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Abstract

This thesis explores the connection between the Schwinger effect and Hawking radiation through
a heat kernel approach. Through scattering theory, it can be argued that the inverse square
potential given by the field equation in the near horizon limit is directly associated with particle
production. Through the eigenvalues of this field equation, where solely the inverse square
potential is present, the imaginary part of the Lagrangian can be calculated using the poles of
the heat kernel. However, this approach involves discarding order terms that are proportional to
the eigenvalues. By including these terms, the new non-trivial eigenvalues can be expressed as a
sum over the original eigenvalues plus some perturbation, which is assumed to only contribute
to the greybody factor. The result is consistent with other approaches and directly shows
that the presence of the event horizon is the working mechanism driving particle production
analogous to the electric field in sQED.
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Notations and Conventions
Many different kinds of conventions and notations are used in the scientific community to describe the same
physical concepts, even within the same field of research. Some authors do not explicitly state their notations
and conventions, leading to difficulties in reading literature. To avoid this problem for you, the reader, the
notations and conventions will be listed before any calculations.

God-given units, also known as natural units, are used for simplicity, which is best suited for theoretical re-
search.

Reduced Planck’s constant, ℏ = 1

Speed of Light, c = 1

Gravitational constant, G = 1

Bolzmann’s constant, kB = 1

Abbreviation Definition
CHE Confluent Heun Equation
GRS Generalized Riemann Scheme
QNM Quasi-normal mode
QFT Quantum Field Theory
sQED scalar Quantum Electrodynamics
KG Klein Gordon
BTZ black hole Bańados-Teitelboim-Zanelli black hole
AdS Anti-de Sitter

Notation Definition
µ Scalar field’s mass.
l,m Orbital and magnetic quantum number, respectively.
M Black hole’s mass.
M⊙ Solar Mass.
rs Event horizon of a Schwarzschild black hole, rs =

2GM
c2 .

ηµν Minkowski metric, where for all sQED related problems, ηµν = diag (1,−1,−1,−1).
gµν Metric tensor.
g Determinant of the metric tensor, g = det (gµν) .
a Normalized angular momentum.
Fµν Electromagnetic field tensor.
Tµν Energy-stress tensor.
R Ricci scalar.
Rµν Ricci tensor.
Rµνρσ Riemann tensor.
Ei (x) Exponential integral function.
Ma,b(x) Whittaker M-function.
Wa,b(x) Whittaker W-function.
H(x) Heaviside step function.
Dp(x) Parabolic cylinder function.
i+ Future timelike infinity.
i− Past timelike infinity.
i0 Spatial infinity.
I + Future null infinity.
I − Past null infinity.

A bold symbol indicates a three-dimensional vector, example; k = (k1, k2, k3).

ϕ1(x)
←→
∂µϕ2(x) = ϕ1(x)∂µϕ2(x)− ϕ2(x)∂µϕ1(x)

Tr (M) =

∫
d4x
√
−g ⟨x|M |x⟩

tr (M) = ⟨x|M |x⟩
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Introduction
Black holes are among the most fascinating objects in our universe. They produce gravitational waves, emit
Hawking radiation and swallow everything in their path. Moreover, it is where quantum mechanics and gen-
eral relativity meet. Unfortunately, a full theory of quantum gravity still eludes physicists, and approxima-
tions have to be made. It was in 1975 that Hawking discovered via the semi-classical approach that black
holes radiate particles as a thermal spectrum [1]. At the time, this discovery was very contradictory, as clas-
sical particles would never be able to escape the gravitational pull once captured inside the event horizon.
Nonetheless, numerous papers were later released confirming Hawking’s original result [2–4]. However, the
thermal spectrum implies that previously infallen information can not be retrieved. Even if it is assumed that
the information is encoded within the radiation spectrum, it still violates either principles of quantum me-
chanics or general relativity.

Black holes are not the only system capable of producing particles. Particle production plays a central role in
cosmological models and also occurs in strong electric fields. The latter is known as the Schwinger effect and
describes how quantum fluctuations can create real particles in the presence of strong electric fields [5]. A re-
cent paper by Wondrak et al. [6] attempts to relate the Schwinger effect with Hawking radiation and provides
a non-thermal radiation spectrum. This non-thermal radiation spectrum suggests that there are discrepancies
in their methodology, which is the motivation behind this thesis.

This master’s thesis was conducted as part of the Theoretical Physics track at Leiden University under the
supervision of Dr.Subodh P. Patil. The goal is to introduce a novel heat kernel approach to Hawking radia-
tion for scalar particles in Schwarzschild geometry. To achieve this, the well-established Schwinger effect will
be analysed using three different approaches: scattering theory, Bogolubov coefficients and the heat kernel.
This will serve as a foundation on which the calculations for Schwarzschild black holes will be based. Sec-
ondly, the focus will be on particle production of Schwarzschild black holes, where the well-known Hawking
radiation results obtained through the Bogolubov and scattering approach will be derived. Lastly, an attempt
is made to establish a connection between the Schwinger effect and Hawking radiation through a novel heat
kernel approach. This thesis is outlined in the following manner:

• Chapter 1: Quantum Field Theory outlines the essential features of Quantum Field Theory in Minkowski
spacetime and introduces crucial mathematical formalisms, such as the heat kernel, that will be utilized through-
out this thesis. Moreover, particle production in scalar Quantum Electrodynamics will be introduced and
studied using the heat kernel.

• Chapter 2: Quantum Field Theory in Curved Spacetime extends the concept of field quantization
and the heat kernel to curved spacetime. Continuing with sQED, particle production will be derived using
the Bogolubov coefficients and scattering theory.

• Chapter 3: Black Holes provides insight into the physics of black holes and gives an overview of the dif-
ferent coordinate systems applicable to a Schwarzschild black hole.

• Chapter 4: Hawking Radiation studies Hawking radiation through scattering theory and Bogolubov co-
efficients. Furthermore, the working mechanism driving particle production for black holes will be discussed.

• Chapter 5: A Heat Kernel Approach to Hawking Radiation will provide a short derivation on the
work of Wondrak et al. [6] and show its discrepancies. Then, through the Bogolubov approach, a heat kernel-
type integral will be given, which will provide insight into the supposed eigenvalues of the system. Then, the
particle production rate of black holes in the near horizon limit is computed using appropriate boundary con-
ditions.

• Chapter 6: Conclusion and Future Directions summarizes and concludes the findings of this thesis
and proposes an outlook for future research directions.
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Quantum Field Theory
This chapter will outline the essential features of Quantum Field Theory in Minkowski spacetime. The aim is
to introduce crucial mathematical formalisms, such as the generating functionals and the heat kernel, which
will be used throughout this thesis. The second aim is to provide a toy model, a scalar field, on which all in-
teresting physics will be done. Lastly, using the toy model coupled with an external electromagnetic field, it
will be demonstrated through the heat kernel formalism that strong, constant electric fields will destabilize
the vacuum, resulting in particle creation.

Classical Field Theory

Firstly, a minimal treatment of classical field theory is required to understand how Quantum Field Theory
is formulated. Classical field theory is postulated in terms of Lagrangian formalisms and uses the principle
of stationary action to calculate the corresponding field equations. Consider a massive scalar field ϕ(x) in
Minkowski spacetime. The corresponding Lagrangian density is given by,

L (x) =
1

2

[
ηµν∂µϕ(x)∂νϕ(x)− µ2ϕ(x)2

]
, (1)

where µ is the mass of the field quanta. The action is given by,

S =

∫
d4xL (x). (2)

Varying the action with respect to the field ϕ(x) such that it extremizes the action between configuration
states yields the equations of motion for its corresponding field. Then the (Klein-Gordon) field equation for
a massive scalar field reads, [

2+ µ2
]
ϕ(x) = 0, (3)

where 2 = ηµν∂µ∂ν . The set of mode solutions that solve the field equation are,

uk(t,x) = Neik·x−iωt, (4)

where ω ≡
√
|k|2 + µ2 and N is a normalization constant. Normalizing the mode solutions in classical field

theory is not a necessary requirement but becomes important when quantizing the field. The wavenumber k
is free to take the values, −∞ < ki < ∞, i = 1, 2, 3. Since the Minkowski spacetime is orthonormal to
the spacelike hypersurface for constant t, it contains a Killing vector ∂

∂t . Therefore, the mode solutions are
eigenfunctions of the Killing vector with eigenvalues,

∂

∂t
uk(t,x) = −iωuk(t,x), ω > 0. (5)

To ensure that the mode solutions of the field are normalized, define the scalar product,

(ϕ1, ϕ2) = −i
∫
Σ

ϕ1(x)
←→
∂t ϕ

⋆
2(x)d

3x, (6)

where Σ is a spacelike Cauchy surface [7]. The mode solutions are then normalized by,

(uk, uk′) = δ3(k − k′). (7)

Thus, the set of orthonormal mode solutions of the field equation is given by,

uk(t,x) =
1√

2ω (2π)
3
eik·x−iωt, (8)

where these mode solutions and their complex conjugates form a complete orthonormal basis. Therefore, any
linear combination yields a solution to the field equation,

ϕ(x) =

∫
d3k

(
akuk(t,x) + a†ku

⋆
k(t,x)

)
. (9)

The coefficients ak and a⋆k are determined by the boundary conditions of the system.

2



Quantum Field Theory

Canonical Quantization

Firstly, to quantize the classical field theory, define

π(x) =
∂L

∂(∂tϕ(x))
, (10)

as the conjugate momentum to ϕ(x). To transition from classical to quantum field theory, the field ϕ(x) and
its conjugate momentum π(x) are promoted to operators. Moreover, this also involves imposing canonical
equal-time commutation relations,

[ϕ(t,x), ϕ(t,x′)] = 0,

[π(t,x), π(t,x′)] = 0,

[ϕ(t,x), π(t,x′)] = iδ3(x− x′).

(11)

Consequently, the coefficients ak and a†k are also promoted to operators with equal-time commutation rela-
tions equivalent to π(x) and ϕ(x), [

ak, ak′

]
= 0,[

a†k, a
†
k′

]
= 0,[

ak, a
†
k′

]
= δ3(k − k′).

(12)

These operators are commonly referred to as the annihilation operator ak and creation operator a†k. The op-
erators act on a number state |..., nk, ...⟩ in the following manner,

ak |..., nk, ...⟩ =
√
nk |..., nk − 1, ...⟩ (13)

and
a†k |..., nk, ...⟩ =

√
nk + 1 |..., nk + 1, ...⟩ (14)

where the number state |..., nk, ...⟩ is the basis vector that spans the Fock space [8]. The creation operator

a†k creates a particle in mode k, while the annihilation operator ak removes a particle in mode k. A number
state containing no particles in every mode k is called the vacuum state and is constructed from,

ak |0⟩ = 0. (15)

The vacuum state in Minkowski spacetime is not unique but is invariant under the Poincaré group [9]. This
allows for a natural interpretation of a particle as an excitation in the field.

Generating Functionals

Another approach to quantization is the path-integral formalism, which consists of computing all (infinite)
possible trajectories that are quantum mechanically allowed. The generating functional for a scalar field ϕ(x)
is defined as,

Z[J ] = ⟨out, 0|0, in⟩ =
∫
Dϕe i

ℏ
∫
d4x[L (x)+J(x)ϕ(x)], (16)

where an external source J(x) is coupled to the scalar field. The ⟨out, 0|0, in⟩ denotes the vacuum to vacuum
transition amplitude, also referred to as the vacuum persistence, which indicates how much of the in-vacuum
remains unchanged over time. The generating functional gives the transition amplitude between vacua in the
presence of an external source and consists of both disconnected and connected Feynman diagrams. Any n-
point correlation function can be constructed using [10],

⟨Tϕ(x1)ϕ(x2)...ϕ(xn)⟩ =
1

Z[0]

n∏
i=1

(
−i δ

δJ(xi)

)
Z[J ]

∣∣∣∣∣
J=0

. (17)

The two-point correlation function G(x1, x2) = ⟨Tϕ(x1)ϕ(x2)⟩ is a Green function, also known as the Feyn-
man propagator, which provides the amplitude of a particle traversing from x1 to x2. In QFT, the vacuum-
vacuum interactions correspond to an infinite number of Feynman diagrams with zero external legs. These
disconnected diagrams do not contribute to any observable process. Moreover, they can be interpreted as a
sum of all possible combinations of the creation and annihilation of virtual particle-antiparticle pairs. A vir-
tual particle is an excitation in the field consisting of many modes in a wave packet. Virtual particles differ

3



Quantum Field Theory

from particles in that they are not observable. In a vacuum, all the excitations created by Heisenberg’s un-
certainty principle must cancel out, as shown in Figure (1). Taking the logarithm of Eq.(16), all the discon-
nected diagrams are subtracted from the generating functional. Therefore, define the generating functional of
the connected Green functions W [J ] as,

W [J ] = −iℏ ln (Z[J ]) = −iℏ ln ⟨out, 0|0, in⟩, (18)

with
δW [J ]

δJ(x)
≡ ⟨ϕ(x)⟩ = Φ(x) (19)

being the source-dependent mean field. The generating functional W [J ] is often called the effective action.
In the presence of an external source, the vacuum may no longer remain unchanged and can transition from
its initial in-state to a final out-state. The vacuum persistence may be written in terms of the effective action
[11],

⟨out, 0|0, in⟩ = eiW = ei(ℜ(W )+iℑ(W )). (20)

If the effective action contains an imaginary part, then the probability of not transitioning between vacua is
given by

|⟨out, 0|0, in⟩|2 = e−2ℑ(W ), (21)

with adiabatic condition [12],

∂ℜ(W ) >>
(
∂2ℜ(W )

) 1
2 ,
(
∂3ℜ(W )

) 1
3 , ... . (22)

The in-and-out vacua exist in different Hilbert spaces due to the non-unitary behaviour of the probability
coming from the non-zero imaginary effective action. This non-unitary behaviour corresponds to the decay
of one set of particles to another through the optical theorem [13]. Thus, the imaginary component, 2ℑ(W ), is
the probability that any number of particle pairs are created. The next subsection shows an example of pair
particle production in a constant electromagnetic field. Later, this concept will be extended to black holes.

Figure 1: A schematic representation of positive (red) and negative (blue) frequency modes. In a vacuum,
these modes cancel each other out (purple), and no real particles exist. Moreover, these modes can fluctuate
in energy due to the Heisenberg uncertainty principle, creating excitations in the field. The red wave packet is
an excitation in the field representing a particle. The blue wave packet represents an anti-particle.

Furthermore, define the quantum effective action,

Γ[Φ] ≡W [J ]−
∫
d4xΦ(x)J(x), (23)

with condition,
δΓ[Φ]

δΦ(x)
= −J(x). (24)

Therefore, using the generating functional yields the functional integral,

e
i
ℏΓ[Φ] =

∫
Dϕe

i
ℏ (S[ϕ]+

∫
d4x[ϕ(x)J(x)−Φ(x)J(x)]). (25)

4



Quantum Field Theory

The quantum effective action generates Feynman diagrams that are 1-particle-irreducible and provides per-
turbative quantum corrections to the classical theory. Consider quantum fluctuations of the field ϕ(x) around
the mean field of order

√
ℏ, ϕ(x)→ Φ(x) +

√
ℏϕ(x),

e
i
ℏΓ[Φ] =

∫
Dϕe

i
ℏ (S[Φ+

√
ℏϕ]−

√
ℏ
∫
d4xϕ(x)

δΓ[Φ]
δΦ(x) ). (26)

Expanding the action as a power series in ℏ,

S[Φ +
√
ℏϕ] = S[Φ] +

∞∑
n=1

(√
ℏ
)n

n!
S,n(xn)ϕ

n (27)

where

S,n(xn)ϕ
n =

∫
d4x1...d

4xn
δnS[ϕ]

δϕ(x1)...δϕ(xn)
ϕ(x1)...ϕ(xn). (28)

This expansion in powers of ℏ gives the successive quantum corrections to the classical action in terms of loop
diagrams. Note that the classical action is the zeroth order in ℏ of the quantum effective action,

Γ[Φ] = S[Φ]. (29)

Using Eq.(24), the classical path is described by,

δS[ϕ]

δϕ(x)
+ J(x) = 0. (30)

To incorporate the first-order one-loop quantum correction in the effective action, consider the expansion of
the power series up to order ℏ. This reduces Eq.(26) to,

e
i
ℏΓ[Φ] = e

i
ℏS[Φ]

∫
Dϕe i

2S,2[Φ]ϕ2

. (31)

The functional integral can be rewritten as a functional determinant [10],∫
Dϕe i

2S,2[Φ]ϕ2

= det(S,2[Φ])
− 1

2 . (32)

Therefore, the first-order quantum corrections in the quantum effective action are given by the one-loop quan-
tum effective action [10],

Γ[Φ] = S[Φ] +
i

2
ℏTr ln (S,2[Φ]). (33)

The generating functional for a real massive scalar field reads,

Z[J ] =

∫
Dϕe

i
ℏ
∫
d4x[ 12 (η

µν∂µϕ(x)∂νϕ(x)−µ2ϕ(x)2)+J(x)ϕ(x)]. (34)

The integral has an infrared divergence, which can be regularized by introducing an infinitesimal term
− 1

2

∫
d4xϵϕ(x)2 to the exponent and taking the limit ϵ → 0+ in the final expressions. After integrating by

parts and discarding the boundary terms, the generating functional reads,

Z[J ] =

∫
Dϕe

i
ℏ
∫
d4x[− 1

2ϕ(x)(2+µ2−iϵ)ϕ(x)+J(x)ϕ(x)]. (35)

Therefore, the one-loop quantum effective action for a massive scalar field is

Γ[Φ] = S[Φ] +
i

2
ℏTr ln

(
2+ µ2

)
. (36)

