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Chapter 1

Introduction

Formal language theory, at its inception, sits in the intersection of mathematics, computer
science, and linguistics. Many people trace the founding of formal languages, in the sense
that they are used today, to the work of Noam Chomsky, famous for the Chomsky hierar-
chy, formalized in 1964. However, this work builds upon that of immediate predecessors
such as Alan Turing, who is sometimes called the father of theoretical computer science.
In fact, Turing and Post defined and studied “[t]he types of machines and grammars used
to define the class of recursively enumerable languages” used in the Chomsky hierarchy
as early as the 1930s and 40s [5]. These types of languages are, respectively, recursively
enumerable, context-sensitive, context-free, and regular.

Of course, one would be remiss to discuss the development of formal languages without
mentioning automata, as an automaton is a model of a “computing device, which acts as
a language acceptor” [5]. In fact, the classes of the Chomsky hierarchy “can be defined. . .
by considering the languages accepted by non-deterministic machines with an increasingly
restricted type of data structure (or working tape): Turing machine, linear-bounded au-
tomaton, pushdown-store automaton, and finite-state automaton” [5]. Though we do not
discuss automata in any detail in this work, we will make a brief connection between the
types of languages which we discuss and the kinds of finite-state automata that accept
them as inputs.

Of the classes of the Chomsky hierarchy, our work will deal with subsets of regular
languages, the most restrictive class, and grammars used to describe them. Regular
languages were first defined in the 1950s by Stephen Cole Kleene, and were later shown
to correspond to the eponymously named Kleene algebras in Dexter Kozen’s 1994 paper
“A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events.”

To discuss this connection more formally, it is necessary to delve into the concepts of
soundness and completeness in mathematical logic. A logical system is called sound if
everything that can be derived in the system is true in every model. Conversely, a system
is called complete if everything that is true in every model can be derived as a theorem
in the system. One might formulate soundness and completeness together as “everything
that can be proved is true, and everything that is true can be proved.”

Then, when we say that Kleene algebras correspond to regular languages, what we
mean is that the axioms of Kleene algebras given in [8] form a deductive system is sound
and complete for regular languages over an alphabet Σ, sometimes also referred to as the
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algebra of regular events. The goal of this thesis is to axiomatize what we call prefix-
closed regular languages by adding any necessary axioms to the Kleene algebra axioms,
and then to achieve soundness and completeness results for this new axiomatization.
Following this, we hope to expand upon the work of [14] by axiomatizing prefix-closed
synchronous Kleene algebras using the new axioms proposed in Section 5 of the same.

More specifically, we proceed as follows. In Chapter 2, we introduce the definitions
of formal languages, regular expressions and languages, and Kleene algebras, and present
some relevant examples and properties. In Chapter 3, we define prefix-closed languages
and some of their properties. We attempt to define a prefix-closure operator, and then
propose two methods of circumventing the difficulty that arises from this attempt. We
end with an axiomatization of prefix-closed regular languages, including soundness and
completeness results. In Chapter 4, we take a brief diversion to discuss the synchronous
operator on languages and define the SF1-algebra as presented in [14], alongside the rel-
evant soundness and completeness results. In Chapter 5, we discuss the possibility of
adapting our axiomatization of prefix-closed regular languages to create an analogous
axiomatization of prefix-closed regular languages. We conclude in Chapter 6 with a
discussion on some applications of regular, and prefix-closed languages that offer some
motivation to our work.
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Chapter 2

Preliminaries

2.1 Formal Languages

Our subject matter deals with the concept of formal languages in the context of mathe-
matics and theoretical computer science. The word language brings to mind systems of
communication such as English or Japanese, with sets of characters used to form words,
and sentences formed of words and additional symbols according to a strict set of rules.
One may also think of programming languages, such as Python or C#, which also require
the correct usage of symbols according to a particular set of rules – the language’s syntax
– in order to create a valid statement. Formal languages generalize these concepts of
language in a way that can be described using mathematical and logical terminology. A
formal language consists of words formed over an alphabet according to a set of rules.
That is,

Definition 2.1.1. An alphabet, Σ, is a set of symbols. A word over Σ is a finite sequence
of symbols in Σ, where the empty word is denoted by ε. The set of all words is denoted
by Σ∗. A formal language is a subset of Σ∗.

It is common in this context to refer to a formal language simply as a ”language”
when the meaning is clear. We will adopt that convention going forward. The simplest
example of a language L is the empty language, L = ∅, which is a language over any
alphabet. Languages over an alphabet can be either finite or infinite. For example, take
the alphabet Σ = {a, b}. The set {a, b, abab} is a language containing only three elements,
while the set of all words ending in a is infinite. To provide motivation for the use of the
term ”language,” one can note that the set of all English words forms a language over the
alphabet consisting of the twenty-six letters in the English alphabet.

Given two words e, f in a language L, the concatenation of e and f is denoted by ef .
Given two languages L1 and L2 over an alphabet Σ, we can define some common operations
on languages. The union L1 ∪ L2 = {e ∈ Σ∗ | e ∈ L1 ∨ e ∈ L2} is the set of all words
that are contained in L1 or L2. The intersection L1 ∩ L2 = {e ∈ Σ∗ | e ∈ L1 ∧ e ∈ L2}
is the set of all words that are contained in both L1 and L2. If L1 and L2 have no
words in common, then their intersection is the empty language. The concatenation
L1 · L2 = {ef ∈ Σ∗ | e ∈ L1 ∧ f ∈ L2} is the set of all words that arise by attaching a
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word in L2 to the end of a word in L1. Finally, we define the Kleene star of a language
recursively, as follows:

Definition 2.1.2. Given a language L over an alphabet Σ, define

L0 = {ε}
L1 = L

Lk+1 = {ef ∈ Σ∗ | e ∈ Lk ∧ f ∈ L} for each k ≥ 0

Then the Kleene star of L is defined by

L∗ =
⋃
k≥0

Lk.

A particularly notable application of the Kleene star comes in the form of Arden’s
Lemma, which provides a solution for linear equations of languages of a certain form [1].
We present two versions of this lemma.

Lemma 2.1.3. (Arden’s Lemma, version 1). Let X,L, and M be languages over the
same alphabet, Σ. Suppose ε ̸∈ L and X = L ·X ∪M . Then X = L∗ ·M .

This first version of Arden’s Lemma provides the conditions under which the equation
X = L·X∪M has a unique solution. However, this is rather restrictive in the requirement
ε ̸∈ L. The second version is more general, and allows for the existence of many solutions,
of which L∗ ·M is the least.

Lemma 2.1.4. (Arden’s Lemma, version 2). Let L and M be languages over Σ, and let
X = L∗ ·M . Then,

1. X = L ·X ∪M ,

2. for any other language Y such that Y = L · Y ∪M , X ⊆ Y , and

3. If L does not contain ε, then the above inclusion is equality.

Proof. First, let us prove that L∗ · M ⊆ L(L∗ · M) ∪ M . Suppose x = x1x2 ∈ L∗ · M ,
where x1 ∈ L∗ and x2 ∈ M . If x1 = ε, then certainly x = x2 ∈ M . Now let us assume
x1 ̸= ε. Then x1 ∈ Ln for some n ≥ 1. This implies x1 ∈ L · Ln−1 ⊆ L · L∗. Hence
x = x1x2 ∈ L(L∗ ·M).

For the reverse inequality, let us assume x ∈ L(L∗ ·M) ∪M . We have two cases. First,
x ∈ M , in which case εx = x ∈ L∗ ·M . Second, x ∈ L(L∗ ·M). Then x = x1x2x3, where
x1 ∈ L, x2 ∈ L∗, and x3 ∈ M . This implies that (x1x2) ∈ L∗, and hence x ∈ L∗ · M .
Therefore X = L∗ ·M is a solution to the equation.

To prove the second result, we will first prove that for any solution Y of the equation,
L∗Y ⊆ Y . It is obvious that L0 · Y ⊆ Y . Additionally, Since Y = L · Y ∪M , it follows
that L · Y ⊆ Y , and that M ⊆ Y . Let us assume that for some n ∈ Z≥1, L

n · Y ⊆ Y .
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Then Ln+1 · Y = Ln(L · Y ) ⊆ Ln · Y ⊆ Y . Hence, for any n ∈ Z≥0, L
n · Y ⊆ Y , and

therefore L∗ · Y ⊆ Y .

Because we also have M ⊆ Y , we conclude L∗ ·M ⊆ L∗ · Y ⊆ Y .

Finally, let us now assume ε ̸∈ L. Then we will prove that Y = X. By the previous
point, we already have X ⊆ Y , so we need only show Y ⊆ X. We perform a proof by
contradiction, with a small intermediate induction.

Suppose x ∈ Y and x ̸∈ L∗ · M . Then certainly x ∈ L · Y ∪ M . Hence x ∈ L · Y
since we cannot have x ∈ M . Now suppose x ∈ Lk · Y for some k ≥ 1, an integer. We
will show x ∈ Lk+1 · Y .

We have x ∈ Lk(L ·Y ∪M) = Lk+1 ·Y ∪Lk ·M . Now since we cannot have x ∈ L∗ ·M , we
must have x ∈ Lk+1 ·Y and x ̸∈ Lk ·M . Therefore we inductively obtain that x ∈ Ln ·Y for
every integer n ≥ 1 (and in fact also n ≥ 0 since we have already that x ∈ Y = L0 ·Y ). But
since we assume in general that words are finite, this is impossible. Hence x ∈ L∗ ·M .

One may notice a similarity between the kinds of operations that can be performed
on languages and sets of operations that may be defined on algebraic structures.

2.2 Kleene Algebras

Kleene algebras are named for American mathematician Stephen Cole Kleene, a math-
ematician known for his work in logic, including providing the foundation of recursion
theory and paving the way for theoretical computer science. Kleene himself did not de-
fine Kleene algebras but introduced the related concept of regular expressions, which will
be discussed in the next section.

Definition 2.2.1. A Kleene algebra is a tuple (A,+, ·, ∗, 0, 1) where A is a set, + and ·
are binary operators, ∗ is a unary operator, and 0 and 1 are constants such that for all
e, f, g ∈ A the following axioms are satsified:

e+ (f + g) = (e+ f) + g e+ f = f + e e+ 0 = e e+ e = e
e · 1 = e = 1 · e e · 0 = 0 = 0 · e e · (f · g) = (e · f) · g
e∗ = 1 + e · e∗ = 1 + e∗ · e (e+ f) · g = e · g + f · g e · (f + g) = e · f + e · g

Additionally, we write e ≤ f for e+ f = f and require the least fixpoint axioms : That is,
for all e, f, g ∈ A we have

e+ f · g ≤ g =⇒ f ∗ · e ≤ g e+ f · g ≤ f =⇒ e · g∗ ≤ f.

The definition of Kleene algebra as it is used in this work was introduced by Kozen
in 1994 [8]. Kleene algebras may be more familiar to some described as a kind of closed
semiring – that is, a semiring with a quasi-inverse, in this case satisfied by the elements
e∗.
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Proposition 2.2.2. The set of all languages forms a Kleene Algebra.

Proof. The proof is largely set theoretic in nature and forms an accessible exercise. Let
us take as our tuple (P(Σ∗),∪, ·, ∗, ∅, {ε}), where · and ∗ are concatenation and Kleene
star, respectively.

First, we note that set union is associative, commutative and idempotent, with an identity
∅. This satisfies the top row of the Kleene algebra axioms.

Now, because x · ε = x for any word x, it is clear that {ε} is the identity for con-
catenation. Next, let L ∈ P(Σ∗). Then L · ∅ = {xy ∈ Σ∗ | x ∈ L ∧ y ∈ ∅} = ∅. Clearly
∅·L = ∅ as well. It is straightforward to see that concatenation is an associative operation.

