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1 Introduction

In 1640 Fermat mentions the problem of what primes can be written as the sum of two

squares, p = x2 + y2, in a letter. This marks the start of a long series of discoveries. After

Fermat, a century later, in 1744, Euler writes Theoremata circa divisores numerorum in hac

forma paa±qbb contentorum [1, Series 1, Vol. 2, p. 194-222] about the possible prime divisors

of solutions of nx2 ± my2 for given m,n. He already examines a wider range of problems

and finds solutions for quite a few m,n. His solutions are not proofs however, and can best

be described as observations that have now been proved to be correct. More generalization

and better understanding came when Lagrange introduced discriminants, equivalent forms

and reduced forms [2]. Continuing the exploration of forms, Gauss introduced the concept of

proper equivalence and shows that equivalence classes of reduced forms have a natural group

structure [3].

All of this is being shown without class field theory, which later proves to be a central element

in solving these kinds of problems. To introduce class field theory we first have to look at

the ring whose field of fractions we will be using:

Z[
√
−n] = {a+ b

√
−n | a, b ∈ Z}

In this quadratic order we can factor x2 + ny2 like this

p = x2 + ny2 = (x+ y
√
−n)(x− y

√
−n)

with (x+y
√
−n), (x−y

√
−n) ∈ Z[

√
−n]. These rings are not necessarily unique factorisation

domains, which poses a problem. Some p might “factor” but not into elements in the ring.

This is where Kummer comes in, he introduced ideals. The first time he mentions them is

in a paper in 1847 [4], referring to them as Ideale Zahlen. He invents them while trying to

prove Fermat’s last theorem when he discovers that some number rings don’t have unique

factorisation. The reparation, provided by Dedekind[5], consists in using the integral closure

of a number ring, which is a Dedekind domain. In these rings, we have unique prime ideal

factorization: every non-zero ideal factors uniquely into a product of prime ideals. Now we

can say that if p = x2 + ny2 there are primes p and p′ such that

pp′ = (p) (1)

with p = (x − y
√
−n) and p′ = (x + y

√
−n). So all primes p of the form x2 + ny2 factor

into two ideals in Z[
√
−n]. The converse is not true. In the factorisation we see that the
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ideals are generated by (x ± y
√
−n) which makes them principal. One might wonder what

happens when an ideal p in (1) is non-principal. Later in section 4 we will show that such p

are represented by a binary quadratic form (see section 2) with the same discriminant, −4n,

but not x2 + ny2. In order to check whether a prime p - 4n is the product of two ideals as

in (1) we can simply check whether −4n is a square modulo that prime. If it is, then it does

factor into two ideals. Finally we can say something about the density of primes represented

by a given form. A range of thoughts on this subject for binary quadratic forms of negative

discriminant can be found in “Primes of the form x2 + ny2” by David A. Cox [6].

In this text we will focus on x2 − ny2 with n positive which makes the discriminant of

these forms, 4n, positive. We will shortly discuss the case of n being a square later in the

introduction but this will not require any of the more complicated mathematics used for

the rest of the text. Therefore we will assume n is not a square unless indicated otherwise.

We will first go over Cox’s case of the form x2 + ny2 of negative discriminant −4n. These

forms are positive definite which by definition means they only have positive outcomes for

x, y ∈ Z. While doing so we will look at the differences with the indefinite case, named

that way because the form is able to take both positive and negative values. The first clear

difference is that in the case of x2 +ny2 = p the prime p can only be positive. For x2−ny2 it

can be equal to p or to −p and one does not necessarily imply the other. An extra condition

to ensure there is a solution with p positive will be that the norm of the element α generating

the principal ideal p = αO has to be p = N(α) with p positive. Although we will only explore

the way to find positive p, we will discuss what would have to be done differently to obtain

a solution for positive and negative p.

We have made a statement about the meaning of p being represented by the form x2 + ny2

in terms of ideals of Z[
√
−n]. This raises the question, how can it be known whether p can

be written as the product of two principal ideals as in (1). Class field theory, not known to

Gauss and his predecessors, gives us a field in which exactly every principal prime ideal that

split in Z[
√
n] splits completely: the ring class field. The result obtained using this ring class

field is very similar to the result found in “Primes of the Form x2 +ny2” by David A. Cox [6,

Thm. 9.2, p. 163]. However, due to the sign change, we will see that differences arise. We

will also find that the proof for a specific n in x2 − ny2 is more complicated than x2 + ny2

is in the book. The theorem for indefinite forms which resembles theorem 9.2 for positive

definite forms in Cox reads:

Theorem 1.1. For n ∈ Z>0 not a square and p - 2n prime we have that the equation
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p = x2 − ny2 has a solution in integers if and only if p splits completely in the narrow ring

class field of the order O = Z[
√
n].

To illustrate what this means we will elaborate a little bit. We will use the narrow ring class

field to get solutions for p = x2 − ny2 with p positive. The first of two inclusions we can use

to gain some insight in the theorem starts with the field Q(
√
n), which contains a maximal

order OK of infinite index and the order O with index f in OK :

K = Q(
√
n) ⊃ OK

f
⊃ O = Z + fOK

Here OK is the Dedekind domain having unique prime ideal factorization and O ⊂ OK is an

order having “singular primes” dividing f . The conductor f is the index of O in OK and is

related to the discriminant of the form x2− ny2 as will be explained below, the discriminant

being ∆ = 4n. Using the discriminant we can make certain observations concerning the

conductor. As we know from algebraic number theory if n 6≡ 1 mod 4 is squarefree, the

order Z[
√
n] is maximal. We find that if n 6≡ 1 mod 4 then the discriminant can be written

as ∆ = f 2 · 4m with m squarefree and f the conductor. The other case where n ≡ 1 mod 4

we get that ∆ = f 2m with m squarefree and f the conductor. When n ≡ 1 mod 4 the prime

2 is unramified in the order Z[1+
√
n

2
] of discriminant n.

