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Abstract 
Using machine learning (ML) classifiers in high-stakes situations, such as financial and health 

decisions, is becoming increasingly popular. Those classifiers can impact the outcome of 

essential matters for individuals and carry a social responsibility. There has been a demonstrated 

potential for classifiers showing disparate treatment for more vulnerable subpopulations. 

However, the classifier pipeline's design process often focuses on optimising prediction 

accuracy, disregarding the potential influence of engineering choices on the fairness outcome. 

This research scrutinizes the influence of ML engineering choices on the fairness outcome of 

different subpopulations. For this, engineering choices and their impact on fairness were 

investigated in five decision points (missing data imputation, scarce outcome intervention, 

algorithm choice, hyperparameter tuning, and threshold setting). Furthermore, a simulated 

society modelling social benefit fraud detection was utilized and tested on various pipeline 

combinations. The pipeline fairness performances were tested under different data challenges 

characterized by scarcely distributed outcomes and non-linear decision boundaries.  

The analysis demonstrated that the selected choices in the decision points influences the fairness 

outcome, often showing the potential to benefit advantaged subpopulations and harm 

disadvantaged subpopulations. The decision point of chosen scarcity intervention portrayed the 

overall highest impact on the fairness outcome.  

Conclusively, it highlights how each step along the ML classifier pipeline should be evaluated 

for its fairness impact, taking a fairness-aware approach that does not solely focus on raising a 

model's accuracy but also incorporates ethical considerations. 

 
Keywords: High-Stakes Algorithmic Decision-Making, Machine Learning Fairness, Bias in 
Machine Learning, Fairness Metrics, Intersectional Fairness, Disparate Impact and Treatment, 
Fairness-Accuracy Trade-off, Pipeline Design Choices, Hyperparameter Tuning and Fairness, 
Scarcity Intervention    
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Chapter 1 – Introduction 

Algorithmic decision-making using machine learning (ML) is becoming increasingly prevalent 

in administrative and commerce applications, such as job applications, parole evaluations and 

loan requests (Pessach & Shmueli, 2022). These applications make the ML algorithms agents 

of high-stakes decisions in citizens' lives (Oneto & Chiappa, 2020). With these algorithms 

increasingly influencing important decisions, it is critical to evaluate that they are non-

discriminatory and objective (Liang et al., 2022).  

Initially, it is often assumed that algorithmic decision-making is inherently fairer and less biased 

than human decision-making as more data is included in evaluating cases and biases associated 

with human cognition are absent (Pessach & Shmueli, 2022). However, past research 

demonstrated that ML algorithms can be prone to biased decisions, which can lead to 

discrimination based on sensitive attributes of an individual, such as gender, ethnicity, and 

disability (Kearns et al., 2019). Amongst many examples, the societal relevance to unfair 

decisions facilitated by ML has been shown by the cooperation of Apple with Goldman Sachs 

for the Apple credit card, assigning lower creditworthiness to women compared to men with 

similar or even lower financial situations (Vigdor, 2019). 

The societal consequences of implementing biased ML classifiers can be expressed in various 

domains. There are possible allocative harms, as the classifications decide who is granted 

opportunities and resources, with biases leading to the structural exclusion of protected groups 

(Barocas et al., 2017). Furthermore, representational harms can be perpetrated, as the 

discriminatory classifications could minimise protected identities over time (Barocas et al., 

2017). ML classifiers can intensify their expressed biased tendencies through a feedback loop, 

as their decisions will likely affect future data collections and iterations of future training 

processes (Chouldechova & Roth, 2018).  

Hence, when applying ML techniques for high-stakes decisions, it is essential to ensure non-

biased and non-discriminatory classification (Liang et al., 2022). Researchers have contributed 

to developing fair ML theory and techniques to address those concerns.  

Main debates in algorithmic fairness 
The focus in fair ML research revolves around three themes. Firstly, it revolves around how 

fairness can be defined and measured in the context of ML, since fairness generally is more 

viewed as a social concept, rather than a mathematical one (Wan et al, 2023). Secondly, how 
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data can be seen as the main source of bias with human error and societal prejudice being 

introduced to it (Van Giffen et al., 2022). Lastly, how fairness interventions can be introduced 

into the pipeline to reduce bias (Caton & Haas, 2024). Those three topics are highly discussed 

in the fair ML research and are hence important to be understood when investigating 

algorithmic bias. 

However, a commonality of those broad topics is that they are not concerned about the usual 

steps in an ML classifier's design process. The themes exclude the possibility of pipeline design 

choices being a source of bias, often treating the pipeline engineering process as value-free and 

mostly concerned with increasing the overall model accuracy.  

Definitions of discrimination and fairness in machine learning 
Legally, discrimination is differentiated between disparate impact and disparate treatment (Wan 

et al., 2023). Disparate treatment is defined as an explicit discrimination, meaning that the 

information of an individual belonging to an underrepresented group is deliberately used to 

treat them differently (Khodadadian et. al, 2021). Disparate impact, however, refers to implicit 

discrimination, where the information of an individual belonging to an underrepresented group 

is not used for decision-making, but they are still treated unfairly (Khodadadian et. al, 2021). 

This is mainly caused by proxy attributes, which are other features that hint at an individual’s 

group membership but might not be easily removed since they contain information vital for 

accurate classification (Khodadadian et. al, 2021). 

In ML, the population prone to discrimination is defined by sensitive attributes such as gender, 

ethnicity, and disability (Kearns et al., 2019). By this, models can be evaluated on their 

treatment towards binary subpopulations such as men/women, ethnic majority/minority, and 

non-disabled/disabled. However, only evaluating binary subgroups might not do justice to the 

complexity of fine-grained protected groups within society. Multiple sensitive attributes 

could be used to generate intersections of protected groups to, for example, investigate whether 

the classifier might not be biased towards white women but exhibits bias towards Black and 

disabled women (Kearns et al., 2019). However, a vast body of research on fair ML only 

considers binary populations, disregarding the societal structure of various subpopulations that 

might be advantaged or disadvantaged to different extents (Hutiri et al., 2023; Tubella et al., 

2022; Cruz et al., 2020). Hence, considering the intersectional impact on fairness could give 

novel insight into the more differentiated impact of ML challenges on fairness.  
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In the context of fair ML algorithms, different fairness notions are broadly categorized into 

individual and group fairness. Individual fairness is the idea of individuals with similar feature 

values receive similar classifications regardless of their group membership defined by sensitive 

attributes (Morina et al., 2019). This primarily reflects the idea of disparate treatment by not 

using sensitive attributes and training an algorithm that does not differentiate based on these 

attributes, resulting in non-discriminatory results (Wan et al., 2023). A usual concern with 

individual fairness definitions is the disregard of proxy variables that the algorithm could use 

to identify patterns of group belongings and hence utilize to derive unfair classifications for 

individuals of protected groups (Khodadadian et al., 2021). For example, using education as a 

feature might be of disadvantage to a minority group in a society where the ethnic majority 

receives better education than the ethnic minority.  

Group fairness suggests that protected and unprotected groups should have comparable 

outcomes, which are defined on different fairness metrics, with one of them being demographic 

parity, which implies having an equal probability of receiving a favourable outcome (Verma & 

Rubin, 2018). For example, when training a classifier to decide whether to grant a credit, the 

probability of being granted the credit should be similar between males and females. However, 

there are also many other suggested alternative measures to assess the fairness of a classifier 

and compare the treatment of different subpopulations. (Wan et al., 2023). 

It is important to note that different definitions of fairness and measures represent different 

ideas of fairness. The choice of which measure to use is context-dependent and still open to the 

engineer’s choice. Much research is being done to examine the development of fairness metrics, 

with more than 20 well-developed and discussed measures (Verma & Rubin, 2018). However, 

the fairness measures are not mutually exclusive; while a classifier might satisfy individual 

fairness, it might not satisfy group fairness (Wan et al., 2023). How fairness is supposed to be 

evaluated is still a topic of debate (Srivastava et al., 2019). In conclusion, fairness definitions 

in the context of ML are still debated and which definition to utilize in which context has yet 

to be unified.  

Algorithmic bias caused by bias in the data 
The second main focus of fair ML research concerns biased data, as ML models can be sensitive 

to bias in the data which can then potentially influence its performance and fairness. Hence, 

when training the model, it is vital to consider how representative the data is of the inspected 

population (Van Giffen et al., 2022). 
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One reason is the historical bias inherent to the training data, which stems from the data 

generation process and reflects the human bias towards protected groups. The algorithm will 

correctly mirror the pattern of the training data; however, the classification also carries the 

social bias towards the protected groups automatically and systematically (Chouldechova & 

Roth, 2018). In data collection and processing, systematic bias could be introduced, affecting 

the fairness of the predicted outcomes (Chadhari et al., 2022). Often data is approached as the 

sole source for biased outcomes and once the data is debiased this would inevitably lead to a 

fair algorithm, with the actual ML pipeline not asserting much influence on the resulting 

fairness (Rohani, 2021; Hutiri et al., 2023). 

Particularly for unbalanced datasets, the bias can be exuberant, especially when the data 

contains attributes that hold discriminative information due to underlying factors 

(Davariaschtiyani et al., 2024; Chaudhari et al., 2022). Hence, this idea is based on the claim 

that social or historical biases are already present in the data before the utilization of an ML 

classifier and reflects the existing societal bias towards subgroups of the population (Van Giffen 

et al., 2022). 

Fairness interventions in machine learning 
Lastly, researchers on fairness interventions are developing pre-, in-, and post-processing 

methods, depending on where they are placed within the machine learning pipeline (Caton & 

Haas, 2024).  

Pre-processing methods adjust the data before training the classifier to remove existing 

(historical) bias and extract information relevant for accurate classifications (Morina et al., 

2019). Those methods build on the idea of biased data and aim to create a fairer dataset by 

addressing the distribution in relation to sensitive attributes (Badran et al., 2022).  

In-processing methods modify the classifier’s training process, training it for accuracy and 

fairness simultaneously, which incorporates the fairness assumption directly into the classifier's 

training (Morina et al., 2019). One method is adversarial debiasing, which aims to maximize 

the classifier’s accuracy while limiting its ability to correctly guess protected attributes (Van 

Giffen et al., 2022). These techniques aim to train intrinsically fair models by making it an 

objective of the training process (Wan et al., 2023).  

Post-processing methods utilize the outcomes generated from a biased classifier and adjust them 

towards the fairness ideal by assigning adverse outcomes to the unprotected groups and positive 
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outcomes to the protected groups when cases are located close to the decision boundary 

(Chakraborty et al., 2019). Hence, generated outcomes are transformed to decrease the 

classifier's discriminatory nature (Morina et al., 2019). These methods are popular as they 

improve fairness without interfering with the usual training process, which is especially useful 

when applying black-box algorithms (Nguyen et al., 2021). 

Many researchers in fair ML have put a strong effort into developing various fairness 

interventions to address biases in ML predictions. However, while fairness intentions are 

valuable, they are introduced after other technical choices have been made, leaving open the 

possibility that other choices in the ML pipeline could have already influenced the fairness of 

the outcome.  

Unseen influences of engineering choices 
While fairness definitions and interventions have recently advanced, little attention has been 

paid to how ML engineering choices could influence a model's fairness. The introduced main 

aspects of fair ML research cover a broad area of ways to identify and mitigate bias. However, 

all three categories leave out the potential influence of typical engineering choices on the 

fairness outcome. However, this gives blindness towards the idea that an ML pipeline's actual 

design process can introduce bias or offer opportunities to mitigate bias. These decisions are 

usually treated as value-free and are not further regarded in their impact on the fairness of the 

classifier. This raises the need to identify further and investigate a classifier's standard 

components and evaluate those towards fairness outcomes.  

For example, the chosen data imputation is often overlooked in terms of fairness. However, it 

could have an impact on algorithmic fairness. Patterns in missing data often indicate specific 

subpopulations, and certain imputation methods could potentially construct errors across those 

affected groups (Barret et al., 2022). Even the choice of fairness intervention itself could have 

ethical implications, as Tubella et al. (2022) argues that already the decision between in- and 

post-processing methods shows different impact on individual treatment. Furthermore, model 

hyperparameter tuning shows an impact on the fairness-accuracy trade-off in the model 

predictions (Cruz et al., 2020) showing that the connection between fairness and predictive 

performance is not parallel (Klaassen et al, 2024). This suggest that seemingly technical choices 

need to be considered on their fairness impact rather than just assuming that they are value-free.  

In conclusion, there are many different decision points within an ML pipeline that could 

potentially influence the fairness of the resulting classifier. Hence, looking beyond the effect of 
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applied fairness interventions and metrices might be necessary to pin down detailed sources of 

biases within the pipeline. It is vital to explore whether, for example, different missing data 

imputation methods, could affect the outcome of individuals of different subpopulations. 

Investigating the impact of engineering choices on fairness 
This research explores the often-overlooked impact of engineering choices in ML pipelines on 

fairness across intersectional subpopulations, distinguishing itself from existing studies that 

primarily focus on fairness interventions and metrics. Traditionally, when optimizing a model 

purely based on accuracy, it might fail to do justice to fair treatment, especially for critical 

choices such as missing data imputation and under-sampling rare events, which could induce 

bias that is amplified for specific subpopulations. This raises the research question of this study: 

Are the engineering choices involved in a typical ML pipeline (missing data imputation, scarce 

outcome intervention, algorithm choice, hyperparameter tuning, threshold setting) truly value-

free? This will be investigated with an informed exploration to show which choices might have 

the most considerable impact. It is hypothesized that engineering choices typically involved in 

an ML pipeline make a difference in the diagnosis of fairness problems across various 

subpopulations.  

The focus is placed on high-stakes binary decisions, where biases in ML could lead to 

systematic disadvantage for protected groups. Specifically, the data will be simulated in the 

setting of social benefit fraud detection to exemplify the direct application of the methods.  

In more detail, by incorporating intersectional analysis, investigating the effect of scarce 

outcomes, and testing both linear and non-linear decision boundaries, the research aims to 

provide a comprehensive understanding of how various decision points in the ML pipeline can 

affect fairness. The research is aiming to contribute towards the expanding conversation on 

algorithmic fairness, ultimately offering new insight into how commonly used engineering 

practices can exacerbate or mitigate bias. Broadly, it challenges the assumption that standard 

ML engineering choices such as imputation and model choice are value-free, aiming to 

investigate further those often-overlooked components towards their impact on model fairness. 

Overall, this study aims to investigate how different engineering choices could be a potential 

source of bias but could also provide an opportunity to mitigate these biases when appropriately 

handled. Conclusively, findings in this domain could inform data engineering practice and 

fairness guidelines, contributing to future ML systems that are less biased across different 

societal groups.  
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Chapter 2 – Theory 

ML classification and prediction models are increasingly applied across various fields, offering 

an efficient tool for automated decision-making (Meda & Bhogapathi, 2022; Shukla, 2020). 

ML allows for processing complex data and identifying patterns to make predictions for unseen 

cases. However, ML pipelines often increase in complexity, which often comes at the cost of 

transparency (Heidemann et al., 2024). However, overall lack of transparency in the pipeline 

choices and their effect on the outcome could lead to concerns about fairness and biases. This 

often limits the possibility to explain a decision to an affected individual. Hence, this can be 

especially problematic in high-stakes scenarios, such as decision-making in the public sector, 

where accountability is crucial (Veale, 2017). When designing an ML classifier, there is a large 

inventory of possible choices that could express different changes in the model's fairness 

outcome. The ML pipeline intends to give a sequential framework to those choices to help 

organize decision points in the development process. This can help streamline the decision-

making process and enhance the efficiency of the ML project (Katam et al., 2024).  

The pipeline process organizes challenges an engineer faces in the development process, 

sequentially integrating components such as data pre-processing, model selection and 

hyperparameter tuning, allowing a holistic overview of the development process (Gomaa et al., 

2022). The pipeline is mostly used as a tool to increase the performance of the developed model 

(Forescu et al., 2020). However, the decision points in this research are not primarily evaluated 

on enhancing the model performance, but on how they impact the resulting fairness. The overall 

aim is to consider each decision point and evaluate how much potential it holds to influence the 

resulting fairness of the model. 

A Brief theory of machine learning classifier pipeline 
Machine learning models build upon a pipeline that follows a general structure for any 

classification problem. Each pipeline follows a series of steps from data collection to model 

deployment, including various operational choices to ensure optimal fit to the data and are often 

optimized in isolation (Kunft et al., 2019).  

The numerous options available could impact the predictive performance and fairness of the 

final model. Figure 1 shows the general flow of a classifier pipeline following steps from data 

collection to model implementation, with optional modules for fairness intervention methods. 

It demonstrated inevitable choices that arise when developing a classifier pipeline, with each 

decision point offering various options, of which the most suitable needs to be identified. 
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Figure 1. 
General structure of a ML classifier pipeline 

 
Firstly, data pre-processing and feature engineering, indicated in the first three columns of 

Figure 1, have the potential to enhance but also to diminish the quality of the data, which will 

affect the classifiers' ability to identify the underlying patterns correctly (Bilal et al., 2022). 

Hence, it is vital to carefully pre-process the data to enable the model to perform well (Bilal et 

al., 2022). However, for this current research, the simulated data that will enter the pipeline is 

assumed to be perfectly representative of the population. This representativeness is vital to 

avoid common discussions around data debiasing in ML and place the focus solely on 

engineering choices.  

Additionally, well-considered feature selection can help to decrease the model's complexity to 

the most relevant variables while maintaining high accuracy and reducing computational efforts 

(Chemmakha et al., 2022). Furthermore, it is advised to consider fairness-aware feature 

selection to avoid using proxy variables that might cause bias towards subpopulations 

(Khodadadian et al., 2021).  