Before proving that the Kleene star axiom holds, we prove one version of distributiv-
ity of union over concatenation. The other version will follow by analogous reasoning.
Let L, J,K be languages. Then we have

(L ∪ J) ·K = {xy ∈ Σ∗ | x ∈ L ∪ J ∧ y ∈ K}
= {xy ∈ Σ∗ | (x ∈ L ∨ x ∈ J) ∧ y ∈ K}
= {xy ∈ Σ∗ | (x ∈ L ∧ y ∈ K) ∨ (x ∈ J ∧ y ∈ K}
= L ·K ∪ J ·K

Next, we show that L∗ = {ε} ∪ L · L∗. The second equality will follow in the same way.

First, suppose x ∈ L∗. Then x ∈ Ln for some n ∈ Z≥0. If n = 0, then x = ε. Hence
x ∈ {ε} ∪ L∗ · L. On the other hand, if n > 0, then x ∈ Ln = Ln−1 · L by the definition
of Lk. Hence, by the definition of Kleene star, x ∈ L∗ · L. So, L∗ ⊆ {ε} ∪ L∗ · L.

For the reverse inclusion, suppose x ∈ {ε} ∪ L∗ · L. If x = ε, then certainly x ∈ L∗.
If x ∈ L∗ · L, then there exist x1 ∈ L∗ and x2 ∈ L such that x = x1x2. Then there exists
some n ∈ Z≥0 such that x1 ∈ Ln. Hence x = x1x2 ∈ Ln+1 ⊆ L∗. Thus {ε} ∪ L∗ · L ⊆ L∗,
and we have equality.

Finally, we prove the first of the least fixpoint axioms (as, again, the second uses the
exact same method as the first). We note that the partial order on P(Σ∗) is given by set
inclusion. Now, assume L ∪ J ·K ⊆ K. Then we will show that J∗ · L ⊆ K.
First,

L ∪ J ·K ⊆ K =⇒ L ⊆ K ∧ J ·K ⊆ K.

We also note that J0 ·K ⊆ K since J0 = {ε} Next, we have

Jn ·K ⊆ K =⇒ Jn+1 ·K ⊆ K

for all n ∈ Z≥0, since
Jn+1 ·K = Jn · J ·K ⊆ Jn ·K ⊆ K.

It therefore follows that J∗ ·K ⊆ K. But then L ⊆ K implies that J∗ · L ⊆ J∗ ·K ⊆ K,
and we are finished.
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In the next section we discuss another important example of Kleene algebra, defined
as the smaller class of languages that can be obtained from a given alphabet and closed
under the language operations as in the above theorem.

2.3 Regular Languages

A regular expression is a syntactic means to denote languages over an alphabet Σ using
the above defined operations of union, concatenation, and Kleene star. Languages that
can be expressed by regular expressions are called regular languages. For example, take
again the alphabet Σ = {a, b}. Let L be the set of all words over Σ ending in aa. Let
L1 = {a, b} and L2 = {aa}. Then L = L∗

1L2.
All finite languages are regular. However, in general, not all languages are regular

languages. For example, take again Σ = {a, b}. Then the language L = {anbn | n ∈ Z≥0},
where an represents concatenation of a with itself n times, is not regular [9].

A formal grammar, or just grammar, describes how to form valid expressions from a
set with some operations. We can use grammars to formalize the definitions of regular
expression and regular language given above as follows:

Definition 2.3.1. The set of regular expressions of a Kleene algebra, denoted TKA, is
described by the grammar:

TKA ∋ e, f := 0 | 1 | a ∈ Σ | e+ f | e · f | e∗

The regular expressions can be interpreted in terms of languages as follows: Define
[[−]]KA : TKA → P(Σ∗) inductively by

[[0]]KA = ∅ [[a]]KA = {a} [[e · f ]]KA = [[e]]KA · [[f ]]KA
[[1]]KA = {ε} [[e+ f ]]KA = [[e]]KA ∪ [[f ]]KA [[e∗]]KA = [[e]]∗KA

A language L is a regular language if and only if L = [[e]]KA for some e ∈ TKA.

Just as in the previous proposition, we notice the following:

Proposition 2.3.2. The set of all regular languages forms a Kleene Algebra.

This result follows from the fact that ∅ and {ε} are regular languages, and that regular
languages are closed under the operations of union, concatenation, and Kleene star.

Define ≡KA to be the smallest congruence on TKA induced by the Kleene algebra
axioms. That is, for two regular expressions e and f , e ≡KA f if and only if e can be
proved equivalent to f according to the Kleene algebra axioms. Then we can say that KA
is sound if e ≡KA f implies [[e]]KA = [[f ]]KA and complete if [[e]]KA = [[f ]]KA implies e ≡KA f .
A well-known but certainly nontrivial result due to Kozen states the following:

Theorem 2.3.3. Soundness and Completeness of KA. For all e, f ∈ TKA, e ≡KA f if and
only if [[e]]KA = [[f ]]KA.

The first implication, soundness, follows from induction on the length of the proof.
However, the converse implication is more complicated and is covered thoroughly in [8].
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Chapter 3

Prefix-closed Languages

3.1 Definition and Properties

A language is called prefix-closed if for any word in the language, every prefix of the word
is also in the language.

Definition 3.1.1. Let L be a language over an alphabet Σ. We say that L is prefix-closed
if for any e = xy ∈ L, we have that x ∈ L.

Note that this implies that ε ∈ L for any non-empty prefix-closed language L, since
e = εe for any word e. We also note that ∅ is prefix-closed since the condition is vacuously
true. If we use the notation an = an−1a for integers n > 0 with the convention a0 = ε,
then an example of a prefix-closed language is L = {an | n ∈ Z≥0}. On the other hand,
the language L = {a, b}∗{aa} is regular but not prefix-closed: ε ̸∈ L.

Definition 3.1.2. The prefix-closure of a language L, denoted Lpc, over an alphabet Σ
is defined by Lpc := {x ∈ Σ∗ | xy ∈ L}. The prefix-closure is an idempotent operation, as
(Lpc)pc = Lpc.

Another way to define a prefix-closed language is as a language that is equal to its
prefix-closure. That is, a language L such that Lpc = L.

Proposition 3.1.3. Let L1 and L2 be two prefix-closed languages over an alphabet Σ.
Then,

1. L1 ∪ L2 is prefix-closed,

2. L1 ∩ L2 is prefix-closed, and

3. if L1 ̸= ∅ and L1 ̸= Σ∗, Σ∗ \ L1 is not prefix-closed.

Proof. Assume L1 and L2 are prefix-closed languages. We begin with (1).

Let xy ∈ L1 ∪ L2. Then xy ∈ L1 or xy ∈ L2. Without loss of generality, we may
assume xy ∈ L1. Then, since L1 is prefix-closed, x ∈ L1. Hence x ∈ L1 ∪ L2.
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Proceeding to (2). we let xy ∈ L1 ∩ L2. Then xy ∈ L1 and xy ∈ L2. Hence, since
L1 and L2 are prefix-closed, we have x ∈ L1 and x ∈ L2. Consequently x ∈ L1 ∩ L2.

Finally, assume L1 ̸= ∅ and L1 ̸= Σ∗. Then Σ∗ \ L1 ̸= ∅ and Σ∗ \ L2 ̸= Σ∗. Furthermore,
ε ∈ L1, so ε ̸∈ Σ∗ \ L1, and therefore Σ∗ \ L1 cannot be prefix-closed.

Lemma 3.1.4. Let L1 and L2 be two languages over an alphabet Σ. Then Lpc
1 ∪ Lpc

2 =
(L1 ∪ L2)

pc.

Proof. We may assume that L1 and L2 are both nonempty, as otherwise the problem
becomes trivial.

First we will show that Lpc
1 ∪ Lpc

2 ⊆ (L1 ∪ L2)
pc. Suppose that x ∈ Lpc

1 ∪ Lpc
2 . With-

out loss of generality, we may assume that x ∈ Lpc
1 . Then there exists y ∈ Σ∗ such that

xy ∈ L1. Hence xy ∈ L1 ∪ L2, and x ∈ (L1 ∪ L2)
pc.

For the reverse inclusion, suppose that x ∈ (L1 ∪ L2)
pc. Then there exists y such that

xy ∈ L1 ∪ L2. It follows that either x ∈ Lpc
1 or Lpc

2 .

We do not have an analogous result for Lpc
1 ∩Lpc

2 . To see this, suppose L1 = {ab} and
L2 = {ac}. Then Lpc

1 = {ε, a, ab} and Lpc
2 = {ε, a, ac}, so Lpc

1 ∩ Lpc
2 = {ε, a}. Meanwhile

L1 ∩ L2 = ∅, so (L1 ∩ L2)
pc = ∅.

3.2 An Attempt at Axiomatizing Prefix Closure

Now, let e, f ∈ TKA. Then we may wish to define the prefix-closure operator (−)pc at the
level of regular expressions inductively by

(0)pc (1)pc = 1 (a)pc = 1 + a
(e+ f)pc = epc + fpc (e · f)pc = epc + e · fpc (e∗)pc = e∗ · epc

However, this definition presents a difficulty:
Suppose e = 0. Then we may choose any a and write e = a · 0. By definition, we

have epc = 0, but we also have epc = apc + f · 0pc = apc. Hence apc = 0 = 1 + a, which is
impossible. Therefore we cannot define a prefix-closure operator in this way.

In order to circumvent this difficulty, we propose two possible solutions: one by defi-
nition of a predicate that allows for a case analysis on each term to determine if the term
is nonzero, and one by a modification of the grammar to exclude multiplication by zero
on the right.

To that end, we define the following:

Definition 3.2.1. Let e ∈ TKA. The nonzero predicate, denoted NZ(e), is defined by

NZ(1)
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NZ(a)

NZ(e∗)

NZ(e1 + e2) if and only if NZ(e1) or NZ(e2)

NZ(e1 · e2) if and only if NZ(e1) and NZ(e2).

We can likewise define the zero predicate by the logical negation of the non-zero predicate.
That is, for e ∈ TKA, we have

Z(0)

Z(e1 + e2) if and only if Z(e1) and Z(e2)

Z(e1 · e2) if and only if Z(e1) or Z(e2).

Proposition 3.2.2. Let e ∈ TKA. Then Z(e) if and only if [[e]]KA = ∅.

Proof. Let e ∈ TKA. First, suppose Z(e) holds. We will prove the result by induction:

1. e = 0: Then certainly [[0]]KA = ∅.

2. e = e1 + e2: Z(e) implies Z(e1) and Z(e2). But by induction, [[e1]]KA = ∅ and
[[e2]] = ∅. Hence [[e]]KA = [[e1]]KA ∪ [[e2]]KA = ∅.

3. e = e1 · e2: Z(e) implies Z(e1) or Z(e2). We look at the case Z(e1), as the other
case is nearly identical. Then [[e1]]KA = ∅, so [[e]]KA = [[e1]]KA[[e2]]KA = ∅.

Conversely, assume [[e]]KA = ∅. Then by 2.3.3, we must have e ≡KA 0. It is clear that Z(e)
follows from the Kleene Algebra axioms.

We are now ready to define the prefix-closure operator pc1 using the nonzero predicate:
Let e, f ∈ TKA. We define 0pc1 , 1pc1 , apc1 , (e∗)pc1 , and (e + f)pc1 exactly as in our

previous attempt. To handle the case (e · f)pc1 , we perform a case analysis and define

(e · f)pc1 = epc1 + e · fpc1 if NZ(f) and,

(e · f)pc1 = 0 if Z(f).

We also define (e∗)pc by

(e∗)pc1 = e∗ · epc1 if NZ(e) and,

(e∗)pc1 = 1 otherwise.