The second set of inclusions leads up to the narrow ring class field, H+
f . This is the narrow

ring class field of O. As we will soon find out and later prove its properties provide the

solution to our main problem. We denote the Hilbert class field H and the narrow Hilbert

class field H+:

Q ⊂ K = Q(
√
n) ⊂ H+ ⊂ H+

f

The first field of interest is K = Q(
√
n), the quadratic number field that contains the zeroes

of x2 − n. This is the smallest field in which we can factor the function x2 − ny2 into

(x− y
√
n)(x + y

√
n). The field K is contained in the narrow Hilbert class field of K which

we could also call the narrow ring class field of the ring of integers. The final field is the

narrow ring class field, H+
f , of the quadratic order O. The desirable property of the ring

class field is that if and only if a prime O 3 p - f splits completely in the ring class field,

then it was principal in the corresponding order:

p 6 |f splits completely in H+
f ⇐⇒ p = (π) with π ∈ O and N(π) > 0

As will be discussed later, dropping the “narrow” removes the requirement for positive norm.
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p 6 |f splits completely in Hf ⇐⇒ p = (π) with π ∈ O

This is of course a fairly strange relation which raises the question how we can find such a

specific field. In section 4 of this thesis we will describe an isomorphism between the (narrow)

class group of an order and the Galois group of its (narrow) ring class field.

Cl+(Z[
√
n]) ∼= Gal(H+

f /K)

It should also be noted that each f corresponds to a unique order in OK . The class structure

of the class field in this order is not necessarily unique and the ring class field can also be

the same for several orders. Each order does of course only admit one class group and one

ring class field.

Finally we will discuss n = m2 being a square and introduce the density of primes in a

solution. For x2 +m2y2 we can use the approach described in Cox and it will still work. For

x2 −m2y2 we can factor the equation into (x−my)(x+my) without needing any elements

not present in Z. We assume without loss of generality that x, y > 0. This means that

x2 − m2y2 is not a prime unless either x − my or x + my is 1. Since x + my cannot be 1

unless x−my is also 1 this yields no solutions. For x−my = 1 we have that x = 1 +my so

x + my = 2my + 1. This shows that for n = m2 a square, the prime p is represented if and

only if p = 2my + 1 for some y. This is a splitting condition, p needs to split completely in

Q(ζ2m). As a congruence condition this would be p ≡ 1 mod 2m.

What fraction of primes is represented by x2 − m2y2 and thus equal to 1 mod 2m can be

calculated using Dirichlet’s theorem on arithmatic progressions[7][8]. Later this Theorem will

return as a special case of the Chebotarev Density Theorem.

Theorem 1.2. For k, l ∈ Z relative prime there are infinitely many primes p with p ≡ k

mod l. And for x going to infinity a fraction 1
ϕ(l)

of primes are p ≡ k mod l.

This theorem tells us that the collection of all primes coprime to l is equidistributed in

(Z/lZ)∗.

Corollary 1.3. x2 −m2y2 represents a fraction 1
ϕ(2m)

of all primes.

This comes from combining the theorem with the result that x2 −m2y2 = p only for p ≡ 1

mod 2m.
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2 Form class group

We define a binary quadratic form to be any f(x, y) = ax2+bxy+cy2 ∈ Z[x, y] with a, b, c ∈ Z.

This binary quadratic form has discriminant ∆ = b2−4ac and thus x2±ny2 has discriminant

∆ = 02−4 ·1 ·±n = ∓4n. If there are d, e ∈ Z such that f(d, e) = m with m some integer we

say that f(x, y) represents m. In essence one could also state that we are looking for which

values of p are represented by a certain f . In order to make statements about forms it is

desirable to have a solid understanding of the set of all forms. In order to reduce the number

of forms that we need to look at we first define primitive forms to be forms such that a, b, c are

relatively prime and therefore the form isn’t a multiple of another form. Non-primitive forms

are of little interest as the only prime they can represent is gcd(a, b, c) if it is prime. This

already reduces the number of forms significantly but the number is still infinite. We will

refer to the collection of all primitive forms as F = { (a, b, c) | a, b, c ∈ Z, gcd(a, b, c) = 1}.
A triple (a, b, c) corresponds to the form ax2 + bxy + cy2.