Generally, the one-loop effective action for arbitrary background fields is not exactly solvable, and approx-
imations are required. Nonetheless, there are methods to calculate the functional determinant, such as the
heat kernel, which may not require perturbative expansions. Typically, the one-loop effective action contains
Feynman diagrams that are UV-divergent. These divergencies do not contribute to observable quantities and
must be removed by a renormalization prescription. Firstly, using regularization, the divergent parts of the
diagram are separated from the finite parts. Common regularization prescriptions are cut-off regularization,
dimensional regularization and zeta-regularization. Secondly, counterterms absorb the infinities and leave
any observable quantity finite. These counterterms are not suddenly added to the Lagrangian but follow from
rewriting the bare constants in terms of observable constants and infinite contributions. Lastly, the observable
constants must be defined through renormalization conditions.
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Quantum Field Theory

The Heat Kernel

In classical mechanics, any physical information is contained in the Hamiltonian of the system. In quantum
mechanics, the physical information is extracted from the Schrödinger equation,

Hϕλ(x) = λϕλ(x), (37)

using the eigenvalues λ and eigenfunctions ϕλ of the system. The heat kernel is a spectral function that con-
tains all the system information as it is constructed from the eigenfunctions and eigenvalues,

K(s;x, y;H) =
∑
λ

ϕ†λ(x)ϕλ(y)e
−sλ = ⟨x| e−sH |y⟩ , (38)

where {ϕλ} is a complete set of orthonormal eigenfunctions with corresponding eigenvalues {λ} of the opera-
tor H. Moreover, the latter expression is written in braket notation. The traced heat kernel only contains the
physical information derived from the system’s eigenvalues. The variable s is known as the Schwinger proper
time and is used as a gauge invariant regulator [14]. In Lorentzian signature, s → isM , there exists an intu-
itive interpretation: The transition amplitude, ⟨y| e−iHsM |x⟩, represents a particle propagating from x to y in
time sM . Furthermore, the heat kernel must satisfy the normalization condition,(

∂

∂s
+H

)
K(s;x, y;H) = δ(s)δ4(x− y). (39)

The Feynman propagator G(x, y) can be defined through the heat kernel,

G(x, y) =
1

H(x, y)
=

∫ ∞

0

dsK(s;x, y;H). (40)

Additionally, the one-loop effective action can be related to the heat kernel in the following manner. Consider
the functional determinant in Eq.(33). Using the fact that,

lim
ϵ2→0

∫ ∞

ϵ2

ds

s
e−sx = lim

ϵ2→0
−Ei[−xϵ2] ≈ ∞+ ln (x), (41)

where an appropriate counterterm can absorb the constant infinite term [11]. The functional determinant in
terms of the heat kernel reads,

W =
i

2
Tr {ln(H)} = i

2

∫ ∞

0

ds

s
Tr
(
e−sH

)
=
i

2

∫ ∞

0

ds

s
K(s;H), (42)

where
K(s;H) = Tr

(
e−sH

)
= TrK(s;x, y;H)

∣∣
x=y

. (43)

The Euclidean signature ensures the integral is mathematically well-defined. Calculating the effective action
reduces to calculating the eigenvalues of the operator H.

Although the heat kernel is a powerful tool, it has its limitations. The heat kernel can not be utilized to cal-
culate beyond the one-loop approximation. Moreover, computing the heat kernel becomes extremely non-
trivial for systems with both fermionic and bosonic fields [15].

Particle production in sQED

In 1936, Heisenberg and Euler published a paper, [16], that provided a non-perturbative, non-linear correction
to the Maxwell Lagrangian for an electromagnetic background field. This effective Lagrangian is called the
Euler-Heisenberg Lagrangian. In 1950, Schwinger introduced the proper time formalism, which closely repre-
sents the heat kernel approach [5]. Schwinger extracted the (non-perturbative) imaginary part of the Euler-
Heisenberg Lagrangian, contributing to a process known as the Schwinger effect .

This section aims to provide an example of the Schwinger/heat kernel approach using sQED and to demon-
strate the framework for calculating Schwinger pair production. It has been established that a large constant
electric field produces particles, in contrast to a constant magnetic field, which does not. Consider a massive
complex scalar field coupled to an electromagnetic field through the scalar QED Lagrangian [13, 17],

LsQED = −1

4
(Fµν)

2
+ |Dµϕ|2 − µ2 |ϕ|2 (44)

6
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where Dµ = ∂µ + iAµ and µ is the mass of the scalar quanta. Moreover, the Lagrangian is invariant under
gauge transformation. The effective action can be computed using the path-integral approach and by inte-
grating out the scalar field. The effective action reads,

exp (iΓ[A]) =

∫
DϕDϕ⋆exp

[
i

∫
d4x

(
−1

4
(Fµν)

2
+ |Dµϕ|2 − µ2 |ϕ|2

)]
. (45)

Integrating out the scalar field gives,

Γ[A] =

∫
d4x

(
−1

4
(Fµν)

2

)
− i
∫ ∞

0

ds

s
Tr
(
e−Hs

)
(46)

where the Hamiltonian reads,
H[A] = −(i∂µ −Aµ)(i∂

µ −Aµ) + µ2 (47)

The vacuum persistence in the presence of an external electromagnetic field is given by,

⟨out, 0|0, in⟩ = Z[A]

Z[0]
(48)

which has been normalized to account for the absence of the electromagnetic field. Therefore, the effective
action becomes,

Γ̃[A] = Γ[A]− Γ[0] =

∫
d4xLeff [A] (49)

with effective Lagrangian,

Leff [A] = −
1

4
(Fµν)

2 − i
∫ ∞

0

ds

s
⟨x|
(
e−H[A]s − e−H[0]s

)
|x⟩ (50)

Rotating to Lorentzian signature s → isM , the term ⟨x| e−iH[A]sM |x⟩ = ⟨x; 0|x; sM ⟩ represents the transition
amplitude of a particle traversing from x to x over a closed path within some (Lorentzian) proper time sM in
accordance to the Hamiltonian. Note that, in the absence of the electromagnetic field, the effective action Γ[0]
corresponds to the vacuum energy of the system,

i

∫ ∞

0

ds

s
⟨x| e−iH[0]sM |x⟩ = 1

16π2

∫ ∞

0

dsM
s3M

e−iµ2sM =
1

sM

( )
(51)

The proper time integral sums over all possible loop configurations with external scalar quanta, and so the
effective action is given by,

Leff [A] = −
1

4
(Fµν)

2
+ + + + + · · · (52)

This includes all possible loop diagrams with any number of external scalar quanta. The effective Langragian
captures the non-linear quantum corrections of the electromagnetic fields of the vacuum. Moreover, the effec-
tive Lagrangian and the vacuum persistence amplitude are Lorentz and gauge invariant. [13]

The Effective Lagrangian For A Constant Magnetic Field

Having rewritten the effective Lagrangian in terms of the heat kernel in Eq. (50), the remaining calculation
reduces to tracing the eigenvalues of the Hamiltonian. Moreover, calculating the effective Lagrangian for a
general electromagnetic field becomes increasingly non-trivial. Therefore, for simplicity, the electromagnetic
field considered will be either a constant electric or magnetic field. Firstly, consider the scalar field in a con-
stant magnetic background (in the Lorentz gauge) Aµ = (0, 0, 0, By). The Hamiltonian becomes,

H[A] = ∂20 − ∂2x − ∂2y + (i∂z −By)2 + µ2 (53)

As tracing over the heat kernel is equivalent to calculating the eigenvalues of the Hamiltonian, the problem
reduces to an eigenvalue problem,

H[A]ψn = λ[A]ψn. (54)

7
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The Hamiltonian has a resemblance to the quantum harmonic oscillator [18], and so the eigenfunctions are
given by,

ψkzk0kx
n (x) = ϕn

(
y − kz

B

)
eik0te−ikxxe−ikzz (55)

where ϕn is the harmonic oscillator wavefunction. The corresponding eigenvalues are given by,

λ[A] = −k20 + k2x + 2B

(
n+

1

2

)
+ µ2 (56)

Evaluating the trace over the eigenvalues yields,

i

∫ ∞

0

ds

s
⟨x| e−H[A]s |x⟩ = i

∫ ∞

0

ds

s

1

(2π)2

∫ ∞

−∞
dk0dkxe

(k2
0−k2

x)s B

2π

∞∑
n=0

e−2Bs(n+ 1
2 )e−µ2s

=
B

16π2

∫ ∞

0

ds

s2
e−µ2scsch (Bs)

(57)

where B
2π is the degeneracy in each Landau level per unit area, representing the number of quantum states

per unit area available within a single level [18]. The effective action reads

Leff [A] = −
1

2
B2 − 1

16π2

∫ ∞

0

ds

s3
e−µ2s [Bs csch (Bs)− 1] (58)

Lastly, the effective Lagrangian should be renormalized as it diverges at s = 0. This can be achieved in nu-
merous ways; the simplest is by expanding the integrand,

[Bs csch (Bs)− 1] e−µ2s =

[
−B

2s2

6
+

7B4s4

360
+O(B6)

]
e−µ2s. (59)

The first term of the expansion is UV divergent, whilst higher-order terms are well-behaved. The first term is
proportional in magnetic strength to the Maxwell Lagrangian, − 1

2B
2,

B2

96π2

∫ ∞

0

ds

s
e−µ2s, (60)

and so can be removed by (charge) renormalization. Adding1 the counterterm yields the final renormalized
effective action in a constant magnetic field,

L ren
eff [A] = −

1

2
B2 − 1

16π2

∫ ∞

0

ds

s3
e−µ2s

[
Bs csch (Bs)− 1 +

B2s2

6

]
. (61)

The pole at s = 0 is no longer present after renormalization and the effective Lagrangian contains no other
poles for s > 0.

The Effective Lagrangian For A Constant Electric Field

The calculation for the effective Lagrangian for a constant electric field is very similar but with analytical
continuation, B → iE. Consider the scalar field in a constant electric background (in the Lorentz gauge)
Aµ = (0, Et, 0, 0). The Hamiltonian reads,

H[A] = ∂20 + (i∂x − Et)2 − ∂2y − ∂2z + µ2. (62)

In contrast to the constant magnetic field, this Hamiltonian resembles an inverted harmonic oscillator[18],
and so the eigenfunctions are,

ψkxkykz
n (x) = Dn

(√
2

E
e−

iπ
4 (kx − Et)

)
e−ikxxe−ikyye−ikzz, (63)

where Dn

(√
2
E e

− iπ
4 (kx − Et)

)
is the parabolic cylinder function [19]. The corresponding eigenvalues are

[18],

λ = k2y + k2z + 2iE

(
n+

1

2

)
+ µ2. (64)

1 A counterterm is not simply added/introduced in the Lagrangian. The counterterms follow from
rescaling the field and rewriting in terms of bare constants.
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Note that the eigenvalues are complex, indicating that the system has become unstable. Following the same
renormalization prescription as the constant magnetic field, the renormalized effective Lagrangian reads,

L ren
eff [A] =

1

2
E2 − 1

16π2

∫ ∞

0

ds

s3
e−µ2s

[
Es csc (Es)− 1− E2s2

6

]
(65)

where the last term follows from charge renormalization corresponding to the counterterm,

− E2

96π2

∫ ∞

0

ds

s
e−µ2s. (66)

The effective action is non-linear in the electric field. While the counterterms have removed the pole at s = 0,
the poles at s = nπ

E for n = 1, 2, ... remain.

Particle production

For particle production to occur in an electromagnetic field, the effective action must have a non-zero imag-
inary part, as shown in Eq.(21). If an imaginary contribution exists for the electric and magnetic fields, it
must follow from its poles as the principal part of the integrals are real. The poles are related to the imag-
inary part by the residue theory [20]. Firstly, for the constant magnetic field, the effective Lagrangian, Eq.
(61), has no poles for s ≥ 0, indicating a stable vacuum. The stability of the vacuum can be directly linked to
the magnetic field states ψkzk0kx

n (x) of Eq.(55) being time-independent. Hence, there is no particle production
in a constant magnetic field. In a heuristic view, as shown in Figure (2), the magnetic field creates virtual
particles that can never become real as the trajectories of the particles coincide again and are annihilated.

Figure 2: A schematic representation of the vacuum
creating a virtual particle pair and annihilating. The
top left circle indicates the magnetic field B coming
out of the paper. The vacuum creates virtual particle
pairs. However, due to the magnetic field, the par-
ticle’s worldlines coincide again and are annihilated,
never having a chance to become real particles.

Figure 3: A schematic representation of pair particle
creation in an electric field. The negatively charged
scalar quanta ϕ⋆ accelerates away from the source,
while the positively charged scalar quanta ϕ goes to-
wards the source of the electric field. Due to energy
conservation, the electric field E decays as it creates
particle pairs.

The effective Lagrangian of the electric field, Eq.(65), does contain poles for s > 0. Evaluating the imaginary
part of the effective action using residue theory [20] yields,

2ℑ(Leff [A]) =
E2

8π3

∞∑
n=1

(−1)n+1

n2
e−

µ2πn
E . (67)

The vacuum becomes unstable in a constant electric field given that the electric state ψ
kxkykz
n (x) of Eq. (63)

is time-dependent. This vacuum decay shows that a constant electric field produces particles.

9
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In the absence of a background field, the vacuum fluctuates, creating virtual particle pairs that annihilate
shortly after. However, in the presence of an electric field, the virtual particle pairs may be accelerated apart
to some distance d and become real particles, as shown in Figure (3). This occurs under the condition pro-
vided that the energy given by the electric field Ed exceeds their rest mass 2µ. This phenomenon can be seen
as particles tunnelling through the energy gap 2µ, which will be explored in a later chapter. The Heisenberg
uncertainty principle ∆x∆p ≥ ℏ

2 constraints the separation distance ∆x ∼ d and momentum2 ∆p ∼ µ, imply-

ing that d ∼ 1
µ . Therefore, under the first condition, the electric field must exceed Es = µ2c3

ℏe (in SI units) for

the particle production to become relevant [21, 22].

2 In case of non-relativistic velocities. 10



QFT in Curved Spacetime
The goal of this chapter is to extend the quantization procedure in Minkowski spacetime to include curved
spacetimes. These spacetimes are assumed to be infinitely differentiable, globally hyperbolic pseudo-Riemannian
manifolds. This guarantees the existence of Cauchy hypersurfaces and differential equations [21]. Due to co-
variance, the vacuum in curved spacetime is generally no longer unique. This allows for more than one way to
decompose the field. These different decompositions are connected via Bogolubov transformations. The Bo-
golubov transformations give an alternative (QFT) approach to calculate the vacuum persistence compared to
the Schwinger approach. Additionally, a connection exists between Bogolubov coefficients and scattering the-
ory’s reflection and transmission coefficients. This chapter will demonstrate the connections between the three
methodologies using the toy model of sQED as an example.

Scalar Field Quantization in Curved Spacetime

The Lagrangian density for a massive scalar field ϕ(x) in curved space is given by,

L (x) =
1

2

√
−g
[
gµν∇µϕ(x)∇νϕ(x)−

(
µ2 + ξR

)
ϕ(x)2

]
, (68)

where µ is the mass of the field quanta and ∇µ is the covariant derivative [7]. The scalar field is coupled to
the gravitational field with coupling constant ξ and Ricci scalar R. The scalar field equation reads,[

2+ µ2 + ξR
]
ϕ(x) = 0, (69)

with

2 =
1√
−g

∂µ
[√
−ggµν∂ν

]
. (70)

Consider a set of mode solutions ui(x) that solves the field equation. Generally, these solutions are non-trivial
in curved spacetime. To quantize the field, define the canonical commutation relations in curved spacetime as
[7],

[ϕ(t,x), ϕ(t,x′)] = 0,

[π(t,x), π(t,x′)] = 0,

[ϕ(t,x), π(t,x′)] =
i√
−g

δ3(x− x′).

(71)

where

π(x) =
∂L

∂ (∇0ϕ)
. (72)

To normalize the mode solutions, the scalar product in Minkowski spacetime can be generalized to curved
space,

(ϕ1, ϕ2) = −i
∫
Σ

ϕ1(x)
←→
∂µϕ

⋆
2(x)
√
−gΣnµdΣ, (73)

where nµ is the future-directed orthonormal vector to the spacelike Cauchy surface Σ. The field solutions
ui(x) are then normalized by,

(ui, uj) = δij ,
(
u⋆i , u

⋆
j

)
= −δij ,

(
ui, u

⋆
j

)
= 0. (74)

The general field solution ϕ(x) consists of a linear combination of the orthonormal mode solutions,

ϕ(x) =
∑
i

[
aiui(x) + a†iu

⋆
i (x)

]
, ai |0⟩ = 0, ∀i, (75)

where the vacuum |0⟩ and operators ai and a
†
i are constructed analogously to Minkowski spacetime.

Bogolubov Transformation

In Minkowski spacetime, all inertial observers perceive the same vacuum due to the invariance of the vac-
uum under the Poincaré group. In curved spacetime, the Poincaré group is generally no longer the symmetry
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group associated with the spacetime. However, the theory is symmetric under general coordinate transfor-
mations, also known as covariance. Consequently, a natural set of coordinates does not exist and the mode
decomposition of Eq.(75) is no longer unique. This allows for a second complete set of modes,

ϕ(x) =
∑
j

[
ajuj(x) + a†ju

⋆
j (x)

]
, aj

∣∣0〉 = 0, ∀j. (76)

Both sets of solutions form a complete orthonormal basis and may be expanded in terms of each other through
Bogolubov Transformation,

uj =
∑
i

(αjiui + βjiu
⋆
i ) ,

ui =
∑
j

(
α⋆
jiuj − βjiu⋆j

)
.

(77)

Similarly, the creation and annihilation operators are related by

ai =
∑
j

(
αjiaj + β⋆

jia
†
j

)
,

aj =
∑
i

(
α⋆
jiai − β⋆

jia
†
i

)
.

