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Abstract

This study explores the circumstances under which traditional statistical methods and machine

learning methods perform best. The literature has provided no conclusive answer on when each

approach performs best. Instead, many contradicting findings have been reported demonstrating

situations from both perspectives. Often sample size plays a role in which approach is recom-

mended as machine learning methods are said to perform better when the data sample is big.

We performed a simulation study, in which we varied several complexity parameters: number

of covariates, interactions, interaction depth, regression coefficients, variance of p(x), and formula

complexity. Additionally, we reviewed whether sample size and continuous covariates had any

bearing on results by reviewing results across different sample sizes and including continuous

covariates in combination with binary covariates. To analyze the results, we made use of accuracy,

sensitivity, and specificity.

From 138 models, we identified seven general patterns analyzed across different sample sizes:

(a) a machine learning method performed best, (b) a traditional statistical method performed

best, and (c) mixed performance. We extended the analysis to include more methods from both

approaches. For each pattern and performance measure we selected models. This resulted in 20

median models in which not all patterns returned. In a similar analysis on three empirical data

sets, similar behavior emerged, although the identification of patterns became more challenging.

Our findings indicate that the variety within each pattern is too great to conclusively identify

which complexity parameters produce a particular pattern, although nuances do exist. Moreover,

many similar models are spread out across multiple patterns. The identification of patterns has

shown that the opposing views in the literature might be explained by the existence of these

patterns. We find that traditional statistical methods outperformed complex machine learning

methods in several patterns. Furthermore, we determine that sample size is not the sole deter-

minant to select the best approach, as results demonstrate several instances in which traditional

statistical methods perform better on larger sample size(s). This adds new insights into how

sample size and methods are related.

Keywords: simulation study, complexity, sample size, machine learning, traditional statistics
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Chapter 1

Introduction

1.1 Introduction

The ability to accurately predict whether a patient will have any kind of health issue is paramount.

When a doctor finds a patient is likely to have dementia or suffer from heart failure, it does not

breed confidence if the accuracy is only 50%. A model that supplies such accuracy does not help

health professionals in diagnostics, as 50% accuracy is bordering on a coin toss. An accurate

model is also very important in other domains besides medicine, such as scientific domains,

finance, weather prediction, sales, and product recommendations (Jordan & Mitchell, 2015;

Steyerberg, 2019). A company can lose revenue if bad product recommendations are made,

as customers will not buy additional products that are recommended if they do not fit their

preference. Therefore, a good predictive model is of the utmost importance.

Nowadays, researchers often use machine learning methods instead of traditional statistics,

also known as conventional statistics (Shin et al., 2021), as increased data complexity leads

them to seek methods that optimize performance and are able to handle complex data (Kokol

et al., 2022; Ley et al., 2022; Rajula et al., 2020; Tollenaar & Van Der Heijden, 2013). Both

approaches belong to the domain of predictive analytics, a domain within statistical analysis

that can be used to make predictions about various items such as new patients, products, and

stocks. By using previously provided data and applying methods such as logistic regression or

machine learning approaches, a model can be built based on observed patterns in the data and is

subsequently able to handle new data points to predict the outcome (Kumar & Garg, 2018; Ley

et al., 2022). This means that based on past data, a doctor might be able to more accurately

predict whether a patient suffers from a specific disease or a banker is able to predict whether

someone will default on a loan. As both approaches are suitable for prediction, the method of

choice seems to be more or less the choice of the researcher. Some researchers simply seem to

5



CHAPTER 1. INTRODUCTION 6

prefer machine learning techniques over traditional statistical methods, as machine learning is

known for its high predictive accuracy, or have found that it outperforms traditional statistical

methods, whereas other researchers have found that machine learning methods do not perform

better than traditional statistical methods. We will explore these different views in the Literature

Review of section 1.2. Both approaches have been studied extensively, but there does not seem to

be a consensus on which method is suited to which data. General statements are made regarding

different aspects, such as complexity and non-linearity. For instance in their introduction to

a new hybrid logistic regression model Levy and O’Malley (2020) described scenarios in which

one should use logistic regression or machine learning methods (CART or random forest). They

stated that when the underlying model is linear, logistic regression is more equipped to identify

the true linear decision boundary in comparison to machine learning methods. In contrast,

machine learning methods were recommended when the functional form is discontinuous which

leads to a nonlinear decision boundary, or when interaction terms are included. They showed

that as the strength of the interaction regression coefficient increased, the performance of logistic

regression declined. The challenge for researchers is that usually one does not know the true

model, which could hinder their ability to select the optimal model. No general guidelines have

been established thus far on how to handle the obstacle of selecting the right approach, which

might limit researchers in achieving well performing models and accurate predictions.

We want to find under what circumstances traditional statistical methods or machine learning

methods perform best. To answer this research question, the objective of this study is to test

different methods to explore whether there are differences in performance between the traditional

statistical approach and machine learning approach. From both approaches several classification

methods are tested on simulated data, to explore the circumstances under which the performance

is highest. We will describe general patterns that are present in each performance measure to

identify whether certain parameter or model choices always produce a particular pattern. The

aim is to vary several of the parameters used for simulating the data, to have differing degrees of

complexity within several data sets. The following model-building parameters will be adjusted:

• Number of covariates, defined as the number of main effects;

• Interaction depth and number of interactions, which refer to the depth of interactions

included and the number of interactions per level;

• Number of unique regression coefficients, which indicates whether regression coefficients

used in the underlying model should be identical, non-unique, or unique;

• The variation of the probability of success used to generate the binary outcome, and

• Formula complexity, which is the complexity of the formula traditional statistical methods

require as input.

To further explore under which circumstances each approach performs best, the number of

observations will be varied to assess how the number of observations might affect the performance
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of a method. Initially, analyses will be run on simulated binary covariates with a binary outcome

because this is the simplest approach, along with the fact that medical data often contains

information stored as binary covariates. To explore whether continuous covariates will influence

which approach performs best, we will also run additional models where continuous covariates are

included. To investigate whether our findings of the simulations translate to real-life data sets,

we will look at several case studies and test whether their results fit findings of the simulation

studies.

In the subsequent section, a literature review provides an overview of the current literature

and its findings on the traditional statistics versus machine learning techniques, as well as a

more detailed description of traditional statistics and machine learning. The set-up used for data

simulations, analysis approach, model evaluation, as well as the methods that are considered are

described in Chapter 2. In Chapter 3, the results from the simulation studies are provided and

Chapter 4 is a case study where real data sets are analyzed to find whether theoretical findings

also translate to real-life data. Chapter 5 brings this thesis to a close by providing a discussion

of the results as well as possible limitations and implications for future research.

1.2 Literature Review

In this section, an overview of the current literature is provided. First, both traditional statistics

and machine learning are briefly clarified. Second, an exploratory overview is given on the current

findings regarding the performance of traditional statistics versus machine learning methods.

1.2.1 Traditional Statistical Methods

The term traditional statistical methods refers to regression methods, such as linear regression,

logistic regression, penalized logistic regression (ridge, lasso, elastic net), and Cox regression

models. In this study traditional statistical methods are used to describe the use of (penalized)

logistic regression. These methods are rooted in mathematics, which means certain assumptions

about the underlying relationship between predictors and the outcome are made, such as the

distribution and linearity (Christodoulou et al., 2019; Frizzell et al., 2017; Ley et al., 2022; Lynam

et al., 2020; Zhang et al., 2018). These assumptions are often very strong and require domain

knowledge, which is why traditional statistical methods are often described as model driven (Ley

et al., 2022). Often named as advantages of traditional statistical methods is the interpretability

of the resulting model (Austin et al., 2022; Frizzell et al., 2017; Huang et al., 2022; Ley et al.,

2022; Lynam et al., 2020; Rajula et al., 2020; Zhang et al., 2018) and how clear and user-friendly

the techniques are (Frizzell et al., 2017; Ley et al., 2022; Lynam et al., 2020; Rajula et al., 2020).

Additionally, the statistical approach allows the researcher to use statistical tests to determine

whether covariates are statistically significant (Lynam et al., 2020). An important drawback of

using traditional statistical methods is the fact that this approach requires human interpretation
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of which variables are important and which can be discarded during model building. If the

researcher does not believe a covariate has a relationship with the outcome or the covariate was

not measured, the resulting model could be missing important information about the underlying

relationships. This in turn could lead to substandard accuracies (Ley et al., 2022; Rajula et al.,

2020).

1.2.2 Machine Learning Methods

Machine learning methods can refer to many methods, well known are random forest and gradient

boosting machines. In contrast to traditional statistical models, machine learning methods make

no assumptions about underlying relationships between covariates and the outcome (Ley et al.,

2022; Panaretos et al., 2018; Rajula et al., 2020; Shin et al., 2021; Zhang et al., 2018). Often

this relationship is unknown (Akbilgic & Davis, 2019). They learn from the data provided to

build an algorithm that fits as close as possible to the observations without any requirement of

linearity or other distributional rules (Ley et al., 2022; Rajkomar et al., 2019; Rajula et al., 2020).

Since the focus in machine learning methods lies on generating the most accurate predictions

achievable (Ley et al., 2022; Rajula et al., 2020; Tollenaar & Van Der Heijden, 2013), without

any consideration for underlying relationships, the methods are often described as data driven

(Ley et al., 2022; Zhang et al., 2018).

Often named as advantages of machine learning methods are its flexibility (Rajula et al., 2020;

Shin et al., 2021) and its ability to model complex relationships by being able to incorporate both

non-linearity and interaction terms into the models without a need to pre-specify this (Akbilgic

& Davis, 2019; Ley et al., 2022; Panaretos et al., 2018; Rajula et al., 2020; Tollenaar & Van

Der Heijden, 2013), which would be required when modelling a traditional statistical model.

Furthermore, machine learning methods are often the method of choice in high-dimensional data

situations, as they are often found to perform better when the number of covariates is higher

than the number of observations (Feng et al., 2019; Ley et al., 2022; Rajula et al., 2020; Shin

et al., 2021; Tollenaar & Van Der Heijden, 2013).

However, studies have also found several drawbacks. First, many machine learning methods

often forgo interpretability in favor of maximizing the accuracy of predictions. As this frequently

results in models where the inner workings are unclear, the machine learning approach is often

labeled to be a ‘black box’ (Austin et al., 2022; Churpek et al., 2016; Huang et al., 2022; Ley

et al., 2022; Lynam et al., 2020; Rajula et al., 2020; Senders et al., 2018; Zhang et al., 2018).

Second, many studies have noticed that sample size influences whether machine learning methods

perform well. Only when enough data is available they can find the complex patterns in the data

(Kokol et al., 2022; Ley et al., 2022; Rajkomar et al., 2019; Rajula et al., 2020). Furthermore,

machine learning methods are prone to overfitting, which jeopardizes the generalization of the

methods to new data (Feng et al., 2019; Rajula et al., 2020).
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1.2.3 Traditional Statistics versus Machine Learning

The second point of interest is what current studies have found in regards to the dilemma whether

the traditional statistics approach or machine learning approach will perform better.

Simulation Experiments

Some scholars have experimented to find when traditional statistics performs better than machine

learning and vice versa. In a recent study, Bailly et al. (2022) have run a similar experiment to this

research paper to explore how sample size and complexity might affect the performance of several

methods. By using the Framingham study as a basis, they simulated datasets of varying sizes

and varying complexity of interactions. They compared the performance of logistic regression,

ridge regression, lasso regression, which they designated as machine learning methods but we

regard as traditional statistical methods, and neural networks, designated as deep learning, in

several experiments. These experiments varied the interaction order within the data as well as

the interaction order specified in the regression formulas. They found that (penalized) logistic

regression frequently outperformed neural networks when the models were accurately defined,

i.e., when interactions that captured the underlying relationships in the data were included. This

was true even for higher complexity and regardless of sample size. Moreover, penalized logistic

regression methods lasso and ridge frequently outperformed unpenalized logistic regression as

they reduced the chances of overfitting. They also concluded that the size of the data did not

matter as much as the interactions introduced to the models. In another simulation study,

Kirasich et al. (2018) compared the performance of logistic regression and random forest under

different circumstances. They argued the existence of No Free Lunch Theorem, which theorizes

there is not one algorithm that consistently outperforms other methods (Kuhn & Johnson, 2013).

That is why it is important to compare the performance of several methods, as not one method

will always result in the highest performance. By running several experiments Kirasich et al.

(2018) found that both methods had a similar performance when the number of observations was

below 1000, after which the methods deviated more from each other. In addition, they increased

the number of covariates systematically and found that above 30 covariates, the accuracy of

logistic regression kept improving but random forest no longer did.

Austin et al. (2021) utilized data-generating processes derived from statistical and machine

learning methods to simulate binary outcomes, which were analyzed using the same methods as

in the data-generating processes, to generate new predictions. They found that often (penalized)

logistic regression and boosted trees, i.e., stochastic gradient boosting machines (gbm), outper-

formed other tested methods. A critical note by the authors is that these results could differ if

more predictors had been considered and less observations available. A similar analysis is done

by Austin et al. (2022) to predict the continuous outcome systolic blood pressure when a patient

is released from the hospital. By using different data-generating processes based on statistical

and machine learning methods to simulate outcomes for systolic blood pressure, with the help of
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sampled residuals, and using Monte Carlo simulations, they found that in all their analyses the

neural network method underperformed in comparison to the other methods. Moreover, ordinary

least squares regression either performed better or similar to the lasso and ridge regression, while

boosted trees often performed best.

Applications on Data

Several studies have conducted systematic reviews of the literature. First, using 243 datasets,

Couronné et al. (2018) compared the performance of logistic regression to that of the default

random forest. They found that, in more than half of the datasets (69%), random forest did

better than logistic regression. They also highlighted the fact that in tuned random forest

models, the improvement in performance was most prominent in models which had previously,

using default settings, performed badly relative to logistic regression. Second, in an extensive

literature review, Shin et al. (2021) reviewed 20 studies about prediction models on heart failure

patients, using outcomes mortality and readmission. As a whole, they found that the performance

of traditional statistical methods lagged behind that of machine learning methods, although they

advocated for more externally validated results. Similarly, Patel and Sengupta (2020) looked

at the recent literature that used prediction models to predict cardiovascular events. They

concluded that in many cases of predicting these events, machine learning methods performed

better than traditional statistical methods. Finally, Senders et al. (2018) reviewed 30 studies

that used machine learning methods for various neurosurgical purposes. Out of these studies,

7 compared their outcomes to a logistic regression model, i.e., traditional statistical model.

In all cases, machine learning methods outperformed the logistic regression model. Using this

information, the authors reported accuracy to have an overall median improvement of 15%. Based

on these systematic reviews, the literature on comparisons between traditional statistics and

machine learning methods is quite extensive. However, frequently the focus is on the application

of methods within their own domain. To give a good overview, several examples are discussed.

Within the medical field, several comparisons have been made between traditional statistics

and machine learning methods. Several lines of evidence suggest that machine learning methods

outperform traditional statistical methods. This is illustrated by Lolak et al. (2023) who com-

pared the model performance on the risk prediction of strokes for patients who are at high-risk.

They showed that Extreme Gradient Boosting (XGBoost), a machine learning method, outper-

formed the traditional statistical methods that were used when comparing the model performance

of risk prediction of strokes. Similarly, Panaretos et al. (2018) demonstrated that when predicting

cardiometabolic risk, using food and nutrients as predictors, machine learning methods, KNN

and random forest, outperformed the traditional statistical method linear regression. In a recent

study, Zhang et al. (2018) investigated crash injury severity, which is a topic where traditional

statistics is widely used, but machine learning methods are gaining more support. These kind

of prediction models are often used to predict how serious a persons injuries might be following
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a crash, which could help guide hospitals in treatment decisions. The authors found that ma-

chine learning, in particular random forest, outperformed traditional statistics, ordered probit

and multinomial logit model, that were used in their predictive analysis. This was also observed

by Churpek et al. (2016), who sought to predict clinical deterioration in hospital wards by using

data collected from multiple centers to predict the illness severity of a patient on the ward. They

found that some of the applied machine learning methods, such as random forest, outperformed

logistic regression. Other machine learning methods, aside from methods such as random forest,

were frequently found by researchers to perform best. Feng et al. (2019) demonstrated that most

machine learning methods, in particular several SVM approaches, resulted in better evaluation

metrics than logistic regression when predicting the survival after a severe traumatic brain injury.

They recommended the usage of machine learning methods in high-dimensional data cases, as the

machine learning methods that were tested all performed on par or better than logistic regres-

sion. Desai et al. (2020) compared methods that predict several heart failure related outcomes,

but found that compared to logistic regression, the improvement in performance of machine

learning methods was minimal. When they added predictors from electronical medical records,

which were mostly continuous, to the predominantly binary covariates from claims data, they

observed improvements in GBM for some outcomes. Finally, in psychiatry predicting suicidal

behavior is of grave importance. Conventionally, traditional statistics were used to predict the

risk of committing suicide. Unfortunately, these methods yielded only mediocre results, which

makes machine learning methods all the more enticing to researchers in this field (Grendas et al.,

2022). In their study, Grendas et al. (2022) found that their selected machine learning method,

a variable selection variant of random survival forest, made more accurate predictions than the

traditional statistical model, Cox regression.

The studies presented thus far provide evidence that there are instances when researchers

believe machine learning methods outperform traditional statistics in a meaningful way. How-

ever, this is contrasted by the fact there are just as much studies that find that traditional

statistics perform similarly to machine learning methods. These are studies in which authors

concluded that the performance was similar. In a systematic analysis of literature, Christodoulou

et al. (2019) analyzed 71 studies on clinical prediction models in which logistic regression and

machine learning methods were compared. They found that machine learning performance was

comparable to that of logistic regression in scenarios in which they identified the risk of bias as

small, if the risk was high machine learning methods did perform better. A few examples of

other illustrations in the literature are studies such as that of Cao et al. (2022). They compared

logistic regression and several machine learning methods to identify which approach performed

best to predict renal function decline risk, using data spanning 10 years. They found that the

gradient boosting model outperformed other methods. While the gradient boosting model also

performed better than logistic regression, the difference in performance was not statistically sig-

nificant. Moreover, Huang et al. (2022) investigated the performance of traditional statistics

and machine learning in predicting noncardia gastric cancer. While they found machine learn-
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ing method KNN had better accuracy and specificity compared to logistic regression, its ability

to predict those who do have noncardia gastric cancer, i.e., sensitivity, was much lower. That

led them to the conclusion that machine learning methods are comparable to logistic regression

when considering all performance criteria. Furthermore, to accurately predict whether a patient

had diabetes type 1, Lynam et al. (2020) compared several methods, utilizing only a small set

of predictors. They found that logistic regression had a comparable performance to machine

learning methods. Similarly, in their search to find a model that could better predict the heart

failure readmission risk within 30 days after discharge, Frizzell et al. (2017) showed that none of

the machine learning methods applied, such as random forest (C-statistic = 0.61) and GBM (C-

statistic = 0.61), greatly improved upon the predictions made by traditional statistical methods,

such as logistic regression (C-statistic = 0.62) and LASSO regression (C-statistic=0.62). These

contrasting comparisons shows that often different results are found. There does not seem to

be one conclusive method that always outperforms other methods in studies that have applied

these approaches directly to their data.

