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1 Introduction

1.1 Summary

Let K be a field and let Kalg be an algebraic closure of K. A profinite group G is of class
2 if its commutator subgroup [G,G] is contained in its center Z(G). A Galois extension
of fields is called a class-2 extension if the Galois group is of class 2. We denote the
composite of all class-2 Galois extensions of K inside Kalg by Kcl2. Then Kcl2 is itself
a class-2 extension of K. In this thesis, we focus on the description of the structure of
the Galois group Gal(Kcl2/K) when K equals the field Q of rational numbers or the field
Qp of p-adic numbers for some prime p. For any profinite group G we denote by G(2) the
topological closure of [G,G] in G, and we denote by Gab the quotient G/G(2).

Before we state the results for K = Qp, we introduce some notation. For any prime p,

denote by Γp the Galois group Gal(Qcl2
p /Qp). Moreover, for any n ∈ Z>0, let µn ⊂ Qalg

p

be the set of roots of Xn − 1. For any prime p we denote by Zp ⊂ Qp the ring of p-adic
integers and we denote by Fp the finite field of order p. We identify F∗p with µp−1 ⊂ Qp.

We denote by Ẑ the ring of profinite integers. We now describe Γp, starting with the case
where p is odd.

Theorem 1.1. Let p be an odd prime. Consider the profinite abelian group

I ′p := (1 + pZp)× µ(p−1)2 × (1 + pZp)

and the topological action of Ẑ on I ′p defined by

1 ⋆ (x, ζ, y) = (xy, ζp, y).

Let I ′p⋊Ẑ be the associated semi-direct product. We identify Z∗p with (1+pZp)×F∗p. Then
there is a short exact sequence

1 −→ Z∗p
t−→ I ′p

u−→ Z∗p −→ 1

of profinite groups, where t(x, ζ) = (x, ζ, 1) and u(x, ζ, y) = (y, ζp−1) and there is an
isomorphism

1 Z∗p I ′p ⋊ Ẑ Z∗p × Ẑ 1

1 Γ
(2)
p Γp Γab

p 1

(t,0)

≀

(u,id)

≀ ≀

of short exact sequences of profinite groups.

In section 7.3 we will provide an isomorphism of short exact sequences as in Theo-
rem 1.1 with descriptions of the outer vertical isomorphisms. The local Artin map
Q∗p → Gal(Qab

p /Qp) induces the isomorphism Z∗p × Ẑ ∼→ Γab
p in Theorem 1.1. It maps

Z∗p isomorphically to the inertia group Gal(Qab
p /Qunr

p ) of Γab
p , where Qunr

p denotes the
maximal unramified extension of Qp. Let φ ∈ Γp denote any Frobenius element. Then we

have a well-defined isomorphism Gal(Qab
p /Qunr

p )
∼→ Γ

(2)
p given by β 7→ [φ, β̃] where β̃ ∈ Γp

is any extension of β, and this isomorphism does not depend on the choice of φ. The latter

two isomorphisms combined yield the isomorphism Z∗p
∼→ Γ

(2)
p appearing in Theorem 1.1.

Moreover, the isomorphism I ′p ⋊ Ẑ ∼→ Γp in this theorem maps I ′p isomorphically to the
inertia group of Γp, which is abelian in this case.
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We remark that the subgroup (1 + pZp)× µ(p−1)2 × {1} of I ′p may be identified with

(Z∗p)
1

p−1 := {x ∈ Qalg
p : xp−1 ∈ Z∗p},

so that I ′p becomes equal to (Z∗p)
1

p−1 ×(1+pZp). In these terms, the map t is just inclusion
on the first factor, and u maps (x, y) to (φ(x)/x)y.

Next we pass to the case p = 2. Then we replace the group (Z∗p)
1

p−1 just discussed by√
1 + 4Z2 := {x ∈ Qalg

2 : x2 ∈ 1 + 4Z2}.

Notice that Q2(
√
1 + 4Z2) is the unique quadratic unramified extension of Q2 inside Qalg

2 ,
and that Z∗2 is a subgroup of index 2 in

√
1 + 4Z2. The following theorem gives a description

of Γ2, comparable to Theorem 1.1. Denote by φ ∈ Gal(Qunr
2 /Q2) the Frobenius element.

Theorem 1.2. Consider the topological action of 1 + 4Z2 on µ2 ×
√
1 + 4Z2 defined by

5 ⋆ (ε, x) = (
φ(x)

x
ε, x).

Let I ′2 := (µ2×
√
1 + 4Z2)⋊(1+4Z2) be the associated semi-direct product. Let a topological

action of Ẑ on I ′2 be defined by

1 ⋆ (ε, x, y) = (ε, φ(x)y, y)

and let I ′2 ⋊ Ẑ be the associated semi-direct product. Then there is a short exact sequence

1 −→ µ2 × Z∗2
t−→ I ′2

u−→ Z∗2 −→ 1

of profinite groups, where t(ε, x) = (ε, x, 1) and u(ε, x, y) = (φ(x)/x)y, and there is an
isomorphism

1 µ2 × Z∗2 I ′2 ⋊ Ẑ Z∗2 × Ẑ 1

1 Γ
(2)
2 Γ2 Γab

2 1

(t,0)

≀

(u,id)

≀ ≀

of short exact sequences of profinite groups.

In section 7.4 we will provide an isomorphism of short exact sequences as in Theorem 1.2
with descriptions of the outer vertical isomorphisms. Similarly to the case for odd p, the
local Artin map Q∗2 → Gal(Qab

2 /Q2) induces the isomorphism Z∗2 × Ẑ ∼→ Γab
2 in Theorem

1.2. It maps Z∗2 isomorphically to the inertia group Gal(Qab
2 /Qunr

2 ) of Γab
2 . Let σ5 and σ−1

in Gal(Qab
2 /Qunr

2 ) correspond via this isomorphism to 5 and −1 in Z∗2 respectively, and let
σ̃5 and σ̃−1 be extensions to Γ2 of σ5 and σ−1 respectively. Let φ ∈ Γ2 denote a Frobenius
element that is the identity map on µ2n for all n ∈ Z>0. Then we have a well-defined

isomorphism µ2 × Gal(Qab
2 /Qunr

2 )
∼→ Γ

(2)
2 given by ((−1)a, β) 7→ [σ̃5, σ̃−1]

a[φ, β̃] where

β̃ ∈ Γ2 is any extension of β and where a is any integer, and this isomorphism does not
depend on our choice of φ. The latter two isomorphisms together induce the isomorphism

µ2 × Z∗2
∼→ Γ

(2)
2 appearing in Theorem 1.2. Moreover, the isomorphism I ′2 ⋊ Ẑ ∼→ Γ2 in

this theorem maps I ′2 isomorphically to the inertia group of Γ2. This inertia group is close
to being abelian: the commutator subgroup of I ′2 equals µ2 and is central. Moreover, the
center Z(I ′2) of I

′
2 equals µ2 × Z∗2 × (1 + 8Z2) and is of index 4 in I ′2. We remark that for

any non-abelian profinite group G the center Z(G) is of index at least 4 in G.
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We get a similar description of Γ := Gal(Qcl2/Q) by combining the two previous theorems,

and the result can be found in Theorem 7.34. Consider an inclusion Qalg ⊂ Qalg
p . Then

Qcl2
p is the compositum of its subfields Qcl2 and Qp, and this result can be found in section

7.6. Equivalently, the natural continuous homomorphism Gal(Qcl2
p /Qp)→ Γ, that restricts

automorphisms to Qcl2, is injective. This thesis is inspired by [6], in which Galois groups
of certain class-2 field extensions are described.

From now on, let K be an algebraic number field or a local number field. From class
field theory, the Galois group of the extension Kab/K is well-known. Due to the following
result, Theorem 1.3, we can also describe the Galois group of Kcl2/Kab by using the
results from class field theory and by using that H2(Gal(Ksep/K),Q/Z) = 0. For any
group G we denote by G(2) the commutator subgroup [G,G] of G and we denote by G(3)

the subgroup [G,G(2)] of G. Similarly, for any profinite group G we denote by G(2) the
topological closure of [G,G] in G and we denote by G(3) the closure of [G,G(2)] in G. More
information on these groups G(n) can be found in section 2.2.

Throughout this thesis we will use the convention that parentheses (...) give two meanings
to a sentence: one with the contents in all parentheses, and one without these contents.
For example, for any (topological) groups G1 and G2 we denote the set of (continuous)
homomorphisms G1 −→ G2 by Hom(G1, G2), and by this we mean that Hom(G1, G2)
denotes the hom-set of groups if G1 and G2 are groups and Hom(G1, G2) denotes the
hom-set of topological groups if G1 and G2 are topological groups. For any (profinite)
abelian groups A and B we say that a map f : A×A→ B is alternating if f is (continuous
and) bilinear and f(a, a) = 0 for all a ∈ A. We denote by Alt2(A,B) the abelian group
of all (continuous) alternating maps A× A→ B. For any (profinite) abelian group A we
denote by

∧2A a (profinite) abelian group and by

− ∧− : A×A→
2∧
A, (a1, a2) 7→ a1 ∧ a2

a (continuous) alternating map such that composition with −∧− induces a representation
Hom(

∧2A,−) ∼= Alt2(A,−) of the functor Alt2(A,−). For any (profinite) group G there
is a well-defined commutator map [−,−] :

∧2Gab → G(2)/G(3) that maps g1∧g2 to [g1, g2]
for any g1, g2 ∈ G. In section 4.3 we will further discuss the (profinite) group

∧2G.

For a (topological) group G and a (topological) G-module A we denote by H2(G,A) the
second (continuous) cohomology group with coefficients in A. If A is a topological G-
module, then H2(G,A) will denote the continuous cohomology group, unless specified
otherwise. The following result is proven in chapter 6.

Theorem 1.3. Let G be a (profinite) group such that H2(G,Q/Z) = 0. Then the com-
mutator map

[−,−] :
2∧
Gab → G(2)/G(3)

is an isomorphism.

For any global or local field K we have H2(Gal(Ksep/K),Q/Z) = 0 by a theorem of Tate
that can be found in [14, p. 227, Thm. 4]. For the remaining part of this section, assume
that K is equal to Q or Qp for some prime p, and write Γ := Gal(Kcl2/K). It follows
from the theorem of Tate that H2(Gal(Ksep/K),Q/Z) = 0 holds. In particular, we get an
isomorphism

∧2 Γab → Γ(2) by Theorem 1.3. Via this isomorphism, we can view the class
[Γ] of the central extension 1 → Γ(2) → Γ → Γab → 1 as an element of H2(Γab,

∧2 Γab).
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In order to describe the structure of the profinite group Γ, it suffices to determine the
element [Γ] ∈ H2(Γab,

∧2 Γab). To do so, we describe H2(Γab,
∧2 Γab) more explicitly

using the following theorem, of which the proof is an exercise in [3, Ch. 5.6] in the case of
discrete abelian groups. The proof of this result can be found in section 5.2.

Theorem 1.4. Let A, G be (profinite) abelian groups. Then the sequence

0→ Ext1(G,A)→ H2(G,A)
cp→ Hom(

2∧
G,A)→ 0

is a split exact sequence, where Ext1(G,A) → H2(G,A) is the inclusion map, and where
cp is the map

cp : H2(G,A)→ Hom(
2∧
G,A), [1→ A→ E → G→ 1] 7→ (g1 ∧ g2 7→ [s(g1), s(g2)]),

with s any (continuous) set-theoretic section of E → G.

Let (Gi)i∈I be a collection of procyclic groups indexed by I, and let A be a profinite
abelian group. Suppose that I is finite, or, suppose that A is the product of finite discrete
groups. In section 5.3 we will exhibit an explicit retraction

ret((Gi)i, A) : H
2(
∏
i

Gi, A)→ Ext1(
∏
i

Gi, A)

of the inclusion map Ext1(
∏
iGi, A) → H2(

∏
iGi, A). By factoring Γab into a product of

procyclic groups, we get an explicit splitting

(ret, cp) : H2(Γab,
2∧
Γab)

∼→ Ext1(Γab,
2∧
Γab)× End(

2∧
Γab).

Since cp[Γ] = id, it remains to determine the element ret[Γ] ∈ Ext1(Γab,
∧2 Γab). This will

be done by using various properties of Ext1 and number-theoretic properties of the field
K.

We will now pose several questions that arose from this thesis. Inspired by [1], we ask
whether it is possible for every prime p to describe roots of elements of Qab

p that generate

Qcl2
p , and similarly we ask for a description of Qcl2. Another interesting question is whether

the Galois group Gal(Kcl2/K) can be described for other local and global fields K. We
also ask whether it is possible to describe Galois groups of maximal ‘class-n’ extensions of
Qp and Q, where p is a prime.

1.2 Acknowledgements

I am extremely grateful to my advisor Hendrik Lenstra for his support and guidance. The
completion of this thesis would not have been possible without his extensive help. I would
also like to thank Martin Bright, Ronald van Luijk and Bart de Smit for serving on the
exam committee. I thank Bart Eggen, Daan van Gent, Geerten Koers and Wessel van
Woerden for proofreading this thesis.
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2 Preliminaries

2.1 Profinite groups

All statements without proofs or references in this section can be found with proof in [11].
The topological closure of a subspace X is denoted by X.

Remark 2.1. Let (I,≤) be a directed set, i.e., (I,≤) is a poset such that for all i, k ∈ I
there exists k ∈ I such that i, j ≤ k. Consider an inverse system

((Xi)i, (fij : Xi → Xj)j≤i, I)

of topological groups. The inverse limit is equal to the subgroup

{(xi)i∈I | ∀i, j ∈ I, j ≤ i⇒ fij(xi) = xj}

of the topological group
∏
iXi equipped with the subspace topology. △

Definition 2.2. A profinite group/ring is a topological group/ring that is isomorphic to
the inverse limit of an inverse system of discrete finite groups/rings. △

A morphism between profinite groups is a continuous group homomorphism. This turns
the class of profinite groups into a locally small category, i.e., for any profinite groups G1,
G2 the hom-set Hom(G1, G2) is a set.

Example 2.3. Let K ⊂ L be a, possibly infinite, Galois extension. Then Gal(L/K)
equals the inverse limit

Gal(L/K) = lim←−
K⊂M⊂L

Gal(M/K)

where M ranges over the finite Galois extensions of K contained in L. Hence, Gal(L/K)
is a profinite group. △

Definition 2.4. Let G be a group. Then the profinite completion Ĝ of G is the inverse
limit of the inverse system (G/N)N∈I where I is the set of all normal subgroups N of G
of finite index. △

Notice that in the definition above, Ĝ is a profinite group, and the image of the natural
homomorphism G→ Ĝ is dense in Ĝ.

Example 2.5. Let p be a prime. For any i, j ∈ Z>0 such that i ≥ j we consider the
natural ring homomorphism Z/piZ → Z/pjZ given by x + piZ 7→ x + pjZ for any x ∈ Z.
Then the inverse limit lim← Z/piZ is the ring of p-adic integers and is denoted by Zp.

For any integers n,m ≥ 1 with m | n we similarly have a map Z/nZ→ Z/mZ. The inverse
limit of the induced inverse system is the ring of profinite integers and is denoted by Ẑ.
As a topological group, Ẑ is the profinite completion of Z. △

Lemma 2.6. Let G be a compact topological group and let H ⊂ G be a subgroup of G.
Then H is open if and only if it is closed and of finite index (G : H).

Proof. Since G equals the disjoint union of cosets ofH, the result follows from compactness
of G.
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It is clear that profinite groups and profinite rings are compact Hausdorff and totally
disconnected, since they are subspaces of products of finite discrete spaces. The following
proposition is a special case of [11, Thm. 2.1.3] and of [11, Thm. 5.1.2].

Proposition 2.7. A topological group is a profinite group if and only if it is compact
Hausdorff and totally disconnected. A topological ring is a profinite ring if and only if it
is compact Hausdorff.

The following lemma is a special case of [11, Thm. 2.1.3].

Lemma 2.8. Let G be a profinite group. Then there exists a set N of open normal
subgroups N of G such that

⋂
N = {1} and such that for each open neighbourhood V of

1 there exists N ∈ N with N ⊂ V .

Since profinite groups are compact Hausdorff, we get the following result.

Lemma 2.9. Let f : G → G′ be a morphism of profinite groups. Then f is closed, and
for any subset X ⊂ G we have f(X) = f(X). Moreover, if f is a bijection, then f is an
isomorphism of profinite groups.

As a corollary of Lemma 2.9, every injective morphism of profinite groups induces a
homeomorphism to its image.

Corollary 2.10. Let ι : G → G′ be an injective morphism of profinite groups. Then the
induced map G→ ι[G] is an isomorphism of profinite groups.

The following two lemmas give sufficient conditions for morphisms of profinite groups to
have continuous set-theoretic sections and retractions.

Lemma 2.11. Every surjective morphism G → G′ of profinite groups has a continuous
set-theoretic section.

Proof. See [11, Prop. 2.2.2].

Lemma 2.12. Every injective morphism G→ G′ of profinite groups has continuous set-
theoretic retraction.

Proof. Let ι : G→ G′ be an injective morphism of profinite groups. Then ι[G] is a closed
subgroup of G′ by Lemma 2.9. The quotient map q : G′ → G′/ι[G] of topological spaces
has a topological section s : G′/ι[G]→ G′ by [15, Ch. 1.2, Prop. 1], and note that we can
take s to be such that s(ι[G]) = 1. Now G′ → G, g′ 7→ ι−1(g′(sqg′)−1) is a continuous
set-theoretic retraction of ι.

Quotients of profinite groups by closed normal subgroups are profinite groups, and ar-
bitrary products of profinite groups are profinite groups [11, Prop. 2.2.1]. The following
result is a specific case of [11, Cor. 1.1.8].

Lemma 2.13. Let (Gi)i∈I be an inverse system of profinite groups, let G be the inverse
limit and let fi : G→ Gi be the projection map for all i ∈ I. Let X ⊂ G be a subset. Then
lim← fi(X) = X.

Lemma 2.14. The inverse limit of any inverse system (Xi)i∈I of compact Hausdorff
non-empty topological spaces over a directed set I is non-empty.
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Proof. See [11, Lemma 1.1.4].

Definition 2.15. Let G be a profinite group. Then for any subset X ⊂ G we call ⟨X⟩
the subgroup topologically generated by X. If ⟨X⟩ = G, then we say that G is topologically
generated by X. △

Definition 2.16. A profinite group G is called procyclic if it is isomorphic to the inverse
limit of a system of cyclic groups. △

Lemma 2.17. A profinite group G is procyclic if and only if it is topologically generated
by {g} for some g ∈ G.

Proof. Let G be a profinite group. If g ∈ G is such that G = {g}, then it is clear that G
is procyclic. Now suppose that G is procyclic. Then G is the inverse limit of an inverse
system ((Gi)i, (fij)j≤i, I) with each Gi a finite cyclic discrete group and with each fij
surjective. For every i, we let Xi be the set of generators of Gi. Then (Xi)i forms an
inverse system, and lim←Xi is non-empty by Lemma 2.14.

Definition 2.18. Let R be a profinite ring. Then a topological R-module is an R-module
M such that M is a topological group and the multiplication map R×M →M is contin-
uous. △

Definition 2.19. Let G be a profinite group and let X be a topological space. Then a
topological G-action is a group action of G on X such that the induced map G×X → X
is continuous, where G×X has the product topology. △

Lemma 2.20. Consider a profinite group G and an element θ ∈ G. Then there exists a
unique morphism Ẑ→ G such that 1 7→ θ.

Proof. See [11, Ch. 4.1].

Any profinite abelian group A can be viewed as a Ẑ-module: for any θ ∈ A and any n ∈ Ẑ
we let nθ ∈ A be the element f(n) where f : Ẑ → A is the morphism from Lemma 2.20
with 1 7→ θ. Any morphism of profinite abelian groups is a morphism of Ẑ-modules.

Lemma 2.21. Let I be a directed set. Then lim← is an exact functor from the category
of inverse systems of profinite groups over I to the category of profinite groups.

Proof. See [11, Prop 2.2.4].

Remark 2.22. Let 0 → A
ι→ B

π→ C → 0 be a short exact sequence of abelian groups
that is split. Then

(0→ A/ι−1N → B/N → B/πN → 0)N ,

where N ranges over the subgroups of B with finite index, is an inverse system of short
exact sequences. Moreover, the set of all such ι−1N is cofinal in the set of all subgroups of A
of finite index, which follows from the fact that ι has a retraction. Hence, lim←A/ι

−1N =
Â. Similarly we have lim←C/πN = Ĉ. Hence, by taking the inverse limit of the inverse
system of exact sequences, we get by Lemma 2.21 an exact sequence

0→ Â
ι̂→ B̂

π̂→ Ĉ → 0. △
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Write N∞ := Z≥0 ∪ {∞}. Then N∞ is a monoid with the usual addition on Z≥0 and with
∞+ n = n+∞ =∞ for all n ∈ N∞. We extend the usual linear order ≤ on Z≥0 to N∞
by defining n ≤ ∞ for all n ∈ N∞.

Definition 2.23. Let P ⊂ Z>0 be the set of prime numbers. A supernatural number is a
formal product

∏
p∈P p

n(p) where for each p ∈ P we have n(p) ∈ N∞. △

For a collection (ni =
∏
p p

ni(p))i∈I of supernatural numbers, we define

lcm{ni : i ∈ I} =
∏
p

pmax{ni(p):i∈I},

gcd{ni : i ∈ I} =
∏
p

pmin{ni(p):i∈I}.

We define the order |G| of a profinite group G as lcm{#G/N : N ⊂ G open subgroup}.
Notice that for any profinite abelian group G the map G→ G, x 7→ n ·x is an isomorphism
for every n ∈ Z>0 with gcd(|G| , n) = 1, i.e., with |G| and n coprime.

2.2 Class-2 groups

Definition 2.24. Let G be a group. Then we define G(1) := G and G(i+1) := [G,G(i)] for
all integers i ≥ 1. We write Gab := G/G(2) for the abelianized group of G. △

Definition 2.25. Let G be a topological group. Then we define G(1) := G and G(i+1) :=
[G,G(i)] for all integers i ≥ 1, i.e., G(i+1) is the closure of [G,G(i)] in G. △

Let G be a (topological) group. For every integer i ≥ 2 and elements g ∈ G, h ∈ G(i)

and an inner automorphism σ of G we have σ[g, h] = [σg, σh], hence it follows inductively
that G(i) is normal in G. In other words, for each integer i ≥ 1 we have [G,G(i)] ⊂ G(i),
i.e., G(i+1) ⊂ G(i). The series G(1) ⊃ G(2) ⊃ . . . is called the lower central series of G.
Moreover, we denote by Gab and Gcl2 the (topological) quotient group G/G(2) and G/G(3)

respectively.

Definition 2.26. Let G be a (topological) group. Then G is of class-2 if G(3) = 1. △

Notice that a (profinite) group is a class-2 group if and only if [G,G] ⊂ Z(G); in the
profinite case this follows from the fact that Z(G) =

⋂
g∈GCG(g) is closed in G, where

CG(g) is the centralizer of g in G. In particular, a profinite group is of class 2 if and only
if the underlying group is of class 2. Some examples of class-2 groups are abelian groups,
the dihedral group D4 of order 8 and the quaternion group Q8. Moreover, Gcl2 is a class-2
group for any (topological) group G: the subgroup G(3) is the smallest (closed) normal
subgroup N of G for which G/N is of class 2.

A map f : G1×G2 → H of (topological) groups is called bilinear if for every g1 ∈ G1 and
g2 ∈ G2 the maps f(g1,−) and f(−, g2) are homomorphisms. Essentially, bilinear maps
of (profinite) groups can be viewed as maps of (profinite) abelian groups: if such a map
f is bilinear, then expanding f(ab, cd) in two manners shows that the range ran f of f
(topologically) generates an abelian subgroup, and f factors through Gab

1 ×Gab
2 . An exact

sequence 0 → A
ι→ B → C → 0 of (topological) groups is called central if ι[A] ⊂ Z(B)

(and ι induces a homeomorphism A→ ι[A]).

Lemma 2.27. Let G be a (profinite) group. Then the following statements are equivalent.
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(1) G is of class 2,

(2) the commutator map [−,−] : G×G→ G(2) is bilinear,

(3) there exists a central exact sequence 1 → A → G → C → 1 of (profinite) groups with
C abelian.

Proof. We prove (1)⇔ (2) in (i) and (1)⇔ (3) in (ii).

(i) If G is of class 2, then the commutator map is linear in its first argument since for
any g, a, b ∈ G we have

[a, g][b, g] = a[b, g]ga−1g−1 = [ab, g],

and one can similarly show that the commutator map is linear in its second argument.
Now suppose that the commutator map is bilinear. Then G(2) is abelian, and the
commutator map factors through Gab×Gab. This shows that [G,G(2)] = 1 and thus
[G,G] ⊂ Z(G).

(ii) If G is a class-2 group, then 0 → Z(G) → G → G/Z(G) → 0 is a central exact
sequence with G/Z(G) abelian. If 0→ A

ι→ G
π→ C → 0 is a central exact sequence

with C abelian, then π[G,G] = 0 and thus [G,G] ⊂ ιA ⊂ Z(G).

The following result can be routinely verified by using the equivalence (1) ⇔ (2) from
Lemma 2.27.

Corollary 2.28. Any product (possibly infinite) of (profinite) class-2 groups is again a
class-2 group. Moreover, any quotient and any subgroup of a profinite class-2 group is
again a class-2 group.

Lemma 2.29. Let G be a group. Let H be a subgroup of G and let i ∈ Z>0 be such that
G(i+1) ⊂ H ⊂ G(i). Then H is normal in G.

Proof. From H ⊂ G(i) it follows that [G,H] ⊂ G(i+1). Hence, we have [G,H] ⊂ H thus
H is normal in G.

2.3 Pontryagin duality

Definition 2.30. LetX,Y be topological spaces. For any compact subsetK ⊂ X and any
open subset U ⊂ Y , let VK,U be the set of all continuous maps f : X → Y with f(K) ⊂ U .
The compact-open topology on the set C(X,Y ) of continuous functions X → Y is the
topology generated by the subbasis (VK,U )K,U . The subspace topology on a subset of
C(X,Y ) is also called the compact-open topology on that subset. △

Consider the topological group T := R/Z. Let LCAb be the category of locally compact
abelian groups. Let G be a locally compact abelian group. Then we define the Pontryagin
dual of G to be G∗ := Hom(G,T) with the compact-open topology. With this topology G∗

is again a locally compact abelian group [11]. Moreover, for any morphism φ : G1 → G2 of
locally abelian groups, we define the Pontryagin dual of φ to be the morphism G∗2 → G∗1
defined by f 7→ f ◦ φ. It is easy to verify that this now induces a contravariant functor
∗ : LCAb→ LCAb.

We denote the objects of a category C by Ob(C). For any G ∈ Ob(LCAb), we consider
the morphism αG : G→ G∗∗ defined by g 7→ [f 7→ f(g)]. Then the theorem on Pontryagin
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duality states that for any G ∈ Ob(LCAb) the map αG is an isomorphism. In other
words, we get the following result.

Theorem 2.31 (Pontryagin duality). The functor ∗ induces an equivalence of categories
between LCAb and LCAbop. A natural isomorphism of the identity functor to ∗∗ is given
by α−.

For example, for any finite discrete abelian group A we have A∗ ∼= A. Let p be a prime
and denote by Cp∞ the discrete p-power torsion subgroup of Q/Z. Then the Pontryagin

dual of the group Zp equals Z∗p = Cp∞ . The Pontryagin dual of the group Ẑ equals Q/Z.

Let PAb and DTAb be the full subcategories of LCAb respectively consisting of all profi-
nite abelian groups and all discrete abelian torsion groups. In order to apply Pontryagin
duality on profinite groups, the following theorem is more useful.

