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Abstract

Synthetic data are data that have been generated using some model or algorithm to mimic real

data. Synthetic data serves as an alternative to real data, often with the aim of preserving the

privacy of the entities represented in the real data. Many methods exist for synthetic data gener-

ation, with deep learning models emerging as a particularly popular tool. However, synthesizing

economic and financial datasets presents unique challenges, in that they often have many missing

values, are zero-inflated and tend to have logical and mathematical restrictions (e.g. X+Y = Z).

Therefore, CBS has designed a non-parametric method to synthesize datasets of this nature that

preserves these properties. The method designed implements a simple two-step procedure that

uses inverse transform sampling (ITS) for numeric variables and sampling with replacement for

categorical or binary variables, followed by a rank-matching procedure. The method is easily

implemented in R using the synthesizer package.

This thesis examines the literature on synthetic data and implements five key metrics to

evaluate the data synthesized using the synthesizer method. The methods implemented are

the propensity mean squared error (pMSE), comparisons of the percentages of zero values and

the percentages of missing values in the original and synthetic data, comparisons of F1 scores

using the train synthetic test real (TSTR) approach, and ratios of the sum of variables to their

total. Results for all datasets simulated using synthesizer are compared to those simulated

using the non-parametric synthpop method in R. Non-parametric synthpop is a synthetic data

generation (SDG) method that has outscored other SDG methods in previous studies.

The methods are implemented on three data types: multivariate normal simulated data,

zero-inflated log-normal simulated data, and real data. The simulation studies are designed to

consider varied levels of separation between groups in the data, differing strengths of correlations

among variables, and various ratios of records to variables.

The results show that synthesizer is good at replicating the properties of economic datasets,

i.e. missing values, zero-inflation and mathematical restrictions. However, synthpop outperforms

synthesizer in terms of distributional similarity to the original data in settings there are two

distinct groups in the data and when variables are highly correlated. While synthesizer shows

promise as a SDG method, further research is needed.
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Chapter 1

Introduction

The increased availability of and access to data in today’s data-driven society has led to increas-

ing concerns regarding privacy and confidentiality issues. This has, in part, resulted in increased

apprehension regarding the trade-off between the benefits of extensive data access and the possi-

ble harms that result from the misuse of poorly protected data [1]. As such, National Statistics

Institutes (NSIs) globally have grappled with the balance between releasing sufficient informa-

tion to users and safeguarding against disclosing specific record details within micro-data sets

(such as those tied to individuals). This challenge has intensified in recent years, with mounting

demands for more detailed and expedited data releases [2].

As the National Statistics Institute (NSI) of the Netherlands, Statistics Netherlands (CBS)

serves as the sole authority of official statistical data in the country. In this capacity, CBS

collects data from citizens and businesses via direct observations, or by accessing government-

held administrative data. This grants CBS a substantial repository of individual-level data, that

is of interest to researchers beyond its standard statistical program. This data includes datasets

featuring economic and financial information.

However, the Statistics Netherlands Acts prohibits CBS from disclosing any information

that may be identifiable at an individual level [3]. Section 37 of the Statistics Netherlands Act

explicitly states that data “shall only be published in such a way that no recognisable data can

be derived from them about an individual person, household, company or institution, unless, in

the case of data relating to a company or institution, there are good reasons to assume that the

company or institution concerned will not have any objections to the publication” [4].

Traditionally, NSIs such as CBS have mitigated these risks by publicly releasing only tabu-

lated aggregates of the underlying micro-datasets or by granting certain users access to specific

micro-data in secure environments. However, these methods have limitations, and may not al-

ways satisfy users’ information needs. Further, in cases where access is granted, stringent and

time-consuming measures are required to manage it.

Synthetic data refers to data that have been artificially generated by some model aimed

at mimicking real data. As such, synthetic data, when used responsibly, facilitates the use of

datasets where the privacy of the data needs to be protected, and in instances of incomplete,

sparse or biased data. Oftentimes, synthetic data is created to replace real data since synthetic
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data protects sensitive information present in real datasets by providing realistic alternatives that

meet analytical needs while, significantly reducing the risk of disclosing details from the original

data [2]. However, synthetic data also has applications in many other realms, for example, in

the verification and validation of machine-learning pipelines [5]. The application of synthetic

data thus emerges as an alternative for NSIs in managing data releases [2]. Therefore, CBS is

interested in generating synthetic data that may be used by researchers and possibly individuals

in the wider public.

Various approaches exist for synthetic data generation (SDG). However, synthesizing datasets

containing economic and financial information about enterprises presents unique challenges.

These datasets often feature variables with zero-inflated distributions that are highly skewed

individually, yet exhibit strong linear correlations. This zero inflation arises because question-

naires sent to businesses are often extensive and may contain many categories that do not apply to

various entities. These categories are then assigned zero values, leading to zero-inflated datasets.

Additionally, these datasets are created based on surveys completed by individual entities and

may also be poorly completed at times. Therefore, these datasets also often have many missing

values. Moreover, these datasets must adhere to logical and mathematical rules governing the

allowable combinations of variable values. For example, a dataset may contain the variables,

Cost (C), Profit (P ) and Turnover (T ), where the following relationship should hold for these

variables: C + P = T . Traditional methods have proven inadequate for synthesizing datasets of

such a complex nature.

Statistics Netherlands (CBS) has developed a non-parametric method for synthesizing eco-

nomic and financial data to address these challenges. The method was originally used to generate

data for testing imputation methods [6] and has since been adapted for synthetic data generation.

The proposed method can be implemented directly in R using the newly created synthesizer

package [7]. The synthesizer package combines inverse transform sampling from the empirical

quantile functions for each numeric variable and sampling with replacement for each binary or

categorical variable with copying the rank order structure from the original dataset.

While synthesizer has proven useful for creating datasets to test new methodologies, such

as imputation [6] and preliminary analyses of synthesizer have shown promising results in the

context of synthesizing data with a relatively small number of variables, the method has not yet

been extensively tested. Thus, further research is necessary, which is the aim of this project.

In order to effectively evaluate the synthesizer package approach, the primary aims of this

thesis project are three-fold:

RQ 1 To establish a framework to assess the quality of synthetic data by defining and selecting

a comprehensive set of robust metrics that measure the quality of synthetic data.

RQ 2 To evaluate the performance of the synthesizer package against the framework of quality

measures. Specifically, this thesis project seeks to assess the package’s applicability across

different use cases, identify the circumstances under which it performs best, determine the
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conditions under which it may fail, and assess the quality of the synthetic data it produces.

RQ 3 To compare the synthesizer package with the established synthetic data generation (SDG)

method synthpop in R. Non-parametric synthpop is well-known SDG method and has

outperformed other SDG packages in various analyses [8], making it a suitable benchmark

for comparison with synthesizer.

The remainder of this thesis report is structured as follows. Background information about

synthetic data generation methods and the synthesizer method is provided in chapter 2. The

results of the first aim of this thesis: the proposed framework for assessing the quality of synthetic

data are described in chapter 3. An overview of the methods implemented to evaluate the

synthesizer package is given in chapter 4. The results pertaining to the performance of the

synthesizer package against the defined quality framework are presented in chapter 5. Finally,

chapter 6 discusses the results of the previous chapter and gives recommendations for future

studies.
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Chapter 2

Synthetic Data Generation

(SDG) Methods

Synthetic data refers to data that have been artificially generated data using some mathematical

model or algorithm [5]. Models used for synthetic data generation are predominantly trained

to replicate the characteristics and structure of the original data, such that the synthetic data

retains similar statistical properties to the original data [9]. Although synthetic data has gained

popularity in recent years, the concept of releasing synthetic data as opposed to real data has

been around for some time [1]. In his 1993 discussion on statistical disclosure limitation, Donald

B. Rubin first proposed the release of synthetic micro-data created using multiple imputations

[10]. Since then, the role of synthetic data has grown across various applications. For example,

synthetic data can be used in a variety of different fields, from the development of artificial

intelligence (AI) models, to software demonstrations [9].

To support these varied applications, synthetic data is typically classified into two main types:

fully synthetic and partially synthetic. In a fully synthetic dataset, all the variables in the data

are synthesized. Contrarily, in a partially synthetic dataset, only variables that are confidential

and carry a high risk of disclosure are synthesized. For example, datasets where some of the

information is already available to the public from other databases or where details are available

from public documents such as incorporation statements of accounts could be thought to have a

high disclosure risk as variables in the data could be linked to this publicly available information

[11]. The variables that are not publicly available would thus need to be synthesized, while the

other variables would remain unchanged. The synthesizer synthetic data generation (SDG)

package evaluated in this thesis project synthesizes fully synthetic data.

2.1 Types of Synthetic Data Generation (SDG) Methods

Given the growing popularity and use of synthetic data, numerous approaches have been devel-

oped for generating synthetic data. As a result, many different approaches exist for synthesizing
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data across various settings today.

Artificial Intelligence (AI) is at the forefront of synthetic data generation (SDG) methods.

Many SDG methods use machine learning or deep learning algorithms to synthesize data. Ma-

chine learning algorithms generate predictions and recommendations by learning patterns from

the data instead of relying on explicit programming instructions. As a result, machine learning

algorithms are flexible and adaptable to new data, allowing them to improve as they process

new or additional data. Deep learning is a more sophisticated form of machine learning that is

particularly effective at processing a broader range of data types, including text and unstruc-

tured data like images. Deep learning methods rely on the use of neural networks. These neural

networks are inspired by the way neurons interact in the human brain, ingesting and processing

data through multiple layers of neurons. These neuron layers are able to recognize increasingly

complex features of the data. Deep learning can, therefore, yield more precise results than tradi-

tional machine learning. However, AI models that rely on neural networks require large amounts

of data to train. [12]

Machine learning models such as classification and regression trees (CART) are common

methods for synthesizing data. Deep learning methods such as Variational AutoEncoders [13]

(VAEs), Generative adversarial networks [14] (GANs), auto-regressive models and Synthetic

Minority Oversampling Technique (SMOTE) methods have also proven to be promising SDG

techniques [2].

While these SDG methods have been useful in various applications, many of them are rather

complex to implement and may require intensive computational power. Further, these methods

may not accurately reflect the relationships or dependencies present in economic and financial

data. In contrast, the synthesizer package [7] is straightforward to implement and is specifically

designed to accommodate the structural complexities of economic datasets. Moreover, contrarily

to deep learning methods the synthesizer package requires only moderate amounts of data.

Typical economic datasets result from surveys across various economic sectors, thus the number

of records in these datasets typically varies from a few hundred to a few thousand.

2.2 Proposed Synthetic Data Generation (SDG) Method:

synthesizer

The synthesizer package [7] was developed at Statistics Netherlands (CBS). The method was

first used to generate data for testing imputation methods [6], and has since been adapted

for synthetic data generation due to a lack of efficient methods for synthesizing financial and

economic datasets. These datasets often present unique challenges, as they feature variables

with zero-inflated distributions that are highly skewed individually yet exhibit strong linear

correlations. Additionally, these datasets contain logical and mathematical rules governing the

allowable combinations of variable values. This method is therefore designed to conserve several
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key data properties typical of datasets containing economic and financial information, namely

right-skewed distributions, zero-inflated distributions, linear inequalities, linear restrictions and

linear correlations [6].