(78)

The coefficients α and β represent the Bogolubov coefficients and are evaluated by

αij = (ui, uj) , βij =
(
ui, u

⋆
j

)
. (79)

As a consequence of orthonormality, the coefficients must satisfy,∑
l

(
αilα

⋆
jl − βilβ⋆

jl

)
= δij ,∑

l

(αilβjl − βilαjl) = 0.
(80)

Moreover, the mode solutions of ui involve a combination of positive and negative frequencies from uj . This
means that the vacua are distinct from each other, and the vacuum associated with the mode solutions of ui
contains particles from the mode solutions of uj . The expectation value of the number operator N̂i = aia

†
i is

given by,

N =
〈
0
∣∣ N̂i

∣∣0〉 =∑
j

|βji|2 (81)

An observer in one frame of reference will detect particles, whilst another does not. The idea of a ”particle”
becomes an abstract concept, where its existence is observer-dependent. Therefore, particles are not a robust
method to probe the physics of a state and a more localized quantity is needed, such as the stress-energy ten-
sor ⟨Tµν(x)⟩. [21]

An important concept in particle production is called spacetime sandwiching, where the spacetime is station-
ary till time t < t1 in the remote past and again after time t > t2 in the remote future. The spacetime is
asymptotically Minkowskian in the remote past and future but is topologically complex at times t1 < t <
t2. Furthermore, define the in-vacuum corresponding to the Minkowskian vacuum in the remote past and
the out-vacuum corresponding to the Minkowskian vacuum in the remote future. Although the regions are
Minkowskian in the past and future, the Killing vectors in their respective regions may differ. Therefore, an
inertial observer in the out region may detect in-particles. The sudden particle creation is said to be cre-
ated by an external field. This spacetime sandwiching provides a useful framework for calculating particle
production.[23]

The vacua are related by, ∣∣0〉 = S(ξ) |0⟩ , (82)

where

S (ξ) = exp

[
1

2

(
ξ⋆a2i − ξa

†2
i

)]
, (83)

is the squeeze operator and ξ = reiθ [24]. The variables r and θ are related to the Bogolubov coefficients
through, α = cosh(r) and β = eiθsinh(r), which are written in matrix notation. Decomposing the vacuum

∣∣0〉
in terms of number states from the vacuum |0⟩ yields,∣∣0〉 =∑

n

Cn |n⟩ , (84)
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where

C2n = (−1)n
√

(2n)!

2nn!

(
e−iθtanh(r)

)n√
cosh(r)

. (85)

Using the squeeze operator for a single-mode field, the vacuum persistence can be written as

⟨0, out|0, in⟩ = ⟨0, out|S†(ξ) |0, out⟩ = 1√
det(α⋆)

. (86)

Therefore, the Bogolubov coefficients are related to the effective action by, [25]

W =
i

2
Tr
{
ln (α⋆)

}
, (87)

where the trace is a sum of all states. The probability of creating particles is

2ℑ(W ) = Tr
{
ln |α|

}
=

1

2
Tr
{
ln (1 +N)

}
(88)

The field considered for the Bogolubov transformation only consists of real scalar particles. For a complex
scalar field, the mode decomposition becomes,

ϕ(x) =
∑
i

[
aiui(x) + b†iu

⋆
i (x)

]
ai |0⟩ = bi |0⟩ = 0, ∀i (89)

where the vacuum is a two-mode vacuum |0⟩ = |0⟩a ⊗ |0⟩b. Following the same procedure as the real scalar
field [26], the effective action becomes

W = Tr
{
ln (α⋆)

}
. (90)

The probability of creating particle pairs is

2ℑ(W ) = 2Tr
{
ln |α|

}
= Tr

{
ln (1 +N)

}
. (91)

This provides an alternative method for calculating the imaginary part of the action. In contrast to the Schwinger
approach, which requires the system’s eigenvalues, this approach requires the Bogolubov coefficients. Due to
the connection between Bogolubov coefficients and transmission and reflection coefficients [17], there also ex-
ists a scattering approach for calculating the imaginary part,∏

λ

Tr,λ = exp [−2V ℑ(Leff )] or
∏
λ

Rl,λ = exp [−2V ℑ(Leff )] . (92)

If either the reflection or transmission coefficient resembles, through interpretation, the probability of no pair
creation occurring in state λ, then the vacuum persistence is calculated by its corresponding coefficient in
Eq.(92). The product over the coefficients follows from the fact that every state λ is independent,

|0⟩ =
⊗
λ

|0λ⟩ (93)

Therefore, the total probability of the vacuum changing is the product of all independent states λ. These
three approaches lead to different physical interpretations of particle production in sQED.

Particle Production in sQED: Bogolubov coefficients and Tunneling

To show the correspondence between the Bogolubov coefficients and the Schwinger approach, consider (again)
the sQED Lagrangian. Firstly, the (KG) field equation in a constant magnetic field (in the Lorentz gauge)
reads, [

∂20 − ∂2x − ∂2y + (i∂z −By)2 + µ2
]
Φ(x) = 0. (94)

The mode solutions that solve the field equation are,

Φ(x) = e−ik0teikxx+ikzzϕ(y′) (95)

where

y′ =

√
2

B
i(kz +By), λ =

1

B

(
µ2 + k2x − k20

)
, p =

1

2
(λ− 1) (96)
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Since the function ϕ(y′) is time-independent, the mode solutions in the remote future and past remain in the
same positive frequency mode e−ik0t. There is one unique mode decomposition for a constant magnetic back-
ground, so the vacuum does not change. Consider the (KG) field equation in a constant electric field (in the
Lorentz gauge) [17], [

∂20 + (i∂x − Et)2 − ∂2y − ∂2z + µ2
]
Φ(x) = 0 (97)

The mode solutions may be expressed as
Φ(x) = ϕ(t′)eik·x (98)

where

t′ =

√
2

E
e

iπ
4 (kx − Et) , λ =

1

E

(
µ2 + k2z + k2y

)
, p = −1

2
(iλ+ 1) (99)

The KG field equation reduces to [
∂20 + t′2 + λ

]
ϕ(t′) = 0 (100)

Notably, the equation is reduced to a Schrodinger form corresponding to an inverted harmonic oscillator with
potential V (t′) = − 1

2ω
2t′2. The potential causes an incoming mode from the remote past t′ → −∞ to scatter

into a superposition of transmitted and reflected modes. The outgoing modes in the remote future t′ → ∞
contain a mix of positive and negative frequency modes. Furthermore, the set of possible solutions is

Dp (t
′) , Dp⋆ (t′⋆) , Dp (−t′) , Dp⋆ (−t′⋆) (101)

where Dp(t
′) is the parabolic cylinder function [19]. Due to the time-dependent gauge, the mode solutions are

not easily identified as positive or negative frequency modes. This may be done by probing the solutions at
E = 0 in their corresponding asymptotic limit. The ingoing positive frequency mode solution in the remote
past becomes,

ϕin(t
′) = Dp⋆ (−t′⋆) , t′ → −∞ (102)

Furthermore, as the ingoing positive frequency mode evolves, it will become a superposition of outgoing posi-
tive and negative frequency modes [19]

Dp⋆ (−t′⋆) =
√
2π

Γ (−p⋆)
e

−iπ
2 (p⋆+1)Dp (t

′) + eiπp
⋆

Dp⋆ (t′⋆) , t′ →∞ (103)

where Dp (t
′) and Dp⋆ (t′⋆) are the positive and negative frequency modes respectively. Therefore, the Bogol-

ubov coefficients are,

αλ =

√
2π

Γ(−p⋆)
e−

iπ
2 (p⋆+1), βλ = eπip

⋆

(104)

The effective Lagrangian reads,

Leff = i
E

2π

∫
dkzdky
(2π)2

[
ln
(√

2π
)
− ln (Γ (−p⋆))− iπ

2
(p⋆ + 1)

]
(105)

which contains divergencies which may be removed by regularization [27]. The probability of creating particle
pairs can be found using Eq.(91). However, it may also be extracted from effective Lagrangian. The gamma
function can be written as a heat kernel-type integral [19],

ln (Γ (−p⋆)) ∼
∫ ∞

0

1

sM

ep
⋆sM

1− e−sM
dsM =

1

2

∫ ∞

0

1

sM
ep

⋆sM e
1
2 sM csch

(sM
2

)
dsM (106)

Due to the poles on top of the integration contour R+, the integral is mathematically ill-defined [28]. By wick
rotating to Euclidean Schwinger proper time sM → 2iEs and performing the kz and ky integrals, the effective
Lagrangian reads

Leff = − 1

16π2

∫ ∞

0

ds

s3
e−µ2s

[
Es csc (Es)− 1− E2s2

6

]
(107)

The latter two terms follow from the renormalization prescription. The result agrees with Eq.(65) and yields
the same probability of creating a particle pair per spacetime volume. Using the Bogolubov prescription, the
probability of creating particle pairs using Eq.(91) is,

2ℑ(Leff ) =
E

2π

∫
dkzdky
(2π)2

ln
(
1 + e−

π
E (µ

2+k2
z+k2

y)
)
=

E2

8π3

∞∑
n=1

(−1)n+1

n2
e−

µ2πn
E (108)

Therefore, this method recovers the result in Eq.(67) but omits the use of a renormalization prescription. A
similar analysis can done using scattering theory, where the ingoing mode scatters into positive and negative
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frequency modes. The wave eiπp
⋆

Dp⋆ (t′⋆) scatters off the potential V (t′) = − 1
2ω

2t′2 into a transmitted wave
αkDp (t

′) and a reflected wave βkDp⋆ (t′⋆). The reflection and transmission coefficients are, respectively,

Rr,λ =
|βλ|2

|αλ|2
=

1

eπλ + 1
(109)

and

Tr,λ =
1

|αλ|2
=

1

e−πλ + 1
(110)

The total probability remains conserved as T + R = 1. Assuming that the energy of the incident wave is
large, λ >> 1, then the ingoing positive frequency wave is completely transmitted, and so the outgoing wave
does not consist of a mix of positive and negative frequency modes. This implies that no particle pairs are
created. A strong electric field decreases λ, making the reflection coefficient near unity. The transmission co-
efficient can be interpreted as the probability that no pair creation occurs in mode (kz, ky). Consequently, the
reflection coefficient is the probability of pair creation in mode (kz, ky). Therefore, the product of the trans-
mission coefficient of all modes indicates the probability that the vacuum remains unchanged. The vacuum
persistence is,

|⟨out, 0|0, in⟩|2 =
∏
λ

Tr,λ = exp

[
− V E

(2π)3

∫
dkzdkyln

(
1 + e−

π
E (µ

2+k2
z+k2

y)
)]

(111)

This result matches with Eq. (108). Due to the Lorentz gauge, the positive and negative frequency modes are
not of the form e±iωt, leading to another criterion to identify the positive and negative frequency modes. This
inconvenience is omitted when using the Coulomb gauge, where Aµ = (Ex, 0, 0, 0). Since the effective Langra-
gian is gauge-invariant, the choice of gauge would not matter. However, the particles and potentials defined
in their respective gauges are different [17].

As discussed in the previous chapter, the creation of particle pairs may be interpreted as particles tunnelling
through the energy gap 2µ in the Dirac sea picture. In the Dirac sea picture, the vacuum is filled with nega-
tive energy solutions whilst the positive energy solutions are empty. An energy gap of 2µ separates the neg-
ative and positive bands. In Figure (4), the gap is tilted due to the potential Ex. This allows for a negative
energy state to tunnel through the gap. The tunnelling corresponds to creating a particle in the positive en-
ergy band. The negative energy band is no longer completely filled, indicating that the absence of the tun-
nelled particle creates an anti-particle.

Figure 4: A schematic representation of a negative energy solution E (red dot) in the Dirac sea tunnelling
through the tilted gap 2µ to the positive energy solution (blue dot).

Remarkably, the three approaches to calculating the vacuum persistence in sQED for a constant electric and
magnetic background yield the same result, even though how these particles are created is physically differ-
ent. Whilst the scattering approach describes the incoming modes scattering into a mix of outgoing and in-
going modes, the heat kernel approach explains the creation of particles as the separation of virtual particles
from the vacuum due to the constant electric field. Furthermore, the Bogolubov approach gives insight into
how the vacua are related through different field decompositions in the past and future. The equivalence be-
tween these approaches follows from the spectral properties encoded within the operator H, which links the
eigenvalues, Bogolubov coefficients and scattering coefficients with particle production.
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Semi-classical Gravity

Quantizing gravity is a challenging task, and a full theory of quantum gravity still eludes physicists. How-
ever, there are strategies for combining quantum field theory with general relativity. In the semi-classical ap-
proach, the gravitational field is treated as a classical background, while the matter fields are quantized. This
approach is widely applicable to many physical systems where the quantum effects of the matter fields domi-
nate. However, it breaks down in extreme conditions such as singularities where quantum fluctuations in the
gravitational field become significant. Quantizing the matter fields in Einstein’s field equation yields,

Rµν −
1

2
Rgµν + Λgµν = −8πG ⟨Tµν⟩ , (112)

where the quantized stress-energy tensor is

⟨Tµν⟩ = ⟨0, out|Tµν |0, in⟩
⟨0, out |0, in⟩

=
2√
−g

δW

δgµν
. (113)

In Minkowski spacetime, particle creation requires an external source J(x), as, for example, shown by the
Schwinger effect. In curved spacetime, in the absence of external sources, the gravitational field generally en-
sures that the in-and out-vacuum differ,

⟨0, out |0, in⟩ ≠ 1. (114)

Consequently, the effective action may contain an imaginary part with contributions coming from the topol-
ogy of the manifold [21].

The power of the heat kernel as a mathematical tool comes from the fact that it can be extended to more
complex manifolds. The heat kernel connects the complex geometry of the manifold with the behaviour of
the quantized matter fields. In general, exact solutions for the heat kernel are unavailable, and approxima-
tion schemes are needed [15]. The two most common approximations are the Schwinger-DeWitt representa-
tion and the covariant perturbation theory. The Schwinger-DeWitt expansion follows from the small s expan-
sion of the nonlocal form factors in covariant perturbation theory [29]. The effective action in the Schwinger-
DeWitt expansion in curvature terms for a scalar field reads [21],

W =
1

2

1

(4π)2

∞∑
j=0

∫
d4x
√
gaj(x)

∫ ∞

0

ds

s3
sje−µ2s (115)

where the coefficients aj(x) are given by

a0(x) = 1, (116a)

a1(x) =

(
1

6
− ξ
)
R, (116b)

a2(x) =
1

180

(
RµναβR

µναβ −RµνR
µν
)
− 1

6

(
1

5
− ξ
)
2R+

1

2

(
1

6
− ξ
)
R2 +

1

12
R̂µνR̂µν . (116c)

These first three terms in the effective action are UV divergent and purely geometrical and can be absorbed
by counterterms in the gravitational part of the Lagrangian, which renormalize the cosmological constant,
gravitational constant and higher-order curvature terms[21]. Once these different terms have been removed
via renormalization, the remaining renormalized effective action can probe the local structure of the manifold
and its quantized matter fields.

The Schwinger-DeWitt expansion is only valid for weak fields and small curvatures, which ensures conver-
gence. Moreover, Since the expansion of Eq. (115) for j ≥ 3 will always be real, extracting an imaginary part
will not yield an exact result, as part of the information contained in the Schwinger-DeWitt effective action
is discarded. An exact covariant form is required to extract the imaginary part from the poles of the effec-
tive action. Therefore, the perturbative heat kernel may not be reliable for calculating particle production in
curved spacetimes.
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Black Holes

Figure 5: The supermassive black hole at the centre of the galaxy Messier 87. The first image ever taken of a
black hole.

Introduction

A sufficient massive spherical (fluid) object will eventually undergo complete gravitational collapse. Not all
astrophysical objects will suffer this fate; if the pressure inside the object is great enough, it may live forever.
For massive stars, however, the fuel to support the outwards pressure will run out, dooming it to become a
black hole. The fate of light stars differs from that of heavy ones as the electron or neutron degeneracy pres-
sure can halt the gravitational collapse, creating white dwarfs or neutron stars, respectively. If a star exceeds
the Chandrasekhar limit at a mass of 1.44M⊙, the electron degeneracy pressure will not be enough to resist
gravitational collapse [7].

The black hole creates a region bounded by a surface in spacetime from which nothing can escape classically.
This surface boundary, from which there is no point of return, is called the event horizon. Any observer past
the event horizon can not escape as all geodesics lead toward the singularity of the black hole. This creates
an irreversible process in which the system is non-time-symmetric [30].

The initial state of a star potentially consists of an infinite set of parameters to characterize its behaviour
precisely. Quantum unitarity formulates that the state’s evolution is time-symmetric, so the amount of in-
formation captured in the state must be conserved in time. When this well-defined initial state collapses into
a black hole, its behaviour can be described by a small number of parameters according to a no-hair theorem.
However, the question arises: Where did the information go? Classically, the information can be considered
hidden behind the event horizon. [7]

However, this answer does not account for quantum mechanics. By introducing quantum mechanics into the
dynamics of black holes, it turns out that they are not so black at all. They radiate particles (Hawking radi-
ation) and, after a long time, are completely evaporated. Hawking calculated that the radiation spectrum is
thermal, which means there is no trace of all the information that made up the black hole [1]. Assuming that
the Hawking radiation is entangled with the quanta that fell into the black hole, its information can be re-
trieved. However, the inconsistency of where the information went remains paradoxical, even if it is assumed
to be encoded in the radiation spectrum.

Hawking radiation implies that black holes have an associated temperature characterized by T = 1
8πM .3 The

entropy of a black hole is related to its temperature via the laws of black hole thermodynamics, which are
analogous to the laws of classical thermodynamics. The entropy of a black hole is given by,

SBH =
A

4
, (117)

3 The temperature given is for a non-rotating, uncharged black hole in Schwarzschild geometry 17
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where A denotes the area of the black hole. Using statical mechanics, the black hole entropy can be inter-
preted as a measure of the number of microstates corresponding to the characteristic parameters of the black
hole [31]. Therefore, it has been suggested that the information of all pre-infallen quanta is scrambled across
the event horizon, as shown in Figure (6) [32]. Before evaporation, the black hole begins in a pure state be-
cause of its formation from a gravitational collapse of matter. Moreover, since no particles are emitted, the
von Neumann radiation entropy, also known as the entanglement entropy, is zero. [33]

Figure 6: A schematic representation of the scram-
bled information on a black hole’s event horizon at
the beginning of its lifetime. The entangled degrees
of freedom, represented as links between states, are
denoted as qubits and illustrate the scrambled infor-
mation of all pre-infallen quanta on the event hori-
zon.