From the literature discussed so far on applications on data, we have only illustrated situa-

tions in which machine learning methods outperformed traditional statistical methods or when

machine learning methods performed similarly to traditional statistical methods according to

the researchers. The last situation of interest we illustrate is when researchers state that tra-

ditional statistical methods performed better than machine learning methods. De Hond et al.

(2022) found that logistic regression performed statistically significantly better (AUC = 0.88)

compared to the XGBoost algorithm (AUC = 0.85) when they predicted severe exacerbations

of asthma using data gathered through home monitoring. They note that logistic regression

often underestimated the risks that were predicted, but attributed this to the small event-rate.

Moreover, they suggest that the reason for logistic regression performing better could be due to

absence of complexity in the data. Moreover, Hu et al. (2022) predicted delayed cerebral ischema

for elderly patients above 60 in the hospital that had a subarachnoid hemorrhage. They found

that in external validation LASSO (AUC = 0.894) outperformed machine learning methods such

as random forest (AUC = 0.821) and XGBoost (AUC = 0.865). Finally, Sun et al. (2022)

investigated whether logistic regression performed better than CART models when predicting

community acquired pneumonia in individuals who had been to a doctor for a respiratory tract

infection. After having used triangulation with logistic regression, penalized regression, and ran-

dom forest to apply variable selection, they found that logistic regression (AUC = 0.80) overall

performed better than the CART model (AUC = 0.68).

We discussed literature from all perspectives, without finding a definitive conclusion. Some-

times machine learning performed better, while in other cases traditional statistical methods

performed better or similar. Note that statements on similar performance are subjective for

each researcher. For some domains a 0.01 increase in AUC is significant, while other researchers

see it as similar. Many studies reporting similar findings would probably fit under this last para-

graph, in which traditional statistical methods slightly outperformed machine learning methods.



Chapter 2

Methods

In this chapter a detailed explanation is given on the methods that were used in this study. We

clarify the design of the simulation study, our analysis approach and model evaluation. Moreover,

we highlight the traditional statistical methods and machine learning methods we have used.

2.1 Simulation Study

In this section the design of the simulation study is explained to make it possible to reproduce.

All analyses were performed using R (v4.3.2; R Core Team, 2023). Simulations were run on a

laptop with an Intel Core i9 processor and NVIDIA GeForce RTX 4060 graphics card. Appendix

B describes how the code that was used can be retrieved.

To identify the circumstances under which traditional statistical methods or machine learning

methods perform better, a simulation study was used to investigate predictive performance. In

a simulation study, data is generated from which results are obtained. According to Morris

et al. (2019), data can be generated in two ways. Either by using a model where the underlying

relationships are known and data is generated by drawing from a parametric distribution, or by

generating synthetic data from a known data set, where repeated resampling is used to mirror

the distributions in the original data. In this study we used the first approach, drawing from

known parametric distributions, to create testable scenarios in which model-building parameters

were varied, which we further elaborate on in section 2.2.1. Since we had first-hand knowledge

of the underlying relationships, we were able to examine if there existed circumstances under

which each approach performed better. We also systematically varied the sample size of the

training data, which allowed us to observe whether training sample size had a major influence

on the performance of the methods. In the remainder of this section, a general description of the

underlying data-generating process is given.

13
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2.1.1 Covariates

In this study we primarily generated binary covariate data, as dummy variables were straightfor-

ward to code and are frequently used in medical statistics. Examples include whether a person

is receiving treatment or administering a specific drug. We specified the number of covariates.

Each binary covariate j was independently generated using a binomial distribution

Xj ∼ B(N, p = 0.5).

N is defined as number of independent trials and p as probability of success for each independent

trial (Bruce et al., 2020; Kuhn & Johnson, 2013). To ensure relatively balanced data when

interactions were calculated, binary data was transformed to -1 and 1, instead of 0 and 1.

Medical data often contains both binary and continuous covariates. To consider both, we also

incorporated the possibility to generate continuous data. The number of continuous covariates

could vary between 0 and the maximum number of covariates to be included and was specified

beforehand. Each continuous covariate j was independently generated using a standardized

normal distribution

Xj ∼ N (µ = 0, σ2 = 1).

This distribution generates N random numbers for each independent covariate with mean µ and

the variance σ2. This distribution was selected because the variance and standard deviation

are equal to that of the dummy variables used in the binary covariates, for which the specific

calculation are described in Appendix A.

2.1.2 Binary Outcome

The outcome variable is often binary in medical statistics (Austin et al., 2021). Examples of

possible outcomes include whether a person will be readmitted within a period, has a disease, or

if death is likely.

The outcome variable Y was generated using a binomial distribution, for m replications

Ym ∼ B(N, p(x)),

where p(x) is a vector containing the success probabilities for each individual i, which was created

using binary logistic regression. By calculating the linear predictor

η = X · kβ,

we were able to calculate the probabilities of success for each observation i using

p(x) =
1

1 + exp(−η)
.

An additional complexity parameter, k, was applied during this process to control the average

variance in p(x). We further elaborate on this in section 2.2.1.
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By implementing Monte Carlo simulations to make Y1, . . . , Ym replications, using the same

probability vector p(x), m outcomes were repeatedly drawn from the binomial distribution.

Using m replications takes into account the random nature of generated Y , as outcomes that

were generated using a probability distribution would have different values in a new simulation

(Harrison, 2010; Kroese et al., 2014).

2.1.3 Randomness of Simulation

To ensure reproducibility, we used random seeds which allows simulated models to be repeated

using our provided code (James et al., 2021; Nunez et al., 2021; Wegmeth et al., 2023). We

implemented random seeds because we randomly sampled from various distributions to generate

the covariates, outcomes, and regression coefficients. Nunez et al. (2021) argued that methods

depending on randomness demonstrate seed-dependent variability. Apart from aspects in meth-

ods, such as cross-validation and hyperparameter tuning, which are dependent upon randomness,

other aspects in our study also depended on randomness, such as the aforementioned probability

distributions, formula to generate data, and sampling of n. Running the experiment with only

one random seed would not be enough to lessen randomness and subsequent variability in the es-

timates, because the random seed used might actually select outliers for some components. This

could skew the results to either bad or good outlying performances which are misleading (Nunez

et al., 2021; Wegmeth et al., 2023). This is also the reason why we generated m replications

within one seed, to take into account the randomness of each seed. However, using only one seed

does not ensure results are robust and generalizable. Results that are both robust and general-

izable can be obtained by using multiple random seeds to give a more comprehensive picture of

the results (Nunez et al., 2021; Wegmeth et al., 2023). Results were less likely to be affected by

a random seed that produced outlying performance measures, which decreased variance due to

randomness.

We have specified the number of seeds and replications for the analyses we have run. The

different analyses, exploratory and in-depth, are further clarified in section 2.2.2. Different seeds

were assigned to demonstrate that in separate analyses of the same model-building parameters,

with different random conditions, results were robust. The exploratory analysis used seed 1

through 5 and 10 replications of the outcome per seed. We used seeds 6 through 8 for the in-

depth analysis and 5 replications of the outcome per seed. Less random seeds were specified for

the in-depth analysis as computational time increased due to the inclusion of more methods.

2.2 Analysis Approach

In this section the analysis approach is discussed. First, different complexity levels are explained.

Second, the analyses and models are specified. Finally, we clarify how the observations are

handled and how we use cross-validation.
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2.2.1 Complexity Levels

To identify the circumstances under which traditional statistical methods or machine learning

methods performed best, we looked at data with differing complexity levels. When data was

generated, several parameters could be varied to decrease or increase the complexity level.

Number of Covariates

The number of covariates is the number of main effects that was used to generate the data. A

higher number of covariates is often associated with higher complexity. Not only are there more

possible interactions to evaluate (Ley et al., 2022; Li et al., 2022), by increasing the number of

covariates the data dimensionality will also increase and data will become sparser (Altman &

Krzywinski, 2018). The relationships within the data will become more difficult to find.

Interaction Depth and Number of Interactions

The interaction depth is the order that interactions are allowed to have (James et al., 2021; Kuhn

& Johnson, 2013) and could easily be increased. Interaction depth 1 refers to main effects only

and interaction depth 2 to both the main effect and first order interactions.

The number of interactions is sampled from all possible interaction combinations at each

depth level. This is specified separately for each interaction depth level. Higher interactions

increase the complexity of the data, which introduces a more intricate pattern and relationship

between the covariates and outcome (Bailly et al., 2022), as we are no longer dealing with a linear

decision boundary. Instead, the decision boundary that methods will need to identify becomes

more non-linear and complex as more interactions are added (Levy & O’Malley, 2020). Thus,

the larger the number of interactions, the higher the complexity of the data will be.

We clarify these parameters with the following illustration. Three main effects and two first-

order interaction effects are specified, i.e., interaction depth 2. Three main effects are x1, x2, x3.

From possible interactions at this depth level: x1× x2, x1× x3, and x2× x3, only 2 interactions

will be sampled to generate the data.

Number of Unique Regression Coefficients

To generate the data, the underlying model requires regression coefficients, β. The number of

unique coefficients can be varied to influence the complexity level and are specified separately for

each complexity level. We explored different situations, namely identical, unique, or non-unique,

i.e., using only 2 or 5 different regression coefficients per depth level. The number of unique

regression coefficients is considered a complexity parameter, as the influence coefficients have

on the outcome plays a large role. Identical regression coefficients would mean covariates have

an equal influence on the outcome, whereas unique (or non-unique) regression coefficients have
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varying effects on the outcome parameter. We found no specific literature on how this specific

situation would affect complexity. We can imagine two different perspectives. First, unique

regression coefficients could simplify the identification of large effects, as smaller effects have

only a minor influence on the outcome. This implies a lower data complexity. Second, unique

regression coefficients make relationships in the data more distinctive and create more intricate

patterns that influence the outcome. This would suggest higher data complexity. Conversely,

identical regression coefficients could affect data complexity in the same manner. The regression

coefficients, β, were randomly generated for each interaction depth d using a Uniform distribution:

βb,v = U(0, 1),

where b is the number of unique regression coefficients to generate and v is the number of covari-

ates at interaction depth d. Random generation of the regression coefficients was implemented

during the data generation process, for each specified seed.

Continuing the example, for β3,3, at d = 1, three unique regression coefficients need to be

generated for the three main effects. Each covariate gets a unique regression coefficient. However,

if we specify β1,2 for d = 2, only one regression coefficient needs to be generated, while there are

two interactions. The regression coefficients at d = 2 are identical.

Variance of the Probability of Success controlling Outcome Variable y

The outcome variable Y was generated using a binomial distribution, which required a vector

p(x), i.e., the probabilities of success for each individual. We used a complexity measure to

control the average variance (δ) of p(x), which could range between 0 and 0.25, as demonstrated

in Appendix A. In this study δ could take values: 0.05, 0.10, 0.20, where 0.10 was the default. We

used a bisection algorithm to identify a constant, k, which scaled the regression coefficients, β,

such that the resulting average variance in p(x ) matched the specified one. The specific process

to find k is described in Algorithm 1. Upon finding k, steps 2 and 3 are repeated to definitively

calculate p(x). By varying the variance, we introduced different levels of uncertainty, i.e., noise, to

the data. Garcia et al. (2015) described how the complexity of classification tasks can be amplified

due to the inclusion of noise to outcomes. As this complexity increases, patterns become more

challenging to differentiate, effectively increasing the data complexity. Classification methods

would need to identify a decision boundary that was more complex than before additional noise

was added.

Formula Complexity

Traditional statistical methods, such as logistic regression, require a formula specifying which

covariates and interactions to use. Every effect needs to be manually included. In contrast,

machine learning methods only require specification of the main effects. In this study, we used
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Algorithm 1 Scaling the Probability of Success using a Bisection Algorithm

Input Parameters: Lower bound a = 0, upper bound b = 1000, target variance δ, covariates X, regression
coefficients β
Starting values: Average variance ∆ = ∞, tolerance ϵ = 0.001
while ∆ > ϵ:

1. Calculate the midpoint of the lower bound and upper bound:

c =
a+ b

2
.

2. Calculate the linear predictor, using the calculated midpoint:

η = X · kβ,

where X is the matrix containing the covariates, k is the constant, and β are the regression coefficients
for each covariate.

3. Calculate the logistic function

p(x) =
1

1 + exp(−η)
.

This will result in a vector p(x) that contains the predicted probability of success for each observation,
which for each individual i can be denoted as pi.

4. Calculate the average variance:

Average variance = ∆ =
1

n

n∑
i=1

pi(1− pi).

5. Calculate the value, f, for the equation f(x), this should equal 0 for the bisection algorithm to be a
success:

f(x) = ∆− δ,

where δ represents the target variance for the complexity level.

6. The following conditions are checked:

if f(x) = 0: Return midpoint value c as final constant k.

else if f(x) < 0: Replace upper bound value, b, by the midpoint value c.

else if f(x) > 0: Replace the lower bound value, a, by the midpoint value c.

formula complexity to denote the formula for traditional statistical methods. It used the same

scale as interaction depth. We made no distinction between which covariates were added to

the formula. All possible effects belonging to an interaction depth were included. The formula

complexity ranged between 1 and 3. We included this parameter because it is the researcher’s

choice to include effects for traditional statistical methods. Bailly et al. (2022) showed that often

regression models performed best if they had well-specified interactions. Hence, we would expect

that by increasing the complexity of the formula by specifying higher interactions leads to a

better performance as the (traditional statistical) models know to look for those effects as well.

Continuing the example, formula complexity 1 has formula: x1 + x2 + x3, while the formula

for formula complexity 2 is x1 + x2 + x3 + x1× x2 + x1× x3 + x2× x3.
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2.2.2 Analyses

Our analyses began with an exploratory analysis, as it was not possible to run all methods for

every scenario, due to computational costs. In the exploratory analysis we ran many scenarios,

using as few methods as possible. Based on measured computational times, we selected methods

with the shortest computing time: logistic regression and LASSO regression for traditional sta-

tistical approaches, and k-nearest neighbors and random forest for machine learning approaches.

All tested scenarios are described in Tables 1 – 6. Additionally, we reviewed median models in an

in-depth analysis where all methods described in section 2.4 were used. They were selected from

each pattern, identified in the exploratory analysis, for each performance measure by sorting all

models within a pattern by the interaction depth as most important criteria. If the number of

models was even, we chose one of the two options. Each tested model is described in Table 9.

2.2.3 Sample Sizes

To investigate whether the sample size could be a factor in selecting an approach under different

circumstances, we included different sample sizes during the model training phase. We hoped

to observe whether a small or large sample size determined the method to be selected. In a

comparison between modern modelling methods (random forest, SVM, neural nets), also known

as machine learning methods, and classical methods (logistic regression and CART), Van Der

Ploeg et al. (2014) showed that logistic regression needed less events per variable than the machine

learning methods to deliver a stable AUC value. They argued that machine learning methods

should only be used when the sample size is large and has a high number of events per variable as

that will result in (possible) higher performance and stable results. They favored using logistic

regression when the sample size is small. Cui and Gong (2018), in their research of individualized

cognition predictions, demonstrated an exponential increase in both accuracy and the stability of

the accuracy estimates when sample size increased. This was true for both the machine learning

methods, linear support vector regression and relevance vector regression, and the traditional

statistical methods, which the authors considered machine learning methods but we categorized

as traditional statistical methods: LASSO, ridge, and elastic net regression. Additionally, they

discussed overfitting as a possibility if machine learning methods are applied on small data sets,

which would impede the generalization ability of the model, as well as the fact that small data

sets will only show a fraction of the patterns. These studies show that traditional statistical

methods are often recommended for small sample sizes, while machine learning methods need

a larger sample size. However, these studies used existing data, where the underlying structure

was unknown to the researchers. By simulating the data, we expect to find that under certain

circumstances these views are not always valid.

For both exploratory and in-depth analysis we used the same process. To evaluate each model,

we independently generated a training and test data set according to the process described

in section 2.1. Training and test data was generated once in every seed. Training data was
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Table 4

Exploratory Simulation Studies: Average Variance of p

E-89 E-90 E-91 E-92 E-93 E-94 E-95 E-96 E-97 E-98 E-99 E-100

Number of covariates
Main effects 10 10 10 10 10 10 10 10 30 30 15 15
First order interactions 1 1 10 10 5 5 5 5 15 15
Second order interactions 3 3 3 3 10 10
Third order interactions 10 10
Fourth order interactions 10 10

Variance in the outcome 0.05 0.20 0.05 0.20 0.05 0.20 0.05 0.20 0.05 0.20 0.05 0.20

Note. This table illustrates the different simulated models that were run, where the average variance of the probability
of success that determines the outcome y was varied. Complexity model-building parameters are fixed at: formula
complexity = 1 and unique regression coefficients β. For each interaction depth the number of main effects or number
of interaction effects is specified in the table. Abbreviation E denotes models of the exploratory analysis.

Table 5

Exploratory Simulation Studies: Combinations with Higher Formula Complexity

Models

E-101 E-102 E-103 E-104 E-105 E-106 E-107 E-108 E-109 E-110 E-111 E-112 E-113 E-114 E-115

Number of covariates
Main effects 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
First order interactions 10 10 10 10 10 10 10 5 5 5 5 5 5 5 5
Second order interactions 3 3 3 3 3 3 3 3
Third order interactions
Fourth order interactions

Number of regression coefficients
Main effects 1 1 1 2 5 5 5 1 1 1 2 5 5 5 5
First order interactions 1 1 1 2 5 5 5 1 1 1 2 3 5 5 5
Second order interactions 1 1 1 2 3 3 3 3
Third order interactions
Fourth order interactions

Variance in the outcome 0.10 0.05 0.20 0.10 0.10 0.05 0.20 0.10 0.05 0.20 0.10 0.10 0.10 0.05 0.20

Note. This table illustrates the different simulated models that were run, using different combinations of complexity
parameters. Complexity model-building parameter formula complexity is fixed at 2. For each interaction depth the
number of main effects or number of interaction effects is specified, as well as the number of unique regression coefficients.
Abbreviation E denotes models of the exploratory analysis.

Table 6

Exploratory Simulation Studies: Continuous Covariates

Models

E-116 E-117 E-118 E-119 E-120 E-121 E-122 E-123 E-124 E-125 E-126 E-127 E-128 E-129 E-130 E-131 E-132 E-133 E-134 E-135 E-136 E-137 E-138

Number of covariates
Main effects 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 5 5 5 5 15 15 15
First order interactions 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 15 15 15
Second order interactions 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 10 10 10
Third order interactions 5 5 5 5 10 10 10
Fourth order interactions 1 1 1 1 10 10 10

Number of regression coefficients
Main effects 10 10 5 5 5 10 10 10 10 10 10 10 10 10 10 10 5 5 5 5 15 15 15
First order interactions 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 15 15 15
Second order interactions 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 10 10 10
Third order interactions 5 5 5 5 10 10 10
Fourth order interactions 1 1 1 1 10 10 10

Variance in the outcome 0.10 0.10 0.10 0.10 0.10 0.10 0.05 0.20 0.10 0.05 0.20 0.10 0.05 0.20 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Number of continuous covariates 10 10 1 5 10 1 1 1 5 5 5 10 10 10 10 10 1 3 5 5 1 5 15

Formula Complexity 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 1 2 1 1 1

Note. This table illustrates the different simulated models that were run when continuous covariates were included. No
complexity parameters were fixed. For each interaction depth the number of main effects or number of interaction effects
is specified, as well as the number of unique regression coefficients. Abbreviation E denotes models of the exploratory
analysis.
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generated with N = 50, 000 observations, from which during the training process observations

were randomly sampled for each sample size n. The test data was generated with N = 2, 000

observations, on which no random sampling took place. Regardless of the sample size n that

was used during the model training phase, the test set remained the same size throughout the

evaluation process. Using a test set matching the training sample size n would not accurately

depict how models performed, because a small test set would only reflect a portion of the data.

