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Abstract

This thesis is motivated by the study of multivariate operator theory as
well as the study of SU(2)-symmetries of C∗-algebras. We partially ex-
tend the results in [1]. In particular, we extend the fusion rules of the
SU(2)-equivariant subproduct system from irreducible representations to
the case of multiple copies; we extend the commutation relations of the
resulting Toeplitz algebra of SU(2)-equivariant subproduct system from
irreducible representations to the case of multiple copies. As applications,
we prove the commutation relations in the resulting Cuntz–Pimsner alge-
bra and obtain that the resulting Cuntz–Pimsner algebra is the closed span
of noncommutative polynomials of a specific form.



The impression that I have after many years is that each human being is
unique and could well be a hero of some kind depending on the circumstances.

—- Alain Connes
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Chapter 1
Introduction

Background

The theory of operators on Hilbert spaces is at the basis of the mathe-
matical foundation of quantum mechanics, thanks to the works of Werner
Heisenberg [9] on matrix mechanics, and later by von Neumann on rings
of operators [14]. Later work by Gelfand and Naimark in [8] formally es-
tablished the theory of C∗-algebras as an independent research field within
mathematics.

Following results by Gelfand, there exists an equivalence relation be-
tween the category of commutative C∗-algebras over C and the category
of locally compact topological spaces. This analogy gives birth to non-
commutative topology as the study of not necessarily commutative C∗-
algebras.

On the other hand, operator theory on Hilbert spaces led to the prosper
of the theory of partial differential equations, for instance, Riesz represen-
tation theory implies the existence of weak solutions for elliptic PDEs [7].

The development of operator theory and operator algebras is getting
more and more prosperous nowadays. This project focuses on the theory
of subproduct systems and their associated C∗-algebras, a relative new
branch within operator algebras.

Motivations

Dilation theory is a powerful technique in operator theory. The general
philosophy is to study a complicated class of operators (e.g. contractive
operators) by viewing them as compressions of a well-studied class of op-
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8 Introduction

erators (e.g. unitary operators). For example, let T ∈ B(H) be a contrac-
tive operator on some Hilbert space H i.e. ‖T‖ ≤ 1, then we have 1− T∗T
is positive. The von Neumann inequality can be proved easily using the
tools of dilation theory: by using the continuous functional calculus and a
limit argument, we have that

U :=
[

T
√

1− TT∗√
1− T∗T −T∗

]
.

is a self-adjoint operator on H ⊕ H. Moreover, we have T = PHU for
PH : H ⊕ H → H ⊕ 0 ∼= H an orthogonal projection. Then we claim that
for every polynomial p, we have ‖p(T)‖ ≤ sup|z|=1 |p(z)| whenever T is
contractive: let p ∈ C[z], we have

‖p(T)‖ = ‖PH p(U)|H‖ ≤ ‖p(U)‖ = sup
z∈σ(U)

|p(z)| ≤ sup
|z|=1
|p(z)|, (1.1)

where we use the spectral theorem for unitary operators. The inequality
‖p(T)‖ ≤ sup|z|=1 |p(z)| is the famous von Neumann inequality [16, The-
orem 1.1].

An important recent research direction in dilation theory is the study
of subproduct systems. Those consist of a family of C∗-correspondences
indexed by a semigroup, typically N0, and subject to certain compatibility
conditions. Subproduct systems were first formally described by Shalit
and Solel in [15] and were independently studied by Bhat and Mukherjee
in the Hilbert space setting [3], under the name of inclusion systems.

Outline

Inspired by dilation theory, multivariate operator theory [2] as well as the
recent paper [1], in this thesis, we focus on SU(2)-equivariant subproduct
systems of finite-dimensional Hilbert spaces. We recall the results from
[1] on SU(2)-equivariant subproduct systems induced by an irreducible
SU(2)-representation. Then we show how to generalize those results to
some reducible cases. Finally, we describe the commutation relations in
the resulting Toeplitz and Cuntz–Pimsner algebras in both irreducible and
reducible cases. We end the project with a corollary of how the result-
ing Cuntz–Pimsner algebras can be described as completion of algebras of
polynomials, and with an outlook on open problems.

The outline of the thesis is as follows.
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9

Chapter 2 is devoted to preliminaries on the classical theory of C∗-
algebras and their representation theory.

In Chapter 3, we introduce the theory of subproduct systems of Hilbert
spaces and the resulting Toeplitz and Cuntz–Pimsner algebras, which are
our main objects of study.

In Chapter 4, we describe the structure of an SU(2)-equivariant sub-
product system induced by an irreducible representations, following [1],
and then generalize our treatment to some reducible cases.

Chapter 5 we start by recalling the commutation relations in the Toeplitz
algebras of an irreducible SU(2)-subproduct system. Then we prove the
commutation relations in the Toeplitz algebras arising from reducible rep-
resentations. Finally, we describe the commutation relations in the Cuntz–
Pimsner algebras and end the chapter by showing that the our Cuntz–
Pimsner algebras are the closed span of noncommutative polynomials of
some form. We conclude with an outlook section concerning possible fur-
ther research questions.

This thesis contains three appendices: one on the theory of Lie groups
and their representations, one on subproduct systems of C∗-correspondences,
and the last one on some integer sequences appearing in this work.

9





Chapter 2
Preliminaries: C∗-algebras and
Their Representation Theory

Mathematics is the art of giving
the same name to different things.

Henri Poincaré

In this Chapter, we will firstly define C∗-algebras and recall some im-
portant results. Then we will turn to representation theory of C∗-algebras
in which the famous GNS Theorem will be proved.

2.1 C∗-algebras

The main references for this chapter is [12].

2.1.1 C∗-algebras and their properties

Definition 2.1 (Normed algebra). Let A be an algebra over some field F, we call
A a normed algebra if A is endowed with a norm ‖ · ‖ such that ‖ab‖ ≤ ‖a‖ · ‖b‖.
We call A unital if there exists 1A ∈ A such that 1Aa = a1A = a, ∀a ∈ A. If A
is unital, we also assume ‖1A‖ = 1.

From now on, the ground field F of all vector spaces and algebras will
be fixed as C. Once we have norm, the most interesting spaces are the
complete ones.

11



12 Preliminaries: C∗-algebras and Their Representation Theory

Definition 2.2 (Banach algebras). A Banach algebra A is a normed algebra that
is complete in the topology induced by the norm, that is, all Cauchy sequences in
A converge in A.

One of the standard examples is the vector space Cn with point-wise
multiplication.

Example 2.3. Let A denote the vector space Cn. We claim that A is a Banach
algebra with the Euclidean norm and point-wise multiplication. The Euclidean
norm is complete since Cn is finite dimensional. The remaining thing to check is
the inequality ‖xy‖ ≤ ‖x‖ · ‖y‖. Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn)
we have xy = (x1y1, x2y2, . . . , xnyn) and

‖xy‖2 =
n

∑
i=1
‖xiyi‖2

=
n

∑
i=1
‖xi‖2 · ‖yi‖2

≤ (
n

∑
i=1
‖xi‖2) · (

n

∑
i=1
‖yi‖2)

= ‖x‖2‖y‖2.

Then A is a Banach algebra.

Let us look at another example of Banach algebras.

Example 2.4. Consider the set C(X) of continuous complex valued functions on
X, where X is a compact space. We endow C(X) with the supremum norm (which
is well-defined as X is assumed to be compact)

‖ · ‖∞ : C(X)→ sup
x∈X
| f (x)| < ∞.

One can check that C(X) is an algebra with respect to pointwise addition, mul-
tiplication, scalar multiplication, and with the function 1X(x) = 1, ∀x ∈ X
as unit. Furthermore, we have ‖ f g‖∞ ≤ ‖ f ‖∞ · ‖g‖∞ and (C(X), ‖ · ‖∞) is
complete. Therefore C(X) is a unital Banach algebra.

Definition 2.5 (Involution). An involution on an algebra A (over C) is a conjugate-
linear map ∗ : A → A such that (x∗)∗ = x and (xy)∗ = y∗x∗. If an algebra A
is endowed with an involution, we call A a ∗-algebra. If B is a subalgebra of A
with x∗ ∈ B, ∀x ∈ B, we call B a ∗-subalgebra of A.

12



2.1 C∗-algebras 13

Roughly speaking, the C∗-algebras are Banach algebras with an isomet-
ric involution, that is compatible with the norm in a way we shall describe
below.

Definition 2.6 (Banach ∗-algebra). A Banach ∗-algebra A is a ∗-algebra, to-
gether with a complete norm such that ‖ab‖ ≤ ‖a‖ · ‖b‖ for all a, b ∈ A. If A is
unital with ‖1A‖ = 1, we call A a unital Banach ∗-algebra.

Remark 2.7. Some authors define the involution ∗ of a Banach ∗-algebra to be
isometric e.g. [12], however, we do not follow this convention in this thesis.

We are now ready to formally define C∗-algebra.

Definition 2.8 (C∗-algebra). A C∗-algebra A is a Banach ∗-algebra with an
involution ∗ such that

‖x∗x‖ = ‖x‖2. (2.1)

The identity 2.1 is called C∗-identity.

An element a ∈ A is self-adjoint (or Hermitian) if a∗ = a. We call a
normal if aa∗ = a∗a. A projection in a C∗-algebra A is an element p ∈ A
such that p∗ = p = p2. For a unital C∗-algebra A, we say an element a ∈ A
is invertible if there exists b ∈ A such that ab = ba = 1.

Remark 2.9. If B is a closed (with respect to the norm topology) ∗-subalgebra of
a C∗-algebra A, then B itself is again a C∗-algebra.

Definition 2.10. Let A, B be two C∗-algebras, a ∗-homomorphism ϕ : A→ B is
an algebra homomorphism such that

ϕ(a∗) = ϕ(a)∗, ∀a ∈ A.

We list some important properties of C∗-algebras below.

Lemma 2.11. Let A be a C∗-algebra then we have

1. For any x ∈ A, if x∗x = 0, then x = 0;

2. The involution is bijective and isometric;

3. If x ∈ A is invertible, then (x∗)−1 = (x−1)∗.

Proof. Those properties follow from the C∗-identity:

1. By the C∗-identity we have x∗x = 0 implies ‖x‖2 = 0 thus x = 0;

13



14 Preliminaries: C∗-algebras and Their Representation Theory

2. The fact that (x∗)∗ = x implies ∗ is surjective and ‖x‖2 = ‖x∗x‖ ≤
‖x∗‖‖x‖ implies ‖x‖ ≤ ‖x∗‖. If we replace x by x∗, we have ‖x∗‖ ≤
‖x‖, which implies that ‖x‖ = ‖x∗‖. Hence the involution is bijective
and isometric.

3. If x is invertible, then there exists x−1 ∈ A such that x−1x = 1, which
implies that 1 = 1∗ = x∗(x−1)∗ thus we have (x∗)−1 = (x−1)∗.

We will now consider some examples of C∗-algebras.

Example 2.12. The simplest example of C∗-algebra is the complex numbers with
the standard norm (‖a + bi‖ =

√
a2 + b2), and with complex conjugate as invo-

lution. Indeed, write x = a + bi then we have‖x∗x‖ = ‖xx‖ = ‖a2 + b2‖ =
a2 + b2 = ‖x‖2.

Example 2.13. Let H be a Hilbert space and B(H) be the algebra of bounded
operators on H with norm the operator norm. Then we have that B(H) is a C∗-
algebra with the adjoint as the involution. The only non-trivial thing is the C∗

identity: take A ∈ B(H)

‖A∗x‖2 = 〈A∗x, A∗x〉 = 〈AA∗x, x〉 ≤ ‖A‖‖A∗x‖‖x‖.

Thus we have ‖A∗x‖ ≤ ‖A‖‖x‖ = ‖A‖ when ‖x‖ = 1. It implies that
‖A∗‖ ≤ ‖A‖ and thus ‖A∗‖ = ‖A‖. On the other hand, we have ‖Ax‖2 ≤
‖A∗A‖‖x‖2 = ‖A∗A‖ when ‖x‖ = 1, thus ‖A‖2 ≤ ‖A∗A‖. Therefore the C∗

identity holds:

‖A‖2 ≤ ‖A∗A‖ ≤ ‖A∗‖‖A‖ = ‖A‖2 implies ‖A∗A‖ = ‖A‖2.

We conclude that B(H) is a C∗-algebra.

2.1.2 Spectral theory

In finite-dimensional linear algebra, eigenvectors as well as their eigen-
values play an important role. Here we will define the notion of spectrum
which plays the role of eigenvalues in the infinite dimensional case.

We first state some results on unital Banach algebras, then turn to the
case of C∗-algebras.

Definition 2.14 (Spectrum). Let A be a unital Banach algebra. The spectrum of
a ∈ A is defined as σ(a) := {λ ∈ C : λ · 1− a is not invertible}.

14



2.1 C∗-algebras 15

Definition 2.15 (Positive element). Let A be a unital C∗-algebra. We call a ∈
A positive if a is self-adjoint and σ(c) ∈ [0, ∞).

The following theorem describes the geometric property of the spec-
trum σ(a) for all a ∈ A.

Theorem 2.16. Let A be a unital Banach algebra then σ(a) is a non-empty com-
pact subset of C, for all a ∈ A.

Proof. We first show σ(a) is bounded. We claim that for all x ∈ A, ‖x −
1‖ < 1 implies that x is invertible. Indeed, let y := 1− x. Then ∑∞

n=0 yn

converges as ‖y‖ < 1 and

‖
∞

∑
n=0

yn‖ ≤
∞

∑
n=0
‖yn‖ ≤

∞

∑
n=0
‖y‖n → 1

1− ‖y‖ ,

implies that x−1 = ∑n yn, since

x(
∞

∑
n=0

yn) = lim
n→∞

x(1 + y + · · ·+ yn) = lim
n→∞

1− yn+1 = 0.

Moreover, λ ∈ σ(a) implies that λ − a = λ(1 − a/λ) is not invertible.
Thus we have ‖1− (1− a/λ)‖ = ‖a/λ‖ = ‖a‖/|λ| ≥ 1 otherwise 1− a/λ
would be invertible. Therefore we have |λ| ≤ ‖a‖.

To show the compactness of σ(a), it is sufficient to show σ(a) is closed.
However, we have that O(A), the set of invertible elements of A, is open
and f (λ) := λ − a is clearly continuous. Then we have σ(a) = C \
f−1(O(A)) is closed.

The proof of the fact that σ(a) is non-empty for all a ∈ A can be found
in [12, Theorem 1.2.5].

We can now state the famous Gelfand–Mazur’s theorem.

Theorem 2.17 (Gelfand–Mazur). Let A be a unital Banach algebra. If all non-
zero elements of A are invertible, then A = C1.

Proof. Let a ∈ A. Then by Theorem 2.16 we have that σ(a) is non-empty.
Then there exists λ ∈ C such that λ− a is not invertible. By assumption
we have λ− a = 0, that is a = λ.

Using Theorem 2.16 we can define the concept of spectral radius.

15



16 Preliminaries: C∗-algebras and Their Representation Theory

Definition 2.18. Let A be a unital Banach algebra. We call

r(a) := sup
λ∈σ(a)

|λ|

the spectral radius of a ∈ A.

It is not hard to compute the spectral radius by Beurling’s Theorem
below.

Theorem 2.19 (Beurling). Let A be a unital Banach algebra then we have r(a) =
limn→∞ ‖an‖1/n for all a ∈ A.

Proof. The proof can be found in [12, Theorem 1.2.7].

As a quick consequence, it is easy to determine the spectral radius of
normal elements.

Corollary 2.20. Let A be a C∗-algebra and a ∈ A be a normal element i.e. aa∗ =
a∗a, then r(a) = ‖a‖.

Proof. By using C∗ identity we have ‖a2n‖ = ‖a2n
(a2n

)∗‖1/2. Then we have
‖a2n

(a2n
)∗‖1/2 = ‖(aa∗)2n‖1/2 = ‖a‖2n

as a is normal. That leads to ‖a‖ =
‖a2n‖1/2n

thus r(a) = limn ‖an‖1/n = limn ‖a2n‖1/2n
= ‖a‖ by Beurling’s

Theorem.

Now we turn our attention to Abelian C∗-algebras. Actually, the results
presented here hold for general Abelian Banach algebras.

Definition 2.21. A character τ of an Abelian Banach algebra A is a homomor-
phism from A to C. The set of characters is denoted by Ω(A).

We shall list some properties of characters without proof, and then
prove the Gelfand representation theorem.

Lemma 2.22 ([12, Theorem 1.3.3]). Let A be a unital Abelian Banach algebra.
Then we have:

1. If τ ∈ Ω(A) then we have ‖τ‖ = 1;

2. The set Ω(A) is nonempty;

3. If A is unital then σ(a) = {τ(a) : τ ∈ Ω(A)}.

In fact, Ω(A) is even compact when endowed with the weak-∗ topol-
ogy.

16



2.1 C∗-algebras 17

Theorem 2.23. If A is a unital Abelian Banach algebra, then Ω(A) is a compact
Hausdorff space.

Proof. We have that Ω(A) is weak ∗ closed in the unit ball of A∗ as if τλ ∈
Ω(A) converges weakly to τ, then we have τλ(a) → τ(a) for all a ∈ A.
That gives τλ(a ? b) = τλ(a) ? τλ(b) → τ(a) ? τ(b) where ? stands for
addition and multiplication. Then by Banach–Alaoglu’s theorem, we have
that Ω(A) is compact.