Another vital step for pre-processing is the imputation of missing values. The engineer must be 

aware that implementing missing data does not contribute to any further bias within the data 

(Pessach & Shmueli et al., 2022; Jeong et al., 2022). The choice of imputation method can also 

affect the overall model's accuracy (Jadhav et al., 2019). Furthermore, in this step of the 

pipeline, there is the opportunity to incorporate pre-processing fairness interventions, which 

aim at debiasing the existing data from potential social bias (Morine et al., 2019). 
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Secondly, the data is partitioned into training and validation sets, a common practice to identify 

the best-working model options later, as indicated by the fourth column in Figure 1. However, 

this decision can affect the overall model accuracy with different proportions between the splits 

potentially influencing the model's performance and ability to estimate the model's performance 

(Birba, 2020). Furthermore, the split should consider the data's underlying distribution, and both 

splits should be equally representative of the underlying subpopulation, which is especially 

important when they are not evenly distributed (Salazar et al., 2022). For example, if a 

disadvantaged subpopulation is underrepresented in the test set, this could potentially inflate 

fairness metrics, and disparate treatment might go undetected (Salazar et al., 2022).  

The next step is algorithm choice: an ML algorithm must be chosen for the data problem, as 

well as its complexity, to fit the data well enough but still generalize the outcome to unseen test 

cases and not be too computationally expensive, as indicated by the fifth column in Figure 1. 

With different ML algorithms, there is a chance to introduce algorithmic bias, which can lead 

to systematic discrimination of protected groups (Van Giffen et al., 2022). In general, 

algorithms replicate patterns detected within most data points in the training data and derive 

classifications based on this majority outcome. However, this can be a source of discrimination 

for minority subpopulations within the data (Barsotti & Koçer, 2022; Pessach & Shmueli, 

2022). Since the main defined algorithmic goal is to minimize overall prediction errors, the 

majority groups will benefit over minority groups within their classifications as the algorithm 

cannot optimally fit multiple groups simultaneously (Pessach & Shmueli, 2022). 

Furthermore, choices such as the tuning of hyperparameters could affect the fairness of the 

classifications derived from the algorithm (Tizpaz-Niari et al., 2022). This decision point is 

indicated in the sixth column in Figure 1. Overall, hyperparameter tuning can show the potential 

to amplify biases in disadvantaged subpopulations. However, tuning can also lead to fairer 

treatment while maintaining high accuracy (Kumar et al., 2022). Regardless, fairness-aware 

hyperparameter tuning remains an often-overlooked approach when developing an ML 

classifier (Tizpaz-Niari et al., 2022). 

Lastly, when using the trained model to derive predictions for unseen cases, the engineer needs 

to set a decision boundary of what cases are accepted and which ones are rejected. The threshold 

setting can play a crucial role in the model's performance and fairness outcome (Yaseliani et 

al., 2024) and is indicated by the last column in Figure 1. By this, the threshold setting can show 

a trade-off between false-negative, false-positive predictions and accuracy (Birchha & Nigam, 
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2023). While fairness can be improved by adjusted threshold setting, this could be a trade-off 

towards the overall model performance (Radovanovic et al., 2021). In this process, post-

processing methods can be applied to the cases close to the set decision boundary (Chakraborty 

et al., 2019). The threshold setting is an important decision, potentially negotiating between 

model performance and fairness.  

In conclusion, Figure 1 gives a brief outline on the common decisions to make when designing 

an ML classifier, with each step offering many different methods to employ that potentially can 

influence the overall model's performance and fairness. Which choices are the most favorable 

depends on the data characteristics and the overall aim of the classifier; however, there are also 

generally more frequently applied choices in the industry that are used more often than others. 

Common data characteristics 
With the usual focus on historical bias in data as a topic of fair ML research, other challenges 

that a dataset can pose to the fairness implications might often remain disregarded. However, 

even with a perfectly representative dataset, there are still possible challenges for the ML 

pipeline in dealing with specific characteristics that might be present. These are reoccurring 

data characteristics that pose challenges to the development of a reliable ML classifier. Missing 

data, non-linearity and unbalanced outcomes could impact a classifier's performance and 

fairness and impose unique challenges on a pipeline. In realistic and applied settings, prevalent 

issues arise from the data and need to be addressed. 

Firstly, missing data could be challenging depending on underlying patterns of missingness, as 

different subpopulations may be differently affected by missing values. Not carefully 

considered imputation methods could amplify biases towards subpopulation and impact the 

model's overall performance (Calmon et al., 2023). Missing data imputation gives another 

potential source of bias as missing data is often not missing completely at random, especially 

when it relates to humans. For instance, lower-income individuals might avoid answering 

income questions; minorities could lack responses because of language barriers, and disabled 

individuals might find forms not accessible enough to provide answers (Jeong et al., 2022). 

Generally, there are three types of missing data, beginning with missing entirely at random, 

implying that the missing value is external to other potential factors (García-Laencina et al., 

2010). Secondly, missing at random implies that the missingness is traceable to other observed 

values (García-Laencina et al., 2010). Lastly, data can be missing not at randomly, where the 

missingness relates to unobserved factors (García-Laencina et al., 2010). The pattern of 
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missingness could imply important information that could be missed by choosing an unsuitable 

imputation method and hence significantly affect the fairness and accuracy of the resulting 

classifier, especially when the data is missing not at random (Mansoor et al., 2022). 

Furthermore, data can portray different complexity with linear or non-linear separability of the 

features to the target variable. A linear decision boundary separates the binary classification by 

a hyperplane, while non-linear decision boundaries take the shape of a curved and irregular 

surface (Vaidyanathan et al., 2008). Different models and model choices might handle the 

increasing data complexity to different extents. Linear data can be effectively addressed by 

choices that assume linearity in the data and capture relationships sufficiently and more simply. 

However, non-linear approaches are more suitable for data with complex relationships. Hence, 

model decisions must be made considering the underlying data characteristics, as this can help 

increase both performance and fairness (Haghighat et al., 2024; Sun et al., 2024). Additionally, 

some algorithms might be more prone to give biased predictions than others, impacting the 

fairness of the resulting classifier differently. As Luengo et al. (2023) identified, models trained 

on the same data produce varyingly biased predictions for different subpopulations.  

Lastly, the scarce distribution of the outcome variable can impact the model's fairness and 

overall performance (Badar et al., 2024). In the data circumstances examined in this study, the 

positive classification (1), which indicated committed social benefit fraud, overweighs the 

negative classification (0), which represents no committed fraud to different extends. This is a 

realistic condition in many settings, as some outcomes are rarer than others. For example, it can 

be assumed that fraud is only committed by a small proportion of the population. However, 

such a setting poses a challenge to the pipeline, as ML algorithms usually tend to minimize the 

mean loss on a single metric, which often neglects the scarce outcome, potentially impacting 

predictive performance and fairness (Yan et al., 2022). Various methods have been proposed to 

deal with data characteristics, including imbalanced outcomes.  

In conclusion, when faced with the decision points and their options, the practitioner needs to 

consider the data characteristics, including missing data, non-linearity, and distribution of the 

outcome variable. The chosen methods should adequately address challenges that arise from 

those characteristics and suit the context of the data. 
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Choices within the machine learning pipeline and their potential effect on 
fairness 
The previously introduced decision points and their various options within give an explosively 

large map of possible combinations that could influence model performance and fairness in 

each point. This research aims to point out which decision points may show the largest potential 

in fairness outcomes and hence focuses on only a selected number of decision points and 

options within. With this strategy, the explored space is narrowed down for easier evaluation. 

The decision on what contingencies to explore was based on how commonly those methods 

find application in the industry for binary classification problems, to show how already 

frequently utilized approaches imprint the fairness of the resulting classifier (Chattopadhyay et 

al., 2021; Liao, 2023; Hong & Lynn, 2020, Viloria et al., 2020).  

Figure 2 shows the assessed classifier pipeline with the explored five decision points, the 

colours indicated in the analysis setup block correspond to the colour of the decision point 

where this setup changes the decision point within the pipeline. Mainly, the study focuses on 

the effect of missing data imputation, unbalanced outcome intervention, choice of algorithm, 

hyperparameter tuning and the threshold setting for fairness of the model, which have been 

identified to be the main choices within a pipeline (Buczac & Guven, 2015; Van Giffen et al. 

2022). It seeks to identify which of those decision points offer the potential to affect the 

resulting fairness outcomes. For this, in each decision point, two or three often applied methods 

are chosen to be further explored in terms of their different effects on how biased their 

predictions might be towards pre-defined subpopulations. 

Figure 2. 
ML classifier pipeline with explored decision points 
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Missing data imputation 
The first investigated decision point is data imputation, as indicated on the left of Figure 2. 

When missing values are present in the data, a method to address these needs to be chosen. This 

choice of imputation could impact both model performance and fairness. It has been shown that 

different imputation methods could influence performance and fairness to different extents 

(Nezami et al., 2024). Nezami et al. (2024) found that some imputation methods introduce more 

bias, especially when the dataset already exhibits societal biases. Furthermore, imputation 

methods can improve a model’s accuracy when chosen correctly (Poulus & Valle, 2018).  

Two commonly used approaches are Random Forest-based and simple mean imputation (Hong 

& Lynn, 2020). Firstly, the Random Forest-based imputation, particularly MissForest, has 

already demonstrated to be better performing compared to simple mean imputation (Buczak et 

al., 2023). Its strength is mostly in how it can effectively handle complex data with interactions 

and non-linear relationships, making it a good choice for diverse data characteristics (Bühlmann 

& Stekhoven, 2011). MissForest imputation tends to outperform other imputation methods 

when applied to complex data (Stekhoven & Bühlmann, 2011). However, simple mean 

imputation is still a valid method, particularly for datasets with many features containing 

missing data (Buczak et al., 2023). Overall, this method is computationally more inexpensive 

than other methods, such as MissForest, which makes it less time-consuming, especially for 

larger datasets (Hong et al., 2020).  

Whether these two imputation methods affect the fairness outcome differently should be 

explored in more detail. However, they are the first two evaluated choices on the contingency 

map of the ML pipeline. 

Scarce outcome intervention 
There is the common challenge of scarce datasets in machine learning, and various interventions 

have been developed to address this issue, with random over- and under-sampling being two 

frequently used approaches (Viloria et al., 2020). This makes this issue the second decision 

point to be further evaluated, indicated as a “scarce outcome intervention” in Figure 2. Scarce 

outcomes are characterized by a small proportion of positive classifications in the target 

variable (here, 1, “social benefit fraud committed”) and a large proportion of negative 

classifications (here, 0, “no fraud committed”). 

Random over- and under-sampling methods have positively impacted model fairness and 

accuracy and are frequently applied methods (Viloria et al., 2020). Briefly, random over-
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sampling resamples the minority outcome to the point where it is balanced with the majority 

outcome. In contrast, random under-sampling reduces the majority outcome to have the same 

frequency as the minority outcome. In application, random under-sampling has been 

demonstrated to improve the treatment of minority subpopulations without reducing the overall 

accuracy of the model (Naboureh et al., 2020). However, for more complex data random under-

sampling faces the issue of potentially removing too much information from the majority class, 

especially around the decision boundary (Arslan et al., 2022). Hence, random under-sampling 

might struggle with more complex scenarios (Chennuru & Timmappareddy, 2017), especially 

when the data is noisy or includes a class overlap (Grina et al., 2021). The more beneficial 

method is context-dependent; however, in some areas, any resampling intervention shows 

improvement compared to no applied adjustment method; however, no method outperformed 

the others (Jacobucci & Li, 2022). 

Some methods introduce synthetically generated instances of the minority classification, such 

as SMOTE (Synthetic Minority Oversampling Technique). SMOTE is shown to be very 

effective in increasing the overall predictive performance of the model (Bal & Kayaalp, 2023). 

However, in the context of high-stakes decision-making on human individuals it is essential to 

note that resampling the data brings great responsibility, and grounding classification on 

artificially generated data might be challenging to justify towards affected individuals because 

of rising concerns about data integrity and authenticity (Neves et al., 2022). This led to the 

decision to focus on the effect of using random over- and under-sampling compared to not 

applying any intervention to identify the impact on fairness. 

Choice of machine learning algorithm 
The third investigated decision point is indicated as “Machine Learning Algorithm” in Figure 

2. For a classification problem, many different ML algorithms are available; however, for 

simplification, this study focuses on logistic regression, Random Forest and XGBoost (Extreme 

Gradient Boosting) and their impact on fairness. The algorithms were chosen based on their 

frequent utilization for classification problems (Chattopadhyay et al., 2021; Liao, 2023). 

Firstly, logistic regression is a commonly used model. Grounded as a traditional statistical 

method, it offers a simple and easily interpretable approach to a classification problem (Li & 

Chen, 2020). It can be a robust model for linearly separable data; however, its performance 

could decrease for more complex and non-linear relationships (Li & Chen, 2020). Additionally, 
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there is some evidence of logistic regression potentially biasing minority groups within the data, 

giving less accurate predictions for those groups (Do et al., 2022).  

Random Forest is an ensemble method combining multiple weak learners in the form of 

decision trees, increasing the overall predictive performance and susceptibility to more complex 

relationships within the data. More specifically, it is a bagging method, training multiple weak 

learners independently from each other. Depending on the data, Random Forest is one of the 

most robust methods to apply, with the capability of outperforming boosting methods (such as 

XGBoost, see below) in accuracy (Nagaraj & Ghosh, 2024). However, it is essential to note 

that the algorithm choice needs to be tailored to the currently assessed data, with Random Forest 

and XGBoost often outperforming other ML methods (Zhang et al., 2020).  

XGBoost is a more advanced ensemble method that combines multiple weak learners, similar 

to Random Forest. However, this is a boosting method, meaning that the weak learners are built 

sequentially, with the subsequent one learning from the errors of the previous one. XGBoost 

often outperforms other ML algorithms in complex data situations but is also more prone to 

overfitting (Mahesh et al., 2023). However, both Random Forest and XGBoost show the 

potential to underfit minority classes within the data, potentially leading to systematic bias 

(Ugirumurere et al., 2024). 

Each of the three algorithms has its justification within the industry, with XGBoost and Random 

Forest outperforming each other in accuracy for different contexts (Wu et al., 2024). 

Furthermore, due to its simplicity and explainability, logistic regression is still shown to be one 

of the best-performing baseline classifiers (Li & Chen, 2020). Hence, those three options are 

chosen for the evaluation decision point to further identify potential changes in fairness 

outcomes.  

Tuning of the machine learning algorithm 
Hyperparameter tuning is the third decision point within the evaluated pipeline, indicated in 

Figure 2. Hyperparameter tuning can impact a model’s accuracy and fairness, with changes on 

single hyperparameters already showing potential to alter predictive performance and fairness 

(McCarthy & Narayanan, 2023). 

Often the focus of hyperparameter tuning is to increase the model’s accuracy which disregards 

its potential to affect the fairness of predicted classifications. By this, Cruz et al. (2020) 

established that with some small decrease in predictive accuracy, the fairness of the model can 
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be significantly increased, showing the importance of fairness-aware hyperparameter 

optimization and the consideration of the fairness-accuracy trade-off. Nevertheless, it is 

important to note that the hyperparameters are model-specific with different tuning aspects for 

different algorithms. Hence, the fairness implications of hyperparameter tuning might be 

different depending on the utilized ML algorithm. 

This shows that it is recommendable to not only consider the traditional performance metrics 

but also incorporate fairness assessments into the process. This approach could help to increase 

the model performance while also avoiding possible negative effects for disadvantaged 

subpopulations (McCarthy & Narayanan, 2023). 

Threshold setting for predictions 
The threshold setting is the last engineering choice considered within the assessed pipeline, 

indicated in the “model prediction” in Figure 2. Threshold setting plays a crucial role in 

balancing accuracy and fairness. A threshold of 0.5 is commonly used by default; however, 

adjustments can be made context-dependently, impacting performance and fairness of the 

outcome. In some applications, the risks connected to false positive and false negative outcomes 

may require strong adjustments to the default value, by which threshold above 0.9 (avoiding 

false negative) or below 0.1 (avoiding false positive) could be a plausible choice.  

The threshold setting could potentially impact different subpopulations leading to disparate 

impacts. It can help to balance towards a fairness definition, with lower thresholds decreasing 

the number of false positive classifications but also increasing false negative predictions and 

vice versa for higher thresholds. A survey has revealed that practitioners tend to be more 

concerned about avoiding false negatives than false positives (Cappelen et al., 2018). However, 

the threshold can be approached adaptively to the situation, depending on whether higher false 

negative rate (FNR) or false positive rate (FPR) could have an adverse impact.  

Generally, in terms of fairness, an overall lower threshold has been shown to decrease the 

impact of discrimination for data with present historic bias (Aggarwal et al., 2019). However, 

in other domains, such as medical risk assessment, a lower threshold might be advisable as the 

damage for false negatives outweighs the damage of false positives (Kodama et al., 2022). In 

conclusion, the threshold should be based on the requirements of the model, the costs associated 

with different types of errors and the stakeholders' preferences (Bondugula et al., 2021). 

Regarding fairness consideration, the threshold might affect different subpopulations 

differently, which needs further investigation. 
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Conclusion 
Considering all those decision points in an ML classifier pipeline with all those different 

options, this research argues that fairness in an ML model should not be considered as an 

afterthought but rather be approached critically in each step of designing the pipeline. By 

understanding how each decision point shows the potential to affect subpopulations differently 

and the ability to upsurge but also mitigate bias, the practitioner could better balance between 

predictive performance and justifiable outcomes. 
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Chapter 3 – Methodology 

The overall purpose of the study is to scrutinize how engineering choices can show potential to 

enhance and mitigate systematic bias in a classifier and encourage fairness considerations 

during the pipeline design process. This is important since automated decision-making using 

ML has become ever-more prevalent for high-stake decisions on individuals (Pessach & 

Shmueli, 2022). This study aims to replace the focus on different engineering choices and avoid 

the usual attention of fairness research concerning definitions of fairness and data biases. 