That is why we decided on a relatively large representative test data set. This allowed us to

compare how models that were trained on sample size n, which gradually increased in size,

performed on the same test data.

In the analyses we used observations on a x2 scale, where x is an integer number. In the

exploratory analysis, x consisted of integers in the interval: x = [4, 6, . . . , 42, 44] and in the

in-depth analysis, the range reduced to x = [4, 8, . . . , 40, 44] to accommodate for the fact that

including additional methods is computationally more expensive. While the simulated data

within each seed contained N rows total, during the analysis n rows were randomly sampled

according to each sample size, m times.

2.2.4 Hyperparameter Tuning and Cross-Validation

Once a random subsample n was selected within a seed, m models needed to be trained. Models

often have default parameters, which might not lead to the most optimal results. Therefore, we

used hyperparameters, which can influence the model complexity. The wrong choice of param-

eters can either overfit or underfit the data (Kuhn & Johnson, 2013). To find the best-fitting

model for data generated in each seed, i.e., the optimal model, we have used hyperparameter

tuning in combination with 10-fold cross-validation. Cross-validation allowed us to select the

model and hyperparameter(s) that, on average, performed best across 10-folds (James et al.,

2021). This model was used to predict outcomes for the test data. The hyperparameters to be

tuned differed for each method and can be found in Table 7. In most methods we used a ran-

dom search to specify the hyperparameter grids, as it made no difference whether we manually

specified them or if they were randomly selected. The only exception was the gradient boosting

model, where a manually defined grid was used, as a random search was not possible, and in the

penalized regression models, which used a model-specified grid.

2.3 Model Evaluation

In this section we highlight each performance measure used. The measure of interest depends

on the researcher’s aim and whether it is costlier to misdiagnose someone or to fail to diagnose

someone (Mallett et al., 2012; Naidu et al., 2023; Van Stralen et al., 2009). That is why, instead

of looking at only one performance measure, multiple measures should be considered at the same

time (Naidu et al., 2023; Van Stralen et al., 2009). As we used both traditional statistical methods
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and machine learning methods, we considered measures researchers from both approaches are

familiar with: accuracy, sensitivity, and specificity.

A measure we considered and disregarded was the area under the ROC curve (AUC), which

gives the classification performance over all possible probability thresholds which retains more

information from the model outcomes (James et al., 2021). Often, the probability values that

methods produce, such as logistic regression, are more informative than class labels, which are

formed by assigning ‘1’ when p > 0.5 and ‘0’ when p ≤ 0.5 (Bruce et al., 2020). However, not

all methods provide these probabilities, such as SVM models. For this reason, all outcomes were

predicted directly as class labels. In addition, as only one threshold was considered, only one

point with a corresponding sensitivity and specificity value was provided. Theoretically, we could

consider the (test) AUC value equal to the (test) accuracy estimate, which was possible, because

the data was generated to be relatively balanced. In Appendix A we demonstrated this.

Accuracy

Accuracy is an overall performance measure, which considers all observations that were correctly

classified (Bruce et al., 2020; Naidu et al., 2023).

Accuracy =
TP + TN

N
=

TP + TN

TP + FN + TN + FP
.

A limitation of accuracy is that imbalanced data could distort the accuracy estimate, as the

accuracy will be biased towards the majority class (Chawla, 2005; Naidu et al., 2023; Van

Stralen et al., 2009).

Sensitivity

Sensitivity calculates the true positive rate, i.e., how many events are correctly predicted as

positive (Bruce et al., 2020; Naidu et al., 2023; Van Stralen et al., 2009).

Sensitivity =
TP

TP + FN
.

Sensitivity is often the focus of studies, especially in medical statistics. For instance, we might

be interested to know whether someone has a disease. It is important for medical statisticians

to know the sensitivity, as a low value could indicate it might not even be worth the cost of

investing resources into a model. However, often this class consists of few observations.

Specificity

Specificity is also known as the true negative rate, which calculates how many events are correctly

predicted as negative (Bruce et al., 2020; Naidu et al., 2023).

Specificity =
TN

TN + FP
.
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The negative event is often the majority class and of less interest in medical statistics. Never-

theless, the measure is still useful as it could show how well the model is performing.

2.3.1 General Evaluation of Performance Measures

To calculate the final performance estimate for either accuracy, sensitivity, or specificity a general

approach was taken. For each sample size n all methods were evaluated. Within each method

m replications were evaluated, which resulted in m performance measures for each seed s. To

estimate the average of each performance measure in a single seed, we calculated:

Performances =
1

m

m∑
i=1

Performancei,

where Performancei can be any performance measure selected. This will produce, for each seed

s, average performance measures for each method and sample size n.

To take into account the inherent randomness due to random seeds and improve generaliz-

ability, s performance measures were aggregated into one average result per sample size n and

method:

Overall Performance =
1

s

s∑
i=1

Performancei.

2.4 Methods

In this section we describe each method that was used. These methods were chosen because they

are often used in the literature and we are familiar with their concepts. Hyperparameters that

were used to obtain the optimal model are described in Table 7. If we used a random search

we specified the number of random hyperparameter combinations to be analyzed. The number

of combinations that were explored was moderate, as many methods were computationally ex-

pensive to run and took more time as the training sample size increased. During the training

process several methods occasionally issued warnings, such as prediction from a rank-deficient fit,

missing values in the resampled performance measures, too few observations per class in a fold,

lack of convergence or perfect separation, and no variance in a covariate. While we acknowledged

these warnings, we continued with the analyses as they were just part of the process.

2.4.1 Null Model

The null model is the simplest model possible, i.e., the intercept-only model, which functioned

as the baseline model to which all other methods were compared. The model always predicts the

majority class in the training model to be the outcome. Other methods should perform better

than or equal to this model (Peng et al., 2002). In R, the package caret (v6.0-94; Kuhn, 2008)

was used to train the null model using 10-fold cross validation.
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2.4.2 Traditional Statistical Methods

In this section we explain the different traditional statistical methods used in our analysis.

Logistic Regression

Logistic regression is the standard statistical model used when the outcome is binary and we are

interested in modelling the probability that the outcome belongs to one of the classes (James

et al., 2021). The class of interest in the data is 1, the positive class. The logistic regression uses

the following function to model these probabilities:

p(X) =
eβ0+β1X1+···+βjXj

1 + eβ0+β1X1+···+βjXj
,

where j is the number of covariates.

In R, the package caret (v6.0-94; Kuhn, 2008) was used to train the logistic model with

10-fold cross-validation. In this study logistic regression included all covariates belonging to

the specified interaction depth level. This could lead to a more complex model than necessary,

especially when interactions were involved. This could result in models that performed well

on training data, but when predicting the outcome for the test data, performance was poor,

indicating overfitting. In this situation, the variance of the model is quite high, which means

a model will not generalize well on new data. Thus, the higher the complexity of a model, the

higher the chances of overfitting are (James et al., 2021).

LASSO, Ridge, and Elastic Net Regression

Regularization methods are applied to reduce the chance of overfitting. These methods decrease

the variance of the model, which will improve model performance. Consequently, the bias of

estimates will increase (James et al., 2021; Kuhn & Johnson, 2013). In regularization methods a

shrinkage penalty is added to the loss function of the logistic regression, with the goal to minimize

this (Hastie et al., 2023; Kuhn & Johnson, 2013):

min
β0,β∈Rj+1

−

[
1

N

N∑
i=1

yi · (β0 +Xiβ)− ln(1 + eβ0+Xiβ)

]
+ λ

 (1− α)

2

p∑
j=1

β2
j + α

p∑
j=1

|βj |

,

where α determines the weight given to the penalties and λ regulates how much effect the penalty

has on the model coefficients (James et al., 2021; Kuhn & Johnson, 2013).

LASSO regression is specified by α = 1. Coefficient estimates are shrunk to zero by the

penalty parameter and some estimates are removed by equaling the coefficients to zero, if λ is

large enough. This makes LASSO regression a feature selection method (James et al., 2021; Kuhn

& Johnson, 2013). A drawback is that in a subgroup of covariates that are (highly) correlated,

one will arbitrarily be picked, without considering whether that covariate is the best. Moreover,
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LASSO can pick no more than n covariates in a high-dimensional scenario (Zou & Hastie, 2005).

Ridge regression is specified by α = 0, where the coefficient estimates are shrunk by the penalty

parameter λ to move in the direction of zero, without removing any from the model. It has

a tendency to shrink the coefficients of (highly) correlated covariates to similar values (James

et al., 2021). Both approaches attempt to improve the generalizability of the model, by using a

shrinkage parameter.

Elastic net regression combines ridge and LASSO regression in one model. Kuhn and Johnson

(2013) cite the regularization capabilities of the ridge penalty and variable selection approach

of the LASSO penalty as a combination that will especially perform well if many variables have

high correlations. In contrast to LASSO regression, elastic net will not choose one of the highly

correlated covariates and discard others. Instead, it shrinks correlated covariates together and

selects correlated covariates as a group (Zou & Hastie, 2005).

Several factors should be considered when choosing a method. James et al. (2021) recom-

mended LASSO regression when only some covariates have large regression coefficients, while

ridge regression should be used if regression coefficients are of similar size. Additionally, LASSO

regression improves interpretability by producing a sparser model. Finally, the dimensionality

of the data matters as James et al. (2021) stated ridge regression should be used when p > n, as

logistic regression cannot produce a unique solution, while ridge regression can.

The package glmnet (v4.1-8; Friedman et al., 2010) was used to train LASSO and ridge

regression models. Using the cv.glmnet function, 10-fold cross validation was used to tune the

model over a function specified sequence of λ’s to find the optimal λ. We used the optimal minimal

λ, which produced the smallest average cross-validated error. This was preferred over the one

standard error λ, as the minimal λ prioritizes minimization of the cross-validated error, which in

predictive analysis is important, whereas the one standard error λ obtains sparser results, which

makes them more interpretable (Hastie et al., 2023). Elastic net regression was trained using the

package caret (v6.0-94; Kuhn, 2008). In these regularization methods, R occasionally produced

errors, especially with very small sample sizes. Errors could occur when only one covariate is

included, sampled data contains only a single observation of a class, or during cross validation

a fold contains either none or one value of a class. These errors are considered acceptable. To

allow the process to continue, if an error occurred, the performance measures were set to 0.50,

representing a random guess.

2.4.3 Machine Learning Methods

A small selection of machine learning methods was used. They were selected partly because of

familiarity as well as the fact that these methods are often mentioned in the literature. This

means a large group of researchers will be familiar with these methods, making this study more

accessible. All machine learning methods were trained using the caret package in R (v6.0-94;

Kuhn, 2008) using 10-fold cross-validation.
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K-Nearest Neighbors

K-Nearest Neighbors is a simple algorithm (Bruce et al., 2020). Hyperparameter K specifies the

number of training points, i.e., neighbors, that need to be close to a point x and is described in

Table 7. Using the Euclidean distance from point x to measure theK closest training data points,

the proportion of points belonging to each class, i.e., the estimated probability, is calculated.

Point x will belong to the class for which the probability is highest (James et al., 2021; Kuhn

& Johnson, 2013). To ensure the scale of the data does not bias the estimation, the data is

standardized (Bruce et al., 2020; Kuhn & Johnson, 2013). Nevertheless, KNN can still overfit on

the data. When K is small, the algorithm will exhibit higher variance compared to larger K, as

the flexibility of the model decreases. When K is too low, it will fit too closely on the data, but

if K is too high it can also lead to underfitting as no clear pattern is found (Bruce et al., 2020;

James et al., 2021; Kuhn & Johnson, 2013). Cross-validation finds K that will balance this best.

Random Forest

Random Forest is a tree-based ensemble classification method that uses bagging to generate B

independent classification trees from the training data. In each decision tree b, only a random

subsample of covariates is allowed to be used to make the split (James et al., 2021; Kuhn &

Johnson, 2013). The default value is described in Table 7, which is also the default value from

the randomForest package (v4.7-1.1; Liaw & Wiener, 2002). Allowing only a subset of covariates

at each split leads to trees that include covariates that might not be included otherwise, due

to the presence of influential covariates. This introduces randomness to the algorithm, which

results in decorrelated trees. By adding this random component, a more diverse set of trees is

introduced and the variance is decreased. The prediction for a new observation is based on a

majority vote, where the prediction for an observation is based on what the majority of the B

trees predicted (James et al., 2021; Kuhn & Johnson, 2013). A limitation of the randomForest

package (v4.7-1.1; Liaw & Wiener, 2002) which the caret package used to train the model, is

that the number of trees to grow is fixed at 500. However, multiple sources have stated that a

higher number of trees will not result in overfitting (Breiman, 2001; James et al., 2021; Kuhn &

Johnson, 2013). That is why we do not consider it a major issue to use this default value, as 500

trees is already quite large.

Gradient Boosting Machine

Gradient Boosting Machine (GBM) is a tree-based ensemble classification method which uses

boosting. Boosting means trees are not grown independently, but in a sequential order. GBM

starts by building the first model, f̂1, which can be considered the null model. The residuals

are calculated for each observation. Subsequently, these residuals are used as the outcome on

which a new tree, f̂2, is fitted to best predict these residuals. The algorithm learns by adding
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the new tree to the earlier tree: f̂ = f̂1 + λf̂2, where λ represents the shrinkage parameter.

This process keeps repeating itself for a number of B specified trees, which demonstrates the

sequential nature of this model, as the same data keeps being used to build trees and correct

its performance (James et al., 2021; Kuhn & Johnson, 2013). The GBM model requires four

hyperparameters that need tuning in caret, which are described in Table 7.

XGBoost

XGBoost is a tree-based ensemble method, similar to GBM. The major difference between these

two methods is the addition of a regularization parameter in XGBoost and its ability to scale

up its operations, which also positively affects its speed (Chen & Guestrin, 2016). The method

is also able to implement variable selection, similar to random forest. XGBoost optimizes the

loss function that includes a regularization term. The model complexity is controlled by this

regularization term, which will aid against the risk of overfitting (Bruce et al., 2020; Chen &

Guestrin, 2016). Several hyperparameters need to be tuned to control overfitting, described in

Table 7.

Support Vector Machine

Support Vector Machines (SVM) are useful in the case of binary classification. Several variations

of the SVM algorithm are available, i.e., kernels, all tasked with finding a boundary that best

separates the classes (James et al., 2021; Kuhn & Johnson, 2013). We used three different SVM

kernels in this analysis: linear, polynomial, and radial.

The linear kernel assumes the data can be linearly separated by a hyperplane, but infinitely

many variations of the hyperplane that separate the classes are possible. The kernel tries to

find the hyperplane that maximizes the margin. First, the distance between each training point

and the (possible) hyperplanes is calculated. Second, the shortest distance between each class

and the (possible) hyperplanes is used to construct the margins, which results in many possible

margins. Maximizing the margin is the goal, which is why the model chooses the hyperplane

that belongs to the largest calculated margin. However, not all data can be entirely linearly

separated. Therefore, a hyperparameter cost (C) is introduced to control bias and variance in

the model (James et al., 2021), further explained in Table 7.

Data cannot always be linearly separated and using the linear SVM would result in poor

results. The kernel would also be prone to overfitting, as each observation could have considerable

influence on which hyperplane was selected (James et al., 2021). Non-linear kernels, such as

polynomial and radial, can find boundaries that are considered more flexible (Kuhn & Johnson,

2013), but require more tuning. The hyperparameters are clarified in Table 7.
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Chapter 3

Results

To gain a better understanding of under which circumstances traditional statistical methods

or machine learning methods performed better, we evaluated different simulated data scenarios

using several complexity level measures. In this section we examine the patterns we observed

and highlight several models of interest. Models were categorized in patterns according to which

method had the highest performance estimate at each sample size. A general pattern was cate-

gorized as such if more than one model displayed this general behavior. A selection of results is

included in this section to illustrate the patterns found in the exploratory analysis, which already

required us to apply a level of interpretation to the produced results. The complete results are

documented on the GitHub page, referred to in Appendix B without any interpretation. This is

done because the number of results produced in this study was too extensive to include without

initial interpretations. Additionally, an in-depth analysis is performed on the median model from

each pattern and performance measure to explore whether methods, that are computationally

more expensive, produce a similar pattern or have vastly different results. In this section we will

refer to machine learning methods as ML and traditional statistical methods as ST to increase

readability.

For each performance measure, we have separately analyzed the apparent general patterns.

Performance measures are shown in a visualization using range [0.50, 1], as results below 0.50

are worse than a random guess. Models that predict below this lower-bound value are not good

models and not what researchers are looking for when building a good model. Due to this

restricted range, the possibility exists that some results might not be visible. While it may not

be visible, we did use this information for the formation of the patterns. An overview of all

models can be found in Table 1 to 6 and Table 9. Due to the large range that is covered in

each figure to compare patterns, they may not be entirely visible without zooming in. To ensure

readability we used pdf versions, for which the reader can zoom in to view every detail.
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3.1 Exploratory Analysis

In the exploratory analysis we have run 138 simulations using logistic regression, LASSO re-

gression, KNN, and random forest. The observation scale was x2, where x = [4, 6, . . . , 42, 44].

We looked at each performance measure, of which accuracy was of main interest. Nevertheless,

sensitivity and specificity were also important to examine, as research goals could call for a better

sensitivity than accuracy. The division of models into patterns by performance measure can be

found in Appendix C.

3.1.1 Accuracy

We identified six different general patterns that occurred repeatedly in several results. We discuss

each pattern separately and provide representative visualizations of variations within patterns. A

special case is model E-1, which was somewhat different from the other models. This model only

included 2 main effects. We did not include this into a pattern, for any performance measure, as

performance estimates became equal very fast. This is the only model with this behavior.

Pattern A

In this pattern both random forest and KNN, machine learning methods, generally outperformed

traditional statistical methods. Models were included in this pattern when at least one machine

learning method had superior performance on all points. The difference in accuracy between

ML and ST became more distinct when the sample size was large, but also frequently when the

sample size was smaller. For example, in Figure 1a, we observed a steep increase in accuracy for

smaller sample sizes. Generally, for the smallest sample size, ML and ST methods started off close

together. After which ML methods had a steep increase and reached a stable performance (Figure

1a) or a more gradual increase (Figures 1b, 1d, 1e, 1f). Almost all models included in Figure

1 showed that ST methods improved their performance when the sample size increased. They

either kept increasing marginally (Figure 1e), reached a plateau around which they fluctuated

around an invisible line (Figure 1a) or displayed a stable performance (Figure 1b, 1d, 1f). The

exception is models like Figure 1c, which showcased model E-71, encompassing only 2 main

covariates and 1 interaction effect. We observed a divide between both approaches, in which

ST methods did not come close to the performance of ML. ML curves showcased both a stable

performance for KNN, and a decreasing performance for random forest.

