm−2,n+1 ≥ 1

m
vm−1,n+1 + m−1

m
(vm−1,n+1 − 1)

= vm−1,n+1 − m−1
m

> vm−1,n+1 − 1,

and
vm−1,n−1 + 1 ≥ vm,n−1,

47

showing that for Left, moving on H1,0 dominates moving on H0,1 as well.

Now, we must show that the Nash value of G is indeed vm,n. Both player will ignore
all copies of H0,1 and only play strategies involving H1,0 and H0,0. We have not
computed the Nash equilibrium of G yet, however, we know that any resulting game
will again be of the form m′H1,0 + n′H0,0 + k′H0,1, m′, n′, k′ ∈ Z≥0, with possibly
some additional terminal values. Terminal values are ignored and inductively, both
players will continue to ignore H0,1 until no copies of H1,0 are left. At this point,
only copies of H0,0 and H0,1 and terminal positions are left, and Lemma 5.6 tells us
that the copies of H0,1 are irrelevant for the Nash value of this game. Since this holds
for any game that can result from the Nash equilibrium, we have that the number
of copies of H0,1 in G is irrelevant for its Nash value, hence v(G) = vm,n.

In the proof of Lemma 5.7 we also showed some properties of vm,n that are similar
to Corollary 5.4. These properties are as follows.

Lemma 5.8. Consider vm,n = v(mH1,0 + nH0,0), m,n ∈ Z≥0. Then,

(i) vm,n ≤ vm+1,n ≤ vm,n + 1,

(ii) vm,n ≤ vm,n+1 ≤ vm,n + 1,

(iii) vm+1,n ≤ vm,n+1.

Proof. Let m,n ∈ Z≥0 and consider G = (m + 1)H1,0 + nH0,0. Right can move to
GR = mH1,0 + (n + 1)H0,0. From GR, Left can move to GRL = mH1,0 + nH0,0 + 0.
By Theorem 4.17, vm+1,n ≤ vm,n+1 and vm,n ≤ vm,n+1. For the three remaining
inequalities, see the proof of Lemma 5.7.

In Lemma 5.7 we have shown that, in a game consisting of copies of H1,0, copies of
H0,0 and copies of H0,1, both players will avoid moving on H0,1. We can use this
to more easily compute the Nash equilibrium for games of this form. In Table 1,
we have computed vm,n for different values of m,n by solving the associated linear
program. In the games for which we computed the Nash value we found that, if n
is large enough, the Nash equilibrium consists of a deterministic strategy. If m ≥ 2,
then the Nash equilibrium is to move on any copy of H1,0 uniformly at random for
both players, while if m = 1, the Nash equilibrium is for Left to move on H1,0, while
Right moves on any copy of H0,0 uniformly at random. In the following theorems
we will show that this is indeed the case.

Theorem 5.9. Let G = H1,0 + nH0,0, for n ≥ 4. Then, Left moving on H1,0

and Right moving on any copy of H0,0 uniformly at random is a Nash equilibrium.
Consequently, v(G) = vn−1 + 1.

Proof. We use induction on n. Consider G = H1,0 + nH0,0. For n = 4 and n = 5,
we see in Table 1 that the statement holds. For n ≥ 6, we have the following table
of synchronized options:

48

m \ n 0 1 2 3 4 5 6 7
0 0 1 1.5 2.1667 2.6667 3.2667 3.7667 4.3381
1 1 1.3333 2.0333 2.5196 3.1667 3.6667 4.2667 4.7667
2 1.1667 1.7667 2.3363 2.9167 3.4667 4.0167 4.5524 5.0881
3 1.4778 2.1343 2.6520 3.2667 3.7833 4.3619 4.8738 5.4307
4 1.8586 2.4152 3.0042 3.5458 4.1030 4.6327 5.1737 5.6969
5 2.1905 2.7224 3.3225 3.8473 4.4161 4.9338 5.4839 5.9977
6 2.4664 3.0572 3.5961 4.1552 4.6829 5.2254 5.7470 6.2803
7 2.7702 3.3616 3.8912 4.4542 4.9755 5.5215 6.0381 6.5745

Table 1: The Nash value vm,n = v(mH1,0 +nH0,0) for different values of m,n. Values
have been rounded to four decimal places. For the values marked in red, the Nash
equilibrium consists of mixed strategies for both players. For the unmarked values,
the Nash equilibrium consists of deterministic strategies for both players.

H1,0 H0,0

H1,0 (n+ 1)H0,0 (n− 1)H0,0 +H0,1 + 1
H0,0 nH0,0 + 0 Same copy:

H1,0 + (n− 1)H0,0 + 1
Different copy:
H1,0 + (n− 2)H0,0 + 0 + 1

Using Lemma 5.7 to compute the Nash values of the synchronized options, we find
that the zero-sum game associated to G is(

vn+1 vn−1 + 1
vn 1 + 1

n
v1,n−1 + n−1

n
v1,n−2

)
.

We will show that vn−1 + 1 is a saddle point. By Corollary 5.4,

vn+1 ≥ vn + 1
2

≥
(
vn−1 + 1

2

)
+ 1

2

= vn−1 + 1,

showing that vn−1 + 1 is the smallest value of its row. Now, we show that it is the
largest value of its column. By induction, we know that on the games H1,0 + (n −
1)H0,0 and H1,0 + (n − 2)H0,0, Left moving on H1,0 and Right moving on H0,0 is a
Nash equilibrium. As a result,

v1,n−1 = vn−2 + 1,

v1,n−2 = vn−3 + 1.

This gives us

1 + 1
n
v1,n−1 + n−1

n
v1,n−2 = 1 + 1

n
(vn−2 + 1) + n−1

n
(vn−3 + 1)

= 2 + 1
n
vn−2 + n−1

n
vn−3

≤ 2 + 1
n−1

vn−2 + n−2
n−1

vn−3

= 1 + vn−1,

49

where the inequality comes from the fact that vn is increasing in n (Corollary 5.4)
and the last equality uses the recurrence relation of vn (Theorem 5.2).