Hence, this research starts by simulating data to inspect the impact of engineering choices. The 

simulated datasets are assumed to be fully representative of the population, not showing any 

indications of social bias or social prejudice elicited by the data collection process. Thus, it is 

assumed that the simulated data is fully representative of the current social reality, aligning with 

present inequalities and privileges connected to sensitive attributes of gender, ethnicity and 

disability (Betts & Null, 2011; Rana, 2024; Gee, 2018; Kim, 2022; Manzoor, 2023).  

By this, the engineering choices are assessed in response to data that resamples the social reality 

and hence bias inherent to the data rather than data caused by poor data sampling. The data is 

simulated under different underlying assumptions about linearity and scarcity of the outcome. 

Since those data characteristics are frequent challenges an ML practitioner faces when 

designing a pipeline, those are chosen for the investigation. Non-linear decision boundaries are 

a frequent challenge that needs to be addressed by engineering choices that do not assume 

underlying linearity (Li & Chen, 2020). Furthermore, scarce outcomes are frequent for 

practitioners, where the target label is naturally less frequently present (Viloria et al., 2020).   

The setting of the data simulation is concerned with social benefit fraud detection, considering 

the social reality of gender, ethnicity, and disability, further impacting the predictive variables 

and reflecting on an individual committing fraud. The binary-sensitive attributes are considered 

in their intersectionality, showing that different combinations of attributes lead to fine-grained 

subpopulations that might be more prone to lower social status. Different algorithm choices are 

tested with the generated and fully representative population to determine how they affect pre-

defined fairness measures. Since the chosen fairness measure is still a choice that has yet to be 

unified by research, the choice of an indicator should not be taken quickly. There are over 20 

defined fairness metrics, with no unified context-related suggestions on which one should be 

set (Verma & Rubin, 2018). Since this issue is already a well-discussed topic in fair ML, this 

project aims to deliberately avoid the metric choice debate (Verma & Rubin, 2018). Hence, for 
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this research, two fairness measures are fixed (false positive rate and false negative rate) to 

evaluate the impact of engineering choices, and the argument of which fairness metric might 

be the best for the researched setting is simplified. The two fairness measures are often used as 

critical predictors to indicate the prediction of undesired outcomes, both for the contracting 

authority as well as the individual that is evaluated by the ML pipeline (Wang et al., 2023) 

Overall, five engineering decision points will be investigated: missing data imputation, scarce 

outcome intervention, choice of algorithm, hyperparameter tuning and threshold setting. Each 

of those decision points is evaluated based on their impact on the resulting fairness of the model 

to show which point offers the most potential to exuberate or mitigate the systematic bias of an 

ML classifier. This will offer insight into how considerations during the pipeline engineering 

process can already contribute to fair treatment of the evaluated individuals. In the following 

part of the chapter, the data simulation process will be explained, and then the data analysis 

process will be detailed in a fictional and simplified data situation.  

Simulating the population 
The simulation is designed to generate three protected attributes and seven features, of which 

three are grounded in real-world resemblance (income, education, house ownership), and four 

are a linear or non-linear combination of the prior. The data simulation follows a repetitive flow 

detailed in Figure 3, where specific steps are adjusted to accommodate scarce outcomes and 

non-linear characteristics while maintaining other assumptions about the population for each 

data set.   

For the analysis, four different populations are simulated in R (code detailed in Appendix A), 

corresponding to the high-stakes environment of social security benefit fraud. This will 

showcase how decision points vary in their effect on fairness depending on the underlying data 

characteristics typically found within the industry. Table 1 shows the characteristics of each of 

the four datasets, assembled of either a linear or non-linear decision boundary for the outcome 

and a balanced or unbalanced distribution. This will later allow to extract the effect of non-

linearity and unbalanced outcomes on the fairness of the resulting model. Overall, non-linearity 

and scarcity of outcome are two main challenges that engineers often face and, hence, should 

be further considered in terms of fairness implications when evaluating engineering choices (Li 

& Chen, 2020; Viloria et al., 2020).  
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Table 1. 
Overview of the characteristics of the four tested datasets 
 Decision Boundary 

Distribution  

of outcome 

Linear, 

Non-scarce outcome 

Non-linear, 

Non-scarce outcome 

Linear, 

Scarce outcome 

Non-linear, 

Scarce outcome 
 
The four datasets are simulated in a data factory, which is a common simulations structure 

across all data situations and  allows for adjustments in the shape of the decision boundary and 

the distribution of the target variable. The other factory settings remain constant throughout the 

simulation to ensure that the datasets only differentiate on the targeted data characteristics. The 

fixed factory settings are adjusted to ensure that the data models a realistic society, which 

anchors the tested data to reality. Hence, the chosen variables resemble real-world 

circumstances and relate to each other by realistically chosen probabilities, constants and 

coefficients (Betts & Null, 2011; Rana, 2024; Gee, 2018; Kim, 2022; Manzoor, 2023). Figure 

3 outlines the connections between the sensitive attributes, features and outcome variables. The 

parameter setup in Figure 3 shows the adjusted parameters in the data simulations and are 

shown correspondently in the variables that they are influencing. The yellow arrows show 

which variables are directly influenced by the protected attributes, indicating that the influence 

of the protected attributes is indirect towards the fraud outcome.   

 
Figure 3. 
Outline of the data simulation process 
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Protected Attributes 
The simulation starts with generating the three protected binary attributes that mimic the 

distribution found in a real society. The variables are distributed with fixed probabilities as 

follows: 

• Gender: Let G ∈ {0,1}, where G = 0 represents male and G = 1 represents female. The 

probability of being female is P(G = 1) = 0.5. 
 

• Ethnicity: Let E ∈ {0,1}, where E = 0 represents the majority and E = 1 represents the 

minority. P(E = 1) = 0.35. 
 

• Disability: Let D ∈ {0,1}, where D = 0 represents no disability and D = 1 represents 

disability. P(D = 1) = 0.07. 

 

The combination of protected attributes leads to intersectionality that creates a total of eight 

different subpopulations that are differently disadvantaged depending on how many 

underprivileged attributes they are made of. Generally, a subpopulation can take on different 

levels of disadvantage, with an additive effect of sensitive attributes, leading to the most 

advantaged group (male X majority X non-disabled) and the most disadvantaged group (female 

X minority X disabled). Table 2 details the cross-sectional nature of the sensitive attributes and 

their different levels of vulnerability, showing the most advantaged group in green and the most 

disadvantaged group in red.  

 

Table 2. 
Cross-sectional subpopulations and their vulnerability levels  

Gender Ethnicity Disability 
Level of 

Vulnerability 

Male Majority Non-disabled 0 

Male Majority Disabled 1 

Male Minority Non-disabled 1 

Male Minority Disabled 2 

Female Majority Non-disabled 1 

Female Majority Disabled 2 

Female Minority Non-disabled 2 

Female Minority Disabled 3 
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Education Variable 
To express an individual’s level of education, a categorical variable with six levels is 

introduced, which is denoted as shown in Table 3. The level of education is expressed 

numerically, assuming an ordering of education levels and also simplifying but still realistically 

reflecting the magnitude between education levels.  

Table 3. 
Numeric expression of the six education levels 
Level of Education Numeric Expression 

Lower than High School 0 

High School 1 

Some College 2 

Bachelor’s 3 

Master’s 4 

Doctorate 5 
 
The probability for an individual to reach a particular education level k (where k ∈ 

{0,1,2,3,4,5}) is influenced by their gender G, ethnicity E, and disability D, expressed as:  

 𝑃(𝐸𝑑𝑢 = 𝑘|𝐺, 𝐸, 𝐷) (1) 

The educational level generation follows some societal assumptions to introduce variance that 

could match a real society. Those assumptions mainly follow: 

• Women tend to achieve higher educational levels than men when controlling for 

ethnicity and disability (Betts & Null, 2011), expressed as: 

     𝑃(𝐸𝑑𝑢 = (3,4,5)|𝐺 = 1, 𝐸 = 0, 𝐷 = 0) > 𝑃(𝐸𝑑𝑢 = (3,4,5)|𝐺 = 0, 𝐸 = 0, 𝐷 = 0) (2) 

• Furthermore, the majority group has higher chances of obtaining higher levels of 

education compared to the minority group (Rana, 2024), denoted as:  

      𝑃(𝐸𝑑𝑢 = (3,4,5)|𝐺 = 0, 𝐸 = 0, 𝐷 = 0) > 𝑃(𝐸𝑑𝑢 = (3,4,5)|𝐺 = 0, 𝐸 = 1, 𝐷 = 0) (3) 

• Hence, women of minority ethnicity tend to receive lower education than men of 

majority ethnicity, showing that minority females face higher barriers to education 

(Rana, 2024), denoted as:  

      𝑃(𝐸𝑑𝑢 = (3,4,5)|𝐺 = 0, 𝐸 = 0, 𝐷 = 0) > 𝑃(𝐸𝑑𝑢 = (3,4,5)|𝐺 = 1, 𝐸 = 1, 𝐷 = 0) (4) 

• Individuals with disability face the highest barrier to education, with a higher probability 

of not finishing high school (Gee, 2018), with: 

         𝑃(𝐸𝑑𝑢 = 0|𝐷 = 1) = 0.4 (5) 
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• Generally, the effect of sensitive attributes is additive; the more disadvantaged groups 

an individual belongs to, the lower their education tends to be (Kim, 2022; Manzoor, 

2023). 

In summary, the simulated society assumes that females tend to achieve higher education. 

However, other protected attributes lead to less access to education, resulting in lower education 

levels for individuals with minority ethnicity and disabilities.   

Income Variable 
To generate the income variable I, a combination of the base salary S0 and the effects of gender 

G, ethnicity E, disability D, and education Edu are applied while also including possible non-

linear interactions. Overall, the income variable can be expressed as: 

 𝐼 = 𝑆0 + 𝑓𝐺(𝐺) + 𝑓𝐸(𝐸, 𝐸𝑑𝑢) + 𝑓𝐷(𝐷) + 𝑓𝐸𝑑𝑢(𝐸𝑑𝑢) + 𝜖 (6) 

Where: 

• S0 is the base salary 

• fG(G) represents the gender effect 

• fE(E,Edu) represents the ethnicity effect 

• fD(D) represents the disability effect 

• fEdu(Edu) represents the education effect 

•  is a random noise term to introduce variability 
 
The simulation considers a gender pay gap, with females showing the tendency to earn less than 

males which resembles the income structure of a realistic society (Betts & Null, 2011). The 

gender effect fG(G) shows that males (G = 0) receive a bonus of 7000 on their income, while 

females (G = 1) get a reduction of 3000, expressed as:  

 𝑓𝐺(𝐺) = {
7000, 𝐺 = 0

−3000, 𝐺 = 1 (7) 

 
Individuals belonging to the minority group (E = 1) receive a deduction of 5000 unless they 

have reached higher education levels. This implies that the negative impact of belonging to the 

minority group can be avoided by higher education (Letterman et al., 2018), denoted as: 

 𝑓𝐸(𝐸, 𝐸𝑑𝑢) = {
−5000, 𝐸𝑑𝑢 ≤ 3

0, 𝐸𝑑𝑢 > 3 (8) 

 
The disability effect shows that individuals with a disability (D = 1) have a generally lower 

income (Cervini-Plá et al., 2016), expressed as: 

 𝑓𝐷(𝐷) = {
−7000, 𝐷 = 1

0, 𝐷 = 0 (9) 
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The income variable is generated from a combination of a base salary and the effects due to the 

protected variables and education, with income being affected by education in the sense that 

higher education leads to higher income (Wang et al., 2022), as followingly defined: 

 

𝑓(𝑥) =

{
  
 

  
 
0, 𝑖𝑓 𝐸𝑑𝑢 = 0 (𝑁𝑜 𝐻𝑖𝑔ℎ 𝑆𝑐ℎ𝑜𝑜𝑙)
5000, 𝑖𝑓 𝐸𝑑𝑢 = 1 (𝐻𝑖𝑔ℎ 𝑆𝑐ℎ𝑜𝑜𝑙)
10000, 𝑖𝑓 𝐸𝑑𝑢 = 2 (𝑆𝑜𝑚𝑒 𝐶𝑜𝑙𝑙𝑒𝑔𝑒)
20000, 𝑖𝑓 𝐸𝑑𝑢 = 3 (𝐵𝑎𝑐ℎ𝑒𝑙𝑜𝑟′𝑠)
35000, 𝑖𝑓 𝐸𝑑𝑢 = 4 (𝑀𝑎𝑠𝑡𝑒𝑟′𝑠)
50000, 𝑖𝑓 𝐸𝑑𝑢 = 5 (𝐷𝑜𝑐𝑡𝑜𝑟𝑎𝑡𝑒)

 (10) 

 
When introducing non-linearity to the income, interaction terms between protected attributes 

and education are introduced as: 

 𝑓𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟(𝐺, 𝐸, 𝐸𝑑𝑢) = 𝛽1𝐺 ∙ 𝐸𝑑𝑢 + 𝛽2𝐸 ∙ 𝐸𝑑𝑢2 (11) 

Hence, the income I is composed by the income function with optional non-linear terms: 

 𝐼 = 𝑆0 + 𝑓𝐺(𝐺) + 𝑓𝐸(𝐸, 𝐸𝑑𝑢) + 𝑓𝐷(𝐷) + 𝑓𝐸𝑑𝑢(𝐸𝑑𝑢) + 𝑓𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟(𝐺, 𝐸, 𝐸𝑑𝑢) + 𝜀 (12) 

By this, the income variable captures linear and non-linear contributions to gender, ethnicity, 

disability and education, showcasing potential economic disadvantages within a society. 

House Ownership Variable 
The house ownership variable is H ∈ {0,1}, where H = 1 represents individuals owning a house 

and H = 0 means they do not. Whether an individual owns a house is determined by the base 

probability, which is dependent on education and income. Base probabilities increase with 

higher levels of education (Wang et al., 2022; Yao, 2017), following this mapping: 

 

𝑃(𝐻 = 1|𝐸𝑑𝑢) =

{
  
 

  
 
0.1, 𝑖𝑓 𝐸𝑑𝑢 = 0 (𝑁𝑜 𝐻𝑖𝑔ℎ 𝑆𝑐ℎ𝑜𝑜𝑙
0.2, 𝑖𝑓 𝐸𝑑𝑢 = 1 (𝐻𝑖𝑔ℎ 𝑆𝑐ℎ𝑜𝑜𝑙)
0.3, 𝑖𝑓 𝐸𝑑𝑢 = 2 (𝑆𝑜𝑚𝑒 𝐶𝑜𝑙𝑙𝑒𝑔𝑒)
0.5, 𝑖𝑓 𝐸𝑑𝑢 = 3 (𝐵𝑎𝑐ℎ𝑒𝑙𝑜𝑟′𝑠)
0.6, 𝑖𝑓 𝐸𝑑𝑢 = 4 (𝑀𝑎𝑠𝑡𝑒𝑟′𝑠)
0.7, 𝑖𝑓 𝐸𝑑𝑢 = 5 (𝐷𝑜𝑐𝑡𝑜𝑟𝑎𝑡𝑒)

 (13) 

With complementary probabilities not given but implied, such as: 

 𝑃(𝐻 = 0|𝐸𝑑𝑢 = 0) = 0.9 (14) 

The income effect adjusts the baseline probability to the individual’s income by using the 

income values I as standardized z-scores and scaling the values by 0.1, as denoted by: 

 𝑓𝐼(𝐼) =
𝐼 − 𝜇𝐼
𝜎𝐼

∙ 0.1 (15) 

Conclusively, the adjusted house ownership probability is: 

 𝑃𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑(𝐻 = 1|𝐸𝑑𝑢, 𝐼) = 𝑃𝑏𝑎𝑠𝑒(𝐸𝑑𝑢) + 𝑓𝐼(𝐼) + 𝜀𝐻 (16) 
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This shows that with higher income, the likelihood of owning a house increase, and vice versa. 

To add realistic uncertainty, random error is introduced to the adjusted probability.  

