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1 INTRODUCTION

1.1 Summary

Let K be a field and let K8 be an algebraic closure of K. A profinite group G is of class
2 if its commutator subgroup [G, G] is contained in its center Z(G). A Galois extension
of fields is called a class-2 extension if the Galois group is of class 2. We denote the
composite of all class-2 Galois extensions of K inside K®® by K2, Then K°?2 is itself
a class-2 extension of K. In this thesis, we focus on the description of the structure of
the Galois group Gal(K“?/K) when K equals the field Q of rational numbers or the field
Qp of p-adic numbers for some prime p. For any profinite group G’ we denote by G@ the
topological closure of [G, G] in G, and we denote by G® the quotient G/ G,

Before we state the results for K = Q,, we introduce some notation. For any prime p,
denote by I', the Galois group Gal((@g12 /Qp). Moreover, for any n € Zg, let p, C @Zlg
be the set of roots of X™ — 1. For any prime p we denote by Z, C Q, the ring of p-adic
integers and we denote by F; the finite field of order p. We identify F; with p,—1 C Q.
We denote by Z the ring of profinite integers. We now describe Iy, starting with the case

where p is odd.

Theorem 1.1. Let p be an odd prime. Consider the profinite abelian group
I = (14 pZp) X pip-1)2 % (1 +py)
and the topological action on on I;, defined by

Lx (z,¢,y) = (zy,¢P,y).

Let II’j x 7 be the associated semi-direct product. We identify Z, with (1 +pZy) X 5. Then
there is a short exact sequence
x t /] u *
1 —Z,— 1, —Z,—1
of profinite groups, where t(z,¢) = (x,¢(,1) and u(x,(,y) = (y,¢P~1) and there is an
isomorphism

(t,0) (u,id)

1 z; >IZ’3>4Z*>Z;><Z*>1
P
1 —— 1P y T rab > 1

of short exact sequences of profinite groups.

In section [7.3] we will provide an isomorphism of short exact sequences as in Theo-
rem with descriptions of the outer vertical isomorphisms. The local Artin map
Q, — Gal(@gb /Qp) induces the isomorphism Z; x 75 I‘gb in Theorem It maps
Z, isomorphically to the inertia group Gal((@gb/(@;m) of F;b, where Q" denotes the
maximal unramified extension of Q,. Let ¢ € I', denote any Frobenius element. Then we
have a well-defined isomorphism Gal((@;b /Qp™) = 1“1(32) given by 8 — [, B] where 3 € r,
is any extension of 3, and this isomorphism does not depend on the choice of ¢. The latter
two isomorphisms combined yield the isomorphism Z, = Ff) appearing in Theorem

Moreover, the isomorphism IZ’D X7 I’y in this theorem maps I]; isomorphically to the
inertia group of I',, which is abelian in this case.



We remark that the subgroup (1 + pZy) x pi(,—1)2 X {1} of I}, may be identified with
(Z3)7 T = {z € QU8 : 2? € 77},

1
so that I, becomes equal to (Z;)»=1 x (14pZy). In these terms, the map ¢ is just inclusion
on the first factor, and u maps (z,y) to (¢(z)/z)y.

1
Next we pass to the case p = 2. Then we replace the group (Z;;)ﬁ just discussed by

V1+4Zy = {z € Q¥ : 22 € 1 4+ 4Z,}.
Notice that Qa(y/1 + 4Z2) is the unique quadratic unramified extension of Q9 inside leg,
and that Zj is a subgroup of index 2 in y/1 4 4Zy. The following theorem gives a description
of I'y, comparable to Theorem Denote by ¢ € Gal(Q5"/Q2) the Frobenius element.
Theorem 1.2. Consider the topological action of 1+ 4Zs on po X /1 + 479 defined by

w(x)g,x)_

5x(g,x) = (

Let I, := (po x /1 + 4Z2) x (1+4Z5) be the associated semi-direct product. Let a topological
action of Z on I} be defined by
Lx (e, 2,y) = (e, p(2)y,y)
and let I} » 7 be the associated semi-direct product. Then there is a short exact sequence
1— o x 75 5 I 2 75 — 1
of profinite groups, where t(e,x) = (e,2,1) and u(e,z,y) = (¢(z)/x)y, and there is an
isomorphism

1*>p2xZ§ﬂ>I§xZM>Z§x2*>1

Ll

1 —— 1P Ty » Tab 1

of short exact sequences of profinite groups.

In section [7.4) we will provide an isomorphism of short exact sequences as in Theorem
with descriptions of the outer vertical isomorphisms. Similarly to the case for odd p, the
local Artin map Qb — Gal(Q3P/Q2) induces the isomorphism Zj x Z5 I'4 in Theorem
It maps Z3 isomorphically to the inertia group Gal(Q&°/Q4™) of I'sP. Let o5 and o_;
in Gal(Q3P/QY"") correspond via this isomorphism to 5 and —1 in Z} respectively, and let
o5 and 0_1 be extensions to I'y of o5 and o_1 respectively. Let ¢ € I's denote a Frobenius
element that is the identity map on pgn for all n € Z~g. Then we have a well-defined
isomorphism s x Gal(Q3P/Qy™) 5 ng) given by ((=1)%,8) — [0, 5-1)%[p, 3] where
E € I'y is any extension of 8 and where a is any integer, and this isomorphism does not
depend on our choice of . The latter two isomorphisms together induce the isomorphism
po X 75 = Féz) appearing in Theorem Moreover, the isomorphism I}, 75 I’y in
this theorem maps I} isomorphically to the inertia group of I'y. This inertia group is close
to being abelian: the commutator subgroup of I} equals p2 and is central. Moreover, the
center Z(I}) of I} equals ps x Z3 x (1 4 8Z2) and is of index 4 in I). We remark that for
any non-abelian profinite group G the center Z(G) is of index at least 4 in G.



We get a similar description of I' := Gal(Q%? /Q) by combining the two previous theorems,
and the result can be found in Theorem 7_43%1 Consider an inclusion Q*& C leg. Then
Q%2 is the compositum of its subfields Q¢ and Qp, and this result can be found in section
Equivalently, the natural continuous homomorphism Gal((@;12 /Qp) — T, that restricts
automorphisms to Q°2, is injective. This thesis is inspired by [6], in which Galois groups
of certain class-2 field extensions are described.

From now on, let K be an algebraic number field or a local number field. From class
field theory, the Galois group of the extension K /K is well-known. Due to the following
result, Theorem [1.3, we can also describe the Galois group of K2?/K? by using the
results from class field theory and by using that H?(Gal(K*P/K),Q/Z) = 0. For any
group G we denote by G® the commutator subgroup [G, G] of G and we denote by G
the subgroup [G, G(2)] of G. Similarly, for any profinite group G we denote by G2 the
topological closure of [G, G] in G and we denote by G®) the closure of [G, G?)] in G. More
information on these groups G can be found in section

Throughout this thesis we will use the convention that parentheses (...) give two meanings
to a sentence: one with the contents in all parentheses, and one without these contents.
For example, for any (topological) groups G and G2 we denote the set of (continuous)
homomorphisms G; — G2 by Hom(G1,G2), and by this we mean that Hom(G1, G2)
denotes the hom-set of groups if G; and Go are groups and Hom(G1,G2) denotes the
hom-set of topological groups if G; and Gj are topological groups. For any (profinite)
abelian groups A and B we say that a map f : Ax A — B is alternating if f is (continuous
and) bilinear and f(a,a) = 0 for all a € A. We denote by Alt?(A, B) the abelian group
of all (continuous) alternating maps A x A — B. For any (profinite) abelian group A we
denote by /\2 A a (profinite) abelian group and by
2
—/\—:AXA—}/\A, (al,a2)|—>a1/\a2

a (continuous) alternating map such that composition with — A — induces a representation
Hom(A\? A, —) = Alt?(4, —) of the functor Alt?(4, —). For any (profinite) group G there
is a well-defined commutator map [—, —] : A2 G*® — G® /G®) that maps g1 Az to [g1, g2]
for any g1, 92 € G. In section we will further discuss the (profinite) group /\2 G.

For a (topological) group G and a (topological) G-module A we denote by H?(G, A) the
second (continuous) cohomology group with coefficients in A. If A is a topological G-
module, then H?(G, A) will denote the continuous cohomology group, unless specified
otherwise. The following result is proven in chapter [6]

Theorem 1.3. Let G be a (profinite) group such that H*(G,Q/Z) = 0. Then the com-
mutator map

2
[—.—1: \G™ = G?/G®)
is an isomorphism.

For any global or local field K we have H?(Gal(K®?/K),Q/Z) = 0 by a theorem of Tate
that can be found in [I4], p. 227, Thm. 4]. For the remaining part of this section, assume
that K is equal to Q or Q, for some prime p, and write I := Gal(K“?/K). It follows
from the theorem of Tate that H?(Gal(K*P/K),Q/Z) = 0 holds. In particular, we get an
isomorphism /\2 I?> — I'® by Theorem Via this isomorphism, we can view the class
[[] of the central extension 1 — I'® — T' — I — 1 as an element of H?(I'*P, A\? T'2b).



In order to describe the structure of the profinite group I', it suffices to determine the
element [[] € H2(**, A2T#). To do so, we describe H2(I'*", A2T'**) more explicitly
using the following theorem, of which the proof is an exercise in [3, Ch. 5.6] in the case of
discrete abelian groups. The proof of this result can be found in section [5.2

Theorem 1.4. Let A, G be (profinite) abelian groups. Then the sequence

2
0 — Ext'(G, A) - H*(G, A) = Hom(/\ G, A) — 0

is a split exact sequence, where Ext!(G, A) — H?(G, A) is the inclusion map, and where
cp is the map
2
Ccp: H2(G7 A) - HOHI(/\ GaA)v [1 A= E—>G— 1} = (gl A ga — [5(91)35(92)}),

with s any (continuous) set-theoretic section of E — G.

Let (G;)ier be a collection of procyclic groups indexed by I, and let A be a profinite
abelian group. Suppose that [ is finite, or, suppose that A is the product of finite discrete
groups. In section [5.3] we will exhibit an explicit retraction

ret((Gi)i, A) : HX([[ Gi, A) = Ext (][ G, 4)

of the inclusion map Ext!([[; Gi, A) — H*([[; Gi, A). By factoring I'*" into a product of
procyclic groups, we get an explicit splitting

2 2 2
(ret, cp) : HA(T*, AT*?) 5 Ext!(T*", A T*") x End(/\ T*").

Since cp[['] = id, it remains to determine the element ret[I'] € Ext!(I'*P, A2 T#P). This will
be done by using various properties of Ext' and number-theoretic properties of the field
K.

We will now pose several questions that arose from this thesis. Inspired by [I], we ask
whether it is possible for every prime p to describe roots of elements of ng that generate
Q;IQ, and similarly we ask for a description of Q°2. Another interesting question is whether
the Galois group Gal(K®2/K) can be described for other local and global fields K. We
also ask whether it is possible to describe Galois groups of maximal ‘class-n’ extensions of
Qp and Q, where p is a prime.
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2 PRELIMINARIES

2.1 Profinite groups

All statements without proofs or references in this section can be found with proof in [11].
The topological closure of a subspace X is denoted by X.

Remark 2.1. Let (I, <) be a directed set, i.e., (I, <) is a poset such that for all i,k € T
there exists k € I such that 4,7 < k. Consider an inverse system

((Xa)i, (fij = Xi = Xj)j<in 1)
of topological groups. The inverse limit is equal to the subgroup
{(@i)ier | Vi,j € I,j <i= fij(zi) = x;}
of the topological group [[, X; equipped with the subspace topology. A

Definition 2.2. A profinite group/ring is a topological group/ring that is isomorphic to
the inverse limit of an inverse system of discrete finite groups/rings. A

A morphism between profinite groups is a continuous group homomorphism. This turns
the class of profinite groups into a locally small category, i.e., for any profinite groups G1,
G2 the hom-set Hom(G1, G2) is a set.

Example 2.3. Let K C L be a, possibly infinite, Galois extension. Then Gal(L/K)
equals the inverse limit
Gal(L/K) = lim Gal(M/K)
KCMCL
where M ranges over the finite Galois extensions of K contained in L. Hence, Gal(L/K)
is a profinite group. A

Definition 2.4. Let GG be a group. Then the profinite completion G of G is the inverse
limit of the inverse system (G/N)ner where I is the set of all normal subgroups N of G
of finite index. A

Notice that in the definition above, Gis a profinite group, and the image of the natural
homomorphism G — G is dense in G.

Example 2.5. Let p be a prime. For any ¢,j7 € Z~( such that ¢ > j we consider the
natural ring homomorphism Z/p'Z — 7Z/p’Z given by x + p'Z + x + p’Z for any x € Z.
Then the inverse limit lim, Z/p'Z is the ring of p-adic integers and is denoted by Lip.

For any integers n,m > 1 with m | n we similarly have a map Z/nZ — Z/mZ. The inverse
limit of the induced inverse system is the ring of profinite integers and is denoted by Z.
As a topological group, Z is the profinite completion of Z. A

Lemma 2.6. Let G be a compact topological group and let H C G be a subgroup of G.
Then H is open if and only if it is closed and of finite index (G : H).

Proof. Since G equals the disjoint union of cosets of H, the result follows from compactness
of G. =



It is clear that profinite groups and profinite rings are compact Hausdorff and totally
disconnected, since they are subspaces of products of finite discrete spaces. The following
proposition is a special case of [I1, Thm. 2.1.3] and of [11, Thm. 5.1.2].

Proposition 2.7. A topological group is a profinite group if and only if it is compact
Hausdorff and totally disconnected. A topological ring is a profinite ring if and only if it
1s compact Hausdorff.

The following lemma is a special case of [11, Thm. 2.1.3].
Lemma 2.8. Let G be a profinite group. Then there exists a set N of open normal

subgroups N of G such that N = {1} and such that for each open neighbourhood V' of
1 there exists N € N with N C V.

Since profinite groups are compact Hausdorff, we get the following result.

Lemma 2.9. Let f : G — G be ‘a morphism of profinite groups. Then [ is closed, and
for any subset X C G we have f(X) = f(X). Moreover, if f is a bijection, then f is an
isomorphism of profinite groups.

As a corollary of Lemma [2.9) every injective morphism of profinite groups induces a
homeomorphism to its image.

Corollary 2.10. Let ¢ : G — G’ be an injective morphism of profinite groups. Then the
induced map G — ([G] is an isomorphism of profinite groups.

The following two lemmas give sufficient conditions for morphisms of profinite groups to
have continuous set-theoretic sections and retractions.

Lemma 2.11. Every surjective morphism G — G’ of profinite groups has a continuous
set-theoretic section.

Proof. See [11, Prop. 2.2.2]. O

Lemma 2.12. Every injective morphism G — G’ of profinite groups has continuous set-
theoretic retraction.

Proof. Let ¢ : G — G’ be an injective morphism of profinite groups. Then ([G] is a closed
subgroup of G’ by Lemma The quotient map ¢ : G’ — G’ /.|G] of topological spaces
has a topological section s : G'/i[G] — G’ by [15, Ch. 1.2, Prop. 1], and note that we can
take s to be such that s(1[G]) = 1. Now G’ — G, ¢' — 17 1(¢'(sqg’)~!) is a continuous
set-theoretic retraction of ¢. O

Quotients of profinite groups by closed normal subgroups are profinite groups, and ar-
bitrary products of profinite groups are profinite groups [I1, Prop. 2.2.1]. The following
result is a specific case of [I1), Cor. 1.1.8].

Lemma 2.13. Let (G;)ier be an inverse system of profinite groups, let G be the inverse
limit and let f; : G — G; be the projection map for alli € I. Let X C G be a subset. Then

lime f;(X) = X.

Lemma 2.14. The inverse limit of any inverse system (X;)ier of compact Hausdorff
non-empty topological spaces over a directed set I is non-empty.



Proof. See [11l, Lemma 1.1.4]. O

Definition 2.15. Let G be a profinite group. Then for any subset X C G we call (X)

the subgroup topologically generated by X. If (X) = G, then we say that G is topologically
generated by X. A

Definition 2.16. A profinite group G is called procyclic if it is isomorphic to the inverse
limit of a system of cyclic groups. A

Lemma 2.17. A profinite group G is procyclic if and only if it is topologically generated
by {g} for some g € G.

Proof. Let G be a profinite group. If g € G is such that G = @, then it is clear that G
is procyclic. Now suppose that G is procyclic. Then G is the inverse limit of an inverse
system ((Gi)i, (fij)j<i,I) with each G; a finite cyclic discrete group and with each f;;
surjective. For every i, we let X; be the set of generators of G;. Then (X;); forms an
inverse system, and lim. X; is non-empty by Lemma [2.14 O

Definition 2.18. Let R be a profinite ring. Then a topological R-module is an R-module
M such that M is a topological group and the multiplication map R x M — M is contin-
uous. A

Definition 2.19. Let G be a profinite group and let X be a topological space. Then a
topological G-action is a group action of G on X such that the induced map G x X — X
is continuous, where G x X has the product topology. A

Lemma 2.20. Consider a profinite group G and an element 8 € G. Then there exists a
unique morphism Z — G such that 1 — 0.