2.2.1 The synthesizer Algorithm

The synthesizer package implements a non-parametric approach to generating fully synthetic

data aimed at overcoming the aforementioned challenges. The method relies on inverse transform

sampling for numeric variables and sampling with replacement for binary or categorical variables,

followed by a rank-matching procedure. Inverse transform sampling (ITS) is a sampling technique

often used for simulation and as a random number generator. ITS can be used in any setting

where the inverse of the cumulative density function (CDF) of a distribution can be calculated

[15]. The method implemented in the synthesizer packaged is outlined in Algorithm 1.
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Algorithm 1 synthesizerAlgorithm for Synthetic Data Generation

Input: Original dataset X with variables X1, X2, . . . , Xp and n records

Output: Synthetic dataset with m records

Step 1: For each variable Xj :

1.1. If Xj is numeric:

1.1.1. Estimate the Empirical Cumulative Distribution Function (eCDF):

Sort the data points of Xj (denoted x1, x2, . . . , xn), where missing values are sorted to

the end. Compute the eCDF FeCDF(xi) =
i

(n+1) for each sorted value xi, where i is the

index of xi after sorting and n is the number of records. Use the observed minimum and

maximum values of Xj as the minimum and maximum of the new synthesized variable.

Linearly interpolate between the sorted values xi based on their eCDF values to obtain

the inverse eCDF function F−1
j (p), where p ∈

(
1

(n+1) ,
n

(n+1)

)
.

1.1.2. Generate Synthetic Samples:

For each synthetic sample, generate a random value U ∼ Uniform
(

1
(n+1) ,

n
(n+1)

)
.Use the

inverse eCDF to determine the synthetic data point: x′ = F−1
Xj

(U). Repeat this process

n times to generate n synthetic data points.

1.2. Else If Xj is categorical or logical:

Sample from n values from Xj with replacement to get synthetic sample x′.

Step 2: For each synthetic variable X ′
j, apply rank matching:

Rearrange each synthetic variable to ensure rank order matches the original dataset’s

rank order. For categorical and logical variables, the ranks are determined by their

alphabetic order (lexicographical ordering).

Note: To synthesize datasets of different sizes (i.e. m ̸= n)

• If m > n: Create ⌈m/n⌉ synthetic datasets, each of size n. Combine these datasets and

sample m records uniformly without replacement from the combined synthesized data.

• If m < n: Sample m records uniformly without replacement from the synthesized dataset

of size n
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Figure 1 and Figure 2 visualise step 1 (for the case of numeric variables) and step 2 of

the synthesizer algorithm, respectively. Note: these figures were created for demonstration

purposes only and were not created using real data.

Figure 1: A series of plots demonstrating the process of inverse transform sampling (ITS). ITS

is the first step in the synthesizer algorithm and is implemented for each numeric variable.

Figure 2: Example of Rank Matching Procedure used in synthesizer.
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2.2.2 Expected Properties of the sythesizer Algorithm

Though relatively new, synthesizer implements an easy-to-understand method in a simple

fashion. It is expected that the rank matching procedure in the algorithm will help to retain

correlations between variables, and therefore the synthetic data will have similar overall distri-

butional properties to the original data. Further, if there is no correlation in the original data,

the expectation is that this procedure will not introduce it. Another expectation is that be-

cause of the rank-matching procedure, certain relationships in the data, for example, additive

relationships such as X + Y = Z, will be replicated to some extent.

On the contrary, it is expected that the effect of rank-matching probably depends on the

strength and form of the correlations and the number of variables involved. It is also still unclear

how well linear and non-linear relations, as well as interactions, will be upheld by the method.

One of the aims of this thesis project is to test these expectations. This will give insight

into the settings in which the method works well, as well as the situations in which it may yield

unreliable results.

2.3 Benchmark Synthetic Data Generation (SDG)Method:

Non-parametric synthpop

The synthpop package is a commonly used synthetic data generation (SDG) package and has

outperformed its counterparts in literature [8]. Further, the package is intended for generating

fully synthetic data. Thus, it will serve as a good baseline to compare synthesizer to.

When using the synthpop package, the user can decide between parametric and non-parametric

methods. For the purpose of this thesis project, the non-parametric synthpop will be imple-

mented, since it is the version of the package that performed best in the evaluation by Dankar

et. al (2022) [8]. Additionally, since the synthesizer package also implements a non-parametric

method, using the non-parametric synthpop package will allow for a more fair comparison.

The default non-parametric synthpop package uses classification and regression trees (CART)

for data synthesis, implemented through the rpart() function from the rpart package [16]. The

synthesis process begins by randomly sampling the first variable from the observed data, selecting

a subset of the original values without considering relationships with other variables. Next, the

second variable is generated using a CART model trained on the observed data, where the first

variable serves as a predictor and the second variable as the target. The synthetic version of

the first variable is then used to predict synthetic values for the second variable by sampling

from the terminal nodes of the CART model. This method is repeated for the third variable,

utilizing the first and second variables as predictors. The process continues iteratively, with

each step incorporating additional predictors, until all variables are synthesized. For the final

variable, all preceding variables are used as predictors. This sequential approach ensures that
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the relationships in the original data are largely maintained in the synthetic dataset. [17]

It is worth noting that the synthpop package has many options. It’s main function comes

with 22 settings, in addition to the input data and output size. For example, the visit sequence

of the variables can be altered.
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Chapter 3

Quality of Synthetic Data

For synthetic data to be an effective alternative to real data, it is important for synthetic data

to be of good quality. The quality of synthetic data is multi-faceted and should take various

aspects of the synthesized data into account. Specifically, the quality of synthetic data is not

only determined by how similar the synthetic data is to the real data but also by how useful it

is in the setting it was intended for, as well as by how well it holds up with regard to issues such

as privacy and confidentiality.

There have been methods designed in literature to calculate a total quality score. These

approaches focus on combining various individual metrics into a single comprehensive measure

to evaluate synthetic data and compare synthetic different generation methods. For instance,

Brenninkmeijer introduce the Similarity Score (SS), while Chundawat et al. (2024) propose

TabSynDex [18]. While these aggregated metrics provide a summary assessment of synthetic

data quality, they sacrifice detailed insights into different facets of quality. Thus, most of the

literature avoids using such metrics and continues to examine the quality of synthetic data

through individual metrics that measure various aspects of quality, such as the distributional

similarity between the original and synthetic data, the usefulness of the synthetic data in specific

settings, and confidentiality. In this thesis project, individual measures will be prioritized to

capture the distinct aspects of synthetic data quality comprehensively, with respect to RQ 1.

The literature emphasizes evaluating the usefulness of synthetic data when assessing synthetic

data quality. Synthetic data is considered useful when inferences drawn from both original and

synthetic datasets agree [19]. The usefulness of synthetic data can be evaluated in different

ways. More specifically, the usefulness of synthetic data can be evaluated with respect to the

distributional similarity between real and synthetic data [20] or with respect to a particular,

narrowly-defined, purpose or application [21]. Some literature refers to both of these measures

as utility measures. More specifically, these utility measures are referred to as general utility

when looking at the distributional similarity, and as specific utility considering specific use cases.

On the contrary, some of the literature makes the distinction between fidelity and utility. This

is because measuring the statistical similarity of synthetic and real data does not technically give

insight into the ‘usefulness’ of the data, as ‘usefulness’ depends on the intended use-case of the

synthetic data, as is described by the specific utility of the data. In this thesis report, the term

13



fidelity [22] is used when describing and measuring the distributional similarity of datasets and

specific utility when assessing the usefulness of the synthetic data in more specific settings.

It is also worth noting that data that is synthetic is not automatically always privacy-

preserving, and may still face various disclosure risks. A disclosure refers to an instance wherein

an individual or an enterprise is able to discern or learn something new about another individual

or organization from released data [23]. A disclosure risk thus refers to the risk of identification

or of uncovering private information and is therefore also a point of attention when assessing the

quality of synthetic data.

Another concept related to the quality of synthetic data in the literature is information loss.

Information loss examines the extent to which the synthesized data differs from the original data

[24], such that there is little information loss if the structure of the two datasets is very similar.

Literature oftentimes does not distinguish between information loss and fidelity (general utility).

However, Taub et al. (2020) argue that the two concepts differ. This is because information

losses in some variables may not necessarily impact the overall conclusions drawn from the data.

Thus, the fidelity of the synthetic data may be preserved even when information is lost [25].

As the decisions people may want to make from the synthetic data are not predetermined, this

thesis project will examine the ‘usefulness’ of synthetic data in terms that can be quantified, i.e.

fidelity and specific utility. Further, due to time constraints, the privacy of the data synthesized

will not be evaluated.

3.1 Fidelity

Although synthetic data is never intended to be an exact replica of the original data, it is

important for it to exhibit distributional similarity to the original data [19]. A greater degree

of distributional similarity between the original and synthetic data allows for more accurate

statistical inferences to be drawn. The subsections below review some of the most commonly

used metrics for assessing synthetic data fidelity and outline the metrics to be implemented in

this thesis project.

3.1.1 Discriminant Based Metrics

Discriminant-based metrics, also called distinguishability metrics, assess the fidelity of synthetic

data by measuring the extent to which it is distinguishable from the original data [8]. The main

idea behind such metrics is thus to see how well some model can distinguish between real and

synthetic data. Ideally, synthetic data should be similar to the real data, so the goal would be for

a model to do a poor job of distinguishing between the two. Popular examples of such metrics

in the literature include the propensity score measure [26], the propensity score mean-squared

error (pMSE) ratio [27], and the prediction MSE [28].

Upon evaluating various distributional measures of general utility using both simulated and
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genuine data, Woo et. al (2009) found that propensity score methods are the most promising

for estimating fidelity [26]. Since then, propensity score based measures, more specifically the

pMSE have become famous for evaluating synthetic data in the literature, given its ease of

use and advantages such as its ability to handle mixed-data types [19]. This thesis project

will therefore use the propensity score mean-squared error (pMSE) to assess the distributional

similarity between the original and the synthesized data.

The propensity-score algorithm starts by combining the original and synthetic data sets and

assigning an indicatorX to each record in the combined data, such that all rows of the synthesized

data are assigned a value of 1 (X = 1) and all the rows of the original data are assigned a value

of 0 (X = 0). The propensity score can then be thought of as the probability that a record in

the combined data set is from the synthetic data, i.e. P (X = 1). [26]

A binary classification model is then trained to predict the probability of each sample being

synthetic or real [18]. Logistic regression or tree-based models are often the classification models

of choice for calculating the propensity MSE. In this thesis project, a Classification and Regression

Tree (CART) model is used to predict the probability of each sample being from the synthetic

data.

CART is a widely used machine learning algorithm suitable for both classification and re-

gression tasks. This algorithm belongs to the family of decision tree methods and works by

recursively splitting the data into subsets based on the values of input features. The process

results in a tree-like structure that can be utilized for making predictions [29].

The pMSE is then calculated, using the predictions from the CART model, as,

pMSE =
1

n

n∑
i=1

(p̂i − 0.5)2, (3.1)

where p̂i is the probability of each sample being either synthetic or real and n is the total

number of samples after combining the synthetic and real data. The pMSE score ranges between

0 and 0.25, where lower scores indicate greater similarity between the real and synthetic data,

and are thus preferred.

3.1.2 Exploratory Data Analysis Measures

Exploratory Data Analysis (EDA) refers to the process of performing initial inspections on data

[30]. EDA is typically performed to discover patterns, identify anomalies, test hypotheses, and

verify assumptions within the data. When assessing the fidelity of synthetic data, these aspects

are often evaluated using graphical representations. Cluster analyses and pairwise correlation

analyses can be performed by comparing the various original data plots to the synthetic data

plots.