Now we are ready for the main theorem of this section.

Theorem 2.24 (Gelfand). Let A be a unital Abelian Banach algebra. Let the
Gelfand transform be defined by:

ϕ : A→ C(Ω(A)), a 7→ (â : τ 7→ τ(a)).

Then the following hold:

1. The Gelfand transform is a norm-decreasing homomorphism and r(a) =
‖â‖∞.

2. If A is a unital Abelian C∗-algebra then the Gelfand transform is an iso-
metric isomorphism.

Proof. It is easy to check that ϕ is a homomorphism. Indeed, we have
ϕ(a ? b)(τ) = τ(a ? b) = τ(a) ? τ(b) = ϕ(a)(τ) ? ϕ(b)(τ) where ? stands
for addition and multiplication since τ is additive and multiplicative on
A. Then, to show that ϕ is a homomorphism, it is sufficient to show that
ϕ(a∗) = ϕ(a). That follows, as

ϕ(a∗)(τ) = τ(a∗) = τ(a) = ϕ(a).

By Lemma 2.22, we have that the range of â coincides with the spectrum
of a and ‖τ‖ = 1, thus r(a) = sup{|λ| : λ ∈ σ(a)} = ‖â‖∞.

The fact that the Gelfand transform is an isometry is due to the C∗-
identity:

‖ϕ(a)‖2
∞ = ‖ϕ(a)ϕ(a)∗‖∞ = ‖ϕ(a∗a)‖∞ = r(a∗a) = ‖a∗a‖ = ‖a‖2.

To show that we have an isomorphism, it is sufficient to show that ϕ(A)
is a closed ∗-subalgebra of C(Ω(A)) that separates points. The closed-
ness of ϕ(A) is clear and for any τ ∈ Ω(A) we have a ∈ A such that
τ(a) as ‖τ‖ = 1 which means that ϕ(A) separates points. By the Stone–
Weierstrass theorem [5, Theorem 8.1], we have ϕ(A) = C(Ω(A)), as de-
sired.

17



18 Preliminaries: C∗-algebras and Their Representation Theory

2.2 Representation theory of C∗-algebras

2.2.1 Ideals and positive linear functionals

For non-unital C∗-algebras, approximate units play an important role by
extending the notion of unit to this setting.

Definition 2.25 (Approximate unit). An approximate unit for a C∗-algebra A
is an increasing net (uλ)λ∈Λ of positive elements within the closed unit ball of A
such that limλ→∞ auλ = limλ→∞ uλa = a for all a ∈ A.

The standard example of approximate unit is the net of projections in
K(H), where K(H) denotes the C∗-algebra of compact operators from a
separable infinite-dimensional Hilbert space H to itself.

Let {en : n ∈ N} be an orthonormal basis for H. Let {pk} be the
projection onto span{e1, . . . , ek} then we have that {pk} is an approximate
unit for K(H). Indeed, as the set of finite rank operators which we denote
by F(H), is dense in K(H), it is sufficient to show limk→∞ pλT = T under
the operator norm, for all T ∈ F(H).

The following Theorem ensures the existence of approximate units in
arbitary C∗-algebras.

Theorem 2.26 ([12, Theorem 3.1.1]). Every C∗-algebra admits an approximate
unit.

Indeed, an approximate unit can be constructed as follows: let Λ de-
note the set of positive elements with norm less than one in A, which has a
natural order. Set uλ = λ ∈ Λ. Then we have that {uλ} is an approximate
unit. This is called standard approximate unit.

Using Theorem 2.26, we can easily show the existence of approximate
unit for closed ideals.

Corollary 2.27. Let L be a closed left ideal of a C∗-algebra A. Then L admits an
approximate unit {uλ} ∈ I.

Proof. Set B = L ∩ L∗. Since B is a C∗-algebra, B admits an approximate
unit by Theorem 2.26. Let a ∈ L. We have a∗a ∈ B, which implies that

lim
λ→∞

a∗a(1− uλ) = 0.

Then we have

lim
λ→∞

‖a(1− uλ)‖2 = lim
λ→∞

‖(1− uλ)a∗a(1− uλ)‖2

≤ lim
λ→∞

‖a∗a(1− uλ)‖2 = 0.

Hence we have limλ→∞ auλ = limλ→∞ uλa = a for all a ∈ L.

18



2.2 Representation theory of C∗-algebras 19

Corollary 2.28. If I is a closed ideal in a C∗-algebra A, then I is self-adjoint and
therefore a C∗-subalgebra of A. If {uλ} is an approximate unit for I, then for all
a ∈ A:

‖a + I‖ = lim
λ
‖a− auλ‖ = lim

λ
‖a− uλa‖.

Proof. The proof uses Corollary 2.27 and the details can be found in [12].

By using Corollary 2.28, we can prove that the quotient of a C∗-algebra
by a closed ideal is a C∗-algebra.

Corollary 2.29. If I is a closed ideal of a C∗-algebra A, then the quotient A/I is
a C∗-algebra with the operations defined on the quotient, and the quotient norm.

Proof. Let {uλ} be an approximate unit of I, which exists by Corollary 2.27.
By Corollary 2.28, for each a ∈ A, b ∈ I we have

‖a + I‖2 = lim
λ
‖a− auλ‖2

= lim
λ
‖(1− uλ)a∗a(1− uλ)‖2

= lim
λ
‖(1− uλ)(a∗a + b− b)(1− uλ)‖2

≤ ‖a∗a + b‖+ lim
λ
‖b− buλ‖

= ‖a∗a + b‖,

which gives ‖a + I‖2 ≤ ‖a∗a + I‖ ≤ ‖a + I‖2. Thus A/I is a C∗-algebra.

We are now ready to prove the main theorem of this section.

Theorem 2.30. If ϕ : A → B is an injective ∗-homomorphism between C∗-
algebras, then ϕ is isometric.

Proof. It is sufficient to show ‖ϕ(a∗a)‖ = ‖a∗a‖, thus we can restrict to the
case A is generated by 1 and a∗a and B = ϕ(A) which are Abelian.

Let τ be a character on B, thus τ ◦ ϕ is a character on A. Clearly we have
that the ∗-homomorphism ϕ induces a continuous map ϕ# from Ω(B) to
Ω(A) which sends τ to τ ◦ ϕ. As Ω(B) is compact, we then have ϕ#(Ω(B))
is closed in Ω(A). By Urysohn’s Lemma, there exists f : Ω(A) → C such
that f |ϕ# = 0. However, via Theorem 2.24, we have f = x̂ for some x ∈ A.
Then we have 0 = x̂(τ ◦ ϕ) = τ ◦ ϕ(x) for all τ ∈ Ω(B) which shows that
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20 Preliminaries: C∗-algebras and Their Representation Theory

x = 0, a contradiction! Therefore we have Ω(A) = ϕ#(Ω(B)), from which
it follows that

‖x‖ = ‖x̂‖∞ = sup
τ∈Ω(A)
‖τ‖=1

‖τ(x)‖ = sup
τ
′∈Ω(B)
‖τ‖=1

‖τ(ϕ(x))‖ = ‖ϕ(x)‖.

The last essential concept in the representation theory of C∗-algebras is
that of a positive linear functional.

Definition 2.31. A linear map ϕ between C∗-algebras A and B is said to be
positive if it maps positive elements to positive elements. A linear functional is
said to be positive if it is positive as linear map from A to C. A state is a positive
linear functional with norm 1.

Let us look at some properties of positive linear functionals.

Lemma 2.32. Positive linear functionals are bounded.

Proof. Let τ be a positive linear functional. Suppose τ is not bounded, then
there exists {sn : ‖sn‖ ≤ 1} such that τ(sn) ≥ 2n. Then we have the series
s := ∑n

sn
2n converges:

‖∑
n

sn

2n ‖ ≤∑
n
‖ sn

2n .‖ ≤∑
n

2−n ≤ 1.

On the other hand, we have that s ≥ sn for all sn by construction. Therefore
we have τ(s) ≥ τ(sn) ≥ 2n for all n ∈ N, which is a contradiction. Hence
we conclude that τ is bounded.

Lemma 2.33. If τ is a positive linear functional on a C∗-algebra A , then τ(a∗) =
τ(a) and |τ(a)|2 ≤ ‖τ‖τ(a∗a).

Proof. Let {uλ} be an approximate unit of A. Then we have

τ(a∗) = lim
λ

τ(a∗uλ) = lim
λ

τ(uλa) = τ(a),

where the second equality is due to the fact that 〈x, y〉 := τ(y∗x) defines
a sesquilinear linear form. The inequality |τ(a)|2 ≤ ‖τ‖τ(a∗a) is a conse-
quence of

|τ(a)|2 = lim
λ
|τ(uλa)|2 ≤ lim

λ
|τ(u2

λ)|τ(a∗a) = ‖τ‖τ(a∗a),

which in turn follows from the Cauchy–Schwarz inequality.
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2.2 Representation theory of C∗-algebras 21

The following Lemma provides a characterization of the positive linear
functionals.

Lemma 2.34 ([12, Theorem 3.3.2]). Let τ be a linear functional. The following
facts are equivalent:

1. τ is positive;

2. For every approximate unit {uλ} we have limλ τ(uλ) = ‖τ‖;

3. For some approximate unit {uλ} we have limλ τ(uλ) = ‖τ‖.

Corollary 2.35. Let A be a unital C∗-algebra, then we have

1. If τ is a bounded linear functional on A, then τ is positive if and only if
τ(1) = ‖τ‖.

2. If τ and τ
′

are positive linear functionals on A, then we have ‖τ + τ
′‖ =

τ(1) + τ
′
(1) = ‖τ‖+ ‖τ′‖

Proof. Let τ be a bounded linear functional on A, then by Lemma 2.34, we
have that τ is positive if and only if limλ τ(uλ) = ‖τ‖ for every approxi-
mate unit. Since A is unital, we can take uλ = 1 for all λ, which proves the
first statement. The second statement follows from the first one.

Theorem 2.36. Suppose τ is a positive linear functional on a C∗-algebra A. Then
we have

τ(b∗a∗ab) ≤ ‖a∗a‖τ(b∗b), ∀a, b ∈ A.

Proof. We may suppose τ(b∗b) > 0 otherwise τ(b∗a∗ab) = 0 by the Cauchy–
Schwarz inequality. Then define the positive linear functional

ρ : A→ C, c 7→ τ(b∗cb)
τ(b∗b)

.

Let {uλ} be an approximate unit for A, the above functional satisfies

‖ρ‖ = lim
λ

ρ(uλ) = lim
λ

τ(b∗uλb)/τ(b∗b) = 1,

which implies ρ(a∗a) ≤ ‖a∗a‖, thus τ(b∗a∗ab) ≤ ‖a∗a‖τ(b∗b).
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22 Preliminaries: C∗-algebras and Their Representation Theory

2.2.2 Gelfand–Naimark–Segal Theorem

Definition 2.37. A representation of a C∗-algebra is a pair (H, ϕ) where H is
a Hilbert space and ϕ is a ∗- homomorphism from A to B(H). We call (H, ϕ)
faithful if ϕ is injective.

Given a representation (H, ϕ), we call H the representation space. If
(Hλ, ϕλ)λ∈Λ is a family of representations, the direct sum of Hλ is auto-
matically a representation space, and the ∗- homomorphism is defined as

ϕ(a)(xλ) := (ϕλ(a)(xλ))λ, xλ ∈ Hλ.

Moreover, if all (Hλ, ϕλ) are faithful, (⊕λHλ,⊕λ ϕλ) is faithful.
We shall prove that for any positive linear functional on C∗-algebra A,

there exists an associated representation. This result is known as the GNS
construction.

Lemma 2.38. Let τ be any positive linear functional on A. The set

Nτ = {a ∈ A : τ(a∗a) = 0}.

is a closed left ideal of A.

Proof. Let b ∈ A, a ∈ Nτ, we have

0 ≤ τ((ba)∗ba) = τ(a∗b∗ba) ≤ ‖b∗b‖τ(a∗a) = 0 implies ba ∈ Nτ.

Let {aλ} be a net in Nτ,

τ(a∗a) = τ(lim
λ

a∗λaλ) = lim
λ

τ(a∗λaλ) = lim
τ

0 = 0.

Therefore, Nτ is a closed left ideal of A.

On A/Nτ, define the inner product:

(a + Nτ, b + Nτ) 7→ τ(b∗a).

To see that the inner product is well-defined, take a1 + Nτ = a2 + Nτ i.e.
a1 − a2 = a ∈ Nτ then

(a1 + Nτ, b + Nτ) = (a2 + a + Nτ, b + Nτ) (2.2)
= τ(b∗a2) + τ(b∗a) (2.3)
= τ(b∗a2) (2.4)
= (a2 + Nτ, b + Nτ) (2.5)
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2.2 Representation theory of C∗-algebras 23

where equality from (2.3) to (2.4) is due to the Cauchy–Schwartz inequality
by considering the sesqui-linear form described in the proof of Theorem
2.33.

Hence the space (A/Nτ, (·, ·)) is a pre-Hilbert space. Denote by Hτ the
Hilbert space completion of A/Nτ.

Now, let us construct the representation ϕ. Define a ∗-homomorphism
ϕ : A→ B(A/Nτ) by

ϕ(a)(b + Nτ) = ab + Nτ.

Then we have

‖ϕ(a)‖2 = sup
‖b+Nτ‖≤1

‖ϕ(a)(b + Nτ)‖2

= sup
‖b+Nτ‖≤1

τ(b∗a∗ab)

≤ sup
τ(b∗b)≤1

‖a‖2τ(b∗b) ≤ ‖a‖,

where the first inequality follows from Theorem 2.36 .
The the operator ϕ(a) can be uniquely extended to a bounded operator

ϕτ(a) on Hτ. The map ϕτ : a 7→ ϕτ(a) is clearly a ∗-homomorphism.
The representation (Hτ, ϕτ) constructed above is called the Gelfand–

Naimark-Segal (GNS) representation associated to the positive linear func-
tional τ.

Definition 2.39 (Universal representation). Let A be a C∗-algebra, the uni-
versal representation of A is defined as the direct sum of (ϕτ, Hτ) for all states τ
on A.

This leads us to the famous Gelfand–Naimark–Segal Theorem:

Theorem 2.40 (Gelfand–Naimark–Segal). If A is a C∗-algebra, then it has a
faithful representation. Specifically, its universal representation if faithful.

Proof. Let (H, ϕ) be the universal representation of A. Then suppose (H, ϕ)
is not faithful i.e. there exists a ∈ A such that ϕ(a) = 0. Since a∗a is nor-
mal, there exists a state τ such that ‖a∗a‖ = τ(a∗a). Set b = (a∗a)1/4, using
functional calculus, we have

‖a‖2 = ‖a∗a‖ = τ(a∗a) = τ(b4) = ‖ϕτ(b)(b + Nτ)‖2.

On the other hand, we have ϕτ(b4) = ϕτ(a∗a) = 0 hence we have

ϕτ(b) = 0 implies ‖a‖ = 0 if and only if a = 0,

from which we conclude that (H, ϕ) is faithful.
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24 Preliminaries: C∗-algebras and Their Representation Theory

We end this section with an application of the GNS theorem.

Example 2.41. Consider the matrix algebra Mn(A) with entries in a ∗-algebra
A. The involution operation on Mn(A) is defined as (aij)

∗
ij = (a∗ji)ij. If there is a

∗-homomorphism between A and another ∗-algebra B, then there is a correspond-
ing a ∗- homomorphism between matrix algebras, by sending (aij) to ϕ(aij).

Let H be a Hilbert space, and H(n) be the direct sum of n copies of H. Choose
u ∈ Mn(B(H)), we define ϕ(u) ∈ B(H(n)) by

ϕ(u) : (x1, . . . , xn)
T 7→ u(x1, . . . , xn)

T = (
n

∑
j=1

u1jxj), . . . ,
n

∑
j=1

unjxj).

Clearly, the homomorphism ϕ is a ∗-isomorphism. We call it the canonical ∗-
isomorphism. Thus the matrix algebra of B(H) can be identified with B(H(n)).
Note that Mn(B(H)) has no norms right now. We define the norm by setting
‖u‖M := ‖ϕ(u)‖. As B(H(n)) is clearly a C∗-algebra, it is not hard to show
Mn(B(H)) is a C∗-algebra with the norm ‖ · ‖M. Moreover, by using the GNS
Theorem we can prove that ‖ · ‖M is the only norm with which Mn(B(H)) be-
comes a C∗-algebra. This fact holds in much bigger generality, as the next theorem
shows.

Theorem 2.42 ([12, Theorem 3.4.2]). If A is a C∗-algebra, then there is a unique
norm on Mn(A) making it a C∗-algebra.
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Chapter 3
Subproduct Systems from
SU(2)-representations

3.1 Subproduct systems of Hilbert spaces

Subproduct systems were originally defined in the Hilbert space setting
in [3]. Later, the concept of subproduct system was extended to the more
general setting of C∗-correspondences in [15]. The interested reader can
refer to the Appendix C for a detailed introduction to subproduct systems
of C∗-correspondences. In this section, we only focus on subproduct sys-
tems of Hilbert spaces.