Proof. See [11, Ch. 4.1]. O

Any profinite abelian group A can be viewed as a Z-module: for any § € A and any n € 7
we let nf) € A be the element f(n) where f:Z — A is the morphism from Lemma
with 1 — 6. Any morphism of profinite abelian groups is a morphism of Z-modules.

Lemma 2.21. Let I be a directed set. Then lim_ is an exact functor from the category
of inverse systems of profinite groups over I to the category of profinite groups.

Proof. See [11, Prop 2.2.4]. O

Remark 2.22. Let 0 - A 5 B 5 C — 0 be a short exact sequence of abelian groups
that is split. Then
(0= A/t™'N — B/N — B/nN — 0)y,

where N ranges over the subgroups of B with finite index, is an inverse system of short
exact sequences. Moreover, the set of all such :~' N is cofinal in the set of all subgroups of A
of finite index, which follows from the fact that ¢ has a retraction. Hence, lim, A/t"'N =
A. Similarly we have lim. C/7N = C. Hence, by taking the inverse limit of the inverse
system of exact sequences, we get by Lemma [2.21] an exact sequence

0—>ﬁ£>§i€’—>0. AN



Write Ny := Z>o U {oco}. Then Ny, is a monoid with the usual addition on Z>y and with
00 +mn =n+ 00 =00 for all n € Ny,. We extend the usual linear order < on Z>g to Ny
by defining n < oo for all n € N.

Definition 2.23. Let P C Z~( be the set of prime numbers. A supernatural number is a
formal product HpeP ™) where for each p € P we have n(p) € Ny. A

For a collection (n; = Hp p"®))icr of supernatural numbers, we define

lem{n; : i € I} = Hpmax{"i(p):iel},
p
ged{n; :iel} = Hpmin{"i(p):ig}.
P
We define the order |G| of a profinite group G as lem{#G/N : N C G open subgroup}.
Notice that for any profinite abelian group G the map G — G, x — n-x is an isomorphism
for every n € Z~o with ged(|G|,n) = 1, i.e., with |G| and n coprime.

2.2 Class-2 groups

Definition 2.24. Let G be a group. Then we define GV := G and GO+ =[G, GW)] for
all integers i > 1. We write G®* := G/G® for the abelianized group of G. A

Definition 2.25. Let G be a topological group. Then we define G := G and GU+1) .=

(G, G®] for all integers i > 1, i.e., GU*D is the closure of [G,G?] in G. A

Let G be a (topological) group. For every integer i > 2 and elements g € G, h € GO
and an inner automorphism o of G we have o[g, h] = [0g, oh], hence it follows inductively
that G is normal in G. In other words, for each integer i > 1 we have [G,G®] c G,
ie., GitY) c GO The series GB > G? > ... is called the lower central series of G.
Moreover, we denote by G2? and G2 the (topological) quotient group G/G®) and G/G®)
respectively.

Definition 2.26. Let G be a (topological) group. Then G is of class-2 if G®) =1. A

Notice that a (profinite) group is a class-2 group if and only if [G,G] C Z(G); in the
profinite case this follows from the fact that Z(G) = [ e Ca(g) is closed in G, where
Cc(g) is the centralizer of g in G. In particular, a profinite group is of class 2 if and only
if the underlying group is of class 2. Some examples of class-2 groups are abelian groups,
the dihedral group Dy of order 8 and the quaternion group Qg. Moreover, G2 is a class-2
group for any (topological) group G: the subgroup G®) is the smallest (closed) normal
subgroup N of G for which G/N is of class 2.

A map f: Gy X Gy — H of (topological) groups is called bilinear if for every g1 € G1 and
g2 € Go the maps f(g1,—) and f(—, g2) are homomorphisms. Essentially, bilinear maps
of (profinite) groups can be viewed as maps of (profinite) abelian groups: if such a map
f is bilinear, then expanding f(ab,cd) in two manners shows that the range ran f of f
(topologically) generates an abelian subgroup, and f factors through G2 x G3P. An exact
sequence 0 — A % B — C — 0 of (topological) groups is called central if ([A] C Z(B)
(and ¢ induces a homeomorphism A — ([A]).

Lemma 2.27. Let G be a (profinite) group. Then the following statements are equivalent.



(1) G is of class 2,
(2) the commutator map [—, —] : G x G — G is bilinear,

(3) there exists a central exact sequence 1 - A — G — C — 1 of (profinite) groups with
C abelian.

Proof. We prove (1) < (2) in (i) and (1) < (3) in (ii).

(i) If G is of class 2, then the commutator map is linear in its first argument since for
any g,a,b € G we have

1

[aag] [b7 g] = (L[b, g]ga_lg_ = [ab7 9]7

and one can similarly show that the commutator map is linear in its second argument.
Now suppose that the commutator map is bilinear. Then G®) is abelian, and the
commutator map factors through G2 x G#. This shows that [G, G®)] = 1 and thus
G, G| C Z(G).

(ii) If G is a class-2 group, then 0 — Z(G) - G — G/Z(G) — 0 is a central exact
sequence with G/ Z(G) abelian. If 0 — A % G > C — 0 is a central exact sequence
with C abelian, then 7[G, G] = 0 and thus [G, G] C 1A C Z(G). O

The following result can be routinely verified by using the equivalence (1) < (2) from
Lemma

Corollary 2.28. Any product (possibly infinite) of (profinite) class-2 groups is again a
class-2 group. Moreover, any quotient and any subgroup of a profinite class-2 group is
again a class-2 group.

Lemma 2.29. Let G be a group. Let H be a subgroup of G and let i € Z~qo be such that
Gt ¢ H ¢ GY. Then H is normal in G.

Proof. From H ¢ G it follows that [G, H] ¢ GU*tD. Hence, we have [G, H] C H thus
H is normal in G. Ul

2.3 Pontryagin duality

Definition 2.30. Let X, Y be topological spaces. For any compact subset K C X and any
open subset U C Y, let Vi 7 be the set of all continuous maps f : X — Y with f(K) C U.
The compact-open topology on the set C(X,Y) of continuous functions X — Y is the
topology generated by the subbasis (Vi y)k,u. The subspace topology on a subset of
C(X,Y) is also called the compact-open topology on that subset. A

Consider the topological group T := R/Z. Let LCADb be the category of locally compact
abelian groups. Let G be a locally compact abelian group. Then we define the Pontryagin
dual of G to be G* := Hom(G, T) with the compact-open topology. With this topology G*
is again a locally compact abelian group [I1]. Moreover, for any morphism ¢ : G — G2 of
locally abelian groups, we define the Pontryagin dual of ¢ to be the morphism G5 — G}
defined by f — f o . It is easy to verify that this now induces a contravariant functor
*: LCAb — LCAD.

We denote the objects of a category C by Ob(C). For any G € Ob(LCAD), we consider
the morphism ag : G — G** defined by g — [f — f(g)]. Then the theorem on Pontryagin
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duality states that for any G € Ob(LCAD) the map «a¢ is an isomorphism. In other
words, we get the following result.

Theorem 2.31 (Pontryagin duality). The functor x induces an equivalence of categories
between LCADb and LCADbP. A natural isomorphism of the identity functor to x* is given
by a—.

For example, for any finite discrete abelian group A we have A* = A. Let p be a prime
and denote by Cp~ the discrete p-power torsion subgroup of Q/Z. Then the Pontryagin
dual of the group Z, equals Z,, = Cpec. The Pontryagin dual of the group Z equals Q/Z.

Let PAb and DTAD be the full subcategories of LCAb respectively consisting of all profi-
nite abelian groups and all discrete abelian torsion groups. In order to apply Pontryagin
duality on profinite groups, the following theorem is more useful.

Theorem 2.32 (Pontryagin duality for profinite groups). The functor x induces a duality
of categories between PAb and DTADb. A corresponding natural isomorphism is induced
by a—. Moreover, if G € Ob(PAb) or G € Ob(DTADb), then G* = Hom(G,T) =
Hom(G,Q/Z) where Q/Z is taken to be discrete.

As with any equivalence of categories, all limits and colimits are preserved under Pon-
tryagin duality. Therefore, we see that the duality also preserves kernels and cokernels.
Hence, the functor Hom(—,Q/Z) is exact on sequences of profinite abelian groups.

Corollary 2.33. Let G be a profinite abelian group. Then there exists a set I and a
surjective morphism Z! — G.

Proof. We use Pontryagin duality to prove this Lemma. It suffices to show that the
Pontryagin dual G* can be embedded as a group into (Q/Z)!) for some set I. For
any prime p, the p-torsion subgroup G*[p] is a vector space over F, and thus we have
G*[p] = (%Z/Z)(IP) as groups for some set I. Now take I = [], I, and notice that the

natural morphism ¢ : @, G*[p] — (Q/Z)Y) is injective. Moreover, ¢ extends to a map
@ : G — (Q/Z)D since (Q/Z)D) is an injective abelian group. Finally, the morphism @
is also injective and this follows from the injectivity of . O

Corollary 2.34. Denote by C the class of all profinite abelian groups that are projective
in the category PAb. Then C' is closed under taking closed subgroups, (possibly infinite)
products and inverse limits. Moreover, we have Z € C'.

Proof. In the category of abelian groups, injectivity is equivalent to divisibility. Using
this, one can verify that injectivity in the category DTAD is preserved under quotients
and direct sums and direct limits. Moreover, the abelian torsion group Q/Z is injective.
By Pontryagin duality, the corollary follows. O

Similarly to the Pontryagin duality, we denote the functor Hom(—, Q/Z) : Ab — Ab by
x and write A* = Hom(A,Q/Z) and f* = Hom(f,Q/Z) for any abelian group A and
morphism f of abelian groups. Since Q/Z is divisible and thus injective in Ab, we find
that * : Ab — Ab is exact.

Lemma 2.35. Let A be a (profinite) abelian group. If we have A* =0, then A = 0.

11



Proof. If A is a profinite abelian group and A* = 0, then A = A* = 0 by Pontryagin
duality. Now let A be an abelian group without any topology. We will prove the contra-
positive, so assume that A # 0. Consider any non-trivial cyclic subgroup B of A. Then
we have Hom(B,Q/Z) # 0. By injectivity of Q/Z it now follows that Hom(A, Q/Z) # 0
also holds. O

2.4 Class field theory

In this section we will recall theory from class field theory, which can be found in [10], [5]
and [I6]. We will first give the definition of a restricted product.

Definition 2.36. Let I be an index set, and let G; be a locally compact abelian group
for all i € I. Let I C I be a finite subset and let H; C G; be a compact subgroup for all
i € I\Is. Then the restricted product of (G;); with respect to (H;); is defined to be the
subgroup

G = {(x;) € (G;)ier | for all but finitely many i € I\I, we have x; € H;}.

We equip G with the coarsest topology such that for any finite S C I containing I, any
open subset U of the topological product [[;c 4 Gi x HieI\S H; is also open in G. Then G
is a topological group. A

In the setting of the definition above, for any subset U C G we have that U is open in G
if and only if for all z € G the set U N ([[;¢; Gi % [L;ep 1., Hi) is open in the product

Hieloo Gi x Hie[\loo Hi.

Let K be a number field. Let P be the set of places of K and let P,, C P be the subset
of infinite places of K.

Definition 2.37. The adele ring of K is defined to be the restricted product of the
additive groups (K )yep with respect to rings of integers (Oy),ep\p,.- The multiplication
on the adele ring is defined to be componentwise and this turns it into a topological ring.
We denote the adele ring of K by Ag. A

Definition 2.38. The idele group of K is defined to be the restricted product of the
multiplicative groups (K})yep with respect to the unit groups of the rings of integers
(03 )vep\ps- We denote the idele group of K by Jf. A

Notice that we have an equality of groups Jx = A%, but the topology of the idele group
J i is not induced by the subspace topology from A k. We can diagonally embed K as a
discrete subgroup of A and similarly we can diagonally embed K* in Jg as a discrete
subgroup [I0, Ch. 7, Thm. 1]. The idele class group of K is defined as the topological
group Ck := Jg/K*. For a finite extension L/K of number fields, we have a canonical
embedding Ax — Aj. Together with the diagonal embedding L. — A this gives a
canonical isomorphism Ag ® L — A of topological rings [5, Ch. 2.14]. Hence, Ay is a
free module of finite rank over Ax and we get a norm map A; — Ag, which we will
denote by Ny k. It coincides with the norm map Ny x : L — K on the diagonal of L
and K in Aj and A respectively. More explicitly, the norm Ny i : Ap — K maps an
element (x4), € AL to an element (y,), € Ag such that for any place v of K we have

Yo = H NL, /K, (Tw)-

wlv
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This norm map Ay, — Ay induces a norm map Ny, x : Cp, — Ck of idele class groups.

Now suppose that L/K is an abelian extension and write G := Gal(L/K). For any prime
p of K that does not ramify in L, there is a unique element ¢ € G, C G, the Artin
symbol (L/K,p), such that for all x € L and any prime q of L that lies above p, we
have o(z) = zV® mod q, where N(p) is the ideal norm of p. The Artin symbol does
not depend on q. Let d be the relative discriminant of L/K and write I(9) for the set of
fractional Ok ideals relatively prime to 9. Then by multiplication we can extend the Artin
symbols to an Artin map I(d) — G. This map is surjective and induces a related global
Artin map that appears in a global result, Theorem The relation between these two
Artin maps can be found in [I0, Ch. 10]. First we state the local class field theorem for
non-Archimedean local number fields K, i.e., for fields K that are the finite extensions of
Q, for some prime p. This result can be found in [16] Ch. 13.4].

Theorem 2.39 (Local Class Field Theorem). Let K be a non-Archimedean local number
field and fix an algebraic closure K& of K. Let ¥ be the set of finite abelian extensions
of K contained in K¥8. Let D be the set of open subgroups of K* of finite index. Then
the map

=D
LP—)NL/KL*

18 an inclusion-reversing bijection. For an extension L € 3 and the corresponding open

subgroup D := Ny g L* there is a local Artin isomorphism K* /Ny xL* — Gal(L/K),
and it maps the unit group U of the valuation ring of K isomorphically to the inertia group
Ik of L/K and prime elements are mapped to the Frobenius coset modulo Ip,/f .

Notice that for K a non-Archimedean local number field we have in fact that every sub-
group of K* of finite index is open. Hence, we find that the local Artin maps induce an
isomorphism

K* =5 Gal(K®/K).
The following result can be found in [5, Ch. 14.5-14.6] and [10, Ch. 10-11].

Theorem 2.40 (Global Class Field Theorem). Let K be an algebraic number field and fix
an algebraic closure K8 of K. Let Y be the set of finite abelian extensions of K contained
in K®2. Let D be the set of open subgroups of the idele class group Cg. Then the map

=D
LHNL/KCK

is an inclusion-reversing bijection. For an extension L € ¥ and the corresponding open
subgroup D = Ny xCk there is a global Artin isomorphism Ck /D = Gal(L/K), and
it maps K surjectively to the decomposition group G, = Gal(L,,/K,) for any place v of
K. This induces the local Artin isomorphism

K} /Np, Kk, Ly, — G, C Gal(L/K),
where w | v is a place extending v.

Every open subgroup of Ck is of finite index in Cx [10, p. 212]. Hence, it follows from
Theorem that the global Artin map yields an isomorphism

lim Cr /N = Gal(K®/K),
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where N ranges over the open subgroups of Ckx. In particular, for K = Q we get an
isomorphism Z* 22 Gal(Q*/Q) induced by the continuous morphism

Ty if v is finite,

HZZ — Co, (zp)p = (zy)y, where z, = )
” 1 if v = oo0.

3 COHOMOLOGY OF TOPOLOGICAL GROUPS

3.1 Continuous cohomology

Let GG, A be topological groups with A abelian, and suppose that A is a G-module.
Then A is a topological G-module if the action of G on A induces a continuous map
G x A — A, where G x A has the product topology. A morphism of topological G-
modules is a continuous morphism of G-modules. This gives a category of topological
G-modules. If G is profinite and A discrete, then A is a topological G-module if and only
if A=Uy AN where N ranges over the open normal subgroups of G and where AV is
the subgroup of A of fixed points by N [I1, Lemma 5.3.1]. We will omit the adjective
“topological” when we refer to profinite or discrete topological G-modules. The theory as
developed in this section can be found in general in [8] and for profinite groups G in [18].

