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1 Introduction

Banks play a vital role in the stability and economy of the financial world. While these entities
are often highly regulated, they are still subject to a phenomenon known as a bank run, even in
the modern world. These runs can occur when a large number of customers who have deposited
their money at a bank all make a simultaneous attempt to withdraw their financial assets.
Historically, these runs are most likely to happen when there is a loss of faith in the bank either
due to internal issues such as bad investments or external issues such as an economic downturn.
They can even still happen in today’s modern technological world, such as the Silicon Valley
Bank crisis in March of 2023, proving that there is still a place for bank run models.

The Diamond-Dybvig Model is an economic model that simulates the environment required for
a run and explores how banks function as intermediaries that create liquid claims against illiquid
assets [1]. The main idea behind the model involves banks providing services to both depositors,
who prefer accounts with liquid assets for easy access to funds, and debtors or loan-takers who
prefer long-maturity, low-liquidity loans. Debtors can be both businesses and single individuals
who wish to make a big purchase, such as a house. This paper aims to give an overview of the
original model from Diamond and Dybvig, then explore some criticisms and extensions of the
model from Ross and Cooper while synthesizing additional sources. Finally, the paper will look
into the collapse of Silicon Valley Bank and attempt to answer if the Diamond-Dybvig model
can explain what went wrong.

1.1 3 Main Ingredients

As stated by Wallace (1988), there are three main ideas or ingredients to the Diamond and
Dybvig model. The first is that individual customers are uncertain about when they will need to
spend money. This leads to a demand for “liquid assets”, or assets which can be easily converted
into cash within a short period of time. The second is known as the sequential service constraint,
which is the idea that different people spend money in succession. For example, the withdrawal
demands of separate customers must be dealt with separately and not all at the same time. In
other words, the bank’s reserve cash management problem becomes an inventory problem, but
the exact definition will be later discussed in further detail. Finally, the third ingredient is that
investment projects in real life are very costly to restart if interrupted. For instance, one can
think of assets that must be held to maturity and will result in a loss if they are sold earlier.

Wallace makes the point that these ingredients by themselves are not new. However, Diamond
and Dybvig use these ingredients to produce a model which allows the mathematical deduction
of the consequences from differing policies applied to bank management. Before getting deep
into the model, it may be wise to give an analogy to understand the three ingredients in a more
familiar setting before entering the financial world. One such analogy describes a simple camping
trip [2].

1.2 Overview Using a Camping Analogy from Wallace (1988)

Wallace starts with a group of N people on the last evening of their camping trip. They are
planning two meals: one late-night snack and a breakfast the next morning. The breakfast will
be the last meal before their return home. In the evening, each camper has y units of food
available. This food will grow if stored, and each unit will become R1 units if held until the
late-night snack and will become R1R2 units if held until breakfast. R1 and R2 are stated as
being fixed returns on the investment.
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However, any food taken out from storage at night is either wasted or eaten. This allows for
the modeling of the cost of interrupting an investment project (one of the main ingredients).
Next, all campers are aware that they will awaken sometime during the night and will either be
hungry and prefer to eat then and skip breakfast, or will not be hungry and will prefer to wait
and eat at breakfast. This allows for uncertainty of expenditures to be included in the model
(another main ingredient). An additional important idea to note is that the campers care about
both possibilities, namely how much they will be able to eat during the night and at breakfast
depending on when they become hungry. Finally, campers have a rough idea about the fraction
of the group that will be hungry during the night.