We achieve the following result:

Lemma 3.2.3. Let e ∈ TKA with NZ(e). Then for any n ∈ Z≥0 we have [[(en)pc1 ]]KA ⊆
[[e∗]]KA[[e

pc1 ]]KA.
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Proof. We go by induction on n. First consider the case n = 0. Then by definition e0 = 1.
It follows that [[1pc1 ]]KA = {ε} ⊆ [[e∗]]KA[[e

pc1 ]]KA since ε ∈ [[e∗]]KA and ε ∈ [[epc1 ]]KA.

Now, suppose that [[(en)pc1 ]]KA ⊆ [[e∗]]KA[[e
pc1 ]]KA. We must show that the claim holds

for n+ 1.

By the definition of pc1 , we know [[(en+1)pc1 ]]KA = [[(en·e)pc1 ]]KA = [[(en)pc1 ]]KA∪[[en]]KA[[epc1 ]]KA.
By the inductive hypothesis it follows [[(en)pc1 ]]KA ⊆ [[e∗]]KA[[e

pc1 ]]KA. Furthermore, we
know [[en]]KA ⊆ [[e∗]]KA through the definition of the Kleene star. Hence [[en]]KA[[e

pc1 ]]KA ⊆
[[e∗]]KA[[e

pc1 ]]KA.

Hence the result follows.

Then, for any regular expression, the interpretation of the prefix closure operator is a
prefix closed language. Formally,

Lemma 3.2.4. Let e ∈ TKA be a regular expression. Then for any xy ∈ [[epc1 ]]KA, we have
that x ∈ [[epc1 ]]KA.

Proof. We proceed inductively. First, 0pc1 = 0, and [[0]]KA = ∅, which is prefix-closed.
Furthermore, 1pc1 = 1. Therefore, [[1pc1 ]]KA = {ε}. The only prefix of ε is again ε, so
[[1pc1 ]]KA is prefix-closed. Next, apc1 = 1 + a. So [[apc1 ]]KA = [[1]]KA ∪ [[a]]KA. But this is
simply {ε, a}. The only possible prefixes in this language are ε and a, hence [[apc1 ]]KA is
prefix-closed.

Next, take e = e1 + e2, with the assumption that [[fpc1 ]]KA is prefix-closed for any f
smaller than e. Then [[(e1+e2)

pc1 ]]KA = [[epc11 ]]KA∪ [[epc12 ]]KA is prefix-closed by Lemma 3.1.3
as both [[epc11 ]]KA and [[epc12 ]]KA are prefix-closed.

Similarly, take e = e1 · e2, with the assumption that [[fpc1 ]]KA is prefix-closed for any
f smaller than e. Now, we have two cases:

First, suppose that NZ(e2). Then [[(e1 · e2)pc1 ]]KA = [[epc11 ]]KA ∪ [[e1 · epc12 ]]KA.

Suppose that xy ∈ [[epc11 ]]KA∪[[e1·epc12 ]]KA. If xy ∈ [[epc11 ]]KA, then certainly x ∈ [[epc11 ]]KA, since
it is prefix-closed. Assume xy ∈ [[e1 ·epc12 ]]KA = [[e1]]KA[[e

pc1
2 ]]KA. If x ∈ [[e1]]KA, then certainly

x ∈ [[epc11 ]]KA, so, again, x ∈ [[epc11 ]]KA, and we are done. Next, we may assume that x = x1x2,
where x1 ∈ [[e1]]KA and x2 ∈ [[epc12 ]]KA. Then x = x1x2 ∈ [[e1]]KA[[e

pc1
2 ]]KA ⊆ [[epc1 ]]KA. Finally,

we handle the case where xy ∈ [[epc12 ]]KA, which can only happen if ε ∈ [[e1]]KA. Since
[[epc12 ]]KA is prefix-closed, it follows that x ∈ [[epc12 ]]KA. Hence εx ∈ [[e1]]KA[[e

pc1
2 ]]KA.

In the second case, then (e1 · e2)pc1 = 0, so we are finished.

Finally, we must show that [[(e∗)pc1 ]]KA is prefix-closed. First, we recall that [[(e∗)pc1 ]]KA =
[[e∗ · epc1 ]]KA = [[e]]∗KA[[e

pc1 ]]KA. Now suppose that xy ∈ [[e]]∗KA[[e
pc1 ]]KA. We now have a few

cases.
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1. Suppose x ∈ [[e]]∗KA and y ∈ [[epc1 ]]KA. Now, we know by induction that [[epc1 ]]KA is
prefix-closed. Thus ε ∈ [[epc1 ]]KA, and hence x = xε ∈ [[e]]∗KA[[e

pc1 ]]KA.

2. Suppose xy ∈ [[epc1 ]]KA. Note that this is possible since ε ∈ [[e∗]]KA. Again, by
induction, it follows x ∈ [[epc1 ]]KA. Hence x = ε · x ∈ [[e∗]]KA[[e

pc1 ]]KA.

3. Suppose x = x1x2 where x1 ∈ [[e∗]]KA and x2y ∈ [[epc1 ]]KA. Therefore x2 ∈ [[epc1 ]]KA,
and consequently x = x1x2 ∈ [[e∗]]KA[[e

pc1 ]]KA.

4. Finally, suppose y = y1y2 where xy1 ∈ [[e∗]]KA and y2 ∈ [[epc1 ]]KA. Then there exists
n ∈ Z≥0 such that xy1 ∈ [[en]]KA. This implies that x ∈ [[en]]pcKA. Now, [[en]]pcKA is the
smallest prefix-closed language containing [[en]]KA, and [[(en)pc1 ]]KA is a prefix-closed
language containing [[en]]KA by induction. Hence x ∈ [[(en)pc1 ]]KA. But by Lemma
3.2.3, [[(en)pc1 ]]KA ⊆ [[e∗]]KA[[e

pc1 ]]KA.

Hence x ∈ [[e∗]]KA[[e
pc1 ]]KA, and the proof is complete.

We have shown now that [[e]]pc1KA is a subset of [[epc1 ]]KA, but we would like to have
equality between the two phrases. The next Theorem proves exactly that.

Theorem 3.2.5. Let e ∈ TKA. Then we have [[epc1 ]]KA = [[e]]pcKA.

Proof. Lemma 3.2.4 proves that [[e]]pcKA ⊆ [[epc1 ]]KA, so all that is left to prove is the reverse
inclusion. Once again, we shall go by induction. It is clear that the statement holds for
[[0pc1 ]]KA and [[1pc]]KA.

Now, look at the case e = a. As we know, [[apc1 ]]KA = {ε, a}. But [[a]]pcKA is the small-
est prefix-closed language containing a. Thus, both ε ∈ [[a]]pcKA and a ∈ [[a]]pcKA.

Next, look at the case e = e1 + e2. Then [[(e1 + e2)
pc1 ]]KA = [[epc11 ]]KA ∪ [[epc12 ]]KA. By

induction, this is equal to [[e1]]
pc
KA ∪ [[e2]]

pc
KA. The result follows from Theorem 3.1.4.

In the step e = e1 · e2, we perform the necessary case analysis. The case where Z(e2) is
trivial, so we focus on the case NZ(e2).

First, we recall that [[(e1 · e2)pc1 ]]KA = [[epc11 ]]KA ∪ [[e1]]KA[[e
pc1
2 ]]KA. By induction, we then

have that [[(e1 · e2)pc1 ]]KA = [[e1]]
pc
KA ∪ [[e1]]KA[[e2]]

pc
KA.

Suppose x ∈ [[(e1 · e2)pc1 ]]KA. Now we have two cases:

First, suppose x ∈ [[e1]]
pc. Then there exists y such that xy ∈ [[e1]]KA. Then for any

z ∈ [[e2]]KA, xyz ∈ [[e1]]KA[[e2]]KA = [[e1 · e2]]KA. Hence x ∈ [[e1 · e2]]pc.

Second, suppose x ∈ [[e1]]KA[[e2]]
pc
KA. Then x = yz where y ∈ [[e1]]KA and z ∈ [[e2]]

pc
KA. Now,

z ∈ [[e2]]
pc
KA implies that there exists z′ such that zz′ ∈ [[e2]]KA. Hence xz

′ ∈ [[e1 · e2]]KA, and
therefore x ∈ [[e1 · e2]]pcKA.

13



Finally, we look at the step e∗ where NZ(e). Again, the case Z(e) is trivial. Let
x ∈ [[(e∗)pc1 ]]KA = [[e∗]]KA[[e

pc1 ]]KA. We must show that there exists y ∈ Σ∗ such that
xy ∈ [[e∗]]KA. Of course, we have x = x1x2 where x1 ∈ [[e∗]]KA and x2 ∈ [[epc1 ]]KA. By
induction, [[epc1 ]]KA = [[e]]pcKA. This implies that there exists y ∈ Σ∗ such that x2y ∈ [[e]]KA.
Consequently xy = x1x2y ∈ [[e∗]]KA[[e]]KA = [[e∗e]]KA ⊆ [[1 + e∗e]]KA = [[e∗]]KA.

We see that the interpretation of this definition of the prefix-closure operator relying
on case analysis using the nonzero predicate is equivalent to the prefix-closure at the
level of regular languages. Alternatively, we can avoid the use of such a predicate by
restricting the grammar so that 0-equivalent expressions cannot appears as suffix on a
sequential composition. Therefore we define the following:

Definition 3.2.6. The set of NZ-regular expressions of a Kleene algebra is described by
the grammar

TNZ ∋ e := 0 | 1 | a ∈ Σ | e+ e | e · g | g∗

where g is described by the grammar

g := 1 | a ∈ Σ | g + g | g · g | g∗

Using this grammar prevents expressions of the form e1 · e2, where e2 is equivalent
to zero according to the Kleene algebra axioms. Hence we may extend the grammar
with the prefix-closure operator as we originally attempted to define it. That is, suppose
e, f ∈ TNZ. Then we define

0pc2 1pc2 = 1 apc2 = 1 + a
(e+ f)pc2 = epc2 + fpc2 (e · f)pc2 = epc2 + e · fpc2 (e∗)pc2 = e∗ · epc2

We may then define [[−]]NZ : TNZ → P(Σ∗) exactly by [[e]]NZ = [[e]]KA for any e ∈ TNZ.
Using this definition, we achieve the analogous results to Lemma 3.2.4 and Theorem 3.2.5.
That is,

Lemma 3.2.7. Let e ∈ TNZ be an NZ-regular expression. Then for any xy ∈ [[epc2 ]]NZ, we
have that x ∈ [[epc2 ]]NZ.

Theorem 3.2.8. Let e ∈ TNZ. Then [[epc2 ]]NZ = [[e]]pcKA.

The proof of these results are largely analogous to the proof of Lemma 3.2.4. However,
since we have changed the syntax, we must first prove the statement for the nonzero
expressions g, and then for general expressions e.

We have now shown that the interpretation of the either definition of the prefix-closure
operator is a prefix-closed language. However, to complete the axiomatization, we wish
to show also that all prefix-closed regular languages are of the form [[epc1 ]]KA, or that all
prefix-closed regular languages are of the form [[epc2 ]]KA for some e ∈ TKA or e ∈ TNZ,
respectively.

We begin by looking at the case of NZ-regular expressions:

Theorem 3.2.9. Let L be a prefix-closed regular language over an alphabet Σ. Then there
exists e ∈ TNZ such that [[epc2 ]] = L.

14



Proof. We know that there exists e ∈ TKA such that [[e]]KA = L, as all regular languages
come from a regular expression of Kleene algebras. Furthermore, we know that TNZ ⊆ TKA,
so if it happens that e ∈ TNZ, then we are done. It thus suffices to show that there exists
e′ ∈ TNZ such that [[e′]]KA = [[e]]KA.