To determine house ownership H, a threshold is determined for each individual by drawing 

from a uniform random variable 𝑈 ~𝒰(0,1) which reflects other unconsidered factors such as 

increased or decreased difficulty of obtaining a house depending on the area where an individual 

decides to reside. If the threshold is less than the individual’s house ownership probability, the 

individual will be classified as a house owner (H = 1), as in: 

 𝐻 = {1, if 𝑈 < 𝑃(𝐻 = 1|𝐸𝑑𝑢, 𝐼, 𝜀𝐻)
0, otherwise  (17) 

Additional variables 
Furthermore, two binary and interval variables are generated based on income, education and 

house ownership, with each variable influencing the values to different extents in linear or non-

linear ways:  

• V1 = 𝐵𝑖𝑛𝑎𝑟𝑦(0.5 ∙ 𝐼 + 1.5 ∙ 𝐸𝑑𝑢 + 𝜀, cut-off at mean)    (18) 

• 𝑉2 = log(|3.6 ∙ 𝐼 + 0.7 ∙ 𝐸𝑑𝑢 + 2.3 ∙ 𝑉1| + 1) + 𝜀     (19) 

• 𝑉3 = 𝐵𝑖𝑛𝑎𝑟𝑦(
1

1+exp(−(0.12∙𝐻+0.7∙𝑉1+0.03∙𝑉2+𝜀))
, cut-off at median)   (20) 

• 𝑉4 = −6.2 ∙ 𝐻 − 0.0004 ∙ 𝐼 − 13 ∙ 𝑉3 + 𝜀      (21) 

Fraud Classification 
The seven generated features are utilised to classify whether an individual committed social 

benefit fraud F. A linear combination of the variables obtains the baseline; if the generated 

dataset is supposed to follow a non-linear decision boundary, this effect is added later. Firstly, 

the linear combination LC is calculated as follows: 

𝐿𝐶 = −0.2 ∙ 𝐸𝑑𝑢 − 0.00003 ∙ 𝐼 − 1.7 ∙ 𝐻 − 0.7 ∙ 𝑉1 + 0.0007 ∙ 𝑉2 + 0.065 ∙ 𝑉3 + 0.0009 ∙ 𝑉4 (22) 

If the setup requires a non-linear decision boundary, then non-linear components NL are added 

to the linear combination: 

• Income squared: 𝑁𝐿𝐼2 = −0.05 ∙ 𝐼2       (23) 

• Interaction terms: 𝑁𝐿𝑉1×𝑉2 = 0.02 ∙ (𝑉1 ∙ 𝑉2) and 𝑁𝐿𝐸𝑑𝑢×𝐼 = −0.03 ∙ (𝐼 ∙ 𝐸𝑑𝑢) (24) 

• Upper-middle-class criminality assumption: If the income is between the 60th and 75th 

percentiles, there is an increase probability of fraud: 

𝐶𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 1 if 𝑄0.6 < 𝐼 < 𝑄0.75, 0 otherwise     (25) 

• Lower-middle-class criminality assumption: If the income is between the 35th and 50th 

percentiles, there is a decrease in the probability of fraud: 

𝐶𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 =  −1 if 𝑄0.35 < 𝑄0.5, 0 otherwise     (26) 
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All non-linear components get combined and added to the linear combination, giving a 

combined effect: 

 𝑁𝐿 = 𝑁𝐿𝐼2 + 𝑁𝐿𝑉1×𝑉2 + 𝑁𝐿𝐸𝑑𝑢×𝐼 + 𝐶𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 + 𝐶𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒  (27) 

 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐸𝑓𝑓𝑒𝑐𝑡 = 𝐿𝐶 + 𝑁𝐿 (28) 

To convert the combined effect into probabilities to commit fraud, a sigmoid function is applied 

to the values and a random noise parameter is added to model uncertainty: 

 𝑃(𝐹 = 1|𝐸𝑑𝑢, 𝐼, 𝐻, 𝑉1,… , 𝑉4) =
1

1 + exp(−(𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐸𝑓𝑓𝑒𝑐𝑡))
+ 𝜀 (29) 

Finally, the binary fraud classification is derived by using a threshold TF, which adjusts based 

on the desired proportion of fraud in the dataset, with the non-scarce condition taking on 25% 

of positive classifications and the scarce condition taking an overall 4%: 

 𝐹 = {1, if 𝑃(𝐹 = 1| ∙) > 𝑇𝐹
0, otherwise  (30) 

For the non-linear setup, this threshold selects 70% of the fraud cases from above the threshold 

and 30% from the 20% below the threshold to give a more flexible fraud classification, 

strengthening the concept of individual variability.  

To introduce further noise, a proportion of cases is randomly selected, and their labels are 

flipped. This aims to simulate real-world uncertainty by incorrectly assigning some 

observations' outcomes.  

Missing Value Generation 
Lastly, missing data is induced to the income, education and house ownership variables, with 

different underlying relationships: 

• 2% of income and education variables are missing completely at random. 

• 6% of income missing, with a higher likelihood to be missing for minority and disabled 

group members, missing not at random. 

• 75 missing cases on one of the generated variables, with a higher probability of missing 

for low-income and low education, missing at random. 

• 85 missing cases on home ownership, with a higher probability of missing for females 

and minority ethnicity, missing not at random.  

This means that there are missing completely at random and missing not at random values in 

the data, representative of real-world mechanisms involved in missing data. 2.7% of the data is 

missing, with approximately 16% of the cases having at least one missing value. 
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Data analysis 
For the data analysis, the used fairness metrics are first fixed to later evaluate the fairness 

implication at each decision point. Following, the 30 different combinations of engineering 

decisions are tested on the four different data situations in terms of accuracy and fairness of the 

outcome. Those models are then used to isolate the effect of each decision point for each data 

situation, which should provide an accessible summary of where in the pipeline most of the 

changes in fairness outcomes are initiated.  

Evaluation of fairness implications 
All the selected choices at the five different decision points within the ML pipeline will be 

evaluated for their impact on fairness toward multiple subpopulations to identify potential 

sources of bias. To do this, a definition of fairness must be chosen. However, as previously 

mentioned, there are many fairness metrics to choose from, and they are not mutually exclusive 

(Verma & Rubin, 2018). Nevertheless, a choice must be made to assess the fairness impact of 

decision points. Therefore, this context chooses false positive rate (FPR) and false negative rate 

(FNR) as fixed fairness measures. 

 

FNR and FPR are two basic fairness definitions that often underpin more complex measures, 

making them relevant indicators for biased predictions (Verma & Rubin, 2018). In the context 

of social benefit fraud detection, which is the focus of this research, FPR and FNR allow for 

the assessment of binary predictions related to undesired outcomes. Essentially, they represent 

both stakeholders of these classifiers. A low FNR ensures that the party seeking to identify 

fraudulent activity does not miss too many cases. In contrast, a low FPR reduces the risk of 

citizens falsely being accused of fraudulent activities by this classifier. In conclusion, FNR and 

FPR provide a good measure of fairness, considering the perspectives of both affected 

stakeholders. 

In detail, FPR and FNR are derived by assuming that: 

• 𝑌 𝜖 {0,1}, true label (0 = negative outcome, 1 = positive outcome) 

• �̂�𝜖 {1,0}, predicted label (0 = negative outcome, 1 = positive outcome) 

• 𝐴 𝜖 {𝑎1, 𝑎2,… , 𝑎𝑘}, sensitive attribute combinations (gender, ethnicity, disability) 

The FPR indicates the probability of a model predicting a positive outcome (Ŷ = 1) when its 

true label is negative (Y = 0). Mathematically, fairness according to FPR is fulfilled when: 

𝑃(�̂� = 1|𝑌 = 0, 𝐴 = 𝑎1) = 𝑃(�̂� = 1|𝑌 = 0, 𝐴 = 𝑎2) = ⋯ = 𝑃(�̂� = 1|𝑌 = 0, 𝐴 = 𝑎𝑘)  (31) 
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The FNR is the probability that the model assigns a negative outcome (Ŷ = 0), with the true 

label being positive (Y = 1). Fairness fulfilled through the FNR is denoted in the following way: 
 
𝑃(�̂� = 0|𝑌 = 1, 𝐴 = 𝑎1) = 𝑃(�̂� = 0|𝑌 = 1, 𝐴 = 𝑎2) = ⋯ = 𝑃(�̂� = 0|𝑌 = 1, 𝐴 = 𝑎𝑘)  (32) 
 
Fairness across subpopulations is often assumed using the 80% rule, stating that no 

subpopulation should have less than 80% of the usually achieved metric (Raghavan & Kim, 

2024). Which follows as:  

 𝑃(�̂� = 1|𝐴 = 𝑎𝑖)
𝑃(�̂� = 1|𝐴 = 𝑎𝑗)

≥ 0.8,    for all 𝑖, 𝑗 (33) 

 
Combination of engineering choices 
Overall, each decision point can contribute to a different semblance of the overall ML pipeline. 

The decision points of missing data imputation, scarcity intervention, algorithm choice, and 

tuning are all considered in their interplay with each other while only using the default 

threshold. The threshold will be evaluated separately in terms of its effect on the two fairness 

outcomes. Figure 4 shows how the different decision points generate different combinations of 

engineering choices, leading to 30 different ML pipelines for each data situation. Overall, 

Figure 4 demonstrates how each decision leads to a tree of subsequent choices, indicating the 

large landscape of possible ML pipeline configurations that result from the engineering choices. 

 

Figure 4. 
Combination tree for four decision points 
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For each of the 30 models for one of the data situations, general model performance in terms of 

accuracy and AUC are obtained alongside the FPR and FNR for each of the eight intersectional 

subpopulations. Those values are then used to evaluate the potential impact of each decision 

point on the fairness of the predicted outcome. 

Demonstration of the data analysis 
The overall effect of each decision point is isolated by obtaining the mean change of the fairness 

measures when changing the applied method in the decision point while keeping the other 

decisions constant. The higher the mean change ∆𝑑𝑝̅̅ ̅̅ ̅, the more potential this decision point 

shows to affect the fairness outcome, where dp represents the decision point (e.g., algorithm 

choice, imputation method, scarcity intervention). Furthermore, the standard deviation of the 

mean change ∆𝑑𝑝̅̅ ̅̅ ̅ indicates change potential within that decision point. 

For each possible combination of engineering choices, the AUC, FNR, and FPR of the resulting 

model are recorded for the overall model and separately for each of the eight subpopulations. 

The resulting data structure is shown in Table 4 with some exemplary values; however, this 

example is strongly simplified by only showing a fraction of the resulting rows.  

Table 4. 
Exemplary data structure for the analysis 
Algorithm Tuning Imputation Scarcity Metric Value Gender Ethnicity Disability 

log No simple No FPR 0.287 NA NA NA 

log No simple Oversa. FPR 0.314 NA NA NA 

log No MissForest No FPR 0.253 NA NA NA 

XGBoost No simple No FPR 0.531 NA NA NA 

RF No simple No FPR 0.137 NA NA NA 

log No simple No FPR 0.341 female minority disabled 

log No MissForest No FPR 0.374 female minority disabled 

XGBoost No simple No FPR 0.582 female minority disabled 

XGBoost No MissForest No FPR 0.613 female minority disabled 

RF No simple No FPR 0.196 female minority disabled 

RF No MissForest No FPR 0.237 female minority disabled 

Note. Introduced abbreviations are log – logistic regression, RF – Random Forest, Oversa - Oversampling 

 

To explain the process in more detail, the decision point of algorithmic choice is used as an 

example using the values from Table 4 for the calculations of the FPR. Firstly, the overall mean 

metrics are assessed for each choice within the decision point. Let alg∈{logistic regression, 
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random forest, XGBoost} represent the available algorithms. Figure 5 shows the overall mean 

AUCalg, FNRalg and FPRalg, with their standard deviation σΔ as error bars for each of the three 

investigated algorithms. This gives a broad insight into the fairness change depending on the 

choice of algorithm. For the example shown in Table 4 using only 3 of the 30 available FPR 

for the logistic regression, this value would be derived as follows:  

 

�̅�𝑎𝑙𝑔 =
1
3
(0.287 + 0.314 + 0.253) = 0.285 

 

𝜎𝑎𝑙𝑔 =
(0.287 − 0.285)2 + (0.314 − 0.285)2 + (0.253 − 0.285)2

3 = 0.031 

 
This means that Figure 5 shows the derived mean values as bars and standard deviations as 

error bars, considering the overall outcome of the 30 model combinations for AUC, FNR, and 

FPR. 

 
Figure 5. 
Mean values for AUC, FNR and FPR for the three algorithm choices 

 
From those performances, differentiated by choice, an overall measure of mean change ∆̅𝑎𝑙𝑔 is 

obtained to isolate the fairness potential within this decision point. By this, the mean change 

from the baseline setting (here logistic regression, Mlogistic regression) to the other possible 
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options Mother alg is calculated for configurations that keep the other choices constant. This mean 

change is given by: 

 
∆̅𝑎𝑙𝑔=  

1
𝑛∑|𝑚𝑒𝑡𝑟𝑖𝑐𝑜𝑡ℎ𝑒𝑟 𝑎𝑙𝑔𝑖 − 𝑚𝑒𝑡𝑟𝑖𝑐𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑖 |

𝑛

𝑖=1

 (34) 

Where n is the number of applicable model constellations, and metric ∈ {AUC, FPR, FNR}, 

for the example data in Table 4, this would give the following values: 

 

∆̅𝑎𝑙𝑔=  
1
2
(|0.287 − 0.531| + |0.287 −  0.135|) = 0.274 

 

𝜎𝑎𝑙𝑔 =
(0.152 − 0.274)2 + (0.244 − 0.274)2

2
= 0.065 

 
When using all values available, this shows the overall changes in AUC, FPR, and FNR 

achieved through the changes in the algorithm alone, as detailed in Figure 6. This example 

would show that the algorithm choice seems to affect the resulting FPR more than the FNR. 

 

Figure 6. 
Mean change in AUC, FPR, FNR values for algorithm choice 
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Lastly, the change indicated in Figure 6 can be broken down into the different subpopulations, 

showing which subpopulations the algorithm changes leads to the biggest change in fairness 

outcome. This breakdown helps assess whether specific subpopulations experience larger 

impacts. For subpopulations defined by the intersectionality of gender G ∈ {male, female}, 

ethnicity E ∈ {majority, minority} and disability D∈ {disabled, non-disabled}. The calculations 

follow the same approach as in equation 34, repeated for each subpopulation. In this case, the 

exemplary numbers from Table 4 would provide insight into the subpopulation of disabled 

females from the minority population with the following calculations for FPR when only 

considering the four model constellations: 

 

�̅�𝑓𝑒𝑚min𝑑𝑖𝑠 =
1
4
(|0.341 − 0.582| + |0.341 − 0.196| + |0.374 − 0.613| + |0.374 − 0.237|) 

 
�̅�𝑓𝑒𝑚 𝑚𝑖𝑛 𝑑𝑖𝑠 = 0.191 

 

𝜎𝑓𝑒𝑚min𝑑𝑖𝑠 =
(0.241 − 0.191)2 + (0.145 − 0.191)2 + (0.239 − 0.191)2 + (0.137 − 0.191)2

4  

 
𝜎𝑓𝑒𝑚 𝑚𝑖𝑛 𝑑𝑖𝑠 = 0.058 
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Figure 7 shows this mean change ∆̅𝑎𝑙𝑔 by subpopulation, detailing possible differentiating 

effects between the eight cross-sectional subpopulations.  

 
Figure 7.  
Mean change in fairness caused by algorithm choice for different subpopulations 

 
 
The analysis of the mean of fairness and performance metrics and the mean changes within the 

decision point will be repeated for each decision point on the default threshold of 0.5. First, a 

broad overview of the average outcome for each option in the decision point is given, and then 

the potential for changing the fairness outcome that this decision point holds is shown. Lastly, 

this change potential is segregated into the eight subpopulations to showcase how different 

groups might benefit through changes within that decision point. 
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Chapter 4 – Analysis 

The data analysis aims to reveal which decision points can influence the overall model's fairness 

outcome in terms of mean change between similar models that only differentiate within the 

investigated decision points. By this, mean change values and their standard deviations are 

generated from the 30 pre-defined pipeline set-ups for each of the four data situations (with the 

combinations indicated in Figure 4). This leads to a repetitive investigation of how the decision 

points might vary in their influence depending on the specific challenges that arise from a given 

data set in terms of non-linearity of the decision boundary and scarce outcome. To derive the 

performance for each unique engineering choice combination for each of the datasets, the 30 

unique pipelines were run on each dataset. The computational time took around two hours for 

one data situation and eight hours in total (calculations were conducted in R version 4.3.2 on a 

MacBook Air (Apple M1, 2020) with macOS Monterey 12.4 and RAM 8GB, the R code is 

detailed in Appendix A). The derived performance values were then used to follow the analysis 

as outlined in the example analysis in Chapter 3 for each data situation separably.  

The analysis procedure follows an overarching outline: first, it introduces the characteristics of 

the focused data situation, and the possible challenges associated with it. Then, it structurally 

interprets the mean change of fairness metrics for each of the five decision points in the order 

of occurrence within the typical ML pipeline. Lastly, it provides a summary showing the key 

insights from this data situation before moving to the next data situation. 

First data situation - Linear decision boundary with non-scarce outcome 
The following data situation is characterized by linear separability, showing that the decision 

boundary linearly depends on the seven features shown in Figure 12. It shows how income and 

education have a negative linear relationship to the fraud probability and disability has a 

positive relationship, with the other generated variables also exhibiting linear connections to 

the outcome. The first and second generated variables negatively affect the crime outcome. The 

fourth variable shows a positive relationship to the outcome, while the third variable shows no 

relevant impact on the probability of fraud. Overall, the fraud classification is scarcely 

distributed but more balanced, with 25% of the cases within the data being classified as 

fraudulent. Conclusively, this data situation is the easiest of the four combinations detailed in 

Table 5. With the relationship between fraud commitment and the features being linearly 

separable, this could lead to logistic regression to be a reliable classifier. It offers an 

environment where the classifiers can assume a linear separability and a non-scarce outcome, 
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which helps avoid a majority class bias. Even though the distribution of the binary outcome is 

not fully balanced, with only a quarter belonging to the fraudulent classification, the challenge 

is less pressing. There is still a risk of overfitting for the majority class. However, the algorithm 

will not disregard an outcome that makes up a quarter of the cases as much as with the scarcity 

setting. 

 

Table 5. 
Overview of the currently tested data characteristics 
 Decision Boundary 

Distribution  

of outcome 

Linear, 

Non-scarce outcome 

Non-linear, 

Non-scarce outcome 

Linear, 

Scarce outcome 

Non-linear, 

Scarce outcome 

 

The connections between fraud probability and the predictive features are detailed in Figure 8. 

The data was simulated according to the data factory outline of Chapter 3. The sensitive 

attributes influenced the outcome of the predictive features. While they do not directly relate to 

the fraud outcome, they impress on it indirectly through their relations to the provided model 

features. This creates a realistic and representative society that models the underlying influences 

of sensitive attributes on an individual’s outcome on factors such as income and education.  

  



 
 

40 

Figure 8. 
Relationship of fraud probability and classification by features 
 

 
 
Overview of decision point impact 
Before introducing the mean change potential in each decision point, the overall mean 

performance for each engineering choice is assessed in terms of AUC, FNR and FPR. The 

calculations were done according to the exemplary analysis in Chapter 3. Figure 9 demonstrates 

those mean performances (bars) and their standard deviations (error bars). They start with the 

imputation method, which shows similar outcomes on overall and fairness performance for both 

choices in terms of mean and standard deviation, which indicates only a slight difference in 
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fairness performance between the two imputation methods. Secondly, the scarce outcome 

intervention shows similar mean performances as the missing data imputation, with more 

visible variability between the methods. When no scarcity intervention is applied, this results 

in a higher FNR. However, random oversampling shows a balance between FNR and FPR, 

while random undersampling has a higher FPR than the FNR. Overall, the variability is similar 

between the scarcity interventions.  