Figure 7: A schematic representation of the encoded
information emitted through Hawking radiation.
The entangled degrees of freedom, represented as
links between states, and Hawking radiation are
denoted as qubits.

The entangled degrees of freedom, denoted by qubits, are eventually emitted as Hawking radiation with the
encoded information, as shown in Figure (7). The first leakage of Hawking radiation contains little informa-
tion, as a large part of the information remains at the event horizon. Nonetheless, the von Neumann entropy
increases whilst the black hole entropy decreases.

Figure 8: A schematic representation of the Page curve. The dotted red line denotes the calculated Hawking
radiation entropy Sradiation, and the dotted blue line presents the black hole entropy SBH . Up until the Page
time, the von Neumann entropy follows the curve of the calculated Hawking radiation entropy. At the Page
time, the von Neumann entropy reaches a maximum and decreases proportional to the black hole entropy.
During the Page time and evaporation time tevaporation, the Hawking radiation becomes increasingly possible
to decode.
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Eventually, as more Hawking radiation is emitted, the information about the pre-infallen quanta can be re-
constructed. Once fully evaporated, the von Neumann entropy is non-zero. This indicates that the initial
pure state has evolved into a mixed state, which is forbidden according to unitarity. The black hole entropy
and von Neumann entropy will cross during the evaporation. This is contradictory as the number of degrees
of freedom of a black hole determines its entropy, which must always be greater than the von Neumann en-
tropy. To preserve unitarity, the von Neumann entropy must decrease to zero after reaching a maximum, as
shown in Figure (8). This occurs at the Page time, approximately half the total time of full evaporation. Be-
fore the Page time, the radiation appears nearly thermal and carries little information.

Information Paradox

When the black hole completely evaporates, the information hidden behind the event horizon will be de-
stroyed. Therefore, the information is somehow encoded in Hawking radiation. However, this is contradictory
as it breaks the fundamental principles of general relativity or quantum mechanics. To understand the po-
tential violation of these fundamental principles, consider an inertial observer, Alice, with a single qubit |ψ⟩
of information falling into a black hole. An outside observer, Bob, at fixed radius r ≫ rs, witnesses that Al-
ice will never cross the event horizon as Alice redshifts far into the infrared and flattens on the surface of the
black hole. However, in Alice’s infalling reference frame, she crosses the event horizon and merges with the
singularity. Assuming that Bob can capture all the emitted Hawking radiation as the black hole evaporates,
he will be able to unscramble the information from the Hawking radiation to fully recover Alice and her qubit
|ψ⟩. While Bob recovers the qubit from the radiation, the qubit in Alice’s reference frame remains inside the
black hole. In Figure (9a), a schematic depiction of this process shows that the infalling and radiated qubits
coincide on the Cauchy surfaces from when the qubit is emitted till the full evaporation of the black hole. At
emission, the qubit’s state is cloned onto the Hawking radiation, indicating a violation of quantum unitar-
ity through the no-cloning theorem. When the black hole completely evaporates, only a single worldline of
the qubit’s state contained in the Hawking radiation remains, and unitarity is again conserved. As shown in
Figure (9b), unitarity can also be violated if, instead of being cloned, the qubit’s state inside the black hole
is deleted during the black hole evaporation, and the Hawking radiation contains no information about the
infalling qubit. Alternatively, the qubit never crosses the horizon in both reference frames and is eventually
emitted as Hawking radiation, as shown in Figure (9c). Nevertheless, while preserving unitarity, the equiva-
lence principle is violated as Alice and her qubit are no longer an inertial observer. [34]

(a) The infalling and radiated qubits
coincide on the Cauchy surfaces,
indicating that the qubit has been
cloned onto the Hawking radiation.

(b) The infalling qubit is deleted,
and the Hawking radiation contains
no information.

(c) The infalling qubit never crosses
the event horizon and eventually is
emitted.

Figure 9: Three conformal diagrams for the worldline of a qubit |ψ⟩ (blue arrows) falling into a black hole
(grey area). The qubit is emitted through Hawking radiation (orange vector) through the black hole evapora-
tion process. The Cauchy surfaces (red lines) indicate a time slice.
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Black Hole Complementarity and Firewalls

Attempts have been made to reconcile the information paradox’s inconsistencies while preserving the physics
of quantum mechanics and general relativity. One such attempt is black hole complementarity [35]. To pre-
serve the qubit’s information that fell into the black hole, its state must be encoded into the emitted Hawking
radiation. This implies that unitarity is conserved before emission and after the black hole has fully evap-
orated. However, unitarity is no longer conserved during the intermediate stage as its state is supposedly
cloned onto the emitted Hawking radiation and coincides on the same Cauchy surface. Black hole comple-
mentarity reconciles the cloning problem by stating that there does not exist an observer to measure both the
qubits’ states and the Hawking radiation. The infalling qubit will always exist outside the light cone of the
emitted Hawking radiation, as shown in Figure (10). Therefore, no observer exists to verify the cloning of the
qubit’s state onto the Hawking radiation and unitarity is not violated. Moreover, black hole complementar-
ity and wave-particle duality share a similar view of observer-dependent realities. In wave-particle duality,
the type of measurement performed determines whether the system reveals its particle-like or wave-like be-
haviour. Similarly, for black holes, the observer’s location, either infalling or stationary outside the black hole,
determines where they perceive the state’s information. [34]

Figure 10: A conformal diagram for the worldline of a qubit |ψ⟩ (blue arrow) falling into a black hole (grey
area). The qubit’s state is cloned on the emitted Hawking radiation (orange arrow). The green shaded area
denotes the qubit’s past lightcone at the singularity. Note that the emitted Hawking radiation does not coin-
cide inside the past light cone, indicating that the Hawking radiation and qubit can never be simultaneously
observed.

Another such attempt is by considering a screen of extreme energy at the event horizon called a black hole
firewall [36], which prevents anything from crossing it. Consider a qubit emitted as Hawking radiation and
entangled with another qubit that remains on the event horizon as shown in Figure (7). For the remaining
qubit to be eventually emitted as Hawking radiation, another entanglement is required, with an adjacent
qubit residing in the black hole’s interior. The remaining qubit is entangled with both the emitted and the
adjacent qubit. Since the emitted qubit and remaining qubit are maximally entangled, monogamy of entan-
glement does not allow for a third qubit to be entangled with either qubit. To break the entanglement be-
tween the remaining qubit and the adjacent qubit, an enormous amount of energy must exist at a Planck-
length distance from the event horizon, which is the previously introduced firewall. The firewall completely
thermalizes everything falling into it, stopping anyone from observing the black hole’s interior. Moreover, the
extreme gravitational redshift ensures that this firewall will become faint Hawking radiation and, therefore,
almost not observable. However, having preserved unitarity, the equivalence principle is violated as a local
observer will not measure an empty vacuum but instead the presence of a firewall. The vacuum is altered by
some non-local influence of the black hole [32]. Alternatively, if an infalling observer does not measure a fire-
wall, then it is clear that monogamy of entanglement is violated, and the equivalence principle holds. There-
fore, without entering the black hole, an observer can measure which physical law is violated via the absence
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or existence of the firewall, as shown in Figure (11). [36]

vierhoek1vierhoek1

ee

Figure 11: A schematic representation of the existence and absence of a firewall. The firewall is denoted by
the yellow line and a Planck-length distance from the event horizon. In the existence of a firewall, the entan-
glement between the remaining and adjacent qubits is broken. However, this violates the equivalence princi-
ple, as an observer will measure an enormous amount of energy close to the event horizon. In the absence of
a firewall, the remaining qubit is entangled with its adjacent and emitted qubits. This violates monogamy of
entanglement as multiple qubits are maximally entangled.

Although black hole complementarity and firewalls are intriguing attempts to extend and solve the informa-
tion paradox, each has distinct discrepancies. More attempts have been proposed to resolve the information
paradox, but no solution has been generally accepted. To test any of the proposed solutions, black holes must
be studied closely. Unfortunately, this will not be possible any time soon as the closest black hole is 1560ly
away [37]. As a full theory of quantum gravity still eludes physicists, the information paradox will likely not
have an accepted theoretical solution anytime soon.

Quasinormal Modes

Musical instruments, when excited, give instrument-specific notes corresponding to a characteristic vibration
mode. For example, pressing a key on a piano will excite a string, creating a musical note that eventually
fates. The excited vibrational energy of the string dissipates as sound waves. The sound waves contain in-
formation on the piano’s properties, such as the length and material of the string.

The event horizon creates a system in which an infalling object undergoes an irreversible process toward the
singularity. This non-time-symmetric property makes the boundary-valued problem non-hermitian, so per-
turbed black holes are intrinsically dissipative [30]. Therefore, black holes also have characteristic oscillations
called quasinormal modes (QNMs). Much like the sound waves of the piano, the dissipation is through the
emission of radiation from the coupled matter and gravitational fields.4

The eigenfrequencies and eigenmodes of the QNMs are found by linearizing Einstein’s field equations and
solving the boundary-valued eigenvalue problem numerically or analytically. The boundary conditions at the
event horizon only allow for infalling modes5 , while at spatial infinity, both ingoing and outgoing modes ex-
ist. Given that the mode amplitudes must decay in time, its eigenfrequencies ωQNM contain a real and imag-
inary part, where the latter is strictly negative. Consequently, the eigenmodes are usually non-normalizable
and do not form a complete set as the amplitude blows up at infinity. The QNMs contain information about
the characteristic properties of the black hole, such as its mass, spin and charge. The non-normalizability of
the eigenmodes arises from the linearization of the field equations. However, in the full quantum theory, these
mode solutions must become normalizable.

Although QNMs and Hawking radiation involve dissipative processes, their origin and behaviour are distinct.
In contrast to QNMs, Hawking radiation is normalizable, and its eigenfrequencies are real and continuous.
While QNMs arise from perturbations in the geometry, Hawking radiation originates from fluctuations in the
field that are partially trapped by the event horizon.

4 The vibrational fluctuations in the gravitational fields are known as gravitational waves.
5 Classically
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Types of Black holes

The Einstein field equations allow for a variety of black hole-type solutions. The most notable of these so-
lutions is the Schwarzschild metric, a spherically symmetric vacuum solution. This solution describes (ap-
proximately) gravitational fields outside massive bodies like stars or black holes. The Schwarzschild solu-
tion will be the primary geometry used throughout this thesis. Other prominent solutions include rotating
(Kerr) black holes, charged (Reissner-Nordström) black holes, or a combination of rotation and charge (Kerr-
Newman), see Table (1). Other notable spacetime geometries are AdS and dS, which are of great interest in
cosmology.

Non-rotating (J = 0) Rotating (J ∈ R)
Uncharged (Q = 0) Schwarzschild Kerr
Charged (Q ∈ R) Reissner-Nordström Kerr-Newman

Table 1: A table consisting of the four most common types of black holes.

Schwarzschild Black Holes

The Schwarzschild metric is the unique spherically symmetric vacuum solution [7]. In spherical coordinates
{t, r, θ, φ}, the Schwarzschild metric reads,

ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2 (118)

where M is the mass of the body and dΩ2 is the two-sphere metric,

dΩ2 = dθ2 + sin2 (θ)dφ2. (119)

As the radial component r increases towards infinity, the spacetime will become indistinguishable from the
Minkowski metric (Asymptotically flat). The metric will also become Minkowskain when M → 0. There
are two coordinate singularities: the Schwarzschild radius rs = 2GM (event horizon) and r = 0. To en-
sure whether a point is an honest singularity, scalar quantities constructed from curvature terms become in-
finite; otherwise, the point is a manifestation of the coordinate system used, called a coordinate singularity.
The contracted Riemann tensor in Schwarzschild coordinates is,

RµνρσRµνρσ =
12r2s
r6

(120)

shows that the coordinate r = 0 is an honest singularity, whilst the event horizon rs is not.6

Moreover, the metric exhibits four Killing vectors, one for time symmetry and three for rotational symme-
try. The Killing vector Kµ = (∂t)

µ
corresponding to the invariance of time translation results in energy con-

servation. Note that the Killing vector in the interior of the black hole becomes spacelike while the exterior
becomes timelike. Due to the metric being both stationary and static, the event horizon is a Killing horizon
with Killing vector ∂t [7]. The surface gravity, κ = 1

2rs
, associated with the Killing horizon, represents the

measure of the black hole’s gravitational acceleration at the event horizon. The three rotational Killing vec-
tors corresponding to the symmetries of the SO(3) group represent invariance under rotation in the three spa-
tial directions and lead to the conservation of angular momentum.

Suitable coordinate transformations can show that the event horizon is well-behaved and nonsingular. As
stated earlier, the event horizon is a point of no return; to see this, consider a fixed observer measuring a
massless particle propagating radially towards the singularity. The radial null geodesics are described by,

dt

dr
= ±

(
1− rs

r

)−1

. (121)

The corresponding spacetime diagram in t− r coordinates is given in Figure (12). Infinitely far away from the
singularity, the light cone of the particle corresponds to those in Minkowski spacetime, dt

dr = ±1. As the par-
ticle propagates towards the singularity, the light cone gradually closes up, eventually reaching the event hori-
zon, where dt

dr → ±∞. From the observer’s perspective, the particle will approach the event horizon but never
cross it. The light cones inside the event horizon will tilt towards the singularity. Therefore, any geodesics
will lead towards the singularity inside the event horizon. The Schwarzschild metric becomes unreliable for
the interior of the black hole, introducing tortoise coordinates,

r⋆ = r + rs ln

(
r

rs
− 1

)
(122)

6 Verifying honest singularities using scalar quantities is not a hard condition but a test. 22
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such that the metric becomes,

ds2 =
(
1− rs

r

) (
−dt2 + dr2⋆

)
+ r2dΩ2. (123)

The coordinate transformation maps r ∈ [rs,∞) onto r⋆ ∈ (−∞,∞). As a consequence of the coordinate
transformation, the event horizon is now located at minus infinity. The radial null geodesics become,

dt

dr⋆
= ±1 (124)

and so,
t = ±r⋆ + constant. (125)

The plus corresponds to the outgoing geodesics, and the minus corresponds to the ingoing geodesics.

Figure 12: A Schwarzschild spacetime diagram (t, r). The light cones (green) are local projections of the ac-
cessible domain in spacetime through timelike trajectories. The blue lines represent ingoing null geodesics,
and the red lines represent the outgoing null geodesics.

Additionally, define a set of radial null coordinates,

v = t+ r⋆ (126a)

u = t− r⋆ (126b)

From Eq.(125), the ingoing radial null geodesics are described by v = constant, while the outgoing radial null
geodesics are described by u = constant. The ingoing Eddington-Finkelstein metric is,

ds2 = −
(
1− rs

r

)
dv2 + (dvdr + drdv) + r2dΩ2. (127)

In these coordinates, the event horizon is no longer a coordinate singularity. The ingoing radial null geodesics
are given by,

dv

dr
=

{
0, (ingoing)

2
(
1− rs

r

)−1
, (outgoing)

(128)

Any trajectory towards the singularity no longer asymptotes at the event horizon, and the light cones no
longer close up. Hence, the spacetime is smooth and extended beyond the event horizon. However, the light
cones tilt, and all light cones inside the event horizon are future-directed towards the singularity, indicating
no possible trajectories to escape the black hole once inside.
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Figure 13: An ingoing Eddington Finkelstein diagram (ṽ, r). The coordinates are adjusted to depict the light
cones (green) at 45◦, ṽ = v − r. Inside the event horizon, the light cones are directed towards the singularity.

Similarly, the outgoing Eddington-Finkelstein metric is,

ds2 = −
(
1− rs

r

)
du2 − (dudr + drdu) + r2dΩ2. (129)

which is also smooth across the domain r ∈ (0,∞). The outgoing radial null geodesics are given by,

du

dr
=

{
−2
(
1− rs

r

)−1
, (ingoing)

0, (outgoing)
(130)

The light cones are past-directed, so all geodesics inside the event horizon lead away from the singularity.
This region of spacetime from which all lightcones are past-directed is called a white hole.

Figure 14: An outgoing Eddington Finkelstein diagram (ũ, r). The coordinates are adjusted to depict the
light cones (green) at 45◦, ũ = u+ r.
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Hawking Radiation
Hawking radiation is a fascinating phenomenon in quantum gravity as it emerges from the combination of
General Relativity and Quantum Field Theory. In his original paper, ”Particle Creation by Black Holes” [1],
Hawking demonstrated that a black hole (immersed in a heat bath) has a thermal radiation spectrum. At the
time, this discovery was very contradictory, as classical particles would never be able to escape the gravita-
tional pull once captured inside the event horizon. Nonetheless, numerous papers were later released confirm-
ing Hawking’s original result and that black holes must evaporate [2–4]. The black hole evaporates through
energy transfer between the gravitational background and the emitted radiation. As the black hole evapo-
rates, the spacetime geometry changes. Due to the change in geometry, the radiation spectrum is no longer
thermal. This new radiation spectrum may be correlated with the matter substance that fell into the black
hole. Hypothetically, this makes it possible to retrieve all previously captured information. However, to this
day, it remains a mystery how to incorporate the changing spacetime geometry into the calculation and how
to solve the information paradox.

The previous chapters were introductory to the different methodologies that can be used to find the proba-
bility of particle production using the sQED model. These different methodologies agreed that particle pro-
duction occurs in a constant electric field but not in a constant magnetic field,

|⟨out, 0|0, in⟩|2 = exp [−2ℑ(W )] =
∏
λ

Tr,λ︸ ︷︷ ︸
Tunnelling

= exp [−2Tr{ln |α|}]︸ ︷︷ ︸
Bogolubov coefficients

= exp

[
−ℑ

{
i

∫ ∞

0

ds

s
Tr
(
e−sH

)}]
︸ ︷︷ ︸

Heat kernel approach

. (131)

Using the heat kernel approach, it was shown that the electric field made the vacuum unstable, and before
annihilation could occur, it would separate the pair. Figure (3) shows that the electric field accelerates the
charged quanta away from each other so the virtual particles can become real. Following this same heuris-
tic view, the gravitational background makes the vacuum unstable. As virtual particle pairs are created, the
black hole’s strong tidal forces allow these virtual particles to become real, as shown in Figure (15).