We have
vn+1 ≥ vn−1 + 1 ≥ 1 + 1

n
v1,n−1 + n−1

n
v1,n−2,

so vn−1 +1 is a saddle point, hence the corresponding strategy is a Nash equilibrium,
and v(G) = vn−1 + 1.

Theorem 5.10. Let G = mH1,0+nH0,0, for m ≥ 1. Then, there exists an N(m) ≥ 1
such that for all n ≥ N(m), choosing any copy of H1,0 uniformly at random is a
Nash equilibrium for both players.

Proof. Consider G = mH1,0+nH0,0, for m ≥ 2 and n ≥ 1. The synchronized options
of G are

H1,0 H0,0

H1,0 Same copy:
(m− 1)H1,0 + (n+ 1)H0,0

(m− 1)H1,0 + (n− 1)H0,0 +H0,1 + 1

Different copy:
(m− 2)H1,0 + (n+ 1)H0,0 +H0,1

H0,0 (m− 1)H1,0 + nH0,0 + 0 Same copy:
mH1,0 + (n− 1)H0,0 + 1
Different copy:
mH1,0 + (n− 2)H0,0 + 0 + 1

This gives us the following zero-sum game:(
1
m
vm−1,n+1 + m−1

m
vm−2,n+1 vm−1,n−1 + 1

vm−1,n 1 + 1
n
vm,n−1 + n−1

n
vm,n−2

)
.

First, by Lemma 5.8, vm−1,n ≤ vm−2,n+1 and vm−2,n+1 ≤ vm−1,n+1, so we have

vm−1,n ≤ vm−2,n+1

≤ 1
m
vm−1,n+1 + m−1

m
vm−2,n+1.

Next, we will find anN ≥ 1 and show that for all n ≥ N : 1
m
vm−1,n+1+m−1

m
vm−2,n+1 ≤

vm−1,n−1 + 1. This is considerably more work. Consider

G1 = (m− 1)H1,0 + (n− 1)H0,0 + 1,

G2 = (m− 2)H1,0 + (n+ 1)H0,0,

G3 = (m− 1)H1,0 + (n+ 1)H0,0,

which have Nash value vm−1,n−1 +1, vm−2,n+1 and vm−1,n+1, respectively, and we will
show that 1

m
v(G3) + m−1

m
v(G2) ≤ v(G1). We couple G1, G2 and G3. By induction

on m, both players will play on copies of H1,0 until only one is left or none are left.
Let us define the stochastic process X given by X(0) = 0, X(1) = −1, and

X(k) =

{
1 +X(k − 1), w.p. 1

k
,

1 +X(k − 2), w.p. k−1
k

,

50

for 1 < k < m. X(k) models the number of copies of H0,0 that we gain when we
start with a game kH1,0 and play according to the Nash equilibrium strategy. Note
that when the process lands on X(1), we must play according to Theorem 5.9 and
a copy of H0,0 becomes P + P = 1. We also introduce a sequence of random
variables Zk, given by

Zk =

{
1, w.p. 1

k
,

0, w.p. k−1
k

.

We consider three copies of the process X, say X1, X2 and X3. For k = 2, . . . ,m− 1
we couple them by setting

Xi(k) = 1 + ZkXi(k − 1) + ZkXi(k − 2), i = 1, 2, 3.

This gives us X1(k) = X2(k) = X3(k) for k = 0, 1, . . . ,m − 1. The games G1, G2

and G3 then result in the games

G′1 = (n− 1 +X1(m− 1))H0,0 + 1 + 1 · 1{X1(m− 1) lands on 1},

G′2 = (n+ 1 +X2(m− 2))H0,0,+1 · 1{X2(m− 2) lands on 1},

G′3 = (n+ 1 +X3(m− 1))H0,0,+1 · 1{X3(m− 1) lands on 1},

and we have v(Gi) = EZ2,...,Zm−1 [v(G′i)] for i = 1, 2, 3. We have omitted the copies
of H0,1 that are created every time the players play on different copies of H1,0, since
removing them does not change the Nash equilibrium or the Nash value. Now, let

` =

{
max{2 ≤ k ≤ m− 1 : Zk = 1}, if Zk = 1 for some 2 ≤ k ≤ m− 1,

0, otherwise.

Here, ` = 0 denotes the event {Z2 = Z3 = · · · = Zm−1 = 0}, while ` ≥ 2 tells us the
the first time both players play on the same copy of H1,0.

First, consider the case ` = 0. Then, a copy of X starting at m − 1 and a copy of
X starting at m− 2 will never meet. If m is even, then both use the same amount
of “jumps” before they reach 0 or 1:

Zk :

k :

000.0

m− 1m− 2m− 3.210

Because the total number of jumps is m−2
2

, we have

X(m− 2) = m−2
2

+X(0) = m−2
2
,

X(m− 1) = m−2
2

+X(1) = m−2
2
− 1.

51

If we set n′ = n + X(m − 1) = n + m−2
2
− 1, then Nash values of G′1, G

′
2, G

′
3 given

` = 0 are

v(G′1) = vn′−1 + 2,

v(G′2) = vn′+2,

v(G′3) = vn′+1 + 1.

Since v(G′2) ≤ v(G′3), we have

1
m
v(G′3) + m−1

m
v(G′2) ≤ 1

2
v(G′3) + 1

2
v(G′2)

= 1
2
(vn′+1 + 1) + 1

2
vn′+2

= 1
2
(vn′−1 + dn′ + dn′+1 + 1) + 1

2
(vn′−1 + dn′ + dn′+1 + dn′+2)

= vn′−1 + dn′ + dn′+1 + 1
2
dn′+2 + 1

2
.