Woo et. al propose a cluster analysis measure to determine whether records in the original

and synthetic data have similar values [26]. This is done using two plots of clusters (one for

synthetic data and one for original data) and then checking if they look similar. Further, to
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evaluate how well feature interactions are preserved in the synthetic datasets, Zhao et. al (2021)

compute the pair-wise correlation matrix for the columns within real and synthetic datasets

individually [31]. The correlation matrices are then compared, and the differences between them

should be small.

EDA will be conducted for the various original and synthesized datasets as part of the pre-

liminary analyses in this thesis project. However, the results will not be included in this thesis

project, as other fidelity metrics such as the pMSE provide a better numeric assessment of the

fidelity.

3.1.3 Fidelity of Economic and Financial Data

Considering the nature of the economic and financial data in CBS’ repository (zero-inflated with

many missing values), and since the synthesizer package [7] was designed for synthesizing data

of this nature, it is crucial to evaluate the method in this particular context. To evaluate the

fidelity with respect to the presence of zero and missing values, the percentage of zero values and

missing values in both the original and synthetic data should be compared. These percentages

in the original and synthetic data should be close together. To get a numeric estimate of how

close these percentages are for a dataset, the average mean squared error (MSE) is calculated.

The average MSE quantifies the difference between the proportion of zeros or missing values in

each variable of the original data and the corresponding proportion in the synthetic data. This

metric will determine how effectively the syntheic data generation (SDG) method replicates the

zero-inflation and missing values present in the original datasets.

The Average Mean Squared Error (MSE) between the zero or missing percentages of the real

and synthetic datasets is calculated as,

Average MSE =
1

p

p∑
j=1

(
P real
j − P synth

j

)2

(3.2)

where, p is the total number of variables in the dataset, P real
j is the percentage for the j-th

variable in the real dataset and P synth
j is the percentage for the j-th variable in the synthetic

dataset. A lower average MSE means the synthetic data more closely matches the real data

in terms of the zero or missing percentages across variables. This suggests that the synthesis

method effectively captures the zero-inflation or missing values in the original data. Therefore,

lower average MSE values are preferred.

3.2 Specific Utility

It is important for synthetic data to not only share a similar underlying distribution with real

data but also to serve its intended application effectively. Therefore, evaluating specific utility
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is crucial. Specific utility measures the ’usefulness’ of synthetic data in relation to a particular,

narrowly defined purpose or application [21].

Popular examples of specific utility measures include comparing summary statistics, such

as means or variances, and calculating the standardized differences between these estimates in

the original and synthetic datasets [32]. Another common approach involves comparing model

coefficients derived from analyses, such as regression models performed on both original and

synthetic datasets [19]. Confidence Interval Overlap (CIO), which measures the percentage

overlap of confidence intervals for summary statistics or model coefficients, is also frequently

employed to assess utility [19].

In this thesis, summary statistics are used solely for an initial assessment of the method and

will not be included in the evaluation of the synthesizer method. Further, although the metrics

mentioned above are effective for measuring specific utility, the focus of this thesis will be on

evaluating the use of synthesizer’s synthetic data as training data for prediction purposes, as

discussed in the next section. This decision is driven by time constraints.

3.2.1 Prediction Accuracy

Prediction accuracy is a popularly used specific utility metric [33], [34] and will also be used to

measure specific utility in this thesis project. Dankar et. al (2022) [8] use the Train Synthetic

Test Real approach (TSTR) [35] to compare the performance of models trained on synthetic and

real data when tested on a real test set.

This approach begins with a real dataset, splitting it into a training dataset and a test dataset.

A synthetic dataset is then generated using only the training data. Next, a model is trained twice,

once using the synthetic data and once using the actual training data. Both models are evaluated

on the test dataset, and their performance is compared. Comparing their performance gives a

measure of how well the synthetic data retains utility for the specific modelling task. [36]

For this thesis project, either a logistic regression model or a multinomial logistic regression

model will be trained using the above-described Train Synthetic Test Real (TSTR) approach,

depending on the data type. Logistic regression is used to model the relationship between one or

more independent variables and a binary outcome. It, therefore, estimates the probability of an

event occurring based on a given data set of independent variables [37]. This type of statistical

model is often used for classification and predictive analytics. Since the outcome is a probability,

the predicted values range between 0 and 1, where values closer to 1 indicate a higher likelihood

of the event happening and values closer to 0 indicate a lower likelihood. Multinomial logistic

regression extends logistic regression to situations where the dependent variable has more than

two categories.

Based on the logistic or multinomial logistic regression results, the F1 score can be calculated

to assess the quality of the synthetic data. F1-scores provide a measure of predictive accuracy

and will be implemented in this thesis project to evaluate the specific utility of the synthesized

data. The F1 score is a performance metric that balances the trade-off between precision and
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recall, providing a comprehensive measure of a model’s effectiveness [38]. Precision refers to the

accuracy of positive predictions, while recall quantifies the model’s ability to identify all positive

cases. For cases where there are only two classes, and logistic regression is implemented, the F1

score is calculated as the harmonic mean of precision and recall, using the formula,

F1 = 2 · Precision · Recall
Precision + Recall,

(3.3)

where

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP),

and

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN).

While, for the case where multinomial logistic regression is implemented, a one-vs-all classifi-

cation approach is implemented. This means that each class is treated as a positive class, while

all other classes are treated as negative [39]. An F1 score is then calculated for each class using

the above formula, and the scores for each class are then averaged into a single F1 score.

The F1 score ranges between 0 and 1, with higher scores indicating better model perfor-

mance[38]. F1 scores are particularly useful in assessing predictive accuracy when working with

imbalanced data, as the F1-score expresses the extent to which the model is correctly classify-

ing the minority class [8]. When evaluating synthetic data, the goal is for the F1 score of the

synthetic data to be close to the F1 score of the original data.

3.2.2 Domain Restrictions

One of the challenges of synthesizing economic or financial data is that such data often have

logical and mathematical rules governing the allowable combinations of variable values. For

example, a dataset may consist of three key variables, Cost (C), Profit (P ) and Turnover (T ),

and the following relationship should hold for these variables: C + P = T .

Though the literature on synthesizing synthetic data in such a specific setting is limited, Taub

et al. (2020) develop a ratio of estimates (ROE) for analyses involving totals or proportions [25].

The ROE is a simple metric that divides the smaller of the two estimates (i.e. the estimate from

the original data or from the synthetic data) by the larger of the two estimates. For example,

using the example from above, the metric may be calculated as Turnover(Real)
Turnover(Synthetic) .

Although this ratio effectively evaluates the accuracy of the final estimate, it does not ac-

count for whether the synthetic data preserves logical constraints, such as additive relationships.

Building on the idea proposed by Taub et al. (2020), this thesis will adapt the metric to assess

the individual components of the totals as ratios relative to the total
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For example, using the example from above, Cost(Synthetic)+Profit(Synthetic)
Turnover(Synthetic) will be compared

to Cost(Real)+Profit(Real)
Turnover(Real) = 1. Ideally, these ratios in the synthetic data should equal 1, and thus

values closer to 1 are preferred.

This analysis may serve as a possible alternative to an assessment of synthetic data by some

sort of domain expert, as by checking such proportions, one would be mimicking an analysis by

a domain expert to some extent.
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Chapter 4

Methods

4.1 Experimental Design

The computational study is designed to assess the performance of the synthesizer package in a

variety of settings, with respect to the metrics selected in chapter 3, in response to RQ 1. More

specifically, the computational study will evaluate the performance of the synthesizer package

against the framework of quality measures (RQ 2). Controlled experiments will, therefore, be

conducted using both simulated data and real data. Three distinct data types will be considered:

simulated multivariate normal data, simulated zero-inflated log-normal data and real survey data.

As outlined in RQ 3, to compare the synthesizer package with the established SDG package

in R, the results from the experiments on all three data types will be compared to those obtained

using the non-parametric synthpop package in R, enabling a direct comparison between the

proposed method and an established approach. This comparison will provide a benchmark for

evaluating the effectiveness of the proposed synthesizermethod, highlighting any improvements

or limitations in synthetic data quality relative to the widely used non-parametric synthpop.

The use of three data types ensures a thorough assessment of the method’s performance

in three different settings. Specifically, the utilization of simulated multivariate normal data

facilitates testing the method in a perfect multivariate normal environment characterized by

normally distributed data with no missing values or outliers. This creates an idealized baseline,

enabling controlled testing of synthesizer under optimal circumstances. Employing simulated

zero-inflated log-normal data that more closely resembles real data features, such as zero-inflation

and a strong positive skew, then enables a performance assessment of the method in a more

realistic setting. Nonetheless, this data is still free from any missing values, which often occur

in real data, offering a realistic yet still simulated context. Finally, utilising real data enables a

more precise evaluation of synthesizer’s performance in its intended application. This includes

typical economic data that exhibit strong linear relationships, are zero-inflated, have numerous

missing values and have mathematical restrictions (e.g. X + Y = Z). This combination of

data types ensures a robust and comprehensive evaluation of the method, examining how the

increasing complexity of data affects the quality of synthetic data generation.
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4.2 Data Description: Simulated Data

To ensure a thorough assessment of synthesizer, the simulated data is set up to explore how

dataset size and the distributional properties of data affect the quality of synthetic data generated

using synthesizer and synthpop.

4.2.1 Simulation Conditions

Datasets with varying ratios of records to variables and varying distributional properties, such

as different levels of correlation between variables and levels of separation between groups in

the data, are simulated for the two distribution types, i.e., multivariate normal and zero-inflated

log-normal. In each simulation, all simulated variables are numeric, with the exception of a single

binary variable, which will also be simulated in each case. This binary variable will serve as the

target variable for prediction.

Distribution Types

As mentioned in section 4.1, data will be simulated for two types of distributions, namely mul-

tivariate normal data and log-normal data. The log-normal data will be zero-inflated. The

setup of the multivariate normal and the zero-inflated log-normal simulations are outlined in

subsection 4.2.2 and subsection 4.2.3, respectively.

Separation Between Means

All datasets will have a total of n = 1024 records. To evaluate the performance of the synthesizer

package on datasets of varying complexities, datasets will be simulated such that the first
N
2 = 512 records have a different mean than the second N

2 = 512 records. The first N
2 = 512

records are assigned a True binary label, and the second N
2 = 512 records are assigned a False

binary label. This True \ False label will be used for prediction. In each simulation, the differ-

ence between the means will be progressively reduced using various values, which will be detailed

in the respective sections. By reducing the difference between the means, the level of overlap

between the two halves of the dataset increases, increasing the complexity of the prediction task.

Correlation Between Variables

For each dataset half in the multivariate normal simulation, varying levels of correlation will be

implemented. The setup will be such that the level correlation assigned will be the same between

all variables. This will help explore how well the synthetic data generation (SDG) method can

replicate data with increasingly complex relationships between variables in the datasets. The

correlation levels will not be adjusted in the zero-inflated log-normal simulation, as the simulation

for this distribution will be set up such that all variables are highly correlated.
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Ratio of Records to Variables

To understand how changes in dataset scale and the ratio of records to variables affect the synthe-

sis process, datasets with various ratios of records to variables will be simulated. Datasets with

the following ratio of records to variables: 2:1, 4:1, 8:1, 16:1, 32:1, 64:1, 128:1, 256:1 and 512:1 will

be simulated. Since N = 1024 is chosen for all datasets, datasets with 2, 4, 8, 16, 32, 64, 128, 256

and 512 variables will be simulated to create the aforementioned ratios for each combination of

parameters. This is done because, as the number of variables rises, the potential multivariate

effects increase combinatorially.

4.2.2 Multivariate Normal Data

Datasets with numeric variables following a multivariate normal distribution are simulated, as

the consistent and predictable properties of this distribution provide an ideal testing environment

and a controlled benchmark for evaluating the synthesizer algorithm.