Going by induction, we look at the base cases e = 0, e = 1, and e = a. In each of
these cases, e is already in TNZ, so we may take e′ = e.

Now let us assume e = f + g where there exist f ′, g′ ∈ TNZ such that [[f ′]]KA = [[f ]]KA
and [[g′]]KA = [[g]]KA. Then we may simply choose e′ = f ′ + g′.

The case e = f · g is slightly more complicated, as we may have that [[g′]]KA = ∅, in
which case g′ ≡KA 0, and therefore we cannot take e′ = f ′ · g′. However, we can take
e′ = 0. If, on the other hand, [[g′]]KA ̸= ∅, then we can pick e′ = f ′ · g′.

Finally, if e = f ∗, then we again have two possibilities. If [[f ′]]KA = ∅, then [[f ∗]]KA = {ε},
so we must choose e = 1. On the other hand, if [[f ′]]KA ̸= ∅, then we pick e′ = (f ′)∗.

We have an analogous result for the operator pc1.

Theorem 3.2.10. Let L be a prefix-closed regular language over an alphabet Σ. Then
there exists e ∈ TKA such that [[epc1 ]]KA = L.

Proof. All regular languages are interpretations of regular expressions of Kleene algebras,
so there exists e ∈ TKA such that L = [[e]]KA. Then, because L is prefix-closed, we know
that [[e]]pcKA = Lpc = L. By Theorem 3.2.5, we have that [[e]]pcKA = [[epc1 ]]KA, and we are
finished.

We also observe that the following results on prefix-closed regular languages follow
from Theorem 2.3.3.

Theorem 3.2.11. Let e, f ∈ TKA. Then epc1 ≡KA fpc1 if and only if [[e]]pcKA = [[f ]]pcKA.

Theorem 3.2.12. Let e, f ∈ TNZ. Then epc2 ≡NZ fpc2 if and only if [[e]]pcNZ = [[f ]]pcNZ.

We are now ready to write a formal axiomatization.

3.3 Axiomatization of Prefix-Closed Regular Languages

Definition 3.3.1. A prefix-closed Kleene algebra, or pc-KA, is a tuple (A,+, ·, ∗, 0, 1, N)
that satisfies the following axioms for all e, f, g ∈ A:

e+ (f + g) = (e+ f) + g e+ f = f + e e+ 0 = e e+ e = e
e · 1 = e = 1 · e e · 0 = 0 = 0 · e e · (f · g) = (e · f) · g
e∗ = 1 + e · e∗ = 1 + e∗ · e (e+ f) · g = e · g + f · g e · (f + g) = e · f + e · g
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As usual, we write e ≤ f for e+ f = f and require the least fixpoint axioms : That is, for
all e, f, g ∈ A we have

e+ f · g ≤ g =⇒ f ∗ · e ≤ g e+ f · g ≤ f =⇒ e · g∗ ≤ f.

Additionaly, we also require the following axioms on the unary operator N :

N(0) = 0 N(e+ f) = N(e) +N(f)
N(1) = 1 N(e · f) = N(e) ·N(f) N(e∗) = 1

Finally, we require the prefix-closure axiom:

N(e) = 1 =⇒ 1 + e = e.

The new axioms are discovered from formalization of the NZ-predicate and the appli-
cation of the prefix-closure operator to the axiom e = 1 ·e. Surprisingly, the prefix-closure
axiom is the only new axiom that comes from the second source. Any other new iden-
tities arising from application of the prefix-closure operator to the rest of the Kleene
algebra axioms follow directly from this axiom and the existing Kleene algebra axioms.
For example,

Proposition 3.3.2. Let (A,+, ·, ∗, 0, 1, N) be a pcKA. Then for any e, f ∈ A,

N(f) = 1 =⇒ e+ e · f = e · f.

Proof. Let e, f ∈ A with N(f) = 1. Then e+ e · f = e · (1 + f) = e · f .

Before we can define the grammar for prefix-closed regular expressions, we define an
intermediate set of expressions, the N -regular expressions, TN . These are given by the
grammar

TN ∋ e, f := 0 | 1 | a ∈ Σ | e+ f | e · f | e∗ | N(e)

The regular expressions of a prefix-closed Kleene algebra are denoted Tpc and described
by the grammar

Tpc ∋ p := 0 | 1 + e

where e ∈ TN . We see that every prefix-closed regular expression is also an N -regular
expression, meaning Tpc ⊆ TN .

As before we define ≡N by the smallest equivalence on TN by the prefix-closed Kleene
Algebra axioms. However, we also require that N(a) ≡N 0 for all a ∈ Σ. Then, since
Tpc ⊆ TN , we define ≡pc by e ≡pc f if and only if e ≡N f for all e, f ∈ Tpc. We will then
exploit a connection between prefix-closed regular expressions and regular expressions to
achieve the following:

Theorem 3.3.3. For any p ∈ Tpc there exists pKA ∈ TKA such that p ≡pc pKA.
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Proof. We shall go by induction on p. If p = 0, then we may simply take pKA = p.

Now suppose p = 1 + e for e ∈ TN . We will show by another induction that there
exists a regular expression eKA such that e ≡N eKA.

First, we may look at the new base cases. Suppose e = 0 or e = 1, or e = a. Then
e is already a regular expression, so we may take eKA = e.

Furthermore, in the case e = N(f), we know that N(f) ≡N 0 or N(f) ≡N 1 for any
f ∈ TN . Thus we may choose eKA = 0 or eKA = 1 accordingly.

Now, assume e = f + g where there exist two regular expressions fKA and gKA such
that f ≡N fKA and g ≡N gKA. Then certainly e ≡N fKA + gKA, so we may choose
eKA = fKA + gKA.

The case e = f · g is exactly analogous, so we choose eKA = fKA · gKA.

Finally, we look at the case e = f ∗. Then f ≡N fKA implies e ≡N f ∗
KA, so we pick

eKA = f ∗
KA.

Hence, for any e ∈ TN , there exists eKA such that e ≡N eKA. This means that 1 + eKA is
also a regular expression, and 1+e ≡N 1+eKA. It therefore follows that 1+e ≡pc 1+eKA,
and our outer induction is complete.

As in the previous cases, we define our interpretation in terms of languages as a map
[[−]]N : TN → P(Σ∗) defined inductively by

[[0]]N = ∅ [[a]]N = {a} [[e · f ]]N = [[e]]N ∪ [[eKA]]KA · [[f ]]N if N((fKA)
pc) = 1

[[1]]N = {ε} [[e+ f ]]N = [[e]]N ∪ [[f ]]N [[e∗]]N = [[eKA]]
∗
KA[[1 + e]]N if N((eKA)

pc) = 1
[[N(e)]]N = [[e]]N ∩ {ε}

where we also have [[e · f ]]N = ∅ if N((fKA)
pc) = 0 and [[e∗]]N = {ε} if N((eKA)

pc) = 0.

Now, this is not quite good enough for our purposes. It is easy to see that not every
language given by this function is prefix closed. For example, [[a]]N = {a} is not prefix-
closed. Furthermore, the requirement N(a) ≡N 0 means that the N -operator loses its
ability to capture equivalence to zero on N -regular expressions.

To remedy this, we instead work on Tpc, and we define [[−]]pc : Tpc → P(Σ∗) by

[[0]]pc = ∅ [[1 + e]]pc = [[1 + e]]N

En route to soundness and completeness results, we wish to show that we are justified
in using the term “prefix-closed” to describe prefix-closed Kleene algebras and their regular
expressions. To this end, we have the following property:
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Proposition 3.3.4. For all p ∈ Tpc, (pKA)
pc ≡pc p.

Proof. This is certainly true in the case p = 0, as then (pKA)
pc = 0. From here we need

only show that for any e ∈ TN , (1+ eKA)
pc ≡N 1+ e. Then the result follows by induction

and the definition of ≡pc.

We proceed again with an intermediate induction. The cases e = 0 and e = 1 are
trivial, as in these cases (eKA)

pc = eKA = e. In the case e = a, we have also eKA = e = a.
But now we have also (1 + a)pc = 1 + (1 + a). Through associativity and idempotence of
addition, we have (1 + a)pc ≡N 1 + a.

In the case e = N(f), we know (N(f))KA ≡N 0 or (N(f))KA ≡N 1, so (1+(N(f))KA)
pc ≡N

1 ≡N 1 +N(f).

Now suppose e = f + g where (1 + fKA)pc ≡N 1 + f and (1 + gKA)
pc ≡N 1 + g. Then

1 + f + g ≡N (1 + f) + (1 + g) by idempotence, commutativity, and associativity, and
hence 1+f +g ≡N (1+fKA)

pc+(1+gKA)
pc ≡N (1+1+fKA+gKA)

pc ≡N (1+fKA+gKA)
pc.

In the case e = f · g, we have two possibilities. The case N((gKA)
pc) = 0 reduces

to a trivial case, so we need only look at the case N((gKA)
pc) = 1. Then (1 + fKA ·

gKA)
pc = 1 + (fKA)

pc + fKA · (gKA)pc. By the inductive hypothesis, this is N -equivalent to
1+f +fKA · (gKA)pc ≡N 1+fKA+fKA · (gKA)pc by the definition of fKA. We can then apply
distributivity to get the N -equivalent expression 1+fKA ·(1+(gKA)

pc) ≡N 1+fKA ·(1+gKA).
But then we know that N(g) = 1, so it follows that g ≡N 1 + g ≡N 1 + gKA ≡N . We can
also substitute f for fKA to obtain (1 + fKA · gKA)pc ≡N 1 + f · g.

Finally, we look at the case e = f ∗. Once again, the case N((fKA)
pc) ≡N 0 reduces

to a trivial case, so we can assume N((fka)
pc) ≡N 1. By the inductive hypothesis, we also

have that (1 + fKA)
pc ≡N 1 + f . But then we apply the prefix-closure axiom to see that

(fKA)
pc ≡N f . Beginning with (1 + (fKA)

∗)pc = 1 + (fKA)
∗ · (fKA)pc, we then obtain the

N -equivalent expression 1 + (f)∗ · f ≡N fa∗ ≡N 1 + f ∗ through the star axiom and the
prefix-closure axiom, since N(f ∗) = 1.

The above property will aid us in our attempt to prove soundness and completeness.

Theorem 3.3.5. (Soundness and Completeness of pc). For all p, q ∈ Tpc, p ≡pc q if and
only if [[p]]pc = [[q]]pc.

Before we proceed, however, we will present the following lemma:

Lemma 3.3.6. Let p, q ∈ Tpc. Then,

1. p ≡pc q if and only if (pKA)
pc ≡KA (qKA)

pc

2. [[p]]pc = [[(pKA)
pc]]KA.

Proof. To prove the first implication of 1., let us first suppose that p, q ∈ Tpc with p ≡pc q.
If p = 0, then the only option is p = q = 0, which in turn implies that (pKA)

pc = (qKA)
pc,
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so of course (pKA)
pc ≡KA (qKA)

pc. The case of p = 1 is also easy. Now we may assume
p = 1+ e for some N -regular expression e. Thus q = 1+ f for some N -regular expression
f (or q = 1, and we return to the previous case). We have 1 + e ≡pc 1 + f , and hence
also 1 + e ≡N 1 + f , since ≡pc is just the restriction of ≡N to the prefix-closed regular
expressions.

Now, by Theorem 3.3.3, we know that 1 + eKA ≡N 1 + fKA as well. Let us first look
at the cases where N((eKA)

pc) ≡N 0.

The only possibility is eKA ≡N 0. In this case 1 + fKA ≡N 1, so either fKA ≡N 0 or
fKA ≡N 1. There are no “new” ways for a regular expression to be N -equivalent to 0 or
1, so 1 + eKA ≡KA 1 + 0 ≡KA 1 ≡KA 1 + fKA. Hence, (1 + eKA)

pc ≡KA 1 ≡KA (1 + fKA)
pc.