We know that di = 1
2

for even values of i, while the subsequence d2i+1 is strictly
decreasing with limit 1

2
. For n′ = 2 and n′ = 3 we have

d2 + d3 + 1
2
d4 + 1

2
= 1

2
+ 2

3
+ 1

2
· 1

2
+ 1

2
= 23

12
≤ 2,

d3 + d4 + 1
2
d5 + 1

2
= 2

3
+ 1

2
+ 1

2
· 3

5
+ 1

2
= 59

30
≤ 2.

Hence, for n′ ≥ 2 we have dn′ + dn′+1 + 1
2
dn′+2 + 1

2
≤ 2, and thus

1
m
v(G′3) + m−1

m
v(G′2) ≤ vn′−1 + 2 = v(G′1).

If ` = 0, but m is odd, then the process starting at m− 1 makes an additional jump
compared to the process starting at m− 2:

Zk :

k :

000.0

m− 1m− 2m− 3.210

Now, we have

X(m− 2) = m−1
2

+X(1)− 1 = m−1
2
− 2,

X(m− 1) = m−1
2

+X(0) = m−1
2
.

Setting n′ = n+X(m− 1) = n+ m−1
2

, then the Nash values of G′1, G
′
2, G

′
3 are

v(G′1) = vn′−1 + 1,

v(G′2) = vn′−1 + 1,

v(G′3) = vn′+1.

Again, v(G′2) ≤ v(G′3), so we have

1
m
v(G′3) + m−1

m
v(G′2) ≤ 1

3
v(G′3) + 2

3
v(G′2)

= 1
3
vn′+1 + 2

3
(vn′−1 + 1)

= 1
3
(vn′−1 + dn′ + dn′+1) + 2

3
(vn′−1 + 1).

52

Since di converges to 1
2

from above, we have dn′+dn′+1 > 1 for all n′, hence 1
m
v(G′3)+

m−1
m
v(G′2) � vn′−1 + 1 = v(G′1). Instead, for n′ ≥ 2, we have

1
3
(dn′ + dn′+1 − 1) ≤ 1

3

(
1
2

+ 2
3
− 1
)

= 1
18
< 1

10
,

giving us

1
m
v(G′3) + m−1

m
v(G′2) ≤ v(G′1) + 1

10
.

When the time comes to put everything together, we will see that this is enough.

We continue with the case ` ≥ 2. If ` ≡ m mod 2, then a copy of X starting from
m− 1 will reach `− 1 with the same number of “jumps” as a coupled copy starting
from m− 2:

Zk :

k :

. . .

. . .

000.01...

m− 1m− 2m− 3.`+ 1``− 1

In contrast, if ` ≡ m − 1 mod 2, then a process starting form m − 1 needs an
additional jump to get to the same point as a coupled copy that starts at m− 2:

Zk :

k :

. . .

. . .

000.01...

m− 1m− 2m− 3.`+ 1``− 1

Since from ` onward they follow the same path, we find

X(m− 1) =

{
X(m− 2) + 1, if ` ≡ m− 1 mod 2,

X(m− 2), if ` ≡ m mod 2.

and we know that either X1(m− 1), X2(m− 2), X3(m− 1) all land on 1 or they all
land on 0. We once again set n′ = n+X(m− 1). This time, n′ is still a stochastic
value. By slight abuse of notation, we can say that the Nash values of G′1, G

′
2, G

′
3

are

v(G′1) = vn′−1 + 1 + 1{X1(m− 1) lands on 1},

v(G′2) =

{
vn′ + 1{X1(m− 1) lands on 1}, if ` ≡ m− 1 mod 2,

vn′+1 + 1{X1(m− 1) lands on 1}, if ` ≡ m mod 2,

v(G′3) = vn′+1 + 1{X1(m− 1) lands on 1}.

53

Note that v(G′2) ≤ v(G′3). For ` ≡ m− 1 mod 2, we get

1
m
v(G′3) + m−1

m
v(G′2)− v(G′1) ≤ 1

2
v(G′3) + 1

2
v(G′2)− v(G′1)

= 1
2
vn′+1 + 1

2
vn′ − vn′−1 − 1

= 1
2
(vn′−1 + dn′ + dn′+1) + 1

2
(vn′−1 + dn′)− vn′−1 − 1

= dn′ +
1
2
dn′+1 − 1.

Since dn′ +
1
2
dn′+1 converges to 3

4
, we can choose a stricter upper bound to solve the

problem we had earlier. We have

d4 + 1
2
d5 − 1 = 1

2
+ 1

2
· 3

5
− 1 = −1

5
≤ − 1

10
,

d5 + 1
2
d6 − 1 = 3

5
+ 1

2
· 1

2
− 1 = − 3

20
≤ − 1

10
.

As a result, we have

1
m
v(G′3) + m−1

m
v(G′2)− v(G′1) ≤ − 1

10
,

for n′ ≥ 4. For ` ≡ m mod 2, we run into the same problem:

1
m
v(G′3) + m−1

m
v(G′2)− v(G′1) = vn′+1 − vn′−1 − 1

= dn′ + dn′+1 − 1.

Now, d4 + d5 − 1 = 1
2

+ 3
5
− 1 = 1

10
, hence

1
m
v(G′3) + m−1

m
v(G′2)− v(G′1) ≤ 1

10
,

for n′ ≥ 4.

We now have multiple inequalities, all of which hold for n′ ≥ 4, where n′ = n+X(m−
1). In the worst case, only half of the m − 1 copies of H1,0 we began with become
copies of H0,0 and we land on 1, losing a copy. In other words, X(m−1) =

⌈
m−1

2

⌉
−1.

So, at worst we need to have at least

n+
⌈
m−1

2

⌉
− 1 ≥ 4

n ≥ 5−
⌈
m−1

2

⌉
.

Thus, we set
N(m) = max

{
1, 5−

⌈
m−1

2

⌉}
.

Now to compute the relevant probabilities. Since the Zk are independent, we have,
for 2 ≤ k ≤ m− 1,

P(` = k) = P(Zk = 1)
m−1∏
j=k+1

P(Zj = 0)

= 1
k
·
(

k
k+1
· k+1
k+2
· ... · m−2

m−1

)
= 1

m−1
.