Theorem 2.32 (Pontryagin duality for profinite groups). The functor ∗ induces a duality
of categories between PAb and DTAb. A corresponding natural isomorphism is induced
by α−. Moreover, if G ∈ Ob(PAb) or G ∈ Ob(DTAb), then G∗ = Hom(G,T) =
Hom(G,Q/Z) where Q/Z is taken to be discrete.

As with any equivalence of categories, all limits and colimits are preserved under Pon-
tryagin duality. Therefore, we see that the duality also preserves kernels and cokernels.
Hence, the functor Hom(−,Q/Z) is exact on sequences of profinite abelian groups.

Corollary 2.33. Let G be a profinite abelian group. Then there exists a set I and a
surjective morphism ẐI → G.

Proof. We use Pontryagin duality to prove this Lemma. It suffices to show that the
Pontryagin dual G∗ can be embedded as a group into (Q/Z)(I) for some set I. For
any prime p, the p-torsion subgroup G∗[p] is a vector space over Fp and thus we have
G∗[p] ∼= (1pZ/Z)

(Ip) as groups for some set Ip. Now take I =
∐
p Ip and notice that the

natural morphism φ :
⊕

pG
∗[p] → (Q/Z)(I) is injective. Moreover, φ extends to a map

φ̃ : G∗ → (Q/Z)(I) since (Q/Z)(I) is an injective abelian group. Finally, the morphism φ̃
is also injective and this follows from the injectivity of φ.

Corollary 2.34. Denote by C the class of all profinite abelian groups that are projective
in the category PAb. Then C is closed under taking closed subgroups, (possibly infinite)
products and inverse limits. Moreover, we have Ẑ ∈ C.

Proof. In the category of abelian groups, injectivity is equivalent to divisibility. Using
this, one can verify that injectivity in the category DTAb is preserved under quotients
and direct sums and direct limits. Moreover, the abelian torsion group Q/Z is injective.
By Pontryagin duality, the corollary follows.

Similarly to the Pontryagin duality, we denote the functor Hom(−,Q/Z) : Ab → Ab by
∗ and write A∗ = Hom(A,Q/Z) and f∗ = Hom(f,Q/Z) for any abelian group A and
morphism f of abelian groups. Since Q/Z is divisible and thus injective in Ab, we find
that ∗ : Ab→ Ab is exact.

Lemma 2.35. Let A be a (profinite) abelian group. If we have A∗ = 0, then A = 0.
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Proof. If A is a profinite abelian group and A∗ = 0, then A ∼= A∗∗ = 0 by Pontryagin
duality. Now let A be an abelian group without any topology. We will prove the contra-
positive, so assume that A ̸= 0. Consider any non-trivial cyclic subgroup B of A. Then
we have Hom(B,Q/Z) ̸= 0. By injectivity of Q/Z it now follows that Hom(A,Q/Z) ̸= 0
also holds.

2.4 Class field theory

In this section we will recall theory from class field theory, which can be found in [10], [5]
and [16]. We will first give the definition of a restricted product.

Definition 2.36. Let I be an index set, and let Gi be a locally compact abelian group
for all i ∈ I. Let I∞ ⊂ I be a finite subset and let Hi ⊂ Gi be a compact subgroup for all
i ∈ I\I∞. Then the restricted product of (Gi)i with respect to (Hi)i is defined to be the
subgroup

G = {(xi) ∈ (Gi)i∈I | for all but finitely many i ∈ I\I∞ we have xi ∈ Hi}.

We equip G with the coarsest topology such that for any finite S ⊂ I containing I∞, any
open subset U of the topological product

∏
i∈S Gi×

∏
i∈I\S Hi is also open in G. Then G

is a topological group. △

In the setting of the definition above, for any subset U ⊂ G we have that U is open in G
if and only if for all x ∈ G the set xU ∩ (

∏
i∈I∞ Gi ×

∏
i∈I\I∞ Hi) is open in the product∏

i∈I∞ Gi ×
∏
i∈I\I∞ Hi.

Let K be a number field. Let P be the set of places of K and let P∞ ⊂ P be the subset
of infinite places of K.

Definition 2.37. The adele ring of K is defined to be the restricted product of the
additive groups (Kv)v∈P with respect to rings of integers (Ov)v∈P\P∞ . The multiplication
on the adele ring is defined to be componentwise and this turns it into a topological ring.
We denote the adele ring of K by AK . △

Definition 2.38. The idele group of K is defined to be the restricted product of the
multiplicative groups (K∗v )v∈P with respect to the unit groups of the rings of integers
(O∗v)v∈P\P∞ . We denote the idele group of K by JK . △

Notice that we have an equality of groups JK = A∗K , but the topology of the idele group
JK is not induced by the subspace topology from AK . We can diagonally embed K as a
discrete subgroup of AK and similarly we can diagonally embed K∗ in JK as a discrete
subgroup [10, Ch. 7, Thm. 1]. The idele class group of K is defined as the topological
group CK := JK/K

∗. For a finite extension L/K of number fields, we have a canonical
embedding AK → AL. Together with the diagonal embedding L → AL this gives a
canonical isomorphism AK ⊗ L → AL of topological rings [5, Ch. 2.14]. Hence, AL is a
free module of finite rank over AK and we get a norm map AL → AK , which we will
denote by NL/K . It coincides with the norm map NL/K : L → K on the diagonal of L
and K in AL and AK respectively. More explicitly, the norm NL/K : AL → K maps an
element (xw)w ∈ AL to an element (yv)v ∈ AK such that for any place v of K we have

yv =
∏
w|v

NLw/Kv
(xw).
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This norm map AL → AK induces a norm map NL/K : CL → CK of idele class groups.

Now suppose that L/K is an abelian extension and write G := Gal(L/K). For any prime
p of K that does not ramify in L, there is a unique element σ ∈ Gp ⊂ G, the Artin
symbol (L/K, p), such that for all x ∈ L and any prime q of L that lies above p, we
have σ(x) ≡ xN(p) mod q, where N(p) is the ideal norm of p. The Artin symbol does
not depend on q. Let d be the relative discriminant of L/K and write I(d) for the set of
fractional OK ideals relatively prime to d. Then by multiplication we can extend the Artin
symbols to an Artin map I(d) → G. This map is surjective and induces a related global
Artin map that appears in a global result, Theorem 2.40. The relation between these two
Artin maps can be found in [10, Ch. 10]. First we state the local class field theorem for
non-Archimedean local number fields K, i.e., for fields K that are the finite extensions of
Qp for some prime p. This result can be found in [16, Ch. 13.4].

Theorem 2.39 (Local Class Field Theorem). Let K be a non-Archimedean local number
field and fix an algebraic closure Kalg of K. Let Σ be the set of finite abelian extensions
of K contained in Kalg. Let D be the set of open subgroups of K∗ of finite index. Then
the map

Σ→ D
L 7→ NL/KL

∗

is an inclusion-reversing bijection. For an extension L ∈ Σ and the corresponding open
subgroup D := NL/KL

∗ there is a local Artin isomorphism K∗/NL/KL
∗ ∼−→ Gal(L/K),

and it maps the unit group U of the valuation ring of K isomorphically to the inertia group
IL/K of L/K and prime elements are mapped to the Frobenius coset modulo IL/K .

Notice that for K a non-Archimedean local number field we have in fact that every sub-
group of K∗ of finite index is open. Hence, we find that the local Artin maps induce an
isomorphism

K̂∗
∼−→ Gal(Kab/K).

The following result can be found in [5, Ch. 14.5-14.6] and [10, Ch. 10-11].

Theorem 2.40 (Global Class Field Theorem). Let K be an algebraic number field and fix
an algebraic closure Kalg of K. Let Σ be the set of finite abelian extensions of K contained
in Kalg. Let D be the set of open subgroups of the idele class group CK . Then the map

Σ→ D
L 7→ NL/KCK

is an inclusion-reversing bijection. For an extension L ∈ Σ and the corresponding open
subgroup D := NL/KCK there is a global Artin isomorphism CK/D

∼−→ Gal(L/K), and
it maps K∗v surjectively to the decomposition group Gv = Gal(Lw/Kv) for any place v of
K. This induces the local Artin isomorphism

K∗v/NLw/Kv
L∗w

∼−→ Gv ⊂ Gal(L/K),

where w | v is a place extending v.

Every open subgroup of CK is of finite index in CK [10, p. 212]. Hence, it follows from
Theorem 2.40 that the global Artin map yields an isomorphism

lim
←
CK/N

∼−→ Gal(Kab/K),
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where N ranges over the open subgroups of CK . In particular, for K = Q we get an
isomorphism Ẑ∗ ∼= Gal(Qab/Q) induced by the continuous morphism∏

p

Z∗p → CQ, (xp)p 7→ (xv)v, where xv =

{
xv if v is finite,

1 if v =∞.

3 Cohomology of topological groups

3.1 Continuous cohomology

Let G, A be topological groups with A abelian, and suppose that A is a G-module.
Then A is a topological G-module if the action of G on A induces a continuous map
G × A → A, where G × A has the product topology. A morphism of topological G-
modules is a continuous morphism of G-modules. This gives a category of topological
G-modules. If G is profinite and A discrete, then A is a topological G-module if and only
if A =

⋃
N A

N , where N ranges over the open normal subgroups of G and where AN is
the subgroup of A of fixed points by N [11, Lemma 5.3.1]. We will omit the adjective
“topological” when we refer to profinite or discrete topological G-modules. The theory as
developed in this section can be found in general in [8] and for profinite groups G in [18].

For any n ∈ Z≥0 we consider the abelian group Cn(G,A) of continuous maps Gn → A,
where Gn has the product topology. For any n ∈ Z≥0 we define the boundary map
dn : Cn(G,A)→ Cn+1(G,A) as the group homomorphism such that for each f ∈ Cn(G,A)
and all (g1, . . . , gn+1)

n+1 we have

(dnf)(g1, . . . , gn+1) = g1f(g2, . . . , gn+1) +
n∑
i=1

(−1)if(g1, . . . , gigi+1, . . . , gn+1)

+ (−1)n+1f(g1, . . . , gn).

We define d−1 as the trivial map 0 → C0(G,A). Fix n ∈ Z≥0. We define the group of
continuous n-cocycles as the kernel of dn and denote this group by Zn(G,A). Moreover, we
define the group of continuous n-coboundaries as the image of dn−1 and denote this group
by Bn(G,A). By a direct calculation it can be shown that we have Bn(G,A) ⊂ Zn(G,A).
We define the n-th continuous cohomology group with coefficients in A as the quotient
Hn(G,A) := Zn(G,A)/Bn(G,A). Observe that we can identify H0(G,A) with the group of
invariants AG under G. Moreover, if G is discrete, then the continuous group cohomology
above coincides with the usual group cohomology as found in [16].

Let G, G′ be topological groups and let A, A′ be a topological G-module and a topological
G′-module respectively. Then we say continuous group homomorphisms f : G′ → G and
g : A → A′ are compatible if for all a ∈ A and x ∈ G′ we have g(f(x)a) = xg(a). If
f : G′ → G and g : A → A′ are compatible, then for each n ∈ Z≥0 we get a well-defined
group homomorphism

(f, g)∗n : Hn(G,A)→ Hn(G′, A′), [ω] 7→ [(x1, . . . , xn) 7→ (g ◦ ω)(f(x1), . . . , f(xn))].

For any two topological abelian groups G, A we can view A as a topological G-module
with trivial action of G on A. Denote the category of topological abelian groups by TAb.
By only considering trivial actions, we get a bifunctor Hn(−,−) : TAb × TAb → Ab
that maps (f : G′ → G, g : A → A′) to Hn(f, g) = (f, g)∗n. Similarly, we get a bifunctor
Zn(−,−) : TAb×TAb→ Ab that maps (f : G′ → G, g : A→ A′) to

Zn(G,A)→ Zn(G′, A′), ω 7→ [(x1, . . . , xn) 7→ (g ◦ ω)(f(x1), . . . , f(xn))].

14



Let G be a topological group. We call a short exact sequence 0 → A → B → C → 0 of
topological G-modules well-adjusted if A → B induces a homeomorphism of A onto its
image and B → C admits a continuous set-theoretic section. The following result can be
found in [8, Thm. 1.15], and a profinite variant can be found in [18, Thm 9.3.3], and in
this result we call each homomorphism δ a connecting homomorphism.

Theorem 3.1. Let G be a topological group. Let 0→ A
f→ B

g→ C → 0 be a well-adjusted
short exact sequence of topological G-modules.

(a) For each n ≥ 0 there is a unique homomorphism δ : Hn(G,C) → Hn+1(G,A) such
that for all a ∈ Zn+1(G,A), b ∈ Cn(G,B), and c ∈ Zn(G,C) satisfying f ◦ a = dnb
and g ◦ b = c we have δ[c] = [a].

(b) The sequence

0 −→ H0(G,A)
(idG,f)

∗
0−→ H0(G,B)

(idG,g)
∗
0−→ H0(G,C)

δ−→ H1(G,A)
(idG,f)

∗
1−→ . . .

. . .
δ−→ Hn(G,A)

(idG,f)
∗
n−→ Hn(G,B)

(idG,g)
∗
n−→ Hn(G,C)

δ−→ Hn+1(G,A)
(idG,f)

∗
n+1−→ . . .

is exact.

Another important exact sequence is the inflation-restriction sequence for profinite groups.
Let N be a closed normal subgroup of a profinite group G. Let A be a topological G-
module. Then the inclusion morphism ι : N → G is compatible with the identity map idA
on A. For any n ∈ Z≥0 we get a restriction map

Res : Hn(G,A)→ Hn(N,A)

defined as the map (ι, idA)
∗
n. Moreover, for any x ∈ G the morphisms N → N, y 7→ xyx−1

and A → A, a 7→ xa are compatible and they give a morphism Hn(N,A) → Hn(N,A).
This endows Hn(N,A) with a G/N -module structure. The image of the restriction map
Hn(G,A)→ Hn(N,A) lies in the group of G/N -invariants Hn(N,A)G/N .

The topological group AN of N -invariants is naturally a topological G/N -module. The
quotient map π : G → G/N and the inclusion map ι′ : AN → A are compatible. Hence,
for any n ∈ Z≥0 we get an inflation map

Inf : Hn(G/N,AN )→ Hn(G,A)

defined as the map (π, ι′)∗n. The following result gives inflation-restriction sequences and
can be found in [18, Prop. 10.3.1] for profinite groups and in [16, Ch. 7.6], [7] for discrete
groups G.

Theorem 3.2. Let G be a (profinite) group, let A be a (discrete) G-module and let N be
a (closed) normal subgroup of G. Suppose that n > 0 is an integer such that Hi(N,A) = 0
for all 1 ≤ i ≤ n− 1. Then there is an exact sequence

0→ Hn(G/N,AN )
Inf→ Hn(G,A)

Res→ Hn(N,A)G/N → Hn+1(G/N,AN )
Inf→ Hn+1(G,A).

3.2 Cup products

For a profinite group G and discrete G-modules A and B we view A ⊗ B as a discrete
G-module with the action defined by g(a ⊗ b) = ga ⊗ gb where g ∈ G, a ∈ A, b ∈ B [11,
Ch. 7.9].

15



A proof of the following result can be found in [11, Ch. 7, Prop. 5]. A formulation with
Tate-cohomology for finite groups G can be found in [16, Ch. 8.3] and in [12, Ch. 9.7].
The bilinear maps − ∪− in this result are called cup products.

Proposition 3.3. Let G be a profinite group. There exists a unique family of bilinear
maps

− ∪− : Hn(G,A)×Hm(G,B)→ Hn+m(G,A⊗B), (a, b) 7→ a ∪ b,

defined for all n,m ∈ Z≥0 and all discrete G-modules A and B, such that the following
four properties hold.

(1) The bilinear maps − ∪− are natural in A and B.

(2) For n = m = 0 the bilinear map − ∪− equals the bilinear map

AG ×BG → (A⊗B)G, (a, b) 7→ a⊗ b.

(3) Let B be a discrete G-module. Consider an exact sequence

0→ A→ A′ → A′′ → 0

of discrete G-modules. If the induced sequence

0→ A⊗B → A′ ⊗B → A′′ ⊗B → 0

is exact, then for all a′′ ∈ Hn(G,A′′) and b ∈ Hm(G,B) we have

(δa′′) ∪ b = δ(a′′ ∪ b) in Hn+m+1(G,A⊗B),

where δ denotes the connecting homomorphism from section 3.1.

(4) Let A be a discrete G-module. Consider an exact sequence

0→ B → B′ → B′′ → 0

of discrete G-modules. If the induced sequence

0→ A⊗B → A⊗B′ → A⊗B′′ → 0

is exact, then for all a ∈ Hn(G,A) and b′′ ∈ Hm(G,B′′) we have

a ∪ (δb′′) = (−1)nδ(a ∪ b′′) in Hn+m+1(G,A⊗B),

where δ denotes the connecting homomorphism from section 3.1.

3.3 Quotient categories

In this subsection we define the quotient of a category by some equivalence relation.

Let C be a category. Then a class R ⊂ {isomorphisms of C} is an isomorphism equivalence
class of C if it has the following three properties:

(i) for any X ∈ Ob(C) we have 1X ∈ R,

(ii) R is closed under composition in C,

(iii) for any f ∈ R we have f−1 ∈ R.

Notice that R induces an equivalence relation ∼R on Ob(C) given by X ∼R Y if and only
if HomC(X,Y ) ∩ R is non-empty. Moreover, R induces an equivalence relation ≈R on
Hom(C) given by f ≈R g if and only if there exist σ, τ ∈ R such that (σ, τ) ∈ ArrC(f, g),
where ArrC is the arrow category of C.
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Definition 3.4. Let C be a category and let R be an isomorphism equivalence class of
C. Then the quotient category of C by R is a category C/R and a functor Q : C → C/R
satisfying the following requirements:

(1) ∀X,Y ∈ Ob(C), [∃σ ∈ R : σ ∈ HomC(X,Y )] =⇒ Q(X) = Q(Y ),

(2) ∀f, g ∈ Hom(C), [∃σ, τ ∈ R : (σ, τ) ∈ ArrC(f, g)] =⇒ Q(f) = Q(g),

and such that for every other category Y and functor Q′ : C → Y satisfying (1) and (2),
there exists a unique functor F : C/R→ Y such that FQ = Q′. △

In the definition above we call Q the quotient functor. Notice that the quotient category
by an isomorphism equivalence class is unique up to unique isomorphism that commutes
with the quotient functors. Under some assumptions we can also prove existence of such
a quotient category. Let X be a class with an equivalence relation ∼ on X. Then a class
of representative sets of (X,∼) is a class Y ⊂ X such that

(1) for all y ∈ Y the equivalence class [y]∼ ∩ Y of y is a set,

(2) for all x ∈ X there exists y ∈ Y such that x ∼ y. Notice that such an element y does
not have to be unique.

Proposition 3.5. Let C be a locally small category and let R be an isomorphism equiva-
lence class of C inducing an equivalence relation ∼R on Ob(C). Suppose that

(i) there exists a class of representative sets of (Ob(C),∼R),

(ii) for all X,Y ∈ Ob(C) we have #(HomC(X,Y ) ∩R) ≤ 1.

Then the quotient category C/R exists.

Proof. We will construct C/R. Let Z be a class of representative sets of (Ob(C),∼R).
We define the objects Ob(C/R) of C/R to be the quotient class Z/∼R. Consider the
equivalence relation ≈R on Hom(C) induced by R. Now for any X,Y ∈ Ob(C/R) we
define

HomC/R(X,Y ) :=
( ⋃
x∈X

⋃
y∈Y

HomC(x, y)
)
/ ≈R .

The composition [g] ◦ [f ] of [f ] ∈ HomC/R(X,Y ) and [g] ∈ HomC/R(Y, Z) is defined to be
[g◦σ◦f ] for any σ : codom(f)→ dom(g) in R. It follows from (ii) that this is independent
of σ and of the chosen representatives of [f ] and [g]. Associativity of the composition is
clear.

Under assumption of the global axiom of choice, condition (i) in Proposition 3.5 is always
fulfilled due to Scott’s trick [9, p. 65]. However, in our applications we will not rely on the
global axiom of choice.

3.4 2-Cocycles and Sectioned Central Extensions

In this subsection we will establish an equivalence of categories between (continuous) 2-
cocycles and (continuous) central extensions with set-theoretic sections. We also compare
several concepts in both categories. For example, the second cohomology group in terms of
2-cocycles can be translated in terms of such extensions. For simplicity, we only consider
topological G-modules A with trivial action of G on A. A correspondence where non-
trivial actions of G-modules A without topology are taken into account, is given in [4,
Ch. 14.4].
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We will first give some definitions of related concepts.

(i) We make the second cohomology group from section 3.1 more explicit by describing
the cocycles and coboundaries. Let G, A be topological groups of which A is abelian.
A continuous 2-cocycle is a continuous map ω : G×G→ A such that for all x, y, z ∈ G
we have

ω(y, z)− ω(xy, z) + ω(x, yz)− ω(x, y) = 0.

A continuous map b : G×G→ A is a continuous 2-coboundary if for some continuous
map f : G→ A and for all x, y ∈ G we have

b(x, y) = f(x) + f(y)− f(xy).

(ii) Let G, A be topological groups of which A is abelian. A continuous central extension
of G by A is an exact sequence of topological groups

1→ A→ E → G→ 1

such that A is central in E and such that A → E induces a homeomorphism of A
with im(A→ E). Such an extension is usually just denoted by E. For any surjective
morphism E → G of topological groups with ker(E → G) ⊂ Z(E) we associate
E → G to the natural central extension ker(E → G) ↣ E ↠ G. A (continuous)
sectioned central extension of G by A is a continuous central extension E together
with a continuous set-theoretic section E ← G of the map E → G, and such that
A→ E induces a homeomorphism A→ im(A→ E). A G-morphism of E1 → E2 of
two continuous sectioned central extensions E1, E2 of G by A1, A2 respectively is a
morphism E1 → E2 of topological groups such that the following diagrams

1 A1 E1 G 1 E1 G

1 A2 E2 G 1 E2 G

id id

commute. This defines the category PreZE(G) of sectioned central extensions with

objects (A,E, ι, π, s) that represent a central extension A
ι
↣ E

π
↠ G with section

s : G→ E.

Let G be a topological group. We will define the category Z2(G) of continuous 2-cocycles.
The objects are pairs (A,ω) where A is an abelian topological group and ω : G×G→ A is
a continuous cocycle. A morphism between two objects (A1, ω1), (A2, ω2) is a morphism
f : A1 → A2 of topological groups such that the following diagram

A1 A2

G×G

f

ω1 ω2

commutes.

Let G be a topological group. We will define the category ZE(G) of continuous sectioned
central extension classes as a quotient category of PreZE(G). Consider the class R(G) of
those morphisms (A1 ↣ E1 ↠ G)→ (A2 ↣ E2 ↠ G) of PreZE(G) that satisfy A1 = A2

and for which the induced morphism A1 → A2 is the identity morphism. Notice that any
element of R(G) is an isomorphism and that for any two objects E1, E2 ∈ PreZE(G) there
is at most one morphism E1 → E2 in R(G). Moreover, it can be verified that R(G) is an
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isomorphism equivalence class of PreZE(G). Let ∼R be the equivalence relation induced
by R(G) on Ob(PreZE(G)). We consider the class X(G) of those central extensions
(A,E, ι, π, s) ∈ Ob(PreZE(G)) for which the underlying set of E equals A×G. ThenX(G)
is a class of representative sets of the equivalence relation R(G) induced by R(G). Hence,
by Proposition 3.5 we conclude that the quotient category ZE(G) := PreZE(G)/R(G)
exists. Denote the quotient functor by QSCE and notice that for any two morphisms
fi : (Ai ↣ Ei ↠ G)→ (A′i ↣ E′i ↠ G) in Hom(PreZE(G)) with i = 1, 2 we have

QSCE(f1) = QSCE(f2)⇐⇒ [A1 = A2, A
′
1 = A′2 and f1, f2 induce the same map A1 → A′1].

Theorem 3.6. Let G be a topological group. Then the categories Z2(G) and ZE(G) are
isomorphic.

Proof. We will define two functors F1 : ZE(G) → Z2(G) and F2 : Z2(G) → ZE(G) that
are inverses of each other.

F1 Let 1 → A → E → G → 1 be a continuous sectioned central extension class with
continuous set-theoretic section s : G → E. Then ω : G × G → A defined by
(x, y) 7→ s(x)s(y)s(xy)−1 is a continuous cocycle map. This construction of ω does
not depend on the choice of the representative of the extension class, and defines
F1(E) for any object E ∈ ZE(G).

Now let 1 → Ai → Ei → G → 1 be objects of ZE(G), and let f : E1 → E2 be
a morphism in ZE(G). Then f induces a morphism F1(f) : A1 → A2 of abelian
topological groups.

F2 Let ω : G×G→ A be a continuous cocycle map. We define A×ω G as topological
space as A × G endowed with the product topology and with the group operation
(a, x)(b, y) = (ω(x, y)ab, xy). This turns A ×ω G into a topological group. We also
consider the morphisms A→ A×ωG given by a 7→ (aω(1, 1)−1, 1) and π : A×ωG→
G given by (a, x) 7→ x. Moreover, we consider a continuous set-theoretic section
G→ E of π given by x 7→ (1, x). Now E is a sectioned central extension of G by A,
and we define F2(ω) to be the class of E.

Let f : (A1, ω1) → (A2, ω2) be a morphism in Z2(G). Then we define F2(f) to be
the morphism A1 ×ω1 G→ A2 ×ω2 G defined by (a, g) 7→ (f(a), g).

It can be verified that F1F2 and F2F1 equal the identity functors on Z2(G) and ZE(G)
respectively. We will only elaborate why F2F1 is the identity on the objects of ZE(G).
Let [(A,E, π, ι, s)] be a sectioned central extension class. Applying F2F1 yields a central
extension (A,A ×ω G, ι′, π′, s′) and it can be verified that the following maps are inverse
morphisms in PreZE(G):

E → A×ω G A×ω G→ E

x 7→ (ι−1(x(sπx)−1), πx) (a, g) 7→ ι(a)s(g).

Hence, E and A×ω G represent the same object in ZE(G).

A stronger version of the following corollary can be found in [8, Prop. 1.9].

Corollary 3.7. Let ξ : 0 → A → E → G → 0 be a central exact sequence of topological
groups. Then ξ is well-adjusted if and only if there is a homeomorphism φ : E → A × G
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for which the diagram

1 A E G 1

1 A A×G G 1

id φ id

commutes, where A→ A×G is the map a 7→ (a, 1) and A×G→ G is the map (a, x) 7→ x.

Proof. If such a homeomorphism φ exists, then it is clear that ξ is well-adjusted. By
Theorem 3.6 it suffices to prove the existence of φ in the case that ξ is the exact sequence
0 → A → A ×ω G → G → 0 for some cocycle ω ∈ Z2(G,A). In this case, the map
φ : A×ω G→ A×G given by (a, x) 7→ (aω(1, 1), x) suffices.

We will now start comparing several concepts in terms of 2-cocycles and sectioned central
extensions. The correspondence between the 2-cocycles and sectioned central extensions
yields the following result, which gives an interpretation of the second cohomology group
in terms of sectioned central extensions.

Let G, A be topological groups and let A be abelian. We will present the analog of
the group of 2-cocycles in terms of sectioned central extensions. Let ZE(G,A) be the
group whose objects are objects [(A,E, ι, π, s)] ∈ ZE(G), and where the group operation
is induced by the Baer sum: let [(A,Ei, ιi, πi, si)] be sectioned central extensions of G by
A for i = 1, 2, then the Baer sum of E1, E2 is the sectioned central extension

E1 + E2 := E1 ×G E2/{(ι1(a)), ι2(a)−1) | a ∈ A}

of G by A, where E1 ×G E2 is the fiber product of E1, E2 over G. The morphism A →
E1+E2 is given by a 7→ (ι1(a), 1); the morphism E1+E2 → G is given by (x, y) 7→ π1(x);
the section G → E1 + E2 is given by g 7→ (s1(g), s2(g)). Any two elements as in the
diagram

1 A E G 1

1 A E G 1

ι
π

s

−ι
π

s

are inverses to each other in ZE(G,A). Notice that by Corollary 3.7 for profinite abelian
groups G, A every element of ZE(G,A) is profinite.