Now we look at the cases where N((eKA)
pc) ≡N 1.

The only possible case where we have N(fKA) = 0 and 1+eKA ≡N 1+fKA is eKA ≡N 1 and
fKA ≡N 0. Then 1 + eKA ≡N 1 ≡N 1 + fKA. The prefix-closure axiom does not introduce
any ways to be N -equivalent to 1 that are not also KA-equivalent, so we may conclude
1 + eKA ≡KA 1 ≡KA 1 + fKA. Hence, the result follows.

Now we may assume that N(fKA) ≡N 1. This implies through the prefix-closure ax-
iom that eKA ≡N fKA. We inductively look at all the ways this equivalence can occur.

Firstly, eKA = fKA. Then certainly (1 + eKA)
pc ≡KA (1 + fKA)

pc, since the two expres-
sions are equal.

Then, we look at the pcKA axioms to determine how else the expressions may be N -
equivalent. For example, we may have eKA = e1 + e2 and fKA = f1 + f2, where e1 ≡KA f2,
and vice-versa. This case aligns with the Kleene algebra axioms, so certainly eKA ≡KA fKA,
and consequently the result holds. In fact, the result will hold in this fashion if eKA ≡N fKA
due to any of the first ten axioms or the least fixpoint axioms, as these are also KA axioms.

We have assumed that eKA and fKA are regular expressions given by Theorem 3.3.3, so we
cannot have N -equivalence due to any of the N -axioms. Thus, the only other possible case
is eKA = g+ f1 where g ≡KA 1 and f1 ≡KA fKA. Hence (1+ eKA)

pc ≡KA (1+1+ fKA)
pc ≡KA

(1 + fKA)
pc, and the first implication is done.

In the other direction, suppose that (pKA)
pc ≡KA (qKA)

pc. Then certainly (pKA)
pc ≡pc

(qKA)
pc, since every Kleene algebra axiom is also a pcKA axiom, and by Proposition 3.3.4

and transitivity of equivalence relations, p ≡pc q.

We now prove the second claim. First, if e = 0, then (pKA)
pc = 0, and [[0]]pc = ∅ = [[0]]KA.

Going forward we assume p = 1 + e where e ∈ TN and prove the claim by induction.

Let e = 0. Then p = 1 + 0, so pKA ≡KA 1. Then [[1 + 0]]pc = [[1]]N = {ε} = [[1]]KA.
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The case e = 1 follows by identical reasoning.

Let e = a ∈ Σ. Then p = 1+ a and pKA = 1+ a. Next, [[1 + a]]pc = {ε, a} = [[(1 + a)pc]]KA.

Let e = N(f) for some N -regular expression f . Then e = 1 + N(f) and pKA ≡KA 1.
Now, [[1 +N(f)]]pc = {ε} ∪ ([[f ]]N ∩ {ε}) = {ε} = [[1]]KA.

We now prove by induction that whenever N(e) ≡N 1, we have [[e]]N = [[(eKA)
pc]]KA.

From this and the definition of the pc-operator, it will certainly follow that [[1 + e]]pc =
[[(1 + eKA)

pc]]KA.

We have already shown this holds in the case e = 1, and in the case e = N(f) ≡N 1.
Thus we may begin by assuming e = f + g. We know that either N(f) = 1 or N(g) = 1.
Let us assume N(f) = 1. Then if N(g) = 0, we may simply take instead g1 = 1 + g, as
the prefix-closure axiom ensures e ≡N f+g1 and we can also see that [[f+g]]N = [[f+g1]]N .

Thus we may assume N(g) = 1 as well, and by the inductive hypothesis, [[f ]]N =
[[(fKA)

pc]]KA and [[g]]N = [[(gKA)
pc]]KA. Hence [[e]]N = [[f ]]N + [[g]]N = [[(fKA + gKA)

pc]]KA.

Now take the case e = f ·g. In this case we must have N(f) = 1 = N(g), we already know
we can apply the inductive hypothesis. Thus [[e]]N = [[(fKA)

pc]]KA ∪ [[fKA]]KA · [[(gKA)pc]]KA =
[[(fKA · gKA)pc]]KA.

Finally, we suppose e = f ∗. If N(f) ≡N 0, then either f ≡N 0 or f ≡N a. In the
former case, we are reduced to the case e ≡N 1, which we have seen already. In the latter
case, we obtain [[a∗]]N = [[a∗]]KA[[1 + a]]N = [[a∗]]KA = [[a∗]]KA[[a]]KA = [[(a∗)pc]]KA.

Next we assume that N(f) ≡N 1. Then by the inductive hypothesis [[f ]]N = [[(fKA)
pc]]KA.

Hence we have [[e]]N = [[(fKA)
∗]]KA · [[1 + f ]]N = [[(fKA)

∗]]KA ∪ [[(fKA)
∗]]KA · [[(fKA)pc]]KA =

[[((fKA)
∗)pc]]KA.

Then Theorem 3.3.5 follows from a direct application of the lemma and Theorem
3.2.11 as follows:

Proof. (of Theorem 3.3.5.)
Let p, q ∈ Tpc. Then by Lemma 3.3.6 (1), p ≡pc q if and only if (pKA)

pc ≡KA (qKA)
pc. By

Theorem 3.2.11, this happens if and only if [[(pKA)
pc]]KA = [[(qKA)

pc]]KA. But by Lemma 3.3.6
(2), [[(pKA)

pc]]KA = [[p]]pc and [[(qKA)
pc]]KA = [[q]]pc, so we have that [[(pKA)

pc]]KA = [[(qKA)
pc]]KA

if and only if [[p]]pc = [[q]]pc. Hence pcKA is sound and complete with respect to the
prefix-closed regular expressions.
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Chapter 4

Synchronous Languages

4.1 The Synchronous Product and F1-Algebras

Synchronous languages are used to denote executions of synchronous process, where one
or more actions take place concurrently in a stepwise manner.

Definition 4.1.1. Given an alphabet Σ we write Pn(Σ) := P(Σ)\{∅} and say that words
over Pn(Σ) are called synchronous strings. Sets of synchronous strings form synchronous
languages.

Just as for general languages as we have seen and used above, the operations of union,
concatenation, and Kleene star are also defined on synchronous language. We additionally
define a new operation on synchronous languages by the following:

Definition 4.1.2. Let L1, L2 be two synchronous languages. We define the synchronous
product of L1 and L2 by

L1 × L2 = {u× v | u ∈ L1 ∧ v ∈ L2}

where × is defined inductively for u, v ∈ (Pn(Σ))
∗ and x, y ∈ Pn(Σ) as follows:

u× ε = u = ε× u and (x · u)× (y · v) = (x ∪ y) · (u× v).

The synchronous product satisfies the following properties:

Proposition 4.1.3. Let L1, L2, and L3 be synchronous languages over the same alphabet.

1. L1 × ∅ = ∅,

2. L1 × {ε} = L1,

3. L1 × L2 = L2 × L1, and

4. (L1 × L2)× L3 = L1 × (L2 × L3).
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Proof. Suppose L1, L2, and L3 are synchronous languages over the same alphabet.

We first want to show that ∅ annihilates the synchronous product. L1 × ∅ = {u× v | u ∈
L1 ∧ v ∈ ∅}. Since v ∈ ∅ never holds, L1 × ∅ = ∅.

Second, L1 × {ε} = {u× ε | u ∈ L1} = L1.

Third, it suffices to show that u × v = v × u at the level of synchronous words. We
can do this by a quick induction. For the base case, u×ε = u = ε×u. Now let us assume
u× v = v× u. Then we must show (x · u)× (y · v) = (y · v)× (x · u) for x, y ∈ Pn(Σ). But
we have (x · u)× (y · v) = (x ∪ y) · (u× v) = (y ∪ x) · (v × u) = (y · v)× (x · u).

Finally, take (L1 × L2) × L3 = {(u × v) × w | u ∈ L1 ∧ v ∈ L2 ∧ w ∈ L3}. Once
again, it therefore suffices to show associativity at the level of words. And, once again,
the technique is induction. Certainly the base case of the empty word holds. Assume
(u×v)×w = u× (v×w). Now take ((x ·u)× (y ·v))× (z ·w), where x, y, z ∈ Pn(Σ). This
is equal to ((x∪y)∪z)·((u×v)×w) = (x∪(y∪z)·(u×(v×w)) using associativity of union and
the inductive hypothesis. This yields ((x·u)×(y ·v))×(z ·w) = (x·u)×((y ·v)×(z ·w)).

Before we embark on our endeavour of finding a an axiomatization for synchronous
regular languages using “synchronous Kleene algebras,” we must first define a new – but
related – algebra, which provides some stronger axioms that will serve as the foundation
for our synchronous algebra.

Definition 4.1.4. An F1-algebra [12] is a tuple (A,+, ·, ∗, 0, 1, H) where A is a set, +, ·
are binary operators, ∗ is a unary operator, and 0 and 1 are constants such that for all
e, f, g ∈ A the following axioms are satisfied:

e+ (f + g) = (e+ f) + g e+ f = f + e e+ 0 = e e+ e = e
e · 1 = e = 1 · e e · 0 = 0 = 0 · e e · (f · g) = (e · f) · g
e∗ = 1 + e · e∗ = 1 + e∗ · e (e+ f) · g = e · g + f · g e · (f + g) = e · f + e · g

Additionally, H is a unary operator that satisfies the axioms:

H(0) = 0 H(e+ f) = H(e) +H(f) H(e∗) = (H(e))∗

H(1) = 1 H(e · f) = H(e) ·H(f)

And finally, the loop tightening and unique fixpoint axiom hold:

(e+ 1)∗ = e∗ H(f) = 0 ∧ e+ f · g = g =⇒ f ∗ · e = g.

For e ∈ A, whenever H(e) = 1, e is said to have the empty word property. The set of
F1-expressions, the grammar for F1-algebras, denoted TF1 , is described by:

TF1 ∋ e, f := 0 | 1 | a ∈ Σ | e+ f | e · f | e∗ | H(e)

Note that the F1-expressions are exactly the prefix-closed regular expressions, with the
exception that we write H instead of N . Clearly they do not need to satisfy the prefix
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closure axiom in general. One can interpret F1 expressions in terms of languages via
[[−]]F1 : TF1 → P(Σ), defined analogously to [[−]]KA, where for any e ∈ TF1 , we have

[[H(e)]]F1 = [[e]]F1 ∩ {ε}

Again, analogous to the Kleene algebra case, we write ≡F1 for the smallest congruence on
TF1 induced by the F1-axioms. We also require that H(a) ≡F1 0 for any a ∈ Σ. Then we
can achieve analogous soundness and completeness results to those of Theorem 2.3.3.

Theorem 4.1.5. (Soundness and Completeness of F1 [12]). For all e, f ∈ TF1, we have
that e ≡F1 f if and only if [[e]]F1 = [[f ]]F1.

F1-algebras were first proposed by Salomaa and their axioms are strictly stronger than
the Kleene algebra axioms due to the unique fixpoint axiom. However, we see that all
prefix-closed Kleene algebras as defined in the previous chapter correspond exactly to an
F1-algebra.

Theorem 4.1.6. Let A = (A,+, ·, ∗, 0, 1, N) be a prefix-closed Kleene algebra. Then A
is an F1-algebra.

Proof. The first ten F1 algebra axioms are exactly identical to the first ten prefix-closed
Kleene algebra axioms. We need only show that A satisfies the loop tightening, unique
fixpoint, and H axioms. We begin with the axioms for H.