Some forms in F are essentially the same and differ only by a linear transformation. In order

to make this clear we first look at binary quadratic forms as a function from Z2 to Z:

f : Z2 → Z

(x, y)→ f(x, y)

Now we can apply a linear transformations to Z2 which retains all the values that are in the

codomain of f . This is a linear function A : Z2 → Z2 that we apply before f . This gets us a

function fA = f(A(x, y)). Since A is a linear transformation we can take it to be an integer

2×2 matrix. The discriminant of fA only differs from the discriminant of f by a factor equal

to the square of the determinant of A.

disc(fA) = (det(A))2 · disc(f) (2)

The following commutative diagram illustrates the relations between A, f and fA:

Z2 Z

Z2

f

A
fA

As we want to reduce the number of forms we would like to use A to obtain an equivalence

relation. Using the function A we have transitive and reflexive properties but just taking



2 FORM CLASS GROUP 7

any integer matrix A will not do for the symmetry property of an equivalence relation. We

need the matrix A to be invertible for the symmetric property to hold, integer matrices are

only invertible if they have determinant ±1. This also nicely lines up with (2) as that also

means the discriminant stays the same. The group of integer matrices with determinant ±1

is called GL2(Z). Because the discriminant never changes we can look at F∆, all forms of

discriminant ∆, instead of the entire collection F . Now we can quotient out by the group

action of GL2(Z) on F∆. This turns it into an orbit space F∆/GL2(Z) where every orbit is a

set of forms that represents the same numbers. Logically we call forms that are in the same

orbit equivalent forms. Instead of GL2(Z) we will use GL2(Z)/(±Id) because the identity and

minus the identity do the same thing when applied to forms. Gauss discovered that if you

use SL2(Z)/(±Id) instead of GL2(Z)/(±Id) on a collection of forms of the same discriminant

the resulting collection admits to a natural group structure[3, section V]. The composition

used by Gauss is relatively difficult as these sets of forms don’t obviously form a group and

was later revisited by Dirichlet [9, supplement X] and others for simplification. The main

problem with composition is that the forms are in equivalence classes and the outcome of

composition depends on the representative chosen. We need to use SL2(Z)/(±Id) instead of

GL2(Z)/(±Id) because we will later find out that the latter identifies all elements of F∆ with

their inverse. This destroys the natural group structure for any group that isn’t of order two.

The group SL2(Z) is generated by:

S =

(
0 1

−1 0

)
and T =

(
1 1

0 1

)
Which makes the full group

SL2(Z)/(±Id) = PSL2(Z) = 〈S, T 〉 /(±Id)

Using the group action of this group on F∆ we get an equivalence relation on all binary

quadratic forms of discriminant ∆. We call forms that are equivalent by this relation properly

equivalent. We obtain a finite number of orbits as will be demonstrated later in this section.

Given this equivalence relation we still don’t know which forms represent the same value

without trying all possible matrices. We need some representative for each of the orbits.

This is where the in section 1 aforementioned reduced forms by Lagrange come in to play. The

concept is based on using matrices in PSL2(Z) to turn a form into a unique form satisfying

certain properties. If two forms can be reduced to a form with those properties and if the

result is identical we know that the forms are equivalent by a combination of the matrix used

to reduce the first form and the inverse of the matrix used to reduce the second form. The

definition of reduced for forms ax2 + bxy + cy2 of negative discriminant is:
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|b| ≤ a ≤ c and if |b| = a or a = c then b ≥ 0 (3)

An easy way to visualise if a form is reduced is to look at the embedding of one of the roots

of the form in the upper half of the complex plane. The roots of the form are −b±
√

∆
2a

with
−b+
√

∆
2a

in the upper half plane. Because |b| ≤ a we see that the real component is between −1
2

and 1
2
. The root is outside the unit circle because the absolute value is

√
τ τ̄ with ·̄ complex

conjugation and τ τ̄ = c
a

as f(x, y) = a(x+ τ)(x− τ) and c ≥ a, as can be seen in figure 1.

−8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8

−4

−3

−2

−1

1

2

3

4
a

f

eq1

Figure 1: Embedding of the roots of reduced polynomials in C

To show the reduction process in a more intuitive fashion we can investigate the embeddings

of the roots in C. This comes down to

T (τ) = τ + 1

S(τ) =
−1

τ

As T only changes the b and c of the form, it applies to the real part of the root −b+
√

∆
2a

and

changes it to −b+2a+
√

∆
2a

, effectively shifting the root over by 1 on the real axis. The second

matrix S turns τ into − 1
τ
. Graphically, in Figure 1, this would translate to moving it out

of or into the unit circle and mirroring the angle in the imaginary axis. Mirroring the angle
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in the imaginary axis does not matter for getting the point closer to the reduced area as

the reduced area is the same on both sides of the imaginary axis. We reduce the form by

applying the following 2 steps starting with the root τ or τ̄ depending on which one is in the

upper half plane. Step 1, we apply matrix T until the real part of the root is between −1
2

and 1
2
. Then if it is in the blue area it is reduced, if it is not we go to step 2 and apply S

shifting the root out of the circle increasing the imaginary part. Now we repeat these steps

until our root arrives in the blue area. This always takes a finite number of steps[6, Lemma

11.4, p. 202].

We can prove a nice bound on the number of possible a, b for which a, b, c is reduced by

starting with ∆ = b2 − 4ac and applying that both |b| and a are positive and smaller than

c. We get ∆ ≤ c2 − 4c2 = −3c2 which proves the bound |b| ≤ a ≤ c ≤
√
−∆
3

. This

combined with the fact that every form is properly equivalent to a reduced form shows that

#F∆/PSL2(Z) <∞.

As demonstrated we can find a single reduced form for each orbit of properly equivalent

forms of negative discriminant. If the discriminant is positive however, we are unable to

do so. We can find reduced forms but it turns out that there is finitely many of them all

properly equivalent to each other. For positive discriminant we will again have a similar two

step algorithm. At the end of this algorithm when a reduced form is found the two steps can

be applied again to get another reduced form. All reduced forms properly equivalent to one

form are in a cycle and applying the two steps of the reduction algorithm brings you to the

next form in the cycle.