54

For ` = 0, we have

P(` = 0) = 1− P(` 6= 0)

= 1−
m−1∑
k=2

P(` = k)

= 1− m−2
m−1

= 1
m−1

.

Furthermore, for ` ≥ 2, we have

P(` ≥ 2, ` ≡ m− 1 mod 2) =

{
m−2

2
· 1
m−1

, if m even,
m−1

2
· 1
m−1

, if m odd,

P(` ≥ 2, ` ≡ m mod 2) =

{
m−2

2
· 1
m−1

, if m even,(
m−1

2
− 1
)
· 1
m−1

, if m odd.

Putting this all together, for m even, we have

EZ2,...,Zm−1

[
1
m
v(G′3) + m−1

m
v(G′2)− v(G′1)

]
≤ P(` = 0) · 0
+ P(` ≥ 2, ` ≡ m− 1 mod 2) · − 1

10

+ P(` ≥ 2, ` ≡ m mod 2) · 1
10

= −m−2
2
· 1
m−1
· 1

10
+ m−2

2
· 1
m−1
· 1

10

= 0.

Similarly, for m odd we have

EZ2,...,Zm−1

[
1
m
v(G′3) + m−1

m
v(G′2)− v(G′1)

]
≤ P(` = 0) · 1

10

+ P(` ≥ 2, ` ≡ m− 1 mod 2) · − 1
10

+ P(` ≥ 2, ` ≡ m mod 2) · 1
10

= 1
m−1
· 1

10
− m−1

2
· 1
m−1
· 1

10

+
(
m−1

2
− 1
)
· 1
m−1
· 1

10

= 0.

Both hold for all n ≥ N(m), completing the proof.

Remark 5.11. In the proof of Theorem 5.10 we found

N(m) = max
{

1, 5−
⌈
m−1

2

⌉}
.

which is non-increasing in m. This was a conservative estimate and as we saw
in Table 1, for lower values of m we have overestimated the true value of N(m).
However, this proof does show that N(m) = 1 for all m ≥ 8, which will be important
later.

55

Theorem 5.9 and Theorem 5.10 tell us exactly how a game starting with m copies
of H1,0 plays out, provided that m and n satisfy n ≥ N(m). Let us first assume
that this holds for all m,n to build a two-dimensional recurrence relation for vm,n
and for the difference dm,n = vm,n − vm−1,n. Then, we will argue for which values of
m,n our recurrence relations follow the true Nash value of mH1,0 + nH0,0.

Assuming Theorem 5.9 and Theorem 5.10 hold for all m,n, we know that moving
on any copy of H1,0 uniformly at random for both players is a Nash equilibrium, if
m ≥ 2. If m = 1, then Left moving on H1,0 and Right moving on a copy of H0,0 is
a Nash equilibrium. This gives us the following two-dimensional recurrence relation
for vn,m: 

vm,n = 1
m
vm−1,n+1 + m−1

m
vm−2,n+1, m ≥ 2

v1,n = vn−1 + 1,

v0,n = vn.

Similar to the recurrence relation of vn, this too is difficult to analyze directly. We
once again turn to the difference dm,n = vm,n − vm−1,n. Using the above recurrence
of vm,n, we find, for m ≥ 3:

dm,n =
(

1
m
vm−1,n+1 + m−1

m
vm−2,n+1

)
−
(

1
m−1

vm−2,n+1 + m−2
m−1

vm−3,n+1

)
= 1

m
vm−1,n+1 + (m−1)2−m

m(m−1)
vm−2,n+1 − m−2

m−1
vm−3,n+1

= 1
m
vm−1,n+1 − 1

m
vm−2,n+1 + m−2

m−1
vm−2,n+1 − m−2

m−1
vm−3,n+1

= 1
m
dm−1,n+1 + m−2

m−1
dm−2,n+1.

For m = 2 we have

d2,n = v2,n − v1,n

= 1
2
v1,n+1 − 1

2
v0,n+1 − vn−1 − 1

= 1
2
vn + 1

2
+ 1

2
vn+1 − vn−1 − 1

= 1
2
vn+1 − 1

2
vn + vn − vn−1 − 1

2

= 1
2
dn+1 + dn − 1

2
,

and lastly,

d1,n = v1,n − v0,n

= vn−1 + 1− vn
= 1− dn.

This gives us the following two-dimensional recurrence relation for dm,n:
dm,n = 1

m
dm−1,n+1 + m−2

m−1
dm−2,n+1, m ≥ 3

d2,n = 1
2
dn+1 + dn − 1

2
,

d1,n = 1− dn.

By Theorem 5.9, we know that v1,n = vn−1 + 1 holds for n ≥ 4. Hence, d1,n = 1−dn
also holds for n ≥ 4. For m ≥ 2, we see that vm,n is a function of vm−1,n+1 and

56

Figure 2: dm,0 for m ∈ {10, . . . , 500}. The line y = 1
4

is drawn in red. Points are
given a color based on the value of their index modulo 4.

vm−2,n+1. Likewise, dm,n is a function of dm−1,n+1 and dm−2,n+1. The function N(m)
we found in the proof of Theorem 5.10 has N(2) = 4 and decreases by 1 if m increases
by 2. We can work out that, for m ≥ 10, vm,0 depends only on games vm′,n′ such
that n′ ≥ N(m′). As a result, for m ≥ 10, we find that vm,0 and dm,0 coincide with
the true values for mH1,0. Finding an analytical solution to this recurrence relation
is difficult. Calculating the values directly, we see that dm,0 appears to converge to
1
4

(Figure 2), which is the combinatorial value of H1,0. We can prove that this is
indeed the case.