Before introducing the idea of sequential service (the last main ingredient), Wallace first describes
the situations of joint action versus autarky. Take α1 to be the fraction of the group that will
awaken hungry during the night, and α2 = 1 − α1 as the alternative. Wallace also denotes the
quantity of the meal per person in the following way: c11 for the late-night snack if the camper
is hungry at night, and c22 if not hungry at night. The subscript denotes the time of the meal:
1 for night, 2 for morning. The superscript describes the camper’s state during the night: 1 for
hungry and 2 for not hungry. If each camper acts alone, or autarkically, each person will have
a late-night snack of R1y or a breakfast of R1R2y. Thus, a payoff of c11 = R1y and c22 = R1R2y
is achieved. In this way, the total amount of food consumed during the night is C1 = α1NR1y.
If instead campers pool their resources together rather than acting alone, they can plan to have
either more or less than C1. This is what Wallace calls joint action.

In order to determine how much more or less, suppose C2 is the total amount consumed at
breakfast. Given C1, the maximum of C2 is R2(NR1y−C1). As one can see, after the late-night
snacks C1 are subtracted, the remaining amount accumulates at a rate of R2 and is the amount
which will be consumed at breakfast. If the group of campers can divide C1 equally among the
α1N people who wake up hungry and divide C2 equally among the α2N people who wake up not
hungry, then c11 = C1/(α1N) and c22 = C2/(α2N). Taking C2 = R2(NR1y−C1) and substituting
the expressions with respect to C1 and C2 results in:

c22 = R2(R1y − α1c
1
1)/α2.

Now the possible combinations arising from joint action can be compared with autarky, as seen
in Figure 1 below. Here the non-negative combinations (c11, c

2
2) that satisfy the above equation

are shown.

According to Wallace, if campers were able to rank all combinations on the line, there is no reason
that the autarkic combination would be the favorite, and instead a combination below and to

the right would be preferable. The point in question is labeled as (c̃11, c̃
2
2). In other literature,

the reasoning behind this combination being more preferable is due to relative risk aversion
assumptions which will be discussed later [3]. Note that the preferred amounts involve campers
eating less for breakfast and more for a late-night snack; this is a point involving marginal utility
benefit and cost which we will come to later.

Now that the idea of joint action is explained, the third ingredient can be introduced. Suppose
that the campers are isolated from each other and cannot meet during the night. Thus, they
cannot come together to decide with certainty how many people are hungry during the night
and produce an efficient and feasible amount for the late-night snacks and breakfasts. Now, any
arrangement must follow the rule that campers wake at a random time and do not interact with
others during the night. Therefore, late-night withdrawal demands from the shared resources
must be handled sequentially, hence the name sequential service. In order for the group to deal
with this new situation, suppose that the campers have a sort of cash-machine-like robot which
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Figure 1: Taken from Wallace (1988)

is stocked with and can dispense food for people. The food inside the robot also grows with
the returns R1 and R2. While the machine can check identities and prevent withdrawals from a
different account, it cannot check if a person is actually hungry or making the night withdrawal
for some other reason, an example being their worry that the robot will run out of food and there
will be nothing for breakfast. As the robot can be programmed to accumulate withdrawals and
make future withdrawals depend on past ones, the problem then becomes how campers should
stock and program the robot such that the group obtains their preferred amounts and is the
happiest with their meals. Keep in mind that not using the robot at all is also an option in this
scenario. While a camping trip is far from the world of banking and finance, the idea behind the
Diamond and Dybvig bank run model is quite similar. Using their paper and its extensions, we
will take a look in the next sections at how the campers can solve their dilemma (though we will
omit the analogy). From here, we can begin to explore the ingredients in further mathematical
and financial detail.
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2 Diamond and Dybvig Model and Techniques Used

The original paper begins with a model of periods T = 0, 1, 2, and payoff R > 1 in period 2 for
every monetary unit given in period 0. If the unit(s) are withdrawn in period 1, the value is just
the initial investment. In reality, R can be thought of as the payoff from a long-term investment,
and withdrawing in period 1 is analogous to withdrawing funds before the investment project
comes to fruition. The model then specifies between two different types of consumers, or agents
as they are called. Each consumer learns what type they are in period 1. Type 1 agents care
about consumption in period 1 and derive utility only from this period, while type 2 agents are
willing to wait until period 2 to receive their utility. This effectively models consumers who need
to withdraw their money early versus consumers who can afford to wait and collect interest on
their investment. A fraction t ∈ (0, 1) determines the ratio of type 1 agents to type 2 agents. For
example, if t = 1

4 , it infers that one-fourth of the continuum of agents are type 1 and care about
period 1 consumption. Here, the aim is to model bank customers who must withdraw early due
to impending payments, such as bills or large necessary repairs.