Following the choice of algorithm, the logistic regression shows some increase in AUC 

compared to the tree-based methods and additionally shows a balanced outcome for FNR and 

FPR. The tree-based methods exhibit similar performance and fairness. Lastly, the tuning 

procedure elicits an increase in the FNR compared to untuned models. Both for the choice of 

algorithm and tuning, the standard deviations are similar between the methods. 

Figure 9. 
Mean performance for each investigate engineering choice within the pipeline 

 
Figure 10 demonstrates the mean changes (bars) and their standard deviations (error bars) that 

occur within each of the decision points while keeping the other engineering choices constant. 

The Figure is calculated using the analysis outline of Chapter 3. It shows that the greatest change 

potential is in the scarcity intervention method. Overall, the decision points assert a greater 

influence on the FNR outcome than the FPR. The greatest variability is observed in the FNR of 

the hyperparameter tuning decision point.  
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Figure 10 
Mean differences in performance and fairness for different decision points 
 

 
Those mean differences are further investigated for the subpopulations on each decision point 

to see whether the engineering choices can treat some subpopulations differently while others 

might not experience change. The exploration of the singular decision points will follow the 

order of the usual ML classifier pipeline. 
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First decision point: missing data imputation 
The missing data imputation was the decision point with the most minor global influence on 

performance and fairness measures. Overall, judging by the standard deviations of the values 

shown in Figure 11, the disabled subpopulations show greater variety in the fairness outcome 

compared to the non-disabled subpopulations. This highlights how the imputation affects the 

individuals with their data not missing randomly, as disability was a defined factor for omitted 

data points. Generally, it also shows that the non-disabled subpopulations tend to exhibit greater 

change in the FNR, while the disabled subpopulations tend to have greater change in the FPR.  

 
Figure 11. 
Mean difference in FNR and FPR for subpopulations created by missing data imputation 
 

 
Overall, this shows that the influence of the data imputation can be different regarding fairness 

depending on whether an individual is categorized as disabled or not. 

Second decision point: scarcity intervention 
The scarce outcome intervention demonstrated the greatest change potential among all the 

decision points. Figure 12 breaks down this mean change of FNR and FPR by the eight 

subpopulations. It shows the greatest change and variability in FNR for the male X minority X 

non-disabled group. Conversely, lower change in FNR is experienced by the female X minority 

X non-disabled group, showing a gender effect of the scarcity intervention. This subpopulation 

is also experiencing the greatest change in FPR, an additional indicator of a possible gender 

effect. The most advantaged group (male X majority X non-disabled) shows the lowest change 
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in FPR, showing that the classifier threatens them to be more likely to wrongfully categorize 

them as fraudulent despite the choice of scarcity intervention. However, it asserts a greater 

influence on their FNR, showing that they have greater potential to benefit from the changes as 

being wrongfully classified as non-fraudulent benefits to the individual. Overall, the variability, 

expressed through the standard deviations of the mean change, remains similar across groups. 

 
Figure 12. 
Mean difference in FNR and FPR for subpopulations created by scarcity intervention 
 

 
Conclusively, the scarcity intervention shows some effect on the fairness outcomes of the 

pipelines despite the non-scarce distribution of the target variable. Additionally, some 

vulnerable groups experience greater changes depending on the chosen scarcity intervention. 

Lastly, the most advantaged group shows less risk of fluctuations in the FPR but greater 

potential for changes in FNR, which makes individuals of the group more likely to benefit. 

Third decision point: algorithm choice 
Furthermore, the choice of algorithm can assert changes in the fairness metrics, as shown by 

the average changes in Figure 10. The mean change by subpopulation is demonstrated in Figure 

13. Overall, the patterns of FNR and FPR seem similar for all the female subpopulations, 

showing a balanced change for both measures. However, comparing the most advantaged male 

population (male X majority X non-disabled) with the least advantaged male population (male 

X minority X disabled), a contrast in how the algorithm affects those subpopulations is revealed. 
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The advantaged group demonstrates low FPR and higher FNR changes, showing a higher 

possibility for the positive impact of the choice of algorithm rather than a negative impact. 

However, this effect is reversed for the disadvantaged group with a higher mean increase in the 

FPR, showing the threat of more wrongfully fraudulent classification for individuals of this 

population and resulting adverse treatment. Furthermore, the standard deviations (error bars) 

indicate more substantial variability in the outcome of the female subpopulations compared to 

the males. 

 
Figure 13. 
Mean difference in FNR and FPR for subpopulations created by algorithm choice 
 

 
The female subpopulations experience similar change patterns depending on the algorithmic 

choice. However, the male subpopulations vary in impact depending on their vulnerability, with 

more vulnerable individuals being more prone to adverse impact. In contrast, more advantaged 

individuals have more potential for beneficial impact of the algorithm choice.  
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Fourth decision point: hyperparameter tuning 
The effect of hyperparameter tuning for the tree-based methods is demonstrated by the 

subpopulation in Figure 14. Overall, the tuning does not greatly impact the fairness measures 

compared to the other data situations that will be introduced; overall, it contributes more 

towards the FNR than the FPR. Generally, judging by the standard deviation of the values, the 

variability in change is higher for the disabled subpopulations, showing that the tuning process 

affects this group more than the non-disabled individuals. Additionally, the FNR change is 

higher than the FPR change for all the subpopulations apart from the disabled males of minority 

ethnicity, showing that they have greater potential for adverse treatment depending on the 

tuning process.  

 
Figure 14. 
Mean difference in FNR and FPR for subpopulations created by hyperparameter tuning 
 

 
The tuning process of XGBoost and Random Forest is different since both methods have 

different hyperparameters. To probe into the process, a hyperparameter is tuned for each 

algorithm while keeping the other hyperparameters at their default values. Starting with 

XGBoost, Figure 15 shows the tuning of the maximal depth trees are allowed to grow into and 

their performance on AUC and the fairness metrics. It shows that the AUC peaks early at the 

maximum depth of two, while the fairness measures develop differently through the maximum 

depth range. For the maximum depth of one, the fairness measures approach each other more 

closely than for the maximum depth of two, while the AUC value remains similar. This shows 
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the potential to adjust for fairness measures with hyperparameter tuning at a low cost for the 

AUC performance. However, the change in the fairness measures is relatively small, which 

decides how vital the minimal change in fairness is balanced to the slight loss in performance 

of a domain-specific one.  Regardless, this indicates the potential benefit of evaluating the 

hyperparameter tuning process from the perspective of performance and fairness separately.  

 
Figure 15. 
Isolated tuning of XGBoost’s maximal depth and its impact on AUC, FNR and FPR 

 
 

Furthermore, the change for the Random Forest in performance and fairness measures is 

assessed depending on the hyperparameter that indicates the maximum number of features 

selected at each split (mtry). Figure 16 shows that the overall change in the AUC value is 

minimal depending on the hyperparameter value, as the scare of the y-axis only records small 

value changes. Overall, it gives two peaks at a maximum number of features set at four or six. 

Looking at the fairness outcome, there is some difference in the performance, with the lower 

maximum depth value resulting in a comparably higher FNR of approximately 5% and a lower 

FPR of approximately 2.5%. This allows the engineer to set the hyperparameter to either 

achieve a higher FPR or a higher FNR while keeping the overall performance constant. This 

potential for changing the fairness outcome can be easily overlooked when only tuning for 

increased performance while disregarding the fairness impact.  
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Figure 16. 
Isolated tuning of Random Forest’s mtry and its impact on AUC, FNR and FPR 
 

 
Overall, the hyperparameter tuning shows some potential to balance FNR and FPR differently 

while the overall model performance remains consistent. The choice of which hyperparameter 

value to set can be domain-specific; however, the fairness impact can be considered without 

experiencing a loss in model performance.  

Fifth decision point: threshold setting 
Lastly, the threshold setting is assessed, and all the other decision points have been evaluated 

based on the default threshold (cut-off at 0.5). Two different threshold settings are introduced 

and compared to the default threshold, giving a lenient option (cut-off above the 0.9 quantile of 

fraud probability) and a stringent option (cut-off above the 0.1 quantile). Firstly, Figure 17 

shows the impact of the lenient and stringent threshold setting compared to the default setting 

on the FNR. The lenient threshold increases the FNR for more advantaged subpopulations with 

a one or lower vulnerability level. More vulnerable subpopulations still experience an increase 

in the FNR; however, the overall difference between the groups is lower. The stringent 

threshold minimizes the FNR across all subpopulations, with the most advantaged 

subpopulations still having the highest FNR.   
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Figure 17. 
Effect of threshold setting on FNR for different subpopulations 

 
Regarding FPR, the stringent threshold increases the value compared to the default value and 

shows an overall high FPR for all subpopulations in Figure 18. The lenient threshold mainly 

lowers the FPR for the male subpopulations. However, the most disadvantaged group will still 

have a higher FPR with the lenient threshold, showing that the more advantaged a group is, the 

more it will benefit from the lenient threshold setting.  

Figure 18. 
Effect of threshold setting on FPR for different subpopulations 
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Summary 
Overall, this data situation was optimal for an ML pipeline, as it did not face the challenge of 

non-linearity and scarce outcome distribution. The missing data imputation asserted greater 

influence on the disabled subpopulations compared to the non-disabled, showing how 

belonging to a minority group that is more prone to missing data might show a greater impact 

on the outcome depending on the chosen imputation method.  

Additionally, the scarcity intervention had a minor effect than the scarce linear data situation. 

However, it still asserted the biggest overall effect within the ML pipeline. It showed that the 

most advantaged subpopulations are more likely to benefit from the scarcity intervention than 

the disadvantaged subpopulations.  

Furthermore, the choice of algorithm had the greatest impact on the male subpopulations, with 

the more vulnerable male subpopulations more prone to adverse algorithm choice effects.  

The hyperparameter tuning revealed greater change potential for the disabled subpopulations. 

More detailed probing into single hyperparameters for each tree-based algorithm also 

demonstrated the potential to consider the FNR and FPR during tuning and the possibility of 

influencing the overall fairness outcome to a certain extent while keeping the model 

performance consistent.  

Lastly, the threshold setting demonstrated that lenient and stringent thresholds can modulate 

fairness outcomes. However, the more disadvantaged groups will be more affected by the 

stringent threshold, and the more advantaged groups will benefit more from the lenient 

thresholds in terms of fairness outcomes.   
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Table 6. 
Summary of insights from data with non-scarce outcome and linear decision boundary 
Decision Point Impact on Fairness (FNR, FPR) Subpopulation Variability and 

Key Observations 
Missing Data Imputation Similar overall performance 

between methods (minimal 
differences) 

 Disabled subpopulations 
display more variability and 
higher FPR, while non-disabled 
groups have higher FNR 
 

Scare Outcome 
Intervention 

Lack of intervention results in 
higher FNR, while 
oversampling balances FNR 
and FPR 

Vulnerable groups show 
greater fairness variability, and 
advantaged groups show less 
FPR fluctuations  
 

Algorithm Choice Logistic regression shows more 
balanced fairness measures, 
compared to tree-based 
methods 

Primarily affects male 
subpopulations, with less 
vulnerable males benefitting 
and more vulnerable males 
facing adverse effects 
 

Hyperparameter Tuning Increased FNR compared to 
untuned models 

Disabled subpopulations show 
greater variability due to 
tuning. 
FNR and FPR adjustments are 
possible with minimal AUC 
changes 
 

Threshold Setting Lenient threshold increases 
FNR in advantaged groups 
more, disadvantaged groups 
face higher FPR under stringent 
threshold 

More advantaged groups 
benefit more from both 
threshold compared to 
disadvantaged groups 
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Second data situation – Linear decision boundary with scarce outcome 
The second data situation is characterized by a linear decision boundary and scarce outcome, 

as depicted in Table 7, generated through the data factory detailed in Chapter 3.  Figure 19 

demonstrates the simulated society generated from this contingency. One can see here how the 

decision boundary of committing fraud is negatively linearly related to higher income and 

education. However, disability raises the probability of an individual to commit fraud. 

Furthermore, the generated variables further contribute to a linear relationship between them 

and the individual’s fraud classification. The first and second generated variables reduce the 

fraud probability, while the fourth variable linearly increases the fraud probability. The third 

generated variable shows no major contribution to the decision boundary. All variables have an 

underlying direct or indirect relation to the protected attributes (as indicated in Figure 3 in 

Chapter 3). This means that while the protected attributes are not present in the decision 

boundary setting, they are still indirectly linked to it through the proxy variables depicted in 

Figure 19. Hence, the Figure shows realistic connections between the features and fraud 

outcome, considering underlying and non-visible societal factors.  

 
Table 7. 
Overview of the currently tested data characteristics 
 Decision Boundary 

Distribution  

of outcome 

Linear, 

Non-scarce outcome 

Non-linear, 

Non-scarce outcome 

Linear, 

Scarce outcome 

Non-linear, 

Scarce outcome 

 

In Figure 19, the positive cases (red, committed fraud) are linearly separable from the negative 

cases (blue, no fraud committed). However, this data set's challenge arises from its scarce 

distribution, with only 4% of the cases being classified as fraudulent. This mimics the often-

present challenge of the target variable being rarely distributed. Conclusively, this might allow 

algorithms that assume linearity within the data to work as well as more flexible algorithms. 

However, the challenge of picking up on patterns associated with positive classification 

sufficiently affects all the applied algorithms. The class imbalance poses the problem that the 

classifier might be biased towards the majority outcome, achieving high accuracy while failing 

to detect fraudulent instances reliably.  
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Figure 19. 
Relationship of fraud probability and classification by features 

 
 
Overview of decision point impact 
Before introducing the mean change within each decision point, the overall performance for 

each method in each decision point is explored. Figure 20 shows the four decision points 

performing under the default threshold of 0.5 for AUC, FNR, and FPR. It shows the mean 

values (bars) and their standard variations (error bars) calculated from model combinations that 

contain the engineering choice, as detailed in the exemplary analysis in chapter 3.  
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Beginning with the choice of imputation method, there seems to be no remarkable difference 

between any performance metric and the chosen imputation method, with mean values and 

standard deviation being similar across both methods. However, the chosen scarcity 

intervention shows the highest effect on the fairness metrics, while the AUC remains 

substantially consistent. Not introducing any scarcity intervention has a high impact on the 

FNR, which reflects the challenge of a classifier not being biased towards the majority class 

and failing to identify fraudulent cases. Furthermore, for scarcity intervention, the error bars 

show no high variation in the differentiating outcomes, apart from the FNR performance in 

pipelines using random oversampling.  

The algorithm choice reflects that the logistic regression works well under the linearly separable 

environment, indicated by the high AUC values. Furthermore, the other algorithm choices show 

a higher impact on the FNR. However, the FPR behaves similarly between the algorithm 

choices. The high impact of algorithm choice also manifests in greater variability of mean 

values shown by the standard deviations. Lastly, the hyperparameter tuning shows the potential 

to increase the FNR further. This is also reflected in the standard deviations for the FNR, 

showing great potential for changing FNR.  

Figure 20. 
Mean performance for each investigate engineering choice within the pipeline 
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The mean changes that occur when changing one decision while keeping the remaining decision 

points constant can reveal the change potential within the inspected decision point. This mean 

change for each decision point is detailed in Figure 21 and derives according to the detailed 

analysis in Chapter 3.  

 
Figure 21. 
Mean differences in performance and fairness for different decision points 

 
Figure 21 shows the main potential to change the FNR and FPR in the model's predictions, 

which lies within the scarcity intervention. This is consistent with the common challenge that 

arises from unbalanced datasets, as not addressing the imbalance can introduce a high FNR. 

Algorithm choice and tuning similarly impact the model's fairness, with hyperparameter tuning 

showing the highest variability as indicated by the standard deviations. However, imputation 

does not enforce change potential on the model's fairness as much as the other decision points 

do. The following sections will detail the change potential within each decision point, following 

the order of the standard ML classifier pipeline. 

First decision point: data imputation 
Data imputation is the first decision point within the pipeline that is assessed for its effect on 

the classifier's fairness outcome. The formerly introduced mean difference in fairness on the 

decision point and its standard deviation are separated between the eight subpopulations that 

are cross-sectional between the binary sensitive attributes of gender, ethnicity, and disability.  

Figure 22 shows how different groups are affected by the imputation choice. Overall, the choice 

of imputation does not have a large effect on the fairness outcome of the overall model 

compared to the other decision points. However, in terms of change in FPR and FNR, the female 
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X minority X disabled subpopulation seems to experience the largest change. This shows that 

imputation affects the most disadvantaged group within the population in terms of mean values 

and standard deviation. Generally, the more vulnerable a subpopulation is, the higher the 

variability, as the error bars indicate. This might indicate that with data not missing at random, 

especially those subpopulations more prone to omitting their data are affected by the chosen 

imputation method. Similarly, cases of male minority groups show higher change in FNR 

depending on the data imputation, with minority classes having a higher probability of missing 

data.  

 
Figure 22. 
Mean difference in FNR and FPR for subpopulations created by data imputation 

 
Conclusively, there are differences in how subpopulations are treated depending on the missing 

data imputation. With vulnerable groups more often omitting data, they seem to have more of 

an effect on changing fairness outcomes by the chosen imputation method. However, the mean 

differences are not significant compared to the differences created within the other decision 

points.  
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Second decision point: scarcity intervention 
The second explored decision point is the scare outcome intervention, which already 

demonstrated the greatest fairness change potential on the initial overview, especially for FNR 

(see Figure 21).  