For any n € Z>o we consider the abelian group C"(G, A) of continuous maps G" — A,
where G" has the product topology. For any n € Z>¢ we define the boundary map
d, : C*(G,A) — C"T(G, A) as the group homomorphism such that for each f € C*(G, A)

and all (g1,...,gn1)" " we have

(dnf)(gl7 cee 7gn+1) = glf(.927 ce. 7gn+1) + Z(_l)zf(gh - 9iGi4 1, - - - agn-i-l)
i=1

+ (_1)n+1f(g17 s 7971)

We define d_; as the trivial map 0 — C%(G, A). Fix n € Z>p. We define the group of
continuous n-cocycles as the kernel of d,, and denote this group by Z"(G, A). Moreover, we
define the group of continuous n-coboundaries as the image of d,,_1 and denote this group
by B"(G, A). By a direct calculation it can be shown that we have B"(G, A) C Z"(G, A).
We define the n-th continuous cohomology group with coefficients in A as the quotient
H"(G, A) := Z"(G, A)/ B"(G, A). Observe that we can identify H(G, A) with the group of
invariants A under G. Moreover, if G is discrete, then the continuous group cohomology
above coincides with the usual group cohomology as found in [16].

Let G, G’ be topological groups and let A, A’ be a topological G-module and a topological
G’-module respectively. Then we say continuous group homomorphisms f : G’ — G and
g: A — A are compatible if for all @ € A and z € G’ we have g(f(x)a) = zg(a). If
f:G — Gand g: A— A are compatible, then for each n € Z>o we get a well-defined
group homomorphism

(f;9)n : HY(G, A) = HYG A, [w] = [(z1,.. 0 20) = (gow)(f(z1), - flan))]-

For any two topological abelian groups GG, A we can view A as a topological G-module
with trivial action of G on A. Denote the category of topological abelian groups by TAb.
By only considering trivial actions, we get a bifunctor H*(—, —) : TAb x TAb — Ab
that maps (f : G' = G,g: A — A') to H*(f,g) = (f,9)%. Similarly, we get a bifunctor
Z"(—,—): TAb x TAb — Ab that maps (f: G' = G,g: A— A’) to

MG, A) = MG A, we (o1, ,20) = (gow)(f(z1), ..., flzn))]-
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Let G be a topological group. We call a short exact sequence 0 - A — B — C — 0 of
topological G-modules well-adjusted if A — B induces a homeomorphism of A onto its
image and B — C' admits a continuous set-theoretic section. The following result can be
found in [8, Thm. 1.15], and a profinite variant can be found in [I8, Thm 9.3.3], and in
this result we call each homomorphism § a connecting homomorphism.

Theorem 3.1. Let G be a topological group. Let 0 — A i> B%C=0bea well-adjusted
short exact sequence of topological G-modules.

(a) For each n > 0 there is a unique homomorphism ¢ : H*(G,C) — H" (G, A) such
that for all a € Z""Y(G, A), b € C"(G, B), and c € 7"(G,C) satisfying f o a = d,b
and g o b = ¢ we have J[c] = [a].

(b) The sequence

0 — 1@, 4) e, B) " HG.0) L mle,a) D
: n i n ide,f)x
... i} Hn(G,A) (ida, )y, Hn(G, B) (dG_’an Hn(G,C) i) HTH_l(G, A) ( Cﬂ)+1 '

15 exact.

Another important exact sequence is the inflation-restriction sequence for profinite groups.
Let N be a closed normal subgroup of a profinite group G. Let A be a topological G-
module. Then the inclusion morphism ¢ : N — G is compatible with the identity map id 4
on A. For any n € Z>o we get a restriction map

Res: H"(G,A) — H"(N, A)

defined as the map (1,id4)%. Moreover, for any z € G the morphisms N — N,y > zyx !

and A — A,a — za are compatible and they give a morphism H"(N, A) — H"(N, A).
This endows H" (N, A) with a G/N-module structure. The image of the restriction map
H"(G, A) — H"(N, A) lies in the group of G//N-invariants H" (N, A)¢/N.

The topological group AV of N-invariants is naturally a topological G/N-module. The
quotient map 7 : G — G/N and the inclusion map ' : AN — A are compatible. Hence,
for any n € Z>o we get an inflation map

Inf : H*(G/N, AY) — H"(G, A)

defined as the map (m,)%. The following result gives inflation-restriction sequences and
can be found in [I8, Prop. 10.3.1] for profinite groups and in [16, Ch. 7.6], [7] for discrete
groups G.

Theorem 3.2. Let G be a (profinite) group, let A be a (discrete) G-module and let N be
a (closed) normal subgroup of G. Suppose that n > 0 is an integer such that H'(N, A) = 0
for all1 <i¢ <n—1. Then there is an exact sequence

0 — H*(G/N, AN) ™ H(G, A) B 1 (N, A)9/N = " (G/N, AV) ™ 1t (G, A).

3.2 Cup products

For a profinite group G and discrete G-modules A and B we view A ® B as a discrete
G-module with the action defined by g(a ® b) = ga ® gb where g € G, a € A, b € B [11],
Ch. 7.9.
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A proof of the following result can be found in [I1, Ch. 7, Prop. 5|. A formulation with
Tate-cohomology for finite groups G can be found in [I6, Ch. 8.3] and in [I2, Ch. 9.7].
The bilinear maps — U — in this result are called cup products.

Proposition 3.3. Let G be a profinite group. There exists a unique family of bilinear
maps
—U—:H"(G,A) x H"(G,B) - H"""(G,A® B), (a,b)+— aUb,

defined for all n,m € Z>qo and all discrete G-modules A and B, such that the following
four properties hold.

(1) The bilinear maps — U — are natural in A and B.

(2) For mn=m =0 the bilinear map — U — equals the bilinear map

AY x BY - (A® B)Y, (a,b) = a®b.

(3) Let B be a discrete G-module. Consider an eract sequence
0—-A—=A =40
of discrete G-modules. If the induced sequence
0>A®B—-A®@B—-A"®B—0
is exact, then for all a” € H*(G, A”) and b € H™(G, B) we have
(a")Ub=48(a"Ub) in H"" G, A® B),
where & denotes the connecting homomorphism from section |3. 1]
(4) Let A be a discrete G-module. Consider an exact sequence
0—->B—-B —-B"->0
of discrete G-modules. If the induced sequence
0A®B—-A®B - A®B" -0
is exact, then for all a € H"(G, A) and b € H™(G, B") we have
aU(8b") = (=1)"6(aUb”) in H"™™ (G, A® B),

where § denotes the connecting homomorphism from section|[3.1].

3.3 Quotient categories
In this subsection we define the quotient of a category by some equivalence relation.

Let C be a category. Then a class R C {isomorphisms of C} is an isomorphism equivalence
class of C if it has the following three properties:

(i) for any X € Ob(C) we have 1x € R,
(ii) R is closed under composition in C,
(iii) for any f € R we have f~! € R.

Notice that R induces an equivalence relation ~g on Ob(C) given by X ~pr Y if and only
if Home(X,Y) N R is non-empty. Moreover, R induces an equivalence relation ~pr on
Hom(C) given by f ~p g if and only if there exist 0,7 € R such that (o,7) € Arre(f,g),
where Arre is the arrow category of C.
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Definition 3.4. Let C be a category and let R be an isomorphism equivalence class of
C. Then the quotient category of C by R is a category C/R and a functor Q : C — C/R
satisfying the following requirements:

(1) VX,Y € Ob(C),[Fo € R: o € Home(X,Y)] = Q(X) = Q(Y),
(2) Vf,g € Hom(C),[30,7 € R: (0,7) € Arre(f,9)] = Q(f) = Q(9),

and such that for every other category ) and functor Q' : C — Y satisfying (1) and (2),
there exists a unique functor F : C/R — Y such that FQ = Q'. AN

In the definition above we call Q the quotient functor. Notice that the quotient category
by an isomorphism equivalence class is unique up to unique isomorphism that commutes
with the quotient functors. Under some assumptions we can also prove existence of such
a quotient category. Let X be a class with an equivalence relation ~ on X. Then a class
of representative sets of (X,~) is a class Y C X such that

(1) for all y € Y the equivalence class [y]. NY of y is a set,

(2) for all z € X there exists y € Y such that x ~ y. Notice that such an element y does
not have to be unique.

Proposition 3.5. Let C be a locally small category and let R be an isomorphism equiva-
lence class of C inducing an equivalence relation ~p on Ob(C). Suppose that

(i) there exists a class of representative sets of (Ob(C),~r),
(i) for all X,Y € Ob(C) we have #(Home(X,Y)NR) < 1.
Then the quotient category C/R exists.

Proof. We will construct C/R. Let Z be a class of representative sets of (Ob(C),~g).
We define the objects Ob(C/R) of C/R to be the quotient class Z/~g. Consider the
equivalence relation ~p on Hom(C) induced by R. Now for any X,Y € Ob(C/R) we
define
Homg,p(X,Y) = ( U U Homdx,y))/ RR .
zeX yeY

The composition [g] o [f] of [f] € Home/r(X,Y) and [g] € Home (Y, Z) is defined to be
[gooo f] for any o : codom(f) — dom(g) in R. It follows from (ii) that this is independent
of o and of the chosen representatives of [f] and [g]. Associativity of the composition is
clear. O

Under assumption of the global axiom of choice, condition (i) in Proposition is always
fulfilled due to Scott’s trick [, p. 65]. However, in our applications we will not rely on the
global axiom of choice.

3.4 2-Cocycles and Sectioned Central Extensions

In this subsection we will establish an equivalence of categories between (continuous) 2-
cocycles and (continuous) central extensions with set-theoretic sections. We also compare
several concepts in both categories. For example, the second cohomology group in terms of
2-cocycles can be translated in terms of such extensions. For simplicity, we only consider
topological G-modules A with trivial action of G on A. A correspondence where non-
trivial actions of G-modules A without topology are taken into account, is given in [4,
Ch. 14.4].
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We will first give some definitions of related concepts.

(i) We make the second cohomology group from section more explicit by describing
the cocycles and coboundaries. Let G, A be topological groups of which A is abelian.
A continuous 2-cocycle is a continuous map w : GXG — A such that forall z,y,z € G
we have
w(y, z) —w(zy, 2) + w(z,yz) — w(z,y) = 0.

A continuous map b : G X G — A is a continuous 2-coboundary if for some continuous
map f: G — A and for all z,y € G we have

b(z,y) = f(z) + f(y) — f(zy).

(ii) Let G, A be topological groups of which A is abelian. A continuous central extension
of G by A is an exact sequence of topological groups

1-A—-F—->G—1

such that A is central in F and such that A — F induces a homeomorphism of A
with im(A — FE). Such an extension is usually just denoted by E. For any surjective
morphism E — G of topological groups with ker(E — G) C Z(E) we associate
E — G to the natural central extension ker(E — G) — E — G. A (continuous)
sectioned central extension of G by A is a continuous central extension E together
with a continuous set-theoretic section ¥ <— G of the map F — G, and such that
A — FE induces a homeomorphism A — im(A — FE). A G-morphism of E; — E3 of
two continuous sectioned central extensions Fy, Es of G by Aj, Ao respectively is a
morphism Fy — Fs of topological groups such that the following diagrams

1 Aq E >y G > 1 B +—G@G
l Jid l lid
1 A2 E2 >y G > 1 EQ +— G

commute. This defines the category PreZ®(G) of sectioned central extensions with

objects (A, E,t,m,s) that represent a central extension A 2 E 5 G with section
s:G— E.

Let G be a topological group. We will define the category Z2(G) of continuous 2-cocycles.
The objects are pairs (A,w) where A is an abelian topological group and w : G x G — A is
a continuous cocycle. A morphism between two objects (Aj,w1), (A2,wsz) is a morphism
f A1 — As of topological groups such that the following diagram

Al#AQ

ol A

GxG

commutes.

Let G be a topological group. We will define the category ZE(G) of continuous sectioned
central extension classes as a quotient category of PreZ¥(G). Consider the class R(G) of
those morphisms (A; — E; — G) — (Ag — Ey — G) of PreZ¥(G) that satisfy A; = Ay
and for which the induced morphism A; — A, is the identity morphism. Notice that any
element of R(G) is an isomorphism and that for any two objects E1, Fs € PreZ®(G) there
is at most one morphism E; — E3 in R(G). Moreover, it can be verified that R(G) is an

18



isomorphism equivalence class of PreZ¥(G). Let ~r be the equivalence relation induced
by R(G) on Ob(PreZ®(G)). We consider the class X (G) of those central extensions
(A, E, 1,7, s) € Ob(PreZ¥(@)) for which the underlying set of E equals AxG. Then X (G)
is a class of representative sets of the equivalence relation R(G) induced by R(G). Hence,
by Proposition we conclude that the quotient category Z¥(G) := PreZ®(G)/R(G)
exists. Denote the quotient functor by Qscg and notice that for any two morphisms
fi: (A — E; - G) = (AL — E! - G) in Hom(PreZ¥(G)) with i = 1,2 we have

Oscr(f1) = Qscr(f2) < [A1 = Az, A] = A} and fi, fo induce the same map A; — Al].

Theorem 3.6. Let G be a topological group. Then the categories Z2(G) and Z¥(G) are
isomorphic.

Proof. We will define two functors I : Z®(GQ) — Z*(G) and F; : Z3(G) — Z¥(G) that
are inverses of each other.

Fi Let 1 = A — EF — G — 1 be a continuous sectioned central extension class with
continuous set-theoretic section s : G — E. Then w : G X G — A defined by
(x,y) — s(x)s(y)s(zy)~! is a continuous cocycle map. This construction of w does
not depend on the choice of the representative of the extension class, and defines
Fi(E) for any object E € ZE(G).

Now let 1 — A; — E; — G — 1 be objects of Z¥(G), and let f : By — E; be
a morphism in Z¥(G). Then f induces a morphism Fi(f) : A7 — As of abelian
topological groups.

Fy Let w: G x G — A be a continuous cocycle map. We define A x,, G as topological
space as A x GG endowed with the product topology and with the group operation
(a,z)(b,y) = (w(z,y)ab, zy). This turns A x,, G into a topological group. We also
consider the morphisms A — A x,, G given by a — (aw(1,1)", 1) and 7 : Ax, G —
G given by (a,z) — x. Moreover, we consider a continuous set-theoretic section
G — E of 7 given by z — (1,x). Now F is a sectioned central extension of G by A,
and we define F5(w) to be the class of E.

Let f: (A1,w1) — (As2,ws) be a morphism in Z2(G). Then we define Fy(f) to be
the morphism A; x,,, G — Aa X, G defined by (a,g) — (f(a),g).

It can be verified that F} F and FoF) equal the identity functors on Z2(G) and ZB(G)
respectively. We will only elaborate why FyFy is the identity on the objects of ZE(G).
Let [(A, E,m,t,s)] be a sectioned central extension class. Applying F5F) yields a central
extension (A, A X, G,/,7',s') and it can be verified that the following maps are inverse
morphisms in PreZ®(G):

F—Ax,G Ax,G— FE
v (N x(smz) ™Y, mx) (a,g) — t(a)s(g).
Hence, E and A x,, G represent the same object in ZE(G). O
A stronger version of the following corollary can be found in [8, Prop. 1.9].

Corollary 3.7. Let £ : 0 - A - E — G — 0 be a central exact sequence of topological
groups. Then & is well-adjusted if and only if there is a homeomorphism ¢ : E — A X G
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for which the diagram

] —A—s AXxG — G ——1

commutes, where A — A X G is the map a — (a,1) and AX G — G is the map (a,z) — .

Proof. If such a homeomorphism ¢ exists, then it is clear that £ is well-adjusted. By
Theorem [3.6] it suffices to prove the existence of ¢ in the case that £ is the exact sequence
0> A= Ax,G = G — 0 for some cocycle w € Z*(G,A). In this case, the map
p:Ax,G— AXxG given by (a,z) — (aw(1,1),z) suffices. O

We will now start comparing several concepts in terms of 2-cocycles and sectioned central
extensions. The correspondence between the 2-cocycles and sectioned central extensions
yields the following result, which gives an interpretation of the second cohomology group
in terms of sectioned central extensions.

Let G, A be topological groups and let A be abelian. We will present the analog of
the group of 2-cocycles in terms of sectioned central extensions. Let ZP(G, A) be the
group whose objects are objects [(A, E,t,,s)] € ZE(G), and where the group operation
is induced by the Baer sum: let [(A, E;, i, m;, si)] be sectioned central extensions of G by
A for i = 1,2, then the Baer sum of Ey, F is the sectioned central extension

Ei+ E5 := Ey X Ez/{(bl(a)), Lg(a)il) ’ a € A}
of G by A, where Eq X E> is the fiber product of Fy, E5 over G. The morphism A —
E1 + Es is given by a +— (t1(a), 1); the morphism E; + Ey — G is given by (z,y) — m1(x);

the section G — Ej + E3 is given by g — (s1(g9),s2(g9)). Any two elements as in the
diagram

are inverses to each other in Z¥(G, A). Notice that by Corollary for profinite abelian
groups G, A every element of ZF(G, A) is profinite.