We have an analogue of (3) for forms of positive discriminant. A form f(x, y) of positive

discriminant is reduced if and only if:

|
√

∆− 2|a|| < b <
√

∆

In this definition a can also be replaced with c to get an equivalent definition. This definition

is again easier to understand looking at the roots τ = −b+
√

∆
2a

, σ(τ) = −b−
√

∆
2a

of f(x, y). In

this case, a reduced form implies that 0 < τ < 1 and σ(τ) < −1 or −1 < τ < 1 and σ(τ) > 1.

Figure 2 illustrates the definition of reduced in terms of the roots of f(x, y) embedded in R2

as (τ, σ(τ)) in a similar fashion to figure 1.

The highlighted area indicates where a root of the form needs to be located for the form to

be considered reduced. The hyperbola is the unit hyperbola xy = ±1. Applying matrix T

to a form shifts the roots of that form by the vector u = (1, 1) as seen in figure 2. Similar
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−8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

u

Figure 2: Embedding of the roots of reduced polynomials in R2. Note vector u = (1, 1).

to the complex case the roots become −b+2a±
√

∆
2a

. This makes both roots shift by one. In the

embedding this corresponds to (x+ 1, y + 1). Next, we consider the transformation induced

in real forms by matrix S, which, analogous to the imaginary forms, changes root τ to − 1
τ
.

The real embedding is somewhat more complicated for these forms. In figure 3 there is an

illustration of what happens to the embedding of the roots of a form D when matrix S is

applied to it, they get send to L. Both the x and y coordinates are inverted and multiplied

by −1. In the figure this moves the x coordinate of the point over the x-axis until it passes

the y-axis and subsequently hits the unit hyperbola and similarly the y coordinate over the

y-axis until it passes the x-axis and subsequently hits the unit hyperbola. Finally the point

is mirrored in the line y = −x. This shows us that just like in the imaginary case the reduced

area was a choice and instead of 0 < τ < 1 we could have chosen 1 < τ < 2. The reason for
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−8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

u

D

n

L

Figure 3: Applying matrix S the form with root D transforming it into a form with root L.

defining reduced as 0 < τ < 1 and σ(τ) < −1 will become apparent when we start looking

at class groups.

Similar to the negative discriminant we also want to be able to reduce forms of positive

discriminant to their cycle. The algorithm to do this is explained in detail in quite a few

computational number theory texts[10, p.263][11]. The real algorithm works similarly to the

complex algorithm. This time we apply T to fix b to an interval, then we check if our form is

reduced. If it is not S is applied to the form and we repeat these two steps. A better version

of this reduction algorithm is available[10, Def 5.6.4, p. 263]

In order to quickly find the form class group for a specific discriminant it is easy to list all

the reduced forms of that discriminant and then order them in cycles. A computer can do

this relatively quickly.



3 NARROW CLASS GROUP 12

3 Narrow class group

As mentioned in the introduction we want to find primes that split into principal ideals αO
for which N(α) > 0 in Z[

√
n]. This is because primes that split into principal ideals satisfy

the equation p = x2 − ny2. Primes that don’t split into principal ideals also satisfy some

equation of the same discriminant but not this one. The collection of invertible prime ideals

modulo the principal invertible prime ideals is called the class group Cl(K) = IK/PK . The

only class in the class group consisting of principal ideals is the identity by definition. The

identity class does contain ideals generated by elements of both positive and negative norm.

Since we only want ideals with positive norm as these have solutions for p = x2−ny2 and not

±p = x2 − ny2 we use the narrow class group. The narrow class group is Cl+(K) = IK/P
+
K

with P+
K the subgroup of all principal invertible ideals represented by an element of positive

norm. Even though it is called narrow it is the same size or bigger than the normal class

group since P+
K ⊂ PK . Because any ideal generated by a single element of positive norm is a

principal ideal. We will see that the case where P+
K = PK does occur later in this section. It is

of course very interesting that all primes p = x2−ny2 are in the same class in the narrow class

group. One might wonder if there is some sort of relation between forms and ideal classes in

the narrow class group. As it turns out this relation does exist and works the same for other

forms with the same discriminant. Primes represented by those forms aren’t principal but

they are all in the same class in the narrow class group. In order to find out what primes are

represented by a certain form we can use a bijection between the narrow class group Cl+(O)

and the orbit space C(∆) = F∆/PSL2(Z). Thus, C(∆) is naturally equipped with a group

structure. This is the fundamental discovery of Gauss:

Theorem 3.1. There is a bijection between the narrow class group Cl+(O) and C(∆) =

F∆/PSL2(Z) defined by:

ψ : C(∆)→ Cl+(O)

f(x, y) = ax2 + bxy + cy2 → a =

{
[a, (−b+

√
∆)

2
] a > 0

√
∆[a, −b+

√
∆

2
] a < 0

Proof. An outline for this proof is given in the literature[10, page 229, Theorem 5.2.9][6, page

128].

This brings us one step closer to answering the question which primes are represented by

certain forms. Figuring out what primes are in a certain class is not the nicest thing to do

and we would really like to have a congruence condition. We will explore finding such a
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congruence condition in the next section. For now we will discuss implications of theorem

3.1.