Definition 3.1. Suppose that H = {Hm}, m ∈ N0 is a sequence of Hilbert
spaces and that ιk,m : Hk+m → Hk ⊗C Hm is a bounded isometry for every
k, m ∈N0. We say that (H, ι) is a subproduct system over C when the following
holds for all k, l, m ∈N0:

1. H0 = C;

2. The structure maps ι0,m : Hm → H0 ⊗C Hm and ιm,0 : Hm → Hm ⊗C H0
are the canonical identifications and;

3. The two bounded isometries (1k ⊗ ιl,m) ◦ ιk,l+m and (ιk,l ⊗ 1m) ◦ ιk+l,m :
Hk+l+m ⊗ Hk ⊗C Hl ⊗C Hm agree, where 1k and 1m denote the identity
operators on Hk and Hm, respectively.

Let us look at an example.
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26 Subproduct Systems from SU(2)-representations

Example 3.2. Let H be a finite-dimensional Hilbert space over C. Then we have
that {H⊗n}∞

n=0 is a subproduct system with structure maps given by the canoni-
cal identifications H⊗n+m ∼= H⊗n ⊗ H⊗m. This subproduct system is called the
full product system.

Example 3.3. Let H be a fixed finite-dimensional Hilbert space. Define the pro-
jection pn from H⊗n onto the symmetric subspace of H⊗n by

pn(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) =
1
n! ∑

σ∈Sn

ξσ−1(1) ⊗ ξσ−1(2) ⊗ · · · ⊗ ξσ−1(n),

where Sn denotes the n-degree permutation group.
We define En := pn(H⊗n) and the structure maps ιk,l as the adjoints of the

maps uk,l : Ek ⊗ El → Ek+l such that uk,l(x ⊗ y) = pk+l(x ⊗ y). The only
non-trivial thing to check is the third identity in the Definition 3.2. It is sufficient
to prove that

uk+l,m ◦ (uk,l ⊗ 1m) = uk,l+m ◦ (1k ⊗ ul,m).

Indeed, we have

uk+l,m ◦ (uk,l ⊗ 1m)(x⊗ y⊗ z)
= uk+l,m(pk+l(x⊗ y)⊗ z)
= pk+l+m(x⊗ y⊗ z)
= uk,l+m ◦ (x⊗ pl+m(y⊗ z))
= uk,l+m ◦ (1k ⊗ ul,m)(x⊗ y⊗ z).

Therefore, (En, ι) is a subproduct system, which we call the symmetric subproduct
system.

3.1.1 The Toeplitz and Cuntz–Pimsner algebras of a sub-
product system

Once we have a subproduct system, we can associate to it two C∗ algebras,
namely, the Toeplitz and Cuntz–Pimsner algebras. They were studied by
Viselter in [17]. Before introducing the concepts, we shall firstly define the
Fock space on which we will represent the Toeplitz C∗-algebra.

Definition 3.4 (Fock space). Given a subproduct system (E, ι), its Fock space
is defined as the infinite direct sum of Hilbert spaces F := ⊕∞

i=0Ei.

For every ξ ∈ Ek, we define the creation operator Tξ ∈ L(F) by

Tξ : F → F, Tξ(ζ) := ι∗k,m(ξ ⊗ ζ), ζ ∈ Ek ⊂ F
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3.1 Subproduct systems of Hilbert spaces 27

Via the creation operators, we can define the Toeplitz C∗-algebra of a sub-
product system.

Definition 3.5 (Toeplitz algebra). Let (E, ι) be a subproduct system. The Toeplitz
algebra of (E, ι), denoted by TE, is defined as the smallest unital C∗-subalgebra of
L(F) containing all creation operators.

The following definition gives the Cuntz–Pimsner algebra of a subprod-
uct system.

Definition 3.6 (Cuntz–Pimsner algebra). Given a subproduct system (E, ι)
consisting of finite-dimensional Hilbert spaces over N0. The Cuntz–Pimsner al-
gebra OE of (E, ι) is the unital C∗-algebra obtained as the quotient of the Toeplitz
algebra TE by the ideal KF of compact operators over the Fock space F.

Remark 3.7. In the setting of a subproduct system of C∗-correspondences, the
Cuntz–Pimsner algebra is defined by quotienting the Toeplitz algebra by a suitable
ideal. Interested readers may refer to Appendix C for more details.

3.1.2 G-subproduct systems

In this project, we are interested in subproduct systems of Hilbert spaces
with some additional structure in the form of a Lie group action.

Definition 3.8 (G-action). Let G be a locally compact topological group and H
be a Hilbert space. Then a G-action on H is a pair (G, ρ) where ρ : G → B(H)
is a strongly continuous homomorphism i.e. the orbit map ξx : G → H sending
g to ρ(g)(x) is continuous for all x ∈ H.

Note that we will abbreviate the action on some x ∈ H to g(x) in the
rest of this thesis.

Definition 3.9 (G-subproduct systems). Let G be a locally compact topological
group and let (E, ι) be a subproduct system of Hilbert spaces Em, m ∈ N0. We
say that (E, ι) is a G-subproduct system when there is a G-action ρ on each fiber
Em, m ∈N0, such that

ρ(g) ◦ ιk,m = ιk,m ◦ ρ(g), k, m ∈N. (3.1)

The G-action on Em ⊗ En is given by g(ξ ⊗ η) := g(ξ)⊗ g(η).

Property (3.1) is called G-equivariance.
Once we have a G-subproduct system, then its Fock space inherits the

group action by g({ξm}∞
m=0) := {g(ξm)}∞

m=0.
Furthermore, thanks to the following Lemma, the group action on a

subproduct system induces an action on its Toeplitz algebra.
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28 Subproduct Systems from SU(2)-representations

Lemma 3.10 ([1, Lemma 1.6]). Let G be a locally compact group and suppose
that (E, ι) is a G-subproduct system. Then the assignment g(Tξ) := Tg(ξ) de-
fines a strongly continuous action of G on the Toeplitz algebra TE.

As Cuntz–Pimsner algebra is defined as a quotient algebra of the Toeplitz
TE, the action on TE descends to an action of G on OE. Indeed, this follows
immediately, since g(KF) ⊂ KF for all g ∈ G.

Example 3.11. Consider the Lie group U(1) and the subproduct system defined
in Example 3.2. We define a U(1)-action ρ on {H⊗m : m ∈ N} by multiplica-
tion:

ρ(z)(ξm) := z · ξm, ∀ξm ∈ H⊗m.

Clearly, this action is U(1)-equivariant as structure maps are linear.

3.2 Subproduct system from SU(2)-representations

Let τ : SU(2) → B(H) be a strongly continuous representation of the Lie
group SU(2) on a finite-dimensional Hilbert space H. Since SU(2) is com-
pact, then we shall furthermore assume that τ is unitary. In this section,
we will construct a subproduct system starting from a representation of
SU(2).

We first define the determinant of an SU(2)-representation.

Definition 3.12. Let (τ, H) be a representation of SU(2). The determinant of τ
is the subspace of H ⊗ H whose elements are fixed under the diagonal action:

det(τ) := {ξ ∈ H ⊗ H : τ(g)⊗ τ(g)(ξ) = ξ}.

For each m ∈ {2, 3, . . . } and each i ∈ {1, 2, . . . , m − 1} we define a
strongly continuous unitary representation ∆m(i) := 1⊗(i−1) ⊗ (τ⊗2) ⊗
1⊗(m−i−1) : SU(2) → U(H⊗m). We denote the subspace of H⊗m invari-
ants under ∆m(i) by Km(i). Finally we define Km := ∑m−1

i=1 Km(i).

Remark 3.13. Note that we have Km = K2⊗H⊗(m−2)+ H⊗K2⊗H⊗(m−3)+
· · ·+ H⊗(m−2) ⊗ K2.

We are ready to construct a subproduct system associated to the SU(2)-
representation (H, τ). Set

Em(τ, H) =


K⊥m , m ≥ 2
H , m = 1
C , m = 0

. (3.2)
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3.2 Subproduct system from SU(2)-representations 29

The following Lemma shows that the diagonal representation on H⊗m re-
stricted to Em is still strongly continuous.

Lemma 3.14 ([1, Lemma 2.2]). Let m ∈ {2, 3, . . . }. The diagonal represen-
tation τ⊗m : SU(2) → U(H⊗m) restricts to a strongly continuous unitary
representation of SU(2) on the subspace Em ⊂ H⊗.

Finally we let ιk,m : Ek+m → Ek ⊗ Em be the map obtained from identi-
fication H⊗(k+m) ∼= H⊗k ⊗ H⊗m.

Proposition 3.15. The pair (E, ι) defined above is a subproduct system.

Proof. Firstly, the case k = 0 holds as E0 = C and C⊗ Em ∼= Em. Now let
k = 1, we have Ek ⊗ Em = H ⊗ Em which is trivially a subspace of H ⊗ Em
itself.

Let k, m ∈N with k, m ≥ 2, it is sufficient to show that Ek+m ⊂ Ek⊗ Em
which is equivalent to showing that K⊥k+m ⊂ K⊥k ⊗ K⊥m . First assume that
k, m ≥ 2. By definition, we have on the one hand

Kk ⊗ H⊗m + H⊗k ⊗ Km ⊂ Kk+m

On the other hand, we have

(K⊥k ⊗ K⊥m)
⊥ = Kk ⊗ H⊗m + H⊗k ⊗ Km

which implies that K⊥k+m ⊂ K⊥k ⊗ K⊥m , as desired.

A Case Study: the standard Representation

Example 3.16. We are now going to describe the subproduct system induced
by the standard representation (or fundemental representation) ρ : SU(2) →
U(C2).

Let f0, f1 denote the standard orthonormal basis for C2, we claim that

det
(

ρ, C2
)
= spanC{ f0 ⊗ f1 − f1 ⊗ f0.}

Assume that v = a00 f0⊗ f0 + a01 f0⊗ f1 + a10 f1⊗ f0 + a11 f1⊗ f1 ∈ det
(
ρ, C2).

Then, by the definition of determinant, we have

(ρ(X)⊗ ρ(X))(v) = v, ∀X ∈ SU(2),
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30 Subproduct Systems from SU(2)-representations

which holds if and only
a00 = a00x2 + a01xy + a10xy + a11y2

a01 = −a00xy + a01|x|2 − a10y2 + a11xy
a10 = −a00xy + a01|y|2 + a10|x|2 + a11xy
a11 = a00y2 − a01xy− a10xy + a11|x|2

,

where we write ρ(X) =

[
x y
−y x

]
with |x|2 + |y|2 = 1. By using the fact that

det(ρ(X)) = 1, we have that the solution space is one dimensional and it is
spanned by f0 ⊗ f1 − f1 ⊗ f0.

Therefore we have that Km(i) = (C2)⊗(i−1) ⊗ spanC{ f0 ⊗ f1 − f1 ⊗ f0} ⊗
(C2)⊗(m−i−1) for all m ∈ {2, 3, . . . } and i ∈ {1, 2, . . . , m− 1}.

Recall from Theorem A.18 and Example A.29 that every n-dimensional irre-
ducible representation (φ, Vn) with dim(Vn) = n + 1 is isomorphic to

(ρ⊗n+1, (C2)⊗Sn).

For simplicity, we denote (ρ⊗n+1, (C2)⊗Sn) by (ρn, (C2)⊗Sn). As a conse-
quence of Clebsch–Gordan theory and properties of symmetric subproduct system
(Example 3.3), we have

Em(ρ, C2) = (C2)⊗Sm.

Let pm be the orthogonal projection from (C2)⊗m onto the symmetric tensor prod-
uct (C2)⊗Sn ⊂ (C2)⊗m. We define the vectors

f k
0 f m−k

1 := pm( f⊗k
0 ⊗ f⊗m−k

1 ).

Then the set { f k
0 f m−k

1 : k = 0, 1, . . . , m} forms an orthogonal basis for Em(ρ, C2)
with norm satisfying

‖ f k
0 f m−k

1 ‖2 =
k!(m− k)!

m!
.

Define the number operator N : Dom(N) → F(ρ, C2) by sending ξ to
m · ξ whenever ξ ∈ Em. It is clear that the number operator is unbounded
and self-adjoint. Then we have the following famous result.

Theorem 3.17 ([2, Proposition 5.3]). The Toeplitz algebra T(ρ, C2) induced by
the standard representation is the universal C∗-algebra generated by two opera-
tors T0 := Tf0 and T1 := Tf1 which satisfy the following commutation relations:

1. T0T1 = T1T0,
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3.2 Subproduct system from SU(2)-representations 31

2. T∗0 T0 + T∗1 T1 = (2 + N)(1 + N)−1,

3. T∗i T∗j − TjTi = (1 + N)−1(δi,j1− TjT∗i )

In this thesis, we plan to extend this result to representations other than
the fundamental one.

Moreover, as proved in Theorem A.30, we can identify the symmet-
ric tensors and homogeneous polynomials. This yields an isomorphism
between the Fock space F(ρ, C2) with the Drury–Arveson space H2

2 .

Theorem 3.18 ([2, Theorem 5.7]). The Toeplitz algebra T(ρ, C2) contains the
algebra of compact operators on the Drury–Arveson space H2

2 , and we have an
exact sequence of C∗-algebras

0 −→ K(H2
2) −→ T(ρ, C2) −→ C(S3) −→ 0,

where C(S3) is the commutative C∗-algebra of continuous functions on the 3-
sphere S3 ⊂ C2. In particular, we have that the Cuntz–Pimsner algebra O(ρ, C2)
is isomorphic to C(S3).

3.2.1 The structure of the determinant

In this section we shall study the structure of determinant. Let Ln =
(C2)⊗Sn be the representation space of an irreducible SU(2) representa-
tion. Consider the orthonormal basis defined by

ek :=
n!

k!(n− k)!
· f k

0 f n−k
1 ∈ Ln, k = 0, 1, . . . , n. (3.3)

Proposition 3.19 ([1, Lemma 2.8]). Suppose that τ : SU(2) → U(H) is irre-
ducible and let V : Ln → H be a unitary operator intertwining τ with ρn. Then
the determinant det(τ, H) ⊂ H⊗H is an one-dimensional vector space spanned
by the vector

(V ⊗V)(n + 1)
1
2

n

∑
k=0

(−1)n−kek ⊗ en−k.

Furthermore, we have the following Proposition describing the deter-
minant in the case of a reducible representation.
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32 Subproduct Systems from SU(2)-representations

Proposition 3.20 ([1, Proposition 2.10]). Let H ∼= ∑∞
m=0 L⊕km

m . Then we have
det(τ, H) ⊂ H ⊗ H has dimension ∑∞

m=0 k2
m and it is unitarily isomorphic to

the Hilbert space

∞⊕
m=0

det(ρm, Lm)
⊕k2

m ⊂
∞⊕

m=0
(Lm ⊗ Lm)

⊕k2
m

Proof. Let us compute the tensor product H ⊗ H using the isomorphism
H ∼= ∑∞

m=0 L⊕km
m :

H ⊗ H ∼= (
∞

∑
m=0

L⊕km
m )⊗ (

∞

∑
m=0

L⊕km
m ) ∼=

m⊕
s,l=0

(Ls ⊗ Ll)
⊕ks·kl .

Then by Theorem A.33 we have that Ls ⊗ Ll contains some copies of the
trivial representation if and only if s = l. This leads to

det(τ, H) ∼= det

(
⊕∞

m=0ρ⊕km
m ,

∞

∑
m=0

L⊕km
m

)
∼=

∞⊕
m=0

det(ρm, Lm)
⊕k2

m .

as desired.
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Chapter 4
Fusion Rules for SU(2)-subproduct
Systems

I used to say: “Everything is
Representation Theory“. Now I
say: “Nothing is Representation
Theory“.

Israel Gelfand

4.1 Irreducible case

In this section, we shall recall and describe the fusion rules for the fibers of
the subproduct system induced by an irreducible SU(2)-representation.
Our main reference for this section is [1]. Our main goal is to prove the
following:

Theorem 4.1 (Fusion rules, [1, Theorem 3.1]). Let k, m ∈ N0 and put l :=
min{k, m}. We have an SU(2)-equivariant unitary isomorphism

Wk,m :
l⊕

j=0

Ek+m−2j → Ek ⊗ Em.

Let (ρ, H) be an irreducible unitary representation of SU(2) on a finite-
dimensional Hilbert space. We define two linear operators Gm : Em−1 →
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34 Fusion Rules for SU(2)-subproduct Systems

Km+1 and G
′
m : Em−1 → Km+1 recursively:

G1(1) := δ, Gm := Gm−1 ⊗ 1 + (−1)(n+1)(m−1)dm−1 · 1m−1 ⊗ G1,

G
′
1(1) := δ, G

′
m := 1⊗ G

′
m−1 + (−1)(n+1)(m−1)dm−1 · G

′
1 ⊗ 1m−1,

where δ is such that C · δ = det(ρ, H). The reasons behind this definition
will become apparent later.

Lemma 4.2. Let m ∈N. The linear maps Gm and G
′
m are equivariant i.e.