Figure 15: A schematic representation of pair particle production. The vacuum creates virtual pair particles,
which may annihilate (red and blue loops) or may become real. Either the negative (red) or positive (blue)
frequency modes are captured, and its opposite is emitted as radiation.

Approaching the problem of particle creation in sQED from a scattering theory perspective, i.e. calculating
the transmission coefficient of a wave tunnelling through a potential, yielded the same result. Moreover, it
was also shown that the result was consistent within a QFT framework through Bogolubov coefficients. Re-
markably, this implies that some underlying equivalence exists for these different approaches.

This chapter aims to show that the same equivalence observed in sQED also applies to black hole radiation
through the same approaches. First, Hawking’s original calculation, which includes Bogolubov coefficients,
will be reproduced [1]. Then, Hawking radiation will be analysed using scattering theory and tunnelling with
the Damour-Ruffini method [4].
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Hawking Radiation via Bogolubov coefficients

Firstly, to calculate the thermal radiation spectrum using the Bogolubov coefficients, the in and out vacua
must first be defined, which will be achieved using the framework of spacetime sandwiching. Consider a mas-
sive spherical object undergoing complete gravitational collapse, where the exterior region is given by the
Schwarzschild spacetime. Before the gravitational collapse, the in-vacuum is assumed to be the standard
Minkowski vacuum, as the spacetime is approximately flat far from the object in early times. After the gravi-
tational collapse, spacetime geometry changes from Minkowski to Schwarzschild. Moreover, the Schwarzschild
spacetime is stationary at late times, where the out-vacuum is defined. Therefore, the in-vacuum does not
correspond to the out-vacuum due to the intermediate stage, where the spacetime is topologically complex.
The Bogolubov transformation between in and out vacuum states determines the particle production rate.
The spectrum of produced particles is,

⟨0, in|Nω |0, in⟩ =
∫ ∞

0

|βωω′ |2 dω′. (132)

Consider a massless scalar field in Schwarzschild geometry, then the field equation reads,[
1

r2
∂

∂r

(
1− rs

r

)
r2
∂

∂r
−
(
1− rs

r

)−1 ∂2

∂t2
+∆

]
Φωlm(t, r, θ, φ) = 0. (133)

where ∆ = 1
r2 sin(θ)

∂
∂θ

(
sin(θ) ∂

∂θ

)
+ 1

r2 sin2(θ)
∂2

∂φ2 . The mode solutions can be decomposed as,

Φωlm(t, r, θ, φ) =
1

r

∫
dω

∞∑
l=0

l∑
m=−l

Ylm(θ, φ)e−iωtϕωlm(r), (134)

where Ylm(θ, φ) is the spherical harmonic mode satisfying, ∆Ylm(θ, φ) = − l(l+1)
r2 Ylm(θ, φ) and ϕωml(r) is the

radial mode solution. Substituting the decomposition simplifies Eq.(133) to a radial field equation rewritten
in tortoise coordinates, [

d2

dr⋆2
+

(
ω2 −

[
l(l + 1)

r2
+
rs
r3

] [
1− rs

r

]
︸ ︷︷ ︸

Potential barrier

)]
ϕωlm(r) = 0. (135)

The potential barrier partially scatters incoming modes back of the gravitational field, resulting in a super-
position of incoming and outgoing modes. Moreover, due to the gravitational backscattering, the total flux at
infinity is reduced by a fraction 1−Γω. Although exact mode solutions exist for the field equation, calculating
the Bogolubov coefficients becomes troublesome. The radial mode’s exact form is unimportant if observations
are done at r →∞. At r →∞, the radial equation becomes,[

d2

dr⋆2
+ ω2

]
ϕωlm(r) = 0. (136)

Therefore, the mode solutions at r →∞ are

ϕωlm(r) = e−iωu (137)

and
ϕωlm(r) = e−iωv, (138)

in null coordinates u = t − r⋆ and v = t + r⋆. To calculate the change in vacua, the mode decomposition in
the past and future must be defined. The past null infinity I − is a Cauchy surface on which a set of positive
frequency modes can be defined. Decomposing the scalar field ϕ in terms of fω, which form a complete set of
positive frequency solutions of the field equation on the I −,

ϕ =

∫
dω
(
fωaω + f∗ωa

†
ω

)
, ∀ω > 0. (139)

The operators aω and a†ω are the annihilation and creation operators, respectively, with the vacuum state of
the ingoing particles satisfying, aω |0, in⟩ = 0. The positive frequency solutions at I − are

fω = e−iωv. (140)
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Since this wave can either scatter or be absorbed, it can be separated into

fω = f1ω + f2ω, (141)

where f1ω is the part that is backscattered to I + and f2ω denotes the part that is absorbed by the black hole.
In terms of Bogoliubov coefficients, this decomposition reads,

αωω′ = α
(1)
ωω′δωω′ + α

(2)
ωω′ (142a)

Γω =

∫
dω′

(∣∣∣α(2)
ωω′

∣∣∣2 − ∣∣∣β(2)
ωω′

∣∣∣2) . (142b)

The fraction of the ingoing wave that is absorbed causes the particle production since this part of the wave
is no longer transmitted from I − to future null infinity I + [38]. At late times, to define a complete set of
positive frequency modes, solutions of the field equation at the event horizon H+ and I + are required as I +

does not form a Cauchy surface. Therefore, the scalar field can be expanded as,

ϕ =

∫
dω
(
bωpω + b†ωp

∗
ω + cωqω + c†ωq

∗
ω

)
, (143)

where bω and b†ω are the annihilation and creation operators respectively at I +, while cω and c†ω are the
annihilation and creation operators respectively at H+. Additionally, pω defines the complete set of purely
outgoing solutions, while qω is a complete set of solutions containing no outgoing particles. The set pω is re-
quired only to contain positive frequency modes such that these modes correspond to the Minkowski vacuum.
This approximation cannot be made at H+.

Figure 16: A Penrose diagram of a massive spherical object undergoing complete gravitational collapse (dot-
dashed line) and forming a black hole. The interior and exterior of the black hole are denoted by the regions
I and II, respectively. A ray γ at I + propagating backwards towards the I −. The ray follows the geodesic
u = u1 passing the event horizon H+ and continues through the collapsing object following the geodesic v1.
The infinite phase shift at I + corresponds to a finite shift at I − connected through the displacement vector
ϵna.

Consider a quantum state |ψ⟩ of a system consisting of observably inaccessible and accessible regions, denoted
respectively by I and II in Figure (16). The observable states are |n, I⟩, whereas the unobservable states are
denoted by |n, II⟩, assuming they are uncorrelated. Then,

|ψ⟩ =
∑
n

pn |n, I⟩ |n, II⟩ , (144)
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with density matrix
ρ̂ = |ψ⟩ ⟨ψ| . (145)

Since any observable operator Ô only consists of degrees of freedom in the observable region I, the expecta-
tion value is 〈

Ô
〉
= tr

(
Ôρ̂I

)
, (146)

where
ρ̂I =

∑
n

|pn|2 |n, I⟩ ⟨n, I| . (147)

Any dependence on the unobservable states has been coarse-grained out. Therefore, the choice of complete

basis of modes on H+ is irrelevant when computing
〈
Ô
〉
. The positive frequency solutions at I + are defined

as,
pω = e−iωu. (148)

To determine the particle production rate, the outgoing modes are decomposed in terms of the positive and
negative frequency components at I −. Consider a light ray starting at I + traversing backwards towards
I −. The ray follows the geodesic u1 near the event horizon, passes through the collapsing star, and continues
along the geodesic v1 toward I +, as depicted in Figure (16). The ray tracing along a null geodesic is only
valid if it satisfies the geometric optics approximation. Specifically, it requires the effective frequency to be
very high near the event horizon relative to the spacetime curvature. As v1 → v0, the phase of the wave goes
through an infinite number of cycles as the geodesic u1 → u, justifying the geometric optics approximation
[39]. The ray at v1 is connected to v by a geodesic displacement vector ϵna, where na = ∂

∂u . At H
+, the vec-

tor pa = du
dλ

∂
∂u is also tangent to an ingoing null geodesic and parallel to na, pa = Bna. Solving the geodesic

equation for pa gives the affine parameter λ,

λ = −Be−κu, (149)

where B is some constant and κ = 1
2rs

is the surface gravity [39]. Moreover, in local coordinates, the geodesic

equation reads dpµ

dλ = 0, which is solved by,
λpµ = −ϵnµ. (150)

Substituting Eq.(149) into Eq.(150) gives the relation between geodesics,

v0 − v = ϵ = Ce−κu, (151)

which connects the infinite blueshift of the ray with the deviation ϵ. The parameters v0 and C can be arbi-
trarily chosen as they do not contribute to the final answer. The mode solution at I − is given by

ϕ ∼ eiω
κ ln (v0−v), v0 < v,

ϕ = 0, v > v0.
(152)

where ϕ = 0 for v > v0, since these waves, when ray traced back, would look like they are coming out of the
black hole. The Bogolobov coefficients can be computed by substituting the corresponding mode solutions, fω
and pω in v-coordinates into Eq. (79),

α
(2)
ωω′ =

1

2π

∫ v0

−∞
dv

(√
ω′

ω
−
√
ω

ω′
1

κ(v − v0)

)
eiω

′vei
ω
κ ln (v0−v) (153a)

=
1

iπ
√
ωω′

(iω′)
−iω

κ Γ
(
1 + i

ω

κ

)
, (153b)

β
(2)
ωω′ = −iα(2)

ω,−ω′ , (153c)

where v0 = 0 [21]. The Fourier transformation vanishes for v > v0 making the coefficient α
(2)
ωω′ analytic in

the lower half complex ω′ plane. The spectrum of produced particles, Eq.(132), diverges logarithmically as

ω′ → 0. Therefore every mode ω, creates an infinite number of particles at I +. The coefficient α
(2)
ωω′ contains

a logarithmic branch cut at ω′ = 0, therefore to obtain β
(2)
ωω′ from α

(2)
ωω′ one has to analytically continue α

(2)
ωω′

anticlockwise around the singularity. This leads to,

|αωω′ | = e
πω
κ |βωω′ | . (154)
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By localizing the modes as wavepackets, the infinite number of particles at I + indicate a finite particle flux.
This can be done by discretizing the modes confined to a box with periodic boundary conditions [21]. Com-
bining Eq.(142a) and Eq.(154), the number of particles emitted per mode is

Nω =
Γω

e4πωrs − 1
(155)

This spectrum is thermal with temperature T = κ
2π . The black hole is in thermal equilibrium with a sur-

rounding heat bath regardless of the backscattering effect since the rate between emission and absorption per
mode is independent of the fraction Γω. The Γω is also known as the greybody factor, the classical absorption
coefficient for a scattering scalar field. In small and large frequencies, this factor is given by

Γω → 1, ω ≫ 1

M

Γω →
A

4π
ω2, ω ≪ 1

M
.

(156)

The thermal spectrum implies a loss of information as there is no correlation between the emitted quanta and
the previously infallen matter. Furthermore, neglecting the backscattering of the potential barrier, the vac-
uum persistence is given by,

2ℑ(W ) = Tr
{
ln (1 +Nω)

}
=

∫
d4x
√
−g 1

4πrs

∑
m,l

∫ ∞

0

dω

2π
ln

(
1 +

1

e4πωrs − 1

)
(157)

The factor 1
4πrs

corresponds to the number of states per mode ω [25]. Thus

2ℑ(Leff ) = −
1

4πrs

∑
m,l

∫ ∞

0

dω

2π
ln
(
1− e−4πωrs

)
=
∑
m,l

1

192r2sπ
(158)

is exactly the total flux of emitted radiation [40]. Furthermore, the vacuum persistence becomes near unity
for massive black holes, rs →∞ and consequently, particle production is suppressed.

In Minkowski spacetime, the quantum fields still vibrate in the absence of particles due to the vacuum fluc-
tuations. These fluctuations are unobservable, as only differences in energy between states are measurable.
However, an external field can7 disrupt the vacuum, and the fluctuating modes may no longer cancel out. For
a black hole, the field is disrupted by the event horizon, and fluctuations in the field no longer annihilate each
other. These vacuum fluctuations give rise to virtual particle pairs with a broad range of wavelengths. In Fig-
ure (17), a schematic representation of the disruption of the field modes is given.

Figure 17: A schematic representation of the disruption a black hole makes in the field. Before the creation
of the black hole, the field is in equilibrium; the excitations (red and blue) annihilate each other, and no real
particles are created (purple). A black hole disrupts the field, and fluctuations no longer cancel out, creating
real particles (purple) that carry away energy from the black hole.

The event horizon entraps some of the modes which can no longer annihilate with their counterparts. The
modes with longer wavelengths have a large spatial extent, making them more likely to be partially trapped

7 Not all external fields disrupt the vacuum.
8 The interaction is through the partial entrapment of the modes.
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inside the event horizon. Shorter wavelengths have a smaller spatial extent and are, therefore, less likely to be
partially trapped by the event horizon. Consequently, there are more modes with longer wavelengths trapped
than modes with shorter wavelengths. The modes that did not annihilate become real particles and escape
the gravitational pull from the black hole. A large black hole predominantly emits longer wavelengths, as
those are more likely to interact8 with the event horizon and not annihilate with their counterpart. This is
directly reflected in the radiation spectrum, as smaller frequencies dominate the number of particles emitted
per mode for large black holes. These modes carry away energy (proportional to their frequency) from the
black hole, causing the black hole to evaporate slowly.

In contrast to the Schwinger effect for a constant electric field, it is the event horizon that causes the creation
of particles, not the gravitational field. However, the gravitational background coupled to the scalar field en-
sures the particle extracts its energy from the mass of the black hole. It is not the gravitational background
that accelerates the virtual particles far enough; it is the event horizon that entraps some of the fluctuating
modes.

The Damour-Ruffini Method: a Scattering Approach to Hawking Ra-
diation

Similar to particle production in sQED, scattering theory can be used to find the vacuum persistence. This
provides a heuristic tunnelling picture, where particles traverse through the event horizon and escape towards
infinity. The Bogolubov coefficients are related to the transmission and reflection coefficients by,

Tl,ω =
|βωω′ |2

|αωω′ |2
= e−4πωrs , (159)

and

Rl,ω =
1

|αωω′ |2
= 1− e−4πωrs . (160)

The Damour-Ruffini method offers a scattering approach to Hawking radiation by directly computing the re-
flection and transmission coefficients, eliminating the need to calculate the Bogolubov coefficients [4, 41]. The
radial field equation, Eq.(133), in the near horizon limit in tortoise coordinates reduces to,(

− ∂2

∂t2
+

∂2

∂r2⋆

)
R(t, r) = 0, (161)

where

r⋆ = r + rs ln|r − rs| =

{
r + rs ln(r − rs), r > rs,

r + rs ln(rs − r), r < rs.
(162)

The ingoing and outgoing mode solutions are, respectively,

Rin(t, r) = e−iωv, (163a)

Rout
I (t, r) = e−iωu = (r − rs)2iωrs e2iωre−iωv, r > rs. (163b)

The ingoing wave in v coordinates is well-behaved over the entire r- and v-domain. While the outgoing wave
is only well-behaved in region I. As the outgoing wave approaches H+, there are an infinite number of cycles,
so it cannot be used inside the black hole. The outgoing wave may be analytically continued such that it is
valid beyond H+ in the region II. Since the radial vector ∂

∂r is null and past-directed everywhere, the solu-
tion is analytically continued through the lower half of the complex r-plane,

Rout
I (t, r)→ R̃out

II (t, r) = Rout∗
II (t, r)e2πωrs (164)

where
Rout∗

II (t, r) = e−iωu = e2iωr⋆e−iωv, r < rs. (165)

The detailed calculations can be found in Appendix A. The outgoing null geodesics are characterized by u =
constant = v − 2r⋆, which indicates that the outgoing wave in region II propagates towards the singularity
as v increases. Thus, the wave represents an ingoing anti-particle of negative energy (−ω). A schematic rep-
resentation of the ingoing and outgoing particles near the event horizon is given in Figure (18). The phase of
the outgoing wave makes a discontinuous jump e−2πωrs at the event horizon. The general outgoing wave is,

ϕoutω (t, r) = Nω

(
Rout

I (t, r) + e2πωrsRout∗
II

)
, (166)
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where Nω is the normalization factor. The anti-particle traverses back in time to scatter at the event hori-
zon with an outgoing particle. Therefore, from scattering theory as shown in Appendix B, the probability of
transmission through the event horizon is,

Pω = Tω = e−4πωrs . (167)

The transmission coefficient gives the probability that a pair particle is created in mode ω [42]. The Pauli-
exclusion principle for bosons allows for any number of particle pair production in each quantum state. The
probability of creating any number of pairs must be conserved,

probability of creating (0 pairs + 1 pair + ... + n pairs) = Cω

∞∑
n=0

Pn
ω = 1. (168)

This implies that Cω = 1− Pω. The probability of creating n particle pairs is [42],

Pnω = (1− Pω)P
n
ω . (169)

Then, the average number of pair particles emitted per mode is given by,

⟨Nω⟩ =
∞∑

n=0

nPnω =
1

e4πωrs − 1
, (170)

which matches the exact thermal radiation spectrum via the Bogolubov approach. In contrast to the scatter-
ing in sQED, the reflection coefficient Rω can be interpreted as the probability of no pair creation in mode ω.
Therefore, the vacuum persistence is given by,

|⟨out, 0|0, in⟩|2 =
∏
ω,l,m

Rω =
∏
ω,l,m

(
1− e−4πωrs

)
= exp

 V

4πrs

∑
l,m

∫ ∞

0

dω

2π
ln
(
1− e−4πωrs

) , (171)

which matches the result found using the Bogolubov coefficients. Unlike Hawking’s original method, this ap-
proach allows a natural (heuristic) interpretation of vacuum polarization from a gravitational background,
where particles tunnel through the event horizon. The pair production occurs at the event horizon, where an
outgoing particle propagates towards infinity, and the anti-particle falls towards the singularity, as shown in
Figure (18).