So far we have seen quite some differences between the cases ∆ > 0 and ∆ < 0. For ∆ > 0

we might have −p as a solution to our equation and instead of a single reduced form we end

up with a cycle of reduced forms. In order to explain both these phenomena we need to have

a look at a fundamental difference between Z[
√
n] and Z[

√
−n] for n > 0. As you can see in

figure 1 all units are on a circle and for n 6= 1 the only units in Z[
√
−n] are 1 and −1.

As we can see in figure 2 the units in R2 are on a hyperbola. The Dirichlet unit theorem

shows that the unit group of the maximal order and any suborder is infinite of rank one:

O∗K =< −1 > × < ε∆ >

O∗ =< −1 > × < εk∆ >

⊂

Here ε∆ is the fundamental unit in OK of infinite order. This unit is not necessarily in O∗

as O∗ has index f 6= 1 in O∗K . Some power of ε∆ will be in O∗ though, because ε∆ has finite

order in the finite multiplicative group (O/fOK)∗/(Z/fZ)∗ and once it is the identity it is

in O. In the complex case there is only 1 and −1 as units and by picking our form always in

the upper half plane we don’t have this problem.

Like mentioned before, in the real case a form can represent −p but not p. If this is the case

the narrow class group contains a class of negatively generated principal ideals. If we were to

be interested in what form represents −p we could use an involution created by adding the

ideal class that contains a prime lying over p with the ideal class containing the negatively

generated principal ideals. The resulting ideal class is what forms representing −p map to,

this will be illustrated in example 6.1. Sometimes both −p and p are represented by the same

form in the real case. For principal ideals this means that the ideal has both a positive and

negative generator. The only way for an ideal to have both a positive and negative generator

is if the fundamental unit has norm −1. Then you can multiply the generator with positive

norm with the fundamental unit to get a generator with negative norm. The existence of

a unit of norm −1 implies that Cl+(∆) = Cl(∆). The cases described above can not both

happen at the same time, so either the ideals with generator of norm p and −p are in the

same class for all p or they are in different classes for all p.

If the fundamental unit of OK has norm −1 but the fundamental unit of O does not, which

happens when k is even, then in the narrow class group of O the primes generated by positive

and negative elements are not in the same class.
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The following exact sequence illustrates the difference between the narrow and regular class

group quite well:

0→ [
√

∆]→ Cl+ → Cl→ 0

Which shows that the narrow class group is either twice as big or equal to the regular class

group depending on whether [
√

∆] is part of P+
K .

4 Ring class fields

In Theorem 1.1 we wanted primes to split completely in some field Hf . This field is the ring

class field, an abelian extension of K. In this field all primes in K that ramify in Hf divide

f = f∞1∞2 where f is the index of O and ∞1, ∞2 are the two infinite primes. Because our

forms are indefinite there are two distinct Archimedean valuations of 1 +
√
n which account

for two embeddings in R and therefore the two infinite primes. In the complex case there are

two archimedian embeddings as well but they give rise to the same valuation.

Complex case: K → C→ R≥0

Real case: K ⇒ R→ R≥0

There is an isomorphism between the narrow class group of O and the Galois group of

H+
f /K using the Artin symbol [6]. We will first examine the Artin Symbol before stating

the isomorphism.

Theorem 4.1. Let K ⊂ L be a Galois extension, and let p be a prime of OK that is unramified

in L. If P is a prime of OL dividing p, then there is a unique element FrobL/K(P) = σ ∈
Gal(L/K) such that for all α ∈ OL

σ(α) ≡ αN(p) mod P,

where N(p) = |OK/p| is the norm of p.

For the Frobenius element of P we have

FrobL/K(σ(P)) = σFrobL/K(P)σ−1

Thus, if L/K is abelian, the element is independent of the choice of a prime P|p and we call

it the Artin Symbol of p:

ArtL/K(p) := FrobL/K(P)

Now that we have some knowledge of the Artin symbol we can state the isomorphism.
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Theorem 4.2. Given an order Of with field of fractions K the Galois group of the ring

class field of Of , Gal(Hf/K) is isomorphic to the class group of Of by mapping primes of

the class group to their Artin symbol.

Cl+(Of )
∼−→ Gal(H+

f /K)

[a]→ ArtH+
f /K

(a)

With this and the knowledge from the previous sections we can make the connection between

a prime p - 4n being represented by x2 − ny2 of discriminant ∆ and its splitting behaviour

in the ring class field. We will do this using the set of steps shown below and explain them

afterwards.

p = x2 − ny2

⇔ ∃ α ∈ Z[
√
n] : N(α) = p

⇔ ∃ p ⊂ Z[
√
n] : N(p) = p & p = (π) met N(π) = p

⇔ ∃ p|p [p] = 0 ∈ Cl+(Z[
√
n])

⇔ p = p · p′ in K/Q en ArtH+
f /K

(p) = id

⇔ p splits completely in H+
f /Q

(4)

We have that p = x2 − ny2 if and only if there is an element with norm p in Z[
√
n]. The

second step follows because the element is also the generator of a principal ideal with norm

p because p is a prime. In the class group all of these primes have to be in the identity class

because they are principal and of positive norm which is the third step. The identity element

of the narrow ideal class group maps to the identity in the Galois group giving us the fourth

step. For the fifth step p = pp′ implies splitting in K/Q and having trivial Artin Symbol in

Hf/K implies that p splits completely in Hf/K. Which means p splits completely in H+
f /Q

which proves

p = x2 − ny2 ⇔ p splits completely in Hf/Q

Now that we have answered our initial question of which primes are represented by x2−ny2 the

next question becomes what primes are represented by other forms of discriminant ∆ = 4n.