To achieve the aforementioned separation between the means, two data frames will first be

generated separately for each simulation. The first data frame will have N
2 = 512 records and

a positive mean of µ. The second data frame will have N
2 = 512 records and a negative mean

of −µ. All variables in each data frame are normally distributed, with a mean µ or −µ and a

variance of σ2 = 1. To decrease the level of separation between the means, three µ values are

considered, µ = {2.5, 1.25, 0.625}. The variance will be set to σ2 = 1 for all simulations. The

correlation between all variables in each data frame will be set to r.

Figure 3 illustrates the variance-covariance matrix for a dataset half with p variables, where

the variances are represented on the diagonal, and the correlation r is the same between all

variables. Note, since σ = 1 for all variables, correlation = covariance for all datasets.

Σ =

x1 x2 x3 · · · xp

x1 1 r r · · · r

x2 r 1 r · · · r

x3 r r 1 · · · r
...

...
...

...
. . .

...

xp r r r · · · 1

Figure 3: Covariance matrix structure for x1, x2, . . . , xp, where the diagonal contains variances

which were set to 1, and all off-diagonal elements represent the correlation r between variables.

The correlation will be the same between all variables of a dataset, i.e. all variables in a single

dataset will be equally correlated. However, to examine how different strengths of correlation

between variables affect synthetic data quality, datasets will be simulated for different r values.
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Datasets with correlation levels of r = {0, 0.25, 0.5, 0.75} will be simulated, ranging from no

correlation to strong correlation.

The two data frames are then merged into a single dataset with N = 1024 records. All the

datasets will also have a True/False column. The first N
2 = 512 records with µ are assigned a

True label, while the second 512 records with −µ are assigned a False label. This True/False

column serves as the target variable for prediction in this setting. All other variables in the

dataset are used as predictors to model and predict this binary outcome.

A visualization for datasets with 2 variables and r = 0 is shown for the three different µ

values in Figure 4.

Figure 4: Plot showing an example of the separation between groups for a generated dataset with

2 variables with r = 0. The blue points are from the first half of the dataset with mean µ and a

‘True’ label. The red points are from the second half of the dataset with mean −µ and a ‘False’

label. Notice how for as µ gets smaller, the groups overlap more. This overlap is exacerbated

when the variables are correlated.

Multivariate normal data will be generated for all ratios of records to variables (9 conditions),

correlations (4 conditions) and means (3 conditions). Therefore, 9 × 4 × 3 = 108 multivariate

normal datasets will be simulated. Table 1 shows an example of one of the possible dataset

simulations for the case of two variables.
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X1 X2 True/False

1 0.826 0.971 True
...

...
...

...

512 0.343 0.047 True

513 -1.866 -2.495 False
...

...
...

...

1024 -2.383 -2.998 False

Table 1: Example of a generated dataset for the multivariate normal simulation with 2 variables

X1, X2 i.e. a 512:2 ratio of records to variables. The first 512 records have a mean of 1.25, while

the next 512 have a mean of -1.25. The correlation for this dataset was r = 0.25 True/False

column designed for prediction is also included.

4.2.3 Zero-Inflated Log-Normal Distribution

Zero-inflated log-normal data is generated to assess the synthesizer algorithm in a more realistic

scenario than the multivariate normal distribution. This type of data better represents the dis-

tribution frequently observed in economic variables, which are often zero-inflated, right-skewed,

and strictly positive.

The setup of the zero-inflated log-normally simulated data resembles that of the multivariate

normal data by merging two data frames, which are simulated with different means, while the

gap between these means is systematically narrowed.

The data is simulated such that for each half of the data set, the values of each variable are

drawn from a log-normal distribution with a mean of µ1 assigned to the first 512 records and a

mean of µ2 assigned to the second 512 records. For both dataset halves, the variance is set to

1, σ2 = 1. Datasets will be created for values of µ2 = {6, 3.5, 2.25} while µ1 will remain set to 1

for all simulations. This will bring the means of the two groups closer to one another, as in the

previous simulation.

To introduce correlation between the variables, each subsequent variable in a dataset half is

generated by adding a small amount of random noise to the values of the previous variable. This

noise is drawn from a standard normal distribution with a mean of zero, µ = 0 and a standard

deviation σ = 1, allowing for a controlled degree of variability and inter-variable dependence.

The two data frames are then merged into a single dataset with N = 1024 records. As in the

multivariate normal simulation, all the datasets will also have a True/False column. The first
N
2 = 512 records with µ1 = 1 are assigned a True label, while the second 512 records with µ2

are assigned a False label. To introduce zero inflation, 10% of the numeric values in the data are
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randomly assigned a value of zero. This allows for the creation of synthetic datasets that mimic

real-world data characteristics, namely strong correlations between variables and zero inflation.

Table 2 gives an example of such a possible dataset with 4 variables with µ1 = 1 and µ2 = 6.

Datasets with this setup will be generated for all ratios of records to variables (9 different

parameters) and µ2 values (3 parameters). Therefore, 9×3 = 27 zero-inflated log-normal datasets

will be simulated.

X1 X2 X3 X4 True/False

1 0.85 1.30 0.94 1.05 True

2 0.75 1.22 1.02 1.15 True
...

...
...

...
...

...

512 0.90 1.45 1.10 0.95 True

513 6.00 6.10 6.20 6.05 False
...

...
...

...
...

...

1023 6.05 6.00 6.10 6.00 False

1024 6.25 6.20 6.10 6.15 False

Table 2: Example of a synthetic dataset with 4 variables and 1024 records. The first half (records

1-512) have a mean of µ1 = 1, and the second half (records 513-1024) have a mean of µ2 = 6.

4.3 Data Description: Real Data

To test the synthesizer package on real economic data, this thesis project utilizes real data from

the 2007 Structural Business Survey (SBS). The SBS is an annual survey conducted by Statistics

Netherlands (CBS) to assess the structure, conduct, and performance of economic activities in

the Netherlands. It includes data collected from all non-financial business sectors, excluding

agriculture and personal services, with variables collected at the economic sector level [6]. Thus,

as part of the SBS there are many datasets, each of which corresponds to a different sector.

The raw datasets include varying numbers of records and variables, where financial variables

are reported in thousands of euros [6]. Not all variables in the datasets provide unique or

relevant information. For example, several administrative variables, such as the ID variable,

are not informative for predictive purposes. These administrative variables are excluded from

the datasets to refine the data for analysis. After excluding these variables, most variables in

the data exhibit varying degrees of missingness. The initial data analysis also revealed that

many variables are subject to several linear restrictions and inequalities, and most are heavily

right-skewed and strictly positive.
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Further, each dataset contains a categorical variable GK between 0-9 that categorises busi-

nesses according to size. This variable is used for prediction in the real data.

Ten datasets are selected for analysis to evaluate datasets of different sizes. Table 3 shows

the number of records, variables, and ratio of records to variables for each selected dataset.

Data Set Records Total Variables Records:Variables

1 4836 94 51.4:1

2 7250 61 118.9:1

3 2938 112 26.2:1

4 2665 82 32.5:1

5 2473 77 32.1:1

6 1135 93 12.2:1

7 1263 83 15.2:1

8 1201 72 16.7:1

9 161 90 1.8:1

10 276 62 4.5:1

Table 3: Properties of the selected real datasets, namely the number of records, number of

variables and the ratio of records to variables (rounded to 1 decimal) for each dataset.

4.4 Synthetic Data Quality

To evaluate the performance of the synthesizer package, the quality of the synthetic data it

generates needs to be assessed. This is done through various metrics. As detailed in chapter 3,

the selected evaluation metrics will be implemented to assess the quality of the synthetic datasets.

Not all metrics will be applied to every dataset; rather, they will be implemented based on the

characteristics of the datasets under consideration, namely the simulated multivariate normal,

simulated zero-inflated log-normal, and real data. Each dataset type has unique attributes that

dictate the applicability of specific metrics. Table 4 gives an overview of the selected metrics,

their formulas, and the datasets to which they will be applied.
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Metric Formula Multivariate
Normal

Zero-
Inflated
Lognormal

Real Data

Propensity Mean Squared Error
(pMSE)

1

N

∑
i

(p̂i − 0.5)2 ✓ ✓ ✓

Percentage of Zero
Values

Count of zeroes

Total records
× 100

Average MSE =
1

p

p∑
j=1

(
P real
j − P

synth
j

)2 ✓ ✓

Percentage of Missing
Values

Count of missing values

Total records
× 100

Average MSE =
1

p

p∑
j=1

(
P real
j − P

synth
j

)2 ✓

F1 Score 2 · Precision · Recall
Precision + Recall

✓ ✓ ✓

Ratios

RATIOnot on payroll =
temporary workers + other temporary staff + other persons

total employed persons not on payroll

RATIOtotal =
total employed persons not on payroll + total employed persons on payroll

total employed persons

✓

Table 4: Overview of quality assessment metrics, their formulas, and their applicability to mul-

tivariate normal, zero-inflated lognormal, and real data.

4.4.1 Implementing the Quality Metrics

The selected metrics are implemented following the formulas and procedures outlined in chap-

ter 3. However, the implementation details for the specific utility F1 scores and ratio metrics,

particularly as applied to the real data, will be provided in the subsequent sections.

F1 Score

In all simulations and for the real data, a train-test split of 70:30 will be used. This means that

30% of the real data will be reserved for testing the models trained on the simulated and real

data.

The real data does not have a True/False column, and the GK is used for prediction in the

real data. The GK variable is used to classify businesses based on their size, and it is a categorical

variable with values 0-9. Therefore, multinomial logistic regression is implemented as opposed to

logistic regression. Prior to implementing the multinomial logistic regression, all variables where

more than 80% of records are missing will be excluded, as they are deemed useless in training

models.

Further, the trained models are unable to be tested on the real data due to the presence

of missing values. The missing values in the real test data will thus imputed. Imputation will

be done using k-nearest neighbours, with k = 5. This means that each missing value will be

assigned a value equal to the average of the five observations closest to it.

27



Ratios

Two main variables are selected from the real data to implement the ratio metric designed in

chapter 3. These variables are total employed persons not on payroll and total employed persons,

where total employed persons not on payroll is a subtotal of total employed persons. More

specifically,

total employed persons not on payroll = temporary workers + other temporary staff + other persons

and

total employed persons = total employed persons not on payroll + total employed persons on payroll,

where total employed persons on payroll = persons on payroll + persons loaned out.

The ratios for the two variables will thus be calculated as,

• RATIOnot on payroll =
temporary workers + other temporary staff + other persons

total employed persons not on payroll and

• RATIOtotal =
total employed persons not on payroll + total employed persons on payroll

total employed persons

These variables are selected for the ratios, as they appear in all 10 real datasets, to allow a

consistent comparison of the ratios across the different datasets. Note, records in the real data

for which this relationship is violated (where the ratio does not equal 1 in the real data) will be

removed prior to synthesis.

4.5 Synthetic Data Generation

The synthetic data generation method is easily implemented in R using the synthesize function

from the synthesizer [7] package, which implements Algorithm 1. The R package will be utilized

in its default configuration. To implement the non-parametric synthpop in R, the syn function

from the synthpop library is used, with method = "cart", specifying the implementation of the

CART approach to synthesizing data.