We will show that ZF(—, —) is functorial in both arguments, in fact, it is a bifunctor, as
will follow from Proposition since Z%(—, —) is a bifunctor. From the same proposition
it follows that Z¥(—, —) is additive in the second argument.

Definition 3.8. Let g : A — A’ be a morphism of topological abelian groups. Consider a
sectioned central extension £ = (A, E, 1,7, s) € PreZE(G). Since ¢ is central, the pushout
E' := AUy E of v and g exists in the category of topological groups. Then the diagram

A——FE "G

bl

L/

A~ F

commutes. The zero map A’ — G and 7 together induce a map 7’ : E/ — G by the
universal property of the pushout. Then 1 -+ A" —+ E' — G — 1 is a central extension. It
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comes with a section G — E’ that equals the composition G = E — E’. We now define
g€ to be the object (A',E',/,n',s') € PreZ¥(G). Moreover, we define gQscg(£) =
Qscr(g€), and this does not depend on the choice of €. A

For any morphism g : A — A’ of topological abelian groups, and any topological group G,
we define ZF(G, g) as the map
Z5(G,g) - Z(G, A) = Z(G, ), € g€

This yields a functor ZF(G,—) : TAb — TAb, where TAb denotes the category of
topological abelian groups.

Definition 3.9. Let f : G’ — G be a morphism of topological groups. Consider a
sectioned central extension ¢ = (A, E, 1,7, s) € PreZ®(G). We define E' as the pullback
A xg G’ and we get the following commutative diagram.

A——FE—T-G
[
B

The zero map A — G’ and the map ¢ together induce a map ¢/ : A — E’ by the universal
property of the pullback. The resulting sequence 1 -+ A — E' — G’ — 1 is exact and
A — FE’ is central. Moreover, it comes together with a section s’ : G’ — E’ induced
by the two maps so f : G’ — E and id : G' — G'. We define £f to be the object
(A, E',/ 7' s) € PreZ¥(G’). Moreover, we define Qscg(€)f := Qscr(£f), and this does
not depend on the choice of &. A

For any morphism f : G’ — G of topological groups, and any topological abelian group
A, we define Z®(f, A) as the map

ZE(f,A) : Z5(G, A) = ZE(G',A), €&,

This yields a functor Z¥(—, A) : TGrp — TGrp, where TGrp denotes the category of
topological groups.

We define BE(G, A) to be the subgroup of ZE(G, A) consisting of all sectioned central ex-
tensions F for which there exists a section morphism G — FE of topological groups of the
map E — G. We define H®(G, A) as the quotient Z¥(G, A)/ BF(G, A). Notice we get func-
tors H¥(G, —),HE(—, A) : Ab — Ab induced by Z¥(G, —), Z¥(—, A) respectively. Then
HF(—, —) is a bifunctor, as follows from Proposition . Moreover, if G is abelian, then
we define Ext®(G, A) as the subgroup of H¥(G, A) given by classes that are represented
by abelian extensions F.

Proposition 3.10. Let G, A be topological groups of which A is abelian. The isomorphism
of categories Z2(G) = ZE(G) induces a group isomorphism v : Z3(G,A) = ZF(G, A)
that is natural in G and A. Moreover, we have ¥[B*(G, A)] = B¥(G, A) and a natural
morphism H?(G, A) = HE(G, A).

Proof. 1t is clear that the induced map 1 is bijective. It can be verified that for any
wi,we € Z*(G, A) we have F|(Fy(wi) + Fy(ws)) = wi + wy. From this it follows that
1 is a group isomorphism. In order to show that this isomorphism is natural in G and
A, one can verify by a direct calculation that for any continuous homomorphisms f :
G' — G and g : A — A’ of topological abelian groups and any E € ZF(G, A) we have
FI(ZE(G, 9)(B)) = ZX(G, )(Fi(E)) and Fy(ZE(f, A)(E)) = Z2(f, A) (Fy(E)).
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It is left to show that [B2(G, A)] = BE(G, A). Let w € Z*(G, A). Then we have 9 (w) €
BE(G, A) if and only if there exists a continuous section morphism s of 7 : A x,, G — G.
Hence, we have 1(w) € B¥(G, A) if and only if there exists a continuous map f: G — A
such that B

f:G—=Ax,G, =z (f(x) )

is a homomorphism. Such a map f is a homomorphism if and only if for all z,y € G
we have w(z,y) = f(x)f(y)f(ry)~". We conclude that [B*(G, A)] = BF¥(G, A) and thus
H%(G, A) = HF(G, A). O

Using the correspondence above, it can be shown that elements Fy, Fy € Z¥(G, A) are in
the same coset of BF(G, A) precisely when there exist morphisms of topological groups
FE1 & E5 such that the diagram

1 A By G 1
:[id H Iid
1 A by G 1

commutes. Hence, the class in HF(G, A) of a central extension does not depend on the
appended set-theoretic section. We thus see that HF(G, A) becomes the group of well-
adjusted central extensions of G by A.

Let A, G be topological abelian groups. We call a sectioned central extension A — E — G
commutative if E is abelian, and in this case we also call Qscg(E) € Z¥(G) commutative.
This definition of commutativity for Qgcr(E) does not depend on E. We call a cocycle
w: G xG — A commutative if for all x,y € G we have w(z,y) = w(y,z). We consider
the induced full subcategories CZE(G) of ZE(G) and CZ2(G) of Z2(G) with exactly
those objects that are commutative. We define CZE(G, A) C ZF(G, A) and CZ?*(G, A) C
7*(G,A) as the subgroups of all commutative elements, and we denote by Ext!(G, A)
the quotient CZ*(G, A)/ B*(G, A) € H%(G, A). The correspondence between cocycles and
extensions yields the following result, induced by the functors constructed in the proof of
Theorem [3.6]

Theorem 3.11. Let G be a topological abelian group. Then the categories CZ¥(G) and
CZ2(G) are isomorphic.

Proof. One can verify that for any commutative cocycle w € CZ2(G) the extension Fj(w)
is commutative. Moreover, one can verify that for any commutative extension ¢ € CZ¥(QG)
the cocycle F5(€) is commutative. The result now follows from Theorem O

Theorem and Proposition yield a natural isomorphism Ext® (G, A) = Ext!(G, A).

Let G be a discrete abelian group. We define the category DCZF(G) as the full sub-
category of CZ¥(G) with only those objects represented by extensions A — E — G for
which A is discrete. Similarly, we define the category DCZ2(G) as the full subcategory
of CZ2(G) with only those objects represented by cocycles G x G — A for which A
is discrete. A group G without topology can be viewed as a discrete group, and thus
also gives categories DCZE(G) and DCZ2(G). Now let G be a profinite abelian group.
Similary, by restricting the objects to those where A is profinite, we get the full subcate-
gories PCZE(G), PCZ2(G) of CZE(G), CZ2%(G) respectively. Theorem has discrete
and profinite analogues: for a discrete group G the categories DCZ®(G) and DCZ2(G)
are isomorphic, and for a profinite group G the categories PCZF(G) and PCZ2(G) are
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isomorphic.

Lemma 3.12. Consider a commutative diagram of profinite groups

F—"5G y 1

E "5 @ > 1

with each row exact, and with h injective. Then for every continuous set-theoretic section
s of w, there exists a continuous set-theoretic section s' of @' such that the diagram

E+———G

o

E +—— &

S

commutes.
Proof. Let s be a continuous set-theoretic section of 7. By Lemma there exists a
continuous set-theoretic section ¢ of n’. Consider the continuous map ¢ : G — E’ defined
by g — (psg)~(thg). Notice that /6 is the trivial map. By Lemma there exists a

continuous set-theoretic retraction r of h. Now s’ : G’ — E’ defined by ¢’ + (tg’)(6rg’)~*
is a continuous set-theoretic section of 7’. Compatibility of s with s is easily verified. [

Proposition 3.13. Consider a commutative diagram of profinite groups

1 > A > B G > 1
O
1 > Al E » G > 1

with each row a central extension. Suppose that h is injective. Then we have an equality
HE(id, f)[E) = H(h, id)[E).

Proof. Choose compatible continuous set-theoretic sections s and s’ as in Lemma
Let w and w’ be the cocycles corresponding to s and s’ respectively, via Theorem Now
it can be routinely verified that Z2(id, f)(w) = Z2(h,id)(w’), so the result follows from

Proposition O

The next proposition shows that Pontryagin duality distributes over Baer sums of profinite
groups. Notice that the Baer sum of two profinite abelian groups is again profinite.

Proposition 3.14. Let A, B be profinite abelian groups. Then for any abelian extensions
E1, Ey € Z8(A, B), we have (E1 + E2)* = Ef + E3 as extensions in ZE(B*, A*).
Proof. Consider extensions A - E; =% B for i = 1,2, where E;, Ey are profinite abelian
groups. Notice that we have

ET + E3 = coker(B* (ri,me) ker(EY x Ej "5% AY))

(E1 + Es)* = ker(coker(B* 5™ E7 x E5) 5% 4%,
The natural map

coker(B* — ker(E] x E5 — A*)) — ker(coker(B* — E x E5) — A*)
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is a continuous bijection and thus an isomorphism of profinite abelian groups. It gives an
equality Ef + E3 = (Ey + E2)* as extensions in ZF(B*, 4%). O

3.5 Galois cohomology

We can apply cohomology to Galois extensions. Let L/K be a Galois extension of fields and
consider the topological group G := Gal(L/K). Let A be a discrete topological G-module.
Then for all n € Z~ we have a natural isomorphism H"(G, A) = lim_, H*(G/N, AY),
where the direct limit homomorphisms are the inflation maps. Then G acts naturally on
the multiplicative group L*, turning L* into a discrete topological G-module. Our interest
lies in the cohomology groups H"(G, L*) for n € Z>g. The cohomology group H°(G, L*)
is equal to the group of G-invariants of L*, i.e., we have H°(G, L*) = K*. Moreover, the
first cohomology group H(G, L*) is also explicitly known. The following result can be
found in [16, Ch. 10, Prop. 2.

Theorem 3.15 (Hilbert’s Theorem 90). Let L/K be a Galois extension of fields. Then
HY(Gal(L/K), L*) = 0.

Let K; C K3 be an extension of fields and consider two Galois field extensions L;/Kj,
Lo/ Ky with Galois groups G, G2 respectively. Suppose that there is a Kj-morphism
f: L1 — Ly. We get a morphism f’ : Gy — G1 induced by restricting automorphisms
o € Gy to f(L1) = L. Then f and f’ are compatible morphisms and for every n € Zx>g
they induce homomorphisms f,, : H*(G1, L}) — H" (G2, Lj). We see that the assignment
of H"(Gal(L/K),L*) to a Galois field extension L/K is functorial in L and K. The
homomorphisms f,, do not depend on the choice of the embedding L; — Lo [16]. In
particular, if there is an isomorphism L; = Lo that maps K isomorphically to Ko, then
H"(G1, L) and H" (G2, L%) are canonically isomorphic.

Let K be a field and let K®°°P be a separable closure of K. Then the Brauer group of
K is the cohomology group H?(Gal(K®P/K), K5P*) and by the previous remarks it does
not depend on the chosen separable closure up to canonical isomorphism. We denote
this group by Br(K). For every morphism K; — Kj of fields, we get a homomorphism
Br(Kj) — Br(K3) by the previous remarks. In fact, K — Br(K) is a covariant functor
Field — Ab. By Theorem and Theorem we get the following result.

Proposition 3.16. Let k be a field and let K be a separable closure of k. Write G :=
Gal(K/k). Let N be a closed normal subgroup of G. Then there is an exact sequence

Inf Res Inf

0 — H2(G/N, K*™) 2 Br(k) =5 Br(KN)/N — H3(G/N, K*N) 2 H3(G, K*).

A more general version of the following theorem can be found in [16, Ch. 13.3, Prop. 6].
Theorem 3.17. Let K be a finite extension of Q, for some prime p. Then the Brauer
group Br(K) is canonically isomorphic to Q/Z.

We will now define the norm-residue symbols. Let K be a finite extension of QQ, for some
prime p and let n € Z~o. Assume that X" — 1 splits over K and denote by u, C K the
group of n' roots of unity. It follows from Kummer theory [16, Ch. 10.3] that for any
a € K* we get a well-defined homomorphism

Va1 G = i, (o) =0(C)/¢ where ¢ € K°%P is any root of X" — a.
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Now we choose a primitive n'! root of unity in p,, and identify p, with Z/nZ and the
tensor product p, ® u, over Z with u,. Write Gx := Gal(KP/K). The short exact
sequence

1 — p, — K5P* 25 K5eP*

with v given by x +— 2™, induces by Theorem [3.1I] and by Theorem an exact sequence
0 — H*(G, pn) — Br(K) - Br(K).

We now define the norm-residue symbol of a,b € K* to be (a,b) := t(¢q U ¢p), where U
denotes the cup product from section Denote by Br(K)[n] the n-torsion of Br(K).
For abelian groups A and B we call a map f : A x A — B non-degenerate if for every
non-zero a € A the homomorphisms f(a,—), f(—,a) : A — B are both not the zero map.

Theorem 3.18. The map
K*/K*" x K*/K*" — Br(K)In|, (aK*" , bK*") — (a,b)
s a well-defined non-degenerate bilinear map.

Proof. This follows from Proposition 5 and Proposition 7 in [16, Ch. 14.2]. O

3.6 Ext functors

A category C is called pre-additive if for all objects X,Y € Ob(C) the hom-set Hom¢(X,Y)
is endowed with an abelian group structure, such that for any diagram in C

AL>BZﬁC$D
2

we have (g14+¢g2)of = (g1of)+(g20f) and ho(g14+¢g2) = (hog1)+ (hogs), where o and +
are respectively the composition and addition operators. A covariant functor F : C — D
of pre-additive categories is called additive if for any objects A, B € C the functor induces
a group homomorphism Hom¢ (A, B) — Homp(F A, FB). For pre-additive categories C, D
we say that a contravariant functor C — D is additive if it induces an additive functor
C°? — D. The definition of a cohomological d-functor can be found in [12] and in [17].

For any abelian group A the right-derived functors of the left-exact functor Hom(A, —)
define the ext-functors:

ext’(A, —) := R'Hom(A, —), i€ Zxo.

Moreover, if A, B are abelian groups, then we have [12, Thm. 6.67] [I7, Thm. 2.7.6] an
isomorphism

ext'(A, B) = (R"Hom(—, B))(A), i€ Z>o.

Hence, we can endow (ext’(—, B)); with a cohomological é-functor structure. Given an
abelian group G and a short exact sequence 0 - A — B — C' — 0 of abelian groups, we
denote for any k € Z>( by

§:exth(G,0) = extPT NG, A),  §:extF(4,G) = ext*THC, Q)

the connecting homomorphisms given by the properties of (ext’(G,—)); and (ext(—, G));
as cohomological J-functors respectively.

We define ext-functors for discrete abelian torsion groups by setting

ext!(A, B) := ext! (Agp, Barp)
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for any discrete abelian torsion groups A and B with underlying groups Agp and Bgp
respectively. Moreover, we define ext-functors for profinite abelian groups by setting
ext!(A, B) := ext!(B*, A*) for any profinite abelian groups A, B, where A*, B* are the
Pontryagin duals of A, B respectively. We remark that for all (profinite) abelian groups
A, B with A projective or B injective, we have ext!(A, B) = 0.

We have the following important properties of ext-functors for abelian groups and of ext-
functors for profinite abelian groups.

Theorem 3.19. Let A, B be (profinite) abelian groups. Then the following holds.
(a) For all i € Z>y we have we have ext'(A, B) = 0.

(b) ext*(A, —) and ext*(—, B) are covariant and contravariant cohomological d-functors
respectively.

Proof. The proof of the statements for abelian groups can be found in [12] and in [I7]. For
profinite abelian groups, (a) follows immediately by applying Pontryagin duality. Hence,
it is left to prove (b) for profinite abelian groups. Let I' be a profinite abelian group and
let 0 = A — B — C — 0 be an exact sequence of profinite abelian groups. Then we get
an exact sequence of abelian torsion groups 0 — C* — B* — A* — 0. It gives a diagram

Hom(T'™*, C*) —— Hom(T*, B*) —— Hom(T'™*, A*) —— ext!(I'*,C*) —— ...