We will now show that a prime p - 4n is represented by a form of discriminant 4n if and

only if
(

4n
p

)
= 1. We will do this by showing that for each of those p there exists a form

(p, b, c) of discriminant 4n. Such a form needs to have discriminant b2 − 4pc = 4n. Because

of
(

4n
p

)
= 1 we can take b as b2 ≡ 4n mod p. We can take b to be even as if it is not we
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simply take b+ p since p is odd. Now we have that b2− 4n is divisible by 4p as it is 0 mod p

and divisible by 4. Which means that there exists c such that b2 − 4n = 4pc. This form

f(x, y) = px2 + bxy + cy2 represents p as f(1, 0) = p. The converse is also true[6, Thm 2.3,

p. 23]. Notice that since b and −b both satisfy the equation above there are two choices

for the form representing p that are equivalent but not necessarily properly equivalent. As

mentioned in section 2 these forms are each others inverses. In the case of x2 − ny2 this did

not matter as it is its own inverse. Forms of discriminant ∆ = 4n that represent p always

have a single class in F∆/GL2(Z) and have either 1 or 2 classes in F∆/SL2(Z) depending on

whether they are their own inverses.

5 Densities

As mentioned and demonstrated in section 1, we can say something about the densities of

primes represented by our equations. We will now state a more precise theorem on densities

and show the result from section one to be a special case of this theorem. The Chebotarev

Density Theorem:

Theorem 5.1. Let L be a Galois extension of K, and let C(σ) be the conjugacy class of an

element σ ∈ Gal(L/K). Then the set

S = {p ∈ PK : p is unramified in L and FrobL/K(p) = C(σ)}

has density

δ(S) =
|C(σ)|

|Gal(L/K)|
=
|C(σ)|
[L : K]

Proof. See Neukirch [12, Chapter V, Theorem 6.4]

In our case the conjugacy classes are fairly easy to calculate. We can start with this short

exact sequence:

1→ Gal(H+
f /K)→ Gal(H+

f /Q)→ Gal(K/Q)→ 1

Here Gal(H+
f /K) ∼= Cl+(Of ) is abelian, Gal(K/Q) = 〈σ0〉 ∼= Z/2Z and the sequence splits

so Gal(H+
f /Q) ∼= Cl+(Of ) o 〈σ0〉. This is a generalized dihedral group as the action of σ0

on Gal(H+
f /Q) is inversion. Now we can state the following theorem about the densities of

primes of binary quadratic forms:
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Theorem 5.2. The density of the primes represented by a form f ∈ F∆ is

1

[H+
f : Q]

if f−1 is properly equivalent to f

and
2

[H+
f : Q]

if f−1 is not properly equivalent to f

Proof. As we stated above Gal(H+
f /Q) is a generalized dihedral group. Therefore for all

σ ∈ Gal(H+
f /K) the only elements in C(σ) are {σ, σ−1}. Now in our case of number rings

there are two possibilities, either σ = σ−1 and |C(σ)| = 1 or σ 6= σ−1 and |C(σ)| = 2. This

implies that the density of primes of a form is either 1
#Gal(H+

f /Q)
if σ is its own inverse or

2
#Gal(H+

f /Q)
if its not. Being its own inverse in the Galois group is the same as having f−1 be

properly equivalent to f by Theorems 3.1 and 4.2

Next we will show that Dirichlet density is a special case of the Cheboterov Density Theorem.

Corollary 5.3. The congruence class 1 mod 2m contains 1
ϕ(2m)

of all prime numbers.

Proof. This corollary is a special case of Theorem 5.1. Being 1 mod 2m is equivalent to

splitting in Q(ζ2m) and with the fact that [Q(ζ2m) : Q] = ϕ(2m) we get the desired result.

We note that the primes represented by all forms in F∆ are 1
2

of all primes. This is because

the condition for a prime to be represented by any form of a given discriminant is that that

prime splits in the field Q(
√

∆). And a prime splits in that field if and only if
(

∆
p

)
= 1

which is true for half of all primes by Theorem 1.2.

6 Examples

We will finish with a few examples in which we apply the theory. The first example n =

321 = 3 · 107 is an easy one to warm up with a composite number that leads to a non trivial

but small class group. This first example will also be done in more detail and mostly by

hand. The second example n = 369 = 32 · 41 contains a class group that gets bigger because

of the conductor. The last example is n = 154305 = 35 · 5 · 127. The class group doesn’t get

all that big because for real quadratic extensions the class group stays a lot smaller than in

the complex case.
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Before we get into the examples we will first go over a useful exact sequence:

1→ (OK/fOK)∗ / (Z/fZ)∗ · im O∗K→ Cl+(O)→ Cl+(OK)→ 1

Here we see the difference between the narrow class group of the maximal order and the

narrow class group of the order we are interested in. Here f = f · ∞1∞2 is the conductor

including the infinite primes. We see that the kernel of the map is exactly the ideals that

become principal in the narrow class group of the maximal order.