ρ
⊗(m+1)
n (g)Gm = Gmρ

⊗(m−1)
n (g), ∀g ∈ SU(2), (4.1)

ρ
⊗(m+1)
n (g)G

′
m = G

′
mρ
⊗(m−1)
n (g), ∀g ∈ SU(2). (4.2)

Proof. We only give the proof of (4.1) since the proof of (4.2) works simi-
larly. We prove it by induction on m ∈N. For m = 1, we have

ρ
⊗(2)
n (g)G1(1) = ρ

⊗(2)
n (g)(δ) = δ = G1(1)ρ⊗0

n (g), ∀g ∈ SU(2),

where the second equality is due to the definition of δ. Now assume the
(4.1) holds for m ≤ k. Then we have for ξ ∈ Ek

ρ
⊗(k+2)
n (g)Gk+1(ξ)

= ρ
⊗(k+2)
n (g)((Gk ⊗ 1)(ξ) + (−1)(n+1)kdk · ξ ⊗ δ)

= (Gk ⊗ 1)ρ⊗k
n (g)(ξ) + (−1)(n+1)kdk · ρ⊗k

n (g)(ξ)⊗ δ

= Gk+1ρ⊗k
n (g)(ξ),

which completes the proof.

Lemma 4.3 ([1, Lemma 3.6, Lemma 3.12]). Let m ∈ N. The linear map Gm
satisfies the following identities.

1. 〈(Gm ⊗ 1)(ξ), η⊗ δ〉 = (−1)(n+1)m+1dm−1/d1 · 〈ξ, η〉, ∀ξ ∈ Em−1⊗
E1, η ∈ Em ;

2. 〈Gm(ξ), Gm(η)〉 = µm · 〈ξ, η〉, ∀ξ, η ∈ Em−1 ;

3. 〈(Gm ⊗ 1)(ξ), Gm+1(η)〉 = 0, ∀ ∈ ξ ∈ Em−1 ⊗ E1, η ∈ Em .

Similiarly, we have the following three identities for G
′
m:

1. 〈(1⊗ G
′
m)(ξ), η⊗ δ〉 = (−1)(n+1)m+1dm−1/d1 · 〈ξ, η〉, ∀ξ ∈ Em−1⊗

E1, η ∈ Em ;
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4.1 Irreducible case 35

2. 〈G′m(ξ), G
′
m(η)〉 = µm · 〈ξ, η〉, ∀ξ, η ∈ Em−1 ;

3. 〈(1⊗ G
′
m)(ξ), G;

m+1(η)〉 = 0, ∀ ∈ ξ ∈ Em−1 ⊗ E1, η ∈ Em .

Lemma 4.4 ([1, Lemma 3.7, Lemma 3.13]). There are unitary isomorphisms of
Hilbert spaces

(Km ⊗ E1)⊕ Gm(Em−1) ∼= Km+1, ∀m ≥ 1,

(E1 ⊗ Km)⊕ G
′
m(Em−1) ∼= Km+1, ∀m ≥ 1.

Note that the image of Gm is equal to Km+1 ∩ (Em ⊗ E1) and the im-
age of G

′
m is equal to Km+1 ∩ (E1 ⊗ Em). Combining this observation with

Lemma 4.3, we obtain that the following two maps are isometries

Vm :=
(−1)(n+1)(m−1)

√
µm

· Gm : Em−1 → Em ⊗ E1 (4.3)

V
′
m :=

(−1)(n+1)(m−1)
√

µm
· G′m : Em−1 → E1 ⊗ Em. (4.4)

Lemma 4.5. Let {dm} be the sequence of positive integers defined recursively by
the following:

d−1 := 0, d0 := 1, d1 := n + 1, dm := d1dm−1 − dm−2, m ≥ 2.

Then the sequence of fractions {dm−1/dm}∞
m=0 is strictly increasing and con-

verges to the limit γn := (n + 1−
√
(n + 1)2 − 4)/2.

Proof. We first note that dm > dm−1 for m ∈ N since dm − dm−1 = (d1 −
1)dm−1− dm−2 = (n− 1)dm−1 + dm−1− dm−2/dm−1. Indeed, we have d0 >
d−1 and dm ≥ 0, ∀m ∈ N then dm > dm−1 follows from an induction
argument.

By using Lemma B.2 we have that

dm−1

dm
=

m

∑
j=1

(
dj−1

dj
−

dj−2

dj−1
) =

m

∑
j=1

d2
j−1 − dj−2dj−1

djdj−2
=

m

∑
j=1

1
djdj−1

.

which yields that dm/dm+1 − dm−1/dm = 1/dmdm−1 > 0, thus {dm/dm+1}
is strictly increasing.
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36 Fusion Rules for SU(2)-subproduct Systems

To compute the limit, we observe that if we take the limit of dm/dm−1 =
n + 1− dm−2/dm−1 on both sides, we have

lim
m→∞

dm/dm−1 = n + 1− lim
m→∞

dm−2/dm−1 =⇒ 1
γn

= n + 1− γn.

which gives that γn = (n + 1−
√
(n + 1)2 − 4)/2 ∈ (0, 1].

We claim that the sequence {dm} agrees with the sequence of dimen-
sions of the fibers Em.

Corollary 4.6. It holds that dim(Em) = dm for all m ∈N0.

Proof. By Lemma 4.4 we have that

dim(Em+1) = (n + 1)m+1 − dim(Km+1)

= (n + 1)m+1 − dim(Km ⊗ E1)− dim(Gm(Em−1))

= (n + 1)m+1 − (n + 1)dim(Km)− dim(Em−1)

= (n + 1)dim(Em)− dim(Em−1).

where the last equality uses the fact that dim(Em) = (n + 1)m − dim(Km).
Finally the fact that dim(E0) = 1 and dim(E1) = n + 1 completes the
proof.

Proposition 4.7. Let m ∈N. The linear maps

(ιm,1, Vm) : Em+1 ⊕ Em−1 → Em ⊗ E1

(ι1,m, V
′
m) : Em+1 ⊕ Em−1 → E1 ⊗ Em,

are SU(2)-equivariant unitary isomorphisms.

Proof. We only prove the first isomorphism, the second one can be proved
similarly. The map (ιm,1, Vm) is clearly a linear isometry. By a dimension-
counting argument, we have that (ιm,1, Vm) is an isomorphism. Indeed, we
have

dim(Em+1 ⊕ Em−1) = dim(Em+1) + dim(Em−1)

= dm+1 + dm−1

= d1dm

= dim(E1) · dim(Em)

= dim(E1 ⊗ Em)

which completes the proof.
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4.1 Irreducible case 37

Since the image of Gm and G
′
m lie in the intersections Km+1 ∩ (Em ⊗ E1)

and Km+1 ∩ (E1 ⊗ Em), respectively, we may define the following maps

Ĝm := (J∗m ⊗ 1)Gm and Ĝ
′
m := (1⊗ J∗m)Gm, (4.5)

where Jm is the inclusion from Em into E⊗m
1 , given by

Jm = (ι1,1 ⊗ 1⊗m−2) . . . (ιm−2,1 ⊗ 1)(ιm−1,1) : Em ↪→ E⊗m
1 ,

which step by step isometrically sends

Em−k ⊗ E⊗k
1 to Em−k−1 ⊗ E⊗k+1

1 ,

for k = 0, 1, . . . , m.

Lemma 4.8. Let m ∈ N. We have that the maps Ĝm and Ĝ
′
m defined in (4.5)

satsify

(ιm−1,1 ⊗ 1)Ĝm = (Ĝm−1 ⊗ 1)ιm−2,1 + (−1)(n+1)(m−1)dm−11m−1 ⊗ Ĝ1,

(1⊗ ι1,m−1)Ĝ
′
m = (1⊗ Ĝ

′
m−1)ι1,m−2 + (−1)(n+1)(m−1)dm−1Ĝ

′
1 ⊗ 1m−1.

Proof. We shall prove the claims via induction. For m = 1 we have that

(ι0,1 ⊗ 1)Ĝ1 = (ι0,1 ⊗ 1)(J∗1 ⊗ 1)G1

= δ

= (Ĝ0 ⊗ 1)ιm−2,1 + (−1)(n+1)(1−1)d1−111−1 ⊗ Ĝ1,

holds trivially. Then suppose the claim holds for m ≤ l. For m = l + 1 we
have

(ιl,1 ⊗ 1)Ĝl+1

= ι∗l,1 . . . (ι∗1,1 ⊗ 1⊗l−1)Gl+1

= ι∗l,1 . . . (ι∗1,1 ⊗ 1⊗l−1)(Gl ⊗ 1 + (−1)(n+1)ldl · 1l ⊗ G1)

= (Ĝl ⊗ 1)ιl−1,1 + (−1)(n+1)ldl · 1l ⊗ Ĝ1.

where the last equality uses the definition of Gm and the induction hypoth-
esis. The proof for Ĝ

′
m works similarly.

Before proving our main theorem, we need some further lemmas.
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38 Fusion Rules for SU(2)-subproduct Systems

Lemma 4.9 ([1, Lemma 3.15]). Let m ∈N. It holds that

Ĝm = (−1)(n+1)(m−1)dm−1 · (ι∗m−1,1 ⊗ 1)(1m−1 ⊗ Ĝ1),

Ĝ
′
m = (−1)(n+1)(m−1)dm−1 · (1⊗ ι∗1,m−1)(Ĝ1 ⊗ 1m−1).

Lemma 4.10 ([1, Lemma 3.16]). Let m ∈N. It holds that

ι∗m−1,1 = (−1)(n+1)m+1 d1

dm−1
· (1m ⊗ Ĝ∗1 )(Ĝm ⊗ 1) : Em−1 ⊗ E1 → Em,

ι∗1,m−1 = (−1)(n+1)m+1 d1

dm−1
· ((Ĝ′1)∗ ⊗ 1m)(1⊗ Ĝ

′
m) : E1 ⊗ Em−1 → Em.

Lemma 4.11 ([1, Lemma 3.17]). Let m ∈N. It holds that

pm−1,1 = 1m−1 ⊗ 1 + (−1)(n+1)m+1 d1

dm−1
· (Ĝm−1 ⊗ Ĝ∗1 )(ιm−2,1 ⊗ 1),

p1,m−1 = 1⊗ 1m−1 + (−1)(n+1)m+1 d1

dm−1
(Ĝ∗1 ⊗ Ĝ

′
m−1)(1⊗ ι1,m−2).

where pm−1,1 : Em−1 ⊗ E1 → Em−1 ⊗ E1 and p1,m−1 : E1 ⊗ Em−1 → E1 ⊗
Em−1.

Now we shall introduce an essential SU(2)-equivariant linear map which
plays an important role in the proof of the fusion rules. For k, m ∈N0, we
define the map by: σk,m : Ek ⊗ Em → Ek+1 ⊗ Em+1

σk,m := (1k+1 ⊗ ι∗1,m)(Ĝk+1 ⊗ 1m).

Combining Lemma 4.9, Lemma 4.10, and Lemma 4.11, we obtain the
following proposition. For the sake of simplicity, we omit the subscripts
when no confusion could arise.

Proposition 4.12 ([1, Proposition 3.18,Proposition 3.19,Proposition 3.20]).
Let k, m ∈N0 and and j ∈N. We have the following identities

1. σ∗k,mσk,m =
dkdk+m+1

d1dm
1k ⊗ 1m + dkdm−1

dk−1dm
σk−1,m−1σ∗k−1,m−1 :

Ek ⊗ Em → Ek ⊗ Em;

2. σ∗σj = µk+j · (1− dkdm−1
dk+jddm+j+1

σj−1) +
dm−1dk+j−1
dk−1dm+j−1

σjσ∗ :

Ek ⊗ Em → Ek+j−1 ⊗ Em+j−1;
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4.1 Irreducible case 39

3. σ∗ιk,m = 0;

4. (σ∗)jσjιk,m = ∏
j
i=1 µk+i(1− dkdm−1

dk+idm+i−1
)ιk,m.

where we use the notation σj := σk+j,m+j . . . σk+1,m+1σk,m, and σ∗ιk,m : Ek+m →
Ek−1 ⊗ Em−1.

Finally, we can prove the main Theorem of this section.

Theorem 4.13. Let k, m ∈ N0 and put l := min{k, m}. We have an SU(2)-
equivariant unitary isomorphism

Wk,m = (W0
k,mW1

k,m . . . W l
k,m) :

l⊕
j=0

Ek+m−2j → Ek ⊗ Em.

where W j
k,m : Ek+m−2j → Ek ⊗ Em is defined by

W j
k,m =

j

∏
i=1

1
√

µk−j+i

(
1−

dk−jdm−j−1

dk−j+idm−j+i−1

)− 1
2

· σjιk−j,m−j,

for all j ∈ {1, . . . , l}, and W0
k,m := ιk,m : Ek+m → Ek ⊗ Em.

Proof. (of Theorem 4.1) Firstly, the third identity in Lemma 4.12 implies
that (W i

k,m)
∗W j

k,m = 0 whenever i 6= j. Secondly, the last identity in Lemma
4.12 implies that

(W j
k,m)

∗W j
k,m = ι∗k,m(σ

∗)jσjιk,m =
j

∏
i=1

µk+i(1−
dkdm−1

dk+idm+i−1
)ι∗k,mιk,m.

where ιk,m is an isometry thus W j
k,m is an isometry. Therefore we have W j

k,m
is an isometry and thus Wk,m : ⊕l

j=0Ek+m−2j → Ek ⊗ Em is an isometry.
Surjectivity of Wk,m follows from a dimension counting argument by

(B.3).
Finally, SU(2)-equivariance follows from the definition of Wk,m in which

all factors are SU(2)-equivariant.

39



40 Fusion Rules for SU(2)-subproduct Systems

4.2 Several copies of the same irreducible repre-
sentations

By Theorem A.25, we know that the matrix Lie Group of SU(2) is com-
pletely reducible, thus any representation of SU(2) is a direct sum of irre-
ducible ones. In this section, we will study the fusion rules for reducible
case.

Let us consider the case when the representation space H is isomorphic
to the t copies of Ln i.e., H ∼= L⊕t

n and τ = ρ⊕t
n .

Let K̃2 denote the det
(
ρ⊕t

n , L⊕t
n
)
. By Proposition 3.20, we have that the

dimension of K̃2 is t2. We set

K̃m = K̃2 ⊗ H⊗m−2 + H ⊗ K̃2 ⊗ H⊗m−3 + · · ·+ H⊗m−2 ⊗ K̃2.

We define each Ẽm as in (3.2):

Ẽm(τ, H) = Ẽm =


K̃⊥m , m ≥ 2
H , m = 1
C , m = 0

.

We have the following lemma.

Lemma 4.14. For the subproduct system we constructed above, we have the re-
currence formula for Ẽm when m ≥ 3:

Ẽm = Ẽ1 ⊗ Ẽm−1 ∩ Ẽm−1 ⊗ Ẽ1 (4.6)

= H ⊗ Ẽm−1 ∩ Ẽm−1 ⊗ H (4.7)

Proof. Observe that Km = H ⊗ Km−1 + Km−1 ⊗ H then we have

Ẽm = K̃⊥m
= (H ⊗ K̃m−1 + K̃m−1 ⊗ H)⊥

= (Ẽ1 ⊗ K̃m−1)
⊥ ∩ (K̃m−1 ⊗ Ẽ1)

⊥

= Ẽ1 ⊗ Ẽm−1 ∩ Ẽm−1 ⊗ Ẽ1.

where the third equality is due to the fact that (V1 + V2)
⊥ = V⊥1 ∩V⊥2 .
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4.2 Several copies of the same irreducible representations 41

We claim:

K̃m = K̃2 ⊗ H⊗m−2 + H ⊗ K̃2 ⊗ H⊗m−3 + · · ·+ H⊗m−2 ⊗ K̃2

= K⊕t2

2 ⊗ H⊗m−2 + · · ·+ H⊗m−2 ⊗ K⊕t2

2

= K⊕t2

2 ⊗ (L⊗m−2
n )⊕tm−2

+ · · ·+ (L⊗m−2
n )⊕tm−2 ⊗ K⊕t2

2

= K⊕tm

m .

Therefore we have

Ẽm = K̃⊥m = (K⊕tm

m )⊥ = (K⊥m)
⊕tm

= E⊕tm

m . (4.8)

Indeed, we have Ẽ1 = L⊕t
n = E⊕t

1 . Then assume (4.8) holds for Ẽk for
all k ≤ m− 1, we have for Ẽm:

Ẽm = Ẽ1 ⊗ Ẽm−1 ∩ Ẽm−1 ⊗ Ẽ1

∼= (E⊕t
1 ⊗ E⊕tm−1

m−1 ) ∩ (E⊕tm−1

m−1 ⊗ E⊕t
1 )

∼= (E1 ⊗ Em−1)
⊕tm ∩ (Em−1 ⊗ E1)

⊕tm

∼= E⊕tm

m .

which also proves the isomorphism (4.8).
By using the fusion rules for the irreducible case (Theorem 4.1), we

have that

Ẽk ⊗ Ẽl
∼= E⊕tk

k ⊗ E⊕tl

l
∼= (Ek+l ⊕ Ek+l−2 ⊕ · · · ⊕ E|k−l|)

⊕tk+l
. (4.9)

To sum up, we have the fusion rules for the t copies case.