2.1 Agent Utility

The model first utilizes a utility function to determine why agents act in certain ways. Each
agent j has a state-dependent utility function which has the form:

U(c1, c2; θ) =

{
u(c1), if j is of type 1 in state θ

ρu(c1 + c2), if j is of type 2 in state θ

where cT represents goods or money received by an agent at period T . The goods can be either
stored or consumed depending on the type of agent. Here, state θ can be thought of as the
circumstances surrounding the agent and their outcome which can affect their utility or decision
process. For example, if the bank does not have enough liquidity to pay a type 2 agent back
in period 2, the agent may decide to withdraw at period 1, thus changing their utility. While
θ is not defined in detail nor used within the paper itself, state-dependent utility functions are
described in other literature surrounding economic theory [4].

ρ is defined as R−1 < ρ ≤ 1, and u : R++ → R is twice continuously differentiable, increasing,
strictly concave, and satisfies Inada conditions u′(0) = ∞ and u′(∞) = 0 in order to make it a
viable utility function.

As mentioned by Kang (2020), ρ is used to represent the rate at which type 2 agents discount
future utility [5]. In this way, cost of waiting can be measured and balanced against receiving a
quicker payoff. Notice that their utility cannot be discounted lower than by a factor of 1/R, as
then it’s better to be type 1 anyway.

Agents are also assumed to have high risk aversion (the relative risk aversion coefficient is greater
than 1), and will run to withdraw their money at the slightest hint of trouble as well as be more
willing to engage in risk sharing. This reflects real world conditions where depositors are not risk
seeking with the money they place in their checking account. Finally, agents wish to maximize
their expected utility: E[U(c1, c2; θ)].

2.2 Assets Held Directly

In order to demonstrate the roles banks can play, Diamond and Dybvig first consider the situation
where there is no bank (assets are held by agents directly), and types are revealed privately and
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observed privately. All agents then invest in period 0, and their type is revealed privately in
period 1. Then type 1 agents liquidate their investment in period 1 and consume 1, while type
2 agents liquidate their investment in period 2 and consume R. If cik represents consumption in
period k of an agent of type i, then we have c11 = 1, c12 = c21 = 0, and c22 = R. This equilibrium
is known as ’autarky’ which was also mentioned by Wallace above [6].

2.3 Optimal Consumption

On the other hand, if types would be publicly observed at period 1, then a type of insurance
contract could be written. This would allow agents to insure against the probability of becom-
ing a type 1 agent by increasing their period 1 consumption while decreasing their period 2
consumption and would further increase their utility, hence why they would wish to enter into
such a contract. This is known as risk sharing and is viable due to agents’ risk adverseness.
According to Diamond and Dybvig, optimal consumption written as {ci∗k } satisfies the following
constraints:

c2∗1 = c1∗2 = 0 [If agents can delay consumption, they will do so] (1)

u′(c1∗1 ) = ρRu′(c2∗2 ) [Marginal benefit equal to marginal cost] (2)

tc1∗1 + [(1− t)c2∗2 /R] = 1 [Resource constraint]. (3)

Using the fact that ρR > 1, and the relative risk aversion exceeds 1, Diamond and Dybvig
conclude that the optimal consumption levels satisfy c1∗1 > 1 and c2∗2 < R. Thus, the competitive
outcome where types are revealed privately can be improved. One can also note that c2∗2 > c1∗1
by equation (2), again using that ρR > 1. In other words, agents accept a lower consumption in
period 2 for a reasonable return if they cash out before the investment project reaches maturity.
This is where financial intermediaries such as banks step in. Banks are able to pool resources
and pay agents what they will respectively consume at the different periods.