Example 6.1. To solve our question for p = x2 − 321y2 we have to look at the order

O = Z[
√

321]. We find that O is not the maximal order and that OK = Z[1+
√

321
2

] is. The

fundamental unit in both orders is 12
√

321+215 as calculated using SAGE. The F∆/PSL2(Z)

has cardinality 6, so Gal(H+
f /K) also has cardinality 6. For this one example we will show

the entire form class group separated in cycles calculated using a small SAGE script:

F1 = [(−32, 30, 3), (3, 30,−32), (−32, 34, 1), (1, 34,−32)]

F2 = [(−25, 22, 8), (8, 26,−19), (−19, 12, 15), (15, 18,−16), (−16, 14, 17), (17, 20,−13), (−13, 32, 5), (5, 28,−25)]

F3 = [(−25, 28, 5), (5, 32,−13), (−13, 20, 17), (17, 14,−16), (−16, 18, 15), (15, 12,−19), (−19, 26, 8), (8, 22,−25)]

F4 = [(−17, 14, 16), (16, 18,−15), (−15, 12, 19), (19, 26,−8), (−8, 22, 25), (25, 28,−5), (−5, 32, 13), (13, 20,−17)]

F5 = [(−17, 20, 13), (13, 32,−5), (−5, 28, 25), (25, 22,−8), (−8, 26, 19), (19, 12,−15), (−15, 18, 16), (16, 14,−17)]

F6 = [(−3, 30, 32), (32, 34,−1), (−1, 34, 32), (32, 30,−3)]

Now we can use that 321 ≡ 1 mod 8 to get that 2 splits in OK and (OK/2OK)∗ = F∗2 × F∗2.

Which in turn implies that the first part of the exact sequence mentioned at the start,

(OK/fOK)∗ / (Z/fZ)∗ · im O∗K ,

is trivial. The first part of the exact sequence being trivial means that the narrow class

group of the maximal order is equal to the narrow class group of O. Since we have already

calculated the form class group we know that the narrow class group has order 6 as well.

We do not have a unit of norm −1 so the narrow class group is twice as big as the regular

class group, which lines up nicely with the form class group being of cardinality 6. Now

we need to find an order 2 extension. Luckily we can get it cheaply from the genus field.

We can extend the field of fractions by
√
−3 to get an abelian extension unramified at all

finite primes. Since it ramified at infinity it wasn’t part of the Hilbert class field. This, as

an extension of the Hilbert class field of OK , makes up for the entire ring class field as the

Galois group of these two extensions is of order 6 as shown in figure 4. The Hilbert class
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field can be hard to find, there is an algorithm but it is slow as the input becomes larger.

In this case it is more than small enough and we can simply get the answer using SAGE. .

Therefore we know that the Hilbert class field is K(β) with β the root of X3−X2− 4X + 1.

Hf = H(
√
−107)

H = K(β)

K(
√
−107)

K = Q(
√

321)

3

2

2

3

Figure 4: Field diagram of all subfields of the ring class field over K

Now that we have the class group, generated by the prime [p2] lying over 2, and the narrow

classgroup, also generated by [p2], we will create a diagram with equations, ideals and ele-

ments of the Galois group that are mapped to each other down below. We know F1, as seen

in the cycles of forms, is the identity because it contains a = 1. We know F6 is [p2]3 because

it contains a = −1. In the form class group we can see that 5 is represented by F2 and F3

and −5 by F4 and F5.

The next question is which classes in the narrow ideal class group contain p5, q5, the primes

laying over 5, hence we apply our map from the form class group to the narrow ideal class

group. This sends (5, 28,−25) to Z · 5 + Z · (−14 +
√

321) which is (5,
√

321 + 1) ∈ O and

then (5, α) ∈ OK = Z[α], giving us that F2 maps to q5. When we look at (α) we see that

α = q4
2q5 is principal and therefore q5 is in the same class as p2.We can place the final two

form cycles because (5, 28,−25) composed with a form from F6 should land in the same cycle

as (−5, 28, 25). This follows, naturally, because F6 is the class where we find principal ideals

that aren’t positively generated. We find that F2 and F6 combine to F5 which is then in the

class of p4
2:

0 [p2] [p2]2 [p2]3 [p2]4 [p2]5

p = x2 − ny2 F2 F4 −p = x2 − ny2 F5 F3

q5 (
√

321)

id σρ ρ2 σ ρ σρ2

The final line is the identification of both class and form class group elements with elements
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of the Galois group of the ring class field:

Gal(Hf/K) = 〈 σ2 = ρ3 = id | σρ = ρσ 〉

Now to see for which p there exist x, y such that p = x2−321y2 we only need to know where p

belongs in the table above. To see which forms represent −p we take the form that represents

p and take the composite with F3. Of course instead of taking the composite we can also

do the same calculation in the narrow ideal class group by adding the class containing p the

prime over p and the class [p3
2]. For the total picture we get that p is represented by a form

in a cycle if:

F1,

(
321

p

)
= 1,

(
−3

p

)
= 1 and X3 +X2 − 4X − 1 splits completely

F2, F3,

(
321

p

)
= 1,

(
−3

p

)
6= 1 and X3 +X2 − 4X − 1 does not split completely

F4, F5,

(
321

p

)
= 1,

(
−3

p

)
= 1 and X3 +X2 − 4X − 1 does not split completely

F6,

(
321

p

)
= 1,

(
−3

p

)
6= 1 and X3 +X2 − 4X − 1 splits completely

By the density theorem we have that F1 and F6 both represent 1
12

of all primes, F2, F3

represent 1
6

of the primes and F4, F5 represent 1
6

of the primes. With none of these having

overlap outside of their inverse. Note that half of all primes are represented by forms of

discriminant 4 · 321. 4

Example 6.2. For p = x2 − 369y2 we have to look at the ring class field of the order

O = Z[
√

369] = Z[6
(

1+
√

41
2

)
]. The regular class group is trivial. The difference between the

narrow and regular class group only depends on the existence of a unit of norm −1 in O.