Theorem 4.15 (Fusion rules for H ∼= L⊕t
n ). Let k, l ∈ N we have Ẽm ∼= E⊕tm

m ,
and there exists an SU(2)-equivariant unitary isomorphism

Ẽk ⊗ Ẽl
∼= Ẽk+l ⊕ Ẽ⊕t2

k+l−2 ⊕ · · · ⊕ Ẽ⊕tk+l−|k−l|

|k−l| (4.10)

Proof. By (4.9) we have Ẽk ⊗ Ẽl
∼= (Ek+l ⊕ Ek+l−2 ⊕ · · · ⊕ E|k−l|)

⊕tk+l
. By

definition, we have

(Ek+l ⊕ Ek+l−2 ⊕ · · · ⊕ E|k−l|)
⊕tk+l

∼= E⊕tk+l

k+l ⊕ E⊕tk+l

k+l−2 ⊕ · · · ⊕ E⊕tk+l

|k−l|

∼= E⊕tk+l

k+l ⊕ E⊕tk+l−2·t2

k+l−2 ⊕ · · · ⊕ E⊕t|k−l|·tk+l−|k−l|

|k−l|

∼= Ẽk+l ⊕ Ẽ⊕t2

k+l−2 ⊕ · · · ⊕ Ẽ⊕tk+l−|k−l|

|k−l| .

which completes the proof.
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42 Fusion Rules for SU(2)-subproduct Systems

Let us look at a concrete example.

Example 4.16. Let us consider the case H ∼= L⊕2
1 . We firstly compute the deter-

minant:
det{ξ ∈ L⊕2

1 ⊗ L⊕2
1 |ρ(g)⊗ ρ(g)ξ = ξ}.

First note that we have

det(ρ, L1) = spanC{ f0 ⊗ f1 − f1 ⊗ f0},

which is one dimensional from Example 3.16.
Then by Proposition 3.20 we have the dimension of determinant of (ρ⊕2, L⊕2

1 )
is four. Let us define

δ1 := ( f0 ⊕ 0)⊗ ( f1 ⊕ 0)− ( f1 ⊕ 0)⊗ ( f0 ⊕ 0)
δ2 := ( f0 ⊕ 0)⊗ (0⊕ f1)− (0⊕ f1)⊗ ( f0 ⊕ 0)
δ3 := (0⊕ f0)⊗ ( f1 ⊕ 0)− ( f1 ⊕ 0)⊗ (0⊕ f0)

δ4 := (0⊕ f0)⊗ (0⊕ f1)− (0⊕ f1)⊗ (0⊕ f0)

. (4.11)

Claim 1. The determinant of (ρ⊕2, L⊕2
1 ) is spanned by the elements {δi}4

i=1 i.e.

K̃2 = det
(

ρ⊕2, L⊕2
1

)
= spanC{δ1, δ2, δ3, δ4}.

where each δi is defined in (4.11).

We prove the claim for δ1. The other cases can be checked in the same way. Let
ρ(g)⊕2 ⊗ ρ(g)⊕2 be the matrix

ρ(g)⊕2 ⊗ ρ(g)⊕2 =


a b 0 0
−b̄ ā 0 0
0 0 a b
0 0 −b̄ ā

⊗


a b 0 0
−b̄ ā 0 0
0 0 a b
0 0 −b̄ ā

 ,

then we have

ρ(g)⊕2 ⊗ ρ(g)⊕2(( f0 ⊕ 0)⊗ ( f1 ⊕ 0)− ( f1 ⊕ 0)⊗ ( f0 ⊕ 0)) (4.12)

=


a b 0 0
−b̄ ā 0 0
0 0 a b
0 0 −b̄ ā


⊗2

(( f0 ⊕ 0)⊗ ( f1 ⊕ 0)− ( f1 ⊕ 0)⊗ ( f0 ⊕ 0)). (4.13)
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4.2 Several copies of the same irreducible representations 43

Then by the definition of tensor product of linear transformations, we obtain that
(ρ(g)⊕2 ⊗ ρ(g)⊕2)(δ1) equals

ab( f0 ⊕ 0)⊗ ( f0 ⊕ 0) + |a|2( f0 ⊕ 0)⊗ ( f1 ⊕ 0)− |b|2( f1 ⊕ 0)⊗ ( f0 ⊕ 0)

− ab( f1 ⊕ 0)⊗ ( f1 ⊕ 0)− ab( f0 ⊕ 0)⊗ ( f0 ⊕ 0) + ab( f1 ⊕ 0)⊗ ( f1 ⊕ 0)

+ |b|2( f1 ⊕ 0)⊗ ( f0 ⊕ 0)− |a|2( f0 ⊕ 0)⊗ ( f1 ⊕ 0),

where the last equality is due to the fact g ∈ SU(2).
As many terms cancel, the above expression equals

( f0 ⊕ 0)⊗ ( f1 ⊕ 0)− ( f1 ⊕ 0)⊗ ( f0 ⊕ 0),

as desired.
Then we have that

K̃m = K̃2 ⊗ (L⊕2
2 )⊗m−2 + · · ·+ (L⊕2

2 )⊗m−2 ⊗ K̃2

= K̃2 ⊗ ((C2)⊕2)⊗m−2 + · · ·+ ((C2)⊕2)⊗m−2 ⊗ K̃2

= span{δi}4
i=1 ⊗ (C4)⊗m−2 + · · ·+ ((C4)⊗m−2 ⊗ span{δi}4

i=1.

By using the recurrence formula above (Lemma 4.14 ), we have Ẽm = H ⊗
Ẽm−1 ∩ Ẽm−1 ⊗ H. Then to compute the Ẽm, m ∈ N, it is sufficient to compute
E2 = K̃⊥2 which is the orthonormal complement of the spanC{δ1, δ2, δ3, δ4} in
C2 ⊗C2.

Moreover, for every m we have dim(Ẽm) = (m + 1) · 2m since Ẽm ∼= E⊕2m
m

and dim(Em) = m + 1.
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Chapter 5
Commutation Relations for the
Resulting C∗-algebras

5.1 Toeplitz algebra

5.1.1 Irreducible case

In this section, we consider the commutation relations for the Toeplitz al-
gebra induced by an irreducible SU(2)-representation. Fix n ∈ N and
consider the irreducible representation ρn : SU(2) → U(Ln), we let {en}
denote the orthonormal basis for Ln introduced in (3.3).

We define the Toeplitz operators Tj as creation operators over the Fock
space F:

Tj := Tej : F → F, j ∈ {0, 1, . . . , n}.

Similarly, we define the bounded operators T
′
j := ι∗m,1(ξ ⊗ ej) for all ξ ∈

Em. We call T
′
j the right creation operator associated to the basis vector

ej ∈ E1 = Ln. Then we define the SU(2)-equivariant bounded operators
ιL := ι1,m−1 : F → E1 ⊗ F and ιR := ιm−1,1 : F → F ⊗ E1. We set ιL(ξ) =
ιR(ξ) = 0, ξ ∈ E0 = C.

Lemma 5.1. We have the identities

ι∗L =
n

∑
j=0
〈ej, ·〉 ⊗ Tj : E1 ⊗ F → F,

ι∗R =
n

∑
j=0

T
′
j ⊗ 〈ej, ·〉 : F⊗ E1 → F.
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46 Commutation Relations for the Resulting C∗-algebras

Proof. Let ξ ∈ Em and ei ∈ {e0, . . . , en} we have

ι∗L(ei ⊗ ξ) = ι∗1,m−1(ei ⊗ ξ) = Ti(ξ) = 〈ei, ei〉Ti(ξ) =
n

∑
j=0

(〈ej, ·〉 ⊗ Tj)(ei ⊗ ξ),

ι∗R(ξ ⊗ ei) = ι∗m−1,1(ξ ⊗ ei) = T
′
i (ξ) = T

′
i (ξ)〈ei, ei〉 =

n

∑
j=0

(Tj ⊗ 〈ej, ·〉)(ξ ⊗ ei),

which completes the proof.

Furthermore, recall the isometries Vm and V
′
m defined in (4.3) and (4.4)

we shall relate those isometries with the Toeplitz operators.

Lemma 5.2. Let m ∈N. For every ξ ∈ Em−1, we have the identities

Vm(ξ) =
√

dm−1/dm ·
n

∑
j=0

(−1)jTn−j(ξ)
′ ⊗ ej, (5.1)

V
′
m(ξ) =

√
dm−1/dm ·

n

∑
j=0

(−1)jej ⊗ Tn−j(ξ). (5.2)

Proof. By definition of Vm we have

Vm =
(−1)(n+1)(m−1)

√
µm

Gm

=
dm−1√

µm
(ι∗m−1,1 ⊗ 1)(δ⊗ ξ)

=
dm−1√

µm
(

n

∑
j=0

(−1)n−j · T′n−j ⊗ ej.

The third equality follows from the expression of δ and Lemma 4.9.
The second identity can be proved similarly.

We define the following SU(2)-equivariant positive bounded operator

Φ : F → F, Φ(ξ) =
dm

dm+1
ξ, ∀ξ ∈ Em.

Lemma 5.3. The invertible operator Φ belongs to the Toeplitz algebra TE.

Proof. Let γn ∈ (0, 1] be the limit of the quotient of the sequence of dimen-
sions calculated in Lemma 4.5. Since Φ− γn · 1 is the limit of a finite rank
operator, then it is compact on F. Then Φ ∈ T follows from the fact that
KF ⊂ T where KF denotes the algebra of compact operators on F.
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5.1 Toeplitz algebra 47

Lemma 5.4 ([1, Proposition 4.5]). For ξ ∈ Em−1 ⊂ F, we have identities

VL(ξ) = V
′
m(ξ) =

n

∑
j=0

(−1)j · ej ⊗ Tn−jΦ1/2(ξ),

VR(ξ) = Vm(ξ) =
n

∑
j=0

(−1)n−j · T′n−jΦ
1/2(ξ)⊗ ej.

Finally we can present the commutation relations for the Toeplitz alge-
bra in the case of irreducible representation.

Theorem 5.5 ([1, Theorem 4.6]). Let n ∈N, and consider the irreducible repre-
sentation ρn : SU(2)→ U(Ln). Then the Toeplitz operators Ti with i = 0, . . . , n
satisfy the following commutation relations:

1. ∑i Ti(Ti)
∗ = 1−Q0

2. ∑n
i=0(−1)iTiTn−i = 0

3. T∗i (Tj) = δi,j1F + (−1)i+j+1((n + 1) · 1F −Φ−1)Tn−iT∗n−j

4. ∑i(Ti)
∗Ti = Φ−1

5.1.2 Reducible cases

In this section, we shall focus on the case H ∼= L⊕t
n . First of all, by Theorem

4.15 we then have Ẽm ∼= E⊕tm
m .

By Proposition 3.20 we have that the dimension of K̃2 is t2. Let δ =
1√
n+1 ∑n

i=0(−1)iei ⊗ en−i be the generators of the determinant in the irre-

ducible case. We have that K̃2 is spanned by the elements δ
j
i , defined by

δ
j
i =

1√
n + 1

n

∑
k=0

(−1)iei
k ⊗ ej

n−k,

with the convention that ei
k = 0⊕ 0⊕ · · · ⊕ ek︸︷︷︸

jth

⊕ · · · ⊕ 0. The set

{δl
k : k, l = 1, . . . , t},

forms an orthonormal basis for K̃2.
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48 Commutation Relations for the Resulting C∗-algebras

Then we can give recursive formula for G̃m : Ẽm−1 → K̃m+1: Define

Gi,j
1 (1) := δ

j
i ,

Gi,j
m := Gi,j

m−1 ⊗ 1 + (−1)(n+1)(m−1)dm · 1m−1 ⊗ Gi,j
1 , m ≥ 2,

G̃m :=
t⊕

i,j=1

(Gi,j
m )⊕tm−1

.

Note that for each k, l, spanCδk,l is isometrically isomorphic to the K2 by
the map ek

i ⊗ el
n−i 7→ ei ⊗ en−i where k, l = 1, 2, . . . , t, from which it follows

that Gi,j
m (Em−1) ∼= Gm(Em−1).

Then let us compute the inner product 〈G̃m(ξ), G̃m(η)〉 for ξ = ⊕tm−1

i=1 ξi ∈
Ẽm−1, η = ⊕tm−1

i=1 ηi ∈ Ẽm−1. By Lemma 3.6 in [1] we have

〈G̃m(ξ), G̃m(η)〉 =
t

∑
i,j=1

tm−1

∑
k=1
〈Gi,j

m (ξk), Gi,j
m (ηk)〉 = t2µm〈ξ, η〉.

Therefore, the map Ṽm := (−1)(n+1)(m−1)

t
√

µm
· G̃m is an isometry from Ẽm−1 to

Ẽm ⊗ Ẽ1. One thing to note that is, this map is not surjective as the dimen-
sion of Ẽm⊗ Ẽ1 is dmd1tm+1 while the dimension of the image is dm−1tm−1.

Lemma 5.6. We have a unitary isomorphism of Hilbert spaces

(K̃m ⊗ Ẽ1)⊕ G̃m(Ẽm−1) ∼= K̃m+1.

Proof. The proof follows from the fact that each component satisfies the
isomorphism in Lemma 4.4. More precisely, we have

(K̃m ⊗ Ẽ1)⊕ G̃m(Ẽm−1) ∼= (Km ⊗ E1)
⊕tm+1 ⊕

t⊕
i,j=1

(Gi,j
m )⊕tm−1

(Em−1)

∼= ((Km ⊗ E1)⊕ Gm(Em−1))
tm+1

∼= K⊕tm+1

m+1
∼= K̃m+1.

Proposition 5.7. Let m ∈N. The linear map

(ι̃m,1, Ṽ⊕t2

m ) : Ẽm+1 ⊕ Ẽ⊕t2

m−1 → Ẽm ⊗ Ẽ1,

(ι̃1,m, (Ṽ
′
m)
⊕t2

) : Ẽm+1 ⊕ Ẽ⊕t2

m−1 → Ẽ1 ⊗ Ẽm,

are SU(2)-equivariant unitary isomorphisms.
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5.1 Toeplitz algebra 49

Proof. We prove the first identity, and the second one can be proved by
a similar argument. The claim follows from a dimension-counting argu-
ment. By the results discussed in Chapter 4, we have dim(Ẽm) = dm · tm.
Thus we have

dim(Ẽm−1 ⊕ Ẽ⊕t2

m−1) = dm+1 · tm+1 + t2dm−1 · tm−1

= tm+1dm+1dm−1

= dim(Ẽm ⊗ Ẽ1).

Since (ι̃m,1, Ṽ⊕t2
m ) is clearly injective, we finish the proof.

Now let us turn to the Toeplitz algebra coming from ρ⊕t
n : SU(2) →

U(L⊕t
n ). Let {ek

i : i = 0, 1, . . . , n; k = 1, 2, . . . , t} denote the basis of L⊕t
n .

Then we have the associated Toeplitz operators Ti,j := T
ej

i
and the right

creation operator (Ti,k)
′

:= ι∗m,1(ξ ⊗ ej
i), ξ ∈ Em. We define operators ιL :

F → E1 ⊗ F and ιR : F ⊗ E1 by setting ιL(ξ) = ι1,m−1(ξ) and ιR(ξ) =
ιm−1,1(ξ) for ξ ∈ Em.

Lemma 5.8. We have the identities

ι∗L = ∑
i=0,...,n
j=1,...,t

〈ej
i , ·〉 ⊗ Ti,j : Ẽ1 ⊗ F → F,

ι∗R = ∑
i=0,...,n
j=1,...,t

(Ti,j)
′ ⊗ 〈ej

i , ·〉 : F⊗ Ẽ1 → F.

Proof. Let ξ ∈ Ẽm and for each (i, j) we have

ι∗L(e
j
i ⊗ ξ) = ι∗1,m(e

j
i ⊗ ξ)

= Ti,j(ξ)

= ∑
k,l
〈el

k, ej
i〉 ⊗ Tl,k(e

j
i ⊗ ξ).

A similar computation holds for the second identity.

Now, we are going to analyze the isometries Ṽm and Ṽ
′
m.
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50 Commutation Relations for the Resulting C∗-algebras

Lemma 5.9. Let m ∈N. For every ξ ∈ Ẽm−1, we have the identities below

Ṽm =
t⊕

i,j=1

Ṽi,j
m , where Ṽi,j

m =
n

∑
k=0

(−1)n−k
√

dm−1

t
√

dm
(Tn−k,i)

′ ⊗ ej
k,

Ṽ
′
m =

t⊕
i,j=1

(Ṽi,j
m )

′
, where(Ṽ1,1

m )
′
=

n

∑
k=0

(−1)n−k
√

dm−1

t
√

dm
· ei

k ⊗ Tn−k,j.

Proof. By using the Lemma 3.15 in [1] we have

Ṽi,j
m (ξ) =

(−1)(n+1)(m−1)

2
√

µm
G̃m,

=
(−1)(n+1)(m−1)

2
√

µm
(G1,1

m , . . . , Gt,t
m )(ξ).

For simplicity, we only compute the map G1,1
m below. The other maps can

be described using the same method.
Let ξ ∈ Em−1 ↪→ Ẽm−1 and c := (−1)(n+1)(m−1)dm−1 we then have

G1,1
m (ξ) = c · (ι∗m−1,1 ⊗ 1)(1m−1 ⊗ δ1

1)(ξ),

= c · (ι∗m−1,1 ⊗ 1)(1m−1 ⊗
1√

n + 1

n

∑
i=0

(−1)ie1
i ⊗ e1

n−i)(ξ),

=
n

∑
i=0

(−1)i
√

n + 1
· c · (ι∗m−1,1 ⊗ 1)(1m−1 ⊗ e1

i ⊗ e1
n−i)(ξ),

=
n

∑
j=0

(−1)n−j
√

dm−1

2
√

dm
(Tn−j,1)

′ ⊗ e1
j .