] ] J q

Hom(C,I') —— Hom(B,I') —— Hom(A,TI") ------- y ext!(C,T) —— ...

where the dashed line indicate the existence of a unique map to make the diagram commu-
tative. It can be verified that this yields an exact sequence as desired. The exact sequence
for profinite abelian groups in the other argument can be constructed similarly. O

Let A, B be (profinite) abelian groups. Recall from section that Ext®(A, B) is the
subgroup of abelian extensions in H¥(A, B). We will construct maps 0,0’ : ext!'(A, B) —
Ext®(A, B). Consider an extension class [E] € Ext®(A, B). The short exact sequence
0 — B — E — A — 0 then yields, since (ext’(A, —)); is a cohomological é-functor, exact
sequences

Hom(A, E) — Hom(A, A) % ext!(A, B),
Hom(E, B) — Hom(B, B) % ext!(4, B).
We now define O([E]) := d(id4) and ©'([E]) := 6(idp). Then O is a well-defined map [17,

Ch. 3.4]. Similarly, it follows that ©’ is well-defined. We don’t know whether © is the
same map as ©’, but we will not need this information.

Theorem 3.20. Let A, B be (profinite) abelian groups. Then © : ext'(A, B) — Ext®(A, B)
and ©' : ext! (A, B) — Ext®(A, B) are isomorphisms that are natural in B and A respec-
tively.

Proof. We will only prove that the isomorphism O : ext!(4, B) — Ext®(A4, B) is natural
in B. Dually, it follows similarly that the isomorphism ©’ : ext!(4, B) — Ext®(A, B)
is natural in A. If A, B are profinite abelian groups, then by Proposition we get
a natural isomorphism Ext®(A, B) = Ext®(B*, A*) by applying Pontryagin duality, and
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this map makes the diagram

ext! (4, B) —2— ExtE(4, B)

lid ll
ext}(B*, A*) —2— ExtE(B* A%
commute. Hence, it suffices to prove the theorem for abelian groups without topology.

In [I7, Cor. 3.4.5] it is proved that © : ext!(A, B) — Ext"(A, B) is an isomorphism of
groups. We will only prove the naturality of © in the second argument for abelian groups.

Let A, B, B be abelian groups and let f : B — B’ be a morphism. Let [E] € Ext®(A, B)
and let [E'] € Ext®(A, B") be equal to Ext®(A, f)([E]). We then have a morphism of
exact sequences

0 B y F A > 0
lf l lid
0 » B E A > 0

and this shows, by the fact that ext! is a cohomological é-functor, that the diagram

Hom(A, E) —— Hom(A, A) —2— ext!(A, B)

lid lextl (A,f)

Hom(A, E) —— Hom(A, A) —>— ext!(A, B)
commutes. From this it follows that ©(Ext® (A4, f)([E])) = ext' (4, f)(©([E])). Hence, the
isomorphism © is natural in the second argument. O
Since Ext® and Ext! are naturally isomorphic bifunctors by the theory from section
we get the following theorem.
Theorem 3.21.

(a) Let 0 - A — B — C — 0 be an exact sequence of (profinite) abelian groups. Let G be
a (profinite) abelian group. Then there exist connecting homomorphisms 0 such that
the following sequences are exact.

0 — Hom(G, A) — Hom(G, B) — Hom(G, C) > Ext}(G, A) —
Ext!(G, B) — Ext'(G,C) — 0,

0 — Hom(C, G) — Hom(B, G) — Hom(4,G) > Ext'(C,G) —
Ext'(B,G) — Ext'(4,G) — 0.

(b) Let A, B be (profinite) abelian groups. If A is projective, or, if B is injective, then we
have Ext'(A, B) = 0.

Proof. Ext® and Ext! are naturally isomorphic bifunctors by the theory from section
Hence, part (a) follows from Theorem and Theorem Part (b) follows from
Theorem and the fact that for all (profinite) abelian groups A, B with A projective
or B injective we have ext!(A, B) = 0. O
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3.7 Calculation of Ext' groups

In this section we will state a couple of lemmas that will help describing Ext!-groups more
explicitly.

Lemma 3.22. Let n € Z~g. Let A, B be profinite abelian groups with A finite, and
assume that exp(A) | n. Let w: B — B/nB be the quotient map. Then

Ext!(A, ) : Ext'(A, B) = Ext'(A, B/nB)
s an isomorphism of abelian groups.
Proof. The exact sequence B -5 B — B /nB — 0 yields an exact sequence
Ext'(A, B) % Ext'(A, B) — Ext!'(A, B/nB) — 0,

by right-exactness and additivity of Ext!(4,—). The map Ext!(4, B) - Ext!(A, B)
equals
n - Ext!(id, B) = Ext!(n - id, B) = Ext'(0, B) = 0,

where we use the additivity of Ext!(—, B) and the equality A[n] = A. It follows that
Ext!(A, B) — Ext!(A, B/nB) is an isomorphism. O

Lemma 3.23. Letn € Z~q be an integer. Let A, B be finite abelian groups with exponent
equal to n and suppose that A is cyclic. The map = : Ext! (A, B) — Hom(A, B) that sends
an extension B — E — A to the map x — s(x)", where s is a set-theoretic section of
E — A, is an isomorphism of groups that does not depend on the choice of s.

Proof. First of all, one can verify that for any extension B — E — A and any set-theoretic
section s of E — A, the map = — s(x)" is a homomorphism A — B that does not depend
on the chosen section s. Moreover, it can be verified by using Baer sums that = is indeed
a group homomorphism. It is also injective: if x generates A and if s is a set-theoretic
section of E — A such that s(z)” = 1, then 2% — s(z)* with k € Z gives a section
homomorphism A — E. Surjectivity follows from computing the order of Ext!(4, B) by
using a projective resolution 0 = Z 3 Z — A — 0. O

Lemma 3.24. Let A, B be profinite abelian groups of which A is finite. Suppose that the
orders of A and B are coprime. Then Ext!'(A, B) =0 and Ext'(B, A) = 0.

Proof. We will only prove that Ext'(A, B) = 0. The other part is analogous. Write
n := #A. By additivity of Ext! in both arguments, we have f := Ext!(n -ids, B) =
Ext!(A,n -idg). Moreover, n - idy4 is the zero map and n - idp is an isomorphism. Hence
f=0and f is an isomorphism on Ext'(A, B). We conclude that Ext!(A, B) = 0. O

4 PROFINITE GROUPS

In this section we will treat several constructions of universal objects in the category of
(abelian) profinite groups: products, tensor products, and exterior squares. Moreover, we
will define restricted products of collections of functors.

4.1 Profinite products

Notice that products exist in the category of profinite groups: the product [[; G; of the
collection (G};); in the category of topological groups is compact, Hausdorff and totally
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disconnected, and thus a profinite group by Proposition The projection maps from
the product are profinite morphisms.

In the setting of the definition above, any open normal subgroup N of [], G; has an open
subset of the form [[, Vi where V; C G; equals G; for all but finitely many i € I. By
Lemma, [2.8| each V; contains an open normal subgroup of ;. Hence, there exists an open
normal subgroup of finite index [, N; of [[, G; contained in N. We therefore conclude
that

II¢G: = lim [1(Gi/Ny),

iel iel
where the inverse limit ranges over collections (N;); such that N; is an open normal
subgroup of G; for all ¢ € I, and N; = G for all but finitely many ¢. For a profinite group
G and a set X we denote by G¥ the product [I,cx G- For any collection (f; : G; — G); of
morphisms of profinite groups indexed by a set I, we write f; — 0 if for each open normal
subgroup N C G the set {i € I : im f; ¢ N} is finite. The following lemma is useful for
defining morphisms of profinite groups out of a product of profinite groups.

Lemma 4.1. Let (F;)ier be a collection of profinite groups and let G also be a profinite
group. Then the natural map ¢ : Hom([[;, F;,G) — [[, Hom(F;, G) is injective and its
range equals

(1) Vi€ I, f; € Hom(F;, G),
(3) Ji—0

Proof. If f,g € [I, F; are such that ¢(f) = ¢(g), then the closed set X := {z €
[L; Fi | f(z) = g(z)} contains [ ], ; F} for every finite subset J C I, hence X =[], F; and
¢ is injective. Let H be the subset of [[,.; Hom(F;, G) of elements satisfying properties
(1), (2), (3). It is not difficult to verify that ran(p) C H. In order to prove the inclusion
ran(yp) D H, consider any element (f;); € H. For any open normal subgroup N < G the
map fy : [[, F; — G/N defined by (x;); — [, fi(z;) is well-defined and a group mor-
phism. These maps are compatible and the inverse limit f := lim, _ fy is an element of
Hom([ [, Fi, G) such that o(f) = (fi)- O

The following lemma is useful in order to prove universal properties of several construc-

tions.

Lemma 4.2. Let G be a profinite group, let X be a discrete set, and let f : G — X be
a continuous map. Then there exist an open normal subgroup N C G such that f factors
through G/N .

Proof. See [11, Lemma 1.1.16] or [18, Lemma 1.2.6]. O
More concretely, we will use Lemma in the following form.

Corollary 4.3. Let Gy, G2 be profinite groups and let X be a discrete set. Let f :
G1 X Go — X be a continuous map. Then there exist open normal subgroups N1 C G,

Ny C G such that f factors through G1/N1 x Go/Ns. If in addition G := G1 = G2 holds,
then f factors through G/N x G/N for some open normal subgroup N of G.
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4.2 Profinite tensor products

In this section we will describe the profinite tensor products over 7. TFor any profinite
abelian groups A, B, the profinite tensor product over Z will be a profinite abelian group
A®B together with a continuous bilinear map —®— : AxB — A®B such that composition
with —®— yields a representation Hom(A® B, —) — Bil(A, B, —) of the functor that maps
a profinite abelian group C' to the set Bil(A4, B, C) of continuous bilinear maps Ax B — C.
A general theory of profinite tensor products of profinite modules over profinite algebras
can be found in [I1], Ch. 5.5].

We define the profinite tensor product as the inverse limit of tensor products of finite
abelian groups.

Definition 4.4. Let G, G2 be profinite abelian groups. Let (I, <) be the directed set
of all pairs (N7, N2) such that N; is an open subgroup of G; for ¢ = 1,2, and with
(N1, N2) < (N7, Nj) if and only if N; C N/ for i = 1,2. Then the tensor product of Gy
and Go over Z is defined to be

G1® Gz = lim (G1/N1) @ (G2/N2),
together with the inverse limit — ® — : G1 X G3 = G1 ® G5 of the natural compositions
G1 X Gy — G1/Ny x G3/Ny — G1/N1 ® G2 /N2
where the limit ranges over I in both cases. A

We denote by g1 ® g2 € G1 ® G2 the image of (g1, g2) € G1 X G2 under the map — ® —.
From the commutative diagram

G1 ® G —— G1/N1 ® G2/N»

I I

G1 X G2 E— Gl/Nl X GQ/NQ
it follows that {g1 ® g2 | ¢1 € G1, 92 € G2} topologically generates G ® Gs.

The profinite tensor product has the following universal property.

Lemma 4.5. Let G1, Ga, A be profinite abelian groups. Then for all continuous bilinear
maps G1 X Go — A there exists a unique morphism G1 ® Go — A of profinite groups such
that the following diagram commutes.

Proof. Uniqueness of this morphism G; ® Go — A follows from the fact that the set of
pure tensors of G; ® G topologically generates G ® Ga. We prove (i) existence for finite
A and (ii) existence for all A. Let ¢ : G; x G2 — A be a continuous bilinear map.

(i) Suppose that A is finite. Then by Corollary there exist open normal subgroups
Ny C Gy and Ny C G such that ¢ factors through G7/N7 x Go/Ny. The factor
G1/N1 X G2/Ny — A induces a morphism G; ® Gy — (G1/N1) ® (G3/N3) — A of
profinite groups that satisfies the diagram.

30



(ii) For any open subgroup M of A we get a morphism G ® Go — A/M by (i). These
morphisms are compatible and the inverse limit Gy ® Go — A satisfies the diagram.
O

It is clear that for any two profinite abelian groups G1, G2 there is an isomorphism of
profinite groups G1 ® Go = G2 ® G1. Moreover, for any g1 € G1, g2 € Go and = € Z we
have z(g1 ® 92) = (zg1) ® g2 = g1 ® (2g2).

Lemma 4.6. For any profinite abelian group A we have Z® A~ A as profinite groups.

Proof. Inverse morphisms between A and Z ® A are induced by the maps

ZxA— A A—Z®A
(x,a) — za a—1®a. O

Lemma 4.7. Let I,.J be closed ideals of Z. Then we have Z)1 @ Z)J = Z/(I + J).

Proof. The continuous bilinear map Z/IxZ7)J — Z/(I +J) given by (z, y) = zy induces
a morphism ¢ : Z/I ® Z/J — Z/(I + J). The kernel of the morphism Z — Z/1 ® Z/J
defined by = — x ® 1 contains I + J and thus factors through a morphism ¢ : 2/ (I +
J) = ZJI ® Z/J. Notice that ¢ and v are inverse maps to each other, thus proving the
lemma. O

4.3 Profinite exterior squares

In this section we will describe the profinite exterior squares over 7. For abelian groups
A we denote by A% A the group (A® A)/(a®a|ac A). Amap f:G x G — A, with G
and A (profinite) abelian groups, is called alternating if it is bilinear and for all g € G we
have f(g,g) = 0. For any profinite abelian group A the exterior square will be a profinite
abelian group /\2 A together with a continuous alternating map — A —: A x A — /\2 A
such that composition with — A — yields a representation Hom(A% A, —) — Alt2(4, —)
of the functor that maps a profinite abelian group B to the set Alt?(A, B) of continuous
alternating maps A x A — B.

Definition 4.8. Let G be a profinite abelian group. Then the exterior square of G is
defined to be the inverse limit A*G := lim A?G/N together with the inverse limit
G x G — A\’ G of the natural compositions

2
GxG—G/NxG/N— \G/N

where N ranges over all open normal subgroups of GG in both cases. A

We denote by g1 A g2 € /\2 G the image of (g1,92) € G x G under — A —. Notice that
{91 A g2 |91, 92 € G} topologically generates A% G.

Lemma 4.9. Let G, A be profinite abelian groups. Then for all continuous alternating
maps G X G — A there exists a unique morphism /\2 G — A of profinite groups such that
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the following diagram commutes.

Proof. The proof is completely analogous to the proof of Lemma [4.5 O

The alternating map —A— : G x G — A? G naturally induces a morphism G® G — A% G.
We see that A? is a functor PAb — PADb if we define for every f € Hom(A, B) the map
AN f:NA—= N°BbyaAd — fla) A f(d'), where PAb is the category of profinite
abelian groups.

Lemma 4.10. Let G be a profinite abelian group. The morphism G @ G — /\2G 18
surjective and the kernel is topologically generated by {g® g | g € G}.

Proof. Let m be the morphism G ® G — /\2 G. Surjectivity of m follows from the fact
that the natural morphism and the trivial morphism A?G = coker(r) are equal due to
Lemma they induce the same map G x G — coker(m). Denote by N the subgroup
of G® G — N? G topologically generated by {g @ g | g € G}. Tt is clear that N C ker .
By Lemma the composition G x G - G ® G — (G ® G)/N induces a morphism
f:AN*G— (G®G)/N. Now fox equals the quotient morphism G ® G — (G ® G)/N
and thus we have kerm = N. d

Corollary 4.11. For any profinite abelian group G we have N> G = (GRG)/{g@ g | g € G).

Lemma 4.12. Let (G;)ier be a collection of profinite abelian groups indexed by a linear
order (I,<). Then the following map is an isomorphism:

Alle: = (TIAG) (16,

i<j
(9i)i N (g0 ¥ ((9i A gi)ir (i ® g — g @ g5)i<j)-

Proof. For every k € I, let v, be the natural imbedding Gy, — [[, G;. For all j, k € I we
consider the map

2
G x Gy = NG (9:9) = 15(9) Aur(d).
i
These maps induce morphisms

2
fik :Gj® Gy = N(J[Gi) foralli,j €I with j <k,

2 2
fij: /\Gj — /\(HGZ) for all j € I.

Using Lemma 2.2 it can be shown that the collection of maps (fi;)i<; induces a morphism
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of profinite abelian groups

2 2
7 (H/\GZ) X (HGie@Gj) — ATJ G-
i i<j icl
The morphism of profinite abelian groups stated in the lemma is the inverse map of f, as
can be easily verified. O

Corollary 4.13. Let G be a profinite abelian group. Then G is procyclic if and only if
NG =0.