Figure 18: A schematic representation of pair particle production at the event horizon rs in advanced
Eddington-Finkelstein coordinate v. The anti-particle Rout∗

II traverses towards the singularity, whereas the
particle traverses the potential barrier and either is backscattered or transmitted to infinity. The anti-particle
makes a phase jump at the event horizon.

31



Hawking Radiation

This suggests that particle production arises directly from the presence of an event horizon, where modes
make a discontinuous jump. Moreover, rewriting Eq. (161) in Schrödinger form reduces to,[

∂2

∂x2
+ VH(x)

]
ϕωlm(x) = 0, (172)

where

VH(x) =
ω2r2s +

1
4

x2
. (173)

This near horizon field equation is directly related by a coordinate transformation to Eq. (161). It can be ar-
gued that the potential VH is directly associated with the presence of the event horizon and, consequently,
particle production, while higher-order terms only contribute to the greybody factor.

Furthermore, the Damour-Ruffini method can also be extended to calculate the Bogolubov coefficients. As
opposed to calculating the transmission and reflection coefficients, this methodology gives further insight into
the transformation between vacua and observables confined to region I. The field equation in Eq.(161) also
allows for the mode solutions to be,

Rin(t, r) = e−iωv,

Rout
I (t, r) = e−iωu, r > rs,

Rout
II (t, r) = eiωu, r < rs.

(174)

The ingoing mode solution is analytic over all regions of space-time. Moreover, the outgoing mode solutions
are analytic in their respective regions, but neither is at the event horizon. Inside the event horizon, the r⋆
coordinate becomes timelike, and t becomes spacelike. These outgoing (Schwarzschild) modes form a second
complete orthonormal basis. The field ϕω may be expanded as,

ϕoutω =

∫
dω
[
b(1)ω Rout

I + b(1)†ω Rout∗
I + b(2)ω Rout

II + b(2)†ω Rout∗
II

]
, (175)

where b
(1)
ω , b

(2)
ω ,b

(1)†
ω and b

(2)†
ω are the annihilation and creation operators for the modes outside and inside

the black hole respectively. The operator b
(2)
ω annihilates an excitation of the Schwarzschild mode outside the

black hole in region I. While b
(1)
ω annihilates an excitation inside the black hole in region II. The vacuum

state |0S⟩ is defined as [21],
b(1)ω |0S⟩ = b(2)ω |0S⟩ = 0, ∀ω > 0. (176)

The Schwarzschild vacuum is associated with a static observer outside the black hole measuring no particles.
An alternative quantization prescription based on the orthonormal mode solutions in Kruskal coordinates
provides a different vacuum state |0K⟩ [41]. Transforming to Kruskal coordinates defined by,

ū = −2rse−
u

2rs ,

v̄ = 2rse
v

2rs .
(177)

The outgoing mode solutions in Kruskal coordinates are,

Rout
I (t, r) = e2iωrs ln (− ū

2rs
), r > rs,

Rout
II (t, r) = e−2iωrs ln ( ū

2rs
), r < rs,

R̃out
II (t, r) = e2iωrs ln (− ū

2rs
), r < rs.

(178)

When crossing the event horizon ū = 0 (or v̄ = 0), the modes of Eq.(178) pass smoothly from ū < 0 to ū > 0,
and are bounded in the real and lower half of the complex ū-plane [21]. In contrast, the modes of Eq.(174)
are non-analytic and do not cross the event horizon smoothly. The non-analytical nature at ū = 0 ensures a
mixing of the positive and negative frequency modes. The combinations,

Rout
I + R̃out

II ,

Rout∗
I + R̃out∗

II ,
(179)

are valid over all regions of space-time. The first combination is the same as Eq.(164). Rewriting the combi-
nations as,

f1 = eπωrsRout
I + e−πωrsRout∗

II ,

f2 = e−πωrsRout∗
I + eπωrsRout

II ,
(180)
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which are analytic and bounded for all ū and form a complete orthonormal basis for the outgoing mode solu-
tions. The field may be expanded as,

ϕoutω =

∫
dω

1√
2 sinh (2πωrs)

[
d(1)ω f1 + d(1)†ω f⋆1 + d(2)ω f2 + d(2)†ω f⋆2

]
, (181)

where d
(1)
ω , d

(2)
ω ,d

(1)†
ω and d

(2)†
ω are the annihilation and creation operators for the modes outside and inside

the black hole respectively. The corresponding vacuum state is,

d(1)ω |0K⟩ = d(2)ω |0K⟩ = 0, ∀ω > 0. (182)

The vacuum states |0K⟩ and |0S⟩ are not identical due to the non-analytical nature of the Schwarzschild modes
at the event horizon. The vacuum |0K⟩ contains particles associated with the modes of Eq.(174). The opera-

tors b
(1,2)
ω and d

(1,2)
ω are related by taking the inner product (ϕoutω , Rout

I ) and (ϕoutω , Rout
II ) for both Eq.(175)

and Eq.(181), then,

b(1)ω =
1√

2 sinh (2πωrs)

[
eπωrsd(1)ω + e−πωrsd(2)†ω

]
, (183a)

b(2)ω =
1√

2 sinh (2πωrs)

[
e−πωrsd(1)†ω + eπωrsd(2)ω

]
. (183b)

An observer in region I will detect quanta associated with Schwarzschild modes [21]. The vacua are related
by Eq. (82),

|0K⟩ =
∏
k

eξ
⋆
kb

(1)
−kb

(2)
k −ξkb

(1)†
−k b

(2)†
k |0S⟩ (184)

with ω = |k| and ξk = −arctanh
(
e−2πωrs

)
. Decomposing the Schwarzschild vacuum in terms of the number

states per region, as described in Eq.(144) gives,

|0K⟩ =
∏
k

sech (−ξk)
∞∑

nk=0

e−
nkπω

κ |nk, I⟩ |nk, II⟩ . (185)

The expectation value of an observable operator Ô constrained to region I is given by Eq.(146),

⟨0K | Ô |0K⟩ =
∑
nk

∏
k

⟨nk, II| Ô |nk, II⟩ e−
2nkπω

κ

(
1− e− 2πω

κ

)
. (186)

Therefore, the reduced density matrix can readily identified as,

ρ̂I =
∑
n

∏
k

e−βωn
(
1− e−βω

)
|nk, I⟩ ⟨nk, I| , (187)

where β = 2π
κ . The unobservable states in the region II are coarse-grained out, and the density matrix has

become thermal. Thus the vacuum state |0K⟩ appears as a mixed state to an observer constrained to region
I. [21, 41]

Damour-Ruffini Method: Incorporating The Greybody Factor

In the near horizon limit, the particles are not yet subject to the backscattering of the potential barrier. In-
cluding the potential barrier requires computing the greybody factor via numerical methods [43, 44]. In a
recent study by Philipp et al. [45], the greybody factor has been computed using semi-analytical methods.
This section aims to introduce the greybody factor into the vacuum persistence and provide a semi-analytical
method of determining the greybody factor.

Consider the field equation in the outgoing Eddington-Finkelstein coordinates,[
1

r2
∂

∂r

(
r2
(
1− rs

r

) ∂

∂r

)
− 1

r2
∂

∂u

(
r2
∂

∂r

)
− 1

r2
∂

∂r

(
r2

∂

∂u

)
+∆− µ2

]
Φωlm(u, r, θ, φ) = 0 (188)

The outgoing Eddington-Finkelstein coordinates contain a Killing vector ∂
∂u , which is orthonormal to the null

hypersurface r = rs for constant u. Then, the mode solutions consist of eigenfunctions from the corresponding
Killing vector with eigenfrequencies ω,

∂

∂u
uk(u, r) = −iωuk(u, r), ω > 0. (189)
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The mode solutions are decomposed as,

Φωlm(u, r, θ, φ) =

∫
dω

∞∑
l=0

l∑
m=−l

Ylm(θ, φ)e−iωuϕωlm(r). (190)

where ϕωml describes the radial part of the mode solutions. Substituting the decomposition of Eq.(190) into
Eq.(188), yields the radial field equation,[

∂2

∂r2
+

(
2r − rs + 2iωr2

r2 − rrs

)
∂

∂r
+

2iω

r − rs
−
[
µ2 +

l(l + 1)

r2

]
r

r − rs

]
ϕωlm(r) = 0. (191)

The radial field equation has been written as a Confluent Heun Equation following the theory given in Ap-
pendix C. The information on the mode solutions of the CHE is contained within the generalized Riemann
scheme. The corresponding outgoing Eddington-Finkelstein GRS is given by [46],

1 1 2

0 rs ∞
0 0 1 + irsω − irs µ2−2ω2

2
√

ω2−µ2
; r
rs

0 −2irsω 1 + irsω + irs
µ2−2ω2

2
√

ω2−µ2

0

2irs
√
ω2 − µ2


, (192)

with parameters

a = −2irs
√
ω2 − µ2, b = 0, c = 2irsω,

d = −r2s
(
µ2 − 2ω2

)
, e = −l(l + 1).

(193)

Notably, the metric does not diverge at the event horizon in Eddington-Finkelstein coordinates. Therefore,
the mode solutions are reliable within the black hole. According to the second column of the GRS, two in-
dependent mode solutions exist at the event horizon. The outgoing solution inside the event horizon is given
by,

ϕinnerωlm (r) = e
−i

(
ω+
√

ω2−µ2
)
r
(
r

rs
− 1

)−2irsω

Hc(a)
(
−a,−c, b,−d, d+ e; 1− r

rs

)
, (194)

and the outgoing solution outside the event horizon is,

ϕouterωlm (r) = e
−i

(
ω+
√

ω2−µ2
)
r
Hc(a)

(
−a, c, b,−d, d+ e; 1− r

rs

)
. (195)

Therefore, the general outgoing solution is,

ϕωlm(r) = Nω [H(rs − r)ϕinner(u, r) +H(r − rs)ϕouter(u, r)] , (196)

where Nω is the normalization factor. The general outgoing solution makes a discontinuous jump as it crosses
the event horizon. The jump at the event horizon is given by,

Tω = lim
r→r−s

∣∣∣∣ϕouter(u, r)ϕinner(u, r)

∣∣∣∣2 = lim
r→r−s

∣∣∣∣∣ 1

(r − rs)−2irsω

∣∣∣∣∣
2

= e−4πωrs . (197)

The limit is chosen in accordance with the inner outgoing solution traversing through the event horizon from
the left, r → r−s [47]. The transmission coefficient matches the result found in the previous chapter, which is
no surprise as the radial field equation in the near horizon limit reduces to Eq.(161). To derive the greybody
factor from scattering theory, the mode solutions at infinity of the radial field equation must be mapped onto
the generic asymptotic form [48],

ϕωml(r) ∼
1

r

(
Ain

ωle
−iωr⋆ +Aout

ωl e
iωr⋆

)
. (198)

Here, Ain
ωl and A

out
ωl are the ingoing and outgoing mode amplitudes, respectively. The third column of the

GRS contains the information of the radial mode solutions at infinity, known as the Thomé solutions. The
Thomé solutions are of the form,

ϕωlm(r) = Hc(r)(a, b, c, d, e; r) =
1

r
r−2iωrs

∞∑
n=0

a∞n r
−n (199)
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where the coefficients a∞n are given by a recurrence relation given in Appendix C. Although the solution is
not generally convergent to Eq.(198), the coefficients a∞n can be fitted onto Ain

ωl and A
out
ωl over a sufficient

large interval of r for fixed ω and l [45]. Through scattering theory, a second transmission coefficient describes
the probability of transmitting through the potential barrier, which is given by,

Γω =

∣∣∣∣ 1

Ain
ωl

∣∣∣∣2 . (200)

The vacuum persistence must include the greybody factor to adjust for the reduction of particles via the
backscattering of the potential barrier. Incorporating the greybody factor into Eq.(158) gives,

2ℑ(Leff ) =
∑
m,l

(
1

192r2sπ
+

1

4πrs

∫ ∞

0

dω

2π
ln
(
1 + (Γω − 1) e−4πωrs

))
, (201)

where the first term represents the leading contribution and the second term is a correction to the imaginary
part of the Lagrangian. The correction term converges to zero in the high-frequency limit as the greybody
factor approaches unity indicated by Eq.(156). However, the integral is infrared divergent due to the logarith-
mic term in the integrand in the low-frequency limit becomes infinite as ω → 0. It is unclear if this divergence
can be removed via a renormalization scheme.
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Radiation

The remaining connection to be established is to calculate the vacuum persistence of the Schwarzschild gravi-
tational field through the heat kernel approach. In this approach, the external constant electric field in sQED
is analogous to particle production through a gravitational background, as shown in Figure (15). Extract-
ing Hawking radiation from the heat kernel is a non-trivial task, as black holes can dissipate energy through
QNMs and Hawking radiation. A study by Keeler et al. [49] shows a connection between the heat kernel and
the quasinormal mode method for a rotating BTZ background. This suggests that the heat kernel encodes
the quasinormal modes. Therefore, extracting an imaginary part from the effective action is non-trivial as its
contribution may follow from quasinormal modes rather than Hawking radiation. Appropriate boundary con-
ditions must be established to circumvent the quasinormal mode contributions to the heat kernel.

In a recent study by Wondrak et al. [6], pair particle production for a complex scalar field in Schwarzschild
spacetime was computed using covariant perturbation theory. They predict that a static observer at fixed

r ≈ 1.25rs measures a temperature that exceeds the standard Hawking temperature by a factor of ∼ (1.9)
1/4

.
This result is based on two assumptions regarding the radial profile of the escape probability. The difference
in their results from the standard Hawking radiation immediately sparks questions about their methodology.

This chapter will outline the computation of the imaginary action through the covariant perturbative ap-
proach found by Wondrak et al. [6]. Moreover, the discrepancies in their methodology will be discussed. Lastly,
an alternative method of calculating the heat kernel in Schwarzschild geometry will given.

A Covariant Perturbative Approach to Particle Production

Consider a massive scalar field in Schwarzschild spacetime, Eq.(68). The Euclidean effective action reads,

WE = −1

2

∫ ∞

0

ds

s
Tr
(
e−Hs

)
, (202)

where H = −2 + µ2 + ξR. Introducing the zeta-regularization prescription to normalize the effective action
[15],

WE(z) = −
1

2
µ̃2z

∫ ∞

0

ds

s1−z
Tr
(
e−Hs

)
, (203)

where µ̃ is an arbitrary mass term to ensure proper dimensions, and z is a complex parameter. At the end of
the calculation, this regularization prescription requires z → 0. The traced heat kernel may be expressed as
the Schwinger-DeWitt expansion. Using, Eq.(115), the Euclidean effective action reads,

WE(z) = −
1

2
µ̃2z

∫ ∞

0

ds

s1−z
e−s(µ2−iϵ) 1

(4πs)2

∫
d4x
√
gE

∞∑
n=0

an(x)s
n, (204)

where the regulator iϵ is reintroduced such that in the massless limit, the imaginary part of the effective ac-
tion is non-divergent. Furthermore, the coefficients an(x) for a scalar field are given by Eq.(116). Performing
the integral over s gives,

WE(z) = −
1

2(4π)2
µ̃2z

∫
d4x
√
gE

∞∑
n=0

an(x)
Γ(n− 2 + z)

(µ2 − iϵ)n−2+z . (205)

The imaginary part can be extracted from the branch cut of the logarithms present in the expression,

In−2(z) =
Γ(n− 2 + z)

(µ2 − iϵ)n−2+z , (206)

for n+ z ≤ 2 [50]. Expanding this expression for the integer values n = 0, 1, 2 gives,

lim
z→0

I−2(z) =
µ4

2z
+

3− 2γE
4

µ4 − µ4

2
ln

(
µ2

µ̃2
− iϵ

)
+O(z),

lim
z→0

I−1(z) = −
µ2

z
− (1− γE)µ2 + µ2ln

(
µ2

µ̃2
− iϵ

)
+O(z),

lim
z→0

I0(z) =
1

z
− γE − ln

(
µ2

µ̃2
− iϵ

)
+O(z).

(207)
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To extract an imaginary part, the complex logarithm is written as,

ln

(
µ2

µ̃2
− iϵ

)
= ln

∣∣∣∣µ2

µ̃2
− iϵ

∣∣∣∣+ i atan2(−ϵ, µ
2

µ̃2
). (208)

Thus, the imaginary part of the expressions read,

ℑ(I−2(0)) =
πµ4

2
H(−µ2)

ℑ(I−1(0)) = −πµ2H(−µ2)

ℑ(I−0(0)) = πH(−µ2),

(209)

where H(−µ2) is a Heaviside step function,

H(−µ2) =


0, µ2 > 0
1
2 , µ2 = 0

1, µ2 < 0

. (210)

Therefore, the imaginary Euclidean action is given by,

ℑ(WE(0)) = −
1

32π

∫
d4x
√
gE

[
µ4

2
a0(x)− µ2a1(x) + a2(x)

]
H(−µ2), (211)

which can be extended to a complex field by incorporating a factor N = 2. The form of Eq.(211) indicates
that particle production is completely controlled by the mass of the field quanta. For the massless complex
scalar field coupled with the Schwarzschild background, the imaginary action only contains contributions from

RµναβR
µναβ =

12r2s
r6 .9 The probability of pair particle creation per unit time is,

dN

dt
= 2ℑ (L) =

r2s
240π

∫ ∞

rs

∫ π

0

∫ 2π

0

r2sin (θ)
1

r6
drdθdφ =

1

180rs
. (212)

The particle rate must be adjusted by incorporating the radial escape profile of the radiation via a pair-per-
event correction and escape probability. A pair-per-event correction factor accounts for the mean number of
pairs that can be extracted from the heat kernel’s first pole. The escape probability follows from the fact that
created particles may fall into the black hole for a static observer at infinity. These adjustments reduce the
observed particle rate at infinity to,

dNobs

dt
=

2059

85050rsπ2
. (213)

Similarly, consider the sQED Lagrangian, where the gauge-field curvature term Ωµν = iFµν . Then, according
to Eq.(211) the imaginary part of the effective Lagrangian yields,

2ℑ(Leff,E) = −
E2

96π
. (214)

This result agrees with Eq.(67) for a massless complex scalar particle.