Figure 23 shows this mean change separated by the eight subpopulations to show how different 

subpopulations might be affected differently by the scarcity intervention. It shows for the most 

disadvantaged group (female X minority X disabled) that the change in FPR and FNR is both 

relatively high, showing that this subpopulation can experience very different treatment 

depending on the chosen intervention with the vulnerability of having increased FPR more than 

any other subpopulation. Generally, the FNR changes the most, showing that scarcity 

intervention is vital to make the classifier more sensitive towards positive classifications. 

Overall, the impact of the FNR appears higher for the female subpopulations than for the males, 

potentially, as in the simulated society, the females commit more fraudulent cases compared to 

the males. Hence, it is also vital to consider the intervention's effect on the FPR, as it is higher 

for female individuals with an additional vulnerable attribute. In conclusion, the scarcity 

intervention affects individuals with a vulnerability level of two or higher (as indicated in 

Chapter 3, Table 2). In terms of variability, expressed in standard deviation, the performance 

remains similar across the subpopulations. 

Figure 23. 
Mean difference in FNR and FPR for subpopulations created by scarcity intervention 
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In conclusion, while the scarcity interventions might counter the increased FNR, they also show 

the potential to affect the FPR for the more vulnerable groups with two or more sensitive 

attributes. 

Third decision point: algorithm choice 
The next decision point elaborated in greater detail is the algorithm choice, which is 

investigated on their fairness impact on different subpopulations. Figure 24 again demonstrates 

the overall change potential of the algorithm decision point separated into the eight populations. 

Overall, it shows that the most significant potential change in fairness outcome is within the 

FNR, which aligns with the common challenge of the scarcely distributed outcome. 

Subpopulations with a vulnerability level of two or higher show higher FNR and FPR, 

presenting that they will be the most impacted individuals by the decision for an algorithm. The 

most advantaged group (male X majority X non-disabled) showed the lowest FPR, showing 

that the choice of the algorithm showed the lowest possible risk of adverse treatment for them 

compared to the other groups. 

Similarly, as to the previous decision point, the most vulnerable group (female X minority X 

disabled) shows the highest potential impact of algorithm choice in terms of risk of adverse 

treatment. The variability in mean outcome remains similar between most of the 

subpopulations. However, the group of male X minority X non-disability shows a higher 

standard deviation, indicating that their FNR results vary the most depending on the algorithm 

choice.  

Figure 24. 
Mean difference in FNR and FPR for subpopulations created by algorithm choice 

 



 
 

59 

In conclusion, the choice of algorithm can impact the FPR more for more vulnerable individuals 

than for less vulnerable individuals. Furthermore, the greater change in FNR reflects how 

different algorithms might be more successful in dealing with the scarce outcome distribution, 

especially affecting the female subpopulations.  

Fourth decision point: hyperparameter tuning 
For the investigation of hyperparameter tuning, the models with hyperparameters to be tuned 

are considered, excluding logistic regression, as logistic regression has no typically tunable 

hyperparameters. Overall, the tuning shows some impact on the fairness measures, which 

exceeds the impact of missing data imputation. However, it does remain low compared to the 

impact of scarcity intervention. Figure 25 shows that the impact mainly resides in the FNR, 

which reflects that the tuning is affected by the challenge of the scarce outcome distribution.  

Overall, the female subpopulations show a greater change in FNR by tuning than the male 

subpopulations. Again, the greatest change is experienced by the most disadvantaged 

subpopulation (female X minority X disabled). Generally, Figure 25 shows the additive effect 

of vulnerable attributes; the more vulnerable attributes an individual carries, the more affected 

it is by the tuning of the model. In conclusion, subgroups with a vulnerability level of at least 

two show greater change potential through the model-tuning process. 

Figure 25. 
Mean difference in FNR and FPR for subpopulations created by hyperparameter tuning 

 
Since two different models are applied that have different hyperparameters to be optimized, the 

optimization impact is probed for one hyperparameter for each tunable algorithm, XGBoost 
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and Random Forest. This aims to give some insight into the potential fairness differences 

elicited by hyperparameter tuning, acknowledging a diverse range of hyperparameters for 

different ML algorithms.  

Beginning with XGBoost, the maximal depth the individual trees are set to grow to is optimized 

while keeping the other hyperparameter values (such as gamma, eta, and subsample) in the 

default setting. Figure 26 shows that the optimal point for the AUC value is set at a low maximal 

depth. However, the FNR and FPR experience greater changes within the range of 1 to 6 in 

maximal depth and stabilize after. It shows that the set of the maximal depth parameter can 

influence the overall FNR and FPR balance. For instance, while the AUC value is comparable 

between the maximum depth of one and three, the outcome in terms of fairness is different. At 

the maximum depth of one, the fairness outcome would show a higher FNR and lower FPR, 

while for the maximum depth of three, it shows a higher FPR and a lower FNR, with both 

metrics approximating each other. Depending on the context, a higher FNR and lower FPR 

might be fairer for the model outcome; in other contexts, an approached balance between FNR 

and FPR might be desirable. In this case, the engineer would have two choices for the 

hyperparameter value that barely affects the performance in terms of AUC; however, it can 

show different overall fairness outcomes for the model.  

Figure 26 
Isolated tuning of XGBoost’s maximal depth and its impact on AUC, FNR and FPR 
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Secondly, the Random Forest is tuned, and to probe into its tuning effect, the hyperparameter 

of the maximum number of features chosen for each split (mtry) is tested, showing how the 

number of selected features in each tree can affect the performance outcome. Figure 27 shows 

this tuning process in isolation while setting the other hyperparameters (such as number of trees, 

criterion and minimum number of samples) at their default values. It shows two optimal 

maximum number of features in terms of AUC performance. Interestingly, in contrast to 

XGBoost, the overall change in FNR and FPR remains absent regardless of the chosen 

hyperparameter value. Hence, the decision for the hyperparameter value does not influence the 

fairness outcome of the model. 

 

Figure 27. 
Isolated tuning of Random Forest’s mtry and its impact on AUC, FNR and FPR 

 
Overall, this shows that the hyperparameter tuning of mtry for Random Forest is value-free 

regarding fairness outcome for the current data situation. However, the tuning of XGBoost 

shows that the choice of hyperparameter value can change the overall fairness outcome while 

not affecting the overall AUC performance of the model. This could indicate a diverse effect of 

hyperparameter tuning, with the tuning process being different for different ML models; the 

effect might differ depending on the data situation and the chosen model. 
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Fifth decision point: threshold setting 
Lastly, the threshold setting is assessed. While the previous decision points were all evaluated 

on the default threshold (cut-off at 0.5), the threshold might be adjusted depending on the 

overall goal of the classifier and domain-specific considerations. For this, a more stringent (cut-

off at 0.9 quantile of fraud probability) and more lenient (cut-off at 0.1 quantile of fraud 

probability) threshold compared to the default threshold is introduced to see how different 

groups might benefit or be harmed differently by them.  

First, the impact on the FNR, depending on the threshold, is considered in Figure 28. It shows 

a high FNR for the more advantaged male subpopulations using the lenient threshold (above 

0.9 quantiles). The more vulnerable attributes the defined subgroup has (level two or higher), 

the lower their FNR under the lenient threshold compared to the default threshold. More 

advantaged groups derive the more considerable benefit of a more lenient threshold, showing 

that rising the threshold does not eliminate potential bias towards disadvantaged 

subpopulations. Overall, the stringed threshold (above 0.1 quantile) lowers the FNR to 

comparable levels across subpopulations. However, the most advantaged subpopulation shows 

an overall higher FNR even under the stringent threshold, indicating that they benefit from this 

threshold setting. The variability in the outcome is similar across the subpopulations, apart from 

the male X majority X disabled group, where the FNR remains consistently at 1.0, and hence 

the standard deviation remains low. 

Figure 28 
Effect of threshold setting on FNR for different subpopulations 
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Figure 29 shows the impact of the threshold setting on the FPR. Overall, the lenient threshold 

lowers the FPR. However, this decrease is more substantial for more advantaged groups (with 

a vulnerability level of one or lower). Additionally, the variability in outcome is higher for more 

vulnerable groups, as the error bars indicate. The stringent threshold raises the FPR between all 

subpopulations, and there seems to be no pattern related to how different subpopulations might 

be affected differently in terms of mean outcome and standard deviation. 

 

Figure 29. 
Effect of threshold setting on FPR for different subpopulations 

 
 
In conclusion, the overall change of FPR and FNR introduced by the stringent threshold does 

not discriminate between subpopulations. However, the lenient threshold shows a higher impact 

for advantaged groups, giving them a higher FNR and a lower FPR than the more vulnerable 

groups. It shows an additive effect of several vulnerable attributes defining the subpopulations. 

Hence, raising the threshold mainly benefits the advantaged subpopulations while introducing 

less benefit to the more vulnerable groups.  
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Summary 
Overall, the decision point of scarcity intervention shows the highest impact on the model's 

fairness outcome, especially in terms of FNR. Scarcity interventions counteract the increased 

FNR that the scarce outcome distribution illicit. However, they also have the potential to change 

the FPR for vulnerable groups, introducing bias towards vulnerable individuals while benefiting 

advantaged individuals.  

The missing data imputation demonstrated the lowest impact on fairness change among all 

decision points. However, it also demonstrated that vulnerable groups can be differently 

impacted by the choice of imputation method, while advantaged groups show more stable 

performance across the choice of method.  

The choice of algorithm significantly impacts the FNR, showing how different algorithms better 

respond towards the linearity of the data and the scarce distribution of the outcome. 

Furthermore, the choice of algorithm again shows more change potential in fairness measures 

for the vulnerable subpopulations compared to the advantaged subpopulations.  

Hyperparameter tuning exhibits a more noteworthy change in vulnerable groups. Isolated 

observations of single hyperparameters showed that XGBoost’s maximal depth hyperparameter 

could give varying results in terms of FPR and FNR. In contrast, for Random Forest’s maximal 

number of features hyperparameter, the fairness outcome remains stable regardless of the 

chosen value.  

Lastly, the threshold setting shows that the stringent threshold shows similar fairness outcomes 

across all subpopulations, while the lenient threshold mostly benefits more advantaged 

individuals and approaches similar results as the default threshold for the vulnerable 

subpopulations.  
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Table 8. 
Summary of insights from data with scarce outcome and linear decision boundary 
Decision Point Impact on Fairness (FNR, FPR) Subpopulation Variability and 

Key Observations 
Missing Data Imputation Minimal overall fairness 

impact; generally low on FNR 
and FPR 

Most disadvantaged groups 
experience highest change, 
likely due to higher likelihood 
of data omission  
 

Scare Outcome 
Intervention 

Highest overall impact, without 
intervention, classifier shows 
high FNR (majority class bias) 
 

Vulnerable groups face 
increased FPR 

Algorithm Choice High impact on FNR, logistic 
regression performs well under 
linear separability 

Vulnerable groups show 
greater FNR and FPR and 
variability 
 

Hyperparameter Tuning Primarily affects FNR  Most vulnerable groups 
experience greatest change, 
XGBoost tuning shows effect, 
while Random Forest tuning is 
value-free 
 

Threshold Setting Lenient threshold benefits 
advantaged groups with higher 
FNR, stringent threshold gives 
more consistency across groups 

Vulnerable groups benefit less 
from lenient threshold. 
Stringent threshold reduces 
FNR disparities 
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Third data situation – Non-linear decision boundary with non-scarce 
outcome 
This data situation is defined by a non-linear decision boundary and a non-scarcely distributed 

outcome variable. Table 9 shows the characteristics of the currently inspected data among the 

four different datasets. Overall, the non-linear relationships between the fraud probability and 

the features show a non-linear decision boundary between the features and the fraud 

classification. Those non-linear relationships are visible in Figure 30. The outcome of the fraud 

classification is non-scarce, making up 25% of the overall cases, which poses less of a challenge 

to the classifier pipeline to fail to identify fraud classifications. This reduces the challenge to 

the non-linearity of the decision boundary with more complex relationships between fraud 

outcomes and the features that might not be easily identified by engineering choices that assume 

linearity.  

 

Table 9. 
Overview of the currently tested data characteristics 
 Decision Boundary 

Distribution  

of outcome 

Linear, 

Non-scarce outcome 

Non-linear, 

Non-scarce outcome 

Linear, 

Scarce outcome 

Non-linear, 

Scarce outcome 

 
A closer look at Figure 30 shows the non-linear relationship between the fraud outcome and the 

features. The income variable shows a higher risk for fraud commitment in lower-class 

households, with a higher middle-class increase in fraud rate and a dip for the lower middle 

class. Higher levels of education generally decrease the probability of fraud; however, the 

differences between the levels of education are non-linear. Disability positively contributes to 

fraud probability. Furthermore, the first and fourth generated variables negatively affect the 

outcome of fraud. However, the second and third variables show no straightforward relationship 

to the classification outcome. Figure 30 shows how a linear decision boundary cannot be 

assumed for this dataset, which could lead to poorer performance on models that assume this 

underlying linearity. 
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Figure 30 
Relationship of fraud probability and classification by features 
 

 
 
Overview of decision point impact 
Before investigating the mean change in each decision point, Figure 31 presents the mean (bars) 

performance and fairness outcome and their standard deviations (error bars) for each tested 

engineering choice. It shows that both missing data imputation methods show similar outcomes 

in terms of performance and fairness outcomes. The scarcity intervention shows less effect than 

the third data situation with scarce outcomes. However, not applying any scarcity intervention 

method still increases the FNR compared to utilized interventions. The algorithm choice shows 

that the logistic regression underperforms compared to the tree-based methods in terms of AUC, 
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which shows that this algorithm could be more optimal for coping with the non-linearity of the 

data. However, between algorithm choices, the fairness outcome remains relatively consistent. 

The fairness outcome remains consistent for tuned and untuned model configurations. Overall, 

the standard deviations of the performances remain similar across all contingencies.  

 
Figure 31. 
Mean performance for each investigate engineering choice within the pipeline 

 
 
Moving between different pipeline setups considering the previous choices, there is a mean 

difference in the fairness outcome between them while keeping the other engineering choices 

constant. Those mean differences (bars) and their standard deviations (error bars) are illustrated 

in Figure 32, showing that scarcity intervention and algorithm choice show the most 

considerable change in fairness outcome regarding mean change and their standard deviation. 

However, compared to the previous data situations, the overall potential to change fairness 

outcomes within the decision points is lower. Additionally, the algorithm decision point shows 

the most remarkable change in AUC value, reflecting that the tree-based methods outperform 

the logistic regression by identifying more complex relationships between the features and the 

fraud outcome.  
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Figure 32. 
Mean differences in performance and fairness for different decision points 

 
Those mean changes will be further explored by investigating each decision point individually 

in the order of that standard ML classifier pipeline.  
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First decision point: missing data imputation 
The first decision point is the missing data imputation, which has the lowest impact on the 

fairness outcome out of all the decision points. Figure 33 shows that most of the subpopulations' 

mean differences in FNR and FPR are relatively consistent. However, the most disadvantaged 

group (female X minority X disabled) demonstrate a higher mean change in both fairness 

outcomes, showing that the imputation method similarly impacts the subgroups apart from the 

most disadvantaged one. Furthermore, their standard deviation is also the highest amongst the 

group, confirming that their change potential elicited by the imputation method is the highest. 

Figure 33. 
Mean difference in FNR and FPR for subpopulations created by missing data imputation 
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Second decision point: scarcity intervention 
The scarcity intervention demonstrated the highest change potential among the decision points. 

Figure 34 shows that the difference between scarcity interventions is higher for individuals 

belonging to subpopulations with at least one vulnerable attribute. The most disadvantaged 

group especially experiences the greatest variability in change, while the most advantaged 

group shows lower levels of mean change. This shows that the scarcity intervention mainly 

affects the more vulnerable subgroups.  

 

Figure 34 

Mean difference in FNR and FPR for subpopulations created by scarcity intervention 

 
Third decision point: algorithm choice 
The mean difference in fairness outcome by choice of algorithm is shown in Figure 35, showing 

that the choice of algorithm impacts the resulting fairness similarly between subgroups. 

However, the most disadvantaged subpopulation (female X minority X disabled) experiences 

the greatest change, differentiating itself compared to the impact on the other groups. 

Depending on the chosen algorithm, individuals from this subpopulation are more likely to 

experience varying fairness outcomes for both FNR and FPR. Additionally, the subpopulation 

composed of female X majority X disability shows higher changes in FPR for algorithm choice, 

showing that this group can potentially have an adverse fairness treatment depending on the 

chosen algorithm. In conclusion, the algorithm choice mainly affects female subpopulations 

with disability.  
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Figure 35 
Mean difference in FNR and FPR for subpopulations created by algorithm choice 

 
Fourth decision point: hyperparameter tuning 
Hyperparameter tuning has a greater impact on the FNR than on the FPR. Figure 36 shows that 

the impact is comparably similar between the subpopulations. The subpopulations defined by 

disability and minority ethnicity show higher values and variation in the FNR; however, apart 

from this instance, the fairness outcome depending on tuning does not largely differentiate 

between the subpopulations.  

Figure 36. 
Mean difference in FNR and FPR for subpopulations created by hyperparameter tuning 
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Probing into the tuning process more in detail, the XGBoost hyperparameter maximal depth 

and the Random Forest hyperparameter maximal number of features in each split are 

investigated more in detail while keeping the other hyperparameter values at their default.  

Figure 37 shows XGBoost’s maximal depth tuning, which peaks at four in terms of AUC value. 

However, if the engineer is interested in lowering the FPR, some difference could be achieved 

by lowering this hyperparameter setting from four to two at the cost of some decrease in AUC. 

Similarly, the FNR could be lowered by setting the maximal depth to six. Generally, the AUC 

performance between maximal depth set to four or five is comparable. However, it could 

decrease the overall FNR of the classifier. The engineer and the domain-specific responsibility 

need to consider these choices to achieve a lower FNR in the classifier.  