The models characterized as pattern A had several complexity measures in common. All

models had at least interaction depth 2. Other settings varied, such as the number of covariates

and interactions, which ranged from first-order interactions up to fourth-order interactions. The

main covariates ranged between 2 to 30 covariates, while the first-order interactions ranged from

1 interaction to 100. As interaction depth increased, the ranges of number of interactions became

smaller, i.e., between 2 and 10, except for model E-24, which showed similar behavior to Figure
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Figure 1

Accuracy Performance of Pattern A

0.5

0.6

0.7

0.8

0.9

1.0

0 500 1000 1500 2000
Observations

A
cc

ur
ac

y

Method

Null model Logistic Regression LASSO Regression

Random Forest KNN

(a): E-26
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(b): E-50
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(c): E-71
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(d): E-81
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(e): E-99

0.5

0.6

0.7

0.8

0.9

1.0

0 500 1000 1500 2000
Observations

A
cc

ur
ac

y

Method

Null model Logistic Regression LASSO Regression

Random Forest KNN

(f): E-133

Note. This figure shows accuracy estimates on the test data measured across different training sample sizes for
pattern A. A selection of exploratory models is displayed, for which the settings are available in Tables 1 to 6.

1e. The regression coefficients differed among the models. It ranged from unique regression

coefficients (Figures 1a, 1b, 1e, 1f), identical regression coefficients (Figures 1c), to non-unique

regression coefficients (Figures 1d). Generally, when models had a high interaction depth, they

had unique regression coefficients (except for model E-88 ), while models with a smaller number

of interactions more often displayed non-unique or identical regression coefficients.

All models had variance δ = 0.10, except for models E-93 and E-99 with δ = 0.05. Moreover,

only two models had either 1 or 3 continuous covariates included, all with unique regression

coefficients, interaction depth 5, and δ = 0.10 (Figure 1f). We observed that as the number of

continuous values increased, the ST curves slightly shifted upwards, while the ML curves shifted

downwards. Moreover, the ML curves became steeper, while ST exhibited more stable curves
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close together. While most models included in this pattern had formula complexity 1, there were

two models of formula complexity 2. In general, they followed the pattern showcased in Figure

1b, where ST curves remained closer to ML curves. Moreover, only a gradual increase is observed

in ML performance, where KNN needs a very large sample size to overtake ST methods.

Pattern B

Pattern B consisted of models where traditional statistical methods outperformed machine learn-

ing methods. Models were included in this pattern when at least one traditional statistical

method had superior performance on all points.

While the different models exhibited some variation in performance, in general the difference

between the traditional statistical methods and machine learning methods was not considerably

large. Moreover, logistic regression outperformed LASSO regression, especially for smaller sample

sizes, while as sample size increased their performance became comparable.

The model settings in this pattern consisted of models with formula complexity 1 and 10 main

covariates. The number of regression coefficients was unique for all models, except model E-68,

which had 5 non-unique regression coefficients. The variance parameter, δ, mainly consisted

of δ = 0.10, but also included a model with δ = 0.05 (E-89 ). One model also included only

continuous covariates, E-116, shown in Figure 2d. A few comparisons could be made, as models

were very similar. Models E-2 and E-89 had variance δ = 0.10 and δ = 0.05, respectively. We

observed an upward shift of both approaches when the variance was decreased to δ = 0.05, while

proportions between the approaches remained similar to model E-2. Models E-2 and E-68 had

10 and 5 unique regression coefficients, respectively. Figures 2a and 2b displayed almost identical

curves. Comparing models E-2 and E-116 with 0 and 10 continuous covariates, respectively, we

only noticed a downward shift of ML curves, while the ST curves remained almost identical.

Pattern C

The distinguishing feature of this pattern is the performance of logistic regression, which either

lagged behind significantly or took a considerable amount of time to approach the LASSO curve.

In this pattern traditional statistical methods overtook machine learning methods. Figure 3

also showed that random forest generally performed best of the two ML methods, as KNNs

curves were not as steep. LASSO regression was always the first of the regression methods that

caught up to the ML curves, whereas logistic regression either failed to do so or only caught up

with either one or both ML curves very late. Logistic regression occasionally approached the

LASSO curve (Figures 3a, 3e), but required a larger sample size to accomplish this. Variations

in this pattern also showed logistic regression sometimes did not catch up (Figures 3b, 3c, 3d,

3f). Generally, logistic regression performed quite badly for smaller sample sizes. We even found
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Figure 2

Accuracy Performance of Pattern B
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(c): E-89
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(d): E-116

Note. This figure shows accuracy estimates on the test data measured across different training sample sizes for
pattern B. A selection of exploratory models is displayed, for which the settings are available in Tables 1 to 6.

extreme cases, Figures 3b and 3f, where logistic regression performed similar to the null model

and only started improving once the sample size passed 1250.

The models that we categorized as pattern C had several commonalities. All had either

formula complexity 2 or 3 and target variance δ = 0.10 and all, except one model (E-131 ),

had no continuous covariates. Moreover, all models had unique regression coefficients. The only

settings that truly varied were the number of covariates and interactions (and interaction depth).

This ranged from only main effects up to sixth-order interactions. The main covariates ranged

between 10 and 50 covariates, while first- and second-order interactions ranged between 1 and

100. Higher interaction-orders had a smaller number of interactions, ranging between 1 and 20.

Several comparisons were possible. Models E-35 and E-36 (Figures 3a, 3b) had the same

settings, except for the formula complexity of 2 and 3, respectively. The behavior of logistic

regression was extremely different, as in model E-35 logistic regression began improving its

performance before n = 250, while model E-36 required a sample size past n = 1250 before any

significant improvement was observed.

Generally, we observed that as the number of main effects increased, it took longer for LASSO

regression to overtake random forest. This was apparent in models that only had main effects

or main effects and one first-order interaction. When a high number of higher-order interactions

was included, the effect was too difficult to observe. A few illustrations: model E-53 (Figure 3e)

had 100 first- and second-order interactions, while model E-52 (Figure 3d) had only 5 first- and

3 second-order interactions. Both had 30 main effects. But the figures merely showed a small

up- and downwards shift. A similar comparison is between models E-35, E-42, E-64, not all

of which are displayed in the figure. What we did not see was a left- or right shift. This only

occurred when we reviewed models where the main effects increased or when models such as

E-35, increased their formula complexity to 3 (Figure 3b). This illustration also highlights the
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Figure 3

Accuracy Performance of Pattern C
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(a): E-35
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(b): E-36
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(c): E-44
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(d): E-52
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(e): E-53
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(f): E-66

Note. This figure shows accuracy estimates on the test data measured across different training sample sizes for
pattern C. A selection of exploratory models is displayed, for which the settings are available in Tables 1 to 6.

fact that logistic regression struggled when a higher number of combinations was possible due

to higher formula complexity. In model E-35, logistic regression only had to identify effects for

210 possible combinations (20 + 190), whereas model E-36 had 1350 possible effects (20 + 190

+ 1140). While it is not logistic regression that ‘struggles’ to find effects, it is the limitation of

logistic regression when data is high-dimensional as there exists not one particular solution for

the effects (Cerulli, 2023; James et al., 2021; Van Wieringen, 2023). This also invoked several

warnings during model training from the logistic model in R, as the model had trouble finding

unique solutions that did not exist. All models that fall under the pattern have p > n for small

sample sizes. When more combinations are possible, due to more main covariates or formula

complexity, the longer it takes until the model reaches a low-dimensional situation. This is
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partly due to the design of this study, because when we used formula complexity we added all

possible interactions.

Pattern D

In this pattern, initially machine learning performed best for the smallest sample size(s). As the

sample size increased, one of the traditional statistical methods managed to catch up and had

superior or similar accuracy estimates. A distinguishing feature of this pattern is that a machine

learning method eventually overtook the regression method(s) as sample size increased.

It varied when machine learning methods started outperforming regression methods after

the regression methods initially overtook them. In some of the models it happened before n =

250 (Figure 4a), while in other models it happened after n = 1000 (Figure 4e). Regression

methods were shown to either stabilize as the sample size increased (Figures 4a, 4b, 4d, 4e, 4f)

or keep increasing (Figure 4c). It differed between models at what point ML methods started

outperforming ST methods in smaller sample sizes. Model E-113 (Figure 4e) showed random

forest performed best in the first three sample sizes, while for model E-21 (Figure 4b) it was

only the first observation. Both figures 4c and 4e had formula complexity 2, but each produced

different curves. Another variation is the relative difference between ML and ST methods. We

observed quite a large gap between the two approaches in Figure 4b, while Figures 4a, 4c, 4d,

4e, 4f displayed the two approaches much closer together.

The models in which this pattern was observed differed in several of the complexity measures.

All had at least interaction depth 2. The formula complexity ranged from 1 to 3, important to

mention is that only one model had formula complexity 3. This illustrates that while pattern

C contained many models with higher formula complexity, they were not confined to that pat-

tern. Almost half of the models did not have unique regression coefficients, which also ranged

from identical to unique (Figures 4a, 4b, 4c, 4d, 4f) and non-unique (Figure 4e). The variance

parameter, δ, had all possible values, of which the large majority was δ = 0.10. Six models had

continuous covariates, ranging between 1 and 15.

We list some possible comparisons. Figures 4b and 4f only differ in the variance, δ = 0.10

to δ = 0.20, respectively, as well as one continuous covariate. The addition of higher δ and one

continuous covariate shifted down the curves of both approaches, but was more distinct for the

ML curves. Additionally, models E-123 and, while not displayed, E-96 had an almost identical

visualization. The only difference was the addition of 1 continuous covariate in E-123. Thus, it

seems that the major difference in Figures 4b and 4f could be due to the increased variance.

Pattern E

This fifth pattern showcased the ability of traditional statistical methods to surpass machine

learning methods. Either one or both machine learning methods had higher accuracy compared
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Figure 4

Accuracy Performance of Pattern D
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(a): E-16
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(b): E-21
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(c): E-61

0.5

0.6

0.7

0.8

0.9

1.0

0 500 1000 1500 2000
Observations

A
cc

ur
ac

y

Method

Null model Logistic Regression LASSO Regression

Random Forest KNN

(d): E-100
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(e): E-113
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(f): E-123

Note. This figure shows accuracy estimates on the test data measured across different training sample sizes for
pattern D. A selection of exploratory models is displayed, for which the settings are available in Tables 1 to 6.

to traditional statistical methods for the first few sample sizes. The key identifier of this pattern

is the fact that traditional statistical methods always overtook the machine learning methods as

the sample size started to increase. Moreover, the performance of the regression methods often

stabilized quickly, whereas the machine learning methods showed a gradual increase in accuracy,

but not enough to catch up.

Several variations within this pattern were observed. First, ST methods oftentimes had a

high performance that quickly stabilized, whereas the ML methods stayed behind and slowly

kept increasing. ML curves either approached the ST curves closely (Figure 5a) or remained

further away (Figure 5b). A variation on this is when instead of logistic regression, LASSO

regression performed better. Noticeable is the fact that logistic regression did eventually catch
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Figure 5

Accuracy Performance of Pattern E
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(a): E-8
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(b): E-25
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(c): E-46
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(d): E-48
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(e): E-98
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(f): E-107

Note. This figure shows accuracy estimates on the test data measured across different training sample sizes for
pattern E. A selection of exploratory models is displayed, for which the settings are available in Tables 1 to 6.

up, while ML curves remained further away from both ST curves (Figures 5c, 5d, 5f). Models

displayed this behavior when they had formula complexity 2. A different variation showed a

lower overall performance for all approaches. ST performance kept stabilizing quickly and ML

curves had a flatter slope than ST curves, resulting in a lower performance. ML curves either

remained at a distance or came close to the ST curves as the sample size increased (Figures

5e, 5f). Models that exhibited this behavior varied in formula complexity, but all had variance

δ = 0.20, except model E-30 which had δ = 0.10. Important to add is that model E-30 had 50

main covariates and interaction depth 5, while the models that were included with δ = 0.20 had

interaction depth 3 or lower.

Several complexity measures were the same among models. Of the 39 models all had zero
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continuous covariates, except for models E-117, E-129 and E-130 who each had 10 continuous

covariates. Formula complexity was either 1 or 2. Other settings varied, where we saw that

the majority had variance δ = 0.10, but seven models were included with δ = 0.20 and three

had δ = 0.05. Most models had only main effects or first-order interactions. Seven models were

included with second-order interactions and one model each for third-, fourth-, and fifth-order

interactions. The number of main effects varied between 10 up to 50, while the number of first-

order effects ranged between 1 and 40. This drastically reduced for second-order interactions

and higher-order interactions which ranged between 1 and 10. The number of unique regression

coefficients varied. It seemed to depend on the number of covariates and interaction depth.

Almost all models with interaction depth 3 and higher had unique regression coefficients (Figures

5a, 5b, 5c, 5d, 5e), as well as models with 30 main covariates or higher and interaction depth

lower than 2. However, there were models included with 10 or 20 main effects, and any number

of first-order interactions, with either identical or non-unique regression coefficients (Figure 5f).

We list some interesting comparisons. Figure 5a, with 20 main effects and 1 interaction

effect, and Figure 5b, with 50 main effects and 1 first-, second-, and third-order interaction

effect illustrated the increasing distance between ST and ML curves as both the main effects

and interactions have increased. Moreover, the only difference between Figure 5c and 5d is a

higher number of first-order interactions (10 vs. 40). It is clear that as the first-order interactions

increased, the LASSO regression curve shifted down towards the logistic regression and the curves

of the ML methods shifted down further.

Pattern F

Pattern F showed that machine learning methods overtook traditional statistical methods. The

models included in this pattern exhibited better performance from traditional statistical methods

for smaller sample points than machine learning methods. Once the sample size increased,

machine learning methods started outperforming traditional statistical methods.

When we looked at the general variations in the pattern, the accuracy curves of ML methods

were sometimes steeper and quickly found a stable estimate (Figures 6c, 6d), while in other cases

they increased steadily as the sample size increased (Figure 6a, 6b, 6e, 6f). Sometimes the ML

curves remained close after having overtaken the ST curves (Figures 6a, 6d, 6e), while in other

cases they moved away further (Figures 6b, 6c, 6f). In some cases, ST curves quickly increased

and found a stable estimate (Figures 6a, 6b, 6f), while in other cases they kept fluctuating around

an invisible line (Figures 6c, 6d), which meant accuracy estimates differed between sample sizes.

To go into more detail on the general pattern we found that in some cases, ST curves remained

low and produced stable estimates (Figure 6b), while curves of ML methods kept increasing their

performance. Models that showed this sub-pattern all had formula complexity 1 and almost all

had unique regression coefficients. Similarly, other models demonstrated a stable performance

for ST methods, but it took ML methods longer to outperform the ST methods (Figures 6a and
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Figure 6

Accuracy Performance of Pattern F
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(a): E-7
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(b): E-18
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(c): E-55
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(d): E-56
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(e): E-110
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(f): E-128

Note. This figure shows accuracy estimates on the test data measured across different training sample sizes for
pattern F. A selection of exploratory models is displayed, for which the settings are available in Tables 1 to 6.

6f). While in model E-18 the superior performance of ML methods was already apparent in

smaller sample sizes, other variations showed it took longer for ML curves to overtake the ST

curves. Some showed that both ML methods were able to overtake the ST methods (Figure 6f),

whereas sometimes we observed only random forest succeeding (Figure 6a). There was also the

case in which neither approach produced stabilizing estimates but kept increasing, demonstrating

similar low performance (Figure 6e). This model was generated using formula complexity 2 and it

is apparent that the ML curve took until the last observation point to overtake the ST methods.

The ST methods could also produce some fluctuation (Figures 6c and 6d). ST curves often

fluctuated around an invisible line instead of the stable performance as seen in earlier figures,

whereas ML curves had a very steep increase at the start and stable estimates as the sample size
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increased. A comparison can be made between these two figures, as models E-55 and E-56 are

identical apart from the formula complexity, 2 or 3, respectively. In Figure 6c both ML methods

were superior, whereas Figure 6d only showed KNN outperforming the regression methods as

they had increased significantly.

The models that belonged to this pattern had quite some differences between them. The

interaction depth was between 1 and 5. Three models had formula complexity 2, two models had

formula complexity 3, and the rest had formula complexity 1. Half of the models included had

continuous covariates, ranging between 1 and 10 and had an interaction depth of either 3 or 5.

The number of unique regression coefficients varied between identical (Figure 6e), unique (Figure

6a, 6b, 6c, 6d, 6f) to non-unique combinations. When we reviewed the number of covariates, we

found that the main covariates ranged between 5 and 15, first-order interactions ranged between 1

and 15, second-order interactions were between 3 and 10, third-order interactions ranged between

2 and 10, and fourth-order interactions ranged between 1 and 10. Most models had variance

δ = 0.10, four models with δ = 0.05 were included (Figure 6f), and two models with δ = 0.20

(Figure 6e).

3.1.2 Sensitivity and Specificity

We also review the results from the sensitivity and specificity measures. We identified seven

patterns, of which six we previously discussed in the accuracy estimates (A-F). As our main

focus was the accuracy measure, we looked at sensitivity and specificity results together. We

either described variations in the pattern, similar to the previous section, or depending on the

models included looked at variations in sensitivity and specificity together.

Pattern A

In pattern A machine learning methods consistently delivered superior performance, a trend

evident in the sensitivity and specificity estimates across several models. However, the metrics

differed in the number of models within this pattern: specificity had 40 models that exhibited

this pattern, while sensitivity had only 2.

Sensitivity only included two models. One of these models displayed a similar pattern to

the accuracy estimates in Figure 1c, with the key difference being that the regression methods

showed less increase and more fluctuation around an invisible line at approximately 0.57. The

other model, depicted in Figure 8a, showed ML curves consistently increasing. Both models

had formula complexity 1, no continuous covariates, and variance δ = 0.10. Their interaction

depth was either 2 or 3, and they had either identical or non-unique regression coefficients. More

models had superior machine learning performance for specificity estimates, with several varia-

tions possible. Often, ST curves demonstrated relatively stable behavior, with both regression

methods performing similar (Figure 8e). However, in other models, the ST curves behaved more
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erratically with many fluctuations (Figure 8d). In both situations, ML performance was often

considerably higher than that of ST methods. The stable behavior of the ST methods was mostly

seen in models with a formula complexity of 1, (non-)unique regression coefficients, and models

with variance δ = 0.10 or δ = 0.05. The erratic behavior of ST methods was mostly found in

models with interaction depth 5 and unique regression coefficients, or in models with interaction

depth 2 with mainly, but not all, identical regression coefficients. We also observed overall lower

performance, where all curves fluctuated (Figure 8b), where ML curves kept increasing while ST

curves remained lower and flatter. Models with this lower performance had unique or identical

regression coefficients, formula complexity 1, 15 main and first-order effects, and 10 second-,

third-, and fourth-order effects, and all but one had variance δ = 0.10. The last variation was

when logistic regression lagged behind LASSO regression in differing degrees, similar to pattern

C, where the ST curves were no longer close together. However, random forest outperformed

both methods. Models had either formula complexity 2 or 3 and no continuous covariates, with

other settings varying greatly.

This pattern encompassed many variations. There was stable behavior by ST methods (Figure

8e), but also erratic behavior (Figure 8d). Instances occurred where ST methods had similar

performance (Figures 8b and 8e), or diverged more (Figures 8c and 8d). ML methods sometimes

performed considerably higher (Figures 8d and 8e), while in other cases, the approaches were

close together (Figures 8b and 8c). Generally, the interaction depth ranged between 2 and 5 and

formula complexity between 1 and 3, although not every sub-pattern included the full range.