First, we will point out another interesting phenomenon we see in Figure 2, which is
that the points appear to converge to 1

4
with four distinct subsequences. In Section

5.1, we saw the same thing happen with dn with two subsequences (d2n)n∈Z≥0
and

(d2n)n∈Z≥0
, and one of them happened to be a constant sequence. Here, we have the

four subsequences (dkm,0)m∈Z≥0
, k = 1, 2, 3, 4. It is not immediately clear from the

recurrence relation of dm,n why this pattern emerges.

Now, let us provide a proof that dm,n does indeed converge to 1
4

as m tends to
infinity.

Theorem 5.12. limm→∞ v(mH1,0 − (m− 1)H1,0) = 1
4
.

Proof. For n ∈ Z≥0, we define the stochastic process X(n) by X(0) = 0, X(1) = 1
with probability 1 and

X(n) =

{
1 +X(n− 1), w.p. 1

n
,

1 +X(n− 2), w.p. n−1
n

.

If we start with n copies of H0,0, then X(n) models the number of copies of P +
P = 1 that are generated. Hence, EX(n) = v(nH0,0) and, by Theorem 5.3, we

57

have E[X(n) − X̃(n − 1)] → 1
2

for n → ∞ for any two copies X, X̃ of the process.
Likewise, we define the process Y (m) by Y (0) = 0, Y (1) = −1 with probability 1
and

Y (m) =

{
1 + Y (m− 1), w.p. 1

m
,

1 + Y (m− 2), w.p. m−1
m

,

By Theorem 5.9 and Theorem 5.10, for m ≥ 10, Y (m) models the number of copies
of H0,0 that are generated when we start with m copies of H1,0. If we define the
indicator random variable W (m) = 1{Y (m) lands on 1}, then we have E[X(Y (m)) +
W (m)] = v(mH1,0).

Now, suppose that we have two copies of the process X, say X and X̃, and two copies
of the process Y , say Y and Ỹ , with their respective W and W̃ . For k = 2, . . . ,m,
we define the random variables Zk by

Zk =

{
1, w.p. 1

k
,

0, w.p. k−1
k

.

We couple X and X̃ for all k = 2, . . . ,m by setting

X(k) = 1 + ZkX(k − 1) + (1− Zk)X(k − 2),

and
X̃(k) = 1 + ZkX̃(k − 1) + (1− Zk)X̃(k − 2).

We couple Y and Ỹ for all k = 2, . . . ,m analogously. By coupling the stochastic
processes, we have X(k) = X̃(k), Y (k) = Ỹ (k) for all k = 2, . . . ,m. Once again, let

` =

{
max{2 ≤ k ≤ m− 1 : Zk = 1}, if Zk = 1 for some 2 ≤ k ≤ m− 1,

0, otherwise.

We know that P(` = 0) = 1
m
→ 0 as m→∞ (proof Theorem 5.10), so we only have

to consider the case of ` 6= 0. For k = 2, . . . ,m, if k ≡ ` mod 2, then

X(k) = 1 +X(k − 2) = 2 +X(k − 4) = · · · = k−`
2

+X(`) = k−`
2

+ 1 +X(`− 1),

and

X̃(k − 1) = 1 + X̃(k − 3) = 2 + X̃(k − 5) = · · · = k−`
2

+X(`− 1).

Similarly, if k ≡ `− 1 mod 2, then

X(k) = k−`−1
2

+X(`+ 1) = k−`−1
2

+ 1 +X(`− 1),

and

X̃(k − 1) = k−`−1
2

+X(`) = k−`−1
2

+ 1 +X(`− 1),

In both cases, we find X(k)− X̃(k − 1) ∈ {0, 1}. It follows that

P(X(n)− X̃(n− 1) = 1) = E[X(n)− X̃(n− 1)]→ 1

2
.

58

These arguments also hold for Y and Ỹ . Moreover, we have E[W (m)−W̃ (m−1)]→
0 as m→∞, since P(W (m)− W̃ (m− 1) 6= 0) = P(` = 0)→ 0. Now, we compute

limm→∞ E[X(Y (m)) +W (m)− X̃(Ỹ (m− 1))− W̃ (m− 1)]

= limm→∞ E[X(Y (m))− X̃(Ỹ (m− 1))]

= limm→∞

(
E[X(Y (m))− X̃(Ỹ (m− 1)) | Y (m)− Ỹ (m− 1) = 1]

·P(Y (m)− Ỹ (m− 1)) = 1)

+ E[X(Y (m))− X̃(Ỹ (m− 1)) | Y (m)− Ỹ (m− 1) = 0]

·P(Y (m)− Ỹ (m− 1)) = 0)
)

= 1
2
· 1

2
+ 0 · 1

2

= 1
4
.

Note that limm→∞ E[X(Y (m)) − X̃(Ỹ (m − 1)) | Y (m) − Ỹ (m − 1) = 1] = 1
2

only

holds if Y (m), Ỹ (m− 1)→∞ as m→∞, but this is true by definition.

5.3 Eighths

We have now seen that for two Push games with combinatorial value 1
2
, when we

have n copies of such a game G, then the difference in Nash value v(nG)−v((n−1)G)
converges to 1

2
. We have seen the same happen with a Push game with combinatorial

value 1
4
. We arrive at the following conjecture.

Conjecture 5.13. Let G be a separable combinatorial game. Then,

lim
n→∞

(
v(nG)− v((n− 1)G)

)
= can(G).

In [10], this has been shown to hold true for various Hackenbush positions, including
Hackenbush “flowers”, which are positions with combinatorial value 1

2n
for n ≥ 1.

The proof for Hackenbush flowers is analogous to the proof of Theorem 5.12. With
Hackenbush flowers, it is a Nash equilibrium for both players to move on the flowers
that are the highest power of 1

2
in combinatorial value, similar to how, with Push,

both players first move on H1,0 until one or none remain(s). With Hackenbush
flowers, however, a Right solo move on a flower 1

2n
turns it into a flower 1

2n−1 and
a Left solo move or a synchronized move removes the flower entirely. As a result,
a game consisting of any number of Hackenbush flowers will always remain a game
of only flowers, which lends itself well to an induction argument. In contrast, we
saw that a game consisting of copies of the Push position H1,0 eventually contains
copies of the position H0,1, which has combinatorial value 0. In the case of H0,1,
we showed that this game can be ignored (Lemma 5.6 and Lemma 5.7). However,
it turns out that when we examine Push games of higher powers of 1

2
, then these

types of non-fractional games will result in entirely different Nash equilibria from
what we have seen before, preventing us from using a similar induction argument.