Figure 37 
Isolated tuning of XGBoost’s maximal depth and its impact on AUC, FNR and FPR 
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Similarly, the number of features selected in each node (mtry) is tuned for the random forest 

with results presented in Figure 38. Overall, the hyperparameter value only shows minimal 

change in the AUC value, and the fairness measures behave in a constant manner regardless of 

the hyperparameter setting. Hence, in this instance, the hyperparameter tuning of the number 

of selected features does not hugely impact the model performance, nor does the overall 

fairness.  

 

Figure 38 
Isolated tuning of Random Forest’s mtry and its impact on AUC, FNR and FPR 
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Fifth decision point: threshold setting 
Lastly, the threshold setting is considered, deviating from the previously only considered 

default threshold (cut-off at 0.5). Figure 39 shows the different impacts of threshold values on 

the FNR. Overall, the lenient threshold (cut-off at 0.9 quantiles) increases the FNR; however, 

the increase is higher for those groups that have no more than one sensitive attribute. The 

stringent threshold (cut-off at 0.1 quantiles) lowers the FNR and shows only a comparably 

increased FNR for the most advantaged group.  

 

Figure 39. 
Mean FNR by subpopulation and threshold setting 
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Figure 40 shows how the threshold setting influences the FPR across groups. The stringent 

threshold consistently increases the FPR for the subpopulations. The lenient threshold almost 

diminishes the FPR for the male subpopulations. However, the female subpopulations still have 

a higher FPR, even though it is reduced compared to the default threshold.  

 

Figure 40. 
Mean FPR by subpopulation and threshold setting 
 

 
Summary 
Overall, the non-linear decision boundary creates the greatest challenge in this data situation. 

However, this data set's characteristics are less challenging than those of the last data situation 

will be, as the outcome could be more accurately distributed. 

Beginning with the missing data imputation, the overall change potential in this decision point 

was the lowest. Its impact was constantly low, except for the most disadvantaged subpopulation, 

which experienced increased change potential in both fairness measures by the imputation 

method. 

The scarcity intervention had the largest impact of all decision points; however, it was lower 

compared to the scarce data situations. Subgroups defined by two or more sensitive attributes 

had greater changes and variability in the changes of the fairness measures, showing that 

scarcity intervention has the largest impact on disadvantaged groups.  
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The algorithm choice showed consistent changes in fairness across the subpopulations. 

However, the most disadvantaged subpopulation was disproportionally impacted on FNR and 

FPR by the choice of algorithm compared to the other subpopulations, showing that the 

combination of multiple vulnerable attributes might increase the risk of different treatments 

depending on the choice of algorithm. 

The tuning process only minimally impacted the overall fairness outcome, with a somewhat 

higher impact on subpopulations defined by disability and minority ethnicity. The tuning of the 

XGBoost hyperparameter showed some options to achieve some adjustments to the fairness 

outcome without decreasing the AUC value. However, the Random Forest maximum number 

of features did not reveal any potential to impact the fairness outcomes.  

Lastly, the threshold setting demonstrated that the stringent threshold successfully lowers the 

FNR and increases the FPR across subpopulations. However, it seems to impose harder 

judgement on more disadvantaged groups. The lenient threshold benefits all subpopulations; 

however, the benefit is higher if the subgroup is defined by fewer sensitive attributes. 

Table 10. 
Summary of insights from data with non-scarce outcome and non-linear decision boundary 
Decision Point Impact on Fairness (FNR, FPR) Subpopulation Variability and 

Key Observations 
Missing Data Imputation Overall lowest impact Most disadvantaged group 

shows highest mean and 
variability 

Scare Outcome 
Intervention 

Highest impact, mitigates 
increase FNR, lower impact 
than in scarce outcome 
situation 

Higher impact on groups with 
multiple sensitive attributes 

Algorithm Choice Outcomes consistent between 
different algorithms 

Most disadvantaged group 
experiences greater change in 
FNR and FPR, data is handled 
better by tree-based methods 

Hyperparameter Tuning Minimal effect, slightly higher 
impact on FNR than on FPR 

Higher impact on groups of 
minority and disability 

Threshold Setting Lenient threshold reduces FPR 
especially for advantaged 
groups 

The more advantaged the 
group, the more positively it is 
affected by the lenient 
threshold and negatively 
affected by the stringent 
threshold 
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Fourth data situation – Non-linear decision boundary with scarce outcome 
The last data situation poses the greatest challenge to the ML pipeline among all four data 

configurations. It is characterized by a non-linear decision boundary and a scarce outcome 

distribution, with non-fraudulent cases (96%) outweighing fraudulent cases (4%). Table 11 

shows the last investigated data situation in the context of the four different data configurations. 

 

Table 11. 
Overview of the currently tested data characteristics 
 Decision Boundary 

Distribution  

of outcome 

Linear, 

Non-scarce outcome 

Non-linear, 

Non-scarce outcome 

Linear, 

Scarce outcome 

Non-linear, 

Scarce outcome 

 

Figure 41 displays the relationship between income and fraud commitment, demonstrating that 

lower income leads to higher fraud probability. However, it also assumes the non-linear trend 

of the lower middle class being less prone to fraud and the upper middle class being more prone 

to committing fraud. Additionally, the continuously generated variables exhibit non-linear 

relationships to the fraud outcome; compared to the first two data situations with a linear 

decision boundary (see Figure 19 and Figure 30), the patterns of the decision boundary are 

strongly distinguished. Furthermore, higher levels of education assume lower levels of fraud. 

However, the decrease between levels of education is non-linear. Disability increases the fraud 

probability. Additionally, the first generated variable decreases the fraud probability, while the 

third generated variable shows no meaningful connection to the fraud outcome. The fourth 

generated variable shows an overall decrease in the probability of fraud, with a non-linear 

connection. 

  



 
 

79 

Figure 41. 
Relationship of fraud probability and classification by features 
 

 
 
Overview of decision point impact 
Before investigating the potential change each decision point asserts towards the fairness 

measures, the overall performance and fairness outcome for each decision point are detailed in 

Figure 42. Unlike the previous data situations, the mean value for FNR on the missing data 

imputation methods is higher. However, the differences between the methods remain little. The 

scarcity intervention shows that when not applying an intervention, FNR increases, which 

shows how the models do not sufficiently pick up on the fraudulent cases, resulting in a low 
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FPR. In this case, the models show a majority class bias, missing the patterns around the 4% of 

fraudulent classifications. The chosen scarcity intervention can lead to an overall higher FNR 

with random oversampling or a balance between FNR and FPR for random undersampling. The 

algorithm choice affects the AUC value, with the tree-based methods achieving higher AUC 

values than the logistic regression. Overall, the tree-based methods have an increase in FNR 

and a decrease in FPR compared to the logistic regression. Lastly, tuning the hyperparameters 

shows a tendency to increase FNR and decrease FPR compared to the untuned models. The 

variability in fairness measures is higher for algorithm choice and hyperparameter tuning than 

for the imputation method and scarcity intervention. 

 

Figure 42. 
Mean performance for each investigate engineering choice within the pipeline 

 
The differences in the performance of options within the same decision points are visualized in 

Figure 43 as mean change (bars) and their standard deviations (error bars) while keeping the 

other engineering choices constant. The scarcity intervention exhibits the most remarkable 

change potential, especially for the FNR. Algorithm choice and tuning further impact the 

fairness measures; however, missing data imputation only has a limited impact on the overall 

fairness outcome of the pipeline. These tendencies match the outcome of the scarce data 

situation with a linear decision boundary, which has a higher impact on algorithm choice and 

tuning. 
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Figure 43. 
Mean differences in performance and fairness for different decision points 

 
The mean differences in each decision point are assessed in more detail by separating the 

changes according to the eight subpopulations. This will give insight into whether the change 

potential is more prevalent in specific subpopulations than others. The decision points will be 

explored in the standard ML classifier pipeline order. 

First decision point: missing data imputation 
The missing data imputation shows the smallest effect on fairness measures among all evaluated 

decision points. Figure 44 shows how the chosen data imputation method expressed differently 

in the eight subpopulations regarding fairness outcome. Generally, it shows relatively similar 

patterns across the subpopulations since it exhibits little impact on the fairness outcome. 

However, there is a tendency for greater variability for the FNR compared to FPR, and more 

considerable changes in this fairness measure are expected depending on the chosen imputation 

method. Generally, subpopulations with two or more vulnerable attributes show greater 

differences in the impact of the imputation method, which could be explained by their values 

not missing at random but being related to their group membership.  
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Figure 44. 
Mean difference in FNR and FPR for subpopulations created by missing data imputation 

 
 

In conclusion, the impact of the missing data imputation on the fairness outcome are limited. 

However, the overall mean change and variability is higher in the FNR. Additionally, groups 

with a vulnerability level of two or higher experience higher change potential due to the 

imputation methods than less vulnerable groups.  
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Second decision point: scarcity intervention 
The scarce outcome intervention exhibits the greatest change potential in fairness outcome 

amongst all inspected decision points. Figure 45 demonstrates how this change is differentiated 

between the subpopulations. There is a variable impact on the chosen intervention for the 

different populations, with populations of vulnerable level one or lower being less impacted by 

the choice. Hence, the male population with one or less vulnerable attributes are less affected 

by the scarcity intervention. However, the most vulnerable male subpopulation (male & 

minority X disabled) shows an increased impact of the scarcity intervention, with increased 

change mainly for the FNR and the FPR. The female subpopulations are affected the most, 

exhibiting higher FPR and FNR than the male subpopulations. The more vulnerable attributes 

are collected in a subpopulation, the higher the change in fairness outcome will be, depending 

on the chosen scarcity intervention. The variability in terms of standard deviation remains 

similar across subpopulations. 

 

Figure 45. 
Mean difference in FNR and FPR for subpopulations created by scarcity intervention 

 
In conclusion, scarcity intervention affects the most vulnerable subpopulations, especially 

amongst the female populations. However, the more advantaged populations experience less 

impact by the scarcity intervention, showing that they are less vulnerable to experiencing 

adverse effects depending on the chosen intervention. 
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Third decision point: algorithm choice 
The overall impact of the algorithm's choice on the fairness measure's mean change is separated 

by subpopulation in Figure 46. It shows a relatively consistent impact between most 

subpopulations, with balanced changes in FPR and FNR. The greatest change is experienced 

by the male X majority X disabled group, with increased change in FNR and FPR. A similar 

impact can be seen on the most disadvantaged group (female X minority X disabled). The most 

advantaged group has the lowest impact (male X majority X non-disabled). Lastly, the 

variability (expressed as standard deviation in error bars) is higher for higher levels of 

vulnerability.  

 

Figure 46. 
Mean difference in FNR and FPR for subpopulations created by algorithm choice 

 
 
Overall, the effect of algorithm choice is approximately consistent across most subpopulations. 

However, the most advantaged subpopulation experiences less risk of changes in the FPR. 

Meanwhile, two disadvantaged groups show greater changes in both fairness measures. 
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Fourth decision point: hyperparameter tuning 
Generally, the hyperparameter tuning process shows greater FNR changes than the FPR. 

Looking at the changes by subpopulation, the mean change in the fairness measure is 

approximately similar between the groups. However, the error bars indicate that the standard 

deviation is higher in the FNR for the disabled subpopulations, showing that their fairness 

results vary more than those of the non-disabled subpopulations.  

 

Figure 47. 
Mean difference in FNR and FPR for subpopulations created by hyperparameter tuning 

 
 

The hyperparameter tuning process is further probed by isolating the tuning of one 

hyperparameter for XGBoost and Random Forest while keeping the other hyperparameters at 

their default value. Figure 48 shows the tuning process of XGBoost, which only considers the 

maximal depth parameter. It shows that the AUC value peaks at the setting of two, while the 

fairness measures show varying outcomes depending on the chosen value. However, the AUC 

peak is relatively isolated, with other choices leading to a more considerable decrease in the 

AUC value, meaning that choosing the hyperparameter according to the fairness outcome will 

introduce a loss in the model performance. At the optimal maximal depth value, the FNR is 

increased compared to one value lower, which would lead to a decreased FNR. However, if an 

engineer made this decision, the AUC value would decrease more than in previous data 

situations. On the other side, making this decision on the sole basis of engineering perspective 

without paying attention to fairness concerns, the overall AUC performance would be higher. 
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Figure 48. 
Isolated tuning of XGBoost’s maximal depth and its impact on AUC, FNR and FPR 

 
For the Random Forest, the hyperparameter that sets the number of features selected in each 

split (mtry) is probed with results shown in Figure 49. The plot shows only minimal changes in 

the AUC value for this hyperparameter, with two peaking values. With the first value setting 

the maximum number of features to one, the FNR and FPR would be reasonably balanced; 

however, setting the hyperparameter to four, the FPR would be higher, and the FNR would be 

lower. Hence, the engineer could decide on the approximation of the fairness measures. 

However, it is essential to note that the difference in both AUC and the fairness measures is 

minimal, depending on the value of the hyperparameter.  

Figure 49. 
Isolated tuning of Random Forest’s mtry and its impact on AUC, FNR and FPR 
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Fifth decision point: threshold setting 
Lastly, the impact of threshold setting is assessed separately from the previous decision points 

that only considered the default threshold (cut-off at 0.5 fraud probability). The FNR is 

increased by the lenient threshold (cut-off over 0.9 quantiles). However, the increase stays 

relatively close to the default outcome. However, with the stringent threshold (cut-off over 0.1 

quantile), the FNR is minimized, with mostly only the most advantaged subpopulation having 

varying FNR. This shows that the stringent threshold can still benefit the advantaged 

subpopulation while correcting for wrongfully negative classifications in all other subgroups. 

The standard deviations of the mean fairness performances remain relatively similar between 

the subpopulations.  

 

Figure 50. 
Effect of threshold setting on FNR for different subpopulations 

 
The stringent threshold increases the FPR for all groups, with a lower impact on the most 

advantaged subpopulation. The lenient threshold almost diminishes the FPR for the male 

groups; however, the more sensitive attributes a group is defined by, the more the FPR of the 

lenient threshold approaches the values of the default threshold. 
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Figure 51 
Effect of threshold setting on FPR for different subpopulations 

 
In conclusion, the more privileged a subpopulation is, the more it benefits from different 

threshold settings, making the threshold setting ineffective as a moderator for between-group 

discrepancies in fairness outcomes.  

Summary 
Overall, this data situation was the most challenging one for the ML pipeline to tackle, with a 

non-linear decision boundary and scarce outcome distribution. The different decision points 

exerted different influences on the fairness outcomes for the subpopulations.  

Generally, the missing data imputation had the smallest impact; however, it showed a tendency 

to have a greater impact on groups defined with two or more vulnerable attributes.  

The scarcity intervention had the most considerable impact on fairness outcome change. 

Generally, the chosen scarcity intervention showed the most prominent difference for 

vulnerable female subpopulations, with less vulnerable groups showing fewer mean changes in 

fairness outcome depending on the scarcity intervention.  

The choice of algorithm had an overall consistent impact on the fairness outcome for most 

subpopulations; however, two vulnerable groups experienced greater mean changes, while the 

most advantageous subpopulation was less prone to changes in FPR.  

The hyperparameter tuning did show that disabled subpopulations experience greater variety in 

fairness outcomes compared to the non-disabled groups. However, probing singular 
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hyperparameters did not reveal feasible options to impact the fairness outcome without reducing 

the overall model performance. 

Lastly, the threshold setting can rebalance the FNR and FPR; however, the least advantaged 

groups are more negatively affected by the stringent threshold than the advantaged groups. 

Additionally, the lenient threshold is of larger benefit for the more advantaged subpopulations.  

Table 12. 
Summary of insights from data with non-scarce outcome and linear decision boundary 
Decision Point Impact on Fairness (FNR, FPR) Subpopulation Variability and 

Key Observations 
Missing Data Imputation Minimal overall fairness 

impact with slight tendency for 
higher FNR 
 

 Higher impact on vulnerability 
level two or higher for FNR 

Scare Outcome 
Intervention 

Highest overall impact 
Not applying method raises the 
FNR and lowers FPR (majority 
class bias) 

Greater impact on vulnerable  
subgroups, especially females 
Undersampling balances FNR 
and FPR 
 
Oversampling raises FNR 

Algorithm Choice Moderate impact 
Tree-based methods increase 
FNR and decrease FPR 
compared to logistic regression 
 

Higher impact on disabled and 
minority groups, advantaged 
groups experience least change 

Hyperparameter Tuning Increases FNR compared to 
untuned, trade-off between 
performance and fairness  

Disabled groups show higher 
variability, limited potential to 
increase fairness without 
reducing performance 
 

Threshold Setting Stringent and lenient threshold 
moderate FNR and FPR 

Least advantaged groups see 
mire negative impact, still 
favoring advantaged groups 
with higher FNR and lower 
FPR 
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Chapter 5 – Discussion 

The following chapter aims to summarize the principal highlights from the analysis section and 

draw overarching conclusions on what those results could imply for future fair ML 

considerations. Each decision point will be discussed separately, considering the different data 

situations and showing how engineering choices can impact fairness codependently with the 

underlying data structure. It will highlight similarities and differences between the change 

potential in decision points depending on the data situations.  

The decision points were analyzed using a simulated population that is assumed to be fully 

representative. The simulation depicts how certain factors, such as income and education, could 

impact an individual’s likelihood of committing social benefit fraud. The population contains 

underlying connections to sensitive attributes of gender, ethnicity, and disability, modelling 

realistic societal influences of sensitive attributes towards the outcome of variables such as 

income and education level. Missing data was introduced, with individuals from protected 

groups having a higher probability of omitting data, indicating that data is missing not at 

random. As social benefit fraud is assumed to be a rare instance, scarce outcome distribution 

only contains 4% of fraudulent cases, while the non-scarce data situations contain 25%. In the 

modelled society, individuals with protected attributes (e.g., women, minority ethnicity, 

disabled) tend to more often commit social benefit fraud, with the accumulation of protected 

attributes increasing this inclination, as the proxy variables (e.g. income and education) are 

affected differently depending on the subpopulation status. Using ML classifiers to predict 

whether an individual would commit fraud, different decision points with different options are 

evaluated towards their impact on the model performance and fairness.  