We will show that ZE(−,−) is functorial in both arguments, in fact, it is a bifunctor, as
will follow from Proposition 3.10 since Z2(−,−) is a bifunctor. From the same proposition
it follows that ZE(−,−) is additive in the second argument.

Definition 3.8. Let g : A→ A′ be a morphism of topological abelian groups. Consider a
sectioned central extension ξ = (A,E, ι, π, s) ∈ PreZE(G). Since ι is central, the pushout
E′ := A′ ⊔A E of ι and g exists in the category of topological groups. Then the diagram

A E G

A′ E′

g

ι π

ι′

commutes. The zero map A′ → G and π together induce a map π′ : E′ → G by the
universal property of the pushout. Then 1→ A′ → E′ → G→ 1 is a central extension. It
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comes with a section G → E′ that equals the composition G
s→ E → E′. We now define

gξ to be the object (A′, E′, ι′, π′, s′) ∈ PreZE(G). Moreover, we define gQSCE(ξ) :=
QSCE(gξ), and this does not depend on the choice of ξ. △

For any morphism g : A→ A′ of topological abelian groups, and any topological group G,
we define ZE(G, g) as the map

ZE(G, g) : ZE(G,A)→ ZE(G,A′), ξ 7→ gξ.

This yields a functor ZE(G,−) : TAb → TAb, where TAb denotes the category of
topological abelian groups.

Definition 3.9. Let f : G′ → G be a morphism of topological groups. Consider a
sectioned central extension ξ = (A,E, ι, π, s) ∈ PreZE(G). We define E′ as the pullback
A×G G′ and we get the following commutative diagram.

A E G

E′ G′

ι π

π′

f

The zero map A→ G′ and the map ι together induce a map ι′ : A→ E′ by the universal
property of the pullback. The resulting sequence 1 → A → E′ → G′ → 1 is exact and
A → E′ is central. Moreover, it comes together with a section s′ : G′ → E′ induced
by the two maps s ◦ f : G′ → E and id : G′ → G′. We define ξf to be the object
(A,E′, ι′, π′, s′) ∈ PreZE(G′). Moreover, we define QSCE(ξ)f := QSCE(ξf), and this does
not depend on the choice of ξ. △

For any morphism f : G′ → G of topological groups, and any topological abelian group
A, we define ZE(f,A) as the map

ZE(f,A) : ZE(G,A)→ ZE(G′, A), ξ 7→ ξf.

This yields a functor ZE(−, A) : TGrp → TGrp, where TGrp denotes the category of
topological groups.

We define BE(G,A) to be the subgroup of ZE(G,A) consisting of all sectioned central ex-
tensions E for which there exists a section morphism G→ E of topological groups of the
map E → G. We define HE(G,A) as the quotient ZE(G,A)/BE(G,A). Notice we get func-
tors HE(G,−),HE(−, A) : Ab → Ab induced by ZE(G,−), ZE(−, A) respectively. Then
HE(−,−) is a bifunctor, as follows from Proposition 3.10. Moreover, if G is abelian, then
we define ExtE(G,A) as the subgroup of HE(G,A) given by classes that are represented
by abelian extensions E.

Proposition 3.10. Let G, A be topological groups of which A is abelian. The isomorphism
of categories Z2(G) ∼= ZE(G) induces a group isomorphism ψ : Z2(G,A)

∼→ ZE(G,A)
that is natural in G and A. Moreover, we have ψ[B2(G,A)] = BE(G,A) and a natural
morphism H2(G,A) ∼= HE(G,A).

Proof. It is clear that the induced map ψ is bijective. It can be verified that for any
ω1, ω2 ∈ Z2(G,A) we have F1(F2(ω1) + F2(ω2)) = ω1 + ω2. From this it follows that
ψ is a group isomorphism. In order to show that this isomorphism is natural in G and
A, one can verify by a direct calculation that for any continuous homomorphisms f :
G′ → G and g : A → A′ of topological abelian groups and any E ∈ ZE(G,A) we have
F1(Z

E(G, g)(E)) = Z2(G, g)(F1(E)) and F1(Z
E(f,A)(E)) = Z2(f,A)(F1(E)).
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It is left to show that ψ[B2(G,A)] = BE(G,A). Let ω ∈ Z2(G,A). Then we have ψ(ω) ∈
BE(G,A) if and only if there exists a continuous section morphism s of π : A×ω G→ G.
Hence, we have ψ(ω) ∈ BE(G,A) if and only if there exists a continuous map f : G → A
such that

f̃ : G→ A×ω G, x 7→ (f(x)−1, x)

is a homomorphism. Such a map f̃ is a homomorphism if and only if for all x, y ∈ G
we have ω(x, y) = f(x)f(y)f(xy)−1. We conclude that ψ[B2(G,A)] = BE(G,A) and thus
H2(G,A) ∼= HE(G,A).

Using the correspondence above, it can be shown that elements E1, E2 ∈ ZE(G,A) are in
the same coset of BE(G,A) precisely when there exist morphisms of topological groups
E1 ⇄ E2 such that the diagram

1 A E1 G 1

1 A E2 G 1

id id

commutes. Hence, the class in HE(G,A) of a central extension does not depend on the
appended set-theoretic section. We thus see that HE(G,A) becomes the group of well-
adjusted central extensions of G by A.

Let A, G be topological abelian groups. We call a sectioned central extension A↣ E ↠ G
commutative if E is abelian, and in this case we also call QSCE(E) ∈ ZE(G) commutative.
This definition of commutativity for QSCE(E) does not depend on E. We call a cocycle
ω : G × G → A commutative if for all x, y ∈ G we have ω(x, y) = ω(y, x). We consider
the induced full subcategories CZE(G) of ZE(G) and CZ2(G) of Z2(G) with exactly
those objects that are commutative. We define CZE(G,A) ⊂ ZE(G,A) and CZ2(G,A) ⊂
Z2(G,A) as the subgroups of all commutative elements, and we denote by Ext1(G,A)
the quotient CZ2(G,A)/B2(G,A) ⊂ H2(G,A). The correspondence between cocycles and
extensions yields the following result, induced by the functors constructed in the proof of
Theorem 3.6.

Theorem 3.11. Let G be a topological abelian group. Then the categories CZE(G) and
CZ2(G) are isomorphic.

Proof. One can verify that for any commutative cocycle ω ∈ CZ2(G) the extension F1(ω)
is commutative. Moreover, one can verify that for any commutative extension ξ ∈ CZE(G)
the cocycle F2(ξ) is commutative. The result now follows from Theorem 3.6.

Theorem 3.11 and Proposition 3.10 yield a natural isomorphism ExtE(G,A) ∼= Ext1(G,A).

Let G be a discrete abelian group. We define the category DCZE(G) as the full sub-
category of CZE(G) with only those objects represented by extensions A ↣ E ↠ G for
which A is discrete. Similarly, we define the category DCZ2(G) as the full subcategory
of CZ2(G) with only those objects represented by cocycles G × G → A for which A
is discrete. A group G without topology can be viewed as a discrete group, and thus
also gives categories DCZE(G) and DCZ2(G). Now let G be a profinite abelian group.
Similary, by restricting the objects to those where A is profinite, we get the full subcate-
gories PCZE(G), PCZ2(G) of CZE(G), CZ2(G) respectively. Theorem 3.11 has discrete
and profinite analogues: for a discrete group G the categories DCZE(G) and DCZ2(G)
are isomorphic, and for a profinite group G the categories PCZE(G) and PCZ2(G) are
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isomorphic.

Lemma 3.12. Consider a commutative diagram of profinite groups

E G 1

E′ G′ 1

π

φ h

π′

with each row exact, and with h injective. Then for every continuous set-theoretic section
s of π, there exists a continuous set-theoretic section s′ of π′ such that the diagram

E G

E′ G′

φ

s

h

s′

commutes.

Proof. Let s be a continuous set-theoretic section of π. By Lemma 2.11, there exists a
continuous set-theoretic section t of π′. Consider the continuous map δ : G→ E′ defined
by g 7→ (φsg)−1(thg). Notice that π′δ is the trivial map. By Lemma 2.12 there exists a
continuous set-theoretic retraction r of h. Now s′ : G′ → E′ defined by g′ 7→ (tg′)(δrg′)−1

is a continuous set-theoretic section of π′. Compatibility of s with s′ is easily verified.

Proposition 3.13. Consider a commutative diagram of profinite groups

1 A E G 1

1 A′ E′ G′ 1

f h

with each row a central extension. Suppose that h is injective. Then we have an equality
HE(id, f)[E] = HE(h, id)[E′].

Proof. Choose compatible continuous set-theoretic sections s and s′ as in Lemma 3.12.
Let ω and ω′ be the cocycles corresponding to s and s′ respectively, via Theorem 3.6. Now
it can be routinely verified that Z2(id, f)(ω) = Z2(h, id)(ω′), so the result follows from
Proposition 3.10.

The next proposition shows that Pontryagin duality distributes over Baer sums of profinite
groups. Notice that the Baer sum of two profinite abelian groups is again profinite.

Proposition 3.14. Let A, B be profinite abelian groups. Then for any abelian extensions
E1, E2 ∈ ZE(A,B), we have (E1 + E2)

∗ = E∗1 + E∗2 as extensions in ZE(B∗, A∗).

Proof. Consider extensions A
ιi→ Ei

πi→ B for i = 1, 2, where E1, E2 are profinite abelian
groups. Notice that we have

E∗1 + E∗2 = coker(B∗
(π∗

1 ,−π∗
2)→ ker(E∗1 × E∗2

ι∗1−ι∗2→ A∗))

(E1 + E2)
∗ = ker(coker(B∗

(π∗
1 ,−π∗

2)→ E∗1 × E∗2)
ι∗1−ι∗2→ A∗).

The natural map

coker(B∗ → ker(E∗1 × E∗2 → A∗))→ ker(coker(B∗ → E∗1 × E∗2)→ A∗)
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is a continuous bijection and thus an isomorphism of profinite abelian groups. It gives an
equality E∗1 + E∗2 = (E1 + E2)

∗ as extensions in ZE(B∗, A∗).

3.5 Galois cohomology

We can apply cohomology to Galois extensions. Let L/K be a Galois extension of fields and
consider the topological group G := Gal(L/K). Let A be a discrete topological G-module.
Then for all n ∈ Z>0 we have a natural isomorphism Hn(G,A) ∼= lim→Hn(G/N,AN ),
where the direct limit homomorphisms are the inflation maps. Then G acts naturally on
the multiplicative group L∗, turning L∗ into a discrete topological G-module. Our interest
lies in the cohomology groups Hn(G,L∗) for n ∈ Z≥0. The cohomology group H0(G,L∗)
is equal to the group of G-invariants of L∗, i.e., we have H0(G,L∗) = K∗. Moreover, the
first cohomology group H1(G,L∗) is also explicitly known. The following result can be
found in [16, Ch. 10, Prop. 2].

Theorem 3.15 (Hilbert’s Theorem 90). Let L/K be a Galois extension of fields. Then
H1(Gal(L/K), L∗) = 0.

Let K1 ⊂ K2 be an extension of fields and consider two Galois field extensions L1/K1,
L2/K2 with Galois groups G1, G2 respectively. Suppose that there is a K1-morphism
f : L1 → L2. We get a morphism f ′ : G2 → G1 induced by restricting automorphisms
σ ∈ G2 to f(L1) ∼= L1. Then f and f ′ are compatible morphisms and for every n ∈ Z≥0
they induce homomorphisms fn : Hn(G1, L

∗
1) → Hn(G2, L

∗
2). We see that the assignment

of Hn(Gal(L/K), L∗) to a Galois field extension L/K is functorial in L and K. The
homomorphisms fn do not depend on the choice of the embedding L1 → L2 [16]. In
particular, if there is an isomorphism L1

∼→ L2 that maps K1 isomorphically to K2, then
Hn(G1, L

∗
1) and Hn(G2, L

∗
2) are canonically isomorphic.

Let K be a field and let Ksep be a separable closure of K. Then the Brauer group of
K is the cohomology group H2(Gal(Ksep/K),Ksep∗) and by the previous remarks it does
not depend on the chosen separable closure up to canonical isomorphism. We denote
this group by Br(K). For every morphism K1 → K2 of fields, we get a homomorphism
Br(K1) → Br(K2) by the previous remarks. In fact, K 7→ Br(K) is a covariant functor
Field→ Ab. By Theorem 3.2 and Theorem 3.15 we get the following result.

Proposition 3.16. Let k be a field and let K be a separable closure of k. Write G :=
Gal(K/k). Let N be a closed normal subgroup of G. Then there is an exact sequence

0→ H2(G/N,K∗N )
Inf→ Br(k)

Res→ Br(KN )G/N → H3(G/N,K∗N )
Inf→ H3(G,K∗).

A more general version of the following theorem can be found in [16, Ch. 13.3, Prop. 6].

Theorem 3.17. Let K be a finite extension of Qp for some prime p. Then the Brauer
group Br(K) is canonically isomorphic to Q/Z.

We will now define the norm-residue symbols. Let K be a finite extension of Qp for some
prime p and let n ∈ Z>0. Assume that Xn − 1 splits over K and denote by µn ⊂ K the
group of nth roots of unity. It follows from Kummer theory [16, Ch. 10.3] that for any
a ∈ K∗ we get a well-defined homomorphism

φa : G→ µn, φa(σ) = σ(ζ)/ζ where ζ ∈ Ksep is any root of Xn − a.
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Now we choose a primitive nth root of unity in µn, and identify µn with Z/nZ and the
tensor product µn ⊗ µn over Z with µn. Write GK := Gal(Ksep/K). The short exact
sequence

1 −→ µn −→ Ksep∗ ν−→ Ksep∗ −→ 1

with ν given by x 7→ xn, induces by Theorem 3.1 and by Theorem 3.15 an exact sequence

0→ H2(G,µn)
ι−→ Br(K)

·n−→ Br(K).

We now define the norm-residue symbol of a, b ∈ K∗ to be (a, b) := ι(φa ∪ φb), where ∪
denotes the cup product from section 3.2. Denote by Br(K)[n] the n-torsion of Br(K).
For abelian groups A and B we call a map f : A × A → B non-degenerate if for every
non-zero a ∈ A the homomorphisms f(a,−), f(−, a) : A→ B are both not the zero map.

Theorem 3.18. The map

K∗/K∗n ×K∗/K∗n −→ Br(K)[n], (aK∗n, bK∗n) 7→ (a, b)

is a well-defined non-degenerate bilinear map.

Proof. This follows from Proposition 5 and Proposition 7 in [16, Ch. 14.2].

3.6 Ext functors

A category C is called pre-additive if for all objects X,Y ∈ Ob(C) the hom-set HomC(X,Y )
is endowed with an abelian group structure, such that for any diagram in C

A B C D
f g1

g2

h

we have (g1+g2)◦f = (g1◦f)+(g2◦f) and h◦(g1+g2) = (h◦g1)+(h◦g2), where ◦ and +
are respectively the composition and addition operators. A covariant functor F : C → D
of pre-additive categories is called additive if for any objects A,B ∈ C the functor induces
a group homomorphism HomC(A,B)→ HomD(FA,FB). For pre-additive categories C,D
we say that a contravariant functor C → D is additive if it induces an additive functor
Cop → D. The definition of a cohomological δ-functor can be found in [12] and in [17].

For any abelian group A the right-derived functors of the left-exact functor Hom(A,−)
define the ext-functors:

exti(A,−) := RiHom(A,−), i ∈ Z≥0.

Moreover, if A, B are abelian groups, then we have [12, Thm. 6.67] [17, Thm. 2.7.6] an
isomorphism

exti(A,B) ∼= (RiHom(−, B))(A), i ∈ Z≥0.

Hence, we can endow (exti(−, B))i with a cohomological δ-functor structure. Given an
abelian group G and a short exact sequence 0→ A→ B → C → 0 of abelian groups, we
denote for any k ∈ Z≥0 by

δ : extk(G,C)→ extk+1(G,A), δ : extk(A,G)→ extk+1(C,G)

the connecting homomorphisms given by the properties of (exti(G,−))i and (exti(−, G))i
as cohomological δ-functors respectively.

We define ext-functors for discrete abelian torsion groups by setting

ext1(A,B) := ext1(Agrp, Bgrp)
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for any discrete abelian torsion groups A and B with underlying groups Agrp and Bgrp

respectively. Moreover, we define ext-functors for profinite abelian groups by setting
ext1(A,B) := ext1(B∗, A∗) for any profinite abelian groups A, B, where A∗, B∗ are the
Pontryagin duals of A, B respectively. We remark that for all (profinite) abelian groups
A, B with A projective or B injective, we have ext1(A,B) = 0.

We have the following important properties of ext-functors for abelian groups and of ext-
functors for profinite abelian groups.

Theorem 3.19. Let A, B be (profinite) abelian groups. Then the following holds.

(a) For all i ∈ Z≥2 we have we have exti(A,B) = 0.

(b) ext∗(A,−) and ext∗(−, B) are covariant and contravariant cohomological δ-functors
respectively.

Proof. The proof of the statements for abelian groups can be found in [12] and in [17]. For
profinite abelian groups, (a) follows immediately by applying Pontryagin duality. Hence,
it is left to prove (b) for profinite abelian groups. Let Γ be a profinite abelian group and
let 0 → A → B → C → 0 be an exact sequence of profinite abelian groups. Then we get
an exact sequence of abelian torsion groups 0→ C∗ → B∗ → A∗ → 0. It gives a diagram

Hom(Γ∗, C∗) Hom(Γ∗, B∗) Hom(Γ∗, A∗) ext1(Γ∗, C∗) . . .

Hom(C,Γ) Hom(B,Γ) Hom(A,Γ) ext1(C,Γ) . . .

≀ ≀ ≀ id

where the dashed line indicate the existence of a unique map to make the diagram commu-
tative. It can be verified that this yields an exact sequence as desired. The exact sequence
for profinite abelian groups in the other argument can be constructed similarly.

Let A, B be (profinite) abelian groups. Recall from section 3.4 that ExtE(A,B) is the
subgroup of abelian extensions in HE(A,B). We will construct maps Θ,Θ′ : ext1(A,B)→
ExtE(A,B). Consider an extension class [E] ∈ ExtE(A,B). The short exact sequence
0→ B → E → A→ 0 then yields, since (exti(A,−))i is a cohomological δ-functor, exact
sequences

Hom(A,E)→ Hom(A,A)
δ→ ext1(A,B),

Hom(E,B)→ Hom(B,B)
δ→ ext1(A,B).

We now define Θ([E]) := δ(idA) and Θ′([E]) := δ(idB). Then Θ is a well-defined map [17,
Ch. 3.4]. Similarly, it follows that Θ′ is well-defined. We don’t know whether Θ is the
same map as Θ′, but we will not need this information.

Theorem 3.20. Let A, B be (profinite) abelian groups. Then Θ : ext1(A,B)→ ExtE(A,B)
and Θ′ : ext1(A,B)→ ExtE(A,B) are isomorphisms that are natural in B and A respec-
tively.

Proof. We will only prove that the isomorphism Θ : ext1(A,B) → ExtE(A,B) is natural
in B. Dually, it follows similarly that the isomorphism Θ′ : ext1(A,B) → ExtE(A,B)
is natural in A. If A, B are profinite abelian groups, then by Proposition 3.14 we get
a natural isomorphism ExtE(A,B)

∼→ ExtE(B∗, A∗) by applying Pontryagin duality, and
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this map makes the diagram

ext1(A,B) ExtE(A,B)

ext1(B∗, A∗) ExtE(B∗, A∗)

id

Θ

≀

Θ

commute. Hence, it suffices to prove the theorem for abelian groups without topology.
In [17, Cor. 3.4.5] it is proved that Θ : ext1(A,B) → ExtE(A,B) is an isomorphism of
groups. We will only prove the naturality of Θ in the second argument for abelian groups.

Let A, B, B′ be abelian groups and let f : B → B′ be a morphism. Let [E] ∈ ExtE(A,B)
and let [E′] ∈ ExtE(A,B′) be equal to ExtE(A, f)([E]). We then have a morphism of
exact sequences

0 B E A 0

0 B′ E′ A 0

f id

and this shows, by the fact that ext1 is a cohomological δ-functor, that the diagram

Hom(A,E) Hom(A,A) ext1(A,B)

Hom(A,E) Hom(A,A) ext1(A,B′)

id

δ

ext1(A,f)

δ

commutes. From this it follows that Θ(ExtE(A, f)([E])) = ext1(A, f)(Θ([E])). Hence, the
isomorphism Θ is natural in the second argument.

Since ExtE and Ext1 are naturally isomorphic bifunctors by the theory from section 3.4,
we get the following theorem.

Theorem 3.21.

(a) Let 0→ A→ B → C → 0 be an exact sequence of (profinite) abelian groups. Let G be
a (profinite) abelian group. Then there exist connecting homomorphisms δ such that
the following sequences are exact.

0→ Hom(G,A)→ Hom(G,B)→ Hom(G,C)
δ→ Ext1(G,A)→

Ext1(G,B)→ Ext1(G,C)→ 0,

0→ Hom(C,G)→ Hom(B,G)→ Hom(A,G)
δ→ Ext1(C,G)→

Ext1(B,G)→ Ext1(A,G)→ 0.

(b) Let A, B be (profinite) abelian groups. If A is projective, or, if B is injective, then we
have Ext1(A,B) = 0.

Proof. ExtE and Ext1 are naturally isomorphic bifunctors by the theory from section 3.4.
Hence, part (a) follows from Theorem 3.19 and Theorem 3.20. Part (b) follows from
Theorem 3.20 and the fact that for all (profinite) abelian groups A, B with A projective
or B injective we have ext1(A,B) = 0.

27



3.7 Calculation of Ext1 groups

In this section we will state a couple of lemmas that will help describing Ext1-groups more
explicitly.

Lemma 3.22. Let n ∈ Z>0. Let A, B be profinite abelian groups with A finite, and
assume that exp(A) | n. Let π : B → B/nB be the quotient map. Then

Ext1(A, π) : Ext1(A,B)
∼−→ Ext1(A,B/nB)

is an isomorphism of abelian groups.

Proof. The exact sequence B
·n→ B → B/nB → 0 yields an exact sequence

Ext1(A,B)
·n−→ Ext1(A,B) −→ Ext1(A,B/nB) −→ 0,

by right-exactness and additivity of Ext1(A,−). The map Ext1(A,B)
·n−→ Ext1(A,B)

equals
n · Ext1(id, B) = Ext1(n · id, B) = Ext1(0, B) = 0,

where we use the additivity of Ext1(−, B) and the equality A[n] = A. It follows that
Ext1(A,B)→ Ext1(A,B/nB) is an isomorphism.

Lemma 3.23. Let n ∈ Z>0 be an integer. Let A, B be finite abelian groups with exponent
equal to n and suppose that A is cyclic. The map Ξ : Ext1(A,B)→ Hom(A,B) that sends
an extension B ↣ E ↠ A to the map x 7→ s(x)n, where s is a set-theoretic section of
E ↠ A, is an isomorphism of groups that does not depend on the choice of s.

Proof. First of all, one can verify that for any extension B ↣ E ↠ A and any set-theoretic
section s of E → A, the map x 7→ s(x)n is a homomorphism A→ B that does not depend
on the chosen section s. Moreover, it can be verified by using Baer sums that Ξ is indeed
a group homomorphism. It is also injective: if x generates A and if s is a set-theoretic
section of E → A such that s(x)n = 1, then xk 7→ s(x)k with k ∈ Z gives a section
homomorphism A → E. Surjectivity follows from computing the order of Ext1(A,B) by

using a projective resolution 0→ Z ·n→ Z→ A→ 0.

Lemma 3.24. Let A, B be profinite abelian groups of which A is finite. Suppose that the
orders of A and B are coprime. Then Ext1(A,B) = 0 and Ext1(B,A) = 0.

Proof. We will only prove that Ext1(A,B) = 0. The other part is analogous. Write
n := #A. By additivity of Ext1 in both arguments, we have f := Ext1(n · idA, B) =
Ext1(A,n · idB). Moreover, n · idA is the zero map and n · idB is an isomorphism. Hence
f = 0 and f is an isomorphism on Ext1(A,B). We conclude that Ext1(A,B) = 0.

4 Profinite groups

In this section we will treat several constructions of universal objects in the category of
(abelian) profinite groups: products, tensor products, and exterior squares. Moreover, we
will define restricted products of collections of functors.

4.1 Profinite products

Notice that products exist in the category of profinite groups: the product
∏
iGi of the

collection (Gi)i in the category of topological groups is compact, Hausdorff and totally
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disconnected, and thus a profinite group by Proposition 2.7. The projection maps from
the product are profinite morphisms.

In the setting of the definition above, any open normal subgroup N of
∏
iGi has an open

subset of the form
∏
i Vi where Vi ⊂ Gi equals Gi for all but finitely many i ∈ I. By

Lemma 2.8 each Vi contains an open normal subgroup of Gi. Hence, there exists an open
normal subgroup of finite index

∏
iNi of

∏
iGi contained in N . We therefore conclude

that ∏
i∈I

Gi = lim
←

∏
i∈I

(Gi/Ni),

where the inverse limit ranges over collections (Ni)i such that Ni is an open normal
subgroup of Gi for all i ∈ I, and Ni = Gi for all but finitely many i. For a profinite group
G and a set X we denote by GX the product

∏
x∈X G. For any collection (fi : Gi → G)i of

morphisms of profinite groups indexed by a set I, we write fi → 0 if for each open normal
subgroup N ⊂ G the set {i ∈ I : im fi ̸⊂ N} is finite. The following lemma is useful for
defining morphisms of profinite groups out of a product of profinite groups.

Lemma 4.1. Let (Fi)i∈I be a collection of profinite groups and let G also be a profinite
group. Then the natural map φ : Hom(

∏
i Fi, G) →

∏
iHom(Fi, G) is injective and its

range equals (fi)i∈I

∣∣∣∣∣∣
(1) ∀i ∈ I, fi ∈ Hom(Fi, G),
(2) ∀i, j ∈ I, i ̸= j ⇒ [im fi, im fj ] = 1,
(3) fi → 0

 .

Proof. If f, g ∈
∏
i Fi are such that φ(f) = φ(g), then the closed set X := {x ∈∏

i Fi | f(x) = g(x)} contains
∏
j∈J Fj for every finite subset J ⊂ I, hence X =

∏
i Fi and

φ is injective. Let H be the subset of
∏
i∈I Hom(Fi, G) of elements satisfying properties

(1), (2), (3). It is not difficult to verify that ran(φ) ⊂ H. In order to prove the inclusion
ran(φ) ⊃ H, consider any element (fi)i ∈ H. For any open normal subgroup N ◁ G the
map fN :

∏
i Fi → G/N defined by (xi)i 7→

∏
i fi(xi) is well-defined and a group mor-

phism. These maps are compatible and the inverse limit f := lim←− fN is an element of
Hom(

∏
i Fi, G) such that φ(f) = (fi)i.

The following lemma is useful in order to prove universal properties of several construc-
tions.

Lemma 4.2. Let G be a profinite group, let X be a discrete set, and let f : G → X be
a continuous map. Then there exist an open normal subgroup N ⊂ G such that f factors
through G/N .

Proof. See [11, Lemma 1.1.16] or [18, Lemma 1.2.6].

More concretely, we will use Lemma 4.2 in the following form.

Corollary 4.3. Let G1, G2 be profinite groups and let X be a discrete set. Let f :
G1 × G2 → X be a continuous map. Then there exist open normal subgroups N1 ⊂ G1,
N2 ⊂ G2 such that f factors through G1/N1×G2/N2. If in addition G := G1 = G2 holds,
then f factors through G/N ×G/N for some open normal subgroup N of G.
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4.2 Profinite tensor products

In this section we will describe the profinite tensor products over Ẑ. For any profinite
abelian groups A, B, the profinite tensor product over Ẑ will be a profinite abelian group
A⊗B together with a continuous bilinear map−⊗− : A×B → A⊗B such that composition
with −⊗− yields a representation Hom(A⊗B,−)→ Bil(A,B,−) of the functor that maps
a profinite abelian group C to the set Bil(A,B,C) of continuous bilinear maps A×B → C.
A general theory of profinite tensor products of profinite modules over profinite algebras
can be found in [11, Ch. 5.5].