Perturbative Discrepancies

The Schwinger-DeWitt expansion provides a covariant perturbative method of calculating the heat kernel as a
series in Schwinger proper time s. The perturbative result found in Eq.(214) matches exactly with the full
non-perturbative result in Eq.(67) in the massless limit. However, part of the information captured in the
full heat kernel has been discarded by the finite expansion. Subsequently, the imaginary part of the pertur-
bative effective action is insufficient to capture the full features of the theory. To show why this methodology
causes the discrepancies, consider a massless complex scalar in a constant magnetic background, described by
sQED. In the non-perturbative effective Lagrangian Eq.(61), an imaginary part does not exist due to the lack
of poles. Thus, a constant magnetic field cannot produce particles. The perturbative imaginary part of the
effective action for a constant magnetic field yields,

2ℑ(Leff,E) =
B2

96π
. (215)

The non-zero result indicates that in a constant magnetic field, particle production occurs. Wick rotating to
Lorentzian signature shows that the vacuum persistence,

|⟨out, 0|0, in⟩|2 = e−2ℑ(W ) = e
B2

96π > 1, (216)

9 This follows from the fact that in Schwarzschild, Rµν = 0 and R = 0. Then the Schwinger coefficient

a2(x) (Eq.(116) reduces to a2(x) =
12r2s
180r6

.
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violates unitarity as the probability of not transitioning is greater than unity. The physical implications of
this result are unclear. Therefore, the perturbative action is insufficient in capturing all the information of the
non-perturbative heat kernel. Moreover, it is unlikely that next-order terms will converge on the established
results.

These inconsistencies also extend to pair production in a gravitational field. In a recent study by Zhou et al.
[50], a non-perturbative calculation using the heat kernel is performed to find the correct imaginary part of
the effective action in (A)dS spacetime. They show that different expansions of the heat kernel predict differ-
ent imaginary contributions compared to the non-perturbative result.

Furthermore, the study by Wondrak el al. [6] claims that the approach does not require an event horizon as it
does not enter into the derivation besides the escape factor. Consequently, any gravitational field can produce
particles as long as Eq.(211) gives a nonzero result. However, this is contradictory as not all gravitational
fields produce particles, such as in AdS spacetime. Moreover, it has been established that the presence of a
global event horizon for a black hole is required for particle production to occur. Since the imaginary contri-
bution of the divergent Schwinger-DeWitt coefficient, a2(x), only probes the local geometry, it is non-sensitive
to global features like an event horizon. However, according to the Bogolubov and scattering approaches, the
event horizon is the working mechanism driving particle production.

A Heat Kernel Approach To Hawking Radiation in Schwarzschild Ge-
ometry

All methodologies of calculating the vacuum persistence in sQED are in agreement. This consistency sug-
gests that a similar underlying equivalence exists for Hawking radiation. Given that the Bogolubov and scat-
tering approaches for the Schwarzschild gravitational field are in agreement, it is reasonable to assume the
Schwinger approach will also predict the same result. Analogous to sQED, the effective action can be mapped
into a heat kernel-type integral. Combining Eq.(153) and Eq.(90), the effective Lagrangian reads,

Leff = i
κ

2π

∑
l,m

∫ ∞

µ

dω

2π

[
ln
(
Γ
(
1− iωκ−1

))
+ iωκ−1ln (−iω′)− ln

(
iπ
√
ωω′

)]
. (217)

Similarly to Eq.(105), the divergent terms are discarded, and only the gamma function contributes to the ef-
fective Lagrangian. For massless particles, the effective action becomes

Leff = i
κ

2π

∑
l,m

∫ ∞

0

dω

2π

[
ln
(
Γ
(
1− iωκ−1

))]
∼ i κ

2π

∑
l,m

∫ ∞

0

dω

2π

∫ ∞

0

dsM
sM

e−sM (1−iωκ−1)

1− e−sM
, (218)

where the former is written as a heat kernel-type integral [19]. Further decomposition into a summation may
provide insight into the eigenvalues of the wave equation in Schwarzschild geometry,

e−sM (1−iωκ−1)

1− e−sM

?
=

∞∑
n=0

e−sM (1+n−iωκ−1). (219)

Therefore, the supposed system’s eigenvalues are λ = 1 + n − iωκ−1, n ≥ 0. These supposed eigenvalues pro-
vide several insights into solving the Klein-Gordon equation for a Schwarzschild black hole with corresponding
boundary conditions. The dissipation through Hawking radiation follows from the imaginary part, −iωκ−1,
while the real part of the eigenvalues determines the pole structure. Moreover, the form of Eq. (217) does not
contain an imaginary contribution from the poles of ω-integral. Instead, the imaginary contribution follows
from the gamma function. Therefore,

ℑ(Leff ) = ℜ

 κ

2π

∑
l,m

∫ ∞

0

dω

2π

[
ln
(
Γ
(
1− iωκ−1

))]
=

1

2

 κ

2π

∑
l,m

∫ ∞

0

dω

2π

[
ln
(
Γ
(
1 + iωκ−1

)
Γ
(
1− iωκ−1

))]
=

κ

4π

∑
l,m

∫ ∞

0

dω

2π
ln

(
2πωκ−1e−2πωκ−1

1− e−2πωκ−1

)

= − κ

4π

∑
l,m

∫ ∞

0

dω

2π
ln
(
1− e−2πωκ−1

)
,

(220)
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where the latter equation has removed the divergencies in the term: ln
(
4πrsωe

−πωκ−1
)
, via some renormal-

ization prescription [25]. This method of calculating the imaginary part of the effective Lagrangian neglects
the use of poles.

The remaining challenge is to formulate the field equation with appropriate boundary conditions so that the
vacuum persistence matches the result in Eq.(158). Mirroring the scattering approach, the potential barrier
can be neglected by taking the near horizon limit of the field equation. Regardless of the coordinate system
used, the near horizon limit in Schwarzschild, Painlevé, and Eddington-Finkelstein coordinates all reduce to
the same field equation following Appendix D,[

d2

dx2
+
ω2r2s +

1
4

x2

]
ϕω(x) = 0, (221)

where x = r − rs. To emulate Hawking radiation, consider purely outgoing waves at the event horizon and in-
finity. Although the mode solutions are constrained to the near horizon limit, they may be extrapolated to be
valid at infinity because the potential barrier only influences the amplitude of the mode solutions. Therefore,
the boundary conditions read,

ϕω ∼

{
xiωrs , x→ 0,

eiωxxiωrs , x→∞.
(222)

Similar to sQED, the field equation is promoted to an eigenvalue problem: 2ϕω(x) = 0 → 2ϕωk(x) =
k2ϕωk(x). Promoting the field equation is a non-trivial operation because the eigenvalues change if done through-
out different stages of rewriting the field equation. Therefore, the promotion is done before any approxima-
tions or rewritings. The radial eigenvalue equation in x-coordinates reads,[

d2

dx2
+

(rs)
2

4(x+ rs)2x2
+ω2

(
(rs)

2

x2
+

2(rs)

x
+ 1

)
−
(rs
x

+ 1
)
µ2− l(l + 1)

x(x+ rs)

]
ϕωk(x) = k2

(
x+ rs
x

)
ϕωk(x). (223)

In the near horizon limit, for s-waves (l = 0) and massless limit µ = 0, the field equation up to order O
(
x0
)

reads, [
d2

dx2
+

4r2sω
2 + 1

4x2
+

4r2sω
2 − 1

2rsx
+

3

4r2s
+ ω2

]
ϕωk(x) = k2

(
x+ rs
x

)
ϕωk(x). (224)

This approximation is only valid in the near horizon limit, where the inverse square potential dominates. If
the eigenvalues satisfy the following conditions,

2ω2 − 1

2r2s
≪ k2 and

3

4r2s
+ ω2 ≪ k2 ,∀ {ω, rs} ≥ 0. (225)

The radial eigenvalue equation simplifies to,[
d2

dx2
+
ω2r2s +

1
4

x2

]
ϕωk(x) = k2

rs + x

x
ϕωk(x). (226)

The general mode solution to the radial eigenvalue equation is given by,

ϕωk(x) = c1M− 1
2krs,iωrs(2kx) + c2W− 1

2krs,iωrs(2kx) (227)

where M− 1
2krs,iωrs(2kx) and W− 1

2krs,iωrs(2kx) are the Whittaker functions [19]. These functions form a lin-
ear combination of outgoing and ingoing modes. The behaviour of the Whittaker functions at x = 0 is given
by the expansions,

M− 1
2krs,iωrs(2kx)

x→0∼
√
xxirsω, (228a)

W− 1
2krs,iωrs(2kx)

x→0∼
√
xxirsω

Γ
(
1
2 (krs − 2iωrs + 1)

) + √
xx−irsω

Γ
(
1
2 (krs + 2iωrs + 1)

) . (228b)

To satisfy the boundary condition at the event horizon in Eq.(222), the ingoing mode x−irsω must vanish.
This is achieved through the simple poles at z = −n, where n ∈ Z+

0 of the Gamma function, Γ(z) [18]. Conse-
quently,

1

Γ
(
1
2 (krs + 2irsω + 1)

) = 0, (229)
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is satisfied by the eigenvalues,
krs = −1− 2n− 2irsω, ∀n ∈ Z+

0 . (230)

Moreover, the ingoing modes at infinity must vanish to satisfy the boundary conditions at infinity in Eq.(222).
Expanding the Whittaker functions at radial infinity gives,

M− 1
2krs,iωrs(2kx)

x→∞∼ ekxx
krs
2

Γ
(
1
2 (krs + 2iωrs + 1)

) − e−kxx−
krs
2

Γ
(
1
2 (−krs + 2iωrs + 1)

) , (231a)

W− 1
2krs,iωrs(2kx)

x→∞∼ e−kxx−
krs
2 . (231b)

The mode solutions at infinity satisfy the boundary conditions for the eigenvalues given in Eq.(230). The ef-
fective action in terms of the eigenvalues k2 is given by [28],

W =
i

2
Tr
{
ln
(
k2
) }

= iTr
{
ln (k)

}
= iTr

{∫ ∞

0

ds

s
e−sk

}
. (232)

By rescaling and rotating to Lorentzian Schwinger proper time, s → isrs, the effective Lagrangian with eigen-
values k given by Eq.(230) reads,

Leff = i
κ

2π

∑
l,m

∫ ∞

0

ds

s

∫ ∞

0

dω

2π

∞∑
n=0

eis(1+2n+2iωrs) = − κ2

8π2

∑
l,m

∫ ∞

0

ds

s2
csc (s) . (233)

Which contains poles at s = πj for j = 1, 2, ... . The form of the effective Lagrangian is nearly identical to
the sQED effective Lagrangian for a constant electric field given in Eq.(65), with the electric field E replaced
by κ. Therefore, the role of the event horizon rs is analogous to the electric field E, which causes the particle
production. This implies that an event horizon is required for particle production to occur for a scalar field in
Schwarzschild geometry, not just a gravitational field. Furthermore, a similar analysis as in sQED shows that
the renormalized effective Lagrangian is given by,

Lren
eff = − κ2

8π2

∑
l,m

∫ ∞

0

ds

s3

[
s csc (s)− 1− s2

6

]
. (234)

The first renormalized term corresponds to the removal of the divergent vacuum energy of the system. Addi-
tionally, the second renormalized term corresponds to the renormalization of the gravitational constant. Ex-
tracting the imaginary part of the effective action gives,

2ℑ(Leff ) = 2π
κ2

8π

∑
l,m

∞∑
j=1

(−1)j+1

(πj)2
=
∑
l,m

κ2

48π
, (235)

which follows from the integration poles along the positive s-axis [11]. This result is in agreement with the
other approaches to Hawking radiation. The non-zero imaginary effective action indicates that a transition
exists between the Schwarzschild vacuum and the Unruh vacuum. The Unruh vacuum is associated with an
infalling observer at infinity, measuring particles coming from the black hole but not coming from infinity.

The derivation contains weak statements for which the method is valid. Firstly, at infinity, the Whittaker
functions with eigenvalues k become,

ϕωk = Ne2iωxxiωrse
1
rs

(1+2n)xx
1
2 (1+2n), (236)

where N is a normalization constant. For large x, the term e
1
rs

(1+2n)xx
1
2 (1+2n) blows up. The neglected po-

tential barrier may regulate this term as in the far horizon limit, the field equation yields mode solutions of
the form,

ϕω(x)
x→∞∼ 1

x
eiωxxiωrs . (237)

The latter two terms are equivalent to the first two terms in Eq.(236). Secondly, the assumption in Eq.(225)
is only satisfied for large n. However, from the scattering approach, it can be argued that the higher-order
terms O

(
x−1

)
in Eq.(224) only contribute to the greybody factor. Therefore, these terms are neglected to

isolate particle production originating from the event horizon. Nonetheless, including these higher-order per-
turbations may provide insight into the greybody factor near the horizon. Rewriting Eq.(224), the eigenvalue
equation is given by, [

d2

dx2
+

4r2sω
2 + 1

4x2

]
ϕωk(x) =

(
z2x+ w2rs

x

)
ϕωk(x), (238)
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where

w2 = k2 − 2ω2 +
1

2r2s
and z2 = k2 − ω2 − 3

4r2s
. (239)

Following the same procedure as before, the general mode solution is given by,

ϕωk(x) = c1M−w2

2z rs,iωrs
(2zx) + c2W−w2

2z rs,iωrs
(2zx). (240)

Furthermore, expanding the Whittaker functions at x = 0 gives,

M−w2

2z rs,iωrs
(2zx)

x→0∼
√
xxirsω (241a)

W−w2

2z rs,iωrs
(2zx)

x→0∼
√
xxirsω

Γ
(

1
2 + rsw2

2z − irsω
) +

√
xx−irsω

Γ
(

1
2 + rsw2

2z + irsω
) . (241b)

Then, the boundary conditions are satisfied for,

1

2
+
rsw

2

2z
+ irsω = −n. (242)

Substituting w and z into the condition and solving for the eigenvalues k gives,

knonrs = −
√√

(2n+ 2irsω + 1)2 (n2 + i(2n+ 1)rsω + n− 1) + 2i(2n+ 1)rsω + 2n(n+ 1), ∀n ∈ Z+
0 , (243)

which will be called the non-trivial eigenvalues. For large n, the non-trivial eigenvalues converge to Eq.(230),
as shown in Figures (19 and 20). How fast the eigenvalues converge depends on ω and rs. Specifically, when
1
rs
≥ ω, the non-trivial eigenvalues converge extremely fast, while for ω ≫ 1

rs
they converge slower. As a

result, the imaginary part of the effective action becomes Eq.(158).
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Figure 19: The real part of the non-trivial eigenval-
ues for different values of ω and rs = 1. The real
part of the non-trivial eigenvalues converges slower
for values ω ≫ 1

rs
. Moreover, for 1

rs
≥ ω, the non-

trivial eigenvalues converge extremely fast.
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Figure 20: The imaginary part of the eigenvalues for
different values of ω and rs = 1. The imaginary part
of the non-trivial eigenvalues converges slower for
values ω ≫ 1

rs
. Moreover, for 1

rs
≥ ω, the non-trivial

eigenvalues converge extremely fast.

Unfortunately, these non-trivial eigenvalues have no analytical solution to the functional determinant in Eq.(232).
Rewriting the non-trivial eigenvalues as,

knonrs = −1− 2n− 2irsω + fω(n), ∀n ∈ Z+
0 , (244)

to isolate the contribution of the potential barrier in the near horizon limit. The term fω(n) is the pertur-
bation to the eigenvalues in Eq.(230), which in the large n goes to zero, fω(n) → 0. Although the real part
of fω(n) adjusts the pole structure, its contribution can be treated as a perturbation to the original effective
Lagrangian given in Eq.(233). Since at ω ≤ 1

rs
, the perturbation fω(n) is essentially zero which reduces the
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effective Lagrangian to,

Leff = i
κ

2π

∑
l,m

∫ ∞

0

ds

s

(∫ 1
rs

0

dω

2π

∞∑
n=0

eis(1+2n+2iωrs) +

∫ ∞

1
rs

dω

2π

∞∑
n=0

e−isknon

)

=
κ2

8π2

∑
l,m

∫ ∞

0

ds

s2

((
e−2s − 1

)
csc (s) + s

∫ ∞

1
rs

dω

2π

∞∑
n=0

e−isknon

)

= − κ2

8π2

∑
l,m

∫ ∞

0

ds

s2

(
csc (s) + Lperturbation

eff

)
,

(245)

where

Lperturbation
eff =

κ2

8π2

∑
l,m

∫ ∞

0

ds

s2

(
e−2scsc (s) + s

∫ ∞

1
rs

dω

2π

∞∑
n=0

e−isknon

)
. (246)

The imaginary part of the first term of the perturbation of Eq.(246) yields,

2ℑ

 κ2

8π2

∑
l,m

∫ ∞

0

ds

s2
e−2scsc (s)

 = −2π κ2

8π2

∑
l,m

∞∑
j=1

(−1)j+1

(πj)2
e−2πj ≈ −0.0023

∑
l,m

κ2

48π
. (247)

Due to the small prefactor, its contribution to the imaginary part is neglectable. This behaviour aligns with
the fact that black holes primarily emit Hawking radiation with large wavelengths, as shown in the Bogol-
ubov approach. Furthermore, the perturbation must contain information about the greybody factor, where its
imaginary part reduces to the second term of Eq.(201). The perturbation contains only partial information
about the greybody factor, as higher-order terms were discarded and only s-waves were considered. Moreover,
it is unclear how the function fω(n) is related to the perturbation, and a more thorough analysis is required
to show its contribution to the imaginary part.
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Conclusion and Future Directions
The imaginary part of the effective Lagrangian in sQED for a constant electric field was calculated using the
heat kernel, Bogolubov and scattering approaches. Despite their distinct interpretation of how particle pro-
duction occurs, the three approaches yielded the same particle production rate. This equivalence may follow
from the spectral properties encoded within the operator, which links eigenvalues, Bogolubov coefficients and
scattering coefficients with particle production.