2.4 Demand Deposit Contract Model

But how would a bank go about doing this? A demand deposit contract can be thought of as a
basic checking account. It is an agreement between a depositor and a bank where the depositor
can withdraw their funds as soon as they require. One more assumption Diamond and Dybvig
use is that the bank is “mutually owned” and liquidated in period 2 where the proceeds go to the
agents withdrawing in period 2. Therefore, the amount each type 2 agent gets is calculated after
the withdrawals at period 1. This of course can give type 2 agents incentive to also withdraw
in period 1 if they believe that the bank will run out of assets before it can be liquidated. The
following equations are used as a basis for such a model, with VT being the payoff per unit deposit
withdrawn in period T :

V1(fj , r1) =

{
r1, if fj < r−1

1

0, if fj ≥ r−1
1

V2(f, r1) = max

{
R(1− r1f)

1− f
, 0

}
.

The contract gives each agent that withdraws in period 1 a payoff of r1 per unit deposited at
T = 0, and fj is the number of withdrawals completed before agent j written as a fraction of
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total demand deposits. f is then the total number of demand deposits withdrawn in T = 1 over
the total demand deposits created. Note that 1/r1 is used as stopping time since fj is a fraction.

Additionally, Diamond and Dybvig explain the idea of a sequential service constraint. This is
defined as “a bank’s payoff to any agent can depend only on the agent’s place in line and not on
future information about agents behind him in line.” Hence V1 is dependent on the location of a
single agent fj , rather than how many agents there are in total.

This reflects the real world situation where a bank cannot look into the future and see how
many more agents will withdraw, but rather can only service the agents currently withdrawing.
Diamond and Dybvig assume that a bank must obey this constraint when delivering withdrawals.
Thus, if T = 1, VT is dependent on an agent’s place in line, and if T = 2, it is dependent on the
total withdrawals at T = 1. Breaking down V2(f, r1), one sees that it is the investment outcome
R, times the amount of resources left in the bank after the first round of withdrawals at T = 1
(that is 1− r1f), and divided among the fraction of agents who did not withdraw at T = 1. The
maximum with 0 is used in the case that the bank runs out of money before the second round
of withdrawals can be paid.

2.5 Suspension of Convertibility Improvement

Now, Diamond and Dybvig attempt to model how a bank can suddenly stop withdrawals in the
event of a run. Almost everything is identical to the previous model, besides that here they take
a fraction f̂ < r−1

1 as the “stopping point”. If any agent tries to withdraw in the first period

after f̂ of all deposits have been withdrawn, the agent receives nothing, hence:

V1(fj , r1) =

{
r1, if fj < f̂

0, if fj ≥ f̂

V2(f, r1) = max

{
R(1− r1f)

1− f
,
R(1− r1f̂)

1− f̂

}
.

Unfortunately, this only works optimally when the fraction of type 1 agents is known (t). Opti-
mally, consumption is the same for all agents of a certain type, and depends on the realization
of t. However, if t is stochastic, denoted as t̃, this system fails due to the incompatibility with
the sequential service constraint. This is described in the following proposition from the paper:

Diamond and Dybvig Proposition 1. Bank contracts (which must obey the sequential service
constraint) cannot achieve optimal risk sharing when t is stochastic and has a non-degenerate
distribution.

The proof can be found in the Appendix.