We define the profinite tensor product as the inverse limit of tensor products of finite
abelian groups.

Definition 4.4. Let G1, G2 be profinite abelian groups. Let (I,≤) be the directed set
of all pairs (N1, N2) such that Ni is an open subgroup of Gi for i = 1, 2, and with
(N1, N2) ≤ (N ′1, N

′
2) if and only if Ni ⊂ N ′i for i = 1, 2. Then the tensor product of G1

and G2 over Z is defined to be

G1 ⊗G2 := lim
←−

(G1/N1)⊗ (G2/N2),

together with the inverse limit −⊗− : G1 ×G2 → G1 ⊗G2 of the natural compositions

G1 ×G2 → G1/N1 ×G2/N2 → G1/N1 ⊗G2/N2

where the limit ranges over I in both cases. △

We denote by g1 ⊗ g2 ∈ G1 ⊗ G2 the image of (g1, g2) ∈ G1 × G2 under the map − ⊗ −.
From the commutative diagram

G1 ⊗G2 G1/N1 ⊗G2/N2

G1 ×G2 G1/N1 ×G2/N2

it follows that {g1 ⊗ g2 | g1 ∈ G1, g2 ∈ G2} topologically generates G1 ⊗G2.

The profinite tensor product has the following universal property.

Lemma 4.5. Let G1, G2, A be profinite abelian groups. Then for all continuous bilinear
maps G1×G2 → A there exists a unique morphism G1⊗G2 → A of profinite groups such
that the following diagram commutes.

G1 ⊗G2 A

G1 ×G2

∃!

Proof. Uniqueness of this morphism G1 ⊗ G2 → A follows from the fact that the set of
pure tensors of G1 ⊗G2 topologically generates G1 ⊗G2. We prove (i) existence for finite
A and (ii) existence for all A. Let φ : G1 ×G2 → A be a continuous bilinear map.

(i) Suppose that A is finite. Then by Corollary 4.3 there exist open normal subgroups
N1 ⊂ G1 and N2 ⊂ G2 such that φ factors through G1/N1 × G2/N2. The factor
G1/N1 × G2/N2 → A induces a morphism G1 ⊗ G2 → (G1/N1) ⊗ (G2/N2) → A of
profinite groups that satisfies the diagram.
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(ii) For any open subgroup M of A we get a morphism G1 ⊗G2 → A/M by (i). These
morphisms are compatible and the inverse limit G1 ⊗G2 → A satisfies the diagram.

It is clear that for any two profinite abelian groups G1, G2 there is an isomorphism of
profinite groups G1 ⊗G2

∼= G2 ⊗G1. Moreover, for any g1 ∈ G1, g2 ∈ G2 and x ∈ Ẑ we
have x(g1 ⊗ g2) = (xg1)⊗ g2 = g1 ⊗ (xg2).

Lemma 4.6. For any profinite abelian group A we have Ẑ⊗A ∼= A as profinite groups.

Proof. Inverse morphisms between A and Ẑ⊗A are induced by the maps

Ẑ×A→ A A→ Ẑ⊗A
(x, a) 7→ xa a 7→ 1⊗ a.

Lemma 4.7. Let I, J be closed ideals of Ẑ. Then we have Ẑ/I ⊗ Ẑ/J ∼= Ẑ/(I + J).

Proof. The continuous bilinear map Ẑ/I × Ẑ/J → Ẑ/(I +J) given by (x, y) 7→ xy induces
a morphism φ : Ẑ/I ⊗ Ẑ/J → Ẑ/(I + J). The kernel of the morphism Ẑ → Ẑ/I ⊗ Ẑ/J
defined by x 7→ x ⊗ 1 contains I + J and thus factors through a morphism ψ : Ẑ/(I +
J) → Ẑ/I ⊗ Ẑ/J . Notice that φ and ψ are inverse maps to each other, thus proving the
lemma.

4.3 Profinite exterior squares

In this section we will describe the profinite exterior squares over Ẑ. For abelian groups
A we denote by

∧2A the group (A⊗A)/⟨a⊗ a | a ∈ A⟩. A map f : G×G→ A, with G
and A (profinite) abelian groups, is called alternating if it is bilinear and for all g ∈ G we
have f(g, g) = 0. For any profinite abelian group A the exterior square will be a profinite
abelian group

∧2A together with a continuous alternating map − ∧ − : A × A →
∧2A

such that composition with − ∧ − yields a representation Hom(
∧2A,−) → Alt2(A,−)

of the functor that maps a profinite abelian group B to the set Alt2(A,B) of continuous
alternating maps A×A→ B.

Definition 4.8. Let G be a profinite abelian group. Then the exterior square of G is
defined to be the inverse limit

∧2G := lim←
∧2G/N together with the inverse limit

G×G→
∧2G of the natural compositions

G×G→ G/N ×G/N →
2∧
G/N

where N ranges over all open normal subgroups of G in both cases. △

We denote by g1 ∧ g2 ∈
∧2G the image of (g1, g2) ∈ G × G under − ∧ −. Notice that

{g1 ∧ g2 |g1, g2 ∈ G} topologically generates
∧2G.

Lemma 4.9. Let G, A be profinite abelian groups. Then for all continuous alternating
maps G×G→ A there exists a unique morphism

∧2G→ A of profinite groups such that
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the following diagram commutes. ∧2G A

G×G

∃!

Proof. The proof is completely analogous to the proof of Lemma 4.5.

The alternating map −∧− : G×G→
∧2G naturally induces a morphism G⊗G→

∧2G.
We see that

∧2 is a functor PAb→ PAb if we define for every f ∈ Hom(A,B) the map∧2 f :
∧2A →

∧2B by a ∧ a′ 7→ f(a) ∧ f(a′), where PAb is the category of profinite
abelian groups.

Lemma 4.10. Let G be a profinite abelian group. The morphism G ⊗ G →
∧2G is

surjective and the kernel is topologically generated by {g ⊗ g | g ∈ G}.

Proof. Let π be the morphism G ⊗ G →
∧2G. Surjectivity of π follows from the fact

that the natural morphism and the trivial morphism
∧2G ⇒ coker(π) are equal due to

Lemma 4.9: they induce the same map G × G → coker(π). Denote by N the subgroup
of G⊗G →

∧2G topologically generated by {g ⊗ g | g ∈ G}. It is clear that N ⊂ kerπ.
By Lemma 4.9 the composition G × G → G ⊗ G → (G ⊗ G)/N induces a morphism
f :

∧2G → (G ⊗ G)/N . Now f ◦ π equals the quotient morphism G ⊗ G → (G ⊗ G)/N
and thus we have kerπ = N .

Corollary 4.11. For any profinite abelian group G we have
∧2G ∼= (G⊗G)/⟨g ⊗ g | g ∈ G⟩.

Lemma 4.12. Let (Gi)i∈I be a collection of profinite abelian groups indexed by a linear
order (I,≤). Then the following map is an isomorphism:

2∧∏
i∈I

Gi
∼−→

(∏
i

2∧
Gi

)
×
(∏
i<j

Gi ⊗Gj
)

(gi)i ∧ (g′i)i 7−→ ((gi ∧ g′i)i, (gi ⊗ g′j − g′i ⊗ gj)i<j).

Proof. For every k ∈ I, let ιk be the natural imbedding Gk →
∏
iGi. For all j, k ∈ I we

consider the map

Gj ×Gk →
2∧
(
∏
i

Gi), (g, g′) 7→ ιj(g) ∧ ιk(g′).

These maps induce morphisms

fjk : Gj ⊗Gk →
2∧
(
∏
i

Gi) for all i, j ∈ I with j < k,

fjj :

2∧
Gj →

2∧
(
∏
i

Gi) for all j ∈ I.

Using Lemma 2.2 it can be shown that the collection of maps (fij)i≤j induces a morphism
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of profinite abelian groups

f :
(∏

i

2∧
Gi

)
×
(∏
i<j

Gi ⊗Gj
)
−→

2∧∏
i∈I

Gi.

The morphism of profinite abelian groups stated in the lemma is the inverse map of f , as
can be easily verified.

Corollary 4.13. Let G be a profinite abelian group. Then G is procyclic if and only if∧2G = 0.

Proof. If G is finite and cyclic, then it is clear that
∧2G = 0. Hence, if G is procyclic

we have
∧2G = lim←

∧2G/N = 0. Now suppose that G is such that
∧2G = 0. Then

for any open subgroup N we have
∧2G/N = 0, and by the structure theorem for finitely

generated abelian groups it follows that G/N is cyclic.

Lemma 4.14. Let (Gi)i∈I be a collection of abelian groups indexed by a linear order
(I,≤). Then the following map is an isomorphism:

2∧⊕
i∈I

Gi
∼−→

(⊕
i

2∧
Gi

)
×
(⊕
i<j

Gi ⊗Gj
)

(gi)i ∧ (g′i)i 7−→ ((gi ∧ g′i)i, (gi ⊗ g′j − g′i ⊗ gj)i<j).

Proof. The proof is analogous to the proof of Lemma 4.12.

Remark 4.15. Let 1 → A
ι→ G

v→ Ẑ → 1 be a central short exact sequence of profinite
abelian groups with A procyclic. This sequence splits because Ẑ is projective. Let ψ :
G
∼→ Ẑ × A be an isomorphism of profinite groups such that ψι is the natural inclusion

A→ Ẑ×A and such that vψ−1 is the natural projection Ẑ×A→ Ẑ. We have
∧2A = 0 and∧2 Ẑ = 0 by Lemma 4.13, hence from Lemma 4.12 it follows that

∧2(Ẑ×A)→ A defined
by (x1, a1) ∧ (x2, a2) 7→ ax12 a

−x2
1 is an isomorphism. Precomposing this isomorphism with∧2 ψ yields an isomorphism ψ̃ :

∧2G→ A. This isomorphism ψ̃ does not depend on the
choice of ψ, because it equals the morphism of profinite groups

2∧
G→ A, defined by x ∧ y 7→ ι−1

yv(x)

xv(y)
.

Its inverse A→
∧2G is given by a 7→ φ ∧ ιa, where φ ∈ G is such that v(φ) = 1. △

Example 4.16. Let p > 2 be a prime number. By Remark 2.22 the exact sequence
1 → Z∗p → Q∗p

v→ Z → 0, where v denotes the valuation map, induces an exact sequence

1 → Z∗p → Q̂∗p → Ẑ → 0. Hence, it follows from Remark 4.15 that
∧2 Q̂∗p is canonically

isomorphic to Z∗p. The canonical isomorphism Z∗p →
∧2 Q̂∗p is given by x 7→ π ∧ x, where

π is a prime element of Qp. △

4.4 An injective morphism
∧2A→

⊗2A

For any (profinite) abelian group A the map A × A →
⊗2A, (x, y) 7→ x ⊗ y − y ⊗ x

induces a morphism σA :
∧2A→

⊗2A by the universal property of
∧2A. In this section

we will show that σA is injective for all (profinite) abelian groups A.
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Lemma 4.17. Let A1, A2 be abelian groups for which σA1 , σA2 are injective morphisms.
Then σA1⊕A2 is injective.

Proof. Via the isomorphism of Lemma 4.14 and the distributive property of the tensor
product, the morphism σA1⊕A2 corresponds to the morphism

2∧
A1 ⊕

2∧
A2 ⊕ (A1 ⊗A2) −→

2⊗
A1 ⊕

2⊗
A2 ⊕ (A1 ⊗A2)⊕ (A2 ⊗A1),

(x1 ∧ y1, x2 ∧ y2, z1 ⊗ z2) 7−→ (x1 ⊗ y1 − y1 ⊗ x1, x2 ⊗ y2 − y2 ⊗ x2, z1 ⊗ z2,−z2 ⊗ z1).

From this it is clear that σA1⊕A2 is also injective.

Lemma 4.18. Let A be a finitely generated abelian group. Then σA is injective.

Proof. For any cyclic group C we have
∧2C = 0 and thus in this case σC is injective. By

the structure theorem on finitely generated abelian groups, A is a finite product of cyclic
groups. Now it follows inductively from Lemma 4.17 that σA is injective.

Proposition 4.19. Let A be an abelian group. Then σA is injective.

Proof. Consider the set I of finitely generated subgroups of A. Then A equals lim→N∈I N
and thus we have

∧2A = lim→N∈I
∧2N and

⊗2A = lim→N∈I
⊗2N [2, Ch. 3]. For any

N ∈ I the map σN :
∧2N →

⊗
N is injective by Lemma 4.18, hence the direct limit

σA :
∧2A→

⊗2A of (σN )N∈I is injective since taking direct limits is exact in any abelian
category.

Proposition 4.20. Let A be a profinite abelian group. Then σA is injective.

Proof. For each open subgroup N ⊂ A the morphism σA/N :
∧2(A/N)→ (A/N)⊗ (A/N)

is injective by Lemma 4.19. Moreover, it follows from the universal property of the exterior
square that the diagram ∧2A A⊗A

∧2(A/N) A/N ⊗A/N

σA

σA/N

commutes for all open subgroups N ⊂ A. So the inverse limit of the maps σA/N over
all open subgroups N in fact equals the map σA. Since σA/N is injective for each N and
because the inverse limit functor is left exact, it follows that σA is injective.

Remark 4.21. Let R be a commutative ring and let M be an R-module. We can analo-
gously define the R-module morphism

σM :
2∧
M →

2⊗
M, x ∧ y 7→ x⊗ y − y ⊗ x,

where we take the exterior product and tensor product in the category of R-modules. How-
ever, this map σM is not injective in all cases. For example, let R be the ring F2[X,Y, Z]
and consider the R-ideal I := (X,Y, Z). Then in

⊗2 I we have the equalities

X ⊗ Y Z = XY ⊗ Z = Y ⊗XZ = Y Z ⊗X,

and thus we conclude that σI(X ∧ Y Z) = 0. Consider the ideal J := (X2, Y 2, Z2) of
R. The map I × I → R/J defined by (f, g) 7→ fg is an alternating R-bilinear map
and thus induces a morphism

∧2 I → R/J that sends X ∧ Y Z to the non-zero element
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XY Z ∈ R/J . Hence, X ∧ Y Z ̸= 0 and σI is not injective. We can turn R into a finite
ring with 28 elements by replacing it by R/J . △

4.5 Cocycle squares

In this section we will describe the the cocycle square of abelian groups and of profinite
abelian groups. For any abelian group A the cocycle square of A will be an abelian group⊙2A together with a cocycle map − ⊙ − : A × A →

⊙2A such that composition with
− ⊙ − yields a representation Hom(

⊙2A,−) → Z2(A,−) of the functor that maps an
abelian group B to the set Z2(A,B) of cocycle maps A × A → B, where A acts trivially
on B. See section 3.1 for the definition of cocycle maps. The profinite cocycle square will
have a similar universal property additionally involving the topology. The notation and
theorems from section 3.4 are assumed to be known.

Definition 4.22. Let G be an abelian group, written multiplicatively. Let F be the free
abelian group on the symbols g1 ⊙ g2 where g1, g2 ∈ G. Consider the subgroup

N := ⟨y ⊙ z − xy ⊙ z + x⊙ yz − x⊙ y | x, y, z ∈ G⟩.

Then we define the cocycle square to be the group
⊙2G := F/N together with the cocycle

map

−⊙− : G×G→
2⊙
G, (g1, g2) 7→ g1 ⊙ g2. △

Lemma 4.23. Let G, A be abelian groups. Then for all cocycle maps G × G → A
there exists a unique group homomorphism

⊙2G → A such that the following diagram
commutes. ⊙2G A

G×G

∃!

Proof. Uniqueness of the homomorphism follows from the universal property of the free
abelian group F on the formal symbols g1 ⊙ g2 where g1, g2 ∈ G. Now let c : G×G→ A
be a cocycle map. Then there exists a homomorphism f : F → A such that c equals the
composition G×G→ F → A. The kernel of f contains ker(F →

⊙2G) and thus we get
a homomorphism

⊙2G→ A that fits the diagram stated in the lemma.

Lemma 4.24. Let G, A be abelian groups and let ω : G × G → A be a cocycle. Define
f : G×G→ A by f(x, y) = ω(x, y)− ω(y, x) for all (x, y) ∈ G×G. Then f is bilinear.

Proof. Let x, y, z ∈ G. Then we have

ω(xy, z)− ω(x, yz) = ω(y, z)− ω(x, y),
ω(x, yz)− ω(zx, y) = ω(x, z)− ω(z, y),
ω(zx, y)− ω(z, xy) = ω(x, y)− ω(z, x).

Adding these three equations yields

ω(xy, z)− ω(z, xy) = ω(y, z) + ω(x, z)− ω(z, y)− ω(z, x),

and thus f(xy, z) = f(y, z) + f(x, z). This proves that f is linear in its first argument.
Since for all g, g′ ∈ G we have f(g′, g) = −f(g, g′), it follows that f is also linear in its
second argument.
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For any abelian group G consider the natural map κG :
∧2G→

⊙2G defined by x∧ y 7→
x ⊙ y − y ⊙ x, and notice that this is a homomorphism by Lemma 4.24. The natural
composition

∧2G →
⊙2G →

⊗2G is injective by Proposition 4.19. Hence, κG is
injective. We view

∧2G as a subgroup of
⊙2G via κG. Notice that the natural map

G×G→
⊙2G/

∧2G is a commutative cocycle.

Lemma 4.25. Let G be an abelian group. Then G×G→
⊙2G/

∧2G is the initial object
in DCZ2(G).

Proof. Denote the map G × G →
⊙2G/

∧2G by ω. Let A be an abelian group and let
c : G×G→ A be a commutative cocycle. Then c induces a group morphism

⊙2G→ A.
The composition

∧2G →
⊙2G → A is the zero map since it induces the trivial cocycle

G × G → A. Hence, we get a homomorphism
⊙2G/

∧2G → A and this is a morphism
ω → c of commutative cocycles. Now it follows from Lemma 4.23 that there is exactly
one morphism ω → c.

Denote the natural map G → Z[G] by [−]. From the theory in section 3.4 it follows
that the initial commutative cocycle G × G →

⊙2G/
∧2G corresponds to a sectioned

central extension. The following lemma shows that the corresponding extension is Z[G]→
G, [x] 7→ x with section [x] 7→x.

Lemma 4.26. Let G be an abelian group. The initial object in DCZE(G) is the sectioned
central extension Z[G]→ G.

Proof. Consider a central extension π : E → G with a section s : E ← G. By the universal
property of Z[G] as a free abelian group, there is a unique morphism ψ : Z[G] → E of
groups such that for any g ∈ G we have ψ([g]) = s(g). Hence, there is at most one
morphism in HomDCZE(G)(Z[G], E) and it remains to verify that ψ makes the diagram

Z[G] G

E

ψ
π

commute, where Z[G] → G is the natural morphism of groups. This follows from the
universal property of Z[G] as a free abelian group since [−] : G→ Z[G] is a section of both
π ◦ ψ and of the natural map Z[G]→ G.

The following proposition tells us more about the structure of
⊙2G for an abelian group

G.

Proposition 4.27. Let G be an abelian group. Then there is an exact sequence

0→
2∧
G→

2⊙
G→ Z[G]→ G→ 0

where the third and fourth morphisms are respectively defined by

x⊙ y 7→ [x] + [y]− [xy], [x] 7→ x.

Proof. By Lemma 4.25 and Lemma 4.26 it follows that in the isomorphism of categories
DCZ2(G) ∼= DCZE(G) from section 3.4 the commutative cocycle G×G→

⊙2G/
∧2G

corresponds to the commutative sectioned central extension Z[G]→ G. Hence, we get the
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exact sequence

0→
2⊙
G/

2∧
G→ Z[G]→ G→ 0.

It can be verified that the corresponding maps are as stated in the proposition.

Corollary 4.28. Let G be an abelian group. Then the group morphism
∧2G →

⊙2G,
given by x ∧ y 7→ x⊙ y − y ⊙ x has a group-theoretic retraction.

Proof. Propositition 4.27 gives an exact sequence

0→
2∧
G→

2⊙
G→ ker(Z[G]→ G)→ 0.

Since ker(Z[G]→ G) is free, we conclude that the short exact sequence splits. Hence, we
get the desired result.

We also need a profinite cocycle square. Unfortunately, the cocycle square of finite groups
that we have constructed cannot always be equipped with a topology that turns it into a
profinite group. For example, by Proposition 4.27 we conclude that for a cyclic group Cn
of order n we have

⊙2Cn ∼= Zn.

Recall that for any group G we denote by Ĝ the profinite completion lim←N G/N where
N ranges over the normal subgroups of G of finite index. We first consider the finite case
of the profinite cocycle square. We use the finite case to define the profinite cocycle square
for all profinite abelian groups in Definition 4.31.

Definition 4.29. Let G be a finite profinite group. Let Ggrp be the underlying group of

G. We define the cocycle square of G to be
⊙2G :=

⊙̂2Ggrp, together with the natural
cocycle map G×G→

⊙2G that equals the composition

G×G→
2⊙
Ggrp →

2⊙
G. △

Note that the natural map −⊙− : G×G→
⊙2G is a continuous cocycle map.

Lemma 4.30. Let G, A be finite profinite abelian groups. Then for all cocycle maps
G × G → A there exists a unique morphism

⊙2G → A of profinite groups such that the
following diagram commutes. ⊙2G A

G×G

∃!

Proof. Uniqueness of the map follows from the fact that the image of the map G×G →⊙2G topologically generates
⊙2G. Let Ggrp be the underlying group of G. Let ω be a

cocycle map G×G→ A and consider the induced homomorphism f :
⊙2Ggrp → A. Then

the map
⊙2Ggrp → A yields a group homomorphism (

⊙2Ggrp)/ ker f → A. Since ker f
is of finite index in

⊙2Ggrp, we now get a morphism of profinite groups h :
⊙2G → A.

It is not hard to verify that h[−,−] = ω.

Now we can give the definition of the profinite cocycle square for all profinite abelian
groups.
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Definition 4.31. Let G be a profinite abelian group. We define the cocycle square of G
to be lim←N

⊙2(G/N), together with the inverse limit − ⊙ − : G × G →
⊙2G of the

continuous cocycle maps G/N×G/N →
⊙2(G/N), where N ranges over the open normal

subgroups of G and
⊙2(G/N) is the profinite cocycle square of G/N in both cases. △

Again, note that the natural map −⊙− : G×G→
⊙2G is a continuous cocycle map.

Lemma 4.32. Let G, A be profinite abelian groups. Then for all continuous cocycle maps
G×G→ A there exists a unique morphism G×G→ A of profinite groups such that the
following diagram commutes. ⊙2G A

G×G

∃!

Proof. The proof of this lemma is very similar to the proof of the universal property for
the profinite tensor product (Lemma 4.5).

Corollary 4.33. Let G, A be profinite abelian groups. Then the universal property of the
cocycle square induces an isomorphism Z2(G,A) ∼= Hom(

⊙2G,A) of groups.

Let G be a profinite abelian group. Then G×G→
⊙2G defined by (x, y) 7→ x⊙y−y⊙x

is a continuous map, and it is alternating by Lemma 4.24. Hence, it induces a natural
morphism κG :

∧2G →
⊙2G of profinite groups. Composing κG with the natural

morphism
⊙2G→

⊗2G is injective by Proposition 4.20, and thus we conclude that κG
is injective. We can now view

∧2G as a closed subgroup of
⊙2G via κG due to Lemma

2.10.

Lemma 4.34. Let G be an abelian group. Then G×G→
⊙2G/

∧2G is the initial object
in PCZ2(G).

Proof. This proof is completely similar to the proof of Lemma 4.25.

Let R be a profinite commutative ring. For any profinite group A we write R[[A]] for the
profinite R-algebra R = lim←R[A/N ] where N ranges over the open subgroups of A. The
inverse limit of the maps R[A/N ] → A/N, [x] 7→ x gives a natural morphism R[[A]] → A
of profinite abelian groups.

The universal profinite commutative cocycle G × G →
⊙2G/

∧2G corresponds to a
profinite sectioned central extension, by the theory in section 3.4. The following lemma
shows that the corresponding extension is Ẑ[[G]]→ G, with a section [−] that is the inverse
limit of the maps G/N → Ẑ[G/N ], x 7→ [x].

Lemma 4.35. Let G, A be profinite abelian groups. Then for all continuous maps G→ A
there exists a unique morphism Ẑ[[G]]→ A of profinite groups such that the diagram

Ẑ[[G]] A

G

∃!

commutes.

Proof. We prove (i) uniqueness and (ii) existence.
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(i) Suppose that f1, f2 are morphisms Ẑ[[G]] → A that fit the diagram. Then for any
open normal subgroupM ⊂ G, the set ker(f1−f2) is mapped surjectively to Ẑ[G/M ]
by the map Ẑ[[G]]→ Ẑ[G/M ], as can be seen by using Lemma 2.13. Applying Lemma
2.13 again yields ker(f1 − f2) = lim← Ẑ[G/N ] and thus f1 = f2.

(ii) If G and A are both finite, then the result follows from Lemma 2.20 and Lemma
4.1. Now we consider the case that only A is finite. Let G → A be a continuous
map. Then G → A factors through G/M for some open subgroup M ⊂ G. The
map G/M → A now induces a morphism Ẑ[G/M ] → A and this yields a morphism
Ẑ[[G]] → A that fits the diagram. If A is not finite, then for any open subgroup
M ⊂ A the composition G → A → A/M induces a morphism Ẑ[[G]] → A/M .
These morphisms are compatible when M varies, and thus they induce a morphism
Ẑ[[G]]→ A that fits the diagram.

Lemma 4.36. Let G be a profinite group. Then the extension Ẑ[[G]] → G with section
x 7→ [x] is the initial object in PCZE(G).

Proof. This can be similarly proved as Lemma 4.26 but this time by relying on Lemma
4.35.

Proposition 4.37. Let G be a profinite abelian group. Then there is an exact sequence

0→
2∧
G→

2⊙
G→ Ẑ[[G]]→ G→ 0

where the third and fourth morphisms are respectively defined by

x⊙ y 7→ [x] + [y]− [xy], [x] 7→ x.

Proof. This follows from Lemma 4.34 and Lemma 4.36, analogously to the proof of Propo-
sition 4.27.

Corollary 4.38. Let G be a profinite abelian group. Then the morphism
∧2G→

⊙2G, x∧
y 7→ x⊙ y − y ⊙ x has a retraction of profinite groups.

Proof. By Lemma 4.37 we get a short exact sequence

0→
2∧
G→

2⊙
G→ ker(Ẑ[[G]]→ Ẑ)→ 0.

Since lim← Ẑ[G/N ] is projective by Corollary 2.34, we get the desired result.

4.6 Restricted products

In this section we will define restricted products. The aim of this section is to show that
Ext1(

∏
iGi, A) is naturally isomorphic to the restricted product

∏′
i Ext

1(Gi, A) for any
profinite abelian groups (Gi)i and A.