59

Consider the Push game
H2,0 = 2 + P P ,

which has combinatorial value 1
8
. In matrix form,

H2,0 =

(
H1,0

H1,1 H1,0

)
.

When we compute the Nash value of n copies of H2,0, it does appear as if Conjecture
5.13 holds true in this case as well (Figure 3). We also see the same subsequence
pattern as with H0,0 and H1,0. However, we are unable to provide a proof that

Figure 3: Plot of v(nH2,0) − v((n − 1)H2,0) for n ∈ {1, . . . , 19}. The line y = 1
8

is
drawn in red. Points are given a color based on the value of their index modulo 8.

limn→∞(v(nH2,0)− v((n− 1)H2,0)) = 1
8
. We will discuss some of our findings.

Consider a game consisting of some number of copies of H2,0. As usual, both players
will choose to move on any of the copies uniformly at random, leading to a game of
the form

mH2,0 + nH1,0 + kH1,1.

Similar to what we saw with 1
4
, both players will continue to move on a copy of H2,0,

as long as m ≥ 2. If m = 1, then Left will move on H2,0 and Right will move on a
copy of H1,0. When all copies of H2,0 are “gone”, our game only consists of copies of
H1,0, H1,1 and possibly a copy of H0,0. We have H1,1 ∈ D; however, H1,1 does have
an impact on the Nash value and Nash equilibrium.

Example 5.14. Consider the Push game

G1 = H0,0 +H1,1.

The synchronized options of G1 are

GS1 =

(
1 +H1,1 0 +H1,0

1 +H0,2 H0,0 +H0,1

)
,

60

where the first row and column correspond to moving on H0,0 and the second row
and column correspond to moving on H1,1. Since v(H0,0 +H0,1) = v(H0,0) (Lemma
5.6), we find the following zero-sum game associated to G1:(

1 1
0 1

)
.

We see that moving on H0,0 dominates moving on H1,1 for Left, hence v(G1) = 1.
Now, consider the game

G2 = 2H0,0 +H1,1.

G2 has the following table of synchronized options:

H0,0 H1,1

H0,0 Same copy: 1 +H0,0 +H1,1 0 +H0,0 +H1,0

Different copy: 0 + 1 +H1,1

H1,1 1 +H0,0 +H0,2 2H0,0 +H0,1

The game H0,0 + H0,2 is a draw: Both players move on H0,0, resulting in the game
1 +H0,2 ∈ D. This gives us the zero-sum game(

3
2

4
3

1 3
2

)
.

Here, we find that
((

1
4
, 3

4

)>
,
(

3
4
, 1

4

)>)
is a Nash equilibrium, and

v(G2) = 11
8
6= 3

2
= v(2H0,0).

C

Going back to our game consisting of copies of H1,0 and H1,1, we find that H1,1

gets ignored by both players. They will play the same strategy as with a game
only consisting of copies of H1,0, i.e., they play on copies of H1,0 until one or none
remain(s). The resulting game is of the form

mH1,0 + nH0,0 + kH0,1 + `H1,1,

with m ∈ {0, 1}. Here, we diverge from the strategies presented in Theorem 5.9
and Theorem 5.10. If m = 1, then a Nash equilibrium is for both players to play
some mixed strategy which moves on H1,0 and H0,0 with positive probability, where
Left’s probability to move on H1,0 seems to approach 1 as the total number of games
increases. If m = 0, then Left moving on H0,0 with probability 1 and Right moving
on H1,0 with probability 1 is a Nash equilibrium.

Assuming that all of theses strategies hold, a game n copies of H2,0 would play out
roughly as follows. As n → ∞, on average, half of the copies of H2,0 will be be
moved to H1,0, while the other half will be moved to H1,1. Then, of the games H1,0,
on average, half will become H0,0 and the other half will become H0,1. Now, we will
alternate between the following strategies. Right moves a copy of H1,1 to H1,0 and

61

Left moves a copy of H0,0 to 0. Then, Right moves a copy of H0,0 to 1 and Left
moves the only copy of H1,0 to H0,1. This last strategy is played with probability
1 as n → ∞, but becomes increasingly mixed as more games get played to 0 or 1.
The ratio between copies of H1,1 and copies of H0,0 was approximately 2 : 1 and we
remove a copy of H0,0 (almost) every turn, while copies of H1,1 are only removed
once every two turns. So, we eventually run out of copies of H0,0 and are left with
a game consisting only of copies of H1,1, H0,1 and terminal positions 0 and 1, which
appear approximately in equal proportions. A mixture of H1,1 and H0,1 is a draw,
so the Nash value is determined by the expected number of the game 1 that are
left. As n→∞, this number would converge to half of the copies of H0,0 that were
created, which is one eighth of the number of copies of H2,0 that we started with,
which explains why we see that limn→∞(v(nH2,0)− v((n− 1)H2,0)) = 1

8
.

5.4 Negatives

In regular combinatorial game theory, we can show that G − G = 0 for any short
game G, using a concept known as mirroring. For any move that the starting player
makes, the second player can respond by making the same move but on the negative
side (or vice versa), ensuring that (s)he always has a responding move and will win
the game. With Nash synchronization, we find something similar; it turns out that
if a game G is equal to 0 in combinatorial sense, then it must have Nash value 0.
Moreover, both players will play the same strategy.

Theorem 5.15. Let G be a synchronized game and assume that G = −G. Then,
v(G) = 0 and G will have a Nash equilibrium of the form (x∗, x∗) for some x ∈ ∆|G

L|.