The proof can be found at the end of this thesis, but simply put, Diamond and Dybvig argue
that a bank cannot optimally make use of the suspension of convertibility if they do not know
the fraction of type 1 agents. The main problem occurs when f̃ is less than the largest possible
realization of t̃. In that case, there is an inefficiency as some type 1 agents cannot withdraw.
Diamond and Dybvig argue that this is where government deposit insurance shines.
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2.6 Government Deposit Insurance Improvement

Finally, Diamond and Dybvig create a system revolving around deposit insurance, where a secure
financial institution secures the deposits of agents to ensure that the payoff of a bank run is
limited. Firstly, they assume that the government is the best financial institution to provide
insurance. This also implies that the government can raise a tax to pay for this insurance if it is
needed. The tax is dependent on the number of withdrawals. They denote the tax as a function
of f , τ : [0, 1] → [0, 1] such that:

τ(f) =

{
1− c1∗1 (f)

r1
, if f ≤ t̄

1− 1
r1
, if f > t̄.

(4)

Here t̄ is the greatest possible realization of t̃. Now they denote V̂1(f) as the after-tax payoff,
which is given by the following equation:

V̂1(f) =

{
c1∗1 (f), if f ≤ t̄

1, if f > t̄.
(5)

c1∗1 (f) is the optimum consumption for a type 1 agent at period 1 dependent on the total fraction
of withdrawals over deposits. Then, the net payments to the agents who withdraw at period 1
determine the after-tax value of the withdrawals at period 2. Thus, V̂2(f) denotes the after-tax
proceeds per initial deposit unit of a withdrawal at T = 2:

V̂2(f) =

{
R(1−[c1∗1 (f)f ])

1−f = c2∗2 (f), if f ≤ t̄
R(1−f)
1−f = R, if f > t̄.

(6)

Seeing as how V̂1(f) < V̂2(f) for all f ∈ [0, 1], no type 2 agents will want to withdraw in the first
period, even if they anticipate a run. Additionally, V̂1(f) > 0 shows that all type 1 agents will
wish to withdraw in the first period as they care only about consumption at T = 1.

2.7 Findings

The Diamond-Dybvig model demonstrates that there are two Nash equilibria when not consid-
ering the autarky solution. The first achieves optimal risk sharing where type 1 agents withdraw
at T = 1 while type 2 agents wait until T = 2 with no issues for any party. The second is that
of a bank run, where all agents panic and attempt to withdraw at T = 1 as there is less utility
in withdrawing later. They also find that any liquidity offering service is subject to runs.

The first improvement they make to the model, suspension of convertibility, shows that if the
fraction of type 1 agents t is constant and known, the run equilibrium is avoided and the first
equilibrium mentioned above is a dominant strategy equilibrium. However, in the more general
case where t is stochastic, suspension of convertibility fails and the bank cannot achieve optimal
risk sharing (proposition 1).

The second and final improvement reveals that it never helps the consumers to participate in a
bank run as long as government deposit insurance is in place. Diamond and Dybvig demonstrate
that demand deposit contracts with this insurance achieve the unconstrained consumer optimum
as a unique Nash equilibrium. This is also a dominant strategy equilibrium. They show this
with the following proposition:
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Diamond and Dybvig Proposition 2. Demand deposit contracts with government deposit
insurance achieve the unconstrained optimum as a unique Nash equilibrium if the government
imposes an optimal tax to finance the deposit insurance.

The proof follows equations from section 2.6 and can be found in the Appendix.

2.8 Conclusions of the Diamond-Dybvig Model

Historically, banks often tried to stop bank runs using ”suspension of convertibility,” and shut off
the ability of the customers to make withdrawals completely [1]. While this method can be effec-
tive at blocking a run taking place, it simply does not address the underlying fear that prompted
the run in the first place, and can adversely affect consumer trust in the bank. Additionally, it
can result in some depositors still not having access to their funds when they need them.

Diamond and Dybvig argue that deposit insurance is a preferable alternative when it comes to
managing bank runs, as opposed to suspension of convertibility practices. They conclude that
deposit insurance issued by a central bank or federal government can solve this issue while still
giving the best utility to all types of agents.