Since synthesizer implements a random sampling procedure as outlined in Algorithm 1, the

quality of the data synthesized may vary for different iterations and may be much better for one

iteration, than for another. Therefore to reduce the impact of this randomness, quality metrics

will be calculated for more than one synthesized dataset and averaged for a more stable estimate

of the quality. To determine the appropriate number of synthetic datasets to be generated from

a single original dataset, an iterative experiment was implemented on one of the real datasets. In

each iteration, an additional synthesized dataset was added to the existing set, and the average

propensity mean squared error (pMSE) across all synthesized datasets was recalculated. This

updated pMSE was compared to the previous iteration’s pMSE. The process was repeated for 50

synthesized datasets. In an attempt to reduce the randomness as well as balance computational
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efficiency a threshold of 0.01 was selected. As shown in Figure 5, 14 datasets were synthesized

before the change in pMSE between successive iterations remained below the threshold of 0.01.

As an extra precaution, it was decided that for each data set, all metrics will be averaged over

15 synthesized data sets.

Figure 5: Plot showing the difference in average pMSE between consecutive synthesized datasets,

synthesized using the synthesizer package. Used to identify when the pMSE difference becomes

small enough to indicate convergence in the synthesis process.
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Chapter 5

Results

This chapter presents the results of the computational study, organized by data type: simu-

lated multivariate normal data, simulated zero-inflated log-normal data, and real datasets. The

analysis focuses on evaluating the performance of the proposed method, synthesizer against

the benchmark method synthpop with reference to the behaviour of synthesized datasets under

varying conditions using the selected quality measures. These results provide insights into the

strengths, limitations, and patterns that influence the effectiveness of the methods across different

scenarios. Note, all metrics in the results section are averaged over 15 synthetic datasets.

5.1 Simulated Multivariate Normal Data

To evaluate the quality of the data synthesized from the simulated multivariate normal datasets,

the pMSE and F1 scores are compared across all simulated multivariate normal datasets.

Propensity Mean Squared Error (pMSE)

The propensity mean squared error (pMSE) evaluates a model’s ability to distinguish between

real and synthetic data, where lower pMSE values indicate greater similarity between the real

and synthesized data. pMSE values are bounded between 0 and 0.25 and values closer to zero

are preferred.

Figure 6 illustrates the pMSE (averaged over 15 synthetic datasets) for each combination of

simulation conditions. The x-axis denotes the number of variables in the simulated data, where

a higher number of variables corresponds to a lower ratio of records to variables (since there are

1024 records in all datasets), and the y-axis represents the average pMSE. The rows correspond

to the three different µ values, indicating the mean of the normal distribution and, hence, the

level of overlap between the two groups in the data. Recall that each dataset consists of two

halves with means µ and −µ. The columns distinguish between the synthetic data generation

(SDG) method implemented (synthesizer and synthpop). The different shades of the lines in

the plots reflect the different levels of correlation between the variables in the simulated dataset.
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For synthesizer, pMSE values increase as the mean values rise. This indicates greater

differences between the real and synthesized data when there is more separation between the

groups in the data, i.e. there is less overlap between the means. The observation is thus that

synthesizer performs worse when there is greater separation between the means of the dataset

halves. This issue is exacerbated in the absence of correlation, particularly when there are more

than 128 variables (when the ratio of records to variables is less than 8:1). This is shown by

the increased pMSE for the lightest line in the 1st row of plots for the synthesizer method.

A potential explanation for this is that when the data exhibits complete separation, the inverse

eCDF is not able to capture this separation, as values between the two groups may still be

sampled. This could be further examined by calculating the pMSE after separately synthesizing

the two halves of the data and then combining them. Another possibility is that when the

data has two separate groups and there is no correlation between the variables, rank matching

becomes ineffective as there is no relationship between the variables. The rank-matching might

therefore serve no real purpose in the absence of relationships between variables.

Contrarily, synthpop exhibits lower pMSE values when the means are less overlapped (for

greater µ values). This suggests that synthpop outperforms synthesizer in conditions where the

two groups in the simulated data have greater separation. This could be because this simulation

design of separate groups in the data benefits a CART model. When a dataset has two distinct

dataset halves, a CART model can divide the synthesis into two independent problems during

the initial split. Subsequently, the CART model then more effectively replicates the two halves

in the real data.

With the exception of the scenario discussed where µ = 2.5 and the number of variables

exceeds 128, the pMSE for synthesizer generally rises with higher correlation levels, showing

that performance decreases when the variables in the data are more correlated. Whereas for

synthpop, the opposite trend emerges, as pMSE tends to decrease with increases in correla-

tion values, meaning that performance increases as correlations increase. This pattern might

be explained by synthpop’s synthesis process, which iteratively adds predictors to synthesize

variables. This sequential approach helps maintain relationships present in the original data

within the synthetic dataset, especially in the presence of highly correlated variables. Whereas

for synthesizer, while the rank matching does preserve the structure of the data, the method

is not as optimized for correlations of greater than 0.75 as synthpop, and may be more suited

to more moderate correlations.

For both SDG methods, a greater number of variables is consistent with increased pMSE and,

therefore, worse performance. A greater number of variables means that there is a lower ratio of

records to variables in the data since the number of records is held constant for all simulations.

Thus, this outcome is not surprising, as any synthetic data method requires enough examples to

understand the relationships among variables to generate realistic synthetic data.
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F1 Score

In this thesis project, the F1 score is employed as a measure of specific utility to assess the

performance of synthesized data as training data for predictive purposes, compared to the original

data. The F1 score ranges between 0 and 1, with higher values indicating better predictive

accuracy. The primary focus in the context of synthetic data is, however, on determining whether

the F1 scores obtained using synthesized data are comparable to those using the actual data.

If the F1 scores of the synthetic data are closely aligned with those of the simulated data, it

suggests that the synthetic data closely preserves the essential structure and relationships of the

simulated data, making it a reliable substitute for model training. Therefore, the goal is for the

F1 score of the synthesized data to be close to the F1 score of the simulated data.

Figure 7 compares the F1 scores (averaged over 15 synthetic datasets for each method) across

three different training sets: the simulated data, data synthesized using synthesizer, and data

synthesized using synthpop. All three models were tested on a subset of the original data,

following the Train-Synthetic-Test-Real (TSTR) approach outlined in chapter 3. In the plot, the

x-axis represents the number of variables and the y-axis shows the F1 score. The rows correspond

to the different mean (µ) values of the normal distributions, and different shades indicate varying

levels of correlation.

Generally, as expected, the results indicate that as the means in the simulated multivariate

normal (MVN) datasets become less separated (i.e. smaller µ values) and correlations increase,

the F1 scores tend to decrease, reflecting the growing difficulty in distinguishing between classes.

However, due to the simplicity of the simulated MVN data, the scores remain relatively high

across all iterations. When the µ values are further apart, the classification problem becomes

trivial, with minimal overlap between classes. Consequently, the F1 scores are higher, often

reaching perfect values due to the complete separation in the data.

When examining the F1 scores across the methods, for the different simulation conditions,

synthpop more closely tracks the overall patterns exhibited by the F1 scores in the simulated

data compared to synthesizer. It also often happens that data synthesized using synthesizer

produces higher F1 scores than the simulated data. This may be because models trained on sim-

ulated data are prone to overfitting, whereas the synthetic data generated by synthesizer intro-

duces more variations that encourage the model to generalize better to unseen data. Whereas,

synthpop’s ability to more closely replicate the F1 scores of the real data could be attributed

to synthpop’s ability to generate synthetic data that more often closely mimics the original

simualted data based on the lower pMSE scores just seen in the previous subsection. Therefore,

it appears that there is a relationship between pMSE values and differences in F1 scores, as lower

pMSE values seem to correspond to smaller differences in pMSE values between the simulated

and synthesized data. This idea is further reinforced when looking at the specific simulation con-

ditions. When µ = 2.5, the F1 scores for the synthesizer method are on the upper boundary

(close to or equal to 1) and sometimes higher than the simulated data values, while the synthpop

method depicts a more similar pattern to the simulated data. In the previous subsection, when
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the means were more separate, the pMSE scores for synthesizer were higher (indicating worse

performance) than for synthpop.

This trend persists in the correlations; as the correlations increase, the divergence between

the F1 scores of the simulated data and the synthesizer method also increases. In contrast, this

divergence primarily occurs with synthpop when the correlation is zero. This further illustrates

a relationship between the pMSE scores of the methods and their closeness to the F1 scores, as in

the previous subsection synthesizer had higher pMSE values for greater correlations, while the

opposite was true for synthpop which had lower pMSE values for greater values or correlation.

This also explains why when the number of variables is 128 or more, there seems to be a

more pronounced divergence between the F1 scores of the methods and the simulated data.

More specifically, both methods experienced a decline in performance (higher pMSE values) for

a greater number of variables (smaller ratios of records to variables).
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Figure 6: Propensity mean squared error (pMSE) results (averaged over 15 synthetic datasets) for the various multivariate normal

simulation conditions (means, correlations and ratios of records to variables) are provided for the synthesizer and synthpop synthetic

data generation (SDG) methods. pMSE values are bounded between 0 and 0.25. Smaller pMSE scores indicate that the synthetic data

is more similar to the real data, and are therefore preferred.
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Figure 7: F1 results for the various multivariate normal simulation conditions (means, correlations and number of variables) are provided

for the synthesizer and synthpop synthetic data generation (SDG) methods, as well as the original simulated data. F1 scores are

averaged over 15 synthetic data sets for both methods. F1 values are bounded between 0 and 1, and higher F1 scores indicate better

predictive performance. When evaluating the synthetic data generation (SDG methods), F1 scores should be compared to those of the

real data. Scores closer to the real data values indicate that the synthetic data more closely mimics the real data.
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5.2 Simulated Zero-Inflated Lognormal Data

To assess the quality of the synthesized data in a context that more closely mimics economic

data i.e. the simulated zero-inflated log-normal datasets, the pMSE, F1 scores, and percentage

of zero values are compared across all simulated zero-inflated log-normal datasets.

Propensity Mean Squared Error (pMSE)

The pMSE values were calculated for all synthesized zero-inflated lognormal conditions. and are

presented in Figure 8.

Figure 8: Propensity mean squared error (averaged over 15 synthetic datasets) results for all zero-

inflated log-normal simulation conditions (means and ratios of records to variables) presented

for synthesizer and synthpop synthetic data generation (SDG) methods. pMSE values are

bounded between 0 and 0.25, and smaller pMSE scores are preferred since they indicate that the

synthetic data is more similar to the simulated data.

The x-axis displays the number of variables (where more variables represent a smaller ratio

of records to variables) and the y-axis displays the average pMSE (averaged over 15 synthetic

datasets). Lower pMSE values indicate higher-quality synthetic data. Recall that this simulation

also had two groups within each simulated dataset, µ1 = 1 and µ2, and that no correlation

conditions were included in this simulation, but that variables were highly correlated. The rows
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represent the three different µ2 values, with larger values indicating greater separation between

the means. The different colours in the plot represent the two synthetic data generation (SDG)

methods, synthesizer and synthpop.

For this data type, synthpop has lower pMSE values compared to synthesizer across all

simulation conditions. Recall that lower pMSE values mean better performance, therefore show-

ing that synthpop consistently outperforms synthesizer in this simulation. This is likely due to

the high correlation between variables, highlighting synthpop’s superior ability to capture strong

linear dependencies and effectively handle heavily correlated variables, due to its iterative setup.

As mentioned in the previous section, while the rank-matching implemented in synthesizer

is able to preserve relationships between variables, it is not as optimised for highly correlated

variables as synthpop. Another point worth mentioning is that the way in which the data is

simulated in this setting may favour the synthpop algorithm, in that the data is simulated such

that each variable is a combination of the previous variable plus some noise. This may benefit

synthpop, as it learns from one variable in the data to predict the next, then uses those two

variables to predict the next variable, etc., and therefore may more accurately replicate the setup

of the data.