Definition 4.39. Let (Fi)i∈I be a collection of covariant functors PAb → Ab indexed
by a set I. For any open subgroup N of a profinite abelian group A with quotient map
πA,N : A→ A/N , we consider the homomorphism

π̃A,N :
∏
i

Fi(A)→
∏
i

Fi(A/N), (xi)i 7→ (Fi(πA,N )(xi))i.
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We now define the restricted product of (Fi)i as the functor
∏′

i
Fi : PAb → Ab for

which ∏′

i

Fi(A) =
⋂
N

π̃A,N
−1

(
⊕
i

Fi(A/N)), for any A ∈ Ob(PAb),

∏′

i

Fi(f) = ((xi)i 7→ (Fi(f)(xi))i), for any f ∈ Hom(PAb),

where we take
⊕

i Fi(A/N) ⊂
∏
i Fi(A/N) via the natural inclusion. △

In the definition above, we sometimes write
∏′
i(Fi(A)) instead of (

∏′
i Fi)(A) when the

meaning is clear from context. Notice that the natural inclusions
∏′
i Fi(A) →

∏
i Fi(A)

yield a natural transformation
∏′
i Fi →

∏
i Fi. Moreover, any collection of natural trans-

formations (ηi : Fi → Gi)i of functors PAb → Ab, induces a natural transformation∏′
i Fi →

∏′
iGi by componentwise application of the transformations ηi. Hence, for any

index set I, we see that the restricted product is a functor
∏′ : Fun(PAb,Ab)I →

Fun(PAb,Ab).

Lemma 4.40. The restricted product functor
∏′ : Fun(PAb,Ab)I → Fun(PAb,Ab) is

left exact for any index set I.

Proof. Let (0→ Ei
fi→ Fi

hi→ Hi)i be a collection of exact sequence of functors PAb→ Ab

indexed by a set I. Let 0→ E
f→ F

h→ H be the restricted product of this exact sequence.
Then exactness at E is clear. Let A be a profinite abelian group. Then im f(A) ⊂ kerh(A)
is easily verified. It is left to prove that kerh(A) ⊂ im f(A). Let (xi)i ∈ kerh(A). Then
for any i we have xi ∈ kerhi(A) = im fi(A), and we choose ei ∈ Ei(A) to be such that
fi(A)(ei) = xi. For any finite quotient q : A → A/N of A we have Fi(q)(xi) = 0 for
allmost all i, and it follows from the commutative diagram

Ei(A) Fi(A)

Ei(A/N) Fi(A/N)

Ei(q)

fi(A)

Fi(q)

fi(A/N)

that Ei(q)(ei) = 0 for almost all i. Hence, we have (ei)i ∈ E and this element is mapped
to (xi)i by f(A).

We say that a functor F : PAb→ Ab preserves products of finite groups if for any product∏
iAi of finite discrete abelian groups with projection maps πj :

∏
iAi → Aj the map

(F (πi))i : F (
∏
i

Ai)→
∏
i

F (Ai)

is an isomorphism. If the map (F (πi))i : F (
∏
iAi) →

∏
i(Ai) is an isomorphism for all

collections (Ai)i of profinite abelian groups, then we simply say that F preserves prod-
ucts. The functors that preserve products (of finite groups) together with the natural
transformations form an abelian category.

Lemma 4.41. Let (Fi)i be a collection of functors PAb→ Ab that preserves products of
finite groups. Then

∏′
i Fi preserves products of finite groups.

Proof. Let (Aj)j∈J be a collection of finite discrete abelian groups. Write F :=
∏′
i Fi. For
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any j ∈ J , let πj :
∏
iAi → Aj be the projection map, and consider the map

π̃j :
∏
i

Fi(A)→
∏
i

Fi(Aj), (xi)i 7→ (Fi(πj)(xi))i.

The set of finite intersections of kernels ker(A → Aj) is cofinal in the set of all open
subgroups of A. Hence, we have

F (A) =
⋂
j

π̃j
−1

⊕
i

Fi(Aj) =
⋂
j

π̃j
−1F (Aj). (1)

Moreover, since each Fi preserves products we have an isomorphism∏
i

Fi(A)→
∏
j

∏
i

Fi(Aj), x 7→ (π̃j(x))j

and the restriction to F (A) induces by equation (1) the isomorphism

F (A)
∼−→

∏
j

F (Aj), x 7→ (F (πj)(x))j .

Proposition 4.42. Let (0 → Ei → Fi → Hi → 0)i be a collection of exact sequences
of functors PAb → Ab indexed by a set I. Suppose that Fi and Hi preserve products
of finite groups for all i. Let A be a product of finite discrete abelian groups. Then the
induced sequence

0→
∏′

i

Ei(A)→
∏′

i

Fi(A)→
∏′

i

Hi(A)→ 0

is exact.

Proof. For any i, let hi be the natural transformation Fi → Hi, and let h : F → H be the

restricted product of the collection (Fi
hi→ Hi)i. Since restricted products are left exact

functors by Lemma 4.40, it is left to prove that h(A) is surjective. Write A =
∏
j Aj with

each Aj a finite discrete abelian group, and for any j let πj : A → Aj be the projection
map. Then by naturality of h the diagram

F (A) H(A)

∏
j F (Aj)

∏
j H(Aj)

≀(F (πj))j

h(A)

≀(H(πj))j

(h(Aj))j

commutes. The vertical arrows are isomorphisms by Lemma 4.41, and the bottom hori-
zontal arrow is surjective by finiteness of all Aj and by surjectivity of (Fi)i → (Hi)i. It
follows that h(A) is surjective.

Lemma 4.43. Let G be a profinite abelian group. Then the functors Ext1(G,−), H2(G,−),
Z2(G,−) and Hom(G,−) preserve products.

Proof. It is clear that Hom(G,−) preserves products: this follows from the universal prop-
erty of products. Similarly it follows that Z2(G,−) preserves products. For any product∏
iAi of profinite abelian groups, the isomorphism Z2(G,

∏
iAi)

∼←→
∏
i Z

2(G,Ai) maps
(collections of) commutative cocycles to (collections of) commutative cocycles, and maps
(collections of) coboundaries to (collections of) coboundaries. It follows that Ext1(G,−)
and H2(G,−) also preserve products.
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Lemma 4.44. Let (Gi)i, G and A be profinite abelian groups. Let (fi : Gi → G)i be a
collection of morphisms of profinite groups such that fi → 0 (cf. section 4.1). Then the
image of the morphisms

(Hom(fi, A))i : Hom(G,A)→
∏
i

Hom(Gi, A),

(Ext1(fi, A))i : Ext
1(G,A)→

∏
i

Ext1(Gi, A),

(H2(fi, A))i : H
2(G,A)→

∏
i

H2(Gi, A)

is contained in ∏′

i

Hom(Gi, A),
∏′

i

Ext1(Gi, A),
∏′

i

H2(Gi, A)

respectively.

Proof. For Hom this follows from the fact that for any φ ∈ Hom(G,A) and any finite
quotient q : A → A/N the composition G → A → A/N factors through a finite quotient
of G. The analogous result similarly follows for (Z2(fi, A))i and this also proves the result
for Ext1 and H2 by describing the corresponding maps in terms of cocycle classes.

Theorem 4.45. Let (Gi)i∈I and A be profinite abelian groups and suppose that A is
the product of finite discrete groups. For every j ∈ I, consider the natural inclusion
ιj : Gj ↪→

∏
iGi. Then the map

Ext1(
∏
i

Gi, A)→
∏′

i

Ext1(Gi, A), x 7→ (Ext1(ιi, A)(x))i

is an isomorphism of abelian groups. This isomorphism is natural in all Gi’s and in A.

Proof. The map Ext1(
∏
iGi, A)→

∏′
i Ext

1(Gi, A) is well-defined due to Lemma 4.44. For

every i ∈ I, let 0 → Ki → ẐJi → Gi → 0 be a projective resolution, which is possible by
Corollary 2.33. Write G :=

∏
iGi, J :=

⊔
i Ji and K :=

∏
iKi, and notice that for every

i ∈ I the natural inclusions give a morphism

0 K ẐJ G 0

0 Ki ẐJi Gi 0

of short exact sequences. Hence, for every i ∈ I we get the following commutative diagram.

Hom(K,A) Ext1(G,A)

Hom(Ki, A) Ext1(Gi, A)

δ

δ

Taking restricted products, we obtain a commutative diagram

Hom(ẐJ , A) Hom(K,A) Ext1(G,A) 0

∏′

i
Hom(ẐJi , A)

∏′

i
Hom(Ki, A)

∏′

i
Ext1(Gi, A) 0

≀

δ

≀

(δ)i

42



by applying the long exact sequences of Ext. Indeed, the last objects of the rows are 0
because Ext1(P,B) = 0 whenever P is projective. Moreover, the two leftmost vertical
arrows are group isomorphisms due to Lemma 4.1. The top row is clearly exact, and the
bottom row is exact by Proposition 4.42 and Lemma 4.43. Now bijectivity of the map
Ext1(G,A) →

∏′
i Ext

1(Gi, A) is clear. The desired naturality follows from the fact that
Ext1 is a bifunctor.

5 A split exact sequence

In this chapter we will show that for any abelian groups G, A we have got a split exact
sequence

0→ Ext1(G,A)→ H2(G,A)→ Hom(
2∧
G,A)→ 0,

where the action of G on A is trivial. This is an exercise by K.S. Brown in [3, Ch. 5.6].
We will also show a similar statement for profinite abelian groups.

5.1 Commutator pairing

In this section we describe a natural homomorphism H2(G,A)→ Hom(
∧2G,A), where G

and A are (profinite) abelian groups and G acts trivially on A. For abelian groups G and
A we say that a map f : G × G → A is alternating if it is bilinear and for all g ∈ G we
have f(g, g) = 0. By the theory in section 3.4, we identify H2(G,A) with HE(G,A).

Consider an exact sequence
0→ A

ι→ E
π→ G→ 0

of (profinite) groups where E is a central extension of G by A and where G is abelian.
Then by Lemma 2.27 we have that E is of class 2, and the (continuous) commutator map
E × E → E(2) is bilinear. Since G is abelian, we have E(2) ⊂ ι[A] and get an induced
(continuous) commutator map c : E ×E → A. From ι[A] ⊂ Z(E) it follows that c factors
over the map (π, π) : E × E → G ×G, and the induced commutator map G ×G → A is
continuous because the map E × E → G×G is open and surjective. It is clear that this
commutator map is alternating. Hence, we get an induced morphism [−,−] :

∧2G → A
of (profinite) groups and it maps g1 ∧ g2 to ι−1[e1, e2] where π(ei) = gi for i = 1, 2. It
is not hard to verify that this map [−,−] depends only on the isomorphism class of the
central extension. By the theory from section 3.4, we get a map cp(G,A) : H2(G,A) →
Hom(

∧2G,A) called the commutator pairing that maps every central extension to such
a commutator map. When it is clear from context what is meant, we simply write cp
instead of cp(G,A).

In order to prove that cp(G,A) is a homomorphism, we translate H2(G,A) and the map
in terms of cocycles classes with the theory from section 3.4. Let ω : G × G → A be
a cocycle. Then the cocycle class [ω] ∈ H2(G,A) corresponds to the central extension
0 → A → A ×ω G → G → 0. It follows that the map cp(G,A) sends [ω] to the element
of Hom(

∧2G,A) defined by [g1 ∧ g2 7→ ω(g1, g2) − ω(g2, g1)]. This map is clearly a
homomorphism.

5.2 Section of H2(G,A)→ Hom(
∧2G,A)

In this section we will prove that the homomorphism cp : H2(G,A)→ Hom(
∧2G,A) has

a group section in the case that A, G are abelian groups. This result is an exercise in
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[3, Ch 5.6]. We will also show that for profinite abelian groups A, G the homomorphism
cp : H2(G,A) → Hom(

∧2G,A) has a group section. The notation and theory of section
4.5 will be considered as known.

Proposition 5.1. Let A, G be (profinite) abelian groups. Then the commutator pairing
cp(G,A) : H2(G,A)→ Hom(

∧2G,A) has a section that is natural in A.

Proof. Let κG :
∧2G →

⊙2G defined by x ∧ y 7→ x ⊙ y − y ⊙ x be the injective ho-
momorphism as in section 4.5. Denote by Φ the corresponding natural transformation
Hom(κG,−) of Hom(

⊙2G,−) to Hom(
∧2G,−), and write ΦB := Φ(B) for any (profi-

nite) abelian group B. Any (profinite) abelian group B gives a diagram

Z2(G,B) Hom(
⊙2G,B)

H2(G,B) Hom(
∧2G,B)

∼

ΦB

cp

and its commutativity can be verified by using the theory from section 5.1. Let u :=
Φ⊙2G(id

⊙2G), i.e., u sends an element x ∧ y to x ⊙ y − y ⊙ x. Then for any (profinite)

abelian group B and any f :
⊙2G→ B we have ΦB(f) = f ◦ u, which can either be seen

by Yoneda’s Lemma, or by a direct calculation. By Corollary 4.28 or Corollary 4.38 there
exists a morphism v :

⊙2G→
∧2G such that v ◦ u = id∧2G. Now the map

Hom(

2∧
G,B)→ Hom(

2⊙
G,B), g 7→ g ◦ v

is a section of ΦB, and this results in a section of H2(G,B) → Hom(
∧2G,B) that is

natural in B.

Theorem 5.2. Let G be (profinite) abelian groups. Then for any (profinite) abelian group
A the sequence

0→ Ext1(G,A)→ H2(G,A)
cp→ Hom(

2∧
G,A)→ 0

is a split exact sequence, where Ext1(G,A) → H2(G,A) is the inclusion map. Moreover,
we can choose the sections of cp to be natural in A.

Proof. It is easy to verify that the sequence is exact at Ext1(G,A) and at H2(G,A). It
now follows from Proposition 5.1 that the sequence is split-exact with a section of cp that
is natural in A.

Corollary 5.3. Let A, G be (profinite) abelian groups and suppose that G is (pro)cyclic.
Then Ext1(G,A) = H2(G,A).

Proof. By Lemma 4.13 we have
∧2G = 0. Hence, the result follows from 5.2.

5.3 Canonical splitting

In this section we will exhibit a retraction of the map Ext1(G,A)→ H2(G,A) for profinite
abelian groups G, A where G =

∏
iGi is the product of procyclic groups Gi. This

retraction will be natural in all Gi and A, and explicitly given. In order to define this
retraction, we reduce G to the procyclic case Gi by using restricted products and relying on
Theorem 4.45. The results in this section can be compared with Theorem 5.2, which does
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give retractions, but these retractions are not explicitly constructed and are not natural
in G.

Remark 5.4. Let (Gi)i∈I and A be profinite abelian groups. Suppose that A is the
product of finite discrete abelian groups, or, suppose that I is finite. For every j, let ιi :
Gj →

∏
iGi be the natural injection. Then there is a natural homomorphism (H2(ιi, A)) :

H2(
∏
iGi, A) →

∏′
iH

2(Gi, A) defined by x 7→ (H2(ιi, A)(x))i. This is well-defined by
Lemma 4.44. Similarly, we also have a homomorphism

Hom(

2∧∏
i

Gi, A)
(Hom(

∧2 ιi,A))i−−−−−−−−−−→
∏′

i

Hom(

2∧
Gi, A).

The defined maps yield a commutative diagram

0 Ext1(
∏
iGi, A) H2(

∏
iGi, A) Hom(

∧2∏
iGi, A) 0

0
∏′

i
Ext1(Gi, A)

∏′

i
H2(Gi, A)

∏′

i
Hom(

∧2Gi, A) 0

(Ext1(ιi,A))i≀ (H2(ιi,A))i (Hom(
∧2 ιi,A))i

and the rows are exact by Theorem 5.2 and, if A is the product of finite discrete groups,
Theorem 4.42. The leftmost vertical arrow is an isomorphism due to Theorem 4.45, or,
due to the additivity of Ext1(−, A). Moreover, the diagram is natural in A and, if the
index set I is fixed, also in each Gi. △

Proposition 5.5. Let (Gi)i∈I be a collection of procyclic groups and let A be a profinite
abelian group. Suppose that A is the product of finite discrete groups, or, suppose that I
is finite. Then the diagram in Remark 5.4 gives a diagram

0 Ext1(
∏
iGi, A) H2(

∏
iGi, A) Hom(

∧2∏
iGi, A) 0

0
∏′

i
Ext1(Gi, A)

∏′

i
H2(Gi, A) 0

(Ext1(ιi,A))i≀ (H2(ιi,A))i

∼

in which the rows are exact. Moreover, the composition

H2(
∏
i

Gi, A) −→
∏′

i

H2(Gi, A) −→
∏′

i

Ext1(Gi, A) −→ Ext1(
∏
i

Gi, A)

is a retraction of the map Ext1(
∏
iGi, A) → H2(

∏
iGi, A). This retraction is natural in

A and, if the index set I is fixed, also in each Gi.

Proof. By Lemma 4.13 we have
∏′
iHom(

∧2Gi, A) = 0 and this shows that we get the
desired diagram. It follows from the commutativity of the diagram that the composition, as
stated in the lemma, is indeed a retraction of the map Ext1(

∏
iGi, A)→ H2(

∏
iGi, A).

Denote by ret((Gi)i, A) the retraction that is given by Proposition 5.5. We thus get
a natural isomorphism as stated in the next proposition. Recall from section 5.1 the
definition of the map cp(G,A) : H2(G,A) → Hom(

∧2G,A) for any profinite abelian
groups G, A. We sometimes simply write ret instead of ret((Gi)i, A) when the meaning
of the map is clear from context.

Proposition 5.6. Let (Gi)i∈I be a collection of procyclic groups and let A be a profinite
abelian group. Suppose that A is the product of finite discrete groups, or, suppose that I
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is finite. Then(
ret, cp

)
: H2(

∏
i

Gi, A)
∼−→ Ext1(

∏
i

Gi, A)⊕Hom(
2∧∏

i

Gi, A)

is an isomorphism of groups that is natural in A and, if the index set I is fixed, also in
each Gi.

The following lemma generalizes the naturality of the retraction maps ret.

Lemma 5.7. Let f : G′ → G be a morphism of profinite groups, and suppose that G =∏
i∈I Gi and G

′ =
∏
j∈J G

′
j are factorizations into procyclic groups. Let A be a profinite

abelian group. Suppose that A is the product of finite discrete groups, or, suppose that I
and J are finite. Assume that for each j ∈ J one of the two following conditions holds: G′j
is projective, or, there exists i ∈ I such that f [G′j ] ⊂ Gi, where we view Gi as a subgroup
of G via the natural inclusion map. Then the diagram

H2(G,A) H2(G′, A)

Ext1(G,A) Ext1(G′, A)

H2(f,A)

ret ret

Ext1(f,A)

commutes.

Proof. Let J ′ be the subset of J of all j for which G′j is not projective. By Theorem 4.45

we have Ext1(G′, A) ∼=
∏
j∈J Ext

1(G′j , A) =
∏
j∈J ′ Ext1(G′j , A). Now the result follows

from naturality in each G′j with j ∈ J ′.

In our applications, most of the groups Gi will be projective, leading to the following
practical result.

Proposition 5.8. Let G, A be profinite abelian groups. Suppose that C ⊂ G is a procyclic
closed subgroup such that G/C is projective and such that G/C is a product of procyclic
groups indexed by I. Let ι : C → G be the inclusion map. Suppose that A is the product
of finite discrete groups, or, suppose that I is finite. Then Ext1(ι, A) and

(H2(ι, A), cp) : H2(G,A) −→ Ext1(C,A)×Hom(
2∧
G,A)

are isomorphisms. Moreover, we have H2(ι, A) = Ext1(ι, A) ◦ ret((Gi)i∈I , A) for every
factorization G =

∏
j Gi with 0 ∈ I and C = G0 and all Gi procyclic.

Proof. Notice that H2(ι, A) indeed maps to Ext1(C,A), since H2(C,A) = Ext1(C,A) by
Corollary 5.3. By assumption we have G = C × P for some projective subgroup P ⊂ G:
the sequence 1→ C → G→ G/C → 1 splits because G/C is projective. This shows that
Ext1(ι, A) is an isomorphism. The remaining statements follow from the commutative
diagram

Ext1(G,A) H2(G,A)

Ext1(C,A) H2(C,A)

≀Ext1(ι,A) H2(ι,A)

∼

and Proposition 5.6.
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Notice that in the setting of Proposition 5.8 the retraction ret((Gi)i∈I , A) does not depend
on the factorization G =

∏
iGi.

For certain productsG =
∏
iGi, the following proposition gives an element ξ of H2(G,

∧2G)
such that (ret, cp)ξ = (0, id).

Proposition 5.9. Consider a profinite abelian group G =
∏
i∈I Gi with each Gi procyclic

and with (I,<) a totally ordered set. Suppose that
∧2G is the product of finite discrete

groups, or, suppose that I is finite. For every j ∈ I, let ιj : Gj → G be the natural
inclusion map. Then the map

ω : G×G→
2∧
G, ((αi)i, (βi)i) 7→

∑
i<i′

ιi(αi) ∧ ιi′(βi′)

is a well-defined continuous cocycle such that (ret, cp)[ω] = (0, id).

Proof. For all ((αi)i, (βi)i) ∈ G × G, the sum
∑

i<i′ ιi(αi) ∧ ιi′(βi′) is a finite sum in∧2∏
i(Gi/Ni), where Ni are open subgroups of Gi with Ni = Gi for almost all i. Hence,

ω is well-defined and continuous. It can be routinely verified that ω is a cocycle map. In
section 5.1 we see that cp[ω] :

∧2G→
∧2G is given by x∧ y 7→ ω(x, y)−ω(y, x) = x∧ y.

Finally, it is easily verified that for every i and all x, y ∈ Gi we have ω(ιi(x), ιi(y)) = 0.
Hence, for all i we have H2(ιi, id)[ω] = 0, and we conclude that ret[ω] = 0.

6 Multiplier-free theorems

In this section we will consider the map [−,−] :
∧2Gab → G(2)/G(3) defined by g1 ∧ g2 7→

[g1, g2]G3, for any group G. We will show that the map [−,−] is an isomorphism of groups
for a group G that satisfies H2(G,Q/Z) = 0. We prove a similar statement for profinite
groups. The proofs of the two statements are similar.

6.1 Multiplier-free theorems

Remark 6.1. We will show that the commutator map

[−,−] :
2∧
Gab → [G,G]/G(3), g1 ∧ g2 7→ [g1, g2]

is well-defined in the case that G is a group or a profinite group. So consider such a G.
Then

1→ G(2)/G(3) → G/G(3) → G/G(2) → 1

is a central extension. Hence, from section 5.1 it follows that we get a map
∧2Gab →

G(2)/G(3) defined by g1 ∧ g2 7→ [g1, g2]. △

Let G be a (profinite) group and let f :
⊗2Gab → Q/Z be a (continuous) homomorphism.

Then the map ω : G × G → Q/Z defined by (x, y) 7→ f(x ⊗ y) is a (continuous) cocycle:
for all x, y, z ∈ G we have

ω(y, z)− ω(xy, z) + ω(x, yz)− ω(x, y)
= f(y ⊗ z − (x+ y)⊗ z + x⊗ (y + z)− x⊗ y)
= f(0) = 0.

Definition 6.2. Let G be a (profinite) group acting trivially on the discrete abelian group
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Q/Z. We define the homomorphisms

ΘG : Hom(
2⊗
Gab,Q/Z)→ Z2(G,Q/Z) (without topology),

ΘG : Hom(
2⊗
Gab,Q/Z)→ Z2(G,Q/Z) (with topology)

as the maps that send f to the cocycle (x, y) 7→ f(x⊗y). We denote by ΘG the composition
of ΘG with the quotient map Z2(G,Q/Z)→ H2(G,Q/Z). △

Lemma 6.3. Let G be a (profinite) group. Let b : G → Q/Z be a (continuous) map and
consider the (continuous) cocycle ω : G×G→ Q/Z defined by (x, y) 7→ b(x)+b(y)−b(xy).
Suppose that ω ∈ im(ΘG). Then b has the following properties.

(i) We have b(1) = 0.

(ii) Let g1, g2 ∈ G. Then b(g1g2)− b(g2g1) = b([g1, g2]).

(iii) Let g ∈ G and c ∈ G(2). Then b(gc) = b(g) + b(c) = b(cg).

(iv) We have b|G3
= 0.

Proof. Let f ∈ Hom(
⊗2Gab,Q/Z) be a (continuous) morphism such that ΘG(f) = ω.

Then for all x, y ∈ G we have

f(x⊗ y) = b(x) + b(y)− b(xy). (2)

(i) This follows from applying (2) on x = y = 1.

(ii) For all g1, g2 ∈ G we have 0 = f([g1, g2] ⊗ g2g1) = b([g1, g2]) + b(g2g1) − b(g1g2) by
(2).

(iii) For all g ∈ G and c ∈ G(2) we have 0 = f(g ⊗ c) = b(g) + b(c) − b(gc) by (2) and
similarly we have 0 = f(c⊗ g) = b(c) + b(g)− b(cg).

(iv) For each c ∈ [G,G] and g ∈ G we have b([g, c]) = b(gc)− b(cg) = 0 by (ii) and (iii).
By (iii) we see that the restriction of b to G(2) is a (continuous) group homomorphism
and we conclude that the kernel contains G(3).

The following lemma gives an explicit surjective homomorphism from im(ΘG) ⊂ H2(G,Q/Z)
to Hom(K,Q/Z) for any (profinite) group G. Recall from section 4.4 that σG :

∧2Gab →⊗2Gab is the map x ∧ y 7→ x ⊗ y − y ⊗ x. Recall from section 2.3 that the functor
Hom(−,Q/Z), denoted by ∗, is exact on sequences of abelian groups because Q/Z is in-
jective, and that the Pontryagin functor ∗, defined as Hom(−,Q/Z) with Q/Z discrete, is
exact on sequences of profinite abelian groups by Pontryagin duality.

Lemma 6.4. Let G be a (profinite) group and let ι : K →
∧2Gab be the kernel of the

commutator map

[−,−] :
2∧
Gab → G(2)/G(3).

Consider the homomorphism

ψ := (σGab ◦ ι)∗ = Hom(σGab ◦ ι,Q/Z) : Hom(

2⊗
Gab,Q/Z)→ Hom(K,Q/Z).

Then the map
imΘG → Hom(K,Q/Z), ΘG(f) 7→ ψ(f)
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is a well-defined surjective homomorphism.

Proof. First of all, the surjectivity follows from the fact that ψ is injective: ι is injective
and σ := σGab is injective by Proposition 4.19 or Proposition 4.20. Hence, it is left to prove
that kerΘG ⊂ kerψ, in order to conclude that imΘG → Hom(K,Q/Z) is well-defined.
By applying the functor ∗ introduced in section 2.3, we have the following commutative
diagram, in which the rows are exact, and for every f ∈ kerΘG we will construct an
element F̃ ∈ (G(2)/G(3))∗ such that [−,−]∗F̃ = σ∗f .

0 (G(2)/G(3))∗ (
∧2Gab)∗ K∗ 0

0 kerΘG (
⊗2Gab)∗

[−,−]∗ ι∗

σ∗

Consider an element f ∈ kerΘG. Then for some (continuous) map F : G→ Q/Z we have
f(x ⊗ y) = F (x) + F (y) − F (xy) for all x, y ∈ G. Now −F |G(2) is a homomorphism by
(ii) of Lemma 6.3. Moreover, −F |G(2) factors over G(2) → G(2)/G(3) with a (continuous)

map F̃ : G(2)/G(3) → Q/Z by (iv) of Lemma 6.3. Finally, by Lemma 6.3, we have for all
g1, g2 ∈ G that

F̃ ([g1, g2]G3) = F (g2g1)− F (g1g2) = f(g1 ⊗ g2)− f(g2 ⊗ g1) = σ∗f(g1 ∧ g2).

Hence, we have [−,−]∗F̃ = σ∗f . This yields

ψ(f) = ι∗σ∗(f) = ι∗[−,−]∗(F̃ ) = 0,

and thus f ∈ kerψ.

Theorem 6.5. Let G be a (profinite) group such that H2(G,Q/Z) = 0. Then the com-
mutator map

[−,−] :
2∧
Gab → G(2)/G(3)

is an isomorphism.

Proof. It is clear that the commutator map is surjective, so by Lemma 2.9 it is left to
prove the injectivity of this map. From H2(G,Q/Z) = 0 it follows that ΘG is the zero
map. Hence, due to Lemma 6.4, we find that Hom(K,Q/Z) = 0. We conclude that K = 0
by Lemma 2.35.