Almost all models had variance δ = 0.10, with the exception of five models with δ = 0.05 and

one with δ = 0.20. Almost every variation in this pattern contained at least one model with a

continuous value, of which the values ranged between 1 and 5.

Pattern B

In pattern B traditional statistical methods consistently outperformed machine learning methods,

which both sensitivity and specificity estimates displayed across several models. Sensitivity had

14 models that exhibited this pattern, while specificity had only one. Note we set the criteria that

a pattern existed only if at least two models displayed the pattern. Nevertheless, we included

the specificity model since pattern B was already found in the accuracy results.

There are two sub-patterns that kept returning in multiple models. First, models where ST

curves started with a steep increase, after which their performance remained stable and high.

ML curves either neared the regression methods (Figure 9a), or remained at a larger distance 9c).

Models that displayed this variation had either formula complexity 1 or 2 and variance δ = 0.10 or

δ = 0.05. Second, both approaches could also move closely together, especially as the sample size

increased (Figure 9d). The performance often stabilized, with fluctuations around an invisible

horizontal line. Models that displayed this behavior had variance δ = 0.20, unique regression

coefficients, and formula complexity 1. Model E-39 also showed a distinct pattern, which no
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other models displayed. Figure 9b displays how LASSO regression immediately outperformed

ML methods. However, the behavior fluctuated greatly for smaller sample sizes and stabilized

more as sample size increased. Also of interest is the behavior of random forest, which stabilized

rather quick and performed the worst. Settings that accompanied this model were 2 main and 1

interaction effect, δ = 0.10, formula complexity 2, and unique regression coefficients. We believe

the reason why LASSO regression outperformed ML methods, is because of the higher formula

complexity and the simplicity of the model.

No common denominator is present between the models, as all settings varied. Main effects

varied between 2 and 30, first-order interactions ranged between 1 and 40, and higher order

interactions ranged between 1 and 3. The majority had interaction depth 1, 2, or 3, with the

exception of one model with interaction depth 6. The regression coefficients varied between

identical, unique (Figure 9a, 9b, 9c, 9d), and non-unique coefficients. Variance, δ, took on all

values, but did show a distinction between sub-patterns. Three models with continuous values 5

or 10 were included (Figure 9d). Apart from three models with formula complexity 2, the formula

complexity was often 1. Also of interest is the fact that model E-2 overlapped in pattern B for

both performance estimates (Figure 9a).

Pattern C

The key feature in pattern C was the poor performance of logistic regression, while LASSO

regression outdid machine learning methods. In the accuracy results, models were included if

machine learning performed better for smaller sample sizes but was overtaken by LASSO as

the sample size increased. For sensitivity and specificity results we also observed that models

were included if a traditional statistical method initially performed best for small sample sizes,

was briefly overtaken by machine learning, and LASSO regression ultimately displayed superior

performance. Both performance metrics had quite some models that fit pattern C, sensitivity

had 18 and specificity had 14. All models in specificity were also present in sensitivity. Similar

variations are present as discussed in pattern C of accuracy in section 3.1.1. To not reiterate this,

we highlighted models in which the complementing or contrasting performance of sensitivity and

specificity was visualized. This is the only pattern in which there is so much overlap of models.

As we know, pattern C was characterized by poor performance of logistic regression, which

is due to the limitations of the logistic regression when n ≫ p. This was also reflected in

the performance of sensitivity and specificity. In general, two situations were observed. First,

sensitivity and specificity produced a similar pattern in which only minor differences occurred

(Figures 7a, 7b, 7c and 7d). Whereas there also existed a variation in which the curve of logistic

regression shifted up and ML curves as well (Figures 7e and 7f). While the former figures look

much more similar, the latter do not.

The models that were included in this pattern varied a great deal. In both sensitivity and

specificity, models were included in which ST overtook ML as sample size increased either in
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Figure 7

Pattern C: Sensitivity and Specificity Performance
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(a): E-41 (Sensitivity)
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(b): E-41 (Specificity)
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(c): E-51 (Sensitivity)
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(d): E-51 (Specificity)
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(e): E-62 (Sensitivity)
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(f): E-62 (Specificity)

Note. This figure shows sensitivity and specificity estimates on the test data measured across different training
sample sizes for pattern C. A selection of exploratory models is displayed, for which the settings are available in
Tables 1 to 6.

one move (Figure 7c and 7d) or in multiple alternating steps (Figure 7b and 7f). Models had

interaction depth between 1 and 7, variance δ = 0.10, and unique regression coefficients. We also

saw, confined to sensitivity estimates, models in which ST methods performed best on the small

sample size(s), but were overtaken by ML methods for a while. Distinguishing is the fact that

eventually ST was able to outperform ML again (Figure 7a and 7e). Models in this scenario had

interaction depth between 2 and 5, unique regression coefficients, and variance δ = 0.10. Both

scenarios had either formula complexity 2 or 3.
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Pattern D

Both sensitivity and specificity are represented in this pattern. Sensitivity has 16 models and

specificity 34. Only five models where present in both performance metrics. As this pattern

contains many models, various sub patterns were possible. We highlight several, but nuances and

variations still exist, such as only one method performing better later on, or more fluctuations.

The first variation demonstrated overall high performance of ST, whose performance stabi-

lized as the sample size increased. ML methods started outperforming the ST methods early on

and either kept increasing (Figure 10a) or remained quite close to the ST methods (Figure 10b).

Models that demonstrated ML methods with these variations mainly had formula complexity

1 and some models with sensitivity estimates also had formula complexity 2. Variance varied

between δ = 0.10 and δ = 0.05. There were also instances of low performance in general. In

these figures at least random forest often performed well early on. Regularly only for one or two

points ST had superior performance. All curves demonstrated more fluctuations in comparison

to the other variation. Both approaches either gradually increased (Figure 10c) or remained on a

similar performance level with small fluctuations (Figure 10d). Sometimes both ML curves had

superior performance, whereas in other cases only one managed to outperform the ST methods.

Two kinds of models kept gradually increasing. The first were smaller models with variance

δ = 0.20 and formula complexity 2, while the others were models with interaction depth 3 or

5, formula complexity 1, and variance δ = 0.10. Models that demonstrated flatter curves were

often smaller models of interaction depth 2 or 3, with variance δ = 0.20, except for one model

with interaction depth 7 and δ = 0.10. The last sub-pattern is variation on pattern C, but here

ML eventually outperforms LASSO regression. While we only show Figure 10e, the variation in

this pattern is alike to what we saw in Pattern C. In some models, logistic regression did catch

up with LASSO regression, while in others it was attempting to catch up. All models that had

such a pattern had formula complexity 2 or 3, but varied in other settings.

Both sensitivity and specificity models that were characterized as pattern D had some version

of these variations. Overall, a variety of models was included in this pattern for both sensitivity

and specificity, as this pattern is very general. Summarizing the models from both performance

measures together, interaction depth ranged between 1 and 7. Where main effects ranged be-

tween 10 and 50, first- and second-order effects ranged between 1 and 100, and higher-order

interactions often ranged between 1 and 20. Identical and (non-)unique regression coefficients

were all included, as well as all variance levels. Some models had continuous values, specificity

models more than sensitivity models, and formula complexity had all possible values.

Pattern E

In this pattern both performance metrics had almost an equal number of models included, sen-

sitivity had 24 models and specificity 21 models, of which some were overlapping models. In this

pattern traditional statistical methods started outperforming machine learning methods.
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Both sensitivity and specificity models produced a similar variation, in which ST curves

started with a steep increase, after which their performance was high and stable. The ML curves

were not as steep. Overall, they did not improve enough to have a similar performance (Figure

11a), or alternated with ST curves until the regression methods remained dominant (Figure

11b). Models that demonstrated this sub-pattern had formula complexity 1 and (non-)unique

regression coefficients. A variation similar to pattern C is demonstrated in Figure 11c. This was

not included as Pattern C, as the performance of logistic regression rapidly improved and as the

sample size increased had mostly caught up with LASSO regression estimates. Models in both

specificity and sensitivity had formula complexity 2, most had variance δ = 0.10, with a few

exceptions using δ = 0.05, and all had 10 main effects. The interaction depth ranged between

1 and 3. The last variation, only present in sensitivity estimates, displayed both approaches

generating lower estimates close to each other. While ST curves were superior, ML followed

(very) close. An example is shown in Figure 11d, which is the extreme situation in which

methods are very close together. Models that produced this lower performance with methods

close together were characterized by variance δ = 0.20 and either formula complexity 1 or 2.

If we consider sensitivity and specificity together, both had models with formula complexity

1 and 2 and included several models with 10 continuous covariates. However, there are also quite

some differences. The interaction depth of specificity models ranged between 1 and 3, whereas

sensitivity models also had a model with interaction depth 4. Models belonging to the sensitivity

estimates had identical, non-unique, and unique regression coefficients, while specificity models

did not have identical regression coefficients. The variance also differed between metrics, as

specificity only had δ = 0.05 and δ = 0.10, while sensitivity also had models with δ = 0.20.

Pattern F

In this pattern machine learning methods outperformed traditional statistical methods as the

sample size increased, either in one move or by alternating until they performed best. Sensitivity

had 48 models that displayed this behavior, whereas specificity only had 23.

Both sensitivity and specificity estimates displayed several common sub-patterns. Figure 12a

is such a variation, in which the performance of ST did not improve much, instead it fluctuated

around an invisible line. Moreover, the approach often only performed best for the first sample

size. The performance of ML, however, had a steep increase. It either kept increasing or stabi-

lized, similar to the figure, as the sample size increased. Models that displayed this behavior were

either models with interaction depth 5 and variance δ = 0.10 and varying formula complexity or

models with either interaction depth 2 or 3 where the regression coefficients were either identical

or non-unique for sensitivity estimates or all options for specificity estimates. We also saw several

models, specific to sensitivity, in which it took ML curves quite some time to overtake the ST

curves (Figure 12d). Similar patterns were observed in specificity, but in these models it either

took a lot of alternating between approaches to overtake the ST curves (Figure 12b) or rather
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quickly (Figure 12e). Other variations in these sub-patterns are lower overall performance and

less fluctuations. Models that produced these results varied in all of their settings. A sub-pattern

which we observed in sensitivity estimates was when both approaches moved very close together.

Shown in Figure 12c, we observed several models for which the performance was quite low and

all approaches remained close together. Some models also kept increasing their performance,

while keeping the proportions similar. The models that displayed this performance had either

interaction depth 3 or 5 and varied the variance between δ = 0.10 and δ = 0.20. Their regression

coefficients were unique, but formula complexity varied.

Pattern G

A pattern that we did not clearly observe in the accuracy estimates, but did in sensitivity and

specificity was pattern G. In this pattern traditional statistical methods performed best for the

smallest sample size(s) and for larger sample size(s). In-between machine learning methods

managed to outperform for a time. An interesting observation is the fact that the pattern that a

single model, E-39, displayed in its accuracy estimates, is now represented in pattern G. While a

model with this pattern would not have been recognized as a pattern in accuracy, it was a general

pattern in sensitivity and specificity. A variation spotted in both sensitivity and specificity is

when the ST curves performed relatively high, somewhere between 0.70 and 0.90. ML curves

either remained a way below (Figure 13a) or increased to a close vicinity. Models with this

sub-pattern had interaction depth ranging from 1 to 5 and all had variance δ = 0.10. Another

variation, specific to specificity, in which high performance was visible is Figure 13b. In this

variation ST performed best on the first observation, after which random forest did better for

one point. In subsequent points LASSO regression either kept outperforming or alternating with

random forest, while logistic regression took longer to improve its performance. Both models that

displayed this behavior had 10 main and first-order effects, formula complexity 2, and identical

regression coefficients. Specific to sensitivity are Figures 13c and 13d. Both displayed lower

performances, where either the estimates stabilized as the sample size increased (Figure 13d) or

ST curves separated from ML curves and kept increasing more (Figure 13c) These models had

interaction depth 1 to 3, but varied between other settings.

3.1.3 Comparison Between Performance Measures

Table 8 represents confusion matrices between the different performance measures, e.g., if a

model was classified as pattern A for both accuracy and sensitivity this was counted in the

corresponding cell. A few notable observations. Across all matrices, pattern C consistently had

many models where both measures classified them into pattern C, which indicates this pattern

is strongly reflected in all measures. Only few models had classifications that were different

between patterns. In both Table 8a and 8b accuracy classified many models into pattern E,
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Table 8

Confusion Matrix Exploratory Analysis

Accuracy

Pattern A B C D E F G

S
en
si
ti
v
it
y

A 2 0 0 0 0 0 0
B 0 4 0 1 8 0 0
C 0 0 18 0 0 0 0
D 4 0 0 9 0 3 0
E 1 0 0 1 22 0 0
F 19 0 0 12 0 17 0
G 0 0 2 2 9 2 0

(a) Accuracy versus Sensitivity

Accuracy

Pattern A B C D E F G

S
p
ec
ifi
ci
ty

A 21 0 2 10 0 6 0
B 0 1 0 0 0 0 0
C 0 0 14 0 0 0 0
D 2 0 4 11 12 5 0
E 0 3 0 0 18 0 0
F 3 0 0 4 5 11 0
G 0 0 0 0 4 0 0

(b) Accuracy versus Specificity

Sensitivity

Pattern A B C D E F G

S
p
ec
ifi
ci
ty

A 1 1 0 6 1 28 3
B 0 1 0 0 0 0 0
C 0 0 14 0 0 0 0
D 1 7 4 5 5 8 4
E 0 5 0 0 10 0 6
F 0 0 0 5 4 12 2
G 0 0 0 0 4 0 0

(c) Sensitivity versus Specificity

Note. The confusion matrices demonstrate how 138 models from the exploratory analysis are characterized into
specific patterns based on accuracy, sensitivity, and specificity. The distribution of models assigned to each pattern
highlights both the overlap and differences in patterns between the measures.

whereas both specificity and sensitivity dispersed these models more into pattern B, D, F, and

G. Both sensitivity and specificity classified many models as pattern F, whereas accuracy divided

them mostly among patterns A, D, and F. As a final observation, the contrasting behavior in

classification of accuracy pattern A between Tables 8a and 8b: in Table 8b almost all models

were classified as pattern A in both measures, whereas in Table 8a almost all models classified

as A under accuracy shifted towards pattern F in sensitivity.

3.2 In-Depth Analysis

For the in-depth analysis we selected 20 median models, with observation scale, x2, where x =

[4, 8, . . . , 40, 44]. Median models were selected from each pattern and performance measure,

where interaction depth was used as the primary criterion to sort the models. This meant that

six median models were selected for accuracy and seven each for sensitivity and specificity. The

scope of this analysis is limited, as we only reviewed a few models as described in Table 9. The

patterns found in the exploratory analysis are linked to those identified during this in-depth

analysis, listed in Table 10. We will review whether more computationally expensive methods

demonstrated similar behavior to the methods from the exploratory analysis or if, by using more

methods, some patterns disappear. A selection of the results are shown in Figure 14, while the

remaining can be found on the GitHub page referred to in Appendix B.

3.2.1 Accuracy

The exploratory analysis identified six different patterns apparent in the accuracy. Of the 20

models, seven retained the same pattern in both analyses, while the others changed. We will

discuss what changes were observed in each pattern, summarized in Table 10.
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Table 9

In-Depth Simulation Studies

Accuracy Sensitivity Specificity

D-1 D-2 D-3 D-4 D-5 D-6 D-7 D-8 D-9 D-10 D-11 D-12 D-13 D-14 D-15 D-16 D-17 D-18 D-19 D-20

Corresponding Pattern A B C D E F A B C D E F G A B C D E F G

Corresponding Exploratory Model 84 89 49 111 11 128 86 13 41 95 12 125 46 118 2 52 114 104 120 9

Number of covariates
Main effects 10 10 10 10 30 10 10 30 10 10 30 10 10 10 10 30 10 10 10 30
First order interactions 5 40 5 2 5 5 4 1 5 3 5 10 5 5 5 10 5 1
Second order interactions 3 3 3 3 3 3 3 3 3 3

Number of regression coefficients
Main effects 2 10 10 2 30 10 5 30 10 10 30 10 10 5 10 30 5 2 5 30
First order interactions 2 40 2 2 5 5 4 1 5 3 5 10 3 5 5 2 3 1
Second order interactions 2 2 3 3 3 3 3 3 3 3

Variation in the outcome 0.10 0.05 0.10 0.10 0.10 0.05 0.10 0.10 0.10 0.05 0.10 0.05 0.10 0.10 0.10 0.10 0.05 0.10 0.10 0.10

Number of continuous covariates 0 0 0 0 0 10 0 0 0 0 0 5 0 1 0 0 0 0 10 0

Formula Complexity 1 1 3 2 1 1 1 1 3 1 1 1 2 1 1 2 2 2 1 1

Note. This table illustrates the different simulated models that were run for the in-depth analysis. No complexity
parameters were fixed. For each interaction depth the number of main effects or number of interaction effects is specified,
as well as the number of unique regression coefficients. Abbreviation D denotes models of the in-depth analysis. The
Corresponding Pattern reference denotes patterns identified in the exploratory simulation study in section 3.1 and
Corresponding Exploratory Model denotes models in Tables 1 - 6.

Pattern A Both models that were found to be part of pattern A in the exploratory analysis,

remained pattern A in the in-depth analysis, as can be seen in Figure 14a.

Pattern B While models D-2 and D-15 (Figure 14b) were part of pattern B in the exploratory

analysis, this pattern was no longer observed in the in-depth analysis. Instead, both now dis-

played a pattern similar to pattern E. In both models we observed that the first sample size

(n = 16) was the point which now had changed, as now a machine learning method (GBM or

linear SVM) outperformed the traditional statistical methods.

Pattern C Three models were initially classified in this pattern in the exploratory analysis. In

the subsequent in-depth analysis one model remained in the same pattern, whereas two models

changed to pattern A. Both models that changed from pattern C to A between analyses were

models with formula complexity 3 and 10 main effects. The number of first-order interactions

was either 1 or 40. Model D-3 is shown in Figure 14c. The model that stayed in pattern C

had formula complexity 2, 30 main effects, 5 first- and 3 second-order interactions. This also

reflected what we saw in the exploratory analysis, as the number of main order effects increased

that curves often shifted more towards the right. Apparent is the fact that machine learning

methods, performed well, also for smallest sample sizes. The model still classified as pattern

C (Figure 14d) showed that LASSO regression took until a sample size higher than 1250 to

outperform GBM. Afterwards, both approaches remained close together. We also observed that

regression methods ridge and logistic regression often lagged behind on elastic net and LASSO

regression. This is reasonable, as the latter have the ability to set coefficients to zero, whereas

the former can only shrink effects without removing them from the model.
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Pattern D Initially four models were characterized as pattern D in the exploratory analysis.

No were left in the in-depth analysis, as all models had changed to pattern A, as can be seen

in Figures 14e and 14f. This meant that instead of traditional statistical methods overtaking

machine learning methods for a limited time, somewhere at the beginning or in the middle,

machine learning methods were now superior.

Pattern E Six models were classified as pattern E in the exploratory analysis. Only two

remained in pattern E in the in-depth analysis. The four other models changed to pattern D.