In fact, the only H axiom that is not identical to the N axioms of prefix-closed Kleene
algebras is the axiom H(e∗) = (H(e))∗. We must therefore show N(e∗) = (N(e))∗. But
N(e∗) = 1, and either N(e) = 0 or N(e) = 1, so (N(e))∗ = 1.

By the prefix-closure axioms, e+ 1 = e whenever N(e) = 1, so certainly (e+ 1)∗ = e∗ in
this case. Furthermore, we have already stated that 0∗ = 1∗ = 1, so the loop tightening
axiom holds for any e ∈ A.

Finally, assume that we have e, f, g ∈ A such that N(f) = 0 and e + f · g = g. We
know already that N(f) = 0 implies f = 0. Thus we have also f ∗ = 1 and f · g = 0. This
implies e = g, which of course implies f ∗ · e = 1 · e = g, and we are finished.

Now, since Salomaa’s axiomatization is strictly stronger, we know that every F1-
algebra is also a Kleene algebra. This provides us with the intuition that our axiomati-
zation of prefix-closed Kleene algebras may, in fact, be an axiomatization of prefix-closed
F1-algebras.

4.2 An Axiomatization of Prefix-Closed F1-Algebras

In analogy to the result for prefix-closed regular expressions, we obtain the result

Theorem 4.2.1. For any e ∈ TF1 there exists eKA ∈ TKA such that e ≡F1 eKA.
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The proof follows exactly the proof of Theorem 3.3.3. We also note the following link
between regular languages and F1-languages.

Proposition 4.2.2. Let eKA ∈ TKA. Then [[eKA]]F1 = [[eKA]]KA.

Proof. The proof is trivial, as the interpretation [[−]]F1 of F1-expressions is defined exactly
as the interpretation [[−]]KA of regular expressions, except in the case of terms of the form
H(e), which do not exist as regular expressions.

This provides us with the tools needed to easily prove the next result.

Theorem 4.2.3. 1. Let e ∈ TF1. Then [[e]]F1 is prefix-closed if and only if there exists
e′ ∈ Tpc such that [[p]]pc = [[e]]F1.

2. Let p ∈ Tpc. Then there exists e ∈ TF1 such that [[p]]pc = [[e]]F1

Proof. First, let us assume that e ∈ TF1 such that [[e]]F1 is prefix-closed. Then, by The-
orem 4.2.1 there exists eKA such that e ≡F1 eKA. By Theorem 4.1.5, this implies that
[[e]]F1 = [[eKA]]F1 , which by Proposition 4.2.3, is equal to [[eKA]]KA. But then [[eKA]]KA is
prefix-closed, so [[eKA]]KA = [[(eKA)

pc]]KA.

Now, we have two possibilities: First, [[(eKA)
pc]]KA = ∅. Then we may pick p = 0. Sec-

ond, [[(eKA)
pc]]KA ̸= ∅. In this case, we have ε ∈ [[(eKA)

pc]]KA, which implies [[(eKA)
pc]]KA =

[[(1 + eKA)
pc]]KA. We also have 1 + eKA ∈ Tpc with (1 + eKA)KA = 1 + eKA. Hence, by

Lemma 3.3.6 (2), [[(1 + eKA)
pc]]KA = [[1 + eKA]]pc. Hence, if we take p = 1eKA, we achieve

[[e]]F1 = [[p]]pc. The converse is certainly true because [[p]]pc must be prefix-closed.

To prove the second item, now suppose p ∈ Tpc. Then by the results of section 3.3, there
exists pKA ∈ TKA such that [[p]]pc = [[(pKA)

pc]]KA. But by Proposition 4.2.2, [[(pKA)
pc]]KA =

[[(pKA)
pc]]F1 . Hence, if we take e = pKA, we are done.

Taken together, the results of the above theorem serve to say that every prefix-closed
F1-language is also a prefix-closed regular language, and vice-versa. That is, the axioma-
tization of prefix-closed Kleene algebras from the previous section is precisely the correct
axiomatization for the prefix-closed F1-algebras, and absolutely nothing new is needed.

4.3 The Synchronous F1-Algebra

One may ask why we bother with these new definitions, and why the name “synchronous”
befits them. The name follows from the work of [10] whose motivation “spawns from the
need to represent and reason about actions which can be performed ‘at the same time.”’
However, the axiomatization of Synchronous Kleene Algebra in this work, while sound, is
incomplete. Indeed, a counterexample and a new axiomatization, which is complete, are
given in [14], and it is this axiomatization and terminology that we follow.

Definition 4.3.1. A synchronous F1-algebra, or SF1-algebra, is a tuple (A, S,+, ·, ∗,×, 0, 1, H)
such that (A,+, ·, ∗, 0, 1, H) is an F1-algebra and × is a binary operator on A, with S ⊆ A
closed under × and (S,×) a semilattice. Furthermore, the following hold for all e, f, g ∈ A
and e, f ∈ S:
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e× (f + g) = e× f + e× g e× (f × g) = (e× f)× g e× 0 = 0
(e · e)× (f · f) = (e× f) · (e× f) e× f = f × e e× 1 = e.

Moreover, H is compatible with × as well. That is, for e, f ∈ A we have that H(e× f) =
H(e)×H(f). Lastly, for e ∈ S, we require that H(e) = 0.

The set of SF1-expressions over Σ, denoted TSF1 is described by:

TSF1 ∋ e, f := 0 | 1 | a ∈ TSL | e+ f | e · f | e× f | e∗ | H(e)

where the semilattice terms, denoted TSL, are given by the grammar

TSL ∋ e, f := a ∈ Σ | e× f

For a ∈ Σ and e, f ∈ TSL, define [[−]]SL : TSL → Pn(Σ) by

[[a]]SL = {a} [[e× f ]]SL = [[e]]SL ∪ [[f ]]SL

Again, denote the smallest congruence on TSL with respect to idempotence, associativity,
and commutativity of × with ≡SL. This once again allows the following result:

Lemma 4.3.2. (Soundness and Completeness of SL). For all e, f ∈ TSL, we have [[e]]SL =
[[f ]]SL if and only if e ≡SL f .

We interpret TSF1 in terms of languages via [[−]]SF1 : TSF1 → P((Pn(Σ))
∗) defined by

[[0]]SF1 = ∅ [[1]]SF1 = {ε} [[a]]SF1 = {[[a]]SL}
[[e∗]]SF1 = [[e]]∗SF1

[[e · f ]]SF1 = [[e]]SF1 · [[f ]]SF1 [[e+ f ]]SF1 = [[e]]SF1 ∪ [[f ]]SF1

[[e× f ]]SF1 = [[e]]SF1 × [[f ]]SF1 [[H(e)]]SF1 = [[e]]SF1 ∩ {e}

As one might expect, we define ≡SF1 to be the smallest congruence on TSF1 induced by
the axioms of SF1, where TSL fulfills the role of the semilattice. Then a theorem from [14]
says the following:

Theorem 4.3.3. (Soundness and Completeness of SF1.) For all e, f ∈ TSF1, we have
[[e]]SF1 = [[f ]]SF1 if and only if e ≡SF1 f .

This proof is not at all trivial, particularly in the aspect of completeness, and the
use of F1-algebras as the foundation remedies the incompleteness of the axiomatization
[10] by using the unique fixpoint axiom in lieu of the least fixpoint axiom to connect the
synchronous product and the Kleene star.
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Chapter 5

Prefix-Closure on Synchronous
Languages

The goal of this chapter is to reach an axiomatization for the prefix-closed synchronous
regular languages in an analogous way to our axiomatization of the prefix-closed reg-
ular languages. The main focus will be on prefix-closing the synchronous product, as
everything else can be done analogously to the previous case.

5.1 The Prefix-Closure Operator on Synchronous Terms

We can define the prefix-closure operator in a similar way on TSF1 to our definition on
TKA. Namely, we first define the NZ-predicate analogously to before with addition

NZ(e× f) ⇐⇒ NZ(e) ∧NZ(f).

Then we can define for e ∈ TSF1 the prefix-closure operator by:

0pc = 0 (e+ f)pc = epc + fpc (H(e))pc = H(e)
1pc = 1 NZ(f) =⇒ (e · f)pc = epc + e · fpc Z(f) =⇒ (e · f)pc = 0
apc = 1 + a for a ∈ TSL NZ(e) =⇒ (e∗)pc = e∗ · epc Z(e) =⇒ (e∗)pc = 1

where we additionally define the operator recursively on the synchronous product by

(e× 0)pc = 0 = (0× e)pc NZ(e× f) =⇒ ((a · e)× (b · f))pc = (a× b)pc + (a× b) · (e× f)pc

(e× 1)pc = epc = (1× e)pc Z(e× f) =⇒ ((a · e)× (b · f))pc = 0

where a, b ∈ TSL.
Our first goal, as in the regular case, is to show that the SF1-interpretation of this

operator correctly expresses the prefix-closed SF1-languages.

Lemma 5.1.1. Let e ∈ TSF1. Then for any xy ∈ [[epc]]SF1, we have x ∈ [[epc]]SF1.

Proof. As before, we go by induction on the expression. When e = 0 or e = 1, the result
is clearly true. Furthermore, if e = a ∈ TSL, then epc = 1 + a. We then have [[1 + a]]SF1 =
{ε} ∪ {[[a]]SL} = [[a]]pcSF1

. Additionally, if e = H(f), then [[(H(f))pc]]SF1 = [[H(f)]]SF1 , which
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is equal to either ∅ or {ε}, which are prefix-closed.

The steps for e = f + g, e = f · g, and e = f ∗ are all exactly as in the proof of Lemma
3.2.4. The new step is that we must prove the result for the synchronous product We do
this itself inductively, using the recursive definition of the prefix-closure operator.

First, if e = f × 0, then epc = 0, and [[0]]SF1 is certainly prefix-closed. Second, if e = f × 1,
then epc = fpc. But by induction [[fpc]]SF1 is prefix-closed.

Third, suppose e = (a ·f)×(b ·g), where a and b are synchronous letters. If Z(f×g), then
we are reduced to the case of 0, which is prefix-closed. Thus, we may assume NZ(f × g).
Then epc = (a× b)pc+(a× b) · (e× f)pc. We note that a× b ∈ TSL, so (a× b)pc = 1+a× b.

Then [[epc]]SF1 = {ε, {a}, {b}} ∪ {{a}, {b}} · [[(f × g)pc]]SF1 . To see that this is prefix-
closed, let xy ∈ [[epc]]SF1 . Now, we have two cases:

First, xy ∈ {ε, {a}, {b}}. Then either x = ε and y ∈ {{a}, {b}}, or vice-versa. Re-
gardless, it follows that x ∈ {ε, {a}, {b}} ⊆ [[epc]]SF1 .

Second, xy ∈ {{a}, {b}} · [[(f × g)pc]]SF1 . We split into multiple cases again.

Case 1: x ∈ {{a}, {b}} and y ∈ [[(f × g)pc]]SF1 . Then x ∈ {ε, {a}, {b}} ⊆ [[epc]]SF1 .

Case 2: x = x1x2 where x1 ∈ {{a}, {b}} and x2y ∈ [[(f × g)pc]]SF1 . Because [[(f × g)pc]]SF1

is prefix-closed due to the inductive hypothesis, we have x2 ∈ [[(f × g)pc]]SF1 , and hence
x = x1x2 ∈ {{a}, {b}} · [[(f × g)pc]]SF1 ⊆ [[epc]]SF1 .

Case 3: y = y1y2 with xy1 ∈ {{a}, {b}} and y2 ∈ [[(f × g)pc]]SF1 . Then either x = ε
or x ∈ {{a}, {b}}. Hence, x ∈ {ε, {a}, {b}} ⊆ [[epc]]SF1 .

It therefore follows that [[(f × g)pc]]SF1 is prefix-closed for f, g ∈ TSF1 , and hence [[epc]]SF1

is prefix-closed for any e ∈ TSF1 .