However, there are potential downsides to deposit insurance not discussed in this paper. Banks
can often be incentivized through this insurance to make riskier investments than they would
otherwise. After all, if the deposits are insured by the federal government, the risk of insolvency
is much lower. This is a concept known as moral hazard and it is explored in mathematical detail
by Cooper and Ross [7].
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3 Improvements by Cooper and Ross

Moral hazard is defined as “...an incentive to take unusual risks in a desperate attempt to earn
a profit before the contract settles” [8]. An example from the field of banking and investment
theory would be an investor who has incentive to take unnecessary risks which may endanger the
funds entrusted to them. This was a major problem in the 1980s during what became known
in the United States as the savings and loan (S&L) crisis. This event led to taxpayers’ having
to shoulder an enormous amount of bad debt despite, or perhaps even due to, deposit insurance
secured by the government. Cooper and Ross attempt to not only model moral hazard, but also
explain the crisis itself in an effort to show how deposit insurance alone will not solve the problem
of bank runs. Even though the insurance may avoid bank runs, it can have adverse effects to the
incentives of both depositors and bank managers.

3.1 Techniques

The techniques used by Cooper and Ross are at first quite similar to those from Diamond and
Dybvig. They begin once again with periods T = 0, 1, 2 and the two types of agents. A fraction
π1 learn that they obtain utility from early consumption (period 1), and the rest obtain utility
from late consumption (period 2). They assume π is nonstochastic and known to all agents. They
describe a utility function U(c) and the consumption levels for period 1 and period 2 consumers,
cE and cL respectively.

Similar to the original paper, there are two technologies available: an illiquid productive tech-
nology, which offers a return of R > 1 in the second period, and a storage technology, which
gives one unit in period T + 1 per unit of period T investment. Again, the realistic example
for the illiquid productive technology would be interest gained from a deposit while the storage
technology could be a simple checking account.

3.2 Constraints and Contracts

Assuming it is free and possible to verify agent types, an intermediary would offer an optimum
contract δ∗ = (c∗E , c

∗
L) which solves the following expression:

max
cE ,cL

πU(cE) + (1− π)U(cL) (7)

s.t. 1 = πcE +
(1− π)cL

R
.

The idea is similar to the optimum consumption from Diamond and Dybvig. The first equation
is necessary to maximize the utility for all types of consumers, hence the utility function and
fraction π. The second equation is the resource constraint and ensures that consumption by
agents is limited.

If consumer tastes are private information, however, multiple equilibria including a ”bank run”
equilibrium can exist. A bank can respond to this in one of two ways: either they can write
a contract that is not vulnerable to bank runs at all, or they can alternatively look at which
equilibrium is likely and reduce the impact of runs should they occur [9]. The first method
involves adding the additional constraint cE ≤ 1; this way there are always enough period 1
resources to pay consumers. In fact, the best runs-preventing contract will require cE = 1 and

1π here is analogous to t from Diamond and Dybvig
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cL = R, though this is not necessarily optimal consumption for agents, as shown by Diamond
and Dybvig.

The alternative method involves the variable q defined as the probability of economy-wide pes-
simism leading to a bank run. Here, a publicly observable event is what determines the behavior
of depositors, which is known as a sunspot in the literature. Therefore, the contract now solves:

max
cE ,cL

(1− q)[πU(cE) + (1− π)U(cL)] + qU(cE)(1/cE)

s.t. 1 = πcE +
(1− π)cL

R
.

It is assumed that the early consumption cE is greater than 1, otherwise this contract is dom-
inated by the best runs-preventing contract where cE = 1 and cL = R. One notes that, in the
event of a run, higher early consumption decreases overall utility as the probability of an agent
actually receiving cE is much lower. This q will be included later in the extended model with
depositor monitoring, but before that, Cooper and Ross first give depositors a reason to monitor;
namely an investment option with a higher paying, but riskier, investment option for the bank
manager.