As in the multivariate normal data simulation, synthesizer’s performance declines (as seen

by higher pMSE values) as the means become further separated, underscoring its difficulty in

handling complete separation within the data. This further reinforces that synthesizer struggles

in situations where the groups in the data are completely separate. As mentioned earlier, this

may be because by sampling from the inverse eCDF it is likely that values between the two groups

may be sampled in the synthesizer algorithm, as opposed to synthpop, which implements a

CART model that can easily identify these groups at the initial split.

Additionally, a noticeable increase in pMSE is also observed again for both methods as the

number of variables rises (and the ratio of records to variables declines), reinforcing the idea that

both methods see a decline in the quality of synthetic data when there are fewer records per

variable in the data. Having fewer records for each variable negatively impacts the ability of the

methods to learn patterns in the data and relationships between variables, therefore negatively

impacting the quality of the synthesized data.

F1 Score

Using the same setup as in the previous multivariate normal simulations, the F1 scores are

calculated. Recall that when the F1 scores of the synthesized data are closer to the F1 scores of

the original simulated data, it means that the synthetic data more closely replicates the simulated

data. The calculated F1 scores (averaged over 15 synthetic datasets) are presented in Figure 9.

The number of variables are shown on the x-axis (with more variables representing smaller ratios

of records to variables), and the F1 scores are shown on the y-axis. The different µ2 values are

represented in the rows, and different colours are used to distinguish between the two methods

and the simulated data.
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Figure 9: F1 score results (average over 15 synthetic datasets for both methods) for all

zero-inflated log-normal simulation conditions (means and number of variables) presented for

synthesizer and synthpop synthetic data generation (SDG) methods. F1 values are bounded

between 0 and 1, and higher F1 scores indicate better predictive performance. When evaluating

the SDG methods, F1 scores should be compared to those of the original data. Scores closer

to the simulated data values indicate that the synthetic data more closely mimics the original

simulated data.

When µ2 = 2.25 and µ2 = 3.5 and the data has more than 32 variables, both the synthetic

data generated using synthesizer and synthpop yield a higher F1 score than the real data. How-

ever, the F1 scores of synthpop are closer to the real data F1 scores than those of synthesizer.

The higher F1 scores seen by synthesizer likely correspond to the pMSE values in the previous

subsection. It appears that when pMSE values are slightly higher, and the synthetic data isn’t

as close to the real data, it serves as a better training data set, hence synthesizers increased

F1 score. However, this is only true to a certain extent until the opposite effect occurs. This is

seen when µ2 = 6, as synthesizer’s F1 score drops below the others here. This is likely because

synthesizer experienced a deline in performance (higher pMSE values) here, as synthesizer

struggles when there is greater separation between the halves of the data (as seen in previous

subsections). Whereas synthpop’s F1 scores follow the simulated F1 scores more closely in this

setting, up until there are 128 variables or more, because as mentioned before, the CART model

can better replicate this separation between the halves of the data.

Also, both methods follow the F1 scores of the simulated data very closely, up until there

are 16 variables for µ2 = 6, and up until 32 variables for the other mu2 values. Since a greater
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number of variables corresponds to a smaller ratio of records to variables in this setting, this

reiterates the fact that both methods see a decline in performance when there are not sufficient

records in relation to the number of variables in the data.

Percentage of Zero Values

To assess the extent to which synthesizer can replicate a common attribute in economic and

financial datasets, namely zero inflation, the percentage of zero values for all variables in both

the real and synthesized datasets was calculated. The goal is for the percentage of zero values

for a variable in the synthesized dataset to closely match the percentage of zero values in the

real data.

Figure 10 presents the results for a simulated dataset with 512 variables and µ2 = 3.5.

Results are similar for other datasets with this number of variables. Plots for all other datasets

in this simulation are available in Appendix A, section A.1. The percentage of zero values in the

simulated dataset are represented on the x-axis, and the percentage of zero values in the synthetic

data on the y-axis. Each dot represents a variable in the datasets, and the figure distinguishes

between synthesizer and synthpop using different colours. The dashed line represents the

line where y = x, i.e. the line where the zero percentage in the synthetic data equals the zero

percentage in the simulated data. Points closer to this line are better, as it means the values in

the synthesized and real data are closer to each other.

Figure 10: Zero percentage results for zero-inflated log-normal simulation setting where n = 512

and µ2 = 3.5. Each point in the plot represents a variable in the data. Points closer to the

dashed line indicate that the percentage of zero values in the synthesized data is closer to the

percentage of zero values in the simulated data and are thus are preferred.
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For both methods, the dots form a linear pattern above the dashes lined, indicating that the

methods are overestimating the percentage of zero values. The reason for this overestimation

of zero percentage by both methods is not completely clear, but it could be due to the way in

which data was simulated, where zero percentages were introduced to 10% of the data.

Although the zero percentages generated by synthesizer do not exhibit a perfect linear

relationship with the zero percentages in the simulated data and tend to be slightly higher than

the dashed line, the points for synthesizer method are closer to the dashed line than the points

of the synthpop method. Therefore, synthesizer provides a more accurate estimation of the

zero percentages in the data. This is attributed to synthesizer’s sampling approach, in which

zeroes are sampled in proportion to their occurrence for each variable, whereas synthpop takes

more of an iterative approach to identify patterns in the data, which might not replicate the zero

percentages as accurately.

To get a better estimate of how closely the percentage of zero values for each method is to

the percentage of zero values in the simulated datasets, the average mean squared error was

calculated between the percentages in the simulated data and the percentages in the synthesized

data for each dataset. These MSE results are presented in Figure 11.

Figure 11: MSE of zero percentage results for zero-inflated log-normal simulation setting for all

simulation conditions (µ2 values and ratios of records to variables). Smaller MSE values indicate

that the percentage of zero values in the synthesized data is closer to the percentage of zero

values in the simualted data and are thus preferred.
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The plot displays the number of variables on the x-axis, and the average MSE of the zero

percentages (averaged over 15 datasets) on the y-axis. The rows distinguish between the different

µ2 values. The two methods, namely synthesizer and synthpop are represented in different

colours. Recall that lower MSE values indicate that the average difference between the zero

percentage in the simulated data and the synthesized data is smaller and are therefore preferred.

For most cases, synthesizer has a lower MSE than synthpop. This is likely because

synthesizer’s method means that zero values get sampled in a way that is proportional to

their occurrence in the actual data, as opposed to synthpop, which has to assign zero values

based on patterns learned from the data. Therefore, it makes sense that synthesizer outper-

forms synthpop with respect to this metric. However, there are some instances when synthpop

outperforms synthesizer (lower MSE), for example when there are 256 variables and µ2 = 6

and µ2 = 2.25. The reason for this is unclear, and there seems to be no explicit pattern in the

instances in which synthpop performs better. When synthpop does outperform synthesizer,

the differences appear small, therefore it may just be that sometimes the patterns learned by

synthpop provide a slightly more accurate estimate of the zero percentages than explicitly sam-

pling these zero values in proportion to their occurrence. It could also be that there are too few

iterations of the data being synthesized and that synthpop is outperforming synthesizer by

chance in these settings. This remains unclear.

5.3 Real Data

The quality of data synthesized from the real data is thoroughly evaluated using five key met-

rics: pMSE, F1 scores, percentage of zero values, percentage of missing values, and two ratios

(RATIOnot on payroll and RATIOtotal) which check whether the synthesized datasets preserve the

additive relationships in the real data.

Propensity Mean Squared Error (pMSE)

To assess the distributional similarity between the synthesized and real data, the pMSE is eval-

uated. Figure 12 presents these results. The real dataset numbers are shown on the x-axis,

and the average pMSE (averaged over 15 synthetic datasets) is shown on the y-axis. Note that

datasets with smaller indices tend to have larger ratios of records to variables (see Table 3). Each

method is represented by a different colour. The mean pMSE values are represented by dots,

with error bars representing the 95% confidence intervals (CIs).

The results show no clear pattern, with synthpop outperforming synthesizer in some sce-

narios and vice versa. For datasets 2 and 4, the pMSE is lower for synthpop, indicating more

distributional overlap with the original datasets compared to the synthesizer. This is likely due

to the increased linear relationships in larger economic datasets (those with a greater number of

records to variables), which synthpop has shown to be really good at replicating in comparison
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to synthesizer, as emphasized in the previous simulations. It is therefore likely that synthpop

is able to better utilize the larger dataset sizes to learn patterns more effectively compared to

synthesizer.

However, for the smaller datasets (6, 7, 8, 9 and 10), the error bars overlap a lot, and the

performance of the metrics align more closely. Additionally, for smaller datasets 8, 9 and 10, the

confidence intervals are wider for both methods, indicating greater uncertainty in the results.

This is possibly because the patterns in these datasets are less pronounced, preventing synthpop

from learning them as clearly or effectively, and therefore it does not perform that much better

than synthesizer.

For some datasets, e.g. datasets 2 and 5, synthesizer had a lower pMSE than synthpop.

However, there remains no clear indication of when which method does better, and it is unclear

why syntheiszer outperformed synthpop in these datasets.

Figure 12: Propensity mean squared error results (averaged over 15 synthetic datasets) for the

real data setting are provided for the synthesizer and synthpop synthetic data generation

(SDG) methods. pMSE values are bounded between 0 and 0.25. Smaller pMSE scores indicate

that the synthetic data is more similar to the real data, and are therefore preferred. Also note:

datasets with smaller indices tend to have bigger ratios of records to variables
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F1 Score

The F1 analysis of the real data compares the performance of synthesized datasets as training

data for prediction purposes to the real data.

Figure 13: F1 score results for 10 real economic datasets presented for synthesizer and synthpop

synthetic data generation (SDG) methods. F1 scores for original datasets are shown as black

dots. F1 values are bounded between 0 and 1, and higher F1 scores indicate better predictive

performance. When evaluating the SDG methods, F1 scores should be compared to those of

the real data, scores closer to the real data values indicate that the synthetic data more closely

mimics the real data.

The results of this analysis are presented in Figure 13, where the dataset indices are shown

on the x-axis and the F1 score on the y-axis. Again recall that datasets with smaller indices tend

to have larger ratios of records to variables. Each method is represented by different colours.

F1 scores for the real data are represented by the black dots. The average F1 scores for both

methods are represented by dots, with error bars representing the 95% confidence intervals (CIs).

In this analysis, synthesizer performs better than synthpop for most datasets (2-8) with F1

scores closer to the real data F1 scores. A possible explanation for this is again that by mimicking

the data slightly less accurately synthesizer introduces variations that allow the model to

generalize better, whereas the real data might lead to overfitting in some cases. synthpop,

on the other hand, may not perform as well because its synthetic data generation method more
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closely mimics the real data, potentially making it less effective in training models that generalize

well.

Percentage Zero Values

Comparing the percentage of zero values in real and synthesized data helps assess how well

the synthesized data replicates the percentage of zero values in real data. In this analysis, the

percentage of zero values in the real datasets is compared with the corresponding percentages in

the synthesized data.

Figure 14: Zero Percentages in Real and Synthesized Datasets using both synthesizer and

synthpop for real dataset 10. Each dot represents a variable in the data. Ideally, a perfect linear

relationship between percentages in the real and synthesized data should be observed, such that

points fall on the grey dashed line.

The results for dataset 10 are shown in Figure 14. The percentage of zero values in the real

data is represented on the x-axis and the percentage in the synthesized data on the y-axis. A

linear relationship should be observed, indicating that the zero values in the synthesized datasets

closely match those in the real data. Ideally, these points should be exactly on the x = y line.