This leads us toward the next result, that the interpretation of the prefix-closure
operator gives not just any prefix-closed language, but in fact the prefix-closure.

Theorem 5.1.2. Let e ∈ TSF1. Then [[epc]]SF1 = [[e]]pcSF1
.

Proof. The previous lemma proves that [[e]]pcSF1
⊆ [[epc]]SF1 . We prove the reverse inclusion.

The base cases 0, 1, and a ∈ TSF1 follow analogously to the proof of Theorem 3.2.5. We
can also see that [[(H(f))pc]]SF1 = [[H(f)]]SF1 = [[H(f)]]pcSF1

.

Once again, the cases e = f + g, e = f · g, and e = f ∗ follow as in Theorem 3.2.5. We will
therefore only show the case of the synchronous product, namely that [[(f × g)pc]]SF1 =
[[f × g]]pcSF1

for any SF1-expressions f and g. If either of f or g is 0 or 1, we reduce to a
simpler case and are finished. If f = a and g = b are synchronous letters, then we also
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reduce to the semilattice case, and the result follows.

Now, assume [[(f × g)pc]]SF1 ⊆ [[f × g]]pcSF1
. We will prove [[((a · f) × (b · g))pc]]SF1 ⊆

[[(a · f)× (b · g)]]pcSF1
. If Z(f × g), we return to the case of 0, so we may assume NZ(f × g).

Then [[((a · f)× (b · g))pc]]SF1 = {ε, {a}, {b}} ∪ {{a}, {b}} · [[f × g]]pcSF1
, using the inductive

hypothesis to move pc to the outside of [[f×g]]SF1 . Meanwhile, we have [[(a·f)×(b·g)]]SF1 =
{{a}, {b}} · [[f × g]]SF1 .

Let us suppose x ∈ [[((a · f)× (b · g)pc]]SF1 . We of course go by cases.

Case 1: x ∈ {ε, {a}, {b}}. If x = ε, then certainly x ∈ [[(a · f) × (b · g)]]pcSF1
, as it is

nonempty. If x ∈ {{a}, {b}}, then for any y ∈ [[f × g]]SF1 , xy ∈ [[(a · f)× (b · g)]]SF1 , so x
is a prefix.

Case 2: x ∈ {{a}, {b}}[[f × g]]pcSF1
. Then x = x1x2 where x1 ∈ {{a}, {b}} and x2 ∈

[[f × g]]pcSF1
. Hence there exists y such that x2y ∈ [[timesg]]SF1 , which implies xy ∈

[[(a · f)× (b · g)]]SF1 , so x is again a prefix.

We have therefore correctly defined the prefix-closure operator at the level of SF1-
expressions, and can use what we have learned from this definition to axiomatize the
prefix-closed synchronous regular languages.

5.2 The Prefix-Closed Synchronous F1-Algebra

Definition 5.2.1. A prefix-closed SF1 algebra, or pcSF1-algebra, is a tuple (A, S,+, ·, ∗,×, 0, 1, H)
that satisfies all the axioms of an SF1-algebra, alongside the prefix-closure axiom

H(e) = 1 =⇒ 1 + e = e.

In the definition of the prefix-closed Kleene algebra, we added an operator N meant
to capture the NZ-predicate in a formal way. Here, we do not add such an operator, but
this will not be a provlem, as we have seen moving from pcKA’s to F1-algebras that H
exactly fulfills the role of N . The same will be true here.

We first form a new congruence on the TSF1 , in analogy to ≡N on the N -regular
expressions. We let ≡pc′ be the smallest congruences on TSF1 by the pcSF1 axioms, where
TSL again fulfills the role of a semilattice. Corresponding to this congruence, we also define
a new function [[−]]pc′ : TSF1 → P((Pn(Σ))

∗) inductively by:

[[0]]pc′ = ∅ [[H(e)]]pc′ = [[e]]pc ∩ {ε}
[[1]]pc′ = {ε} [[e+ f ]]pc′ = [[e]]pc′ ∪ [[f ]]pc′
[[a]]pc′ = {[[a]]SL}
H(fpc) ≡pc′ 1 =⇒ [[e · f ]]pc′ = [[e]]pc′ ∪ [[e]]SF1 · [[f ]]pc′ H(fpc) ≡pc′ 0 =⇒ [[e · f ]]pc = ∅
H(epc) ≡pc′ 1 =⇒ [[e∗]]pc′ = [[e∗]]SF1 · [[1 + e]]pc′ H(epc) ≡pc′ 0 =⇒ [[e∗]]pc′ = {ε}

where we additionally define [[−]]pc′ on the synchronous product by
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H((e× f)pc) ≡pc′ 0 =⇒ [[e× f ]]pc′ = ∅
[[e× 1]]pc′ = [[1× e]]pc′ = [[e]]pc′
H((e× f)pc) ≡pc′ 1 =⇒ [[(a · e)× (b · f)]]pc′ = [[a× b]]pc′ ∪ [[a× b]]SF1 · [[e× f ]]pc′

As before, this is not quite good enough, so we restrict TSF1 to TpcS, which is given by the
grammar

TpcS ∋ p := 0 | 1 | 1 + e ∈ TSF1

and likewise define ≡pcS as the restriction of ≡pc′ to TpcS. For p ∈ TpcS we define
[[p]]pcS = [[p]]pc′ .

The next lemma is a direct analogy to Lemma 3.3.6.

Lemma 5.2.2. Let p, q ∈ TpcS.

1. p ≡pcS q if and only if ppc ≡SF1 q
pc, and

2. [[p]]pcS = [[ppc]]SF1.

Proof. Let p, q ∈ TpcS. First, suppose p ≡pcS q. The base cases q = 0 and q = 1 certainly
hold. We may then look at the cases q = 1+ e where e ∈ TSF1 . Then p ≡pcS 1 + e. Hence
p ≡pc′ 1 + e. Since p ∈ TpcS, we know that either p = 1, in which case we return to one of
the base cases, or p = 1+f for some f ∈ TSF1 . Now, the only possible way that p ≡pc′ q and
not p ≡SF1 q is if p contains a term g ∈ TSF1 and q contains a term in the “same” position
that is SF1-equivalent to 1+ g. Inductively, we can show that (g+h)pc ≡SF1 (1+ g+h)pc,
(g · h)pc ≡SF1 ((1+ g) · h)pc, (h · g)pc ≡SF1 (h · (1+ g))pc, (g× h)pc ≡SF1 ((1+ g)× h)pc, and
(g∗)pc ≡SF1 ((1 + g)∗)pc. This largely follows from the fact that nonempty, prefix-closed
languages contain the empty word, meaning (1+e)pc ≡SF1 e

pc as long as [[e]]SF1 ̸= ∅. Essen-
tially, the prefix-closure operator eliminates any anomalies that come from the addition of
an extra 1 in an term of a nonzero SF1-expression. Thus the first implication of (1) follows.

Conversely, we suppose ppc ≡SF1 q
pc. Then certainly ppc ≡pcS qpc, since all SF1 axioms are

also pcSF1 axioms. Thus, we need only show that p ≡pcS ppc. Most of this result is analo-
gous to the proof of Proposition 3.3.4, so we focus only on the synchronous product. First,
in the case p = 1+0× f , we have ppc = 1+0, which is certainly equivalent to p. Then we
have the case p = 1+1×f . Inductively, we can assume (1+f)pc ≡pcS 1+f , so it follows that
ppc ≡ p. If we assume (1+f×g)pc ≡pcS 1+f×g, then we can prove the result for the case
p = 1+(a·f)×(b·g). If Z(f×g) (which is equivalent toH((f×g)pc) = 0), then we reduce to
the case p ≡pcS 1 ≡pcS ppc. Assume instead that NZ(f×g), or equivalently H((f×g)pc) =
1. Then ppc = 1+1+a×b+(a×b) ·(f×g)pc ≡pcS 1+a×b+(a×b) ·(f×g)pc. But then the
prefix-closure axiom implies 1+a×b+(a×b)·(f×g)pc ≡pcS 1+(a×b)(1+(f×g)pc). Applying
the inductive hypothesis followed by the prefix-closure axiom, this yields 1+(a×b)(f×g),
so we are finished.

Now we may move on to the second point. This proof is largely analogous the the
proof of Lemma 3.3.6 (2), again differing only by the addition of the synchronous prod-
uct. As before, we focus on that case. Certainly [[1 + 0 × f ]]pcS = {1} = [[1pc]]SF1 . By
induction, [[1 + 1× f ]]pcS = [[1 + f ]]pcS = [[(1 + f)pc]]SF1 . If Z(e× f), then we end up with
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[[p]]pcS = {ε} = [[ppc]]SF1 again, so we may assume NZ(e×f). Then assume [[1+e×f ]]pcS =
[[(1+e×f)pc]]SF1 . Then [[1+(a ·e)× (b ·f)]]pcS = {ε, {a}, {b}}∪{{a}, {b}} · [[e×f ]]pcS. Ap-
plying our assumption and using distributivity of concatenation over union, we discover
that this is precisely [[(1 + (a · e)× (b · f))pc]]SF1 .

Theorem 5.2.3. For every prefix-closed synchronous regular language L there exists p ∈
TpcS such that [[p]]pcS = L.

Proof. Let L be a prefix-closed synchronous regular language. First, if L = ∅, then we
may certainly pick p = 0. Now we may assume L ̸= ∅, in which case ε ∈ L. Because
L is a synchronous regular language, we know there exists e ∈ TSF1 such that [[e]]SF1 =
L. But since ε ∈ L, it follows that [[1 + e]]SF1 = [[e]]SF1 . It additionally follows that
[[(1 + e)pc]]SF1 = [[1 + e]]SF1 since L is prefix-closed. Therefore we can take p = 1 + e, and
we have L = [[1 + e]]SF1 = [[(1 + e)pc]]SF1 = [[1 + e]]pcS.

The above theorem lets us know that not only are all pcSF1-languages prefix-closed,
but also that every prefix-closed synchronous regular language is captured as a pcSF1-
language.

Theorem 5.2.4. (Soundness and Completeness of pcSF1.) Let p, q ∈ TpcS. Then p ≡pcS q
if and only if [[p]]pcS = [[q]]pcS.

Proof. Let p, q ∈ TpcS. Then by Lemma 5.2.2 (1) p ≡pcS q if and only if ppc ≡SF1 q
pc. By

soundness and completeness of SF1, this occurs if and only if [[ppc]]SF1 = [[qpc]]SF1 , which by
Lemma 5.2.2 (2) happens if and only if [[p]]pcS = [[q]]pcS.
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Chapter 6

Applications

6.1 A Brief Introduction to Finite Automata

As mentioned briefly in Chapter 1, automata theory is inextricably linked with formal
language theory, with automata acting as acceptors for various kinds of languages. In
particular, finite-state automata accept regular languages and inputs. But just what is a
finite-state automaton?

Informally speaking, a finite automaton has a finite set of states that it moves be-
tween according to the inputs it receives. To begin our formal definition, we start with
deterministic finite automata.

Definition 6.1.1. A deterministic finite automaton, orDFA [6], is a tupleA = (Q,Σ, δ, q0, F )
where

1. Q is a set of states,

2. Σ is an alphabet representing the input symbols,

3. δ : Q× Σ → Q is called the transition function,

4. q0 ∈ Q is the starting state, and

5. F ⊆ Q is the set of final states.

Let A be a DFA and x ∈ Σ∗ be a word. Suppose x = a1a2 . . . an for some n ∈ Z≥0,
where each ai ∈ Σ. We can determine whether A accepts x in the following way:

We can apply the transition function at the starting state with the input a1 to get
q1 := δ(q0, a1). We proceed in this manner defining qi := δ(qi−1, ai) until we reach qn. If
qn ∈ F , then qn is a final state, and A accepts x as an input.