Thus we complete the proof.

Define the operator Φ̃ : F̃ → F̃, sending ξ ∈ Ẽm to dm
dm+1

ξ, where F̃ :=

⊕∞
m=0Ẽm denotes the Fock space for reducible case. We have Φ̃ belongs to

the Toeplitz algebra by Lemma 5.3.
Then we can reformulate Lemma 5.9.

Lemma 5.10. For every ξ ∈ F̃, we have identities:

Ṽm =
t⊕

i,j=1

Ṽi,j
m , where Ṽi,j

m =
n

∑
k=0

(−1)n−kΦ̃1/2(Tn−k,i)
′ ⊗ ej

k, (5.3)

Ṽ
′
m =

t⊕
i,j=1

(Ṽi,j
m )

′
, where(Ṽi,j

m )
′
=

n

∑
k=0

(−1)n−k · ei
k ⊗ Tn−k,jΦ̃

1/2. (5.4)
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5.1 Toeplitz algebra 51

Theorem 5.11 (Commutation relations of the Toeplitz algebra T). Let n ∈
N, and consider the reducible representation ρ⊕t

n : SU(2) → U(L⊕t
n ). Then

the Toeplitz operators Ti,k with i = 0, . . . , n; k = 1, 2, . . . , t satisfy the following
commutation relations:

1. ∑i,k Ti,k(Ti,k)
∗ = 1−Q0

2. ∑n
i=0(−1)iTi,kTn−i,l = 0 where k, l = 1, 2, . . . , t

3. (Ti,k)
∗(Tj,l) = δi,jδk,l1F + (−1)i+j+1Tn−i,kΦ̃(Tn−j,l)

∗

4. ∑i,k(Ti,k)
∗Ti,k = (t− 1)(n + 1)1F + Φ̃−1

Proof. The first identity is from [2, Lemma 2.8], and the second one is from
the expression of the determinant.

Let i, j ∈ {0, 1, . . . , n} and k, l ∈ {1, . . . , t}. By definition of the Toeplitz
operators, we have Tj,l = ι̃∗L(e

l
j ⊗ 1F) and Ti,k = ι̃∗L(e

k
i ⊗ 1F), thus

(Ti,k)
∗(Tj,l) = (〈ek

i , ·〉 ⊗ 1F)ι̃L ι̃∗L(e
l
j ⊗ 1F).

Recall that (ι̃L, (Ṽ
′
m)
⊕t2

) is a unitary isomorphism from Ẽm+1 ⊕ Ẽ⊕t2

m−1 to
Ẽ1⊗ Ẽm. Therefore we have 1F ⊗ 1 = ι̃L ι̃∗L + t2(∑r,s=1,...,t(Ṽ

′
m)

r,s). It implies
that

(〈ek
i , ·〉 ⊗ 1F)ι̃L ι̃∗L(e

l
j ⊗ 1F)

= δi,jδk,l − t2(〈ek
i , ·〉 ⊗ 1F)( ∑

r,s=1,...,t
(Ṽ
′
m)

r,s)(el
j ⊗ 1F)

= δi,jδk,l + (−1)i+j+1Tn−i,kΦ̃(Tn−j,l)
∗,

where the last equality is due to equation (5.4).
For the last one, we have

∑
i=0,...,n
k=1,...,t

(Ti,k)
∗Ti,k = t(n + 1)1F − t2 ∑

i=0,...,n
k=1,...,t

Tn−i,kΦ̃(Tn−i,k)
∗

= (t− 1)(n + 1)1F + Φ̃−1 ∑
i=0,...,n
k=1,...,t

Tn−i,k(Tn−i,k)
∗

= (t− 1)(n + 1)1F + Φ̃−1(1−Q0)

= (t− 1)(n + 1)1F + Φ̃−1,
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52 Commutation Relations for the Resulting C∗-algebras

where the second equality holds for that

Ti,k(Ẽm) ⊂ Ẽm+1 and d1 − dm+2/dm+1 = dm/dm+1,

which yields that

Tn−i,kΦ̃(ξ) =
dm

dm+1
Tn−i,k(ξ)

= ((n + 1)− dm+2/dm+1)Tn−i,k(ξ)

= ((n + 1)1F − Φ̃−1/t2)Tn−i,k(ξ).

Then we complete the proof.

We finish this section by showing that the Toeplitz algebra is even gen-
erated by the one-shift Ti i.e. it is the closed span of non-commutative
polynomials with variables Ti.

Proposition 5.12. The Toeplitz algebra TE of a SU(2)-equivariant subproduct
system (E, ι) is generated by the identity operator and one-shift Ti : F → F which
sends ζ ∈ Em to ι∗1,m(ei ⊗ ζ) with i = 0, . . . , dim(Ln)− 1.

Proof. It is sufficient to show that for all creation operators Tξ ∈ Ek, we can
write it as linear combination of products of one-shifts. By the linearity of
ι∗k,m it is sufficient to show that for Tξ can be written as product of one-shift
where ξ is a basis vector of Ek. Since ιk,m is an isometry, we have that ι∗k,m
is surjective. Therefore we have that Ek+m is spanned by the ι∗k,m(ξ ⊗ ζ)
where ξ and ζ are basis vectors of Ek and Em respectively. Then for x ∈ En,
by using the associativity of the structure maps, we have

Tξ Tζ(x) = Tξ(ι
∗
m,n(ζ ⊗ x))

= ι∗k,m+n(ξ ⊗ ι∗m,n(ζ ⊗ x))

= ι∗k,m+n(1k ⊗ ι∗m,n)(ξ ⊗ ζ ⊗ x)

= ι∗k+m,n(ι
∗
k,m(ξ ⊗ ζ)⊗ x)

= Tι∗k,m(ξ⊗ζ)(x).

which implies that Tγ where γ ∈ En is a linear combination of Tξ Tζ where
ξ ∈ Ek, ζ ∈ Em where k + m = n. Hence by an induction argument we
conclude that the Toeplitz algebra TE is generated by the one-shifts Tj.
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5.2 Cuntz–Pimsner algebras 53

5.2 Cuntz–Pimsner algebras

Now we are ready to describe the resulting Cuntz–Pimsner algebra. Since
the SU(2)-equivariant subproduct system consists of finite-dimensional
Hilbert spaces, we have that the resulting Cuntz–Pimsner algebra OE =
TE/IE = TE/KE where KE denotes the space of compact operators on
the associated Fock space.

5.2.1 Irreducible case

By the definition of Φ, we have the following lemma:

Lemma 5.13. The operator Φ−1 − 1
γn

is compact.

Proof. By definition we have γn = limm→∞ dm/dm+1. Then we have Φ−1−
1

γn
is the limit of finite rank operators which implies that Φ−1 − 1

γn
is a

compact operator.

Let Si and Φ−1 denote the equivalent classes of Ti and Φ in the quotient
algebra TE/KE. We can formulate the following theorem.

Theorem 5.14 (Commutation relations for Cuntz–Pimsner algebra OE: ir-
reducible case). Let n ∈ N, and consider the reducible representation ρn :
SU(2) → U(Ln). Then the Cuntz–Pimsner algebra OE is generated by the
one-shift Toeplitz operators Si with i = 0, . . . , n which satisfy the following com-
mutation relations:

1. ∑i SiS∗i = 1

2. ∑n
i=0(−1)iSiSn−i = 0

3. S∗i Sj = δi,j1F + (−1)i+j+1γnSn−iS∗n−j

4. ∑i S∗i Si =
1

γn

Proof. To prove the theorem, it is sufficient to determine the compact op-
erators in the relations.

For the first relation, recall that in the Toeplitz algebra we have ∑i TiT∗i =
1− Q0 where Q0 is a projection from the Fock space F onto E0 and it is
clearly compact. Hence in the quotient algebra the first relation holds.

The second relation holds since zero operator remains zero in the quo-
tient algebra.
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54 Commutation Relations for the Resulting C∗-algebras

For the third relation, we have that the third relation in Theorem 5.5 for
OE becomes the following

S∗i Sj = δi,j1F + (−1)i+j+1((n + 1)1F −Φ−1)Sn−iS∗n−j

= δi,j1F + (−1)i+j+1((n + 1− 1
γn

)1F +
1

γn
1F −Φ−1)Sn−iS∗n−j

= δi,j1F + (−1)i+j+1((n + 1− 1
γn

)1F)Sn−iS∗n−j.

Recall the fact that (n + 1)γn = 1 + γ2
n. Then we have n + 1− 1

γn
= γn

which yields that

S∗i Sj = δi,j1F + (−1)i+j+1γnSn−iS∗n−j. (5.5)

The forth relation holds since ∑i T∗i Ti = Φ−1 = Φ−1 − 1
γn

+ 1
γn

, then in
the quotient algebra we have ∑i S∗i Si =

1
γn

.

Corollary 5.15. Let n ∈ N, and consider the irreducible representation ρn :
SU(2) → U(Ln). Then every element in the Cuntz–Pimsner algebra OE can be
written as a polynomial of the form

P(S0, . . . , Sn) = ∑
p,q

ap,q p(S∗0 , . . . , S∗n) · q(S0, . . . , Sn).

where ap,q ∈ C and p, q are non-commutative polynomials.

Proof. By the Proposition (5.12) we have that OE is the closed linear span
of one-shifts. Theorem (5.17) shows that for the non-commutative polyno-
mials, we have:

SiS∗j =
(−1)i+j+1

γn
(S∗n−iSn−j − δi,j1F).

Therefore we can write the non-commutative polynomials of variables S∗i
and Sj into the product of non-commutative polynomials p(S∗0 , . . . , S∗n)and
q(S0, . . . , Sn).

For the case n = 1, t = 1, we have that the Cuntz–Pimsner algebra
O is isomorphic to the algebra of complex continuous functions on S3 i.e.
C(S3) which has been studied in [2, Theorem 5.7].

Example 5.16. Let n = 2, t = 1, we then have γ2 = 3−
√

5
2 and 1

γ2
= 3+

√
5

2 . We
then have the following commutation relations in the Cuntz–Pimsner algebra O:
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5.2 Cuntz–Pimsner algebras 55

1. S0S∗0 + S1S∗1 + S2S∗2 = 1

2. S0S2 + S2S0 = S1S1

3. S∗0S1 = (2− φ)S2S∗1 , S∗0S2 = −(2− φ)S2S∗0 and S∗1S2 = (2− φ)S1S∗0

4. S∗0S0 = −ϕ · S2S∗2 , S∗1S1 = −ϕ · S1S∗1 and S∗2S2 = −ϕ · S0S∗0

5. S∗0S0 + S∗1S1 + S∗2S2 = 1 + ϕ

where ϕ is the golden ratio. Note that the the first relation shows the tuple
(S∗0 , S∗1 , S∗2) is a row-contraction.

5.2.2 Reducible cases

Recall that from commutation relations in the irreducible case we have

(Ti,k)
∗(Tj,l) = δi,jδk,l1F + (−1)i+j+1Tn−i,kΦ(Tn−j,l)

∗.

Using Lemma 5.3, we have Φ̃−1 − 1/γn is compact. Therefore we have

(Ti,k)
∗(Tj,l) = δi,jδk,l1F + (−1)i+j+1Tn−i,kΦ(Tn−j,l)

∗

= δi,jδk,l1F + (−1)i+j+1Tk
n−i(Φ− γn + γn)(Tn−j,l)

∗.

which implies that in the OE, we have

(Si,k)
∗(Sj,l) = δi,jδk,l1F + γn(−1)i+j+1Sn−i,kS∗n−j,l. (5.6)

Then we can formulate the commutation relations in OE for the subprod-
uct system induced by the reducible SU(2) representation.

Theorem 5.17 (Commutation relations for Cuntz–Pimsner algebra OE: re-
ducible case). Let n ∈ N, and consider the reducible representation ρ⊕t

n :
SU(2) → U(L⊕t

n ). Then the Cuntz–Pimsner algebra OE is generated by the
one-shift Toeplitz operators Si,j with i = 0, . . . , n, j = 1, . . . , t, which satisfy the
following commutation relations:

1. ∑i=0,...,n;j=1,...,t Si,jS∗i,j = 1

2. ∑i=0,...,n;j=1,...,t(−1)iSi,jSn−i,j = 0

3. S∗i,kSj,l = δi,jδk,l1F + γn(−1)i+j+1Sn−i,kS∗n−j,l

4. ∑i=0,...,n;j=1,...,t S∗i,jSi,j = (t− 1)(n + 1)1F +
1

γn
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Proof. The first two relations hold for the same reason with irreducible
case. The third one is due to (5.6). The last relation holds for that in the
Toeplitz algebra we have

∑
i=0,...,n;j=1,...,t

T∗i,jTi,j = (t− 1)(n + 1)1F + Φ̃−1

= (t− 1)(n + 1)1F + (Φ̃−1 − 1/γn + 1/γn).

and the fact that Φ̃−1 − 1/γn is compact implies that

∑
i=0,...,n;j=1,...,t

S∗i,jSi,j = (t− 1)(n + 1)1F +
1

γn

then we complete our proof.

Corollary 5.18. Let n ∈ N, and consider the reducible representation ρ⊕t
n :

SU(2) → U(L⊕t
n ). Then every element in the Cuntz–Pimsner algebra OE is a

polynomial of the form

P(Si,j) = ∑
p,q

ap,q p(S∗i,j) · q(Si,j).

where i = 0, . . . , n; j = 1, . . . , t; ap,q ∈ C and p, q are non-commutative polyno-
mials.

Proof. The proof is almost the same as the proof of Corollary 5.15.
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Chapter 6
Outlook

There are at least three main questions remaining to be studied:

1. The first thing is that we still do not know whether the fusion rules
exist for the disjoint direct sum case. If so, it is interesting to consider
the resulting Toeplitz and Cuntz–Pimsner algebra and to investigate
their commutation relations.

2. Secondly, we would like to know whether the Toeplitz and Cuntz–
Pimsner algebras are universal in any sense with respect to the SU(2)-
representations and Hilbert spaces. For Cuntz–Pimsner algebra, there
is a U(1)-gauge invariant uniqueness theorem. But we do not know
if there exists some SU(2)-gauge invariant uniqueness theorem.

3. Finally, the K-theory of Toeplitz algebra from the irreducible SU(2)-
representation has been studied by Arici and Kaad. It is worthwhile
to extend the arguments in [1] to the reducible case.
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Appendix A
Lie Groups and Their
Representations

A.1 Lie groups

In this section, we shall briefly introduce Lie groups and their representa-
tion theory focusing in particular on SU(2) and its irreducible representa-
tions.

Definition A.1 (Topological groups). A topological group G is a topological
space which is at the same time a group, and the group operations are continuous
with respect to the topology τ of G. That means the following operations are
continuous:

m : G× G → G, (x, y) 7→ xy (A.1)

i : G → G, x 7→ x−1 (A.2)

Lie groups are special cases of topological groups. Roughly speaking,
a Lie group is a topological group with a smooth manifold structure, and
the group operations are smooth.

Definition A.2 (Lie groups). A Lie group G is a smooth manifold endowed with
a group structure such that the group operations (A.1) and (A.2) are smooth.

In fact, Lie groups are almost everywhere in our daily mathematical
study and research. In order to get accustomed with the notion of Lie
group, let us look at two examples.

Example A.3. The vector spaces Rn and Cn with the operations of addition and
the zero vector as unit, are Lie groups.
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62 Lie Groups and Their Representations

Example A.4. The multiplicative groups C∗ := C \ {0} and R∗ := R \ {0}
with the usual multiplication and one as unit, are Lie groups.

we will now describe how we can construct new Lie groups from the
old ones.

Lemma A.5. Let G1, G2 be Lie groups then G := G1 × G2 endowed with the
product manifold structure and product group structure is a Lie group.

Proof. The product manifold structure and product group structure are
clear. The only nontrivial thing to check is the smoothness of the group
operations. The multiplication map satisfies

µ((x1, y1), (x2, y2)) = (x1x2, y1y2) = µ1 × µ2((x1, x2), (y1, y2)),

which implies that µ = (µ1 × µ2)(idG1 × S× idG2), where S : G1 × G2 →
G2 × G1 sending (x, y) to (y, x) . Then we have that µ is a composition of
smooth maps, thus µ is smooth. Indeed, take point (x, y) ∈ G1 × G2 pick
any chart ((ϕ, φ), U ×V) containing (x, y) then we have

(φ, ϕ) ◦ S ◦ (ϕ−1, φ−1) = id

thus S is smooth. And the smoothness of the remaining maps is trivial.
Finally, the inverse map ι = (ι1, ι2) is clearly smooth due to the smoothness
of ι1 and ι2.

Since a Lie group is not only a group but also a smooth manifold, a
subgroup may not inherit smooth manifold structure thus may not be a
Lie group anymore. However, under certain assumptions, this is still the
case.

Lemma A.6. Let G be a Lie group and let H ⊂ G be a subgroup. If H is also a
sub-manifold of G then H is a Lie group.