Proof. If G is finite and cyclic, then it is clear that /\2 G = 0. Hence, if G is procyclic
we have A*G = lim. A\?G/N = 0. Now suppose that G is such that A*G = 0. Then
for any open subgroup N we have /\2 G/N = 0, and by the structure theorem for finitely
generated abelian groups it follows that G/N is cyclic. O

Lemma 4.14. Let (Gi)ier be a collection of abelian groups indexed by a linear order
(I,<). Then the following map is an isomorphism:

Ao = (@A) < (eio)

(9)i A (g2)i = ((9i A g2)is (95 ® g — 9i @ g5)i<y)-
Proof. The proof is analogous to the proof of Lemma [4.12 O

Remark 4.15. Let 1 - A % G % Z — 1 be a central short exact sequence of profinite
abelian groups with A procyclic. This sequence splits because 7 is projective. Let v :

GS Z x A be an 1somorphlsm of profinite groups such that ¢ is the natural inclusion
A— 7.x A and such that vp~ ! is the natural pro ctlon ZxA— 7. We have /\ A =0and
A2Z = 0 by Lemma [4.13| hence from Lemma it follows that A%(Z x A) — A defined

77 is an isomorphism. Precomposing this isomorphism with

by (x1,a1) A (z2,a2) — agla
/\2 1 yields an isomorphism 1) : /\2 G — A. This isomorphism 1 does not depend on the

choice of ¥, because it equals the morphism of profinite groups

2 yv(®)
/\GHA, defined by z Ay ! .
xv(y)
Its inverse A — /\2 G is given by a — ¢ A wa, where ¢ € G is such that v(p) = 1. A

Example 4.16. Let p > 2 be a prime number. By Remark the exact sequence
1= 7Z, —Q, 2 Z — 0, where v denotes the valuation map, induces an exact sequence

1= 7Zy, — Q5 — 7 — 0. Hence, it follows from Remark 4.15( that /\2 @, is canonically

isomorphic to Z;. The canonical isomorphism Z, — /\2 @;; is given by x — m A x, where
7 is a prime element of Q). A

4.4 An injective morphism A\’ A — ®* A

For any (profinite) abelian group A the map A x A - ®%*4, (z,y) » 2Qy—y Q=
induces a morphism o4 : /\2 A— ®2 A by the universal property of /\2 A. In this section
we will show that o4 is injective for all (profinite) abelian groups A.
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Lemma 4.17. Let Ay, Ay be abelian groups for which oa,,04, are injective morphisms.
Then g4,q4, 1S injective.

Proof. Via the isomorphism of Lemma and the distributive property of the tensor
product, the morphism 4,44, corresponds to the morphism
2 2 2 2
NAre N\ A @ (A @ Ay) — Q) A1 & (R) A2 © (A1 ® Ay) @ (A3 ® Ay),
(T1 Ay, 22 AN Y2, 21 ®@ 22) = (T1 @Y1 — Y1 @ T1, T2 @ Y2 — Y2 ® T2, 21 ® 22, —22 ® 21).

From this it is clear that 04,44, is also injective. O

Lemma 4.18. Let A be a finitely generated abelian group. Then o4 is injective.

Proof. For any cyclic group C' we have /\2 C = 0 and thus in this case o¢ is injective. By
the structure theorem on finitely generated abelian groups, A is a finite product of cyclic
groups. Now it follows inductively from Lemma that o4 is injective. O

Proposition 4.19. Let A be an abelian group. Then o4 is injective.

Proof. Consider the set I of finitely generated subgroups of A. Then A equals lim_,yc; N
and thus we have A\ A = lim_,ye; A°N and @2 A = lim_,xe; ®* N [2, Ch. 3]. For any
N € I the map oy : AN — ® N is injective by Lemma hence the direct limit
oa: N2 A — Q2 Aof (o) ner is injective since taking direct limits is exact in any abelian
category. O

Proposition 4.20. Let A be a profinite abelian group. Then o4 is injective.

Proof. For each open subgroup N C A the morphism o4y : A*(A/N) = (A/N)® (A/N)
is injective by Lemmal4.19] Moreover, it follows from the universal property of the exterior
square that the diagram

NA— 5 Ao A
N2(A/N) TN AN ® AN

commutes for all open subgroups N C A. So the inverse limit of the maps o4,y over
all open subgroups N in fact equals the map o4. Since o4,y is injective for each N and
because the inverse limit functor is left exact, it follows that o4 is injective. O

Remark 4.21. Let R be a commutative ring and let M be an R-module. We can analo-
gously define the R-module morphism

2 2
UM:/\M—>®M, TANYy— Ry -y,

where we take the exterior product and tensor product in the category of R-modules. How-
ever, this map o)/ is not injective in all cases. For example, let R be the ring Fo[X,Y, Z]
and consider the R-ideal I := (X,Y, Z). Then in ®* I we have the equalities

XQYZ=XYRZ=YRXZ=YIRX,

and thus we conclude that o7(X AYZ) = 0. Consider the ideal J := (X2, Y2 Z2) of
R. The map I x I — R/J defined by (f,g) — fg is an alternating R-bilinear map
and thus induces a morphism /\2 I — R/J that sends X A YZ to the non-zero element
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XYZ € R/J. Hence, X AYZ # 0 and o7 is not injective. We can turn R into a finite
ring with 28 elements by replacing it by R/.J. A

4.5 Cocycle squares

In this section we will describe the the cocycle square of abelian groups and of profinite
abelian groups. For any abelian group A the cocycle square of A will be an abelian group
@2 A together with a cocycle map —©® —: A x A — @2 A such that composition with
— ® — yields a representation Hom(()? A, —) — Z?(A, —) of the functor that maps an
abelian group B to the set Z?(A, B) of cocycle maps A x A — B, where A acts trivially
on B. See section for the definition of cocycle maps. The profinite cocycle square will
have a similar universal property additionally involving the topology. The notation and
theorems from section [3.4] are assumed to be known.

Definition 4.22. Let G be an abelian group, written multiplicatively. Let F' be the free
abelian group on the symbols g1 ® g2 where g1, g2 € G. Consider the subgroup

N = <y@Z*l’y®Z+$@y27$®y|:l:ay7Z€G>

Then we define the cocycle square to be the group @2 G := F/N together with the cocycle
map

2
—@—:GXG—>®G, (91,92) — 91 © go. A

Lemma 4.23. Let G, A be abelian groups. Then for all cocycle maps G x G — A
there exists a unique group homomorphism 02 G — A such that the following diagram
commautes.

O’G--2-5 A
GxG

Proof. Uniqueness of the homomorphism follows from the universal property of the free
abelian group F' on the formal symbols g1 ® g2 where g1,92 € G. Now let c: G x G — A
be a cocycle map. Then there exists a homomorphism f : F — A such that ¢ equals the
composition G x G — F — A. The kernel of f contains ker(F — (O®G) and thus we get
a homomorphism @2 G — A that fits the diagram stated in the lemma. O

Lemma 4.24. Let G, A be abelian groups and let w : G X G — A be a cocycle. Define
f:GxG— Aby f(x,y) =w(z,y) —w(y,z) for all (z,y) € G X G. Then f is bilinear.
Proof. Let x,y,z € G. Then we have

W(.’Ey, Z) - W(.T, yZ) = W(y, Z) - U.)(]I, y)a

(A)(:E, yZ) - CU(Z.CC, y) = W(.CC, Z) - UJ(Z, y)?

w(zz,y) —w(z,zy) = w(z,y) — w(z,2).
Adding these three equations yields

w(zy, z) —w(z,zy) = w(y, 2) + w(z, 2) —w(z,y) —w(z ),

and thus f(zy,z) = f(y,2) + f(x,z). This proves that f is linear in its first argument.
Since for all g,¢" € G we have f(g',g9) = —f(g,9'), it follows that f is also linear in its
second argument. ]
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For any abelian group G consider the natural map k¢ : /\2 G — @2 G defined by x Ay —
r®y—y©®x, and notice that this is a homomorphism by Lemma The natural
composition /\2G — @2G — ®2G is injective by Proposition Hence, kg is
injective. We view /\2 G as a subgroup of @2 G via kg. Notice that the natural map
G x G — O*G/N\*G is a commutative cocycle.

Lemma 4.25. Let G be an abelian group. Then G x G — (> G/ N> G is the initial object
in DCZ?(G).

Proof. Denote the map G x G — @2 G/ /\2 G by w. Let A be an abelian group and let
c: G x G — A be a commutative cocycle. Then ¢ induces a group morphism @2 G — A.
The composition /\2 G — @2 G — A is the zero map since it induces the trivial cocycle
G x G — A. Hence, we get a homomorphism ()? G/ A>G — A and this is a morphism
w — ¢ of commutative cocycles. Now it follows from Lemma [£.23] that there is exactly
one morphism w — c. O

Denote the natural map G — Z[G| by [—]. From the theory in section it follows
that the initial commutative cocycle G x G — ()? G/ A? G corresponds to a sectioned
central extension. The following lemma shows that the corresponding extension is Z[G| —
G, [x] — x with section [z] < x.

Lemma 4.26. Let G be an abelian group. The initial object in DCZ®(Q) is the sectioned
central extension Z[G] — G.

Proof. Consider a central extension 7 : E — G with a section s : ¥ < G. By the universal
property of Z[G| as a free abelian group, there is a unique morphism ¢ : Z[G] — E of
groups such that for any ¢ € G we have 9([g]) = s(g). Hence, there is at most one
morphism in Hompczeq) (Z|G], F) and it remains to verify that ¢ makes the diagram

Z|G] — G
lw/
E
commute, where Z[G] — G is the natural morphism of groups. This follows from the

universal property of Z[G] as a free abelian group since [—] : G — Z[G] is a section of both
m o1 and of the natural map Z[G] — G. O

The following proposition tells us more about the structure of QQ G for an abelian group

G.

Proposition 4.27. Let G be an abelian group. Then there is an exact sequence

2 2
0> ANG—>()G—ZG -G =0
where the third and fourth morphisms are respectively defined by
rOy = [o]+ [y - [zy],  [z] =

Proof. By Lemma and Lemma it follows that in the isomorphism of categories
DCZ?(G) = DCZE(G) from section [3.4] the commutative cocycle G x G — O*G/ N> G
corresponds to the commutative sectioned central extension Z[G] — G. Hence, we get the
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exact sequence
2 2
0-+()G/N\G—Z[G] -G 0.
It can be verified that the corresponding maps are as stated in the proposition. O
Corollary 4.28. Let G be an abelian group. Then the group morphism /\2 G — O2 G,
giwen by x ANy — x Oy —y©x has a group-theoretic retraction.

Proof. Propositition [4.27] gives an exact sequence

2 2
0—>/\G—>@G—>ker(Z[G]—>G)—>O.

Since ker(Z[G] — G) is free, we conclude that the short exact sequence splits. Hence, we
get the desired result. O

We also need a profinite cocycle square. Unfortunately, the cocycle square of finite groups
that we have constructed cannot always be equipped with a topology that turns it into a
profinite group. For example, by Proposition 4.27] we conclude that for a cyclic group C,
of order n we have (O)* C,, = Z".

Recall that for any group G we denote by G the profinite completion lim, x G/N where
N ranges over the normal subgroups of G of finite index. We first consider the finite case
of the profinite cocycle square. We use the finite case to define the profinite cocycle square
for all profinite abelian groups in Definition

Definition 4.29. Let G be a finite profinite group. Let G, be the underlying group of

G. We define the cocycle square of G to be @2 G = @2 Ggrp, together with the natural
cocycle map G X G — @2 G that equals the composition

2 2
GxG—()Gep— ()G A
Note that the natural map —® — : G x G = (D? G is a continuous cocycle map.
Lemma 4.30. Let G, A be finite profinite abelian groups. Then for all cocycle maps

G x G — A there exists a unique morphism @2 G — A of profinite groups such that the
following diagram commutes.

O’G--2-5 A
GxG

Proof. Uniqueness of the map follows from the fact that the image of the map G x G —
@2 G topologically generates @2 G. Let Ggrp be the underlying group of G. Let w be a
cocycle map G x G — A and consider the induced homomorphism f : @2 Ggrp — A. Then
the map OQ Ggrp — A yields a group homomorphism ((D2 Gorp)/ ker f — A. Since ker f
is of finite index in @2 Ggrp, we now get a morphism of profinite groups h : 62 G — A.
It is not hard to verify that h[—, —] = w. O

Now we can give the definition of the profinite cocycle square for all profinite abelian
groups.
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Definition 4.31. Let GG be a profinite abelian group. We define the cocycle square of G
to be limey O*(G/N), together with the inverse limit — ® — : G x G = (O? G of the
continuous cocycle maps G/N x G/N — (O*(G/N), where N ranges over the open normal
subgroups of G and (O*(G/N) is the profinite cocycle square of G/N in both cases. A

Again, note that the natural map —©® — : G x G — @2 G is a continuous cocycle map.
Lemma 4.32. Let G, A be profinite abelian groups. Then for all continuous cocycle maps

G X G — A there exists a unique morphism G x G — A of profinite groups such that the
following diagram commutes.

O’G--2-5 A
GxG

Proof. The proof of this lemma is very similar to the proof of the universal property for
the profinite tensor product (Lemma [4.5)). O

Corollary 4.33. Let G, A be profinite abelian groups. Then the universal property of the
cocycle square induces an isomorphism Z*(G, A) = Hom((O? G, A) of groups.

Let G be a profinite abelian group. Then G x G — O2 G defined by (z,y) —» z0y—yox
is a continuous map, and it is alternating by Lemma |4.24] Hence, it induces a natural
morphism kg : /\2G — ®2G of profinite groups. Composing kg with the natural
morphism (O? G — ®?* G is injective by Proposition , and thus we conclude that kg
is injective. We can now view /\2 G as a closed subgroup of @2 G via kg due to Lemma

2.10

Lemma 4.34. Let G be an abelian group. Then G x G — (> G/ N\* G is the initial object
in PCZ2(G).

Proof. This proof is completely similar to the proof of Lemma [4.25 O

Let R be a profinite commutative ring. For any profinite group A we write R[[A]] for the
profinite R-algebra R = lim, R[A/N| where N ranges over the open subgroups of A. The
inverse limit of the maps R[A/N] — A/N,[z] — z gives a natural morphism R[[A]] - A
of profinite abelian groups.

The universal profinite commutative cocycle G x G — (O?G/ A\>G corresponds to a
profinite sectioned central extension, by the theory in section B.4 The following lemma
shows that the corresponding extension is Z[[G]] — G, with a section [—] that is the inverse
limit of the maps G/N — Z|G/N], = — [x].

Lemma 4.35. Let G, A be profinite abelian groups. Then for all continuous maps G — A
there exists a unique morphism Z[|G]] — A of profinite groups such that the diagram

2((c]) - 4
e

commautes.

Proof. We prove (i) uniqueness and (ii) existence.
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(i) Suppose that f1, fo are morphisms Z[[G]] — A that fit the diagram. Then for any
open normal subgroup M C G, the set ker(f1 — f2) is mapped surjectively to Z[G/M]
by the map Z[|G]] — Z[G /M], as can be seen by using Lemma Applying Lemma
again yields ker(f1 — fo) = lim Z[G/N] and thus f1 = fs.

(ii) If G and A are both finite, then the result follows from Lemma and Lemma
Now we consider the case that only A is finite. Let G — A be a continuous
map. Then G — A factors through G/M for some open subgroup M C G. The
map G/M — A now induces a morphism Z|G/M] — A and this yields a morphism
Z[[G]] — A that fits the diagram. If A is not finite, then for any open subgroup
M C A the composition G — A — A/M induces a morphism Z[[G]] — A/M.
These morphisms are compatible when M varies, and thus they induce a morphism
Z[|G]] — A that fits the diagram. O

Lemma 4.36. Let G be a profinite group. Then the extension Z[[G]] — G with section
x> [z] is the initial object in PCZE(G).

Proof. This can be similarly proved as Lemma but this time by relying on Lemma
4.3 [

Proposition 4.37. Let G be a profinite abelian group. Then there is an exact sequence

2 2
O—>/\G—>@G—>i[[GH—>G—>O
where the third and fourth morphisms are respectively defined by

Oy [zl + [y = [zy], [zl
Proof. This follows from Lemma [£.34] and Lemma[£.36] analogously to the proof of Propo-
sition [4.27] O

Corollary 4.38. Let G be a profinite abelian group. Then the morphism /\2 G— @2 G,z
y—=xOy—y©®z has a retraction of profinite groups.

Proof. By Lemma [£.37] we get a short exact sequence

2 2
0= A\G— ()G — ker(Z[[G)] = Z) — 0.

Since lim Z[G /N] is projective by Corollary m we get the desired result. O

4.6 Restricted products

In this section we will define restricted products. The aim of this section is to show that
Ext!([[; Gi, A) is naturally isomorphic to the restricted product [[; Ext!(G;, A) for any
profinite abelian groups (G;); and A.