The set of all words that a DFA accepts as input is called the language of the DFA,
and is given by

L(A) := {x ∈ Σ∗ | δ(q0, x) ∈ F},

where δ(q0, x) is shorthand for δ(qn−1, an) in the terminology we have been using.
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Example 6.1.2. Let Σ = {a, b}. We will define a DFA that accepts as input words that
contain the substring ab. We must have a single starting state q0, and a final state that
can only be reached if the automaton has previously received the input a immediately
followed by the input b. Let us call the final state q2. In between, we will have an inter-
mediate state, q1, which represents the state in which ab has not yet appeared as input,
but we have just received a as input. Therefore, our set of states will be Q = {q0, q1, q2},
and the set of final states will be F = {q2}. It is left to determine how the transition
function will work.

Suppose that we are in state q0 and we receive the input a. Then we are now in the
state q1, since our most recent input is a, but we don’t have ab as a substring yet. There-
fore,

δ(q0, a) = q1.

On the other hand, if we receive b as input, then we must remain in state q0, since b ̸= a,
and we do not have ab as a substring. Hence

δ(q0, b) = q0.

Now, let us assume that we are in state q1, i.e., our most recent input is a and we have
not already received the substring ab. If we receive input a again, nothing changes, so

δ(q1, a) = q1.

However, if we receive input b, then we have now received the substring ab, so we are
allowed to stop if we wish. Thus,

δ(q1, b) = q2.

Finally, if we are in state q2, then we already have the substring ab, so any input we
receive is fine, leading us to conclude

δ(q2, a) = δ(q2, b) = q2.

Taken together, our DFA is given by

A = ({q0, q1, q2}, {a, b}, δ, {q2}),

where δ : Q× Σ → Q is defined as above.

Now, writing an automaton as a tuple is not the most intuitive way to display it, so
sometimes we use a transition diagram, or a graph where the nodes represent states, and
the edges represent the action of the transition function. We can represent the DFA from
the previous example by the following:

q0start q1 q2
a

b

b

a

a,b
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Up till now, we have been discussing deterministic finite automata, but we may also define
non-deterministic finite automata:

Definition 6.1.3. A non-deterministic finite automaton, or NFA [6], is a tuple A =
(Q,Σ, δ, q0, F ) where

1. Q is a set of states,

2. Σ is an alphabet representing the input symbols,

3. δ : Q× Σ → P(Q) is called the transition function,

4. q0 ∈ Q is the starting state, and

5. F ⊆ Q is the set of final states.

The difference between a DFA and an NFA is that an NFA has the ability to be in
several states at once, as shown by the codomain of the transition function. However, it is
known that every NFA accepts a language that is also accepted by a DFA. Furthermore,
just as with DFAs, NFAs can also be expressed by means of a transition diagram.

Example 6.1.4. We present the diagram of an NFA, A = ({q0, q1, q2}, {a, b}, δ, {q2}) that
takes as input strings ending in ab.

q0start q1 q2
a

a,b

b

Note that δ(q0, a) = {q0, q1}, a subset of Q, in contrast to the transition function of a
DFA.

Let q ∈ Q. We then expand δ to a function δ̂ : Q× Σ∗ → P(Q) inductively by

δ̂(q, ε) = q

and, if x = x′a is a word with x′ ∈ Σ∗ and a ∈ Σ, and δ̂(q, x′) = {p1, p2, . . . , pk} where
pi ∈ Q for i = 1, . . . , k, then we define

δ̂(q, x) :=
⋃

δ̂(pi, a).

Let A be an NFA. Then the language of A is given by

L(A) := {x ∈ Σ∗ | δ̂(q0, x) ∩ F ̸= ∅}.

Although DFAs and NFAs appear distinct, we have already claimed that the language of
every NFA is also the language of a DFA. In fact, we can do better.

Theorem 6.1.5. A language L is accepted by a DFA if and only if it is accepted by some
NFA.
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The proof of this theorem involves a rather long construction which is outside the
scope of this thesis, but which can be found in detail in Section 2.3.5 of [6]. Although
DFAs and NFAs are in this sense equivalent, it can still be advantageous to work with
NFAs. Not only are NFAs often easier to formulate, but also, in some cases, an NFA may
have exponentially fewer states than the DFA that accepts the same language – n states
compared to 2n[9][7].

Now, before we connect these finite automata to regular languages, we require one
more variation.

Definition 6.1.6. A non-deterministic finite automaton with ε-transitions, or ε-NFA, is
an NFA in which transitions are allowed on the empty string. That is to say, an ε-NFA
is a tuple A = (Q,Σ, δ, q0, F ), where Q, Σ, q0, and F are defined as in an NFA, and
δ : Q× (Σ ∪ {ε}) → P(Q) acts as the transition function.

The main difference between an NFA and an ε-NFA is that an ε-NFA may ”sponta-
neously” make transitions, that is, make transitions upon input of the empty word, which
is essentially no input at all. Just as before, we can expand δ to define word acceptance,
and therefore define the language of an ε-NFA. Luckily for us, any language accepted
by an ε-NFA is also accepted by the DFA given by using the construction given in [9].
Since DFAs accept the same languages as NFAs, this is tantamount to saying that we can
eliminate the ε-transitions in an ε-NFA.

6.2 Regular Languages

Now that we know something about finite automata, we can begin with some applica-
tions of regular languages. First of all, we claim that regular languages are precisely the
languages accepted by finite automata.

Theorem 6.2.1. (Kleene’s Theorem.) A language L over an alphabet Σ is a regular
language if and only if it is accepted by some NFA (equivalently, DFA).

A full treatment of the proof of this theorem is given in Sections 3.4 and 3.5 of [9].

Example 6.2.2. We will compute the regular expressions that give the languages of the
two automata given above. Let Σ = {a, b}. Let A1 be the DFA given in Example 6.1.2
and A2 the NFA given in Example 6.1.4. Recall

L(A1) = {xaby | x, y ∈ Σ∗}.

Let L1 = Σ and L2 = {a, b}. Then we can see

L(A1) = L∗
1 · L2 · L∗

1.

Similarly, we remember
L(A2) = {xab | x ∈ Σ∗},

so, it follows that
L(A2) = L∗

1 · L2.
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6.3 Prefix-Closed Regular Languages

Now, we might ask what type of automata accept prefix-closed regular languages as input.
Since we know that regular languages are the languages of NFAs, we can assume that by
applying the right restriction to an NFA, we can find the NFAs that correspond to prefix-
closure. In fact,

Theorem 6.3.1. A regular language L over an alphabet Σ is prefix-closed if and only if
it is accepted by some NFA with all states final [7].

The theorem is given without proof in [7], but we prove it here, using an analogous
technique to the suffix-closed result given in [4]. In the proof of this theorem, we assume
Theorem 6.2.1.

Proof. The first implication is easy: Let A = (Q,Σ, δ, q0, F ) be an NFA with all states
final, that is F = Q. By Kleene’s Theorem, we know that L(A) is regular. We wish to
show that L(A) is prefix-closed.

Suppose xy ∈ L(A) for some x, y ∈ Σ∗. We have that x ∈ L(A) if and only if
δ̂(q0, x) ∩ F ̸= 0. But F = Q and δ̂(q0, x) ⊆ Q, so this is obviously true. Thus x ∈ L(A),
and L(A) is prefix-closed.

Conversely, let P be a prefix-closed regular language. Again, by Kleene’s Theorem, there
exists A = (Q,Σ, δ, q0, F ) an NFA such that L(A) = P , since P is regular. We will now
construct an NFA, A, with all states final such that L(A) = P .

Define A = (Q,Σ, δ, q0, F ), where F = Q. This is an NFA that has all the same states
and transitions as A, except that every state is final. We will prove that L(A) = L(A).

First, let x ∈ L(A). Then δ̂(q0, x) ∩ F ̸= ∅, which implies that δ̂(q0, x) ∩ Q ̸= ∅. Hence
x ∈ L(A) and L(A) ⊆ L(A).

Now, assume x ∈ L(A). Then we know that ˆdelta(q0, x) is a nonempty subset of Q.
Hence there exists q ∈ δ̂(q0, x) and y ∈ Σ∗, such that δ̂(q, y) ∩ F ̸= ∅. Consequently
δ̂(q0, xy) ∩ F ̸= ∅, so xy ∈ L(A) = P . But P is prefix-closed, so x ∈ P . Consequently
L(A) ⊆ L(A).

Therefore P = L(A) = L(A).

NFAs with all states final themselves have applications in modeling systems such as
production lines, with composition of these systems represented by operations such as
intersection and parallel composition of these automata [3].

Before discussing the next application of prefix-closed languages, it behooves us to
define infinite strings, and what it means for a finite automaton to accept such objects.
Whereas a word was defined as a finite sequence of symbols in an alphabet, an infinite
string is simply any infinite sequence of such symbols. One can consider the finite prefixes
of infinite strings as a sequence of increasingly accurate approximations converging to the
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infinite string, something akin to Cauchy sequences in a complete metric space. sets of
finite and infinite strings can be denoted byt their finite prefixes in the case the set is
generated b a finite automaton

An infinite string is accepted by a finite automaton if it passes through an accepting
state infinitely often. Then a theorem from [2] says the following:

Theorem 6.3.2. Let A be a finite automaton. Let T (q) denote the set of all finite and
infinite strings accepted beginning from state q of A, and let t⊥(q) be the language given
by all finite prefixes of T (q). Then, for any two states p, q

T (q) ⊆ T (p) ⇐⇒ t⊥(q) ⊆ t⊥(p).

It is well known that the above results does not hold in general, meaning that there
are languages of finite and infinite strings for which equivalence cannot be determined by
their finite prefix closure only [2].
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Chapter 7

Conclusion

In this thesis we have defined prefix-closed Kleene algebras and prefix-closed synchronous
F1-algebras in order to provide axiomatizations that are sound and complete with respect
to the prefix-closed regular languages and prefix-closed synchronous regular languages
respectively. These structures are not only interesting from a theoretical standpoint but
also have widespread applications throughout programming languages and other areas of
computer science.

One direction for further work might be to repeat this process of axiomatization whilst
removing 0 from the grammar entirely. The goal would then be to capture all nonempty
prefix-closed regular and/or synchronous regular languages. Often, removing ∅ from the
conversation, so to speak, simplifies many problems and is desirable in computer science.
For example, the need to define theNZ-predicate or make additional edits to the grammar
to exclude multiplication by 0 as in Chapter 3 would be completely eliminated. Ideally
such an axiomatization would be complete, but we leave this for future research

Zeroing in on the synchronous languages, we note that the definition of synchronous
languages and the synchronous operator were very concrete, relying specifically on Pn(Σ)
and the operation of union. Powerset with union is known to be a commutative monoid,
so this brings to mind an abstraction, substituting instead another monoid, (Σ,⊗), and
attempting to redefine and rediscover the properties of synchronous languages and the
synchronous operator using this structure. Of course, why stop at a monoid? One might
then ask if one could do the same thing with a group, which would introduces inverse
actions and would therefore allow synchronization with so called “silent operations” in a
computer science setting.

Finally, we note that the synchronous alphabet Pn(Σ) deliberately excludes the empty
set from the alphabet. The apparent question then, is how one can rebuild synchronous
languages and our various axiomatizations whilst allowing ∅ in the alphabet. This, too,
has meaning in the realm of computer science. While synchronous languages allow one
to express two operations occurring simultaneously, in lock-step with one another, the
presence of the empty set would allow one string to be delayed whilst the other proceeds.

In short, whilst this thesis answers an important question regarding prefix-closed lan-
guages, one can certainly set out from it onto many open problems with direct applications
in areas such as programming languages and computer network systems.
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