There is a fundamental unit ε of norm −1 in OK . To get that unit into O we need a fourth

power, making the norm positive. We conclude that the narrow class group of O is twice as

big as the class group of O. We can verify the size of the narrow class group using the exact

sequence mentioned at the start of this section:

1→ (OK/fOK)∗ / (Z/6Z)∗ · im O∗K→ Cl+(62 · 41)→ Cl+(41)→ 1

Here f = 6f∞f
′
∞ is the conductor including the infinite primes. Then by definition we have

(OK/fOK)∗ = (OK/fOK)∗ × 〈−1〉 × 〈−1〉. We can split (OK/6OK)∗ into (OK/2OK)∗ ×
(OK/3OK)∗. Since 321 ≡ 1 mod 8 we have (OK/2OK)∗ ∼= F∗2 which is the trivial group.
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The other group (OK/3OK)∗ is F∗9 as 3 is inert. Then in the quotient we have (Z/6Z)∗ = F∗3
and 〈ε41〉 · 〈−1〉 which is 5

3

√
369− 32 with ε441 ∈ O, which leaves a group of order 2.

The ring class field luckily isn’t hard to find, in the exact sequence we can already see that

the prime 2 in the conductor is trivial, so we expect ramification at 3 and infinity. This

would mean adding
√
−3 as this is unramified and in the narrow genus field (the genus field

where we allow ramification at infinity). This leads to the conclusion that p = x2 − 369y2 if(
369
p

)
= 1 and

(
−3
p

)
= 1. The other class is for the negative p, so −p = x2−ny2 if

(
369
p

)
= 1

and
(
−3
p

)
6= 1. 4

Example 6.3. As a final example we will look at p = x2−154305y2 with 154305 = 92 ·1905 =

92 · 5 · 3 · 127. We need the ring class field of the order Z[
√

154305] which is an order of index

18 in the maximal order Z[1+
√

1905
2

]. The minimal polynomial of α, the generator of the

maximal order, is X2 −X − 476. The Minkowski bound rounded down to the nearest prime

is 19 so there is quite some ground to cover. We first list the splitting behavior of primes up

to 19.

(2) = (2, α + 1)(2, α) = p2q2

(3) = (3, α + 1)2 = p2
3

(5) = (5, α + 2)2 = p2
5

(7) = (7, α)(7, α− 1) = p7q7

(11) = (11)

(13) = (13)

(17) = (17, α)(17, α− 1) = p17q17

(19) = (19, α + 4)(19, α + 14) = p19q19

Now we can find relations to get the class group of the maximal order. As in example 6.1 we

will try some values to get relations in the class group as shown in the table below.

k 20 21 22 23 24 25 26 30 34 35

f(k) −96 −56 −14 30 76 124 174 394 646 714

(k − a) q5
2p3 p3

2p7 q2q7 p2p3p5 q2q19 p2p31 q2p3p29 p4
2p3q7 q2p17p19 p2p3p7q17

Table 1: Simple relations in the class group

Combining 21 and 22 we get that p2
2 is principal just like p7. Using 20 we get that p3 is in the

same class as p2. Then k = 23 tells us that p5 is principal. By k = 24 we have that q19 is in
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the same class as q2 and then by k = 34 we get that p17 is principal. The only question that

remains is whether p2 is principal or of order 2. Since we know that the genus field contains
√

5 it has to be order 2.

We conclude that the class group of the maximal order is generated by p2 and of order 2.

Calculating the form class group of the order O we find that it has cardinality 12 and thus

the narrow class group also has cardinality 12.

With ramification at infinity the genus field also gets
√
−3 and implicitly

√
−127. The

extensions so far are K(
√
−3,
√

5) which make for a degree 4 extension. Since the Galois

group of H+
f /K is of order 12 we still need to find some degree 3 extension. This is added

by the index 9 in our order. As we know that in the local case wild ramification is given

by Eisenstein polynomials we go looking for an Eisenstein polynomial with discriminant

92 · 4 · 1905 by asking our computer to try random eisenstein polynomials of degree 3 and

find X3 − 18X2 + 45X − 15. Adding the zeroes of X3 − 18X2 + 45X − 15,
√

5 and
√
−3 we

get the ring class field. From there finding the splitting conditions and corresponding forms

can be done in the same way as example 1. Finally we find:

p = x2 − 154305y2 ⇔
(

154305

p

)
= 1,

(
−3

p

)
,

(
5

p

)
= 1 and

X3 − 18X2 + 45X − 15 splits completely mod p

We find that this is correct for the primes below 100 with the only solution p = 79 for x =

−737345292069504821812383022930718528 and y = 1877071916797698161106002382689959

there is of course infinitely many x, y for which this is true but this is just one example. It

turns out that the only other prime below 1000 that is represented is 199. This is against the

odds as we would expect 1
24

primes to be represented and there are 168 primes below 1000.

This is however not unthinkable. 4
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