Proof. If G = −G, then GS = −(GS)> and GL = −GR. Let n = |GL| = |GR|. Since
GS is skew-symmetric, viewing G as a zero-sum games gives us x>Gy = −y>Gx for
all x, y ∈ ∆n. By symmetry, (x∗, y∗) is a Nash equilibrium if and only if (y∗, x∗) is a
Nash equilibrium. It follows that the value of G must be 0. Moreover, x>Gx = 0.

We will now consider synchronized Push games of the form mH0,0−nH0,0. We write
sm,n = v(mH0,0−nH0,0). In Table 2, we see that sm,m = 0, as expected by Theorem
5.15. We also see that sm,n = −sn,m, which follows from symmetry. For sm,n, we
can show a few simple inequalities.

Lemma 5.16. Consider sm,n = v(mH0,0 − nH0,0), m,n ∈ Z≥0. Then,

(i) sm,n ≤ sm+1,n ≤ sm,n + 1,

(ii) sm,n − 1 ≤ sm,n+1 ≤ sm,n.

Proof. From G1 = (m+1)H0,0−nH0,0, Left can move to GL
1 = mH0,0−nH0,0, while

Right can move to GR
1 = 1 + mH0,0 − nH0,0. From G2 = mH0,0 − nH0,0, Left can

move to GL
2 = −1 +mH0,0 − nH0,0, while Right can move to GR

2 = mH0,0 − nH0,0.
The inequalities follow from Theorem 4.17.

62

m \ n 0 1 2 3 4 5 6 7
0 0 −1 −1.5 −2.1667 −2.6667 −3.2667 −3.7667 −4.3381
1 1 0 −0.75 −1.3571 −1.9935 −2.5415 −3.1333 −3.6608
2 1.5 0.75 0 −0.75 −1.3338 −1.9411 −2.4923 −3.0719
3 2.1667 1.3571 0.75 0 −0.75 −1.3338 −1.9236 −2.4721
4 2.6667 1.9935 1.3338 0.75 0 −0.75 −1.3338 −1.9220
5 3.2667 2.5415 1.9411 1.3338 0.75 0 −0.75 −1.3338
6 3.7667 3.1333 2.4923 1.9236 1.3338 0.75 0 −0.75
7 4.3381 3.6608 3.0719 2.4721 1.9220 1.3338 0.75 0

Table 2: The Nash value sm,n = v(mH0,0−nH0,0) for different values of m,n. Values
have been rounded to four decimal places.

(a) (b)

Figure 4: We compute the Nash equilibrium of the game mH0,0 − nH0,0. Figure 4a
resp. Figure 4b shows the Nash probability to play on a copy of +H0,0 for Left resp.
Right.

The data suggests that, for all n ∈ Z≥0, we have limm→∞(sm,n − sm−1,n) = 1
2
.

Likewise, for all m ∈ Z≥0, we have limn→∞(sm,n − sm,n−1) = −1
2
. This is all in

agreement with Conjecture 5.13. We also spot the following pattern.

Conjecture 5.17. Let sm,n = v(mH0,0 − nH0,0). Then,

(i) For all m ≥ 1, we have sm+1,m = 3
4
.

(ii) For all k, the limit limm→∞ sm+k,m exists.

If we consider the Nash equilibrium of each game, we find that there exist three
cases, which we have visualized in Figure 4. If m ≥ 2n, then the Nash equilibrium
consists of the same strategy for Left and Right, and the probability to move on a
copy of +H0,0 seems to converge to 1 as m→∞. If n ≥ 2m, by symmetry, we find
the opposite, i.e., the probability to move on a copy of −H0,0 seems to converge to 1
as m→∞, and both players play the same strategy. Between these two lines, Left
moves on −H0,0 with probability 1 and Right moves on +H0,0 with probability 1.

63

5.5 Synchronized Shove

In this section, we will briefly discuss how synchronized versions of powers of 1
2

behave in Shove. For n ∈ Z≥0, let us define the Shove position

Ij = S + S S . . . S︸ ︷︷ ︸
j+1

S .

From Section 3.2, we know that Ij = 1
2j+1 as combinatorial games. For j = 0, we

have S + S S ∼= P + P P . Consequently, for the synchronized version of
I0, for all n ∈ Z≥0 we have

v(nI0) = v(nH0,0).

It follows that limn→∞ v(nI0)−v((n−1)I0) = limn→∞ v(nH0,0)−v((n−1)H0,0) = 1
2
.

Moreover, mI0−nI0
∼= mH0,0−nH0,0, hence we also have v(mI0−nI0) = v(mH0,0−

nH0,0), which we discussed in Section 5.4.

For j > 1, things get more interesting. Consider

I1 = S + S S S ,

which has combinatorial value 1
4
. In Figure 5, we have plotted v(nI1)− v((n− 1)I1)

for n ∈ {1, . . . , 42} and we see that it converges to 1
4
, as expected. Similar to the

plot of dm,0 = v(mH1,0)−v((m−1)H1,0), we see that there appear to be four distinct
converging subsequences. In the Shove position Ij, Left has many more options than

(a) (b)

Figure 5: Figure 5a shows v(nI1) − v((n − 1)I1) for n ∈ {1, . . . , 42}. In Figure 5b,
we have zoomed in and cut off the first two points. The line y = 1

4
is drawn in red.

Points are given a color based on the value of their index modulo 4.

in the corresponding Push position Hj,0. In the case of I1, we found that Left would
always move its leftmost piece. For the games that we encounter when we compute
the value of nI1, we find different Nash equilibria than for the corresponding games
from nH1,0. We find that most Nash equilibria consist of mixed strategies. For I2

we also find similar results to what we found with H2,0. See Figure 6. Note that,

64

to cut down on computation time, we assume that Left will always want to move
its leftmost piece, since any moved piece will move all pieces to the left of it as well.
We observed that this was the case for I1, but we do not have a proof that it holds
for Ij, j ≥ 2. Interestingly, we see that v(nI2) − v((n − 1)I2) converges to 1

8
from

above, whereas for Shove it oscillates around 1
8
. This could be due to Left having

two more pieces in I2 than she has in H2,0.