Remark 6.6. A different proof of Theorem 6.5 can probably be obtained by means of the
inflation-restriction sequence. Let G be a group, and let N be a subgroup of G. Assume
that H2(G,Q/Z) = 0, with G acting trivially on the group Q/Z. Since H2(G,Q/Z) = 0,
the inflation-restriction sequence yields the sequence

0→ H1(G/N,Q/Z) Inf→ H1(G,Q/Z) Res→ H1(N,Q/Z)G/N τ→ H2(G/N,Q/Z)→ 0,

and this corresponds to the exact sequence

0→ Hom(G/N,Q/Z)→ Hom(G,Q/Z)→ HomG/N (N,Q/Z)→ H2(G/N,Q/Z)→ 0,

where HomG/N (N,Q/Z) is the subgroup of Hom(N,Q/Z) consisting of all homomorphisms
f ∈ Hom(N,Q/Z) satisfying f(gng−1) = f(n) for all g ∈ G and n ∈ N . We remark that
for any group G′ the abelian group Hom(G′,Q/Z) is isomorphic to Hom(G′/[G′, G′],Q/Z)

49



since Q/Z is abelian. By injectivity of Q/Z, the cokernel of the natural map

Hom(G/(N · [G,G]),Q/Z)→ Hom(G/[G,G],Q/Z)

equals Hom(N/(N ∩ [G,G]),Q/Z) and we have

HomG/N (N,Q/Z) = Hom(N/[G,N ],Q/Z).

Hence, the latter exact sequence yields a short exact sequence

0→ Hom(N/(N ∩ [G,G]),Q/Z)→ Hom(N/[G,N ],Q/Z)→ H2(G/N,Q/Z)→ 0.

It follows that H2(G/N,Q/Z) = 0 if and only if N∩[G,G] = [G,N ]. Now take N = [G,G].
Then the map τ thus induces an isomorphism

τ ′ : Hom(G(2)/G(3),Q/Z) ∼−→ H2(Gab,Q/Z).

Since Q/Z is injective, we have Ext1(Gab,Q/Z) = 0, hence, the commutator pairing is
an isomorphism cp : H2(Gab,Q/Z) ∼→ Hom(

∧2Gab,Q/Z) by Theorem 5.2. The author of
this thesis believes that the composition

cp ◦τ ′ : Hom(G(2)/G(3),Q/Z)→ Hom(
2∧
Gab,Q/Z)

is the map induced by the commutator map [−,−] :
∧2Gab → G(2)/G(3), and this would

show that this commutator map is an isomorphism. △

7 Maximal class-2 extensions of fields

7.1 Generalities

Throughout this section, let K be a field, and let Kalg be an algebraic closure of K.
Write GK := Gal(Ksep/K). In this section we will establish auxiliary results in order to
determine in the upcoming sections the Galois group of maximal class-2 extensions of Q
and Qp

Lemma 7.1. The compositum of a collection of class-2 extensions of K is again a class-2
extension of K.

Proof. Consider a collection (Lα)α of class-2 extensions of K. The compositum of Galois
field extensions is again Galois and the embedding

Gal(
∏
α

Lα/K)→
∏
α

Gal(Lα/K)

σ 7→ (σ|Lα
)α

shows that Gal(
∏
α Lα/K) is a class-2 group by Lemma 2.28.

Proposition 7.2. The field K has a unique maximal class-2 field extension inside Kalg.

Proof. The composite of all class-2 field extensions of K in Kalg is the unique maximal
class-2 field extension in Kalg.

We denote the maximal class-2 field extension of the field K by Kcl2 ⊂ Kalg. In the
remaining part of this section we write Γ := Gal(Kcl2/K). Since Γ(2) is the smallest closed
normal subgroup N of Γ for which Γ/N is abelian, it follows that Gal(Kcl2/Kab) = Γ(2)

and Gal(Kab/K) = Γab. Similarly, using the notation from section 2.2, it follows that Γ
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equals Gcl2
K .

The following result is based on suggestions made by J.T. Tate and the proof can be found
in [14]. We let GK act trivially on the discrete abelian group Q/Z.

Theorem 7.3. Suppose that K is a local field or a global field. Then H2(GK ,Q/Z) = 0.

Proof. By the theorem in [14, Ch. 2.6, Thm. 4] we have H2(GK ,C∗) = 0, where C∗ is dis-
crete. This theorem is proven in [14, p. 232-237, Thm. 4] by showing that H2(GK ,Q/Z) =
0.

Recall from section 6.1 that for any profinite group G we have defined a commutator map
[−,−] :

∧2Gab → G(2)/G(3).

Proposition 7.4. Suppose that K is a local field or a global field. Then the commutator
map

[−,−] :
2∧
Γab → Γ(2), x ∧ y 7→ [x, y]

is an isomorphism.

Proof. We have H2(GK ,Q/Z) = 0 by Theorem 7.3. Hence, it follows from Theorem 6.5

that the commutator map [−,−] :
∧2Gab

K → G
(2)
K /G

(3)
K is an isomorphism. Since Gcl2

K = Γ,

we have canonical isomorphisms Gab
K
∼= Γab and G

(2)
K /G

(3)
K
∼= Γ(2), and it now follows that

also the commutator map [−,−] :
∧2 Γab → Γ(2) is an isomorphism.

The exact sequence

1→ Gal(Kcl2/Kab)→ Gal(Kcl2/K)→ Gal(Kab/K)→ 1

corresponds to a central exact sequence

1→
2∧
Γab → Γ→ Γab → 1,

which represents an element [Γ] in H2(Γab,
∧2 Γab). Recall that by Theorem 5.2 the

sequence

0→ Ext1(Γab,
2∧
Γab)→ H2(Γab,

2∧
Γab)

cp→ End(
2∧
Γab)→ 0 (3)

is split exact, and one can verify that [Γ] ∈ H2(Γab,
∧2 Γab) is mapped to id ∈ End(

∧2 Γab)
by cp.

7.2 Maximal class-2 tamely ramified extensions of local number fields

Let p be a prime number. Let Qp ⊂ K be a finite field extension and let Kalg be an
algebraic closure of K. Let k be the residue field of K and let kalg be the residue class
field ofKalg. Write q := #k. LetKtr be the maximal tamely ramified extension ofK inside
Kalg. Write ∆ := Gal(Ktr/K). Let πK be a prime element of K. For every n ∈ Z>0\pZ
write Kn := K( n

√
πK) where n

√
πK = {x ∈ Kalg : xn = πK}. Then Ktr =

⋃
n:p∤nKn. For

every n ∈ Z>0\pZ we write µn ⊂ kalg for the set of zeroes of Xn − 1, and notice that the
canonical map Kalg → kalg maps the group of nth roots of unity in Kalg isomorphically
to µn. For any positive integers m | n taking (n/m)th powers yields a map µn → µm.
The inverse limit µ̂ := lim←n µn with n ranging over all positive integers coprime to p,
is the Tate-module in characteristic p. For every ζ = (ζn)n ∈ µ̂ and every σ ∈ ∆ we

51



write σ(ζ) = (σ(ζn))n and notice that this defines an action of ∆ on µ̂. We denote by
Kunr ⊂ Ktr the maximal unramified extension of K inside Kalg.

The following result follows from [16, Ch. 4, Cor. 1].

Lemma 7.5. Let K ⊂ L be a totally and tamely ramified Galois field extension of finite
degree. Let ℓ be the residue field of L, and let mL be the maximal ideal of the valuation
ring of L. Let πL be a prime element of L. Then Gal(L/K) is cyclic and

Gal(L/K)→ ℓ∗, σ 7→ σ(πL)

πL
mod mL

is an injective group homomorphism that does not depend on the choice of πL.

Lemma 7.6. For every n ∈ Z>0\pZ, let πn be a prime element of Kn. Let mn be the
maximal ideal of the valuation ring of Kn. Then

Gal(Ktr/Kunr)→ µ̂, σ 7→
(σ(πn)

πn
mod mn

)
n

is an isomorphism of profinite groups that does not depend on the choice of prime elements
(πn)n.

Proof. For every n ∈ Z>0\pZ we get the following diagram of fields

K

Kunr ∩Kn

Kunr

Kn

KnK
unr

and since Kn/K is a Galois extension, the restriction map

Gal(KnK
unr/Kunr)→ Gal(Kn/(K

unr ∩Kn))

is an isomorphism. Notice that Kn/(K
unr ∩Kn) is totally and tamely ramified of degree

n since Xn − πK is an Eisenstein polynomial over the valuation ring of Kunr ∩Kn, and
since for any root α of Xn − πK we have Kn = (Kunr ∩Kn)(α). By Lemma 7.5 we now
have a canonical isomorphism

Gal(Kn/(K
unr ∩Kn))→ µn

for every such n. Hence, the composition of the previous two isomorphisms yields a
canonical isomorphism ψn : Gal(KnK

unr/Kunr) → µn for every n ∈ Z>0\pZ. It can be
verified that the inverse limit

lim
←
ψn : Gal(Ktr/Kunr)

∼→ µ̂

is the same map as defined in the statement of this lemma.

Let ψ : Gal(Ktr/Kunr)→ µ̂ be the isomorphism from Lemma 7.6. Notice that ψ respects
the conjugation action of ∆ on Gal(Ktr/Kunr) and the natural action of ∆ on µ̂. Fix a
Frobenius automorphism φ of Ktr/K. The extensions K ⊂ Kunr ⊂ Ktr give a canonical
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short exact sequence
1→ µ̂→ ∆

v→ Ẑ→ 1

of profinite groups. The action ∆ → Aut(µ̂) factors through Ẑ and this yields a well-
defined topological action of Ẑ on µ̂ defined by defined by 1 ⋆ ζ = φ(ζ) = ζq. Let µ̂⋊ Ẑ be
the associated semi-direct product. It follows that we get an isomorphism ∆ ∼= µ̂⋊ Ẑ, as
stated in the following proposition.

Proposition 7.7. There is an isomorphism ∆→ µ̂⋊ Ẑ such that the diagram

1 µ̂ ∆ Ẑ 1

1 µ̂ µ̂⋊ Ẑ Ẑ 1

id ≀ id

commutes, where µ̂→ µ̂⋊ Ẑ and µ̂⋊ Ẑ→ Ẑ are the natural inclusion and projection map
respectively.

Proof. Take the isomorphism ∆→ µ̂⋊ Ẑ defined by σ 7→ (ψ(σφ−v(σ)), v(σ)).

Define Zp′ :=
∏
r ̸=p Zr, where r ranges over all primes different from p. Notice that µ̂ is a

free profinite Zp′-module of rank 1 that is generated as a Zp′-module by any topological
group generator of µ̂.

Lemma 7.8. Identify ∆ with µ̂⋊Ẑ. Then we have ∆(i+1) = µ̂(q−1)
i ⋊ {0} for any integer

i ≥ 1.

Proof. Let H be a Ẑ-submodule of µ̂, where Ẑ acts continuously on µ̂ by 1 ⋆ ζ = ζq. Then
the topological closure [∆, H] of [∆, H] is the smallest closed normal subgroup N of H
for which ∆ acts trivially on H/N by conjugation, i.e., for which the qth-powering action
of 1 ∈ Ẑ on H/N is trivial. Hence, we have [∆, H] = Hq−1. It now remains to prove the
base case ∆(2) = µ̂q−1 for induction on i. By Corollary 5.3 the central exact sequence

0→ µ̂/[∆, µ̂]→ ∆/[∆, µ̂]→ Ẑ→ 0

shows that ∆/[∆, µ̂] is abelian, and thus ∆(2) = [∆, µ̂]. By our earlier observations, taking
H = µ̂ now yields ∆(2) = µ̂q−1.

Let Kab and Kcl2 be the maximal abelian and maximal class two extension of K inside
Kalg respectively, and define Ktrab := Ktr ∩ Kab and Ktrcl2 := Ktr ∩ Kcl2. Then we
have Gal(Ktrab/K) = ∆ab and Gal(Ktrcl2/K) = ∆cl2 = ∆/∆(3). Notice that for any
n ∈ Z>0\pZ we have µ̂/µ̂n = µn. Hence, we find by Lemma 7.8 that ∆ab ∼= µq−1 × Ẑ,
and ∆cl2 ∼= µ(q−1)2 ⋊ Ẑ, where Ẑ acts on µ(q−1)2 by 1 ⋆ ζ = ζq. By tracking the previously
stated isomorphisms, we get the following result, which we state due to its similarity with
Theorem 7.18 and Theorem 7.20.

Proposition 7.9. Let h1 be the inverse of the isomorphism

Gal(Ktrcl2/Ktrab)→ µq−1, σ 7→
σ(π(q−1)2)

π(q−1)2
mod m(q−1)2 .
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Also consider the well-defined isomorphism of profinite groups

h2 : µq−1 × Ẑ→ Gal(Ktrab/K),

µ̂/µ̂q−1 × Ẑ ∋ (ζ mod µ̂q−1, x) 7→ (ψ−1(ζ)φx)
∣∣
Ktrab .

Moreover, we also consider the maps µq−1 → µ(q−1)2 ⋊ Ẑ defined by ζ 7→ (ζ, 0) and

µ(q−1)2 ⋊ Ẑ → µq−1 × Ẑ defined by (ζ, x) 7→ (ζq−1, x). Then there exists an isomorphism

µ(q−1)2 ⋊ Ẑ→ Gal(Ktrcl2/K) such that the diagram

1 µq−1 µ(q−1)2 ⋊ Ẑ µq−1 × Ẑ 1

1 ∆(2)/∆(3) ∆cl2 ∆ab 1

h1 ≀ h2

commutes, i.e., the diagram shows an isomorphism of exact sequences.

We will also give a cohomological description of Gal(Ktrcl2/K) using the theory from
section 5.3. First we need the following lemma and its corollary Corollary 7.12.

Lemma 7.10. The commutator map [−,−] :
∧2∆ab → ∆(2)/∆(3) is an isomorphism.

Proof. From ∆ab ∼= µq−1× Ẑ and Lemma 4.12 we find that
∧2∆ab ∼= µq−1, since µq−1 and

Ẑ are procyclic. The group ∆(2)/∆(3) ∼= µq−1 also has order q − 1. Since the commutator
map is surjective, it follows that it is an isomorphism.

Remark 7.11. Lemma 7.10 can also be proven in a different way, namely by showing
that H2(∆,Q/Z) = 0 and applying Theorem 6.5. In order to show that H2(∆,Q/Z) = 0,
define ∆n as the group with presentation ⟨ϕ, τ | ϕτϕ−1 = τ q, ϕn = 1⟩ for each n ∈ Z>0

and notice that ∆ = lim←∆n. It follows that lim→H2(∆n,Q/Z) = H2(∆,Q/Z) since Q/Z
is discrete [15]. Hence, it suffices to show that H2(∆n,Q/Z) = 0 for each n. Notice that
∆n is isomorphic to F∗qn ⋊Gal(Fqn/Fq). Let

1→ Q/Z ι→ E → ∆n → 1

be a central extension of ∆n, and let ϕ̃, τ̃ ∈ E be lifts of ϕ, τ ∈ ∆n to E such that ϕ has
order n and τ has order qn − 1, which is possible because Q/Z is divisible. Let b ∈ Q/Z
be such that ϕ̃τ̃ ϕ̃−1 = τ̃ qιb. We calculate

τ̃ = ϕ̃nτ̃ ϕ̃−n = τ̃ q
n
(ιb)(q

n−1)/(q−1) = τ̃(ιb)(q
n−1)/(q−1),

and thus we find that b ∈ q−1
qn−1Z/Z. It follows that we can modify the choice of τ̃ such

that ϕ̃τ̃ ϕ̃−1 = τ̃ q. This yields a section of E → ∆n, hence H2(∆n,Q/Z) = 0. △

From now on, write C := Gal(Ktrab/Kunr). Moreover, from now on we will assume that φ
is a Frobenius element in ∆cl2. Then the short exact sequence 1→ C → ∆ab → Ẑ→ 1 is
split-exact, and C is a cyclic group of order q − 1. The following corollary gives a natural
isomorphism C → ∆(2)/∆(3).

Corollary 7.12. The map C → Gal(Ktrcl2/Ktrab) defined by γ 7→ [φ, γ̃], with γ̃ an
extension of γ to Ktrcl2, is an isomorphism of groups that does not depend on the choice
of the Frobenius element φ ∈ ∆cl2.

Proof. By Example 4.15 we have an isomorphism C →
∧2∆ab induced by C →

∧2(Ẑ× µ̂)
defined by γ 7→ φ ∧ γ, and the resulting isomorphism C →

∧2∆ab does not depend on
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the choice of φ. The result now follows from 7.10.

We already described the structure of ∆cl2 explicitly. The following theorem gives an
alternative description of the extension [∆cl2] ∈ H2(∆ab,∆(2)/∆(3)), namely by describing
the Ext-part and Hom-part of

H2(∆ab,∆(2)/∆(3)) ∼= Ext1(∆ab,∆(2)/∆(3))×Hom(
2∧
∆ab,∆(2)/∆(3)),

where the isomorphism is as described in Proposition 5.8. We need a few definitions.
First notice that H2(C,C) = Ext1(C,C) by Theorem 5.2. Moreover, by Lemma 7.10 we
have a natural isomorphism [−,−] :

∧2∆ab ∼→ ∆(2)/∆(3). Recall from section 5.1 that
cp is the commutator pairing. Let f : C → ∆(2)/∆(3) be the natural isomorphism from
Corollary 7.12, and let ι : C → ∆ab be the inclusion map. Consider the isomorphism
Ξ : Ext1(C,C)→ Z/(q − 1)Z defined by Lemma 3.23, where we identify Hom(C,C) with
Z/(q − 1)Z.

Theorem 7.13. The map

(H2(ι, f−1),Hom([−,−]−1, id) cp) : H2(∆ab,∆(2)/∆(3))
∼−→ Ext1(C,C)× End(∆(2)/∆(3))

is an isomorphism that maps [∆cl2] to (ξ, id), for some ξ ∈ Ext1(C,C). Then ξ is the

class of the extension 1→ C
f→ Gal(Ktrcl2/Kunr)→ C → 1, where Gal(Ktrcl2/Kunr)→ C

is the projection map. Moreover, we have Ξ(ξ) = 1 mod q − 1.

Proof. It follows from Proposition 5.8 that the map

(H2(ι, f−1),Hom([−,−]−1, id) cp) : H2(∆ab,∆(2)/∆(3))
∼−→ Ext1(C,C)× End(∆(2)/∆(3))

is an isomorphism. It can be routinely verified that cp[∆cl2] = [−,−]. Moreover, by
applying Proposition 3.13 we see that ξ is the class [Gal(Ktrcl2/Kunr)] ∈ Ext1(C,C). It
remains to verify that Ξ(ξ) = 1 mod q − 1. Let ψ : Gal(Ktr/Kunr) → µ̂ be the natural
isomorphism from Lemma 7.6. For any γ ∈ C with extension γ̃ ∈ Gal(Ktrcl2/Kunr) we
have

ψ(φγ̃φ−1) = φ(ψ(γ̃)) = ψ(γ̃)q = ψ(γ̃q),

and thus
f(γ) = [φ, γ̃] = γ̃q−1.

This shows that Ξ(ξ) = 1 mod q − 1.

7.3 Maximal class-2 extension of Qp for p > 2

Let p be an odd prime. We use the same notation from section 7.2, applied to the
specific case K = Qp. In this section, we will determine the structure of the Galois
group Γp := Gal(Qcl2

p /Qp). We will deduce a cohomological characterization of Γp from
Theorem 7.13. Moreover, this cohomological description will yield a more detailed version
of Theorem 1.1. Recall that we have defined ∆ = Gal(Qtr

p /Qp) and C = Gal(Qtrab
p /Qunr

p ).

Moreover, we write B := Gal(Qab
p /Qunr

p ) and we denote by Ip and Itrp the inertia groups

Gal(Qcl2
p /Qunr

p ) and Gal(Qtrcl2
p /Qp) respectively. Let φ ∈ Γp be a Frobenius element.

Recall that f : C → ∆(2)/∆(3) is the isomorphism from Corollary 7.12. The relevant field

extensions and groups are shown in Figure 1, where h is an isomorphism B → Γ
(2)
p that is

yet to be defined. The unnamed field equals the composite of Qtrcl2
p and Qab

p inside Qcl2
p ,

and is added to visualize the factorization of Γ
(2)
p into a pro-p subgroup and a subgroup
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of order p− 1.

Qp

Qunr
p

Qtrab
p

Qab
pQtrcl2

p

Qcl2
pQtr

p

Ẑ

C

B

f [C]

h[B]

Ip
Γp

Itrp

∆

Figure 1: Hasse diagram of Galois field extensions. The unnamed field is the composite

of Qtrcl2
p and Qab

p . Moreover, we have f [C] = ∆(2)/∆(3) and h[B] = Γ
(2)
p .

By Lemma 7.4 the commutator map gives an isomorphism
∧2 Γab

p → Γ
(2)
p . By local class

field theory, the inertia group B of Qab
p /Qp is isomorphic to the procyclic group Z∗p, and

the short exact sequence
1→ B → Γab

p → Ẑ→ 1

is split-exact, where B → Γab
p and Γab

p → Ẑ are the inclusion and quotient map respectively.

Now Example 4.16 shows that the map B →
∧2 Γab

p defined by β 7→ φ|Qab
p
∧ β is an

isomorphism of profinite groups that does not depend on the choice of φ. Hence, we get

the following result. We denote the map B → Γ
(2)
p in the following Lemma by h.

Lemma 7.14. The map
h : B → Γ(2)

p , β 7→ [φ, β̃]

with β̃ ∈ Gal(Qcl2
p /Qunr

p ) any extension of β, is an isomorphism of profinite groups that

does not depend on the choice of the Frobenius element φ ∈ Γcl2
p .

Notice that for any profinite abelian group G we have H2(B,G) = Ext1(B,G) by Corol-
lary 5.3, and in particular we see that Ip is abelian. The inertia group B of Qab

p /Qp is
canonically isomorphic to Z∗p by the local Artin isomorphism. Recall that C has order
p− 1 by section 7.2. Since Z∗p = F∗p × (1 + pZp), the local Artin isomorphism now gives a
canonical isomorphism C ∼= F∗p. Hence, we have a canonical inclusion map ι : C → B and
projection map π : B → C, and we have πι = id.

Remark 7.15. The isomorphism C ∼= F∗p induced by the local Artin map is the multi-
plicative inverse of the isomorphism C ∼= µp−1 introduced in section 7.2: this follows from
the remark in [16, Ch. 14.7]. The actual choice of the isomorphism C ∼= F∗p is actually not

important, because they give the same isomorphism Ext1(C,C) ∼= Ext1(F∗p,F∗p) for both
cases. △

Before we state and prove the cohomological description of Γp, we need to introduce more

notation. Let h : B
∼→ Γ

(2)
p and f : C → ∆(2)/∆(3) be the natural isomorphisms given by

Lemma 7.14 and Corollary 7.12 respectively. Let κ : B ↪→ Γab
p be the natural embedding.
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Recall from Remark 6.1 that [−,−] denotes the commutator map
∧2Gab → G(2)/G(3)

for any profinite group G. Recall that cp : H2(Γab
p ,Γ

(2)
p ) → Hom(

∧2 Γab
p ,Γ

(2)
p ) is the

commutator pairing from section 5.1. Let Ξ : Ext1(C,C) → Z/(p − 1)Z be the map
induced by Lemma 3.23. Intuitively, Theorem 7.16 states that [Γp] is the unique element

[E] ∈ H2(Γab
p ,Γ

(2)
p ) such that cp[E] = id and such that H2(κι, h−1π)[E] is the class of

the extension 1 → C → Gal(Qtrcl2
p /Qunr

p ) → C → 1 in the ‘tame part’ Ext1(C,C). This

extension class in Ext1(C,C) was previously described in Theorem 7.13.

Theorem 7.16. The map(
H2(κ, h−1),Hom([−,−]−1, id) cp

)
: H2(Γab

p ,Γ
(2)
p )

∼−→ Ext1(B,B)× End(Γ(2)
p )

is an isomorphism that maps [Γp] to (ξ, id) for some ξ ∈ Ext1(B,B). Moreover, the map

Ξ ◦ Ext1(ι, π) : Ext1(B,B)→ Z/(p− 1)Z

is an isomorphism that maps ξ to 1 mod p− 1.

Proof. Since Γab
p
∼= B × Ẑ ∼= C × Zp × Ẑ, it follows from Proposition 5.8 that(

H2(κ, h−1),Hom([−,−]−1, id) cp
)

and Ext1(ι, B) are isomorphisms, and one can verify that it maps [Γp] to (ξ, id) for some
ξ ∈ Ext1(B,B). Moreover, Ext1(C, π) is an isomorphism because Ext1(C,Zp) = 0 by
Lemma 3.24. It follows that Ext1(ι, π) is indeed an isomorphism. It is left to show that
Ξ ◦ Ext1(ι, π) maps ξ to 1 mod p− 1. From Proposition 3.13 it follows that ξ equals the
class of the extension

1→ B
h→ Ip

q→ B → 1,

where q is the projection map. It remains to prove that Ext1(ι, π) maps ξ to the class of
the extension

1→ C
f→ Itrp

q′→ C → 1,

where q′ is the projection map: by Theorem 7.13 we then can conclude that (Ξ◦Ext1(ι, π))(ξ)
equals 1 mod p−1. Notice that indeed Ext1(ι, π)(ξ) = [Itrp ], by applying Proposition 3.13
twice to the commutative diagram,

1 B Ip B 1

1 B Ip ×B C C 1

1 C Itrp C 1

h q

(h,0)

id

π

ι

id

f q′

where the map Ip ×B C → Itrp is the natural composition Ip ×B C → Ip → Itrp , and the
other maps out of Ip ×B C are the pullback morphisms.

Remark 7.17. Notice that the exact sequence 1→ Ip → Γp
vp→ Ẑ→ 1 gives a topological

action of Ẑ defined by vp(γ) ⋆ σ = γσγ−1 for any σ ∈ Ip and γ ∈ Γp: this action is
well-defined because Ip is abelian. Alternatively, this action is given by x ⋆ σ = φxσφ−x
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for all x ∈ Ẑ and σ ∈ Ip. The associated semi-direct product Ip⋊′ Ẑ now fits in a diagram

1 Ip Γp Ẑ 1

1 Ip Ip ⋊′ Ẑ Ẑ 1

id ≀ id

that commutes. △

In the following theorem, we use the notation from above. Let h(2) : Z∗p
∼→ Γ

(2)
p be the

composition

h(2) : Z∗p
∼−→ B

h−→ Γ(2)
p ,

where Z∗p
∼→ B is induced by the local Artin map. Let

hab : Z∗p × Ẑ→ Γab
p

be the isomorphism induced by the local Artin map Q̂∗p → Γab
p by writing Q̂∗p = Z∗p × πẐ,

with π the prime element corresponding to the Frobenius element φ|Qab
p
. In the remaining

part of this section, we will identify B with Z∗p via the local Artin map.

Theorem 7.18. Consider the profinite group I ′p := (1 + pZp) × µ(p−1)2 × (1 + pZp) and

the topological action of Ẑ on I ′p defined by

1 ⋆ (x, ζ, y) = (xy, ζp, y).

Let Γ′p := I ′p⋊Ẑ be the associated semi-direct product. We identify Z∗p with (1+pZp)×F∗p.
Then there is a short exact sequence

1 −→ Z∗p
tp−→ I ′p

up−→ Z∗p −→ 1

of profinite groups, where tp(x, ζ) = (x, ζ, 1) and up(x, ζ, y) = (y, ζp−1). Moreover, there
exists an isomorphism Γ′p → Γp such that

1 Z∗p Γ′p Z∗p × Ẑ 1

1 Γ
(2)
p Γp Γab

p 1

(tp,0)

h(2)

(up,id)

≀ hab

is an isomorphism of exact sequences, and it maps I ′p isomorphically to the inertia group
Ip of Γp.