Models D-5 and D-20 were both in the same pattern in the exploratory analysis, but now found

themselves in different patterns for the in-depth analysis. The only difference between the two

models is one extra first-order interaction term. While in model D-20 (Figure 14h), machine

learning methods did better for the first observation, especially linear SVM, traditional statistical

methods, especially logistic regression, soon took over. In contrast to model D-5 (Figure 14g),

where machine learning performed best for the first two and last sample sizes. All other points

had better performance from traditional statistical methods. Although the differences between

approaches, as sample size increased, were very small.

Pattern F Three models were categorized as pattern F in the exploratory analysis. Two re-

mained in this pattern, but one transformed into pattern A. For example, in model D-6 (Figure

14i) a similar pattern to Figure 6f of the exploratory analysis is seen. The major difference was

the addition of more methods, while in the exploratory analysis the traditional statistical meth-

ods outperformed machine learning methods for sample sizes below 500, in model D-6 logistic

regression outperformed machine learning in the first sample size. In model D-12 (Figure 14j)

pattern A persisted, where radial SVM outperformed all others. In the original model E-125,

machine learning methods had surpassed traditional statistical methods well before a sample size

of 250. Now, they had the best estimates from the start.

The newly classified in-depth models in each pattern often did not have one distinctive iden-

tifier. In all patterns, except C and F, several formula complexity options were included. Pattern

F only included two models with formula complexity 1, whereas pattern C included one model

with formula complexity 2. The variance was constant at δ = 0.10 for pattern D, whereas in

other patterns with more than one model both δ = 0.10 and δ = 0.05 were included. As this

concerned median models, the interaction depth ranged only between 1 and 3. Pattern A, con-

sisted of models with interaction depth 2 or 3, D only included models with interaction depth

2, E consisted of models with interaction depth 1 or 2, and F had two models with interaction

depth 3. Observed was also that in pattern F, only two models were included, in which the

number of main effects was equal to the number of continuous covariates. Pattern A had mod-

els with no or several continuous covariates, whereas pattern C, D, and E did not include any

continuous covariates. The number of unique regression coefficients varied in patterns A, D, and

F. The exploratory analysis identified six general patterns in which we could categorize almost
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all models. After using additional methods from both approaches, often more computationally

expensive, we found that only five patterns remained. The majority of the models (9) could be

classified as pattern A. Other patterns that still had models included were pattern C (1), D (4),

E (4), and F (2). Pattern B was no longer observed among the in-depth models.

3.2.2 Sensitivity and Specificity

The exploratory analysis identified seven patterns apparent in the sensitivity and specificity

results. Sensitivity retained eight models in the original pattern, whereas sensitivity kept five.

Pattern A In the exploratory analysis sensitivity included one model with pattern A and

specificity included six models. The model belonging to sensitivity, D-7, was still in pattern A

in the in-depth analysis. This was not the case for specificity, as only two out of six models were

still in pattern A when more methods were added. The remaining four either transformed into

pattern D (2), such as model D-3 in Figure 14k, or F (2).

Pattern B Of the four sensitivity models in pattern B in the exploratory analysis, none re-

mained in pattern B for the in-depth analysis. Instead, two were designated to pattern E and

two to pattern D. For the specificity model estimates, we can see that there was only one model

with pattern B in the exploratory analysis, which changed to pattern D in the in-depth analysis.

Pattern C Of the models we used for the in-depth analysis two models for both sensitivity

and specificity belonged to pattern C during the exploratory analysis. None remained in this

pattern. Instead, for the sensitivity estimates one model was now categorized in pattern A and

the other in pattern D. For the specificity we observed that both models were now characterized

as pattern D.

Pattern D In the exploratory analysis we categorized one model in pattern D for sensitivity,

while specificity had three models. For sensitivity this model was no longer pattern D, but had

changed into pattern F as seen in Figure 14l, where ridge regression did better for the first

sample size, after which GBM had superior performance. For the specificity two models were

still included in pattern D, while the other model was now pattern A (Figure 14m).

Pattern E Initially two models were classified as pattern E for sensitivity and five for speci-

ficity. For the sensitivity one model retained the same pattern in the in-depth analysis, whereas

the other model was now pattern D. For specificity four models changed their pattern to D and

only one remained pattern E (Figure 14n).
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Pattern F In the exploratory analysis seven models were included in this pattern for sensitivity,

for specificity only two. Four models’ sensitivity patterns remained F, while the remaining shifted

to pattern A (2) and D (1) (Figure 14o). For specificity one model remained pattern F, while

the other changed to pattern A when more methods were included.

Pattern G Sensitivity had three models belonging to pattern G in the exploratory analysis,

specificity only had one. For the in-depth analysis, two models remained pattern G and one

changed to pattern F for the sensitivity. The specificity model changed to pattern D.

The settings for the in-depth models, in their new patterns, still varied a great deal. Some

observations: the interaction depth was either 2 or 3 for patterns A, D, and F, whereas pattern

E had interaction depth 1 or 2. The only pattern with a single interaction depth, namely 2,

was pattern G. Patterns D and E had unique regression coefficients, whereas the others also

had non-unique coefficients. The variation was δ = 0.10 for pattern G, whereas other patterns

also had δ = 0.05. No continuous covariates were included in patterns E and G. The formula

complexity varied for most patterns, except for pattern E who had formula complexity 1, and

pattern G who had formula complexity 2. For specificity both pattern A and F had interaction

depth 3, whereas the other models had more options. Except for pattern D and E, all patterns

contained continuous covariates. Most other settings varied. The exploratory analysis identified

seven general patterns in total. For the sensitivity results we found that five patterns were still

included and only four patterns remained for specificity. For sensitivity the patterns are relatively

evenly spread pattern A (4), D (5), E (3), F(6), and G (2), whereas for specificity the majority

of the models (12) was pattern D. The remaining models for specificity were A (4), E (1), and

F (3). Both pattern B and C were no longer present for both metrics. Moreover, in specificity

pattern G had disappeared as well.

3.2.3 Comparison Between Performance Measures

From Table 11, several observations can be highlighted. Models classified as Pattern D under

accuracy consistently classified all or almost all models the same in both measures. Matrices

11a and 11b also showed a similar trend of models that were classified as pattern A by accuracy

to either pattern D or F. In Table 11a the majority was classified under pattern F by sensitiv-

ity, whereas 11b classified most in specificity pattern D. Furthermore, the dispersion of models

classified into pattern D under specificity in Table 11b shows that under accuracy, the models

were dispersed between patterns A, C, D, and E. This was also observed in Table 11c, including

pattern G as well.

We have seen that not all patterns identified in the exploratory analysis withstood the in-

crease in computationally expensive methods. In all performance measures, pattern B was no
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Table 10

Side-by-side Comparison of Original and In-Depth Patterns

Accuracy Sensitivity Specificity

Model Exploratory In-Depth Exploratory In-Depth Exploratory In-Depth

D-1 A A F F A D
D-2 B E B E E D
D-3 C A G F A D
D-4 D A F F A A
D-5 E D B D E D
D-6 F F F F F A
D-7 A A A A D A
D-8 E D B D D D
D-9 C A C A C D
D-10 D A D F A F
D-11 E D E D E D
D-12 F A F D A F
D-13 E E G G E E
D-14 D A F F A A
D-15 B E B E B D
D-16 C C C D C D
D-17 D A F A D D
D-18 E D G G E D
D-19 F F F A F F
D-20 E E E E G D

Note. This table highlights the patterns into which the 20 in-depth models were classified, compared to the patterns
assigned to their corresponding exploratory models.

longer present. As we only inspected 20 in-depth models, this analysis was quite limited. The

disappearance of patterns, such as B, C, and G, does not mean other future models will never

exhibit these patterns again.

Table 11

Confusion Matrix In-Depth Analysis

Accuracy

Pattern A B C D E F G

S
en
si
ti
v
it
y

A 3 0 0 0 0 1 0
B 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0
D 1 0 1 3 0 0 0
E 0 0 0 0 3 0 0
F 5 0 0 0 0 1 0
G 0 0 0 1 1 0 0

(a) Accuracy versus Sensitivity

Accuracy

Pattern A B C D E F G

S
p
ec
ifi
ci
ty

A 3 0 0 0 0 1 0
B 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0
D 4 0 1 4 3 0 0
E 0 0 0 0 1 0 0
F 2 0 0 0 0 1 0
G 0 0 0 0 0 0 0

(b) Accuracy versus Specificity

Sensitivity

Pattern A B C D E F G

S
p
ec
ifi
ci
ty

A 1 0 0 0 0 3 0
B 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0
D 2 0 0 4 3 2 1
E 0 0 0 0 0 0 1
F 1 0 0 1 0 1 0
G 0 0 0 0 0 0 0

(c) Sensitivity versus Specificity

Note. The confusion matrices demonstrate how 20 models from the in-depth analysis are characterized into
specific patterns based on accuracy, sensitivity, and specificity. The distribution of models assigned to each
pattern highlights both the overlap and differences in patterns between the measures.



Chapter 4

Case Studies

In this chapter we look at several case studies to investigate whether the patterns we uncovered

in Chapter 3 are also reflected in data that was not simulated. Three data sets were selected

and briefly discussed. Next, a general description is given on how the data was analyzed. As the

general approach was the same as in Chapter 2 we focus on aspects that were changed. Finally,

we present the results and examine how they relate to the results obtained in Chapter 3.

4.1 The Framingham Study

The Framingham Study is considered to be one of the longest-lasting longitudinal studies in

the cardiovascular domain. The study started in 1948 and has since recorded data on multiple

generations. From each participant medical data is gathered, through questionnaires and physical

exams. Researchers also gather non-medical data in regard to lifestyle, to create a complete

picture of the patient. Over the course of the longitudinal study, researchers were able to identify

key risk factors for several heart-related illnesses, such as heart failure, as well as other diseases,

i.e., neurological. Many more developments came from the Framingham heart study (Andersson

et al., 2021).

In this study we have used the Framingham data set from the R-package riskCommunicator

(v1.0.1; Grembi, 2022). It should be noted that the data set is provided as a teaching dataset and

was altered to make sure data remained anonymous. Therefore, we cannot make any claims about

actual findings in this data. Our only goal is to find whether non-simulated data provides similar

patterns as simulated data. The data from this package is a subset of data on 4434 participants

collected at three time points, 1956 through 1968, resulting in a total of 11627 observations.

In this study we used only data points from the first period, to ensure the independence of the

observations. We selected 18 covariates of interest to predict the outcome variable, cardiovascular

58
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disease (CVD). Due to the nature of some of the methods used in this study, we were unable to

keep missing values. The percentage of missing values was only 0.80%, which meant we used a

complete case analysis. The final sample consisted of 3826 participants, of which 1011 (26.42%)

experienced cardiovascular disease during follow-up. A total of 1731 (45.24%) participants were

male and 2095 (54.76%) were female. Their ages ranged between 32 and 70 years (M = 49.90,

SD = 8.68). Numerical values included were Serum Total Cholesterol, which ranged between 113

and 600 mg/dL (M = 237.11, SD = 44.23); systolic blood pressure, which ranged between 83.5

to 295 mmHg (M = 132.96, SD = 22.46); diastolic blood pressure, which ranged between 48 and

142.5 mmHg (M = 83.11, SD = 12.11); heart rate, which ranged between 44 and 143 beats per

minute (M = 75.75, SD = 12.08); BMI, which ranged between 15.54 and 56.8 (M = 25.82, SD

= 4.08); the number of cigarettes smoked per day, which ranged from 0 to 70 (M = 8.99, SD =

11.94); and glucose, which ranged between 40 and 394 mg/dL (M = 82.09, SD = 24.42).

Other variables indicated that 48.72% (n = 1864) of participants currently smoked, 2.85%

(n = 109) were diabetic, and 3.40% (n = 130) currently used anti-hypertensive medication. The

sample also included information on disease prevalence: 4.39% (n = 168) had coronary heart

disease, 3.27% (n = 125) had angina pectoris, 2.04% (n = 78) had myocardial infarction, 0.68%

(n = 26) had had a stroke, and 32.44% (n = 1241) were hypertensive. Education was measured

on a 1-4 scale, using the following categories: 0-11 years (n = 1619), high school or GED (n =

1127), some college (n = 631), and college graduate or higher (n = 449). The information on

the meaning of education was pulled from the cvdd dataset, a subset of the data we used, also

present in the riskCommunicator package.

4.2 Diabetes in 130 US hospitals (1999-2008)

We use data supplied by the UCI Machine Learning Repository (Clore et al., 2014), which

was originally used in the study by Strack et al. (2014). Strack et al. (2014) used data that

encompassed demographic and medical information of patients at 130 hospitals in the US from

1999 to 2008. Their goal was to find factors that are important in predicting whether someone

is readmitted to the hospital within 30 days. The data from the repository consisted of 101766

observations and 50 covariates. We partially followed the preprocessing steps of the authors.

Several variables (medical specialty, payer code, and weight) had quite some missing values,

leading to removal of these variables. While the authors kept medical specialty, we did not.

Strack et al. (2014) explain the absence of weight data by the lack of legislation to capture

data in an organized format. The percentage of missing values after this removal was only

0.09%, which led to a complete case analysis. Similar to the authors, we recoded the outcome

variable. It initially consisted of three values (within 30 days, after 30 days, no readmission),

which was recoded to within 30 days and otherwise. Moreover, since data spanned so many

years, patients visited the hospital multiple times. To remain statistically independent, only the

first patient visit was kept. Other preprocessing steps we took were recoding variables containing



CHAPTER 4. CASE STUDIES 60

diagnoses, to shrink the number of categories, originally around 700, to only nine. Other variables

without any variation were also removed, as they would only increase computational time without

contributing information.

This resulted in processed data with 68630 observations and 41 covariates. This sample

consisted of 6126 (8.93%) participants to be readmitted within 30 days. A total of 32047 (46.70%)

participants were male, 36582 (53.30%) were female, and one was unknown. The study included

the race: Caucasian (n = 52842), African American (n = 12665), Hispanic (n = 1477), Asian

(n = 485), and other (n = 1161). Age was discretized, where those in [70, 80) (n = 17643) and

[60, 70) (n = 15414) occurred most often, followed by [50 − 60) (n = 11999) and [80 − 90) (n

= 11247). Due to the extensiveness of all categories, we only highlight the largest categories

and the covariates that were of interest. We do not discuss the admission type, the reason for

discharge, or the admission source. Continuous covariates that were included are the time in

hospital, which ranged between 1 and 14 days (M = 4.32, SD = 2.96); number of lab tests done,

which ranged between 1 and 132 (M = 43.13, SD = 20.01); number of procedures (not lab),

which ranged between 0 and 6 (M = 1.44, SD = 1.76); number of medications administered,

which ranged between 1 and 81 (M = 15.81, SD = 8.29); number of outpatient visits in the

previous year, which ranged between 0 and 42 (M = 0.29, SD = 1.08); number of emergency

visits in the previous year, which ranged between 0 and 42 (M = 0.11, SD = 0.52); number of

inpatient visits in the previous year, which ranged between 0 and 12 (M = 0.18, SD = 0.61); and

number of diagnoses in the system, which ranged between 3 and 16 (M = 7.35, SD = 1.89).

Discrete covariates included were many with the same categories. We will not discuss them

individually, but they indicated whether the dosage of the drug was increased or decreased, if the

dosage did not change, and ‘no’ if no drug was prescribed. Other variables included whether the

glucose serum test was taken, if so, the categorical range was recorded. For 65271 participants this

test was not taken, 1686 had normal results, 939 participants had results higher than 200 mg/dL,

and 734 had results higher than 300 mg/dL. Similar is the A1c test, where 56349 participants had

not taken the test, 3683 had normal results, 2805 had results higher than 7% and lower than 8%,

and 5793 had results greater than 8%. Additionally, for 52003 participants (75.77%) diabetes

medication was prescribed. For 30707 (44.74%) there was some change in diabetes medication

(dosage or name). The last covariates were three (recoded) variables that indicated the primary

(1), secondary (2), and additional secondary diagnosis (3). The categories were circulatory,

diabetes, digestive, genitourinary, injury, musculoskeletal, neoplasms, respiratory, and other.

4.3 Census Income

The third case study is the census income dataset (the adult dataset), provided by UCI Machine

Learning Repository (Becker & Kohavi, 1996). This dataset was made from the US Census Bu-

reau Database in 1994. The goal of this data set was to accurately predict whether a participant

earns more than 50,000 dollars (50K) a year. Included information were elements of demographic
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and socio-economic information. The original dataset was provided in separate train and test

files. We merged these files together to create one data set, because we used our own train-test

split instead of the pre-specified split. The raw data consisted of 48842 subjects. The percentage

of missing values was 0.88%, which was low enough such that complete case analysis could be

used. Two covariates were removed as they did not add any information for prediction, i.e. fnlwgt

represented a weight and education-num corresponded to education. The final data had 45222

observations and 13 covariates. The outcome variable predicts whether the income is higher than

50K a year. In the data 11208 subjects (24.78%) earned an income higher than 50K.

A total of 30527 (67.50%) participants were male and 14695 (32.50%) were female. Their

ages ranged between 17 and 90 years (M = 38.55, SD = 13.22). Numerical values included

were the capital gain, which ranged between 0 and 99999 dollars (M = 1101.43, SD = 7506.43);

capital loss, which ranged between 0 and 4356 (M = 88.60, SD = 404.96); and hours worked

per week, which ranged between 1 and 99 hours (M = 40.94, SD = 12.01). Discrete variables

included the working class, with several categories to represent it: private (n = 33307), federal

government (n = 1406), local government (n = 3100), incorporated self-employment (n = 1646),

unincorporated self-employment (n = 3796), state government (n = 1946), and without pay (n

= 21). The marital status was also included, using the following categories: divorced (n = 6297),

married with spouse in the Armed Forces (n = 32), married to a civilian spouse (n = 21055),

married with spouse absent (n = 552), never married (n = 14598), separated (n = 1411), and

widowed (n = 1277). Occupation was specified using 14 categories, of which the largest five

were crafting or repairing (n = 6020), professional specialty occupations (n = 6008), executive

or managerial position (n = 5984), administrative and clerical work (n = 5540), and sales (n =

5408). The main relationship of the subject to the head of the household was indicated: husband

(n = 18666), wife (n = 2091), unmarried (n = 4788), not in family (11702), other relative (n =

1349), and own child (n = 6626). Race was included, using the following categories: American-

Indian-Eskimo (n = 435), Asian-Pacific-Islander (n = 1303), Black (n = 4228), White (n =

38903), and other (n = 353). The final discrete variable included was the native country of the

subject, which consisted of 41 categories, the largest two being the Unites States (n = 41292)

and Mexico (n = 903).

4.4 Analysis Approach

In this section we describe the changes to the analysis approach to analyze the case studies. No

data simulation was performed, which meant a majority of the complexity parameters could not

be used because their usage was for data generation. The only remaining complexity parameter

that could be used was the formula complexity, which we have varied between 1 and 2.