The model fairness is assessed through the FNR and FPR, which are central fairness measures 

used in fair ML. In this case, they represent both the stakeholders of the ML classifier, which 

would be the contracting authority and the evaluated individuals. The FNR represents the 

proportion of false negative classifications, meaning that an individual would not be classified 

as fraudulent even though they committed fraud. A higher FNR is in the interest of the evaluated 

individuals, giving them a higher chance to remain undetected. Hence, a group that shows 

substantial changes in FNR within a decision point shows the potential to get favoured through 

it. Reversely, the contracting authority would be interested in maintaining a low FNR as they 

are interested in not missing potentially fraudulent individuals. The second measure, FPR, 

shows the proportion of wrongful positive classifications, which, in this case, means that an 
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innocent individual would be accused of fraudulent activity. The interest in a low FPR is higher 

for the evaluated individuals, as a wrongful accusation could harm them. Hence, if a group 

experiences higher FPR changes in a decision point, this shows that this decision point can elicit 

adverse treatment for them.  

Change potential of decision points 
The average change in fairness measures was obtained for four different data situations for each 

decision point, showing how individuals might be impacted depending on the options chosen 

within that decision point. Figure 52 shows the previously presented overall change potential 

of the decision points on the datasets using the default threshold (0.5), giving a broad insight 

into how the influence of decision points can vary depending on the underlying data situation. 

The impact of threshold setting is investigated in a separate section below.  

 

Figure 52. 
Mean change in each decision point contrasted by data situation 
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Figure 52 shows that the highest change potential in fairness measures is contained within the 

dataset with scarcely distributed outcomes and a non-linear decision boundary, showing that 

the engineering choices might show the highest impact under more complex data 

characteristics. Overall, the scarcity intervention demonstrated the highest effect in all datasets, 

although its impact is more substantial within the scarce outcome data. The missing data 

imputation had the most negligible impact among all the decision points. However, this 

influence may increase considering a scenario with a higher proportion of missingness. The 

algorithm choice showed a higher impact with more complex data situations, again having the 

highest impact on fairness measures for the data situation with scarce outcomes and non-linear 

decision boundaries.  

Lastly, tuning showed the most impact on the scarce datasets. Generally, the decision points 

influenced the FNR more than the FPR. This gives an overview of the general change potential 

of each decision point, showcasing that the choices elicit more considerable change for more 

complex data characteristics and making scarcity intervention the most influential decision 

point on fairness measures while missing data imputation barely carries a change potential. 

Those decision points will be discussed in further detail, considering their differentiated 

influences on the underlying subpopulations defined by their combination of protected 

attributes.  

Missing data imputation 
Across all data situations, missing data imputation has a negligible effect on the fairness 

outcome. However, there are still some visible different impacts depending on the 

subpopulation. Depending on the imputation method, more disadvantaged groups show higher 

variability in their fairness outcome. This pattern demonstrates that imputation methods can 

impact fairness outcomes, particularly for disadvantaged groups whose data is more likely to 

be missing not at random. The overall impact was higher for the data situations with scarce 

outcomes, demonstrated by a larger variety in fairness outcomes, especially for the disabled 

subpopulations. Overall, non-linear and scarce data contexts amplify fairness disparities more 

for the most disadvantaged subpopulations (e.g., female, minority, disabled). This indicates that 

tailored imputation strategies considering group-specific risks could mitigate adverse fairness 

impacts in more complex decision scenarios. 

A potential weakness in considering this decision point is that only one proportion of missing 

data was considered. For more insight into the fairness impact of missing data, higher 
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proportions of missingness could have been considered. In this case, the number of missing 

values might have been too low to unveil substantial revelations on the effect of imputation.  

Nevertheless, while missing data imputation has a lower overall fairness impact, it 

disproportionately affects certain vulnerable groups. Engineers should consider data sensitivity 

to missingness when selecting imputation methods, as this could mitigate or exacerbate fairness 

disparities depending on the subpopulation. 

Scarcity intervention 
Scarcity interventions consistently influenced fairness outcomes across all situations, especially 

for the vulnerable subpopulations. These interventions influenced fairness outcomes in scarce 

and non-scarce settings, though their impact is generally more intense in the scarce context. The 

effect on FNR was consistently high, with some interventions effectively mitigating increased 

FNR under scarce outcome distributions. However, this often came with a trade-off which 

introduced bias in FPR against vulnerable groups. In the linear data situations, the more 

advantaged subpopulations experienced less risk for FPR fluctuations but higher changes in 

FNR, offering them potential benefits compared to the vulnerable groups. In the non-linear data 

situations, scarcity interventions showed more significant variability, especially for 

disadvantaged groups with multiple sensitive attributes. These groups saw the highest mean 

change in fairness outcomes, with the scarcity intervention's effects consistently more 

pronounced than in the linear scenarios.  

 

Generally, the influence of scarcity interventions on fairness is more visible for non-linear and 

scarce data characteristics, where subpopulations with multiple sensitive attributes undergo the 

most substantial changes. In contrast, the linear/non-scarce setup shows significant effects but 

less variability among disadvantaged groups, which suggests that linear models may handle 

scarce data distributions with less adverse fairness impact. In conclusion, scarcity interventions 

are vital for moderating fairness for subpopulations, especially for the disadvantaged ones. 

However, scarcity interventions effectively reduce FNR, but they can also introduce FPR biases 

that disproportionately affect vulnerable groups. Adjusting for scarcity should be carefully 

considered to avoid unintended bias towards vulnerable groups. 

Choice of algorithm 
Algorithm choice consistently affects fairness across data situations with variations in FPR and 

FNR notably different between male and female subpopulations. Overall, vulnerable groups are 

more likely to experience changes in fairness metrics based on the algorithm choice, showing 
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the potential impact of this decision point on the fairness outcome. In both scarce and non-

scarce linear data, female subpopulations saw similar fairness outcomes regardless of algorithm 

choice. In contrast, male subpopulations experienced variability depending on their level of 

vulnerability, with minority ethnicity and disability negatively impacting their fairness 

outcome. The vulnerable groups saw higher FNR, reflecting differences in how algorithms 

handle linear, scarce outcomes. For the non-linear data situations, algorithm choice 

significantly impacted the FNR and FPR of the most vulnerable groups particularly females 

with disabilities. Advantaged groups showed less variability, while the most disadvantaged 

groups saw increased mean changes in FNR. 

Overall, in non-linear contexts, algorithm effects become more prominent for individuals with 

double vulnerability (specifically for female subpopulations with disabilities), indicating that 

non-linear decision boundaries may introduce unique fairness challenges for specific 

demographic traits. Linear models show relatively more stability, still the fairness impact varies 

by vulnerability level. In conclusion, algorithm selection can substantially impact fairness 

especially for the more vulnerable subpopulations. Fairness considerations should inform the 

choice of algorithm, as specific algorithms may offer better performance in managing fairness 

outcomes for groups with multiple vulnerabilities. 

Hyperparameter tuning 
Hyperparameter tuning shows a relatively consistent impact across situations, which gives 

options for fairness adjustments with minimal effect on AUC. This consistency highlights 

tuning as a feasible strategy for improving fairness without compromising model performance. 

For linear and non-scarce data, the lower maximum depth for XGBoost led to more minor 

differences in fairness metrics. At the same time, scarce data scenarios showed that tuning could 

balance FPR and FNR differently. Vulnerable subpopulations tended to benefit less from tuning 

adjustments, highlighting that tuning might not fully mitigate fairness issues for these groups.  

In non-linear situations, particularly with scarce data, maximum depth tuning in XGBoost 

showed isolated AUC peaks, making fairness tuning feasible with limited performance loss. 

However, disadvantaged groups saw more remarkable FNR changes, especially under non-

linear decision boundaries, where fairness adjustments had a more considerable impact. In 

contrast, tuning Random Forest's number of features used in each split shows that there is not 

always an impact on the fairness outcome. Hence, considering hyperparameter tuning, in some 

data situations, some hyperparameters can behave value-free and should be tuned towards 

maximum accuracy. In other situations, they offer several good choices with different outcomes 
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regarding fairness for a small accuracy trade-off. However, there are also scenarios where the 

choice dependent on the fairness outcome would result in more substantial accuracy losses. 

Overall, depending on the scenario, hyperparameter tuning may offer limited potential for 

fairness adjustments, while in others, it might show opportunities for fairness modifications.  

Overall, the investigation of the effect of hyperparameter tuning on fairness was heuristic and 

by far not extensive. For the pipelines' tuning process, only a few possible values were assessed 

due to computational constraints, leading to a simplified approach to the tuning process. Hence, 

the tuning set-up could have been more exhaustive for the investigated models. Furthermore, 

only two hyperparameters were investigated in more detail, giving a glimpse into the potential 

fairness impact but disregarding potential interplay with the tuning process of other 

hyperparameters kept at default.  

Nonetheless, the results indicate that hyperparameter tuning is valuable for balancing 

performance and fairness, especially in non-linear data situations. While tuning can improve 

fairness with minimal impact on AUC, it may still fail to address disparities for the most 

vulnerable groups. 

Threshold setting 
Across all data situations, the lenient threshold elicited some change compared to the default 

threshold and demonstrated disparate treatment between subpopulations, while the stringent 

threshold varied in its impact. Generally, the lenient thresholds across data situations tend to 

benefit more advantaged subpopulations by lowering their FPR, while stringent thresholds 

impacted groups similarly, showing less disparity in fairness metrics. In linear, non-scarce 

scenarios, lenient thresholds benefited male subpopulations more, while disadvantaged groups 

still faced higher FPR. In scarce data, lenient thresholds showed a similar pattern, with more 

advantaged subpopulations gaining more. In non-linear settings, lenient thresholds increased 

FNR more for advantaged groups but reduced FPR substantially for male subpopulations. 

Stringent thresholds, however, increased FPR across subpopulations, showing minimal 

discrimination across groups. 

Overall, for all data characteristics the lenient threshold disproportionately favors the 

advantaged groups. This means, the lenient threshold exacerbates FNR disparities for 

advantaged subpopulations. This indicates that threshold adjustments alone may not be 

sufficient to achieve equitable outcomes across all demographics. In conclusion, the threshold 

setting has mixed effects on fairness, often benefiting advantaged groups when set to lenient 
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values. While stringent thresholds provide consistency across groups in some data situations, 

they do not fully address biases, especially under non-linear decision boundaries. 

Overall conclusions 
Three overarching conclusions can be drawn from the observation of each singular decision 

point and its influence on the fairness outcome. Firstly, data situations and engineering choices 

are interdependent. The effect of each decision point varies across linear vs. non-linear and 

scarce vs. non-scarce data. Non-linear and scarce data scenarios heighten fairness disparities, 

making fairness-focused adjustments in ML pipelines more necessary. Hence, the engineering 

choices were not value-free in terms of the fairness outcome, confirming the hypothesis. 

However, the extent to which those choices affect the fairness outcomes depends on the 

complexity of the data characteristics. However, the analysis also gives insight into the 

consideration that there is no single solution to the fairness problem. Depending on the data 

characteristics, a decision point shows different effects on the fairness outcome, showing that 

the considerations must be weighted individually depending on the applied situation. 

Secondly, there is a need to tailor engineering choices while considering multiple 

subpopulations, as the overarching fairness outcome does not consistently apply to all the 

groups represented in the data. This is showcased in how vulnerable subpopulations face the 

highest disparities across all decision points. Adjusting choices such as algorithms, 

hyperparameters and thresholds alone is essential but insufficient. Engineers must assess each 

pipeline component’s impact on fairness to achieve equitable outcomes across all 

subpopulations. Hence, it is essential to remember the impact of fairness throughout the 

configuration of the entire pipeline.  

Lastly, with some decisions the engineer should consider balancing fairness and performance, 

as in some scenarios, fairness can be adjusted with only minimal losses in performance. 

However, while some adjustments (e.g., tuning, algorithm choice) allow for improved fairness 

without significant AUC loss, scarcity interventions and threshold settings reveal trade-offs that 

prioritize fairness for vulnerable groups at a performance cost for advantaged groups. Decision-

makers must weigh these trade-offs based on application-specific priorities. 

Overall, the analysis showed that engineering decisions in different parts of the ML pipeline 

could influence the fairness outcome and introduce disparate treatment between 

subpopulations. Hence, the hypothesis that engineering choices are not value-free in their 
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impact on the fairness outcome has been supported. This implies that an engineer should 

consider the fairness outcome at each step of the pipeline to ensure a fair ML classifier. 

Implications on the fair machine learning discussion 
In conclusion, this study provided evidence that engineering choices influence the overall 

fairness outcome of a model and that fine-grained subpopulations are differently affected by 

those choices. The change potential of pipeline decision points depends on the underlying data 

characteristics, with complex data showing more leverage in the fairness impact of engineering 

choices. The subpopulations were affected differently, with vulnerable groups prone to adverse 

impact, while advantaged groups usually benefitted more from different engineering choices. 

Furthermore, there is some potential to change the fairness outcome without losing the overall 

accuracy of the classifier in some scenarios. Overall, the analysis showcased that engineers 

should not treat choices along the pipeline as value-free towards fairness and should have an 

ethical approach towards engineering choices, not solely focusing on raising the model’s 

accuracy.  

The model’s FNR and FPR being affected by the engineering choices cannot be treated lightly, 

especially not in the context where the classifications directly relate to society and give 

individuals adverse treatment depending on their vulnerable attributes (Das et al., 2021). 

Depending on the context, an ML classifier might be used for decisions that do not affect 

humans substantially (e.g. consumption recommendation algorithms); hence, those pipelines 

do not carry the same social responsibility. In those cases, the engineer might treat the 

engineering choices as value-free. However, in high-stakes scenarios such as fraud detection, 

this simplified view of training the model solely for high accuracy does not represent the social 

responsibility of non-discriminatory treatment. Hence, context-dependent, ML engineers have 

a social responsibility to assess whether the developed classifier is fair towards different 

subpopulations represented in the data (Kenfack et al., 2021). By this, fairness considerations 

are not a “nice-to-have” step to include in the model-building process but should be a critical 

consideration for any high-stakes application that can shape individual’s lives depending on the 

outcome (Das et al., 2021; Kenfack et al., 2021). 

Rather than focusing only on debiasing the entered data or applying fairness intervention 

methods, this analysis showcases that the ML engineer can consider the fairness outcome at 

each pipeline step. Similarly, Dat et al. (2021) propose a fairness-aware ML pipeline that 

considers various fairness measures at different stages of the pipeline setup. Rather than seeing 
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the fairness enhancing process as an optional module to the pipeline, it should be approached 

as a second optimization goal next to accuracy. With this approach, the engineer would be 

aware of the consequences of fairness at each step of the pipeline, and the engineering choices 

would test the effect on the overall model performance. Related to this process, tools such as 

FairLay-ML (Yu et al., 2023) and ArgusEyes (Schelter et al., 2023) have been developed to 

help data scientists screen an ML pipeline for fairness violations and give insight into the source 

of bias. Conclusively, the results suggest that the seemingly technical decisions in a pipeline 

are embedded in a model's overall fairness outcome and can have a real-world impact on 

different groups.  

Furthermore, this model building with fairness outcome in mind should not be simplified. One 

could simply inspect the overall FNR and FPR for the model, assuming that they are acceptable 

in a given context and move on. However, this might not do justice to the underlying 

subpopulations that should be well-defined at the beginning of the pipeline construction 

(Davoudi et al., 2024; Li et al., 2022). The analysis showcased how the fairness outcome can 

strongly vary between subpopulations, and this should be controlled for when considering 

different options for the classifier pipeline. Overall, a proactive approach should be taken to 

define the context-relevant subpopulations, which would help ensure that fairness is 

consistently evaluated rather than relying on aggregate metrics that might mask disparate 

treatment. 

The current research approach has certain limitations, as it aims to give a broad overview of the 

landscape of technical choices along the ML pipeline. Because of this, the choices within the 

decision points were limited, and expanding this space could reveal more generalizable 

influences on each decision point. Furthermore, the data characteristics were simplified and 

could be expanded by adding different proportions of missing data. Furthermore, the tuning 

process of the models was simplified because of computational considerations. This gives room 

for future research, which can also investigate more detail of one specific decision point rather 

than considering several decision points. Furthermore, the analysis could be considered for 

metrics beyond FNR, FPR, and real-world datasets for better generalizability. Lastly, the 

investigation of resampling methods could be expanded, as this decision point showed the 

highest impact. Future research could consider to not only resample towards the outcome 

variable, but also resample to balance the protected attributes.  
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In conclusion, this research argues for a fairness by-design approach, where fairness 

considerations are embedded throughout the ML pipeline rather than as an afterthought. The 

findings support this approach as they demonstrate that fairness adjustments can be made at 

different decision points and show effects like post-hoc fairness interventions. In conclusion, 

the seemingly technical choices offer the possibility to mitigate unfair treatment but also show 

the threat to exuberate it. ML engineers should be encouraged to view fairness as an 

optimization goal alongside accuracy, promoting a more holistic approach to model evaluation.   
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Appendix 

Appendix A – R code for simulation and analysis  
The R code for the data simulation and analysis is available through GitHub under the following 

link: 

https://github.com/Hectine/Thesis-Fair-ML.git 

The repository contains all the code to run the detailed simulation and analysis. Furthermore, 

the four simulated societies and their output for their 30 individual pipelines are saves as CSVs. 

  

 

https://github.com/Hectine/Thesis-Fair-ML.git
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