Proof. Let Ξ : Ext1(C,C) → Z/(p − 1)Z be the isomorphism induced by Lemma 3.23.
By Theorem 7.16 we have that the isomorphism Ξ ◦Ext1(ι, π) maps the extension class ξ

represented by 1 → B
h→ Ip

q→ B → 1 to 1 mod p − 1. It can be routinely verified that
the extension class of ξ′

1→ Z∗p
tp→ I ′p

up→ Z∗p → 1.

is also mapped to 1 mod p − 1 by Ξ ◦ Ext1(ι, π). Hence, we have ξ = ξ′. It follows that
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there exists an isomorphism η : I ′p
∼→ Ip such that the commutative diagram

1 Z∗p I ′p Z∗p 1

1 B Ip B 1

tp

id

up

η id

h q

is an isomorphism of exact sequences. Consider the action of Ẑ on I ′p induced via η by the

action of Ẑ on Ip from Remark 7.17, and let I ′p⋊′ Ẑ be the associated semi-direct product.
Then it is clear that the commutative diagram

1 B I ′p ⋊′ Ẑ B × Ẑ 1

1 B Ip ⋊′ Ẑ B × Ẑ 1

(tp,0)

id

(up,id)

(η,id) id

(h,0) (q,id)

is an isomorphism of exact sequences, where the bottom sequence is easily seen to be

isomorphic to 1→ Γ
(2)
p → Γp → Γab

p → 1. It now suffices to prove that I ′p ⋊′ Ẑ = Γ′p, i.e.,

it suffices to prove that the action of Ẑ on I ′p as defined in this proof is the same as the
one stated in the theorem we are proving.

The action of Ẑ on Ip is given by 1 ⋆ σ = [φ, σ]σ. Let ι1, ι2, ι3 be the natural inclusions of
1+pZp, µ(p−1)2 and 1+pZp into I ′p respectively and let π1, π2, π3 be the natural projections
of I ′p onto 1 + pZp, µ(p−1)2 and 1 + pZp respectively. Let σ ∈ Ip. Write e := η−1σ and
ei := πi(e) for i = 1, 2, 3. Let σi ∈ Ip be such that η−1σi = ιiei for i = 1, 2, 3. Then
σ = σ1σ2σ3 gives

1 ⋆ σ = [φ, σ1][φ, σ2][φ, σ3]σ.

Since we have σ1 ∈ h[B] and h[B] = Gal(Qcl2
p /Qab

p ) is central in Γp, we find that [φ, σ1] = 1.

Notice that q(σ2) = ep−12 , and by definition of h we have h(q(σ2)) = [φ, σ2]. It follows

that h(ep−12 ) = [φ, σ2] and thus η−1[φ, σ2] = ι2e
p−1
2 . Similarly, from q(σ3) = e3 and

h(q(σ3)) = [φ, e3] it follows that η
−1[φ, σ2] = ι3e3. Now we see that the action of Ẑ on I ′p

induced by the action of Ẑ on Ip, is given by

1 ⋆ e = η−1(1 ⋆ σ) = η−1
(
[φ, σ1][φ, σ2][φ, σ3]σ

)
= ι2(e

p−1
2 )ι3(e3)e.

It follows that the two described actions of Ẑ on I ′p are indeed the same, and thus we have

I ′p ⋊′ Ẑ = Γ′p.

7.4 Maximal class-2 extension of Q2

In this section we will describe the Galois group Γ2 := Gal(Qcl2
2 /Q2). There are two

reasons why we need to distinguish this case from the case Qcl2
p /Qp with p odd: the first

reason is that the inertia group of Qab
2 /Q2 is not procyclic, and the second reason is that

we cannot use the theory from section 7.2 because we have Qtrcl2
2 = Qunr

2 , where we use
the notation from section 7.2. We denote by I2 the inertia group of the extension Qcl2

2 /Q2.
Let
√
−1 ∈ Qab

2 be a square root of −1. By local class field theory, we have

Qab
2 = Qunr

2 ⊗Q2 Q2(
√
−1)⊗Q2 Q2(ζ2∞ + ζ−12∞)

where
ζ2∞ + ζ−12∞ := {α+ α−1 | ∃n ∈ Z>0 : α

2n = 1} ⊂ Qalg
2 .

59



Moreover, we have Q2(
√
−1)⊗Q2Q2(ζ2∞+ζ−12∞) = Q2(ζ2∞). We defineM as the composite

Qunr
2 Q2(ζ2∞ + ζ−12∞) inside Qab

2 . Denote by µ2 the subgroup {±1} of Z∗2. From the local
Artin map we get a canonical isomorphism

Gal(Q2(ζ2∞)/Q2) ∼= Z∗2 = µ2 × (1 + 4Z2).

Let φ ∈ Gal(Qunr
2 /Q2) be the Frobenius element of Qunr

2 /Q2. Notice that 5 generates
1+4Z2 as its 2-adic logarithm is a unit in Z2. Let σ5 ∈ Gal(Q2(ζ2∞ + ζ−12∞)/Q2) ∼= 1+4Z2

be the element corresponding to 5 ∈ 1 + 4Z2. Let σ−1 ∈ Gal(Q2(
√
−1)/Q2) = µ2 be the

generator of Gal(Q2(
√
−1)/Q2). This gives the following diagram.

Q2

Qunr
2

Q2(
√
−1)

Q2(ζ2∞ + ζ−12∞)

Qunr
2 (
√
−1)

M
Q2(ζ2∞)

Qab
2

φẐ σ
Z/2Z
−1 σZ2

5

Let φ̃, σ̃5, σ̃−1 ∈ Γ2 be the extensions of φ, σ5, σ−1 respectively that are the identity map
when restricted to Q2(ζ2∞), Qunr

2 (
√
−1), M respectively. Then σ̃5 acts on the roots of

X2n − 1 in Qab
2 by taking 5th roots [16, Ch. 14.7]. Consider the group A := Γ

(2)
2 /(Γ

(2)
2 )2.

Let ι : µ2 → Γab
2 be the inclusion map, and let π : Γ

(2)
2 → A be the quotient map. Recall

that the commutator map [−,−] :
∧2 Γab

2 → Γ
(2)
2 is an isomorphism due to Proposition

7.4. Let
Ξ : Ext1(µ2, A)

∼−→ Hom(µ2, A)

be the isomorphism described in Lemma 3.23, and notice that Ext1(µ2, A) = H2(µ2, A)
due to Corollary 5.3. Let

cp : H2(Γab
2 ,Γ

(2)
2 ) −→ End(Γ

(2)
2 )

be the commutator pairing from section 5.1. Eventually, we will prove the following
theorem, namely Theorem 7.19, in this section. Intuitively, Theorem 7.19 states that class

[Γ2] is the unique extension class ξ in H2(Γab
2 ,Γ

(2)
2 ) such that

(i) ξ is mapped by the commutator pairing to id ∈ End(Γ
(2)
2 ),

(ii) ξ is mapped by H2(ι, π) to the class of an extension

1 −→ A −→ E −→ µ2 −→ 1

in which the coset of [φ̃, σ̃5] in A is mapped to an element x2 ∈ E with x a lift of
−1 ∈ µ2 to E.

Theorem 7.19. The map(
Ξ ◦H2(ι, π),Hom([−,−]−1, id) cp

)
: H2(Γab

2 ,Γ
(2)
2 )

∼−→ Hom(µ2, A)× End(Γ
(2)
2 )
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is an isomorphism that maps [Γ2] to (f, id), where f(−1) = [φ̃, σ̃5] mod (Γ
(2)
2 )2.

We will now describe Γ
(2)
2 in terms of the automorphisms φ̃, σ̃−1, σ̃5. Using Lemma 4.12,

we see that the isomorphism [−,−] :
∧2 Γab

2 → Γ
(2)
2 in Proposition 7.4 is induced by the

three morphisms

(1 + 4Z2)⊗ µ2 −→ Γ
(2)
2 , 1⊗−1 7−→ [σ̃5, σ̃−1],

Ẑ⊗ µ2 −→ Γ
(2)
2 , 1⊗−1 7−→ [φ̃, σ̃−1],

Ẑ⊗ Z2 −→ Γ
(2)
2 , 1⊗ 1 7−→ [φ̃, σ̃5].

This shows that we have the equality

Γ
(2)
2 = [σ̃5, σ̃−1]

Z/2Z × [φ̃, σ̃−1]
Z/2Z × [φ̃, σ̃5]

Z2 .

By Proposition 7.4 we get an isomorphism of groups

h(2) : µ2 × Z∗2
∼→ Γ

(2)
2 , ((−1)x, (−1)y5z) 7→ [σ̃5, σ̃−1]

x[φ̃, σ̃−1]
y[φ̃, σ̃5]

z,

where x, y ∈ Z/2Z and z ∈ Z2. Furthermore, we consider the isomorphism

hab : Z∗2 × Ẑ→ Γab
2 , ((−1)x5y, z) 7→ σ̃−1|xQab

2
σ̃5|yQab

2
φ̃|zQab

2
,

where x, y ∈ Z/2Z and z ∈ Ẑ. We also define the subgroup√
1 + 4Z2 := {x ∈ Qalg

2

∗
: x2 ∈ 1 + 4Z2}

of Qalg
2

∗
. We remark that Q2(

√
1 + 4Z2) is the unique quadratic unramified extension of

Q2 inside Qalg
2 , and that Z∗2 is a subgroup of index 2 in

√
1 + 4Z2. We prove the following

theorem later in this section.

Theorem 7.20. Consider the topological action of 1 + 4Z2 on µ2 ×
√
1 + 4Z2 defined by

5 ⋆ (ε, x) = (
φ(x)

x
ε, x).

Let I ′2 := (µ2×
√
1 + 4Z2)⋊(1+4Z2) be the associated semi-direct product. Let a topological

action of Ẑ on I ′2 be defined by

1 ⋆ (ε, x, y) = (ε, φ(x)y, y)

and let Γ′2 := I ′2 ⋊ Ẑ be the associated semi-direct product. Then there is a short exact
sequence

1 −→ µ2 × Z∗2
t−→ I ′2

u−→ Z∗2 −→ 1

of profinite groups, where t(ε, x) = (ε, x, 1) and u(ε, x, y) = (φ(x)/x)y, and there is an
isomorphism

1 µ2 × Z∗2 Γ′2 Z∗2 × Ẑ 1

1 Γ
(2)
2 Γ2 Γab

2 1

t

h(2)

u

≀ hab

of short exact sequences of profinite groups, and it maps I ′2 isomorphically to the inertia
group I2 of Γ2.

Recall that we denote by Ξ the isomorphism Ext1(µ2, A) → Hom(µ2, A) as described in
Lemma 3.23.
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Lemma 7.21. The map(
Ξ ◦H2(ι, π),Hom([−,−]−1, id) cp

)
: H2(Γab

2 ,Γ
(2)
2 )

∼−→ Hom(µ2, A)× End(Γ
(2)
2 )

is an isomorphism.

Proof. Since Γab
2
∼= µ2 × (1 + 4Z2)× Ẑ, it follows from Proposition 5.8 that(

H2(ι, id),Hom([−,−]−1, id) cp
)
: H2(Γab

2 ,Γ
(2)
2 )

∼−→ Ext1(µ2,Γ
(2)
2 )× End(Γ

(2)
2 )

is an isomorphism. Notice that Ext1(id, π) : Ext1(µ2,Γ
(2)
2 ) → Ext1(µ2, A) is an isomor-

phism by Lemma 3.22. Since we have Ext1(id, π)H2(ι, id) = H2(ι, π) and since Ξ is an
isomorphism, the result follows.

Define P as the compositum of all quadratic extensions of Qab
2 in Qcl2

2 . We remark that
we have Gal(P/Qab

2 ) = A. Define S as the compositum of all quadratic extensions of
M in Qcl2

2 . Notice that S and P are both Galois over Q2 since the groups Gal(Qcl2
2 /S)

and Gal(Qcl2
2 /P ) are both central in Γ2. Moreover, we have S ⊂ P : if K is a quadratic

extension of M , then the compositum KQab
2 is of degree 1 or 2 over Qab

2 . Notice that we
have the following equality

Gal(P/Qab
2 ) = [σ̃5, σ̃−1]|Z/2ZP × [φ̃, σ̃−1]|Z/2ZP ×

(
[φ̃, σ̃5]

Z2/[φ̃, σ̃5]
2Z2

)
.

Moreover, for Gal(P/Qab
2 ) = A we get an isomorphism

h(2) : µ2 × (Z∗2/⟨52⟩)
∼→ A,

((−1)x, (−1)y5z⟨52⟩) 7→ [σ̃5, σ̃−1]|xP [φ̃, σ̃−1]|yP [φ̃, σ̃5]|zP
induced by h(2).

Notice that P/M is abelian by Corollary 5.3 since Qab
2 /M is cyclic. From Lemma 3.23 it

follows that in order to describe the extension class

[Gal(P/M)] ∈ Ext1(Gal(Qab
2 /M),Gal(P/Qab

2 ))

it suffices to express σ̃−1
2 in terms of [φ̃, σ̃−1], [σ̃5, σ̃−1], [φ̃, σ̃5], modulo [φ̃, σ̃5]

2Z2 . We get
a diagram of fields as seen in Figure 2.

Qab
2

S

P

Qcl2
2

α
Z/2Z
1

α
Z/2Z
2 2

α2Z2
3

αZ2
3

Figure 2: diagram of fields with α1 := [φ̃, σ̃−1], α2 := [σ̃−1, σ̃5], α3 := [φ̃, σ̃5]. In Lemma
7.22 we prove that the field S is placed correctly in this Hasse diagram.
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Lemma 7.22. We have an equality S = P ⟨ σ̃−1|2P ⟩ of fields.

Proof. Since Gal(Qcl2
2 /M) = ⟨σ̃−1⟩Γ(2)

2 we find that Gal(Qcl2
2 /M)2 = ⟨σ̃−12⟩(Γ(2)

2 )2. Now
the result follows from the fact that P and S correspond as intermediate extensions of

Q2 ⊂ Qcl2
2 to the groups (Γ

(2)
2 )2 and Gal(Qcl2

2 /M)2 respectively.

Write G := Gal(M/Q2), and notice that for any σ ∈ G we have σ(±M∗2) = ±M∗2, so
that G acts naturally on M∗/±M∗2.

Lemma 7.23. Let α ∈M∗, and let
√
α ∈ Qalg

2 be a root of X2−α. We have the following
equivalences

M(
√
α) ⊂ S ⇐⇒ Qab

2 (
√
α) ⊂ S ⇐⇒ Qab

2 (
√
α)/Q2 is Galois ⇐⇒ α ∈ (M∗/±M∗2)G.

Proof. The first equivalence is clear since Qab
2 (
√
α) is the compositum of Qab

2 and M(
√
α)

in Qcl2
2 . We will now prove the second equivalence. If Qab

2 (
√
α)/Q2 is Galois, then

Gal(Qab
2 (
√
α)/Qab

2 ) is a normal subgroup of Gal(Qab
2 (
√
α)/Q2) that is central because

its cardinality equals 2. Hence, if Qab
2 (
√
α)/Q2 is Galois, then Qab

2 (
√
α) =M(i,

√
α) ⊂ S.

Any intermediate field E of the extension Qab
2 ⊂ Qcl2

2 is Galois over Q2, so the second
equivalence is proven. Finally, we prove the third equivalence. Due to Kummer theory,
we have an equality

W := ⟨−1, α⟩M∗2/M∗2 = (Qab
2 (
√
α)∗

2 ∩M∗)/M∗2

of subgroups of M∗/M∗2, since Qab
2 (
√
α) =M(

√
−1,
√
α). Moreover, by Kummer theory,

we have that M(
√
−1,
√
α)/Q2 is Galois if and only if W is a G-submodule of M∗/M∗2.

The result follows.

Recall from section 3.1 the definition of the connecting homomorphisms.

Lemma 7.24. The connecting homomorphism

δ : (M∗/±M∗2)G → H1(G,±M∗2),

induced by the exact sequence 1→ ±M∗2 →M∗ →M∗/±M∗2 → 1 of G-modules, is an
isomorphism.

Proof. The short exact sequence above induces by Theorem 3.1 a long exact sequence

0→ (±M∗2)G → (Q∗2)G → (M∗/±M∗2)G → H1(G,±M∗2)→ H1(G,M∗).

Notice that the G-invariants of ±M∗2 and of M∗ both equal Q∗2, and that H1(G,M∗) = 0
by Theorem 3.15. The result follows.

Lemma 7.25. We have [P : S] ·#H1(G,M∗2) = 2.

Proof. From Lemma 7.23 and Kummer theory it follows that #(M∗/±M∗2)G = [S : Qab
2 ].

Hence, we have

[P : S] ·#(M∗/±M∗2)G = 8. (4)

Since H1(G,−) is an additive functor, ±M∗2 = ⟨±1⟩ ×M∗2 gives

H1(G,±M∗2) ∼= H1(G, ⟨−1⟩)×H1(G,M∗2).

The action of G on ⟨−1⟩ is trivial, and thus H1(G, ⟨−1⟩) ∼= Hom(G, ⟨−1⟩). It follows from
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G = φ̃|ẐM × σ̃5|
Z2
M that we have #Hom(G, ⟨−1⟩) = 4. Using Lemma 7.24 we conclude that

#(M∗/±M∗2)G = 4 ·#H1(G,M∗2),

and together with (4), this proves the result.

The following result simplifies the statement of Lemma 7.25.

Proposition 7.26. We have H1(G,M∗2) = 0.

Proof. The map M∗ →M∗2, x 7→ x2 induces a short exact sequence of G-modules

0→ µ2 →M∗ →M∗2 → 0.

By taking cohomology groups and applying Theorem 3.15, we obtain the following exact
sequence:

0→ H1(G,M∗2)→ H2(G,µ2)
ψ→ H2(G,M∗).

Since G ∼= Z2×Ẑ we see that Ext1(G,µ2) = 0 because Z2 and Ẑ are projective and because
Ext1 is additive. Theorem 5.2 now shows that H2(G,µ2) ∼= Z/2Z:

H2(G,µ2) ∼= Hom(

2∧
G,µ2) ∼= Hom(Z2, µ2) = Z/2Z.

Hence, it suffices to prove that ψ is non-trivial.

Consider the composition ψ′ := Inf ◦ ψ : H2(G,µ2) → Br(Q2). From the exact sequence
0→ µ2 →M∗ →M∗2 → 0 we find that

Q∗2
2→M∗2 ∩Q∗2 → H1(G,µ2)→ 0

is exact by taking cohomology groups and applying Theorem 3.15. Hence, we have a
canonical isomorphism

H1(G,µ2) ∼= (M∗2 ∩Q∗2)/Q∗2
2 = ⟨2,−3⟩Q∗2

2/Q∗2
2.

We denote by GQ the Galois group Gal(Qsep
2 /Q2). Recall from section 3.1 and section 3.2

that we denote inflation maps and cup products by Inf and ∪ respectively. Then we get
a commutative diagram

H1(G,µ2)×H1(G,µ2) H2(G,µ2) H2(G,M∗)

H1(GQ2 , µ2)×H1(GQ2 , µ2) H2(GQ2 , µ2) Br(Q2)

Q∗2/Q∗2
2 ×Q∗2/Q∗2

2 Br(Q2)[2]

∪

(Inf,Inf) Inf

ψ

Inf

∪

(−,−)

where the top left square commutes due to [11, Prop. 7.9.5] and the bottom square com-
mutes due to our definition of the norm-residue symbols (−,−) in section 3.5. We have
Br(Q2)[2] = Z/2Z by Theorem 3.17 and (−,−) : Q∗2/Q∗22 ×Q∗2/Q∗2

2 → Br(Q2)[2] is a non-
degenerate bilinear map due to Theorem 3.18. Now it follows from dimF2(Q∗2/Q∗2

2) = 3
and dimF2(⟨2,−3⟩Q∗2/Q∗22) = 2, that for some α, β ∈ H1(G,µ2) we have ψ′(α ∪ β) ̸= 0.
We conclude that ψ is non-trivial.

Corollary 7.27. We have [P : S] = 2.
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Proof. This follows immediately from Lemma 7.25 and Proposition 7.26.

Let 4
√
2 and 4

√
3 in Qalg

2 be square roots of
√
2 and

√
3 respectively. With Hensel’s Lemma,

one can verify that x2n ∈ Q∗2 with x ∈ Z∗2 is a square in Q∗2 if and only if x ≡ 1 mod 8 and
n ≡ 0 mod 2 both hold. From this it follows that Q2(

√
Q∗2) equals Q2(

√
−1,
√
2,
√
−3)

and this field is of degree 8 over Q.

Lemma 7.28. We have S =M(
√
−1, 4
√
2, 4
√
−3).

Proof. By Lemma 7.23 and Kummer theory, it follows that it suffices to prove that
√
2,√

−3 are generators of the group (M∗/ ±M∗2)G. By Lemma 7.24 and Proposition 7.26
we have

(M∗/±M∗2)G ∼= H1(G,±M∗2) = H1(G,µ2) = Hom(G,µ2),

where we use the additivity of H1(G,−). Notice that Hom(G,µ2) is generated by the maps
f√2 : σ 7→ σ(

√
2)/
√
2 and f√−3 : σ 7→ σ(

√
−3)/

√
−3. Then

√
2 and

√
−3 in (M∗/±M∗2)G

correspond to the maps f√2 and f√−3 respectively, and thus generate (M∗/±M∗2)G.

Notice that we have

M ∩Q2(
√
−1, 4
√
2, 4
√
−3) = Q2(

√
2,
√
−3),

and the field S equals the composite field MQ2(
√
−1, 4
√
2, 4
√
−3) by Lemma 7.28. Since

[S :M ] = 8 = [Q2(
√
−1, 4
√
2, 4
√
−3) : Q2(

√
2,
√
−3)]

we conclude that S =M ⊗Q2(
√
2,
√
−3) Q2(

√
−1, 4
√
2, 4
√
−3).

Lemma 7.29. We have σ̃−1
2 = [φ̃, σ̃5].

Proof. By Lemma 7.22 and Lemma 7.27 we see that σ̃−1 is the unique non-trivial element
in Gal(P/Qab

2 ) that is the identity automorphism on S. Hence, it suffices to prove that
[φ̃, σ̃5]|S = idS . By Lemma 7.28 it now suffices to verify that 4

√
2, 4
√
−3 are fixed points

of [φ̃, σ̃5]. The following table displays the sign of τ(α)/α for τ ∈ {σ̃5, φ̃} and α ∈
{
√
−1,
√
2,
√
−3}.

σ̃5 φ̃√
−1 + +√
2 − +√
−3 + −

Since [φ̃, σ̃5] is independent of the choice of lifts of σ5 and φ, we may assume without
loss of generality that the following table represents the outcomes τ(α)/α of the input
α = 4

√
2, 4
√
−3 under τ = σ̃5, φ̃.

σ̃5 φ̃
4
√
2
√
−1 1

4
√
−3 1

√
−1

Now we can calculate that

[φ̃, σ̃5](
4
√
2) =

4
√
2, [φ̃, σ̃5](

4
√
−3) = 4

√
−3.

Hence, it follows that [φ̃, σ̃5]|S = idS and σ̃−1
2 = [φ̃, σ̃5].

Proof Theorem 7.19. By Lemma 7.21 we know that(
Ξ ◦H2(ι, π),Hom([−,−]−1, id) cp

)
: H2(Γab

2 ,Γ
(2)
2 )

∼−→ Hom(µ2, A)× End(Γ
(2)
2 )
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is an isomorphism. As noted in section 7.1, the map

Hom([−,−]−1, id) cp : H2(Γab
2 ,Γ

(2)
2 )→ End(Γ

(2)
2 )

maps [Γ2] to the identity map. It remains to show that Ξ◦H2(ι, π)[Γ2] is the homomorphism
µ2 → A defined by −1 7→ [φ̃, σ̃5]. Applying Proposition 3.13 shows that H2(ι, π)[Γ2] is the
class of the extension

1→ Gal(P/Qab
2 )→ Gal(P/M)→ Gal(Qab

2 /M)→ 1.

Now it follows from Lemma 7.29 that Ξ ◦H2(ι, π)[Γ2] maps −1 to [φ̃, σ̃5].

Proof Theorem 7.20. This proof will be similar to the proof of Theorem 7.18. Notice that
from Proposition 3.13 it follows that H2(ι, π)[Γ2] is the class of the extension [Gal(P/M)] ∈
Ext1(µ2, A). Let ψ :

√
1 + 4Z2 → µ2 be the morphism x 7→ φ(x)/x. We denote by

ψ :
√
1 + 4Z2/⟨52⟩ → µ2 the map induced by ψ. From Theorem 7.19 it follows that there

exists an isomorphism

µ2 ×
(√

1 + 4Z2 / ⟨52⟩
) ∼−→ Gal(P/M)

such that the diagram

1 µ2 × (Z∗2/⟨52⟩) µ2 ×
(√

1 + 4Z2/⟨52⟩
)

µ2 1

1 Gal(P/Qab
2 ) Gal(P/M) Gal(Qab

2 /M) 1

inclusion

h(2)

0⊕ψ

≀ id

commutes. From the previous diagram we find that there exists an isomorphism η :
µ2 × Z∗2 → Gal(Qcl2

2 /M) such that the diagram

1 µ2 × Z∗2 µ2 ×
√
1 + 4Z2 µ2 1

1 Γ
(2)
2 Gal(Qcl2

2 /M) Gal(Qab
2 /M) 1

inclusion

h(2)

0⊕ψ

≀η id

commutes: by applying the isomorphisms Ext1(id, h(2)
−1
πh(2)) and Ext1(id, π) to the

extension classes of the top row and bottom row of this diagram respectively, we obtain the
extension classes of the top row and bottom row of the penultimate diagram respectively.

Now we will describe the extension class [I2] ∈ H2(Gal(M/Qunr
2 ),Gal(Qcl2

2 /M)) of

1→ Gal(Qcl2
2 /M)→ Gal(Qcl2

2 /Qunr
2 )→ Gal(M/Qunr

2 )→ 1.

The action of I2 on Gal(Qcl2
2 /M) by conjugation factors through Gal(M/Qunr

2 ) since
Gal(Qcl2

2 /M) is abelian. The induced topological action of Gal(M/Qunr
2 ) on Gal(Qcl2

2 /M)
by conjugation is given by σ̃5|M ⋆ γ = [σ̃5, γ]γ. It induces via η an action of 1 + 4Z2 on

µ2 ×
√
1 + 4Z2. We let (ε, x) ∈ µ2 ×

√
1 + 4Z2, write x = (−1)a

√
5
b
with a ∈ Z/2Z and

b ∈ Z2, write γ := η(1,
√
5
b
), and we find that this action of 1 + 4Z2 on µ2 ×

√
1 + 4Z2 is

given by

5 ⋆ (ε, x) = η−1([σ̃5, γ]γ)(ε, (−1)a) = η−1([σ̃5, σ̃−1]
bγ)(ε, (−1)a) = (

φ(x)

x
ε, x).

We conclude that this action coincides with the action of 1+4Z2 on µ2×
√
1 + 4Z2 defining
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I ′2. Hence, there exists an isomorphism η′ : I ′2 → I2 such that the diagram

1 µ2 × Z∗2 I ′2 Z∗2 1

1 Γ
(2)
2 I2 Gal(Qab

2 /Qunr
2 ) 1

t

h

u

≀η′ hab|Z∗2

commutes.

Now we will describe the extension [Γ2] ∈ H2(Γab
2 ,Γ

(2)
2 ). Consider the section s defined

by φ 7→ φ̃ of the quotient map Γ2 → Gal(Qunr
2 /Q2). The induced action of Gal(Qunr

2 /Q2)

on I2 by conjugation, now induces via η′ an action of Ẑ on I ′2. We find that this action is
given by

1 ⋆ (ε, x, y) = (ε, φ(x), y) :

write x = (−1)a
√
5
b
and y = 5c with a ∈ Z/2Z and b, c ∈ Z2 and write γ := η′(1,

√
5
b
, 1)

and γ′ := η′(1, 1, y), and notice that we have

1 ⋆ (ε, x, y) = (ε, (−1)a, 1)η′−1([φ̃, γ]γ)η′−1([φ̃, γ′]γ)
= (ε, (−1)a, 1)η′−1([φ̃, σ̃−1]bγ)η′−1([φ̃, σ̃5]cγ′)
= (ε, (−1)a, 1)(1, φ(x), 1)(1, y, y).