Proof. Let µ be the multiplication on G, then consider the µH := µ|H×H
from H × H to H. Since H is a submanifold of G we have H × H is a
submanifold of G× G. Therefore, smoothness of µ implies smoothness of
µ restricted to H × H. Moreover since H is a subgroup, then we have H is
closed under the multiplication µH (i.e. the image of µH is still in H). For
the same reason, we have ιH := ι|H : H → H is smooth and closed. Hence
H is again a Lie group.

Remark A.7. Indeed, if H ⊂ G is a subgroup that is closed in the sense of
topology. Then H is a sub-manifold thus a Lie group. The proof of this remark
can be found in [4].
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Let us look at two examples about the new Lie groups constructed via
above lemmas.

Example A.8. The vector space Rn+m = Rn ×Rm is again a Lie group.

Example A.9. Let T = {z ∈ C : |z| = 1} ⊂ C∗. Clearly we have T is a
submanifold and a subgroup. Therefore T is a Lie group.

In order to be able to classify Lie groups, we will introduce the concept
of isomorphism between Lie groups.

Definition A.10. A Lie group homomorphism from a Lie group G to a Lie group
H is a smooth map ϕ : G → H that is also a group homomorphism.

A Lie group isomorphism is a bijective Lie group homomorphism such that the
inverse is also a Lie group homomorphism (and thus a diffeomorphism between
smooth manifolds). Lie group isomorphisms from G to itself are called automor-
phisms and the set of automorphisms is denoted by Aut(G). Aut(G) is a group
with respect to composition of maps.

Finally, we can talk about Lie subgroups.

Definition A.11 (Lie subgroups). A Lie subgroup of a Lie group G is a sub-
group H endowed with a Lie group structure such that the inclusion i : H ↪→ G
is a Lie group homomorphism.

Now, let us turn to matrix Lie groups.

A.1.1 Matrix Lie groups

Since most interesting Lie groups are matrix groups and we mainly focus
on SU(2) in this thesis, in the rest of this appendix, we will restrict our
attention to those that are matrix groups.

Firstly, we introduce the notion of matrix exponential.

Proposition A.12. For all A ∈ Mn(R). The matrix exponential

exp(A) = I + A +
A2

2!
+

A3

3!
+ · · · =

∞

∑
n=1

An

n!
,

is convergent.

Proof. Firstly, since all norms on a finite-dimensional linear space are equiv-
alent, to show the convergence of exp(A) it is sufficient to show conver-
gence in the operator norm. We have

‖ exp(A)‖ = ‖
∞

∑
n=1

An

n!
‖ ≤

∞

∑
n=1

‖A‖n

n!
= e‖A‖ < ∞,

which proves the convergence of exp(A).

63



64 Lie Groups and Their Representations

Definition A.13 (Matrix exponential). Let A be a n× n martix. The matrix
exponential exp(A) is defined as the convergent series:

exp(A) = I + A +
A2

2!
+

A3

3!
+ · · · =

∞

∑
n=1

An

n!
.

The matrix exponential shares many nice properties with the usual ex-
ponential as summed up as the following lemma.

Lemma A.14. The matrix exponential satisfies the following properties:

1. d
dt exp(A) = A exp(A)

2. If AB = BA then exp(A) exp(B) = exp(AB) = exp(BA)

3. exp(A) is invertible with the inverse exp(−A).

We cannot avoid Lie algebras when talking about Lie groups. Simply
speaking, a Lie algebra is a tangent space of a Lie group at the identity
with a Lie bracket operation [·, ·]. And from now on, for the convention of
Lie algebras, we denote Mn(R) by gl(n).

The matrix exponential exp gives a smooth map from gl(n) to GL(n),
we shall prove that the local inverse log indeed exists.

Lemma A.15. There exist neighborhoods 0 ∈ U ⊂ gl(n) and I ∈ V ⊂ GL(n)
such that the matrix exponential exp restricted on U is bijective.

Proof. The proof follows from the Inverse function theorem directly: we
can identify gl(n) by Rn2

and GL(n) ⊂ Rn2
. Therefore we have the Jaco-

bian matrix of exp(A) is defined by the following:

D exp(A) =


∂(exp(A)11)

∂a11

∂(exp(A)11)
∂a12

. . . ∂(exp(A)11)
∂ann

∂(exp(A)12)
∂a11

∂(exp(A)12)
∂a12

. . . ∂(exp(A)12)
∂ann

...
... . . . ...

∂(exp(A)nn)
∂a11

∂(exp(A)nn)
∂a12

. . . ∂(exp(A)nn)
∂ann

 .

On the other hand, we have exp(A) = I + A + O(A2) therefore we have
D exp(0) = I ∈ Mn2×n2(R) which is clearly invertible. Thus we have
exp(A) is invertible near zero and we denote its inverse by log.

Remark A.16. The logarithm function is analytic, with convergent series

log(A) = A− A2

2
+

A3

3
+ . . . .
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A.1 Lie groups 65

Before the important theorem which reveals the relation of Lie groups
and Lie algebras, we need the famous Baker–Campbell–Hausdorff for-
mula.

Theorem A.17 (Baker-Campbell-Hausdorff formula). For all X, Y ∈ U(0) ⊂∈
Mn(F) where U(0) is a sufficiently small neighborhood of zero, we have

exp(X) exp(Y) = exp
(

X +
∫ 1

0
g(exp(adX) exp(t · adY))(Y)

)
.

where g(z) = log z
1−z−1 and adX(Y) := XY−YX.

The proof of Baker–Campbell–Hausdorff formula can be found in [6].

Theorem A.18. Let G be a topologically closed subgroup of GL(n). Define

g = {X ∈ gl(n) : exp(tX) ∈ G, ∀t ∈ R}

then we have

1. g is a vector space;

2. For X, Y ∈ g we have [X, Y] = XY−YX ∈ g;

3. The vector space g defined above is the tangent space of G at I.

Before proving this theorem, we state the following version of Baker–
Campbell–Hausdorff formula.

Proposition A.19. We have that

exp(X) exp(Y) = exp
(

X + Y +
[X, Y]

2
+

[X, [X, Y]]
12

− [Y, [X, Y]]
12

+ f (X, Y)
)

where f (X, Y) consists of a linear combination of the Lie brackets of X, Y.

Now we can prove Theorem A.18.

Proof. We firstly show that g is a tangent space of G. To show g is a tan-
gent space of G at the identity, it is sufficient to show that for any curve
γ(t) ∈ G with γ(0) = I we have dγ(t)

dt |0 ∈ g. That means, we need to

prove exp
(

s dγ(t)
dt |0

)
∈ G for all s ∈ R. We claim that it is enough to show

exp
(

dγ(t)
dt |0

)
∈ G. Indeed, define β(t) := γ(ts), then we have dβ

dt = s dγ
dt .
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Let h(t) = log γ(t) for small s (in order to make it well-defined), then we
have

dh(t)
dt
|0 =

d log(s)
ds

|s=0
dγ(t)

dt
|t=0 =

dγ(t)
dt
|t=0,

so it is sufficient to show that exp(dh(0)/dt) ∈ G. We have

dh(0)
dt

= lim
n→∞

h(1/n)− h(0)
1/n

= lim
n→∞

nh(1/n).

Since exp(h(t)) = γ(t) ∈ G then we have that exp(nh(t)) = γ(t)n ∈ G.
As G is topologically closed, we have

lim
n→∞

exp
(

dh(0)
dt

)
= lim

n→∞
exp(nh(1/n)) = lim

n→∞
γ(1/n)n ∈ G.

Therefore g is a tangent space of G at I.
We now prove that g is a vector space and it is closed under the bracket

operation. We define the following curves

γ1(t) := exp(sX) exp(sY);
γ2(t) := exp(sλX);

γ3(t) := exp
(
X
√

s
)

exp
(
Y
√

s
)

exp
(
−X
√

s
)

exp
(
−Y
√

s
)
.

Since g is the tangent space of G at the identity, then we have the deriva-
tives of the above curves at zero should be in g. That is

γ′1(0) = X exp(0X) exp(0Y) + exp(0X)Y exp(0Y) = X + Y ∈ G,

γ′2(0) = λX exp(0X) = λX ∈ G.

which prove that g is a vector space. To show the bracket operator is
closed, we shall use the Baker–Campbell–Hausdorff formula above:

γ3(t) = exp
(
X
√

s
)

exp
(
Y
√

s
)

exp
(
−X
√

s
)

exp
(
−Y
√

s
)

= exp
(

s[X, Y]− s[X + Y, X + Y] + O(s3/2)
)

= exp
(

s[X, Y] + O(s3/2)
)

which implies γ′3(0) = ([X, Y] + O(
√

s)) exp
(
0[X, Y] + O(03/2)

)
= [X, Y].

Therefore we have [X, Y] ∈ G.

The vector space g we defined above is the so-called Lie algebra of the
Lie group G. The formal definition is as follows
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Definition A.20. A vector space L is called a Lie algebra if it is endowed with a
bilinear operator [·, ·] : L× L→ L satisfying the following:

1. [x, x] = 0, ∀x ∈ L;

2. Jacobian identity: [x, [y, z]] + [y[z, x]] + [z, [z, y]] = 0.

A linear map ϕ : L → M between two Lie algebras is called a Lie algebra homo-
morphism if ϕ([x, y]) = [ϕ(x), ϕ(y)], ∀x, y ∈ L.

As stated in the Theorem A.18, a Lie algebra of a (matrix) Lie group is
the tangent space to the group at the identity element. For every abstract
Lie group, the associated Lie algebra is defined likewise as the tangent
space at the identity.

Homomorphism between Lie groups induces homomorphism between
Lie algebras. Indeed, if ϕ : G → H is a Lie group homomorphism,
then the induced Lie algebra homomorphism is given by the differential
Dϕ : g→ h.

In some cases, the representation of Lie group (homomorphism from
G to the matrix Lie group GL(n)) is equivalent to the representation of
Lie algebra (the corresponding differential). This is a consequence of the
famous Lie’s third theorem.

Theorem A.21 (Lie’s third theorem). Define the functor Lie between the cat-
egories of simply connected Lie groups and finite-dimensional Lie algebras which
sends every Lie group to its Lie algebra and homomorphism of Lie groups to the
corresponding Lie algebra homomorphism. Then Lie is an equivalence between
category of simply connected Lie groups with Lie group homomorphisms and cat-
egory of finite-dimensional Lie algebras with Lie algebra homomorphisms.

The proof is a corollary of the theorem below whose proof is beyond
the content of this thesis.

Theorem A.22 ([11, Theorem 8.49] ). Every finite-dimensional Lie algebra is a
Lie subalgebra of gl(n, R) for some n.

A.2 Representation theory of Lie groups

In this section, we will introduce the basics of representation theory of
Lie groups. In particular, the representations of SU(2) will be studied in
detail.

67



68 Lie Groups and Their Representations

A.2.1 Representations of Lie groups

Definition A.23 (Representations). A representation π of a Lie group G is a
Lie group homomorphism π : G → GL(V) where V is a (complex) vector space
and it is called the representation space. A unitary representation π of G is the
representation with the representation space being a (complex) Hilbert space H
and π(x) being unitary for all x ∈ G;

Given two representations (π, V) and (ϕ, W), the linear map φ : V → W is
called equivalent (or intertwining) if the following diagram commutes:

V W

V W

φ

π(x) ϕ(x)
φ

if ϕ is invertible we call ϕ an isomorphism and two representations (π, V) and
(ϕ, W) isomorphic. A sub-representation of (π, V) is a subspace W ⊂ V together
with the representation π|W such that π(x)|Ww := π(x)w ⊂ W, ∀w ∈ W.
A representation (π, V) is irreducible if the only sub-representations are trivial
ones.

The following lemma allows us to classify unitary representations of a
Lie group.

Lemma A.24. If G is a Lie group and (π, H) is a finite-dimensional unitary rep-
resentation of G, then (π, H) decomposes into a finite direct sum of irreducibles.

Proof. Suppose (π, H) is a unitary representation of G that is not irre-
ducible. Let H1 be a nontrivial invariant subspace. Since we have assumed
that the dimension of H is finite, H1 as a subspace is closed, thus also a
Hilbert space. We claim H⊥1 is also invariant: for any x ∈ G, take w ∈ H1
and v ∈ H⊥1 we have

〈π(x)v, w〉 = 〈v, π(x−1)w〉 = 0 implies π(x)v ∈ H⊥1 , ∀x ∈ G.

Therefore we have H = H1⊕ H⊥1 i.e. H decomposes into the direct sum of
sub-representations. If H1 and H⊥1 are irreducible, we complete the proof,
otherwise we do the same step as above until H decomposes into a direct
sum of irreducibles.

As one can see in the proof, the unitarity of (π, H) is essential and it
leads to the following theorem which helps us understand the representa-
tions of compact Lie groups.
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Theorem A.25. If G is a compact Lie group, then all finite-dimensional repre-
sentations of G are completely reducible.

Proof. The key of the proof is the so-called Weyl’s unitary trick. To use
the Lemma above, we need to construct an invariant inner product. Let
〈·, ·〉 be an arbitrary inner product on G, we claim that the following inner
product is invariant.

〈u, v〉G :=
∫

G
〈π(x)u, π(x)v〉dµ(x).

where µ denotes the Haar measure. It is not hard to check that 〈·, ·〉G is
indeed an inner product (which requires the compactness of G). Moreover,
the representation π is unitary with respect to this inner product:

〈π(y)u, π(y)v〉G =
∫

G
〈π(y)π(x)u, π(y)π(x)v〉dµ(x)

=
∫

G
〈π(yx)u, π(yx)v〉dµ(x)

=
∫

G
〈π(yx)u, π(yx)v〉dµ(yx)

= 〈u, v〉G,

where in the third equality we used the right invariance of the Haar mea-
sure.

Remark A.26. We have thus proved that for any compact Lie group G, every
the finite-dimensional representation of it is unitarizable i.e. there exists an inner
product such that the representation is unitary.

Now we shall turn to the case of SU(2) which plays a central role in
this thesis. Since SU(2) is compact, the representation of SU(2) can be
understood completely once we classify the irreducible representations of
any fixed dimension.

A.2.2 A case study: representations of SU(2)

Definition A.27. The matrix Lie group SU(2) is defined as

SU(2) = {A ∈ M2(C) : A∗A = I}.

Clearly, we have

SU(2) =

{[
a b
−b a

]
: |a|2 + |b|2 = 1, a, b ∈ C

}
.
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70 Lie Groups and Their Representations

To classify the representations of SU(2) by Theorem A.25, it is sufficient to
find all irreducible representations.

Let us start by looking at some examples of representations of SU(2).

Example A.28. The representation (ρ, C2) defined by ρ(A) = A, ∀A ∈ SU(2)
is clearly a representation. We call (ρ, C2) the standard representation of SU(2).

Example A.29. Let Vm denote the space of homogeneous polynomials of degree
m in two (complex) variables. Define a representation (πm, Vm) by:

πm(A)(p(z)) := p(A−1z),

where z = (z1, z2)
T ∈ C2 and p(z) is a homogeneous polynomial.

Clearly Vm is an (m+ 1)-dimension space with basis {pk(z) = zm−k
1 zk

2 : k =
0, 1, . . . , m}. It is not hard to see (πm, Vm) is indeed a representation:

πm(AB)(p(z)) = p((AB)−1z)

= p(B−1A−1z)

= πm(B)p(A−1z)
= πm(A)(πm(B)p(z)).

We will show that (πm, Vm) is irreducible and indeed all irreducible representa-
tion of dimension m + 1 is isomorphic to (πm, Vm). The representation of SU(2)
is built from the ”bricks” (πm, Vm), that is, every representation of SU(2) decom-
poses into the direct sum of representations of the (πm, Vm) and the decomposition
is unique up to isomorphism.

Theorem A.30. The representation (πm, Vm) is irreducible and all irreducible
representations of dimension m + 1 are isomorphic to (πm, Vm).

We first the Schur’s lemma which implies that (πm, Vm) is irreducible.

Lemma A.31 (Schur’s lemma). Let (π, V) be an irreducible representation of
a group, then the intertwining map ϕ : V → V has the form λI for some scalar
λ ∈ C.

Conversely, if (π, V) is unitary (or unitarizable) and the intertwining maps
are of the form λI for some scalar λ ∈ C. Then (π, V) is irreducible.

Proof. Suppose ϕ : V → V is a homomorphism between vector spaces,
then there exists an eigenvalue λ with its corresponding eigenspace U
(since C is algebraically closed). Since π(g)ϕ = ϕπ(g) for all g ∈ SU(2)
then U is indeed an invariant subspace of V. By irreducibility, we conclude
that V = U and thus ϕ = λI.
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Conversely, if (π, V) is unitary and assume W ⊂ V is a nontrivial in-
variant subspace (then so is W⊥). Then consider the projection P from V
onto W which is intertwining. Thus we have P = λI, which implies that
λ2 I = P2 = P = λI. Therefore we have λ2 = λ. For λ 6= 0 we then have
λ = 1 and W = PV = V.

Now we can prove Theorem A.30.