Each case study was highly imbalanced, i.e. Framingham only had 26.42% of CVD cases, the

diabetes data consisted of only 8.93% participants that were readmitted within 30 days, and in

the census income data only 24.78% earned more than 50K. To ensure good predictions could
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Table 12

Case Studies: Balanced Observations and Train-Test Split

Balanced Data Set Train-Test Data

Positives Negativesa Total Observations Training (N) Testing

Framingham Study 1011 1011 2022 1618 404
Diabetes Study 6126 6126 12252 9802 2450
Income Census 11208 11208 22416 17934 4482

Note: This table described the number of observations in each balanced data set and the number of observations
that was used to train and test the data. The data is partitioned in 80% training and 20% test. a The original
negative cases for each case study were as follows: Framingham (n = 2815), Diabetes Study (n = 62504), and
Income Census (n = 34014).

be made, we made a similar analysis as in our simulated data. We created a balanced data set

for each case study. This meant we selected all positive cases and randomly sampled an equal

number from the negative cases. This guaranteed a data set with 50% positive and 50% negative

cases. Table 12 describes how many observations were included in the final data sets, as well as

how many observations were included in the training and test datasets. Similar to continuous

covariates in the simulations, in the case study datasets continuous covariates were standardized

in order to get µ = 0 and σ = 1.

The balanced data set was divided into training and test data, using an 80-20 split, which was

also balanced. The difference with our simulation study is that we did not simulate any data.

Instead, we randomly sampled n observations from the training data set with N observations, m

times. We did not take additional measures to ensure a balanced sample for each sample size n,

as random sampling from the balanced training data should create representative distributions.

To limit computing time, we mainly used the exploratory analysis. We expected this to take

relatively long, as the case studies often had many more covariates than we previously considered.

The sample size scale and methods used are the same, except for the Framingham study. Due

to the sample size restrictions, we could not sample n observations for all sample sizes. As the

Framingham training data consisted of N = 1618, we restricted the maximum sample size to

n = 1600, i.e., x = [4, 6, . . . , 38, 40]. Moreover, we used seed 9 through 13 and 10 replications for

exploratory analyses and seed 14 through 16 and 5 replications for in-depth analyses.

4.5 Results

We describe how our case study accuracy results related to the simulation study results. As

accuracy was our main focus, we ignored sensitivity and specificity which are documented on the

GitHub page (Appendix B). Moreover, we solely describe in which pattern they would fall, as we

cannot make any claims about the underlying relationships in the data since they are unknown.

We first discuss the Framingham data set. Figures 15a and 16a would both be characterized as
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pattern D. Both analyses demonstrated a situation in which machine learning methods performed

best for the smallest sample size(s) and when sample size became larger. At a certain point.

traditional statistical methods performed best for a limited time. In Figure 15a this pattern

repeated itself only once, whereas in Figure 16a machine learning and traditional statistical

methods alternated more than once. Figures 15b and 16b, in which formula complexity 2 was

used, were not in agreement on the pattern. Figure 15b demonstrated the exploratory analysis

which reflected pattern D. Random forest and LASSO regression alternated for the top spot.

This in contrast to Figure 16b, where machine learning methods performed best all throughout

the analysis, matching pattern A.

Apparent in both the exploratory and in-depth analysis is the difference between which

methods performed best. Random forest and LASSO regression were no longer the highest-

performing methods. In the in-depth analysis random forest only performed best on the smallest

sample size(s). When formula complexity was 1, ridge regression was the traditional statistical

method of choice. Moreover, the radial and polynomial kernel of support vector machines were

the machine learning methods that mainly performed best, in both analyses. As the sample size

increased, at one point linear support vector machine performed best in formula complexity 2.

Second, the diabetes case study is shown in Figures 15c and 16c. The exploratory analysis

figure showcased very low performance, similar to what we had observed in some other models

(Figures 4d or 3e). KNN did best at the first point, after which LASSO regression started

outperforming. Hence, the most likely pattern would be pattern E. We could argue for pattern

C, as logistic regression did not catch up to LASSO regression and we did not use formula

complexity 2. However, the curve was not as drastic as we found in pattern C, as well as the fact

that it did catch up with random forest. Therefore, it is inconclusive which pattern this model

belonged to, either pattern C or E. The in-depth analysis (Figure 16c) with formula complexity

1, demonstrated similarly low performance, but showed a different pattern, namely pattern G.

Methods alternated between traditional statistical methods elastic net and LASSO regression

and machine learning method linear SVM. Machine learning methods such as GBM and radial

SVM did come close to the best performing curves. We should note that logistic regression is

still on the lower end of performance estimates. Based on the low performance, also displayed

by machine learning methods, the data could be too complex for the logistic regression model.

Finally, Figures 15d and 16d demonstrate exploratory and in-depth analyses on the census

income data set, with formula complexity 1. The exploratory analysis would fall either under

pattern C, as logistic regression never fully caught up with LASSO regression, or pattern G.

We are undecided, as logistic regression did lag more, than what we had previously observed in

pattern G of the simulation study. However, pattern C included models with formula complexity

2, whereas we specified formula complexity 1. The in-depth analysis showed a similar logistic

regression pattern, but would be classified as pattern D, as it was no longer a regression method

that outperformed machine learning methods. Instead, elastic net was briefly able to overtake

linear SVM at the second point, after which GBM permanently outperformed all other methods.
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Chapter 5

Discussion

5.1 Discussion

In this thesis, we conducted simulations in order to find under which circumstances traditional

statistical methods and machine learning methods perform best. We generated binary data

through various simulations, varying model-building parameters to introduce different complexity

levels within the data and models. The additional objective was to assess whether sample size and

the inclusion of continuous covariates also influenced performance, apart from the model-building

parameters that influenced complexity.

We performed an exploratory analysis using a limited set of methods, logistic regression,

LASSO regression, KNN, and random forest, on 138 different models. We identified recurring

patterns in the model’s performance estimates over the whole range of samples that reflected the

general behavior of machine learning and traditional statistics approaches. We found patterns

where either the machine learning approach or traditional statistics approach exclusively had

superior performance, as well as several mixed patterns. We reviewed whether models that were

included in a specific pattern had similar settings to identify the circumstances under which

this pattern was generated. Median models identified from patterns in the exploratory analysis

underwent an in-depth analysis using all methods described in Chapter 2 to ascertain whether

patterns persisted in more complex methods. We extracted several performance measures to

visualize performance of methods across different sample sizes, focusing mainly on accuracy

estimates and to a smaller extent sensitivity and specificity. Additionally, we performed a case

study, in which three different data sets underwent a similar analysis in order to see whether

patterns we identified in the simulation phase were also present in real-life data.

The results indicate that each pattern contains a variety of models with different settings. No

single setting consistently dominates within a pattern. This suggests that, within each pattern,

65
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there is not one specific factor or circumstance that influences which approach performs best.

Models incorporating continuous covariates are spread across all identified patterns, suggesting

that the inclusion of continuous covariates does not favor one particular approach or pattern.

Additionally, our study demonstrates that sample size does affect the performance of both ap-

proaches, with no clear consistent trend indicating which approach is best for small or large

sample sizes. The patterns we observed in our simulation studies persist in real-life data, with

no other new patterns appearing. However, identifying the actual pattern seems more challeng-

ing. Moreover, when we extended the case study analysis to include the in-depth analysis we

observe a similar shift in patterns as in our simulation study.

The results of the exploratory analysis suggest that while several patterns exist in the data,

there was not one specific kind of model that consistently matched to one pattern. Instead,

many similar models were spread across several patterns. Naturally, each pattern contained

nuances. For instance, pattern C contained models with higher formula complexity, but this

was not exclusive to pattern C. Each pattern contained several variations, some which matched

in settings, other did not. An example is pattern E, in which models with higher variance had

a different visualization than other variations within that pattern. Some consistency within

patterns did exist, such as pattern B. However, when considering which patterns re-occurred in

the in-depth analysis, we cannot be sure that this pattern actually exists. The fact that some

patterns disappeared once we used a more complex analysis, makes it reasonable to assume that

once more complex models are added, some patterns are no longer viable, as more complex models

could perform better than computationally inexpensive models that were used in the explanatory

analysis. However, this is contradicted by the fact that in the in-depth analysis several patterns

remained in which traditional statistical methods outperformed, often more complex, machine

learning methods. The fact that we did not find particular settings in patterns aligns with the

often-varying reported results in the literature. Even within a single study, Couronné et al. (2018)

found that in 69% of the datasets random forest outperformed logistic regression. Consequently,

this also means that in 31% of studies this was not the case.

Our results also contribute a clearer understanding as to why there were so many contradicting

claims in the debate about traditional statistical methods versus machine learning, described

in the literature review. While we were unable to conclusively identify specific circumstances

under which each approach performed best, we did identify patterns that do not support the

theory that machine learning methods achieve good performance only when the sample size

is substantial (Kokol et al., 2022; Ley et al., 2022; Rajkomar et al., 2019; Rajula et al., 2020).

Some patterns exhibited superior performance of one approach regardless of sample size, whereas

sample size certainly mattered in other patterns to find the best performing approach. This is

supported by our case studies of real-life data, where similar patterns to those found in the

simulated data, in which data relationships were known, persisted. Our results provide new

insight into the relationship between sample size and best performing approach, which contradicts

Van Der Ploeg et al. (2014) who recommended using logistic regression when the sample size is
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small and machine learning methods when the sample size is large to gain stable results. We

observed instances where the opposite was evident, which aligns with our hypothesis that there

do exist circumstances in data that invalidate this statement. This could be explained by the

fact that researchers often make use of one data set with a fixed sample size to obtain results,

without insight into the actual underlying data relationships. If, like the researchers discussed

in our literature review, they report that machine learning methods outperformed a traditional

statistical method, they might have found themselves in a pattern which looked favorably to

that approach at that specific sample size in combination with the relationships inherent in the

data. In contrast, we reviewed results across a large range of sample sizes with knowledge of

underlying relationships.

The results of this study should be interpreted with caution due to some limitations. First,

we included several versions of each model to observe the different variations when we changed

complexity levels. This may have impacted the identification of patterns. If less variations

had been present, we might have successfully identified similar settings in patterns. Second, the

generalizability of the results is limited by the fact that outcomes were generated based on logistic

regression, meaning covariates had a linear relationship with the log-odds. By limiting ourselves

to only generating linear based data, we have excluded a large portion of data structures. In

relation to this, we also generated data based on the assumptions that every covariate had a

relationship to the outcome and no correlation among covariates existed. This is unlike real-life

data, which often contains irrelevant predictors, as well as covariates that have some sort of

relationship with each other. By not adding these aspects to our data simulation, we may have

lost an opportunity to shape the data as real-life as possible. A more thorough study should

consider the addition of both irrelevant and correlated predictors, and other data structures.

Third, our results in both the simulation study and case studies are based on balanced (generated)

data, which might not represent real-life data. Our randomly sampled data from a relatively

large balanced data set often had 30-60% positive cases, while medical data is often plagued

by only a fraction of cases. Further research is needed to assess how both approaches perform

when there is a high imbalance, such as only 5% cases. Other limitations include methodological

choices. In hyperparameter tuning we set the number of combinations in the (random) search

quite low due to computational constraints. This limited methods in finding the optimal model.

Moreover, we were restricted by the usage of class labels as some methods were unable to output

probabilities, which would have provided more information. Beyond the scope of this study was

generating and assessing high-dimensional data due to computational limitations. Several results

exhibited signs of high-dimensionality when the sample size was small, but no data was generated

where over the whole sample size range p ≫ n.

Other avenues for future research include expanding the study to encompass a more diverse

selection of models and highly imbalanced data. This would allow researchers to more thoroughly

review whether the found patterns persist and under which circumstances. We recommend that

researchers should only use unique regression coefficients and implement formula complexity
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no higher than three. This will keep analyses realistic, as generally regression coefficients are

unique and more complex interactions are rare as well as computationally expensive. As the

evolution of data continues, researchers should consider implementing deep learning models. For

instance, Jeong et al. (2020) demonstrated that in predicting the five stages of chronic kidney

disease for a highly imbalanced data set, autoencoders had the best overall performance. Apart

from deep learning, researchers could use unsupervised clustering methods to investigate whether

patterns observed in this study also appear when data sets, either per sample size or all data, are

clustered. Additionally, hybrid approaches, which incorporate both approaches, might provide

further insights. Levy and O’Malley (2020) have developed a novel hybrid approach in which both

machine learning and logistic regression are incorporated. By using a machine learning method,

for instance random forest, as a variable selection mechanism for meaningful interactions, logistic

regression could incorporate these as predictors and possibly produce higher estimates and at

the same time benefit from the advantage of interpretability. The authors use Shapley values

to identify meaningful interactions which are then added to data used for the logistic regression

model. Finally, it is imperative that researchers keep in mind the no free lunch theorem and

compare multiple methods to find which performs best for their specific situation. As we have

seen, for very similar data the results can differ greatly between and within patterns.

5.2 Conclusion

We found no conclusive evidence that one type of model consistently ensures that a traditional

statistical approach or machine learning approach has superior performance. Our study identified

general patterns, showing there was a myriad of model settings that exist within one pattern.

The often-made assumption that machine learning performs better when the sample size is big

is often a misconception.
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Couronné, R., Probst, P., & Boulesteix, A. (2018). Random forest versus logistic regression: A

large-scale benchmark experiment. BMC Bioinformatics, 19, Article 270. https://doi.

org/10.1186/s12859-018-2264-5

Cui, Z., & Gong, G. (2018). The effect of machine learning regression algorithms and sample size

on individualized behavioral prediction with functional connectivity features. NeuroIm-

age, 178, 622–637. https://doi.org/10.1016/j.neuroimage.2018.06.001

De Hond, A. A. H., Kant, I. M. J., Honkoop, P. J., Smith, A. D., Steyerberg, E. W., & Sont,

J. K. (2022). Machine learning did not beat logistic regression in time series prediction

for severe asthma exacerbations. Scientific Reports, 12, Article 20363. https://doi.org/

10.1038/s41598-022-24909-9

Desai, R. J., Wang, S. V., Vaduganathan, M., Evers, T., & Schneeweiss, S. (2020). Comparison

of machine learning methods with traditional models for use of administrative claims

with electronic medical records to predict heart failure outcomes. JAMA Network Open,

3 (1), e1918962. https://doi.org/10.1001/jamanetworkopen.2019.18962

https://doi.org/10.1016/j.jclinepi.2019.02.004
https://doi.org/10.1097/ccm.0000000000001571
https://doi.org/10.24432/C5230J
https://doi.org/10.1186/s12859-018-2264-5
https://doi.org/10.1186/s12859-018-2264-5
https://doi.org/10.1016/j.neuroimage.2018.06.001
https://doi.org/10.1038/s41598-022-24909-9
https://doi.org/10.1038/s41598-022-24909-9
https://doi.org/10.1001/jamanetworkopen.2019.18962


REFERENCE LIST 72

Feng, J., Wang, Y., Peng, J., Sun, M., Zeng, J., & Jiang, H. (2019). Comparison between logistic

regression and machine learning algorithms on survival prediction of traumatic brain

injuries. Journal of Critical Care, 54, 110–116. https://doi.org/https://doi.org/10.1016/

j.jcrc.2019.08.010

Friedman, J. H., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear

models via coordinate descent. Journal of Statistical Software, 33 (1), 1–22. https://doi.

org/10.18637/jss.v033.i01

Frizzell, J. D., Liang, L., Schulte, P. J., Yancy, C. W., Heidenreich, P. A., Hernandez, A. F.,

Bhatt, D. L., Fonarow, G. C., & Laskey, W. K. (2017). Prediction of 30-day all-cause

readmissions in patients hospitalized for heart failure. JAMA Cardiology, 2 (2), 204–209.

https://doi.org/10.1001/jamacardio.2016.3956

Garcia, L. P. F., De Carvalho, A. C. P. L. F., & Lorena, A. C. (2015). Effect of label noise in the

complexity of classification problems. Neurocomputing, 160, 108–119. https://doi.org/

10.1016/j.neucom.2014.10.085

Grembi, J. (2022). Riskcommunicator: G-computation to estimate interpretable epidemiological

effects [R package version 1.0.1]. https://CRAN.R-project.org/package=riskCommunicator

Grendas, L. N., Chiapella, L., Rodante, D. E., & Daray, F. M. (2022). Comparison of traditional

model-based statistical methods with machine learning for the prediction of suicide be-

haviour. Journal of Psychiatric Research, 145, 85–91. https : / / doi . org / 10 . 1016 / j .

jpsychires.2021.11.029

Harrison, R. L. (2010). Introduction to monte carlo simulation. AIP Conference Proceedings,

1204 (1), 17–21. https://doi.org/10.1063/1.3295638

Hastie, T., Qian, J., & Tay, K. (2023, August 19). An introduction to glmnet. Retrieved May 23,

2024, from https://cloud.r-project.org/web/packages/glmnet/vignettes/glmnet.pdf

https://doi.org/https://doi.org/10.1016/j.jcrc.2019.08.010
https://doi.org/https://doi.org/10.1016/j.jcrc.2019.08.010
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1001/jamacardio.2016.3956
https://doi.org/10.1016/j.neucom.2014.10.085
https://doi.org/10.1016/j.neucom.2014.10.085
https://CRAN.R-project.org/package=riskCommunicator
https://doi.org/10.1016/j.jpsychires.2021.11.029
https://doi.org/10.1016/j.jpsychires.2021.11.029
https://doi.org/10.1063/1.3295638
https://cloud.r-project.org/web/packages/glmnet/vignettes/glmnet.pdf


REFERENCE LIST 73

Hu, P., Liu, Y., Li, Y., Guo, G., Su, Z., Gao, X., Chen, J., Qi, Y., Xu, Y., Yan, T., Ye, L., Sun,

Q., Deng, G., Zhang, H., & Chen, Q. (2022). A comparison of LASSO regression and

tree-based models for delayed cerebral ischemia in elderly patients with subarachnoid

hemorrhage. Frontiers in Neurology, 13, Article 791547. https://doi.org/10.3389/fneur.

2022.791547

Huang, R. J., Kwon, N. S., Tomizawa, Y., Choi, A. Y., Hernandez-Boussard, T., & Hwang,

J. H. (2022). A comparison of logistic regression against machine learning algorithms

for gastric cancer risk prediction within real-world clinical data streams. JCO Clinical

Cancer Informatics, 6, e2200039. https://doi.org/10.1200/cci.22.00039

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An introduction to statistical learning:

With applications in R (2nd ed.). Springer US. https://doi.org/10.1007/978-1-0716-

1418-1

Jeong, B., Cho, H., Kim, J., Kwon, S. K., Hong, S., Lee, C., Kim, T., Park, M. S., Hong, S., &

Heo, T.-Y. (2020). Comparison between statistical models and machine learning methods

on classification for highly imbalanced multiclass kidney data. Diagnostics, 10 (6), 415.

https://doi.org/10.3390/diagnostics10060415

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects.

Science, 349 (6245), 255–260. https://doi.org/10.1126/science.aaa8415

Kirasich, K., Smith, T., & Sadler, B. (2018). Random forest vs logistic regression: Binary clas-

sification for heterogeneous datasets. SMU Data Science Review, 1 (3), Article 9. https:

//scholar.smu.edu/datasciencereview/vol1/iss3/9

Kokol, P., Kokol, M., & Zagoranski, S. (2022). Machine learning on small size samples: A synthetic

knowledge synthesis. Science Progress, 105 (1), 003685042110297. https://doi.org/10.