The results show that both methods perform well and exhibit a linear relationship with the

true values. The remaining plots, which can be found in the Appendix A, section A.2, tell a

similar story, further supporting the overall trend observed in these analyses.

Similar to the previous section, to better estimate how closely the percentage of zero values

for each method aligns with the percentage of zero values in the simulated datasets, the average

mean squared error (MSE) is computed between the percentages in the real data and those in

the synthesized data for each dataset. These MSE results are presented in Figure 15.
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Figure 15: MSE of zero percentage results for real datasets. Smaller MSE values indicate that

the percentage of zero values in the synthesized data is closer to the percentage of zero values in

the real data and are thus preferred. Note: datasets with smaller indices tend to have a larger

ratio of records to variables.

The results show that synthesizer has a lower MSE for 8 out of the 10 datasets, meaning

it more closely replicates the percentage of zero values in the real data for 8 out of 10 of the

datasets, with the exception of the last two small datasets. As mentioned in the previous sec-

tion, synthesizer does well at replicating zero values in the data, as it samples zero values in

proportion to their occurrence, rather than having to assign zero values based on data patterns

learned.

Also as mentioned in the previous section, it is again not completely clear why synthpop

is outperforming synthesizer in some settings, as in the last two datasets here. However,

since in this instance, synthpop is outperforming synthesizer for the two smallest datasets,

a further evaluation could be done to see if the occurence of zero values between variables are

highly correlated for these smaller datasets, as if this is the case, it would make sense that

synthesizer does a good job at replicating zero values; as it’s iterative procedure is able to

replicate relationships for highly correlated variables well.

It is worth noting that the 95% confidence intervals (CIs) for the percentage of zero values

were also examined. However, further analysis revealed that although the point estimates across

the synthetic datasets are generally close, the convergence of the distributions of zero percentages

does not occur across the 15 synthesized datasets. This indicates that more datasets would need
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to be synthesized for the full range of zero percentage distributions to converge and for the CIs to

be reliable. The same holds true for the confidence intervals of the percentage of missing values.

Percentage Missing Values

The percentage of missing values in datasets is an important attribute for assessing the quality

of synthesized economic data. This metric evaluates how effectively the synthesized data mirrors

the distribution of missing values in real data.

Figure 16: Missing Percentages in Real and Synthesized Datasets using both synthesizer and

synthpop for real dataset 10. Each dot represents a variable in the data. Ideally, a perfect linear

relationship between percentages in the real and synthesized data should be observed, such that

points fall on the grey dashed line.

These results for real dataset 10 are displayed in Figure 16 with the percentage of missing

values in the real data plotted on the x-axis and the percentage in the synthesized data on the

y-axis. Ideally, the points should lie along a diagonal line, indicating a perfect linear relationship

between the real and synthesized data. The two methods are represented in different colours.

The results show that synthesizer demonstrates a slightly more linear and precise relation-

ship compared to synthpop, though both methods perform reasonably well. This difference is

likely due to synthesizer incorporating missing values in a more direct manner by sampling

them in proportion to their occurence in the real data, while synthpop attempts to infer pat-

terns, which may not always replicate the exact distribution of missing values. The remaining

plots, provided in Appendix B, reveal similar trends, reinforcing these observations across other
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datasets.

As done for the percentage of zero values, to better assess how closely the percentage of

missing values for each method aligns with the real datasets, the average mean squared error

was calculated between the missing value percentages in the real and synthesized data for each

dataset. These MSE results are presented in Figure 17.

Figure 17: MSE of missing percentage results for real datasets. Smaller MSE values indicate that

the percentage of missing values in the synthesized data is closer to the percentage of missing

values in the real data and are thus preferred. Note: datasets with smaller indices tend to have

a larger ratio of records to variables.

In this setting, synthesizer has lower (sometimes even much lower) MSE values for all

datasets compared to synthpop. This is because synthsizer deals with missing values in a

similar fashion to zero values, in that they are sampled in proportion to their occurrence in the

real data. It appears that synthpop is struggling to replicate missing values. It may be that the

occurrence of missing values is less or not correlated between variables, meaning that they would

be occurring somewhat “randomly” and that might explain why synthpop is struggling to learn

the patterns in which they occur.

5.3.1 Ratios

To evaluate whether additive relationships are preserved in the synthesized data, the ratios of

the components of a total to the actual total are analyzed. Specifically, this assessment focuses
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on the total number of employed persons not on the payroll RATIOnot on payroll and the total

number of employed persons RATIOtotal. An ideal ratio of 1 indicates that all components of

the summation correctly add up to the respective subtotal or total.

Figure 18: RATIOnot on payroll results (averaged over 15 synthetic datasets) for real data setting.

Synthetic data generation (SDG) methods are represented in different colours. The grey dashed

line represents the line where y = 1. Points that are closer to this line are preferred, as this line

indicates the point where the additive relationship is perfectly upheld.

The results for the average ratios of employed persons not on the payroll are shown in Fig-

ure 18, with the datasets on the x-axis and the average ratio (averaged over 15 synthetic datasets)

on the y-axis. The dashed line represents the line where y = 1, and since the ratios should equal

one, points closer to the line are preferred. The findings reveal that synthesizer achieves ra-

tios very close to 1 for all datasets. Further, synthesizer outperforms synthpop clearly for all

datasets, having ratios closer to 1. The superior performance of synthesizer is likely due to its

rank-matching approach, which effectively preserves additive relationships.

An interesting observation is the large ratios for synthpop in datasets 2 and 9 particularly,

where the ratios are rather large. This suggests that synthpop’s iterative procedure may have

overcomplicated the relationships, leading to its inability to uphold the additive structure accu-

rately.

To further assess the preservation of additive relationships, the ratios for the total employed

persons are analyzed. The results are presented in Figure 19. The datasets are shown on the
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x-axis and the average ratio on the y-axis. The dashed line represents the line where y = 1, and

since the ratios should equal one, points closer to the line are preferred.

Figure 19: RATIOtotal results for real datasets. Synthetic data generation (SDG) methods are

represented in different colours. The grey dashed line represents the line where y = 1. Points that

are closer to this line are preferred, as this line indicates the point where the additive relationship

is perfectly upheld.

For this analysis, the points for synthesizer showed more deviation from the line y = 1

compared to the previous ratio. Recall that total employed persons not on payroll is a subtotal of

total employed persons. The additional variables added to total employed persons not on payroll

(because total employed persons = total employed persons not on payroll + total employed

persons on payroll) seems to have distorted the ratios for synthesizer. This suggests that

while the rank-matching implemented in synthesizer does well for upholding the mathematical

restrictions associated with subtotals, it does slightly worse for totals. However, more of these

ratios would need to be analysed for this to be confirmed.

However, despite this, and with the exception of dataset 7, synthesizer still outperforms

synthpop. More specifically, the outlier for synthpop in dataset 2 persists, with an inflated ratio

and wide CI. This suggests that the iterative procedure employed by synthpop still struggles

to uphold the additive structure for this specific dataset, but the reason why it is struggling

with this particular dataset is unclear. It could be because it has a very large ratio of records

to variables, and because synthpop learns from all variables, it is getting confused about the
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relationships between variables.

These findings underscore the robustness of synthesizer in preserving additive relationships,

even as synthpop exhibits occasional challenges, and this is likely due to the rank-matching

approach implemented by synthesizer.
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Chapter 6

Discussion

This thesis provides a comprehensive evaluation of the synthesizer R package for synthetic

data generation, focusing on its ability to replicate key characteristics of various datasets. In

this chapter, results and conclusions will be discussed with respect to the three research questions

outlined in chapter 1.

6.1 Evaluating Synthetic Data Quality (RQ 1)

This thesis project involved a thorough assessment of the literature on synthetic data quality.

Literature showed that the quality of synthetic data is multi-faceted and should ideally be eval-

uated with respect to the intended application of the synthetic data. This thesis project used

some metrics popular in the literature to assess the fidelity and specific utility. Further, some

additional metrics were implemented to assess whether the synthesizer package replicates the

properties common in economic and financial datasets.

Five metrics were selected, namely the propensity mean squared error (pMSE), a comparison

of percentage of zero values, a comparison of percentage of missing values, a comparison of F1

scores and ratios of the components of a total to that total.

While this study focused on these metrics to get a preliminary assessment of the distributional

similarity between the synthetic and real data, and to see if the method replicates the attributes of

economic datasets, future evaluations should expand to include broader metrics for distributional

similarity and utility. Further, privacy protection assessments, crucial for real-world applications,

remain unexplored in this work, and should be evaluated prior to the release of synthetic data.

6.2 Evaluating the synthesizermethod against the synthpop

method using the selected metrics (RQ 2 & RQ 3)

Using a systematic approach, the performance of synthesizer was evaluated on three data types:

multivariate normal (MVN) datasets, zero-inflated log-normal datasets, and real-world economic
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and financial datasets. The findings underscore the strengths and limitations of synthesizer in

comparison to the widely used non-parametric synthpop method for synthetic data generation

across different scenarios. The findings will be discussed with respect to each metric.

6.2.1 Propensity mean squared error (pMSE)

For the multivariate normal (MVN) simulations, the performance of synthesizer was consistent

with synthpop when there was more overlap between the groups in the data. However, the per-

formance of synthesizer declined (pMSE increased) when the means of the two groups in data

were further apart, indicating the method’s limitations in capturing distributions without depen-

dencies. Further, the performance of synthesizer deteriorated in scenarios with correlations

of 0.75, as reflected by higher pMSE values. Conversely, synthpop performed better with more

correlated variables and struggled with less correlated variables. This suggests that synthesizer

works better with moderately correlated variables, but that rank matching becomes less effective

when correlation exceeds 0.75 compared to synthpop, where synthpop’s iterative learning excels.

In zero-inflated log-normal simulations, synthpop consistently outperformed synthesizer in

terms of pMSE (smaller values). This is attributed to the highly correlated nature of the variables

since they were simulated such that each added variable consisted of the previous variable plus

some noise. Therefore, each variable was related to the variable before it. This favoured the way

in which synthpop simulates data, as synthpop iteratively uses one variable and combinations

of variables to predict and learn patterns in other variables.

In the real data, synthpop outperformed synthesizer with lower pMSE values for larger

ratios of records to variables, suggesting that the method is able to better utilise a greater ratio

of records to variables to learn the relationships in the data compared to synthesizer. For

both simulations and the real data, both methods observed an increase in pMSE, and therefore

a decline in performance with a decreasing ratio of records to variables. This emphasized that

a sufficient number of records is needed for each variable to learn the relationships in the data.

Although, no exact optimal ratio of records to variables was found, performance in both methods

had a more clear decline when the ratio of records to variables was less than 8:1.

6.2.2 Percentage zero values

The analysis of simulated zero-inflated log-normal datasets and real datasets demonstrated that

both methods performed well in maintaining consistent patterns of zero values as per the real

data. While both methods performed well, synthesizer exhibited slightly neater linear rela-

tionships with the percentage of zero values, and as a result had lower MSE scores in most

settings.

This is because the synthesizer algorithms samples zero values for a variable in proportion

to their occurrence in the real data. Whereas synthpop does not explicitly sample zero values

and instead learns relationships in the data for one variable from other variables.
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In few cases, synthpop did have lower MSE scores than synthesizer. A possible explana-

tion may be that in these cases, the presence of zero values for a record might be correlated

between variables, allowing synthpop to effectively replicate their occurrence in the synthetic

data. However, another possibility is that this happened randomly due to a lack of iterations.