Figure 6: Plot of v(nI2)− v((n− 1)I2) for n ∈ {1, . . . , 14}. The line y = 1
8

is drawn
in red. Points are given a color based on the value of their index modulo 8.

65

6 Summary and future work

We have seen the definition of a separable synchronized combinatorial game, and we
showed that any such game must be a number (as a combinatorial game). Equiv-
alently, any combinatorial game that is not a number (which is the vast majority
of combinatorial games) must have a synchronized version that is not separable.
This is rather disappointing, as separable games have a natural way of defining its
synchronized version, although this definition may not lead to a unique synchro-
nized version. For non-separable games, we can still define a synchronized version;
however, such a definition will depend on the rule set of the game.

For synchronized games, its synchronized options form a matrix of options, where
one player chooses the row and the other player chooses the column. This means
that synchronized games can be thought of as two-player zero-sum matrix games
if we can assign some sort of value to each option. This gives rise to the Nash
value, which is defined recursively by assigning decided games an integer value and
assigning non-decided games the value equal to the value of their zero-sum game.

With regards to the Nash value, we formulate two conjectures, which we have only
been able to prove in a few specific cases. First, assuming a non-terminal game, we
conjecture that a move on a terminal component of a game is dominated by a move
on the non-terminal component, and the Nash value of the game is the sum of the
Nash values of its non-terminal component and its terminal component. We have
been able to show that this is true for synchronized versions of any Push or Shove
game. The proof hinges on the fact that, in these rule sets, we can explicitly point
to a move which dominates the move on the terminal component. Showing that
this is true for arbitrary (separable) synchronized games is still an open problem.
In particular, we know that a move on a terminal components “costs” exactly 1
move (hence, also increases resp. decreases the Nash value by 1) and we need to
find a move on the non-terminal component that costs at most 1 move. For regular
combinatorial games, a similar result using incentives is stated in [9, p. 80].

Next, we found a few instances of separable games for which we see that the differ-
ence in the Nash value of n copies and the Nash value of n− 1 copies of said game
converges to the synchronised value of the game as n tends to infinity. We show
that this is true for a few Push and Shove positions, as well as show data which
suggests this holds for even more Push and Shove positions. [10] shows the same
for several Hackenbush games. Since any separable game is a number, the next step
would be to find a proof that this holds for any separable game. Future work may
also study non-separable synchronized games. As we have discussed in Section 4,
non-separable games require us to explicitly define the synchronized move in some
cases. For example, with Domineering, we have to decide what happens when two
dominoes are placed on the same space. One solution is to allow two dominoes
that are placed in the same turn to overlap. Another solution would be to let both
players repeat their move until no pieces occupy the same space, and to declare the
game a draw if the Nash equilibrium has both players move on the same space with
probability 1. As non-separable games are not numbers, it would be interesting to
see if a analogous statement to Conjecture 5.13 can be formulated.

66

Lastly, we found that the difference in Nash value shows a pattern based on com-
binatorial value of the game, which could also be explored further. In the case of
Push and Shove positions with combinatorial value 1

2
, assuming we have n copies of

the game H, we know that the probability to play on the same copy is 1
n
. For the

Nash value, this means that v(nH) ≈ 1 + v((n − 2)H) as n → ∞. Consequently,
dn ≈ dn−2, which explains the modulo 2 pattern. For 1

4
, we also have that the prob-

ability to play on the same copy of H1,0 decreases. Here, for every two copies of H1,0

that gets removed, we gain a copy of H0,0 and a copy of 1. This gives us a modulo 2
pattern embedded in a modulo 2 pattern, which should result in a modulo 4 pattern.
However, this explanation is very vague and requires further examination.

67

References

[1] G. Adel’son-Vel’skii and E. Landis. An algorithm for organization of informa-
tion. Proceedings of the USSR Academy of Sciences, 146:263–266, 1962.

[2] M. Albert, R. Nowakowski, and D. Wolfe. Lessons in Play: An Introduction to
Combinatorial Game Theory, Second Edition. A. K. Peters, Ltd., 2nd edition,
2016.

[3] E. Berlekamp, J. Conway, and R. Guy. Winning Ways for Your Mathematical
Plays. London: Academic Press, 1982.

[4] R. Bödi, K. Herr, and M. Joswig. Algorithms for highly symmetric linear and
integer programs. Mathematical Programming, 137(1-2):65–90, 2011.

[5] A. Cincotti and H. Iida. The game of synchronized cutcake. In 2007 IEEE
Symposium on Computational Intelligence and Games, pages 374–379, 2007.

[6] J. Conway. On Numbers and Games. A. K. Peters, Ltd., 2nd edition, 2000.

[7] L. Kallenberg, F. Spieksma, and M. van den Bergh. Discrete besliskunde,
lecture notes, 2019.

[8] J. Nash. Non-cooperative games. Annals of Mathematics, 54(2):286–295, 1951.

[9] A. Siegel. Combinatorial game theory, volume 146 of Graduate studies in math-
ematics. American Mathematical Society, 2013.

[10] M. van den Bergh. Synchronized hackenbush. 2020. (unpublished).

[11] T. van Roode. Partizan forms of hackenbush combinatorial games. Master’s
thesis, University of Calgary, 2002. (unpublished).

68

	Introduction
	Preliminaries
	Combinatorial game theory
	Core definitions and terminology
	Outcome classes and the partial order on G
	Numbers

	Two person zero-sum games
	Binary search trees

	Push and Shove
	Push
	Value of a Shove position
	Equal games and (non-)isomorphic games

	Synchronized play
	General definition of a synchronized game
	Nash synchronization

	Synchronized Push
	Halves
	Quarters
	Eighths
	Negatives
	Synchronized Shove

	Summary and future work
	References