Black holes also exhibit particle production through Hawking radiation, which is thoroughly studied through
the scattering and Bogolubov approaches. A recent paper by Wondrak et al.[6] attempted to calculate the
imaginary part of the effective action for a scalar field in Schwarzschild geometry through a covariant pertur-
bative approach. However, further analysis showed that their results are contradictory as particle production
may occur in sQED for a constant magnetic field and AdS spacetime using their approach. These discrepan-
cies motivated this thesis to provide a novel heat kernel approach to Hawking radiation.

Using scattering theory, the inverse square potential was identified as the part that encodes the particle pro-
duction, while higher orders contributed to the greybody factor. Moreover, reverse engineering the existing
effective Lagrangians to a heat kernel-type integral provided an insight into the supposed eigenvalues of the
system. Assuming that only the inverse square potential contributes to particle production, the eigenvalues
of the radial field equation in the near horizon limit were calculated using boundary conditions that permit
only outgoing modes at the event horizon and infinity. Computing the imaginary part of the effective La-
grangian using these eigenvalues showed that all three approaches yielded the same result for a scalar field
in Schwarzschild geometry.

Including the higher order terms up to O
(
x0
)
into the eigenvalue equation gave non-trivial eigenvalues, which

converged for large n to Eq.(230). Analysing the non-trivial eigenvalues showed that its behaviour aligns with
the properties of small black holes, where the potential barrier is very weak. Consequently, the non-trivial
eigenvalues were rewritten as the original eigenvalues plus a perturbation, Eq.(244), under the assumption
that the perturbation only contains information that contributes to the greybody factor. These calculations
show that the event horizon is a necessary condition for black holes to produce Hawking radiation, not just
the presence of a gravitational field. The analogy with the electric field, shows that Hawking radiation can be
described similar to the Schwinger effect. It is the event horizon that exerts a non-local effect on the virtual
particles such that they separate and are emitted as Hawking radiation.

Further research could involve a more rigorous mathematical analysis to isolate the particle production and
greybody contributions. This includes calculating the perturbative Lagrangian term from the perturbative
eigenvalue term. Additionally, since the radial eigenvalue equation was restricted to s-waves, a logical new
avenue is to incorporate higher-order orbital moments into the calculation. It is also possible through Heun
functions to obtain a polynomial solution to the full radial eigenvalue equation. Moreover, to check the con-
sistency of this novel methodology, it will be intriguing to extend it to other spacetimes. Lastly, an improve-
ment on the covariant perturbative approach given by Wondrak et al. [6] can be done by including non-local
terms, which may offer an insight into how the presence of an event horizon causes particle production.
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Appendix A: Damour-Ruffini Method:
Analytical Continuation

The outgoing wave solution for the radial field equation in the near horizon limit reads,

Rout
I (t, r) = e−iωu = (r − rs)2iωrs e2iωre−iωv, (r > rs). (A1)

where
(r − rs)2iωrs = e2iωrs ln (r−rs) (A2)

. For r < rs, the argument of logarithm becomes negative. To analytically extend the wave inside the black
hole, r < rs, promote r − rs → r − rs − iϵ, where ϵ > 0. This gives,

ln (r − rs − iϵ) = ln |r − rs|+ iatan2(−ϵ, (r − rs)) (A3)

where

atan2(y, x) =



arctan y
x + π if x < 0 and y ≥ 0,

arctan y
x − π if x < 0 and y < 0,

π
2 if x = 0 and y > 0,

−π
2 if x = 0 and y < 0,

undefined if x = 0 and y = 0.

(A4)

Therefore, the analytical continuation of the wave such that it is well-defined inside the black hole gives,

Rout
II (t, r) = e2iωre−iωve2iωrs(ln (rs−r)−iπ) = Rout∗

II e2πωrs . (A5)
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Appendix B: Scattering Theory

Scattering and Reflection Coefficients

The Schrödinger equation allows for two different types of solutions, bound states and scattering states. The
former are states localized in some spacetime region within the turning points of a potential V (x). In con-
trast, scattering states are not bounded by a potential and may tunnel through it. Therefore,{

E < V (−∞) and V (∞), → Bound states

E > V (−∞) or V (∞), → Scattering states
(B1)

Consider a particle/wave propagating towards a potential V (x) from region I, with wavenumber k, as shown
in Figure (B1). The wave may come from the left or right side of the potential.

Figure B1: A schematic representation of wave scattering of a potential in region II, where V (x) ̸= 0. An
incoming wave from either region I or III, where V (x) = 0, is partially transmitted and reflected by the
potential V (x).

Firstly, consider the wave traversing from the left side, D = 0. When the wave encounters the potential, it
may be transmitted further into region III or reflected back into region I. The reflection and transmission
coefficients are respectively,

Rl =
|B|2

|A|2
=

1

|α|2
Tl =

|C|2

|A|2
=
|β|2

|α|2
(B2)

Due to probability conservation, the transmission and reflection amplitude must be unity, T + R = 1. Fol-
lowing [51], these coefficients are also connected to the Bogolubov coefficients α and β by flux conservation.
Similarly, a wave scattering from the right has reflection and transmission coefficients,

Rr =
|C|2

|D|2
=
|β|2

|α|2
Tr =

|B|2

|D|2
=

1

|α|2
(B3)

These coefficients are functions of k and are dependent on the type of potential. Classically speaking, a par-
ticle with E < V (x) may never tunnel through the potential. However, quantum mechanically, there exists a
nonzero probability of finding the particle on the other side of the potential even if E < V (x).
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Appendix C: The Confluent Heun Equation
Consider a second-order linear homogeneous equation,[

d2

dz2
+ p(z)

d

dz
+ q(z)

]
y(z) = 0 (C1)

with coefficient functions

p(z) = 4p+
γ

z
+

δ

z − 1
(C2a)

q(z) =
σ

z
+

4pα− σ
z − 1

(C2b)

This configuration of p(z) and q(z) represents the non-symmetrical canonical form of the CHE. There are two
regular singularities at zi = 1, 0, i = 1, 2 and an irregular singularity at z = ∞. For each regular singularity,
there exist two linearly independent solutions yim(z), m = 1, 2 that are only convergent around a circumfer-
ence at that singular point. The radius of convergence is the distance between regular points. The solutions
can be represented as a power series called Frobenius solutions,

yim(z) = (z − zi)ρm(zi)
∞∑

n=0

aimn(z − zi)n (C3)

where ρm(zi) represents the characteristic exponents at singular point zi. The characteristic exponents ρm(zi)
are the roots of the indicial equation,

ρ2 + (A− 1) ρ+B = 0 (C4)

where,

lim
z→zi

(z − zi) p(z) = A (C5a)

lim
z→zi

(z − zi)2 q(z) = B. (C5b)

The s-rank of any regular singular point is defined as 1. The irregular singularity at z = ∞ can also be ex-
panded as a power series known as Thomé-solutions,

y∞m = eκmzr

z−τm

∞∑
n=0

a∞mnz
−rn (C6)

where κm,τm,m = 1, 2 are the characteristic exponents of the second and first order, respectively, at its irregu-
lar singular point. The Poincare rank r is given by,

r = 1 +max

(
K1,

K2

2

)
(C7)

where q(z) = O(zK1) and p(z) = O(zK2) as z → ∞. The characteristic exponents are determined by match-
ing them in a way that eliminates the leading order behaviour as z → ∞. The coefficients of Frobenius-and-
Thomé solutions are determined by substituting them into Eq.(C1) and solving the recursive relation using
appropriate boundary conditions. The singular point z = ∞ has s-rank 2 for the non-symmetrical canoni-
cal form. When mapping the wave equations to the parameters of the CHE, the length of the equations will
become inconvenient. A more convenient convention form of the CHE is,

p(z) = a+
b+ 1

z
+
c+ 1

z − 1
(C8a)

q(z) =
µ

z
+

ν

z − 1
(C8b)

with

µ =
1

2
(a− b− c− 2e+ ab− bc)

ν =
1

2
(a+ b+ c+ 2d+ 2e+ ac+ bc)

(C9)

The parameters p, α, γ, δ, σ are related to the new parameterization by

a = 4p b = γ − 1 c = δ − 1

d = 4pα− 2p(γ + δ) e = 2pγ − σ +
1− γδ

2

(C10)
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Appendix C: The Confluent Heun Equation

This type of parameterization will be the standard for this thesis. A useful tool to describe the solutions of a
differential equation is the generalized Riemann scheme (GRS),

s-rank→
Location of singular points→

First order characteristic exponent→
First order characteristic exponent→

Second order characteristic exponent→
Second order characteristic exponent→



1 1 2

0 1 ∞
0 0 µ+ν

a ; z

−b −c b+ c− µ+ν
a + 2

0

−a


(C11)

which contains the necessary information to construct the Frobenius-and-Thomé solutions at corresponding
singular points. Another important representation of the CHE is the normal form,[

d2

dz2
+Q(z)

]
f(z) = 0. (C12)

where Q(z) is a potential term. To determine Q(z), consider decomposing the function y(z) = f(z)g(z), such
that the differential equation, Eq.(C1), has Schrödinger-form,[

d2

dz2
+

1

f(z)

∂2f(z)

∂z2
+
p(z)

f(z)

∂f(z)

∂z
+ q(z)

]
g(z) = 0, (C13)

with condition

2
∂f(z)

∂z
+ p(z)f(z) = 0. (C14)

The general solution is then
f(z) = e−

1
2

∫
p(z)dz. (C15)

The normal form of the CHE in terms of p(z) and q(z) reads,[
d2

dz2
−
(
1

2

∂p(z)

∂z
+

1

4
p(z)2

)
+ q(z)

]
g(z) = 0. (C16)

Transformations

In seeking all potential solutions to the CHE, it is imperative to ascertain transformations that conserve the
original form. These transformations are instrumental in uncovering all viable solutions. Firstly, consider an
s-homotopic transformation y(z)→ w(z):

y(z) = w(z)eµ0z
2∏
i

(z − zi)µi (C17)

then the coefficients of Eq.(C1) read,

p(z) = a+ 2µ0 +
1 + b+ 2µ2

z
+

1 + c+ 2µ1

z − 1
(C18a)

q(z) = µ0(µ0 + a) +
µ1 (a+ b+ 2µ2 + 1) + µ0 (c+ 2µ1 + 1) + (c+ 1)µ2 + ν

x− 1
(C18b)

+
µ2(a− c− 1) + µ0 (b+ 2µ2 + 1)− µ1 (b+ 2µ2 + 1) + µ

x
+
bµ2 + µ2

2

x2
+
cµ1 + µ2

1

(x− 1)2
(C18c)

Any combination of the following variables conserves the original form of the coefficient q(z),

µ0 = −a µ1 = −c µ2 = −b
µ0 = 0 µ1 = 0 µ2 = 0

(C19)

Another important transformation is the linear transformation interchanging the singular points: z → 1 −
z. Any combination of the transformations provides a solution to the CHE, yielding 16 solutions, which are
given in Table C1.
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Table C1: All possible combinations of transformations that conserve the form of the CHE.

µ0 µ1 µ2 a b c d e
0 0 0 a b c d e
−a 0 0 −a b c d e
−a 0 −b −a −b c d e
−a −c 0 −a b −c d e
−a −c −b −a −b −c d e
0 −c 0 a b −c d e
0 −c −b a −b −c d e
0 0 −b a −b c d e

(a) All combinations of s-homotropic transformations.

µ0 µ1 µ2 a b c d e
0 0 0 −a c b −d e+ d
−a 0 0 a c b −d e+ d
−a 0 −b a c −b −d e+ d
−a −c 0 a −c b −d e+ d
−a −c −b a −c −b −d e+ d
0 −c 0 −a −c b −d e+ d
0 −c −b −a −c −b −d e+ d
0 0 −b −a c −b −d e+ d

(b) All combinations of s-homotropic transformations with
the interchanging of z → 1− z.

Heun functions

Define two basis solutions to the CHE, Hc(a) (a, b, c, d, e; z) and Hc(r) (a, b, c, d, e; z). The former solution is
the angular solution defined as the Frobenius solution at regular singular point z = 0:

Hc(a) (a, b, c, d, e; z) =

∞∑
n=0

anz
n (C20)

constrained to the domain |z| < 1 with condition,

Hc(a) (a, b, c, d, e; 0) = 1 (C21)

Substituting the solution into the CHE gives a three-term recurrence relation for an,

f (a)n an+1 + g(a)n an + h(a)n an−1

a0 = 1, an = 0 ∀n < 0
(C22)

where

f (a)n = n(n− a+ b+ c+ 1)− µ (C23a)

g(a)n = −(n+ 1)(n+ b+ 1) (C23b)

h(a)n = a

(
n+

µ+ ν

a
− 1

)
(C23c)

The solution is convergent and well-defined for |z| < 1 as

an
an+1

= 1 (C24)

The latter solution is the radial solution defined as the Thomé solution at the irregular singular point z =∞:

Hc(r) (a, b, c, d, e; z) = z−
µ+ν
a

∞∑
n=0

a∞n z
−n (C25)

at z =∞ with the condition,

lim
|z|→∞

z
µ+ν
a Hc(r) (a, b, c, d, e; z) = 1 (C26)

f (r)n a∞n+1 + g(r)n a∞n + h(r)n a∞n−1 = 0

a∞−1 = 0, a∞0 = 1
(C27)

g(r)n =

(
µ+ ν

a
+ n

)(
µ+ ν

a
+ n+ a− b− c− 1

)
− µ

f (r)n = −a(n+ 1)

h(r)n = −
(
n+

µ+ ν

a
− 1

)(
µ+ ν

a
+ n− b− 1

)
.

(C28)

Combining all possible transformations, a total of 32 solutions exist for the CHE.
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Appendix D:
This appendix will outline the massive scalar field equations of different coordinate systems for a Schwarzschild
background. In the near horizon limit, the field equations in Painlevé, Eddington-Finkelstein and Schwarzschild
coordinates coincide. Moreover, these field equations must be promoted to an eigenvalue problem such that
the effective action can be computed using the heat kernel. Promoting the scalar field equation in a gravita-
tional background, Eq. (69), to an eigenvalue equation,[

2− µ2 − ξR
]
ϕk(x) = k2ϕk(x) (D1)

where ϕk(x) represents the eigenmodes of the field equation with corresponding eigenvalues k2.

Schwarzschild Field Equation

In Schwarzschild coordinates, Eq.(118), the eigenvalue equation reads,[
1

r2
∂

∂r

(
r2
(
1− rs

r

) ∂

∂r

)
−
(
1− rs

r

)−1 ∂2

∂t2
+∆− µ2

]
ϕωlmk(t, r, θ, φ) = k2ϕωlmk(t, r, θ, φ) (D2)

with

∆ =
1

r2 sin(θ)

[
∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

sin(θ)

∂2

∂φ2

]
. (D3)

The mode solutions can be decomposed into,

ϕωlmk(t, r, θ, φ) =

∫
dω

∞∑
l=0

l∑
m=−l

Ylm(θ, φ)e−iωtψωlmk(r) (D4)

Dividing both sides by
(
1− rs

r

)−1
, then the radial eigenvalue equation reads,[

∂2

∂r2
+

(
2r − rs
r2 − rrs

)
∂

∂r
+

r2ω2

(r − rs)2
−
[
µ2 +

l(l + 1)

r2

]
r

r − rs

]
ψωlmk(r) =

r

r − rs
k2ψωlmk(r) (D5)

Using Eq.(C16) Rewriting in Schrödinger-form using Eq.(C16) and decomposing the radial part into ψωlmk(r) =
f(r)Φωlmk(r) gives[

∂2

∂r2
+

r2s
4r2(r − rs)2

+
r2ω2

(r − rs)2
−
[
µ2 +

l(l + 1)

r2

]
r

r − rs

]
Φωlmk(r) =

r

r − rs
k2Φωlmk(r) (D6)

where f(r) =
(
r2 − rrs

)− 1
2 . Substitute r = x+ rs to take the near horizon and expand near x = 0 up to order

O
(
x0
)
gives,[

∂2

∂x2
+

1
4 + ω2r2s

x2
−
l(l + 1) + µ2r2s − 2ω2r2s +

1
2

xrs
+ ω2 − µ2 +

3

4r2s
+
l(l + 1)

r2s

]
Φωlmk(x) =

x+ rs
x

k2Φωlmk(x)

(D7)

Eddington-Finkelstein Field Equation

In outgoing Eddington-Finkelstein coordinates, Eq.(129), the eigenvalues equation reads,[
1

r2
∂

∂r

(
r2
(
1− rs

r

) ∂

∂r

)
− 1

r2
∂

∂u

(
r2
∂

∂r

)
− 1

r2
∂

∂r

(
r2

∂

∂u

)
+∆− µ2

]
ϕωlmk(u, r, θ, φ) = k2ϕωlmk(u, r, θ, φ)

(D8)
where ∆ is given in Eq.(D3). The mode solutions can be decomposed into,

ϕωlmk(u, r, θ, φ) =

∫
dω

∞∑
l=0

l∑
m=−l

Ylm(θ, φ)e−iωuψωlmk(r) (D9)

Dividing both sides by
(
1− rs

r

)−1
, then the radial eigenvalue equation reads,[

∂2

∂r2
+

(
2r − rs + 2iωr2

r2 − rrs

)
∂

∂r
+

2iω

r − rs
−
[
µ2 +

l(l + 1)

r2

]
r

r − rs

]
ψωlmk(r) =

r

r − rs
k2ψωlmk(r). (D10)

Moreover, rewriting in Schrodinger-form reduces to Eq.(D6) with f(r) =
(
r2 − rrs

)− 1
2 e−irω (r − rs)−iωrs .
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