Definition 4.39. Let (F;);c; be a collection of covariant functors PAb — Ab indexed
by a set I. For any open subgroup N of a profinite abelian group A with quotient map
ma N A— A/N, we consider the homomorphism

man  JTFA) = TTE@A/N), @i = (Fi(man) (@)
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We now define the restricted product of (F;); as the functor H/AFZ‘ : PAb — Ab for
(]
which

[T F4) = N7an "@ F(A/N)), for any A € Ob(PAD),
) N 7

/
[T 5 = (@i = (Fi(f)(2:))i), for any f € Hom(PAb),
i
where we take @@, Fi(A/N) C [], Fi(A/N) via the natural inclusion. A
In the definition above, we sometimes write [[}(Fi(A)) instead of ([]; F})(A) when the
meaning is clear from context. Notice that the natural inclusions [[; F;(A) — [, Fi(A)
yield a natural transformation [[; F; — [], F;. Moreover, any collection of natural trans-
formations (n; : F; — G;); of functors PAb — Ab, induces a natural transformation
[1: F; — [I;G: by componentwise application of the transformations 7;. Hence, for any

index set I, we see that the restricted product is a functor [[' : Fun(PAb, Ab)! —
Fun(PAb, Ab).

Lemma 4.40. The restricted product functor [[ : Fun(PAb, Ab)! — Fun(PAb, Ab) is
left exact for any index set I.

Proof. Let (0 — E; f# F; ) H;); be a collection of exact sequence of functors PAb — Ab

indexed by a set I. Let 0 - F i) F ™ H be the restricted product of this exact sequence.
Then exactness at E is clear. Let A be a profinite abelian group. Then im f(A) C ker h(A)
is easily verified. It is left to prove that ker h(A) C im f(A). Let (z;); € ker h(A). Then
for any 7 we have z; € ker h;(A) = im f;(A), and we choose e; € E;(A) to be such that
fi(A)(e;) = x;. For any finite quotient ¢ : A — A/N of A we have F;(q)(x;) = 0 for
allmost all 4, and it follows from the commutative diagram

|B@ Fila)

Ej(A/N) A foasny
that E;(q)(e;) = 0 for almost all i. Hence, we have (e;); € E and this element is mapped
to (zi)i by f(A). =

We say that a functor F' : PAb — Ab preserves products of finite groups if for any product
[I; A; of finite discrete abelian groups with projection maps 7 : [[; A; — A; the map

(F () : F(H Aj) — H F(A)

is an isomorphism. If the map (F(m;)); : F([[; Ai) — [[;(A4s) is an isomorphism for all
collections (A4;); of profinite abelian groups, then we simply say that F' preserves prod-
ucts. The functors that preserve products (of finite groups) together with the natural
transformations form an abelian category.

Lemma 4.41. Let (F;); be a collection of functors PAb — Ab that preserves products of
finite groups. Then H; F; preserves products of finite groups.

Proof. Let (A;);cs be a collection of finite discrete abelian groups. Write F' := [} F;. For
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any j € J, let wj : [[, A; = A; be the projection map, and consider the map
7 [ FA) = [T F(A)), ()i = (Film) ()i

The set of finite intersections of kernels ker(A — A;) is cofinal in the set of all open
subgroups of A. Hence, we have

F(4)=m "D FEA) =7 F(4;). (1)
J i J
Moreover, since each F; preserves products we have an isomorphism

HFZ»(A) — HHFi(Aj% z = (mj(2));

and the restriction to F'(A) induces by equation the isomorphism
F(A) S TIFPA), ©e (Fm)();. O
J

Proposition 4.42. Let (0 — E; — F; — H; — 0); be a collection of exact sequences
of functors PAb — Ab indexed by a set I. Suppose that F; and H; preserve products
of finite groups for all i. Let A be a product of finite discrete abelian groups. Then the
induced sequence

0 [ Ea) = [[ FA) = [] Hi4) -0
15 exact.

Proof. For any 1, let h; be the natural transformation F; — H;, and let h : F — H be the
restricted product of the collection (F; h4 H;);. Since restricted products are left exact
functors by Lemma it is left to prove that h(A) is surjective. Write A = [[; A; with
each A; a finite discrete abelian group, and for any j let m; : A — A; be the projection
map. Then by naturality of h the diagram

FA) — )
(ﬂmmf (ﬂmmf

IT, F(A;) "2 11 Hay)

commutes. The vertical arrows are isomorphisms by Lemma [£.41] and the bottom hori-
zontal arrow is surjective by finiteness of all A; and by surjectivity of (F); — (H;);. It
follows that h(A) is surjective. O

Lemma 4.43. Let G be a profinite abelian group. Then the functors Ext!(G, —), HZ(G, -),
7*(G, ) and Hom(G, —) preserve products.

Proof. 1t is clear that Hom(G, —) preserves products: this follows from the universal prop-
erty of products. Similarly it follows that Z?(G, —) preserves products. For any product
[1, Ai of profinite abelian groups, the isomorphism Z*(G, [, 4;) <— [, Z*(G, A;) maps
(collections of) commutative cocycles to (collections of) commutative cocycles, and maps
(collections of) coboundaries to (collections of) coboundaries. It follows that Ext!(G, —)
and H?(G, —) also preserve products. O

41



Lemma 4.44. Let (G;);, G and A be profinite abelian groups. Let (f; : G; — G); be a
collection of morphisms of profinite groups such that f; — 0 (cf. section[{.1)). Then the
1mage of the morphisms

(Hom(f;, A)); : Hom(G, A) — HHom(Gi, A),

(Ext'(fi, A)); : Ext!'(G, A) — [[ Ext! (G, 4),
(H?(fi, A)): : HX(G, A) — [[ H*(Gs, A)

s contained in
[T Hom(Gi, 4), ] Ext'(Gi,4), [ H*Gi4)

respectively.

Proof. For Hom this follows from the fact that for any ¢ € Hom(G, A) and any finite
quotient ¢ : A — A/N the composition G — A — A/N factors through a finite quotient
of G. The analogous result similarly follows for (Z*(f;, A)); and this also proves the result
for Ext' and H? by describing the corresponding maps in terms of cocycle classes. ]

Theorem 4.45. Let (G;)ic; and A be profinite abelian groups and suppose that A is
the product of finite discrete groups. For every j € I, consider the natural inclusion
vj : Gj = 11, Gi. Then the map

Ext!([] Gi, A) = [ Ext'(Gi, A). @ — (Ext' (1, A)());

s an isomorphism of abelian groups. This isomorphism is natural in all G;’s and in A.

Proof. The map Ext!([[, G, A) — [[; Ext' (G, A) is well-defined due to Lemma For
every i € I, let 0 » K; — Z7 — G; — 0 be a projective resolution, which is possible by
Corollary Write G := [[, G;, J := ||, J; and K := [], K;, and notice that for every

i € I the natural inclusions give a morphism

0 K 2 G 0
0 K, AL G; 0

of short exact sequences. Hence, for every i € I we get the following commutative diagram.

Hom(K, A) —%— Ext!(G, A)

! |

Hom(K;, A) —— Ext!(G;, A)
Taking restricted products, we obtain a commutative diagram

Hom(Z7, A) —— Hom(K, A) —%— Ext}(G,A) ——— 0

L L I

[ Hom(@”, 4) — [ Hom(K;, A) -2 T Ext!(Gyi, A) — 0
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by applying the long exact sequences of Ext. Indeed, the last objects of the rows are 0
because Extl(P, B) = 0 whenever P is projective. Moreover, the two leftmost vertical
arrows are group isomorphisms due to Lemma The top row is clearly exact, and the
bottom row is exact by Proposition and Lemma Now bijectivity of the map
Ext!(G, A) — [, Ext'(Gi, A) is clear. The desired naturality follows from the fact that
Ext! is a bifunctor. O

5 A SPLIT EXACT SEQUENCE

In this chapter we will show that for any abelian groups G, A we have got a split exact

sequence
2

0 — Ext'(G, A) — H*(G, A) — Hom(/\ G, 4) — 0,

where the action of G on A is trivial. This is an exercise by K.S. Brown in [3, Ch. 5.6].
We will also show a similar statement for profinite abelian groups.

5.1 Commutator pairing

In this section we describe a natural homomorphism H?(@, A) — Hom(A\* G, A), where G
and A are (profinite) abelian groups and G acts trivially on A. For abelian groups G and

A we say that a map f: G x G — A is alternating if it is bilinear and for all g € G we
have f(g,g) = 0. By the theory in section we identify H?(G, A) with HF(G, A).

Consider an exact sequence
0ASESG—0

of (profinite) groups where F is a central extension of G by A and where G is abelian.
Then by Lemma we have that F is of class 2, and the (continuous) commutator map
E x E — E® is bilinear. Since G is abelian, we have E?) C ([A] and get an induced
(continuous) commutator map ¢ : E x E — A. From ([A] C Z(F) it follows that ¢ factors
over the map (m,7) : E x E — G x G, and the induced commutator map G x G — A is
continuous because the map ' x F — G x G is open and surjective. It is clear that this
commutator map is alternating. Hence, we get an induced morphism [—, —] : /\2 G- A
of (profinite) groups and it maps gi A go to ¢t~ ![eq, ea] where w(e;) = g; for i = 1,2. Tt
is not hard to verify that this map [—, —] depends only on the isomorphism class of the
central extension. By the theory from section we get a map cp(G, A) : H*(G, A) —
Hom(/\2 G, A) called the commutator pairing that maps every central extension to such
a commutator map. When it is clear from context what is meant, we simply write cp

instead of c¢p(G, A).

In order to prove that cp(G, A) is a homomorphism, we translate H2(G, A) and the map
in terms of cocycles classes with the theory from section Let w: G x G — A be
a cocycle. Then the cocycle class [w] € H?(G, A) corresponds to the central extension
0—A— Ax,G— G — 0. It follows that the map cp(G, A) sends [w] to the element
of Hom(A\® G, A) defined by [g1 A g2 — w(g1,92) — w(g2,91)]. This map is clearly a
homomorphism.

5.2 Section of H2(G, A) — Hom(A\>G, A)

In this section we will prove that the homomorphism cp : H3(G, A) — Hom(A? G, A) has
a group section in the case that A, G are abelian groups. This result is an exercise in
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[3, Ch 5.6]. We will also show that for profinite abelian groups A, G the homomorphism
cp : H%(G, A) — Hom(A? G, A) has a group section. The notation and theory of section
4.5 will be considered as known.

Proposition 5.1. Let A, G be (profinite) abelian groups. Then the commutator pairing
cp(G, A) : H*(G, A) — Hom(\? G, A) has a section that is natural in A.

Proof. Let kg : /\2G — ®2G defined by t Ay — = ® y — y ® x be the injective ho-
momorphism as in section Denote by ® the corresponding natural transformation
Hom(kg, —) of Hom(()? G, —) to Hom(A\? G, —), and write ®p := ®(B) for any (profi-
nite) abelian group B. Any (profinite) abelian group B gives a diagram

7%(G, B) +~— Hom(()*G, B)

| [
H?(G,B) —— Hom(A*G, B)
and its commutativity can be verified by using the theory from section Let u :=
(I)QQG(id®2 o), i-e., usends an element 2 Ay to 2 © y —y ©® 2. Then for any (profinite)

abelian group B and any f : Q2 G — B we have ®p(f) = f ou, which can either be seen
by Yoneda’s Lemma, or by a direct calculation. By Corollary or Corollary there
exists a morphism v : ©* G — A? G such that v ou = id 2 . Now the map

2 2
Hom(/\G,B)%Hom(@G,B), grrgov

is a section of ®p, and this results in a section of H*(G,B) — Hom(A?G, B) that is
natural in B. ]

Theorem 5.2. Let G be (profinite) abelian groups. Then for any (profinite) abelian group
A the sequence

2
0 — Ext'(G, A) — H*(G, A) = Hom(/\ G, A) = 0

is a split exact sequence, where Ext'(G, A) — H*(G, A) is the inclusion map. Moreover,
we can choose the sections of cp to be natural in A.

Proof. Tt is easy to verify that the sequence is exact at Ext'(G, A) and at H3(G, A). It
now follows from Proposition that the sequence is split-exact with a section of cp that
is natural in A. O

Corollary 5.3. Let A, G be (profinite) abelian groups and suppose that G is (pro)cyclic.
Then Ext}(G, A) = H*(G, A).
Proof. By Lemma we have /\2 G = 0. Hence, the result follows from t

5.3 Canonical splitting

In this section we will exhibit a retraction of the map Ext!(G, A) — H?(G, A) for profinite
abelian groups G, A where G = [][,G; is the product of procyclic groups G;. This
retraction will be natural in all G; and A, and explicitly given. In order to define this
retraction, we reduce G to the procyclic case G; by using restricted products and relying on
Theorem [£.45] The results in this section can be compared with Theorem which does
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give retractions, but these retractions are not explicitly constructed and are not natural
in G.

Remark 5.4. Let (G;);er and A be profinite abelian groups. Suppose that A is the
product of finite discrete abelian groups, or, suppose that I is finite. For every j, let ¢; :
G; — [, Gi be the natural injection. Then there is a natural homomorphism (H?(s;, A)) :
H*(T], Gi, A) — [[,H?*(Gy, A) defined by = — (H?*(z;, A)(z));. This is well-defined by
Lemma Similarly, we also have a homomorphism

2
Hom/\HGl,A Bom(A o), H Hom/\Gz,A

The defined maps yield a commutative diagram
0 —— Bxt!([], G, A) —— H*([]; Gi, A) ——— Hom(A*[[,;Gi, A) —— 0
zi(Extl(Li,A))i l(HQ(%A))i l(Hom(/\2 tiA))i
!/ !/ /
0— ] iExtl(Gi,A) — ] iHQ(Gi,A) — 1] iHom(/\z Gi,A) —— 0
and the rows are exact by Theorem and, if A is the product of finite discrete groups,
Theorem [£.42] The leftmost vertical arrow is an isomorphism due to Theorem or,

due to the additivity of Ext!(—, A). Moreover, the diagram is natural in A and, if the
index set [ is fixed, also in each Gj;. A

Proposition 5.5. Let (G;)ier be a collection of procyclic groups and let A be a profinite
abelian group. Suppose that A is the product of finite discrete groups, or, suppose that I
is finite. Then the diagram in Remark[5.4 gives a diagram

0 —— Ext' (], Gi, A) —— H*([], Gi, A) —— Hom(A*[]; Gi, A) —— 0
?l(Extl(LivA))i l(HQ(LivA))i
00— H,iExtl(Gi,A) ~ H’i H2(Gi A) — 5 0
in which the rows are exact. Moreover, the composition

H([[ G 4) — [ B%(Gin 4) — [ Ext!(Gi, 4) — Ext'([] Gi A)

is a retraction of the map Ext'([], Gi, A) — H*([[; Gi, A). This retraction is natural in
A and, if the index set I is fized, also in each G;.

Proof. By Lemma we have [[, Hom(/\® Gy, A) = 0 and this shows that we get the
desired diagram. It follows from the commutativity of the diagram that the composition, as
stated in the lemma, is indeed a retraction of the map Ext!([[; G, A) — H2([[, G, A). O

Denote by ret((G;);, A) the retraction that is given by Proposition We thus get
a natural isomorphism as stated in the next proposition. Recall from section [5.1] the
definition of the map cp(G, A) : H*(G,A) — Hom(A?G, A) for any profinite abelian
groups G, A. We sometimes simply write ret instead of ret((G;);, A) when the meaning
of the map is clear from context.

Proposition 5.6. Let (G;)icr be a collection of procyclic groups and let A be a profinite
abelian group. Suppose that A is the product of finite discrete groups, or, suppose that I
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18 finite. Then
2
(ret,cp) : HX(J] Gi, A) = Ext'([[ Gi. A) @ Hom(\ [[ G+, 4)

s an isomorphism of groups that is natural in A and, if the index set I is fized, also in
each G;.

The following lemma generalizes the naturality of the retraction maps ret.

Lemma 5.7. Let f : G' — G be a morphism of profinite groups, and suppose that G =
[Lic; Gi and G' = HjeJ G;- are factorizations into procyclic groups. Let A be a profinite
abelian group. Suppose that A is the product of finite discrete groups, or, suppose that I
and J are finite. Assume that for each j € J one of the two following conditions holds: G;
s projective, or, there exists i € I such that f[G;] C Gy, where we view G; as a subgroup
of G via the natural inclusion map. Then the diagram

HZ(f»A) H2(

H2(G, A) G, A)

ret ret
< 1
Ext! (@, A) Ve (@, 4)
commutes.

Proof. Let J' be the subset of J of all j for which G;- is not projective. By Theorem
we have Ext!(G’, A) = HjEJExtl(G;,A) = [Lies Extl(Gg-,A). Now the result follows
from naturality in each G’ with j € J'. O

In our applications, most of the groups G; will be projective, leading to the following
practical result.