Proof. Since SU(2) is compact (thus unitarizable), to prove that a represen-
tation is irreducible, it is sufficient to show that the intertwining maps are
all of form λI. Let {pk(z) = zm−k

1 zk} be a basis for the vector space Vm and
consider the following two closed subalgebras of SU(2):

T :=

{
tα =

[
eiα 0
0 e−iα

]
: α ∈ R

}
, R := {rα =

[
cos α sin α
− sin α cos α

]
: α ∈ R}

Suppose ϕ : V → V is an intertwining map. We observe that

π(tα)pk(z) = (eiαz1)
n−k(e−iαz2)

k = ei(n−2k)α pk(z),

which shows that each pk is an eigenvector of π(tα). Choose α such that
each ei(n−2k)α is different. Then, since ϕ is intertwining, we have Cpk is an
eigenspace of ϕ. Say, the eigenvalue of ϕ with respect to Cpk is λk. Let
now E0 be the eigenspace with eigenvalue λ0. What we will do is to prove
that λk = λ0 for each k. Since π(aα)ϕ = ϕπ(aα) then we have

ϕπ(aα)p0 = ϕ((cos αz1 + sin αz2)
n) (A.3)

= ϕ(
n

∑
m=0

(
n
m

)
cosm αzm

1 sinn−m αzn−m
2 ) (A.4)

=
n

∑
m=0

(
n
m

)
cosm α sinn−m αλn−mzm

1 zn−m
2 (A.5)

On the other hand, we have

π(aα)ϕp0 = λ0(
n

∑
m=0

(
n
m

)
cosm αzm

1 sinn−m αzn−m
2 ).

Combining it with (A.5), we obtain

n

∑
m=0

(
n
m

)
cosm α sinn−m α(λn−m − λ0)zm

1 zn−m
2 = 0.
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Therefore we have λ0 = λk for all 0 ≤ k ≤ n. Hence ϕ = λ0 I and then
(πn, Vn) is irreducible.

The uniqueness is due to the uniqueness of irreducible representations
of sl(2) (the Lie algebra of SL(2)). Interested readers can refer to [6].

Let us look at another irreducible representation of SU(2).

Example A.32 (Tensor product of representations). Let (φ, V) and (ϕ, W)
be two representations of SU(2), then we define the tensor product of two repre-
sentations (φ⊗ ϕ, V ⊗W). If {vi} and {wj} are the basis of V and W respec-
tively, then {vi ⊗wj} is a basis for V ⊗W and φ⊗ ϕ(g)(v⊗w) := φ(g)(v)⊗
ϕ(g)(w).

Now we can define the symmetric power of representations. Let V be a vector
space, consider the following map S : V⊗n → V⊗n such that

S(v1 ⊗ v2 ⊗ · · · ⊗ vn) =
1
n! ∑

σ∈Sn

vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(n)

Then we call the image of S the symmetric power of V and denote it by V⊗Sn. We
claim that for the standard representation (ρ, C2) we have (ρn, (C2)⊗Sn) is an
irreducible representation with dimension n + 1 thus by the Theorem A.30, it is
isomorphic to the representation in Example A.29.

We end the appendix with the so called Clebsch-Gordan formula which
reveals the decomposition of tensor product of (πm, Vm) and (πn, Vn). The
proof can be found in [6].

Theorem A.33 (Clebsch-Gordan formula). Let (πm, Vm) and (πn, Vn) be two
standard irreducible representations of SU(2). Then we have the following for-
mula of decomposition:

Vm ⊗Vn ∼= Vm+n ⊕Vm+n−2 ⊕ · · · ⊕V|n−m|+2 ⊕V|n−m| (A.6)

Remark A.34. The proof relies on the notions of character of a representation.
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Appendix B
Integer Sequences Arising from
SU(2)-subproduct Systems

In this chapter, we shall define an integer sequence which encodes the
dimensions of the fibers in our subproduct system.

Let us recall the definition of dimension sequence firstly.

Definition B.1. Let {dm} be the sequence of positive integers defined recursively
by the following:

d−1 := 0, d0 := 1, d1 := n + 1, dm := d1dm−1 − dm−2, m ≥ 2.

Lemma B.2. Let m, k, l ∈N0. We have the identities:

d2
m − dm−1dm+1 = 1, (B.1)
l

∑
i=0

dk+m+2i = dk+ldm+l − dk−1dm−1, (B.2)

dkdm =
min{k,m}

∑
j=0

dk+m−2 min{k,m}−2j. (B.3)

Proof. We firstly prove the first identity by induction. For m = 0, the iden-
tity d0 = 1 = 1 + d−1d1 = 1 holds clearly. By definition, we have

dm−1dm+1 + 1 = dm−1(d1dm − dm−1) + 1

= d1dm−1dm − d2
m−1 + 1

= d1dm−1dm − (dm−2dm + 1) + 1
= dm(d1dm−1 − dm−2)

= d2
m.
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74 Integer Sequences Arising from SU(2)-subproduct Systems

We likewise prove the second identity by induction. For l = 0, we have to
show that

dk+m = dkdm − dk−1dm−1 (B.4)

For m = 0, 1 there is nothing to prove. So suppose (B.4) holds for m ≤ n.
Then we compute that

dk+n+1 = dk+nd1 − dk+n−1

= (dkdn − dk−1dn−1)d1 − dkdn−1 + dk−1dn−2

= dk(dnd1 − dn−1)− dk−1(dn−1d1 − dn−2)

= dkdn+1 − dk−1dn.

Then suppose (B.2) holds for l ≤ n. Then we have

n+1

∑
i=0

dk+m+2i =
n

∑
i=0

dk+m+2i + dk+m+2(n+1)

= dk+ndm+n − dk−1dm−1 + d(k+n+1)+(m+n+1)

= dk+ndm+n − dk−1dm−1 + dk+n+1dm+n+1 − dk+ndm+n

= dk+n+1dm+n+1 − dk−1dm−1.

Finally, combining (B.2) with the recursive definition, we obtain

dkdm = dk+m + dk−1dm−1

= dk+m + dk−1+m−1 + dk−2dm−2

=
l

∑
j=0

dk+m−2 min{k,m}+2j.

This proves the lemma.

Finally we end this appendix by introducing sequence {µm}.

Lemma B.3. Let {µm} be the sequence defined as

µm :=
dmdm−1

d1
.

We have
µm + µm+1 = d2

m.
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Proof. It follows from d2
m = µm + µm+1. Indeed, we have

µm + µm+1 =
dmdm−1

d1
+

dm+1dm

d1

=
dm(dm+1 + dm−1)

d1

=
dm(d1dm − dm−1 + dm−1)

d1

= d2
m.

Furthermore, the sequence {µm} satisfies the recurrence relation:

µ1 = 1, µ2 = (n + 1)2 − 1, µm+1 = ((n + 1)2 − 2)µm − µm−1 + 1

which one can check by the following:

µm+1 = ((n + 1)2 − 2)µm − µm−1 + 1 (B.5)

⇐⇒ µm+1 + µm = d2
1µm + 1− (µm + µm−1) (B.6)

⇐⇒ d2
m = d1dmdm−1 + 1− d2

m−1. (B.7)

by using (B.1) we have that (B.7) is equivalent to

1 + dm+1dm−1 = d1dmdm−1 + 1− d2
m−1 ⇐⇒ dm+1 = d1dm − dm−1.

as dm−1 6= 0 and the right hand is the definition of the sequence.
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Appendix C
Subproduct Systems of
C∗-correspondence

C.1 Hilbert modules and C∗-correspondences

The general definition of subproduct system consists of C∗ correspondences,
a special case of Hilbert C∗-modules.

Definition C.1 (Hilbert C∗-module). Let A be a C∗-algebra, an inner product
A-module is a vector space E which is a right A-module endowed with a map
E× E→ A, (x, y) 7→ 〈x, y〉 ∈ A satisfying the followings

1. for all x, y, z ∈ E, α, β ∈ C we have 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉;

2. for all x, y ∈ E, a ∈ A we have 〈x, ya〉 = 〈x, y〉a;

3. for all x, y ∈ E we have 〈y, z〉 = 〈x, y〉∗;

4. for all x, y ∈ E we have 〈x, x〉 ≥ 0 and the equality holds if and only if
x = 0.

This yields a well-defined norm ‖ · ‖ on E defined by ‖x‖ := ‖〈x, x〉‖1/2. We
call E a Hilbert A-module (or Hilbert C∗-module over A) if E is complete with
respect to this norm.

Roughly speaking, an (A, B)-C∗ correspondence is Hilbert C∗-module
with an additional left module structure given by endomorphisms. The
formal definition is as follows:
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78 Subproduct Systems of C∗-correspondence

Definition C.2 (Adjointable C∗-honomorphism). Let E and F be two Hilbert
C∗-modules over a C∗-algebra A. We define LA(E, F) to be the set of all maps
φ : E→ F for which there is a map φ∗ : F → E such that

〈φ(x), y〉 = 〈x, φ∗(y)〉.

We abbreviate LA(E, F) to LA(E) when E = F and call such map adjointable.

Furthermore, the maps in L(E, F) are bounded and A-linear [10].

Definition C.3. Let A and B be C∗-algebras. An (A, B)-C∗-correspondence is a
pair (E, ϕ) consisting of a right Hilbert B module E and an injective nondegerate
C∗ homomorphism ϕ : A→ LB(E) which means that the image ϕ(A)E is dense
in E.

Remark C.4. Note that some authors define C∗-correspondences without the re-
quirement of injectivity and density of ϕ(A)E, instead, if such conditions are
satisfied, call the C∗-correspondence faithful and essential respectively. For the
simplicity, we choose to put such requirements in our definition and abbreviate
φ(a)x to ax for all x ∈ E.

From now on, we abbreviate C∗-corredpondence (E, φ) to E when there
is no confusion. Given two C∗-correspondences, one can take their prod-
uct in a properly defined sense.

Definition C.5 (Interior tensor product of C∗ correspondences). Let X and
Y be (A, B) and (B, C) correspondences respectively. Then the interior tensor
product X⊗B Y is the completion of quotient of X⊗alg Y by the subspace spanned
by

{xb⊗ y− x⊗ by, x ∈ X, y ∈ Y, b ∈ B}.
Note that we get a right C-module by (x⊗ y) · c = x⊗ (y · c) for all c ∈ C with
respect to the inner product defined as the following

〈x1 ⊗ y1, x2 ⊗ y2〉 := 〈y1, (〈x1, x2〉)y2〉.

The fact that the linear map 〈x1 ⊗ y1, x2 ⊗ y2〉 is an inner product is
nontrivial, the detailed proof can be found in [10].

We are now ready to give the general definition of a subproduct system
of C∗-correspondences.

Definition C.6. Suppose that E = {Em}, m ∈ N0 is a sequence C∗ correspon-
dences over a C∗-algebra B and that ιk,m : Ek+m → Ek ⊗B Em is a bounded
adjointable isometry for every k, m ∈ N0. We say that (E, ι) is a subproduct
system over B when the following holds for all k, l, m ∈N0:
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C.1 Hilbert modules and C∗-correspondences 79

1. E0 = B;

2. The structure maps ι0,m : Em → E0⊗B Em and ιm,0 : Em → Em ⊗B E0 are
the canonical identifications and;

3. The two bounded adjointable isometries (1k⊗ ιl,m) ◦ ιk,l+m and (ιk,l⊗ 1m) ◦
ιk+l,m : Ek+l+m⊗ Ek⊗B El ⊗B Em agree, where 1k and 1m denote the iden-
tity operators on Ek and Em, respectively.

Let us look at an example.

Example C.7. Let X be a B-correspondence where B is a C∗-algebra. Then we
have {X⊗Bn}∞

n=0 is a subproduct system with the structure maps given by the
canonical identification X⊗Bn+m ∼= X⊗Bn ⊗B X⊗Bm.

Definition C.8 (Fock correspondence). Given a subproduct system of C∗-
correspondence (E, ι) over N0, we define the Fock correspondence as the infinite
Hilbert C∗-module direct sum F := ⊕∞

m=0Em.

Similarly, we have the Toeplitz algebra of subproduct system of C∗-
corrrespondences. For each ξ ∈ Ek, we define the creation operator Tξ ∈
L(F) as

Tξ(ζ) := ι∗k,m(ξ ⊗ ζ), ∀ζ ∈ Em.

Definition C.9 (Toeplitz algebra). Let (E, ι) be a subproduct system over N0.
We define the Toeplitz algebra of (E, ι) denoted by TE, as the smallest unital C∗-
subalgebra of L(F) that contains all the creation operators.

Finally, we define the Cuntz–Pimsner algebra as follows.

Definition C.10 (Cuntz–Cuntz–Pimsner algebra). Given a subproduct sys-
tem (E, ι) of C∗ correspondences over N0. Let Qn : F → F be the orthonormal
projection onto En. The Cuntz–Pimsner algebra of (E, ι) is the unital C∗-algebra
obtained as the quotient of the Toeplitz algebra TE by the ideal

IE := {x ∈ TE : lim
n→∞
‖Qnx‖ = 0},

which is denoted by OE := TE/IE.

Remark C.11. Note that in the subproduct system of finite-dimensional Hilbert
spaces, the ideal IE is isomorphic to the ideal KF of compact operators over the
Fock space. Therefore the Definition C.10 coincides with the Definition 3.6.
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C.2 G-subproduct systems

In this section, we consider subproduct systems with group actions. Be-
fore defining group actions on subproduct systems, we shall firstly define
group actions on C∗-algebras.

Definition C.12 (G-C∗-algebra). Let G be a locally compact topological group,
a G-C∗-algebra A is a C∗-algebra endowed with a strongly continuous action of
G by ∗-automorphisms.

We remind the reader that the strong continuity means that the orbit
map ξa defined by

ξa : G → A, g 7→ g.a.

is continuous for all a ∈ A.
Actions on C∗-correspondence are defined in a similar way.

Definition C.13 (Automorphisms of C∗-correspondences). Let X be an A-
correspondence. An automorphism from X to X is a pair (φ, ϕ) where φ : A→ A
is a ∗-isomorphism and ϕ is a bijective adjointable map from Hilbert C∗-module
X to itself such that

ϕ(ax) = φ(a)ϕ(x).

Now we are ready to define the G-C∗-correspondence.

Definition C.14 (G-C∗-correspondence). Let G be a locally compact topologi-
cal group, a G-C∗-correspondence E is a C∗-correspondence with a strongly con-
tinuous action of G by automorphisms of C∗-correspondences.

Using the above concepts, we can define G-subproduct systems.

Definition C.15 (G-subproduct systems). Let G be a locally compact topolog-
ical group and let (E, ι) be a subproduct system over a C∗-algebra B. We say
that (E, ι) is a G-subproduct system when B is a G-C∗-algebra and Em is a G-
C∗-correspondence for all m ∈ N, such that the structure maps ιk,m : Ek+m →
Ek ⊗B Em are G-equivariant for all k, m ∈N0 i.e. g ◦ ιk,m = ιk,m ◦ g. The action
on Em ⊗B En is given by g(ξ ⊗ η) := g(ξ)⊗ g(η).
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[9] W. Heisenberg, Über quantentheoretische Kinematik und Mechanik,
Math. Ann. 95 (1926), no. 1, 683–705. MR1512300

[10] E. C. Lance, Hilbert C∗-modules, London Mathematical Society Lec-
ture Note Series, 210, Cambridge University Press, Cambridge, 1995.
MR1325694

[11] J. M. Lee, Introduction to smooth manifolds, second edition, Graduate
Texts in Mathematics, 218, Springer, New York, 2013. MR2954043

[12] G. J. Murphy, C∗-algebras and operator theory, Academic Press, Inc.,
Boston, MA, 1990. MR1074574

[13] P. S. Muhly and B. Solel, Quantum Markov processes (correspon-
dences and dilations), Internat. J. Math. 13 (2002), no. 8, 863–906.
MR1928802

[14] J. von Neumann, Mathematical foundations of quantum mechanics, new
edition of MR0066944, translated from the German and with a preface
by Robert T. Beyer, Princeton University Press, Princeton, NJ, 2018.
MR3791471

[15] O. M. Shalit and B. Solel, Subproduct systems, Doc. Math. 14 (2009),
801–868. MR2608451

[16] O. M. Shalit, Dilation Theory: A Guided Tour, Operator Theory, Func-
tional Analysis and Applications (2021), 551–623

[17] A. Viselter, Cuntz–Pimsner algebras for subproduct systems, Inter-
nat. J. Math. 23 (2012), no. 8, 1250081, 32 pp. MR2949219

84


	Introduction
	Preliminaries: C*-algebras and Their Representation Theory
	C*-algebras
	C*-algebras and their properties
	Spectral theory

	Representation theory of C*-algebras
	Ideals and positive linear functionals
	Gelfand–Naimark–Segal Theorem


	Subproduct Systems from SU(2)-representations
	Subproduct systems of Hilbert spaces
	The Toeplitz and Cuntz–Pimsner algebras of a subproduct system
	G-subproduct systems

	Subproduct system from SU(2)-representations
	The structure of the determinant


	Fusion Rules for SU(2)-subproduct Systems
	Irreducible case
	Several copies of the same irreducible representations

	Commutation Relations for the Resulting C*-algebras
	Toeplitz algebra
	Irreducible case
	Reducible cases

	Cuntz–Pimsner algebras
	Irreducible case
	Reducible cases


	Outlook
	Appendices
	Lie Groups and Their Representations
	Lie groups
	Matrix Lie groups

	Representation theory of Lie groups
	Representations of Lie groups
	A case study: representations of SU(2)


	Integer Sequences Arising from SU(2)-subproduct Systems
	Subproduct Systems of C*-correspondence
	Hilbert modules and C*-correspondences
	G-subproduct systems

	References