6.2.3 Percentage missing values

The real data analysis highlighted both methods’ ability to replicate missing values well. While

both performed well, it was expected that the results would be similar to those of the zero

percentages, in that synthesizer would would outperform synthpop, as it deals with missing

values in a similar fashion to zero values.

It was interesting to observe that synthpop struggled more with replicating missing values

than expected. A possible explanation could be that while the presence of zero values for a

record might be correlated between variables, it might be that the presence of missing values

is not as correlated between variables as the presence of zero values, and, therefore, synthpop

struggles to learn the relationship between the appearance of missing values in the data.

Overall, explicitly sampling missing values in proportion to their occurrence in the real data

for each variable, as done in synthesizer worked well for replicating missing values in synthetic

data.

6.2.4 F1 score

In terms of serving as training data for prediction tasks, synthesizer showed promise. The

main finding here was that slightly lower precision in replicating real data (higher pMSE) often

translated to higher F1 scores (sometimes even higher than those of the real data), likely due to

reduced over-fitting in comparison to the original data. However, when the pMSE was too high,

the synthetic data lost its utility as training data and F1 scores dropped since the synthetic data

was too different from the real test data to effectively train a model.

6.2.5 Ratios

synthesizer did well in replicating additive relationships (most ratios were close to 1). While

synthpop also generally performed well, it occasionally exhibited some outliers in additive rela-

tionships, likely due to challenges in its iterative synthesis approach. The results suggest that

synthesizer’s rank matching procedure works well for preserving additive relationships. How-

ever, these relationships are still not perfectly preserved for either method.

53



6.2.6 Conclusion

While there is no clear optimal package, the results demonstrate synthesizer’s strengths in mim-

icking properties of economic datasets, and its intended applications. Specifically, synthesizer

replicates zero inflation, missing values, and additive relationships well, often more effectively

than synthpop. Moreover, synthesizer offers a simpler, faster method, making it less compu-

tationally intensive.

However, for settings when the prediction problem offers clear separation, synthesizer does

not work well, and synthpop should be used. This is because the CART model implemented in

synthpop can easily identify this separation at the first split. Whereas, for synthesizer, which

samples from the inverse eCDF, this is challenging. synthesizer might perform better if the two

halves of the data were synthesized separately and then merged. synthpop also outperformed

synthesizer in settings where variables are highly correlated, because of its ability to iteratively

use previous variables to predict a variable in the data. This proved more effective than the rank-

matching implemented by synthesizer in situations of very high correlations.

The influence of dataset size was key across all three data types. Both synthesizer and

synthpop exhibited a decline in performance as the ratio of records to variables decreased in

the simulated and real datasets, emphasizing the importance of adequate numbers of records

relative to the number of variables. While there is no defined optimal ratio, this study shows the

influence of dataset size plays a key role in the quality of data synthesized.

6.2.7 Limitations and Further Research

Though this study used three different dataset types to evaluate the method, the simulated

datasets were kept relatively simple. The multivariate normal (MVN) datasets were generated

with uniform correlations between variables, limiting the exploration of varying correlation struc-

tures. Further, only 4 correlation values were implemented. Future studies could look more at

different correlation values, particularly at low and high values. This can be done with a simple

simulation with few variables, where pMSE is evaluated when correlation values are very low,

to see for what values synthesizer starts performing better, and for higher values, to see when

the rank-matching in synthesizer starts to struggle. Also, future experiments could consider

varying the correlations between variables, so that not all variables are equally correlated.

In the log-normal simulations, the experiments were constrained to a single zero percentage of

0.1, leaving the impact of varying zero-inflation levels unexplored. Further, in the real datasets,

there may be a correlation between the probability of two variables having a zero value, which

was also not simulated. Further research could also examine the impact of diverse zero-inflation

levels, by possible introducing different zero percentages into the data, or correlating the way in

which zero values are introduced. This would identify whether synthesizer does just as well at

preserving zero values in different contexts.

Further, simulated datasets could be updated to more closely mimic the real datasets, to get
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a more detailed analysis of the synthesizer method in a more realistic context. For example,

relationships common to economic datasets such as X + Y = Z could be introduced into the

simulated data, or missing values could be introduced.

Data synthesis was limited to 15 replications due to synthpop’s computational intensity.

While this was sufficient for point estimates, this limited the convergence of the distributions of

these point estimates. Future studies could explore more optimal replication counts by seeing

how many replications it takes for the distributions of the point estimates of the quality metrics

to converge. However, this may be computationally costly, particularly for synthpop, and the

trade-off between computational efficiency and synthesis quality for synthesizer and synthpop

should be explored in more detail.

6.3 Conclusion

By identifying these strengths and limitations, this study lays the groundwork for refining the

synthesizer package. However, further research is necessary to get more exact rules for when

the method fails to work, and to see if the method preserves the privacy of the entities represented

in the data before any synthetic data can be released.
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Appendix A

Percentage Zero Value Plots

This appendix presents the plots of the results for the percentage of zero values in the synthesized

datasets for all the zero-inflated log-normal simulated datasets and all the real datasets.

A.1 Zero-Inflated Log-normal Data

The following pages contain the plots for the average percentages of zero values in the synthetic

datasets plotted against the percentage of zero values in the simulated data for the zero-inflated

log-normal simulation.
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(a) Dataset with 2 variables and µ2 = 2.25

(b) Dataset with 2 variables and µ2 = 3.5

(c) Dataset with 2 variables and µ2 = 6

Figure 20: Plots showing the average percentage of zero values in synthetic datasets compared to the percentage of zero

values in the simulated data for datasets containing 2 variables
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(a) Dataset with 4 variables and µ2 = 2.25

(b) Dataset with 4 variables and µ2 = 3.5

(c) Dataset with 4 variables and µ2 = 6

Figure 21: Plots showing the average percentage of zero values in synthetic datasets compared to the percentage of zero

values in the simulated data for datasets containing 4 variables
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(a) Dataset with 8 variables and µ2 = 2.25

(b) Dataset with 8 variables and µ2 = 3.5

(c) Dataset with 8 variables and µ2 = 6

Figure 22: Plots showing the average percentage of zero values in synthetic datasets compared to the percentage of zero

values in the simulated data for datasets containing 8 variables
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(a) Dataset with 16 variables and µ2 = 2.25

(b) Dataset with 16 variables and µ2 = 3.5

(c) Dataset with 16 variables and µ2 = 6

Figure 23: Plots showing the average percentage of zero values in synthetic datasets compared to the percentage of zero

values in the simulated data for datasets containing 16 variables
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(a) Dataset with 32 variables and µ2 = 2.25

(b) Dataset with 32 variables and µ2 = 3.5

(c) Dataset with 32 variables and µ2 = 6

Figure 24: Plots showing the average percentage of zero values in synthetic datasets compared to the percentage of zero

values in the simulated data for datasets containing 32 variables
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(a) Dataset with 64 variables and µ2 = 2.25

(b) Dataset with 64 variables and µ2 = 3.5

(c) Dataset with 64 variables and µ2 = 6

Figure 25: Plots showing the average percentage of zero values in synthetic datasets compared to the percentage of zero

values in the simulated data for datasets containing 64 variables
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(a) Dataset with 128 variables and µ2 = 2.25

(b) Dataset with 128 variables and µ2 = 3.5

(c) Dataset with 128 variables and µ2 = 6

Figure 26: Plots showing the average percentage of zero values in synthetic datasets compared to the percentage of zero

values in the simulated data for datasets containing 128 variables
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(a) Dataset with 256 variables and µ2 = 2.25

(b) Dataset with 256 variables and µ2 = 3.5

(c) Dataset with 256 variables and µ2 = 6

Figure 27: Plots showing the average percentage of zero values in synthetic datasets compared to the percentage of zero

values in the simulated data for datasets containing 256 variables
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(a) Dataset with 512 variables and µ2 = 2.25

(b) Dataset with 512 variables and µ2 = 3.5

(c) Dataset with 512 variables and µ2 = 6

Figure 28: Plots showing the average percentage of zero values in synthetic datasets compared to the percentage of zero

values in the simulated data for datasets containing 512 variables
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A.2 Real Data

The following pages contain the plots for the average percentages of zero values in the synthetic datasets plotted against

the percentage of zero values for the 10 real datasets.

(a) Dataset 1 (b) Dataset 2

(c) Dataset 3 (d) Dataset 4

Figure 29: Zero Percentages in Real and Synthesized Datasets using both synthesizer and synthpop for real datasets

1-4. Each dot represents a variable in the data. Ideally, a perfect linear relationship between percentages in the real and

synthesized data should be observed, such that points fall on the grey dashed line.
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(a) Dataset 5 (b) Dataset 6

(c) Dataset 7 (d) Dataset 8

(e) Dataset 9 (f) Dataset 10

Figure 30: Zero Percentages in Real and Synthesized Datasets using both synthesizer and synthpop for real datasets

5-10. Each dot represents a variable in the data. Ideally, a perfect linear relationship between percentages in the real and

synthesized data should be observed, such that points fall on the grey dashed line.
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Appendix B

Percentage Missing Value Plots

This appendix presents the plots of the results for the percentage of missing values in the synthesized datasets for all the

real datasets.

(a) Dataset 1 (b) Dataset 2

(c) Dataset 3 (d) Dataset 4

Figure 31: Missing Percentages in Real and Synthesized Datasets using both synthesizer and synthpop for real datasets

1-4. Each dot represents a variable in the data. Ideally, a perfect linear relationship between percentages in the real and

synthesized data should be observed, such that points fall on the grey dashed line.
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(a) Dataset 5 (b) Dataset 6

(c) Dataset 7 (d) Dataset 8

(e) Dataset 9 (f) Dataset 10

Figure 32: Missing Percentages in Real and Synthesized Datasets using both synthesizer and synthpop for real datasets

5-10. Each dot represents a variable in the data. Ideally, a perfect linear relationship between percentages in the real and

synthesized data should be observed, such that points fall on the grey dashed line.
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Appendix C

R Code

The R code for the computational study in this thesis is available online in a GitHub repository.

See: https://github.com/mishca-jacobs/MSc_Thesis_Code.git

75

https://github.com/mishca-jacobs/MSc_Thesis_Code.git

	Introduction
	Synthetic Data Generation (SDG) Methods
	Types of Synthetic Data Generation (SDG) Methods
	Proposed Synthetic Data Generation (SDG) Method: synthesizer
	The synthesizer Algorithm
	Expected Properties of the sythesizer Algorithm

	Benchmark Synthetic Data Generation (SDG) Method: Non-parametric synthpop

	Quality of Synthetic Data
	Fidelity
	Discriminant Based Metrics
	Exploratory Data Analysis Measures
	Fidelity of Economic and Financial Data

	Specific Utility
	Prediction Accuracy
	Domain Restrictions


	Methods
	Experimental Design
	Data Description: Simulated Data
	Simulation Conditions
	Multivariate Normal Data
	Zero-Inflated Log-Normal Distribution

	Data Description: Real Data
	Synthetic Data Quality
	Implementing the Quality Metrics

	Synthetic Data Generation

	Results
	Simulated Multivariate Normal Data
	Simulated Zero-Inflated Lognormal Data
	Real Data
	Ratios


	Discussion
	Evaluating Synthetic Data Quality (RQ 1)
	Evaluating the synthesizer method against the synthpop method using the selected metrics (RQ 2 & RQ 3)
	Propensity mean squared error (pMSE)
	Percentage zero values
	Percentage missing values
	F1 score
	Ratios
	Conclusion
	Limitations and Further Research

	Conclusion

	Percentage Zero Value Plots
	Zero-Inflated Log-normal Data
	Real Data

	Percentage Missing Value Plots
	R Code