Proposition 5.8. Let G, A be profinite abelian groups. Suppose that C C G is a procyclic
closed subgroup such that G/C' is projective and such that G/C is a product of procyclic
groups indexed by I. Let v : C — G be the inclusion map. Suppose that A is the product
of finite discrete groups, or, suppose that I is finite. Then Ext!(:, A) and

2
(H?(1, A),cp) : H*(G, A) — Ext'(C, A) x Hom(/\ G, A)

are isomorphisms. Moreover, we have H%(1, A) = Ext!(s, A) o ret((G;)ier, A) for every
factorization G = Hj G; with 0 € I and C = Gy and all G; procyclic.

Proof. Notice that H?(:, A) indeed maps to Ext!(C, A), since H*(C, A) = Ext!(C, A) by
Corollary By assumption we have G = C' x P for some projective subgroup P C G:
the sequence 1 - C — G — G/C — 1 splits because G/C is projective. This shows that
Ext!(s, A) is an isomorphism. The remaining statements follow from the commutative
diagram

Ext!(G, A) —— H?(G, A)

Extl(L,A)ll \LH2(L,A)
Ext!(C, A) —~— H?(C, A)

and Proposition O
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Notice that in the setting of Proposition |5.8| the retraction ret((G;);er, A) does not depend
on the factorization G =[], G;.

For certain products G = [[; G;, the following proposition gives an element & of H%(G, /\2 G)
such that (ret,cp)é = (0,id).

Proposition 5.9. Consider a profinite abelian group G = [[,c; G with each G; procyclic
and with (I,<) a totally ordered set. Suppose that /\2G is the product of finite discrete
groups, or, suppose that I is finite. For every j € I, let v; : G; — G be the natural
inclusion map. Then the map

2
w:GxG—>/\G, Oéz)z, B@z szzaz /\Lz(ﬂl)

i<t

is a well-defined continuous cocycle such that (ret,cp)[w] = (0,id).

Proof. For all ((a;)i, (8i)i) € G x G, the sum Y, _, ti(a;) A 1y (By) is a finite sum in
A’ T1;(Gi/N;), where N; are open subgroups of G with N; = G; for almost all i. Hence,
w is well-defined and continuous. It can be routinely verified that w is a cocycle map. In
sectionwe see that cplw] : A2G — A2 G is given by z Ay — w(z,y) —w(y,2) =z Ay.
Finally, it is easily verified that for every i and all x,y € G; we have w(¢;(x), ¢;(y)) = 0.
Hence, for all i we have H?(1;,id)[w] = 0, and we conclude that ret[w] = 0. O

6 MULTIPLIER-FREE THEOREMS

In this section we will consider the map [—, —] : A2 G2> — G /G®) defined by g1 A gz —
(91, g2]G3, for any group G. We will show that the map [—, —] is an isomorphism of groups
for a group G that satisfies H?(G,Q/Z) = 0. We prove a similar statement for profinite
groups. The proofs of the two statements are similar.

6.1 Multiplier-free theorems

Remark 6.1. We will show that the commutator map
2

[_7 _] : /\Gab — [Ga G}/G(3)7 ﬁ/\@'_) [glag2]

is well-defined in the case that G is a group or a profinite group. So consider such a G.
Then

1-69/6% - q/68% - q/G?

is a central extension. Hence, from section it follows that we get a map /\2 G*» —
G®? /G®) defined by g1 A Gz — [91, g2)- A

Let G be a (profinite) group and let f : ®2 G?® — Q/Z be a (continuous) homomorphism.
Then the map w : G X G — Q/Z defined by (z,y) — f(T ® y) is a (continuous) cocycle:
for all z,y, 2z € G we have

w(y,z) —w(zy, 2) + w(z,yz) — w(z,y)

=fGez-(T+79)RzZ+TR(Y+2)—TR7Y)
= f(0) =

Definition 6.2. Let G be a (profinite) group acting trivially on the discrete abelian group
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Q/Z. We define the homomorphisms

2
O¢ :Hom(® Gab,Q/Z) — 7Z%(G,Q/7Z) (without topology),

2
O¢ :Hom((X) G*, Q/Z) — Z*(G,Q/Z) (with topology)

as the maps that send f to the cocycle (z,y) — f(Z®¥y). We denote by O¢ the composition
of ©g with the quotient map Z*(G,Q/Z) — H*(G,Q/Z). A

Lemma 6.3. Let G be a (profinite) group. Let b: G — Q/Z be a (continuous) map and
consider the (continuous) cocycle w : G x G — Q/Z defined by (x,y) — b(z)+b(y) —b(xy).
Suppose that w € im(Og). Then b has the following properties.

(i) We have b(1) = 0.

(i) Let g1,92 € G. Then b(g192) — b(g291) = b([g1, 92]).-
(iii) Let g € G and c € G?). Then b(gc) = b(g) + b(c) = blcg).
(iv) We have b|g, = 0.

Proof. Let f € Hom(®?G??,Q/Z) be a (continuous) morphism such that O¢(f) = w.
Then for all z,y € G we have

f@@y) =b(z) +by) — blxy). (2)
(i) This follows from applying onx=y=1.

(ii) For all g1,92 € G we have 0 = f([g1, 92] ® §291) = b([g1, g2]) + b(g291) — b(g192) by
2)-

(iii) For all g € G and ¢ € G we have 0 = f(g®¢) = b(g) + b(c) — b(gc) by and
similarly we have 0 = f(¢ ® g) = b(c) + b(g) — b(cg).

(iv) For each ¢ € [G,G] and g € G we have b([g, c]) = b(gc) — b(cg) = 0 by (ii) and (iii).
By (iii) we see that the restriction of b to G(?) is a (continuous) group homomorphism
and we conclude that the kernel contains G(®). O

The following lemma gives an explicit surjective homomorphism from im(6¢) C H*(G, Q/Z)
to Hom (K, Q/Z) for any (profinite) group G. Recall from section [4.4] that o : A\ G*P —
®2 G? is the map * Ay = 2 ®y — y ® r. Recall from section that the functor
Hom(—,Q/Z), denoted by x*, is exact on sequences of abelian groups because Q/Z is in-
jective, and that the Pontryagin functor , defined as Hom(—, Q/Z) with Q/Z discrete, is
exact on sequences of profinite abelian groups by Pontryagin duality.

Lemma 6.4. Let G be a (profinite) group and let v : K — /\2 G? be the kernel of the

commutator map
2

[—.—]: \G™ = G?/G®).

Consider the homomorphism

2
Y = (0gab 0 1) = Hom(ogab 01, Q/Z) : Hom(® G* Q/Z) — Hom(K,Q/Z).

Then the map o L
imOg — Hom(K,Q/Z), ©c(f)— ¥(f)
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1s a well-defined surjective homomorphism.

Proof. First of all, the surjectivity follows from the fact that v is injective: ¢ is injective
and 0 := 0gab is injective by Proposition .19 or Proposition[f.20] Hence, it is left to prove
that ker O C kert, in order to conclude that im ©g — Hom(K,Q/Z) is well-defined.
By applying the functor * introduced in section [2.3] we have the following commutative
diagram, in which the rows are exact, and for every f € ker ©g we will construct an
clement F € (G®/G®)* such that [—, —]*F = o* f.

*

0 (G(?)/G(?)))* [-—1" (/\2 Gab)* L K*

o

0 — kerOg —— (R*G2b)*

Vv
@)

Consider an element f € ker ©g. Then for some (continuous) map F : G — Q/Z we have
f@Z®Yy) =F(x)+ F(y) — F(zy) for all z,y € G. Now —F|42) is a homomorphism by
(ii) of Lemma Moreover, —F|q factors over G — G®)/G®) with a (continuous)
map F : G®@/G®) = Q/Z by (iv) of Lemma Finally, by Lemma we have for all
g1, g2 € G that

F([g1,92]G3) = F(g92g1) — F(9192) = f(@1 ®52) — f(G2 @ G1) = 0" f(G1 N G2).
Hence, we have [—, —]*ﬁ = o*f. This yields

U(f) =0 (f) = - —*(F) =0,
and thus f € ker. O

Theorem 6.5. Let G be a (profinite) group such that H*(G,Q/Z) = 0. Then the com-

mutator map
2

- -1: \N\G* = G?/G®)
s an isomorphism.

Proof. 1t is clear that the commutator map is surjective, so by Lemma [2.9| it is left to
prove the injectivity of this map. From H?(G,Q/Z) = 0 it follows that ©g is the zero
map. Hence, due to Lemma we find that Hom (K, Q/Z) = 0. We conclude that K =0
by Lemma [2.35 O

Remark 6.6. A different proof of Theorem [6.5] can probably be obtained by means of the
inflation-restriction sequence. Let G be a group, and let N be a subgroup of G. Assume
that H?(G,Q/Z) = 0, with G acting trivially on the group Q/Z. Since H?(G,Q/Z) = 0,
the inflation-restriction sequence yields the sequence

0 — HY(G/N,Q/z) W HY(G,Q/z) % HY(NV,Q/2)%/N I H2(G/N,Q/Z) — 0,

and this corresponds to the exact sequence
0 — Hom(G/N,Q/Z) — Hom(G, Q/Z) — Homgn(N,Q/Z) — H*(G/N,Q/Z) — 0,

where Homg /v (N, Q/Z) is the subgroup of Hom(N, Q/Z) consisting of all homomorphisms
f € Hom(N,Q/Z) satisfying f(gng™') = f(n) for all g € G and n € N. We remark that
for any group G’ the abelian group Hom(G’, Q/Z) is isomorphic to Hom(G'/[G’, G'],Q/Z)
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since Q/Z is abelian. By injectivity of Q/Z, the cokernel of the natural map
Hom(G/(N - [G. G)),Q/Z) — Hom(G/[G, G], Q/Z)
equals Hom(N/(N N [G,G]),Q/Z) and we have
Homg,y (N, Q/Z) = Hom(N/[G, N],Q/Z).
Hence, the latter exact sequence yields a short exact sequence
0 — Hom(N/(N n[G,G]),Q/Z) — Hom(N/[G, N],Q/Z) — H*(G/N,Q/Z) — 0.
It follows that H*(G/N,Q/Z) = 0 if and only if NN[G, G] = [G, N]. Now take N = [G, G].
Then the map 7 thus induces an isomorphism

7. Hom(G® /G®,Q/z) = H2(G*,Q/Z).

Since Q/Z is injective, we have Extl(Gab,Q/Z) = 0, hence, the commutator pairing is
an isomorphism cp : H2(G*, Q/Z) 5 Hom(A? G*?,Q/Z) by Theorem The author of
this thesis believes that the composition

2
cpot’ : Hom(G@)/G(g), Q/Z) — Hom(/\ G, Q/Z)

is the map induced by the commutator map [—, —] : /\2 G*» — G /G®) and this would
show that this commutator map is an isomorphism. A

7 MAXIMAL CLASS-2 EXTENSIONS OF FIELDS

7.1 Generalities

Throughout this section, let K be a field, and let K28 be an algebraic closure of K.
Write G := Gal(K*P/K). In this section we will establish auxiliary results in order to
determine in the upcoming sections the Galois group of maximal class-2 extensions of Q

and Q,
Lemma 7.1. The compositum of a collection of class-2 extensions of K is again a class-2
extension of K.

Proof. Consider a collection (L), of class-2 extensions of K. The compositum of Galois
field extensions is again Galois and the embedding

Gal(] [ Lo/E) — [ ] Gal(La/K)

o= (U|La>a

shows that Gal([], Lo/K) is a class-2 group by Lemma O

Proposition 7.2. The field K has a unique mazimal class-2 field extension inside K.

Proof. The composite of all class-2 field extensions of K in K?# is the unique maximal
class-2 field extension in K28, O

We denote the maximal class-2 field extension of the field K by K? ¢ K?&. 1In the
remaining part of this section we write I := Gal(K?/K). Since I'® is the smallest closed
normal subgroup N of I' for which I'/N is abelian, it follows that Gal(K°2/K?P) = 1'(?)
and Gal(K®/K) = I'*P. Similarly, using the notation from section it follows that T’
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equals G%~°.

The following result is based on suggestions made by J.T. Tate and the proof can be found
n [14]. We let Gk act trivially on the discrete abelian group Q/Z.

Theorem 7.3. Suppose that K is a local field or a global field. Then H*(Gg,Q/Z) = 0.

Proof. By the theorem in [I4, Ch. 2.6, Thm. 4] we have H?>(G,C*) = 0, where C* is dis-
crete. This theorem is proven in [14} p. 232-237, Thm. 4] by showing that H?(Gx, Q/Z) =
0. O

Recall from section that for any profinite group G we have defined a commutator map
[— -] : A2G?P — G /GO,

Proposition 7.4. Suppose that K is a local field or a global field. Then the commutator

map
2

-] AT > T®, ZAg - [z,
is an isomorphism.

Proof. We have H?(G,Q/Z) = 0 by Theorem Hence, it follows from Theorem
that the commutator map [—, -] : A G322 — G?/Gg) is an isomorphism. Since G2 =T,
we have canonical isomorphisms G = I'*P and Gg) / Gg) >~ T'®?) and it now follows that
also the commutator map [—, —] : A2 — I'® is an isomorphism. O

The exact sequence
1 — Gal(K?/K?) = Gal(K“?/K) — Gal(K**/K) — 1

corresponds to a central exact sequence

2
1—>/\Fab—>F—>Fab—>1,

which represents an element [I] in H2(I'??, AI'@P). Recall that by Theorem the
sequence

2 2 2
0 — Ext' (T, AT**) - H*(T**, A I'*") =% End(/\T*) - 0 (3)

is split exact, and one can verify that [['] € H3(I'*, A> T'?P) is mapped to id € End(/\*I'?P)
by cp.

7.2 Maximal class-2 tamely ramified extensions of local number fields

Let p be a prime number. Let Q, C K be a finite field extension and let K 2lg he an
algebraic closure of K. Let k be the residue field of K and let k8 be the residue class
field of K28, Write q := #k. Let K* be the maximal tamely ramified extension of K inside
K&, Write A := Gal(K"/K). Let 7k be a prime element of K. For every n € Zo\pZ
write K, := K({/mx) where {/mg = {z € K¥¢: 2" = ng}. Then K" = J,, Kn. For
every n € Zwo\pZ we write p, C k8 for the set of zeroes of X™ — 1, and notice that the
canonical map K& — k22 maps the group of n'® roots of unity in K?# isomorphically
to . For any positive integers m | n taking (n/m)™ powers yields a map j, — fim.
The inverse limit g := lim, ., 4, with n ranging over all positive integers coprime to p,
is the Tate-module in characteristic p. For every ( = ((n)n € I and every o € A we
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write 0(¢) = (0(¢n))n and notice that this defines an action of A on . We denote by
K" ¢ K' the maximal unramified extension of K inside K,

The following result follows from [16l Ch. 4, Cor. 1].
Lemma 7.5. Let K C L be a totally and tamely ramified Galois field extension of finite

degree. Let £ be the residue field of L, and let my be the maximal ideal of the valuation
ring of L. Let wy, be a prime element of L. Then Gal(L/K) is cyclic and

Gal(L/K) — (*, o o) od my

L

18 an injective group homomorphism that does not depend on the choice of my,.

Lemma 7.6. For every n € Z-o\pZ, let m, be a prime element of K,. Let m, be the
mazimal ideal of the valuation ring of K,,. Then

Qal(K™/K"™) 5 [, o (M mod mn>

Tn n

s an isomorphism of profinite groups that does not depend on the choice of prime elements
(Tn)n-

Proof. For every n € Z~o\pZ we get the following diagram of fields

K, Kwr
AN
g unr
Ky
N
K"™rnK,

and since K,/ K is a Galois extension, the restriction map
Gal(K, K" /K"™) — Gal(K, /(K™ NK,))

is an isomorphism. Notice that K, /(K" N K,,) is totally and tamely ramified of degree
n since X" — mg is an Eisenstein polynomial over the valuation ring of K" N K, and
since for any root a of X™ — mx we have K,, = (K" N K,,)(«). By Lemma we now
have a canonical isomorphism

Gal(K, /(K™ N Ky)) = fin

for every such n. Hence, the composition of the previous two isomorphisms yields a
canonical isomorphism v, : Gal(K, K" /K"™) — u, for every n € Z-o\pZ. It can be
verified that the inverse limit

lim 1y, : Gal(K™/K"™) 5 11
—
is the same map as defined in the statement of this lemma. ]

Let ¢ : Gal(K' /K") — [i be the isomorphism from Lemma Notice that 1) respects
the conjugation action of A on Gal(K"/K"") and the natural action of A on fi. Fix a
Frobenius automorphism ¢ of K /K. The extensions K C K" C K give a canonical
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short exact sequence

l5i—-ASZ—1
of profinite groups. The