Hence, the associated semi-direct product I ′2⋊Ẑ equals Γ′2. We conclude that there exists
an isomorphism Γ′2

∼→ Γ2 such that the diagram as stated in the theorem commutes.

Theorem 7.20 shows that the extension class [I2] ∈ H2(Gal(Qab
2 ,Qunr

2 ),Γ
(2)
2 ) is mapped

by the isomorphism H2(hab, (h(2))−1) to the extension class [I ′2] ∈ H2(Z∗2, µ2 × Z∗2) of the
extension

1→ µ2 × Z∗2
t→ I ′2

u→ Z∗2 → 1.

In the remaining part of this section, we will define a map ret, as in Proposition 5.5, and
describe the ‘Ext-part’ ret[I ′2] ∈ Ext1(Z∗2,Z∗2) of the extension class [I ′2]. This will be used
in section 7.5 in order to describe the Galois group Gal(Qcl2/Q). The following proposition
describes ret[I ′2].

Proposition 7.30. Define J ′2 := µ2 ×
√
1 + 4Z2 × (1 + 4Z2). Then the element ret[I ′2] in

Ext1(Z∗2, µ2 × Z∗2) equals the extension class of

1 −→ µ2 × Z∗2
t2−→ J ′2

u2−→ Z∗2 −→ 1,

where t2(ε, x) = (ε, x, 1) and u2(ε, x, y) = (φ(x)/x)y.

Proof. Write Z∗2 = µ2 × (1 + 4Z2) and consider the projection maps p1 : Z∗2 → µ2 and
p2 : Z∗2 → (1 + 4Z2). By the definition of the retraction map ret in Proposition 5.5, it
suffices to prove that Ext1(pi, id)[J

′
2] = H2(pi, id)[I

′
2] for i = 1, 2. For i = 2 this is clear:

since 1 + 4Z2 is projective and procyclic, we have

H2(1 + 4Z2, µ2 × Z∗2) ∼= Ext1(1 + 4Z2, µ2 × Z∗2) = 0.

Let i : µ2 → Z∗2 be the inclusion map. It follows from the equation above that Ext1(id, p1)
and H2(id, p1) are isomorphisms with inverses Ext1(id, i) and H2(id, i) respectively. Con-
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sider the commutative diagram

1 µ2 × Z∗2 I ′2 Z∗2 1

1 µ2 × Z∗2 µ2 ×
√
1 + 4Z2 µ2 1

1 µ2 × Z∗2 J ′2 Z∗2 1

t u

id

id

α

i

i

t2 u2

where the unnamed maps are the inclusion maps, and where α(ε, x) = φ(x)/x. Then
it follows from Proposition 3.13 that Ext1(pi, id)[J

′
2] and H2(pi, id)[I

′
2] both equal the

extension class of the middle short exact sequence in the diagram above.

7.5 Maximal class-2 extension of Q

In this section, we will describe ret[Γ] ∈ Ext1(Γab,Γ(2)) where Γ is the Galois group
Gal(Qcl2/Q) and where ret is a specific retraction of Ext1(Γab,Γ(2))→ H2(Γab,Γ(2)). We
describe this extension by using the local results, see Theorem 7.18 and Theorem 7.20, on

the extension [Γp] ∈ H2(Γab
p ,Γ

(2)
p ) where Γp denotes the Galois group Gal(Qcl2

p /Qp) for a
prime p. The description of ret[Γ] together with Proposition 5.9 will lead to a description
of [Γ] ∈ H2(Γab,Γ(2)).

We fix algebraic closures Qalg of Q and Qalg
p of Qp for every prime p. Moreover, we fix

an embedding Qalg ⊂ Qalg
p for every prime p. By standard Galois theory, for every finite

Galois extension L/Q with L ⊂ Qalg, the extension LQp/Qp is Galois, and restriction to
L gives a natural injective homomorphism Gal(LQp/Qp) → Gal(L/Q). Hence, we have
Qab ⊂ Qab

p and Qcl2 ⊂ Qcl2
p . For every prime p we get a Hasse diagram as in Figure 3.

Q

Qab

Qp

Qcl2 Qab
p

Qcl2
p

Figure 3: Hasse diagram where each unnamed field is the intersection of its parent fields.

Notice that the restriction to Qcl2 gives a natural homomorphism rp : Γp → Γ that
maps onto the decomposition group of Γ corresponding to the valuation |−|p on Qcl2

induced by Qalg ⊂ Qalg
p . It is clear that rp[Γ

(2)
p ] ⊂ Γ(2). Let rabp : Γab

p → Γab and

r
(2)
p : Γ

(2)
p → Γ(2) be the homomorphisms induced by rp. We write Ip := Gal(Qcl2

p /Qunr
p )

and Bp := Gal(Qab
p /Qunr

p ). Then the diagram
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1 Γ
(2)
p Ip Bp 1

1 Γ
(2)
p Γp Γab

p 1

1 Γ(2) Γ Γab 1

id

r
(2)
p rp rabp

Figure 4: relation local and global extensions.

commutes. By the Global Class Field Theorem we have a commutative diagram

Q̂∗p Γab
p

Ẑ∗ Γab

∼
Ap

κp rabp

∼
A

with the horizontal isomorphisms the global and local Artin maps which we denote by
A : Ẑ∗ → Γab and Ap : Q̂∗p → Γab

p respectively, and with κp the injective morphism

Z∗p × pẐ −→
∏
q

Z∗q , (u, pn) 7−→ (xq)q, where xq =

{
u if q = p,

p−n if q ̸= p.

By the Local Class Field Theorem we have Ap[Z∗p] = Bp. Hence, we can view [Ip], [Γp],

[Γ] as elements of H2(Z∗p,
∧2 Q̂∗p), H2(Q̂∗p,

∧2 Q̂∗p), H2(Ẑ∗,
∧2 Ẑ∗) respectively, via the iso-

morphisms H2(Ap|Z∗
p
, ([−,−]

∧2Ap)
−1), H2(Ap, ([−,−]

∧2Ap)
−1), H2(A, ([−,−]

∧2A)−1)

respectively, where [−,−] is the commutator map from Remark 6.1.

By Lemma 4.12 we have

2∧
Ẑ∗ ∼=

( 2∧
Z∗2

)
×

∏
2≤p<q

Z∗p ⊗ Z∗q

and thus
∧2 Ẑ∗ is the product of finite groups. By Proposition 5.5, viewing Ẑ∗ as a product

{±1} × (1 + 4Z2)×
∏
p>2 Z∗p of procyclic groups gives a retraction

ret : H2(Ẑ∗,
2∧
Ẑ∗)→ Ext1(Ẑ∗,

2∧
Ẑ∗)

of the inclusion map Ext1(Ẑ∗,
∧2 Ẑ∗)→ H2(Ẑ∗,

∧2 Ẑ∗). Moreover, this same factorization
of Ẑ∗ yields an explicit profinite group Γ0 with [Γ0] ∈ H2(Ẑ∗,

∧2 Ẑ∗) such that cp[Γ0] = id
and ret[Γ0] = 0, by Proposition 5.9. Similarly, for every prime p we get retractions

ret : H2(Q̂∗p,
2∧
Q̂∗p)→ Ext1(Q̂∗p,

2∧
Q̂∗p), ret : H2(Q̂∗p,

2∧
Ẑ∗)→ Ext1(Q̂∗p,

2∧
Ẑ∗)

and

ret : Ext1(Z∗p,
2∧
Q̂∗p)→ H2(Z∗p,

2∧
Q̂∗p), ret : Ext1(Z∗p,

2∧
Ẑ∗)→ H2(Z∗p,

2∧
Ẑ∗),

based on the factorization Q̂∗2 = {±1} × (1 + 4Z2)× 2Ẑ for p = 2 and Q̂∗p = Z∗p × pẐ for p
odd.
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Lemma 7.31. We have [Γ] = ret[Γ] + [Γ0] in H2(Ẑ∗,
∧2 Ẑ∗).

Proof. We have cp[Γ] = id by section 7.1. Hence, ret and cp map ret[Γ] + [Γ0] − [Γ] to
the zero element of Ext1(Ẑ∗,

∧2 Ẑ∗) and End(
∧2 Ẑ∗) respectively. The result now follows

from Proposition 5.6.

The following lemma expresses ret[Γ] in terms of the local extensions ret[Ip]. For every
prime p, denote by ιp the inclusion map Z∗p ↪→ Q∗p.

Lemma 7.32. The isomorphism Ext1(Ẑ∗,
∧2 Ẑ∗) →

∏′
p Ext

1(Z∗p,
∧2 Ẑ∗) from Theorem

4.45 maps ret[Γ] to the element

(
Ext1(Z∗p,

2∧
κp) ret[Ip]

)
p
∈

∏′

p

Ext1(Z∗p,
2∧
Ẑ∗).

Proof. From the commutative diagram in Figure 4 and Proposition 3.13, it follows that
H2(ιp, id)[Γp] = [Ip] and H2(κp, id)[Γ] = H2(id,

∧2 κp)[Γp]. Now from the commutative
diagram

[Ip] ∈ H2(Z∗p,
∧2 Q̂∗p) H2(Z∗p,

∧2 Ẑ∗)

[Γp] ∈ H2(Q̂∗p,
∧2 Q̂∗p) H2(Q̂∗p,

∧2 Ẑ∗)

[Γ] ∈ H2(Ẑ∗,
∧2 Ẑ∗)

H2(id,
∧2 κp)

H2(ιp,id)

H2(id,
∧2 κp)

H2(ιp,id)

H2(κp,id)

we conclude that H2(κpιp, id)[Γ] = H2(id,
∧2 κp)[Ip]. From the naturality of the retraction

maps ret as in Lemma 5.7, it follows that

Ext1(κpιp, id) ret[Γ] = Ext1(id,

2∧
κp) ret[Ip].

We will now describe ret[Ip] for each prime p. Denote by µ2 the subgroup {±1} of Z∗2.
For p = 2 we consider the extension

1 −→ µ2 × Z∗2
t2−→ J ′2

u2−→ Z∗2 −→ 1,

as in Proposition 7.30, i.e., J ′2 = µ2 ×
√
1 + 4Z2 × (1 + 4Z2) and t2(ε, x) = (ε, x, 1) and

u2(ε, x, y) = (φ(x)/x)y. Then it follows from Proposition 7.30 that ret[I2] equals [J
′
2]. For

p odd we consider the exact sequence

1 −→ Z∗p
tp−→ I ′p

up−→ Z∗p −→ 1

as in Theorem 7.18, i.e., I ′p = (1 + pZp) × µ(p−1)2 × (1 + pZp) and if we identify Z∗p with
(1+pZp)×F∗p, then tp(x, ζ) = (x, ζ, 1) and up(x, ζ, y) = (y, ζp−1). It follows from Theorem
7.18 that ret[Ip] equals [I

′
p] since I

′
p is abelian. In order to unify notation, we write J ′p := I ′p

for p odd.

We will now construct an extension [P ] ∈ Ext1(Ẑ∗,
∧2 Ẑ∗), and we will show in Theorem

7.33 the equality [P ] = ret[Γ]. Let h2 :
∧2 Q̂∗2 → µ2 × Z∗2 be the isomorphism induced by

the isomorphism
2∧
Q̂∗2

∼−→
( 2∧

Z∗2
)
× (Z∗2 ⊗ Ẑ)
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from Lemma 4.12 with Q̂∗2 = Z∗2× 2Ẑ. For odd p, we let hp :
∧2 Q̂∗p → Z∗p be the canonical

isomorphism from Example 4.16. Let h :
∏
p

∧2 Q̂∗p → µ2×Ẑ∗ be the isomorphism induced
by the isomorphisms hp. Write J ′ := ×

∏
p J
′
p. By Lemma 4.1 the maps tp and up and∧2 κp induce maps

t := (tp)p : µ2 × Ẑ∗ → J ′,

u := (up)p : J ′ → Ẑ∗,
2∧
κ := (

2∧
κp)p ◦ h−1 : µ2 × Ẑ∗ →

2∧
Ẑ∗.

For example, for
∧2 κ this follows because for each odd prime p the composition

Z∗p
h−1
p−→

2∧
Q∗p

∧2 κp−−−→
2∧∏

q

Z∗q
quotient map−−−−−−−−→

2∧∏
q

(Z∗q/Nq)

is trivial if Np = Z∗p, where Nq ⊂ Z∗q is an open subgroup for each q. The pushout

P :=
∧2 Ẑ∗ ⊔

µ2×Ẑ∗ J
′ of t and

∧2 κ gives a commutative diagram

1 µ2 × Ẑ∗ J ′ Ẑ∗ 1

1
∧2 Ẑ∗ P Ẑ∗ 1

t

∧2 κ

u

id

and we consider the bottom extension class [P ] ∈ Ext1(Ẑ∗,
∧2 Ẑ∗).

Theorem 7.33. In Ext1(Ẑ∗,
∧2 Ẑ∗) we have ret[Γ] = [P ].

Proof. Recall that for any prime p we have ret[Ip] = [J ′p]. By Lemma 7.32 it thus suffices

to show that for all primes p we have Ext1(κpιp, id)[P ] = Ext1(id,
∧2 κp)[J

′
p]. Let p be

a prime number. We denote by jp the composition
∧2 Q̂∗p

hp→ im(hp) ↪→ µ2 × Ẑ∗. The

extension class Ext1(κpιp, id)[P ] is induced by the pullback Q := Z∗p ×Ẑ∗ P of κpιp and

P → Ẑ∗: it is the class of the bottom row of the following commutative diagram.

1
∧2 Q̂∗p J ′p Z∗p 1

1 µ2 × Ẑ∗ J ′ Ẑ∗ 1

1
∧2 Ẑ∗ P Ẑ∗ 1

1
∧2 Ẑ∗ Q Z∗p 1

tp

jp

up

κpιp

t

∧2 κ

u

id

id κpιp

Applying Proposition 3.13 to this diagram yields the relations

Ext1(id, jp)[J
′
p] = Ext1(κpιp, id)[J

′], Ext1(id,

2∧
κ)[J ′] = [P ], Ext1(κpιp, id)[P ] = [Q].
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Using
∧2 κp = (

∧2 κ)jp, we now conclude that

Ext1(id,
∧
κp)[J

′
p] = Ext1(κpιp,

2∧
κ)[J ′] = Ext1(κpιp, id)[P ] = [Q].

We can now fully describe Γ.

Theorem 7.34. [Γ] ∈ H2(Ẑ∗,
∧2 Ẑ∗) is the Baer sum of [P ] and [Γ0].

Proof. This follows from Lemma 7.31 and Theorem 7.33.

7.6 Decomposition groups in global class-2 group

In this section we will use the same notation and conventions as in section 7.5. As in section
7.5, we denote for any prime p by rp the map Γp → Γ that restricts automorphisms in Γp
to Qcl2 ⊂ Qcl2

p . The goal of this section is to prove the following theorem, which states
that the decomposition group Γp of every prime p is mapped injectively to Γ by rp. Notice
that for any prime p the map rp is injective if and only if Gal(Qcl2

p /Qcl2Qp) is trivial, i.e.,

if and only if Qcl2Qp = Qcl2
p .

Theorem 7.35. For every prime p, the map rp : Γp → Γ is injective.

Let p be a prime. We remark that rabp : Γab
p → Γab from section 7.5 is injective by class

field theory. From Figure 4 in section 7.5 it follows that rp is injective if and only if

r
(2)
p : Γ

(2)
p → Γ(2) is injective. Hence, the decomposition group Γp is mapped injectively

to Γ by rp if and only if
∧2 κp :

∧2 Q̂∗p →
∧2 Ẑ∗ is injective, where κp : Q̂∗p → Ẑ∗ is the

morphism as defined in section 7.5.

Lemma 7.36. Let p be a prime number. Then rp is injective if and only if for each
non-trivial x ∈ Z∗p there exists a prime q ̸= p such that x⊗ p ∈ Z∗p ⊗ Z∗q is non-zero.

Proof. As noticed before this lemma, rp is injective if and only if
∧2 κp :

∧2 Q̂∗p →
∧2 Ẑ∗

is injective. By writing Ẑ∗ ∼=
∏
q Z∗q , Lemma 4.12 yields an isomorphism

ψ1 :

2∧
Ẑ∗ ∼−→

( 2∧
Z∗2

)
×

∏
2≤q1<q2

Z∗q1 ⊗ Z∗q2 .

We also consider the morphism of profinite groups

ψ2 : Z∗p →
2∧
Q̂∗p, x 7→ p ∧ x,

which is an isomorphism if p is odd by Example 4.16. It can be easily verified that
∧2 κp

is injective if and only if ψ := ψ1(
∧2 κp)ψ2 is injective. Notice that ψ is given by

x 7−→ (0, (aq1,q2)2≤q1<q2), where aq1,q2 =


p−1 ⊗ x if q1 ̸= p and q2 = p,

x⊗ p if q1 = p and q2 ̸= p,

0 else.

The result follows.

For any prime q we write

q∗ :=

{
q if q > 2,

4 if q = 2.
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Denote by ϕ : Z≥1 → Z≥1 Euler’s totient function. For any prime q and any non-zero
integer x we denote by ordq(x) the largest n ∈ Z≥0 such that qn divides x.

Lemma 7.37. Let p be a prime number. For any odd prime q ̸= p we denote by dq the
order of p mod q∗ in (Z/q∗Z)∗. Suppose that the following two statements are true:

(i) for any integer N > 0 there exists a prime q ̸= p such that ordp(dq) > N ,

(ii) for any prime divisor r of ϕ(p∗) there exists a prime q ̸= p such that

ordr(dq) = ordr(ϕ(q∗)) ≥ ordr(ϕ(p∗)).

Then the map rp : Γp → Γ is injective.

Proof. For every q we have Z∗q = (1 + q∗Zq) × (Z/q∗Z)∗. Let x ∈ Z∗p. The result follows
straightforwardly from Lemma 7.36 by examining for every prime q ̸= p the projection of
x⊗ p ∈ Z∗p ⊗ Z∗q to (1 + p∗Zp)⊗ (Z/q∗Z)∗ and to (Z/p∗Z)∗ ⊗ (Z/q∗Z)∗.

Now we will prove Theorem 7.35 by using Chebotarev’s density theorem, see [10, Ch. 8.4,
Thm. 10].

Proof Theorem 7.35. Let p be a prime. We will prove (i) and (ii) of Lemma 7.37.

(i) Let N > 0 be an integer. Let L ≥ 3 and M > L + N be integers. Let q > 2 be a

prime that does not divide the discriminant ∆(XpL − p) and note that q ̸= p. Then
ordp(dq) > N holds if pM | q−1 and pL ∤ (F∗q : ⟨p mod q⟩), i.e., if q splits completely
in Q(ζpM ) yet does not split completely in Q( pL

√
p), where ζpM is a primitive root of

XpM − 1 in Qalg and pL
√
p is a root of XpL − p in Qalg. By Schinzel’s Theorem [13,

Thm. 2], for a field K, an integer n > 0 that is not divisible by the characteristic of
K, and any a ∈ K, the Galois group of Xn− a over K is abelian if and only if there
exists b ∈ K such that aw = bn, where w is the number of nth roots of unity in K.
Since L ≥ 3, it follows that the normal closure of Q( pL

√
p)/Q is a non-abelian Galois

extension of Q. Therefore, the field Q(ζpM , pL
√
p) is strictly larger than Q(ζpM ).

Q

Q(ζpM )Q( pL
√
p)

Q(ζpM , pL
√
p)

By a special case of the Chebotarev’s density theorem [10, Ch. 8.4] the natural
density of the primes q that split completely in a finite Galois extension K/Q equals
1/[K : Q]. It follows that there exist infinitely many primes q that are completely
split in Q(ζpM ) yet not completely split in Q(ζpM , pL

√
p), and each such q is not

completely split in Q( pL
√
p). This proves (i).

(ii) Let r be a prime divisor of ϕ(p∗). We translate the conditions of (ii) to splitting
behaviour of primes in algebraic number fields. Let q > 2 be a prime that does not
divide the discriminant ∆(Xr − p) and note that q ̸= p. Write k := ordr(ϕ(p∗)),

and let r
√
p and ζrk be roots of Xr − p and Xrk − 1 in Qalg respectively with ζrk

primitive. Then we have ordr(dq) = ordr(q − 1) if and only if p mod q is not an
rth power in F∗q , i.e., if and only if q is not completely split in Q( r

√
p). We also have

ordr(q−1) ≥ ordr(ϕ(p∗)) if and only if q splits completely in Q(ζrk). Since p ramifies
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in Q( r
√
p) and does not ramify in Q(ζrk), it follows that we have Q(ζrk) ⊊ Q(ζrk , r

√
p).

Hence, by Chebotarev’s density theorem, there exist infinitely many primes q that
are completely split in Q(ζrk) yet not completely split in Q(ζrk , r

√
p), and each such

q is not completely split in Q( r
√
p).

We now conclude that rp is injective by Lemma 7.37.

7.7 Descriptions Ext-part with cocycles

With the theory from section 3.4 and the previous sections of chapter 7, we can express the
maximal class-2 extension of Q and Qp also in terms of cocycle classes. This description
depends on the choice of generators of F∗p for each odd prime p. We will use the same
notation as in all of section 7.5.

For every prime p > 2, let αp be a generator of F∗p, and let α2 ∈ (1 + 4Z2)\(1 + 8Z2).
Naturally, we can view αp as an element of Z∗p for all primes p since F∗p ⊂ Z∗p. For every
prime p > 2, we consider the map

νp : Q̂∗p → {0, . . . , p− 2}

pẐ × (1 + pZp)× F∗p ∋ (pm, x, αnp ) 7→ n, where n ∈ {0, . . . , p− 2}

which depends on the choice of αp. Moreover, for p = 2 we consider the map

ν2 : Q∗2 → {0, 1}

2Ẑ × (1 + 4Z2)× {±1} ∋ (m,x, (−1)n) 7→ n, where n ∈ {0, 1}.

As in section 7.5, we view [Ip], [Γp] and [Γ] as elements of H2(Z∗p,
∧2 Q̂∗p), H2(Q̂∗p,

∧2 Q̂∗p),
H2(Ẑ∗,

∧2 Ẑ∗) respectively. We consider the same isomorphisms hp :
∧2Q∗p → Z∗p for all

odd primes p and isomorphism h2 :
∧2Q∗2 → {±1} × Z∗2 as in section 7.5. For any prime

p > 2 we write p∗ := p and we write 2∗ := 4. Denote by ϕ : Z≥1 → Z≥1 Euler’s totient
function.

Theorem 7.38. Let p be a prime. Then

ωp : Q̂∗p × Q̂∗p →
2∧
Q̂∗p

(x, y) 7→

{
p ∧ αp if νp(x) + νp(y) ≥ ϕ(p∗),
1 if νp(x) + νp(y) < ϕ(p∗)

is a continuous cocycle, and ret[Γp] ∈ Ext1(Q̂∗p,
∧2 Q̂∗p) corresponds via Proposition 3.10

to the cocycle class [ωp].

Proof. We only prove the theorem for p odd. For p = 2 this follows similarly from Theorem
7.20. Consider I ′p = (1 + pZp) × µ(p−1)2 × (1 + pZp) and Γ′′p = I ′p × Ẑ. Let ψ be the

isomorphism Z∗p× Ẑ→ Q̂∗p, (a, n) 7→ apn. Using Theorem 7.18 it can be routinely verified

that Ext1(ψ, hp) ret[Γp] is the class of the extension

1→ Z∗p → Γ′′p → Z∗p × Ẑ→ 1

where the maps are given by

(1 + pZp)× F∗p → Γ′′p, (x, ζ) 7→ (x, ζ, 1, 0)
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and

Γ′′p → (1 + pZp)× F∗p × Ẑ, (x, ζ, y,m) 7→ (ζ, y,m).

Let βp ∈ µ(p−1)2 be such that βp−1p = αp. Then the map

sp : Z∗p × Ẑ→ Γ′′p

((1 + pZp)× F∗p)× Ẑ ∋ ((x, αnp ),m) 7→ (1, βnp , x,m), where n ∈ {0, . . . , p− 2}

is a continuous section of Γ′′p → Z∗p × Ẑ, and we have hpωp(ψx, ψy) = sp(x)sp(y)sp(xy)
−1

for all x, y ∈ Q̂∗p.

We will now construct a cocycle class [ω] corresponding to ret[Γ] ∈ Ext1(Ẑ∗,
∧2 Ẑ∗) via

Proposition 3.10. For every prime p, let ωp : Q̂∗p × Q̂∗p →
∧2 Q̂∗p be the cocycle from

Theorem 7.38, and let κp : Q∗p → Ẑ∗ and ιp : Z∗p ↪→ Q∗p be as in section 7.5. For every
prime p we write

α̃p := (

2∧
κp)(p ∧ αp) = (xq)q ∧ (yq)q ∈

2∧∏
q

Z∗q , where

xq =

{
1 if q = p,

p−1 if q ̸= p,
and yq =

{
αp if q = p,

1 if q ̸= p.

Then for every prime p we have that ω′p := Z2(ιp,
∧2 κp)(ωp) is the map

ω′p : Z∗p × Z∗p →
2∧
Ẑ∗, (x, y) 7→

{
α̃p if νp(x) + νp(y) ≥ p,
1 if νp(x) + νp(y) < p.

Theorem 7.39. The map

ω : Ẑ∗ × Ẑ∗ →
2∧
Ẑ∗(∏

p

Z∗p
)
×
(∏

p

Z∗p
)
∋ ((xp)p, (yp)p) 7→

∏
p

ω′p(xp, yp)

is a well-defined continuous cocycle, and ret[Γ] ∈ Ext1(Ẑ∗,
∧2 Ẑ∗) corresponds via Propo-

sition 3.10 to the cocycle class [ω].

Proof. From Lemma 4.1 it follows that ω is a well-defined continuous cocycle. It is clear
that for every prime p we have Ext1(id, κpιp)[ω] = Ext1(ιp,

∧2 κp)[ωp]. Since ret[Ip] corre-
sponds to Ext1(ιp, id)[ωp] by Theorem 7.38, we now conclude by Lemma 7.32 that ret[Γ]
corresponds to [ω].

The descriptions of the cocycle classes corresponding to ret[Γp] and ret[Γ] yield descriptions

of the extension classes [Γp] ∈ H2(Q̂∗p,
∧2 Q̂∗p) and [Γ] ∈ H2(Ẑ∗,

∧2 Ẑ∗), as we will state in
the next theorem. By Proposition 5.9 the factorizations

Q̂∗2 = µ2 × (1 + 4Z2)× 2Ẑ, Q̂∗p = Z∗p × pẐ for p > 2, Ẑ∗ = µ2 × (1 + 4Z2)×
∏
p>2

Z∗p,

yield cocycles

θ2 : Q̂∗2 × Q̂∗2 →
2∧
Q̂∗2, θp : Q̂∗p × Q̂∗p →

2∧
Q̂∗p for p > 2, θ : Ẑ∗ × Ẑ∗ →

2∧
Ẑ∗

respectively, and they are such that applying the isomorphisms (ret, cp) to any of the
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corresponding cocycle classes yields (0, id) as in Proposition 5.9. For any prime p we
consider the cocycle ωp as in Theorem 7.38, and we also consider the cocycle ω as in
Theorem 7.39.

Theorem 7.40. We have the following correspondences between extension classes and
cocycle classes via Proposition 3.10.

(i) For any prime p the extension class [Γp] ∈ H2(Q̂∗p,
∧2 Q̂∗p) corresponds to the cocycle

class [ωp + θp].

(ii) The extension class [Γ] ∈ H2(Ẑ∗,
∧2 Ẑ∗) corresponds to the cocycle class [ω + θ].
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