1177/00368504211029777

https://doi.org/10.3389/fneur.2022.791547
https://doi.org/10.3389/fneur.2022.791547
https://doi.org/10.1200/cci.22.00039
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.3390/diagnostics10060415
https://doi.org/10.1126/science.aaa8415
https://scholar.smu.edu/datasciencereview/vol1/iss3/9
https://scholar.smu.edu/datasciencereview/vol1/iss3/9
https://doi.org/10.1177/00368504211029777
https://doi.org/10.1177/00368504211029777


REFERENCE LIST 74

Kroese, D. P., Brereton, T., Taimre, T., & Botev, Z. I. (2014). Why the Monte Carlo method is

so important today. WIREs Computational Statistics, 6 (6), 386–392. https://doi.org/

10.1002/wics.1314

Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of Statistical

Software, 28 (5), 1–26. https://doi.org/10.18637/jss.v028.i05

Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. Springer US. https://doi.org/10.

1007/978-1-4614-6849-3

Kumar, V., & Garg, M. L. (2018). Predictive analytics: A review of trends and techniques.

International Journal of Computer Applications, 182 (1), 31–37. https://doi .org/10.

5120/ijca2018917434

Levy, J. J., & O’Malley, A. J. (2020). Don’t dismiss logistic regression: The case for sensi-

ble extraction of interactions in the era of machine learning. BMC Medical Research

Methodology, 20, Article 171. https://doi.org/10.1186/s12874-020-01046-3

Ley, C., Martin, R. K., Pareek, A., Groll, A., Seil, R., & Tischer, T. (2022). Machine learning

and conventional statistics: Making sense of the differences. Knee Surgery, Sports Trau-

matology, Arthroscopy, 30 (3), 753–757. https://doi.org/10.1007/s00167-022-06896-6

Li, D., Kong, Y., Fan, Y., & Lv, J. (2022). High-dimensional interaction detection with false

sign rate control. Journal of Business & Economic Statistics, 40 (3), 1234–1245. https:

//doi.org/10.1080/07350015.2021.1917419

Liaw, A., & Wiener, M. (2002). Classification and regression by randomforest. R News, 2 (3),

18–22. https://CRAN.R-project.org/doc/Rnews/

Lolak, S., Attia, J., McKay, G. J., & Thakkinstian, A. (2023). Comparing explainable machine

learning approaches with traditional statistical methods for evaluating stroke risk mod-

els: Retrospective cohort study. JMIR Cardio, 7, e47736. https://doi.org/10.2196/47736

https://doi.org/10.1002/wics.1314
https://doi.org/10.1002/wics.1314
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.1007/978-1-4614-6849-3
https://doi.org/10.1007/978-1-4614-6849-3
https://doi.org/10.5120/ijca2018917434
https://doi.org/10.5120/ijca2018917434
https://doi.org/10.1186/s12874-020-01046-3
https://doi.org/10.1007/s00167-022-06896-6
https://doi.org/10.1080/07350015.2021.1917419
https://doi.org/10.1080/07350015.2021.1917419
https://CRAN.R-project.org/doc/Rnews/
https://doi.org/10.2196/47736


REFERENCE LIST 75

Lynam, A. L., Dennis, J. M., Owen, K. R., Oram, R. A., Jones, A. G., Shields, B. M., &

Ferrat, L. A. (2020). Logistic regression has similar performance to optimised machine

learning algorithms in a clinical setting: Application to the discrimination between type

1 and type 2 diabetes in young adults. Diagnostic and Prognostic Research, 4, Article 6.

https://doi.org/10.1186/s41512-020-00075-2

Mallett, S., Halligan, S., Thompson, M., Collins, G. S., & Altman, D. G. (2012). Interpreting

diagnostic accuracy studies for patient care. BMJ, 345, e3999. https://doi.org/10.1136/

bmj.e3999

Morris, T. P., White, I. R., & Crowther, M. J. (2019). Using simulation studies to evaluate

statistical methods. Statistics in Medicine, 38 (11), 2074–2102. https://doi.org/10.1002/

sim.8086

Naidu, G., Zuva, T., & Sibanda, E. M. (2023). A review of evaluation metrics in machine learn-

ing algorithms. In R. Silhavy & P. Silhavy (Eds.), Artificial intelligence application in

networks and systems (pp. 15–25). Springer International Publishing. https://doi.org/

10.1007/978-3-031-35314-7 2

Nunez, Y., Gibson, E. A., Tanner, E. M., Gennings, C., Coull, B. A., Goldsmith, J., & Kioumourt-

zoglou, M.-A. (2021). Reflection on modern methods: Good practices for applied statis-

tical learning in epidemiology. International Journal of Epidemiology, 50 (2), 685–693.

https://doi.org/10.1093/ije/dyaa259

Panaretos, D., Koloverou, E., Dimopoulos, A. C., Kouli, G.-M., Vamvakari, M., Tzavelas, G.,

Pitsavos, C., & Panagiotakos, D. B. (2018). A comparison of statistical and machine-

learning techniques in evaluating the association between dietary patterns and 10-year

cardiometabolic risk (2002–2012): The ATTICA study. British Journal of Nutrition,

120 (3), 326–334. https://doi.org/10.1017/s0007114518001150

https://doi.org/10.1186/s41512-020-00075-2
https://doi.org/10.1136/bmj.e3999
https://doi.org/10.1136/bmj.e3999
https://doi.org/10.1002/sim.8086
https://doi.org/10.1002/sim.8086
https://doi.org/10.1007/978-3-031-35314-7_2
https://doi.org/10.1007/978-3-031-35314-7_2
https://doi.org/10.1093/ije/dyaa259
https://doi.org/10.1017/s0007114518001150


REFERENCE LIST 76

Patel, B., & Sengupta, P. (2020). Machine learning for predicting cardiac events: What does the

future hold? Expert Review of Cardiovascular Therapy, 18 (2), 77–84. https://doi.org/

10.1080/14779072.2020.1732208

Peng, C.-Y. J., Lee, K. L., & Ingersoll, G. M. (2002). An introduction to logistic regression

analysis and reporting. The Journal of Educational Research, 96 (1), 3–14. https://doi.

org/10.1080/00220670209598786

R Core Team. (2023). R: A language and environment for statistical computing. R Foundation

for Statistical Computing. Vienna, Austria. https://www.R-project.org/

Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. New England Journal

of Medicine, 380 (14), 1347–1358. https://doi.org/10.1056/nejmra1814259

Rajula, H. S. R., Verlato, G., Manchia, M., Antonucci, N., & Fanos, V. (2020). Comparison of con-

ventional statistical methods with machine learning in medicine: Diagnosis, drug develop-

ment, and treatment. Medicina, 56 (9), 455. https://doi.org/10.3390/medicina56090455

Senders, J. T., Staples, P. C., Karhade, A. V., Zaki, M. M., Gormley, W. B., Broekman, M. L. D.,

Smith, T. R., & Arnaout, O. (2018). Machine learning and neurosurgical outcome pre-

diction: A systematic review. World Neurosurgery, 109, 476–486.e1. https://doi.org/10.

1016/j.wneu.2017.09.149

Shin, S., Austin, P. C., Ross, H. J., Abdel-Qadir, H., Freitas, C., Tomlinson, G., Chicco, D.,

Mahendiran, M., Lawler, P. R., Billia, F., Gramolini, A., Epelman, S., Wang, B., & Lee,

D. S. (2021). Machine learning vs. conventional statistical models for predicting heart

failure readmission and mortality. ESC Heart Failure, 8 (1), 106–115. https://doi.org/

10.1002/ehf2.13073

Steyerberg, E. W. (2019). Clinical prediction models: A practical approach to development, val-

idation, and updating (2nd ed.). Springer Cham. https://doi.org/https://doi.org/10.

1007/978-3-030-16399-0

https://doi.org/10.1080/14779072.2020.1732208
https://doi.org/10.1080/14779072.2020.1732208
https://doi.org/10.1080/00220670209598786
https://doi.org/10.1080/00220670209598786
https://www.R-project.org/
https://doi.org/10.1056/nejmra1814259
https://doi.org/10.3390/medicina56090455
https://doi.org/10.1016/j.wneu.2017.09.149
https://doi.org/10.1016/j.wneu.2017.09.149
https://doi.org/10.1002/ehf2.13073
https://doi.org/10.1002/ehf2.13073
https://doi.org/https://doi.org/10.1007/978-3-030-16399-0
https://doi.org/https://doi.org/10.1007/978-3-030-16399-0


REFERENCE LIST 77

Strack, B., DeShazo, J. P., Gennings, C., Olmo, J. L., Ventura, S., Cios, K. J., & Clore, J. N.

(2014). Impact of HbA1c measurement on hospital readmission rates: Analysis of 70,000

clinical database patient records. BioMed Research International, 2014, Article 781670.

https://doi.org/10.1155/2014/781670

Sun, X., Douiri, A., & Gulliford, M. (2022). Applying machine learning algorithms to electronic

health records to predict pneumonia after respiratory tract infection. Journal of Clinical

Epidemiology, 145, 154–163. https://doi.org/10.1016/j.jclinepi.2022.01.009

Tollenaar, N., & Van Der Heijden, P. G. M. (2013). Which method predicts recidivism best?: A

comparison of statistical, machine learning and data mining predictive models. Journal

of the Royal Statistical Society Series A: Statistics in Society, 176 (2), 565–584. https:

//doi.org/10.1111/j.1467-985x.2012.01056.x

Van Der Ploeg, T., Austin, P. C., & Steyerberg, E. W. (2014). Modern modelling techniques are

data hungry: A simulation study for predicting dichotomous endpoints. BMC Medical

Research Methodology, 14, Article 137. https://doi.org/10.1186/1471-2288-14-137

Van Stralen, K. J., Stel, V. S., Reitsma, J. B., Dekker, F. W., Zoccali, C., & Jager, K. J. (2009).

Diagnostic methods I: Sensitivity, specificity, and other measures of accuracy. Kidney

International, 75 (12), 1257–1263. https://doi.org/10.1038/ki.2009.92

Van Wieringen, W. N. (2023). Lecture notes on ridge regression. https://doi.org/10.48550/

arXiv.1509.09169

Wegmeth, L., Vente, T., Purucker, L., & Beel, J. (2023). The effect of random seeds for data

splitting on recommendation accuracy. In A. Said, E. Zangerle, & C. Bauer (Eds.),

Perspectives on the evaluation of recommender systems workshop (PERSPECTIVES

2023), co-located with the 17th ACM conference on recommender systems (Vol. 3476).

CEUR-WS.org. https://ceur-ws.org/Vol-3476/paper4.pdf

https://doi.org/10.1155/2014/781670
https://doi.org/10.1016/j.jclinepi.2022.01.009
https://doi.org/10.1111/j.1467-985x.2012.01056.x
https://doi.org/10.1111/j.1467-985x.2012.01056.x
https://doi.org/10.1186/1471-2288-14-137
https://doi.org/10.1038/ki.2009.92
https://doi.org/10.48550/arXiv.1509.09169
https://doi.org/10.48550/arXiv.1509.09169
https://ceur-ws.org/Vol-3476/paper4.pdf


REFERENCE LIST 78

Zhang, J., Li, Z., Pu, Z., & Xu, C. (2018). Comparing prediction performance for crash injury

severity among various machine learning and statistical methods. IEEE Access, 6, 60079–

60087. https://doi.org/10.1109/access.2018.2874979

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal

of the Royal Statistical Society. Series B: Statistical Methodology, 67 (2), 301–320. https:

//doi.org/10.1111/j.1467-9868.2005.00503.x

https://doi.org/10.1109/access.2018.2874979
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x


Appendix A

Theoretical Calculations

Distribution Continuous Covariates

To determine which distribution to use for the continuous covariates, we calculated theoretical

values for the mean and variance.

Based on the values we have used during the simulation of binary covariates (-1 and 1), we

calculated the following mean:

E[X] =
∑
i

xipi = −1× 0.50 + 1× 0.50 = 0.

Using this same logic, we calculated the variance:

V ar(X) = E[(X − µ)2] =

n∑
i=1

pi(xi − µ)2 = 0.50(−1− 0)2 + 0.50(1− 0)2 = 1.

The standard deviation is equal to the variance, as σ =
√

E[(X − µ)2] =
√
1 = 1.

Complexity Level Variance

To determine the maximum variance between which δ can range we needed to calculate this. As

every observation is independent the variance can be calculated using the variance from a single

Bernoulli trial.

We calculated the following maximum:

σ2 = p(1− p) = 0.50(1− 0.50) = 0.25.
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Equality of AUC Value and Accuracy

Figure A.1

Visualization of an AUC curve with a single point
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First, we show that the Balanced Accuracy can be considered equal to the AUC value if only one

point is available. A visualization of this is shown in Figure A.1, which we use as an example.

To calculate the AUC for Figure A.1, we can calculate the area under the curve. This is

calculated as follows for areas A, B, and C:

A =
1

2
y2x2

B = (x3 − x2)(y2 − y1)

C =
1

2
(y3 − y2)(x3 − x2)
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These variables and accompanying values, according to the figure, are defined as follows:

y1 = 0, y2 = Sensitivity = y, y3 = 1

x1 = 0, x2 = 1− Specificity = 1− x, x3 = 1

We can calculate the AUC value as follows:

AUC = A+B + C =
1

2
y2x2 + (x3 − x2)(y2 − y1) +

1

2
(y3 − y2)(x3 − x2)

=
1

2
(y(1− x)) + (1− (1− x))y +

1

2
((1− y)(1− (1− x)))

=
1

2
y − 1

2
xy + xy +

1

2
x− 1

2
xy

=
1

2
y +

1

2
x+ xy − 1

2
xy − 1

2
xy =

1

2
y +

1

2
x

=
x+ y

2
=

Specificity + Sensitivity

2

This outcome equals the Balanced Accuracy equation. We can go further, and show that

Balanced Accuracy is equal to Accuracy when the data is assumed to be balanced. If we assume

Prevalence =
TP + FN

TP + FN + TN + FP
= 0.50,

this describes the proportion of the data that belongs to the class that is classified as 1.

Prevalence is balanced when:

TP + FN = 0.50(TP + FN + TN + FP )

TP + FN = 0.50TP + 0.50FN + 0.50TN + 0.50FP

0.50TP + 0.50FN = 0.50TN + 0.50FP

TP + FN = TN + FP

We defined Accuracy as follows:

Accuracy =
TP + TN

N
=

TP + TN

TP + FN + TN + FP

Using the balanced prevalence, accuracy can be written as:

Accuracy =
TP + TN

TP + FN + TP + FN
=

TP + TN

2TP + 2FN

=
TP + TN

2(TP + FN)
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We can rewrite Balanced Accuracy in a similar manner:

Balanced Accuracy =
Specificity + Sensitivity

2

=
TN

TN+FP + TP
TP+FN

2

=
TN

TP+FN + TP
TP+FN

2

=
TN

2(TP + FN)
+

TP

2(TP + FN)

=
TN + TP

2(TP + FN)

This shows that, when considering a balanced data set,

AUC = Balanced Accuracy = Accuracy



Appendix B

Code

The code used in this study is available on Github (https://github.com/l-verl/Master-Thesis).

Additionally, the complete results, i.e., figures, can also be found here.
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Appendix C

Pattern Classification

In this Appendix we show how each model was classified per performance measure. As these

only concern the exploratory models, the abbreviation E is dropped to increase readability. Some

models are not included, as sometimes a model did not specifically fit into a pattern.

Table C.1

Accuracy Patterns

Pattern Models

A 6, 19, 20, 24, 26, 27, 29, 50, 59, 71, 72, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 93,
99, 132, 133

B 2, 68, 89, 116
C 34, 35, 36, 37, 38, 41, 42, 43, 44, 49, 51, 52, 53, 54, 62, 63, 64, 65, 66, 131
D 15, 16, 21, 32, 60, 61, 73, 74, 76, 87, 95, 96, 100, 108, 109, 111, 112, 113, 114, 118,

123, 126, 135, 136, 138
E 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 22, 23, 25, 30, 31, 33, 40, 45, 46, 47, 48, 69, 70, 75,

90, 92, 97, 98, 101, 102, 103, 104, 105, 106, 107, 115, 117, 129, 130
F 7, 17, 18, 28, 55, 56, 57, 58, 67, 91, 94, 110, 119, 120, 121, 122, 124, 125, 127, 128,

134, 137

Note. This table demonstrates into which pattern each model was classified according to its accuracy estimates.
The model numbers correspond to models of the exploratory analysis, which are denoted with abbreviation E- in
this paper. Model E-39 was not included as it was the only model to display a different behavior in the accuracy
estimates. Model E-1 was not included as it did not fit into any of the general patterns.
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Table C.2

Sensitivity Patterns

Pattern Models

A 71, 86
B 2, 11, 13, 31, 39, 48, 68, 69, 89, 92, 106, 116, 126, 129
C 34, 35, 36, 37, 38, 41, 42, 43, 44, 51, 52, 54, 62, 63, 64, 65, 66, 131
D 16, 17, 21, 32, 50, 60, 72, 74, 76, 87, 88, 94, 95, 99, 112, 122
E 3, 4, 6, 8, 9, 10, 12, 14, 22, 23, 25, 33, 40, 45, 70, 75, 96, 97, 98, 101, 102, 103, 115,

117
F 7, 18, 19, 20, 24, 26, 27, 28, 29, 55, 56, 57, 58, 59, 61, 73, 77, 78, 79, 80, 81, 82, 83,

84, 85, 91, 93, 100, 108, 109, 111, 113, 114, 118, 119, 120, 121, 124, 125, 127, 128,
132, 133, 134, 135, 136, 137, 138

G 5, 15, 30, 46, 47, 49, 53, 67, 90, 104, 105, 107, 110, 123, 130

Note. This table demonstrates into which pattern each model was classified according to its sensitivity estimates.
The model numbers correspond to models of the exploratory analysis, which are denoted with abbreviation E-.
Model E-1 was not included as it did not fit into any of the general patterns.

Table C.3

Specificity Patterns

Pattern Models

A 6, 15, 18, 19, 20, 21, 27, 28, 29, 39, 49, 50, 53, 55, 56, 59, 61, 71, 72, 73, 77, 78, 79,
80, 81, 84, 85, 88, 93, 95, 99, 100, 109, 111, 118, 121, 125, 132, 133, 136

B* 2
C 34, 38, 41, 42, 43, 44, 51, 52, 54, 62, 63, 64, 65, 131
D 3, 7, 8, 13, 23, 24, 30, 31, 32, 35, 36, 37, 48, 60, 66, 69, 74, 86, 87, 91, 92, 96, 103,

107, 110, 112, 113, 114, 123, 124, 126, 129, 137, 138
E 4, 5, 10, 11, 12, 22, 33, 40, 45, 46, 47, 68, 70, 75, 89, 104, 105, 106, 116, 117, 130
F 14, 16, 17, 26, 57, 58, 67, 76, 82, 83, 90, 94, 97, 98, 108, 115, 119, 120, 122, 127, 128,

134, 135
G 9, 25, 101, 102

Note. This table demonstrates into which pattern each model was classified according to its specificity estimates.
The model numbers correspond to models of the exploratory analysis, which are denoted with abbreviation E-.
Model E-1 was not included as it did not fit into any of the general patterns.
* Although we stated that a pattern did not exist if only one model displayed a certain pattern, the pattern was
already created in an earlier performance measure. Hence, we included this.
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