3.3 Extended Model: Richer Investment Option

In order to fully encompass what moral hazard implies, Cooper and Ross create an additional
multiperiod technology which yields one unit at T = 1 and a return of λR with probability ν
and nothing otherwise at T = 2. The risky investment should have a higher return upon success,
but a lower expected return than the riskless technology. Thus assume that λ > 1 and νλ ≤ 1.
Also assume that the government provides complete deposit insurance such that even late con-
sumers receive a complete payment, with notation I(cE) and I(cL) for the payments given to
early and late consumers respectively. For example, if I(cL) = cL, the government is paying full
deposit insurance to late consumers.

Finally, assume that any funds remaining after the payment to late consumers are retained by
the shareholders of the bank. Then, with i indicating the amount of resources per unit of deposit
that the bank invests into the risky fund, the following equation represents the money retained
by the shareholders with the first-best contract:

max
i

[ν(iλR+ (1− i− πc∗E)R− (1− π)c∗L) + (1− ν)max((1− i− πc∗E)R− (1− π)c∗L, 0)].

A very interesting fact to note is that the the best solution to the equation is for the intermediary
to place all funds in the risky investment. This is because the bank will earn no profits from
the riskless investment as all money goes to the depositors, and if the risky investment fails, the
bank also has no return. Therefore there is no incentive for the manager to invest anything in
the riskless illiquid technology as there is no payoff. One may ask why the depositors accept the
bank taking such risks, but one should remember that the government will fully reimburse them
should the bank become insolvent. Thus, the agents also have no reason to oppose this moral
hazard.

3.4 Extended Model: Monitoring

The second change from the Diamond and Dybvig model is depositor monitoring. The main idea
is that a depositor can “check” the bank’s investment at T = 0 and force the bank to change
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their portfolio to what the depositor wants. The depositor incurs a utility loss Γ in doing so.
Cooper and Ross state that if moral hazard is present, monitoring will occur if and only if:

(1− π)(1− ν)(1− q)[U(cL)− U(I(cL))] ≥ Γ.

The inequality above takes into account several conditions:

1. Monitoring is only useful to type 2 agents as the yield in period 1 is the same for both
investments, and monitoring happens before the agents learn their types. [1− π]

2. Without monitoring, the bank will use the risky investment which yields cL with probability
ν. Hence the risky investment’s probability of failure cannot be too low otherwise there is
no incentive in monitoring. [1− ν]

3. There is no point in monitoring if there is a bank run, since once again both investments
yield the same return in period 1. Thus the probability of optimism also cannot be too
low. [1− q]

4. If the government pays too much deposit insurance, i.e. I(cL) ≈ cL, there is also no
incentive to monitor. [U(cL)− U(I(cL))]

3.5 Extended Model: Capital Requirements

The final extension from Cooper and Ross is the inclusion of capital requirements to the liquidity
of a bank. This is done by the government requiring that the shareholders contribute κ units
per unit of deposit to the bank. Then the bank’s portfolio is determined by:

max
i

[ν(iλR+(κ+1− i−πcE)R−(1−π)cL)+(1−ν)max((κ+1− i−πcE)R−(1−π)cL, 0)]. (8)

From the following proposition, Cooper and Ross formally show that if the capital requirement κ
is large enough, shareholders will not prefer the risky investment and moral hazard is no longer
an issue. Additionally, with complete deposit insurance, bank runs are also no longer a problem,
and depositors will not have to lower their utility by monitoring.

Cooper and Ross Proposition 1. If I(cL) = cL for cL ≤ c∗L, I(cL) = c∗L for cL > c∗L,
I(cE) = cE for cE ≤ c∗E, I(cE) = c∗E for cE > c∗E, and κ ≥ κ∗ ≡ [ν(λ − 1)]/[1 − λν], then the
first-best allocation of (c∗E , c

∗
L) is achievable without bank runs and without monitoring.

The proof can be found in the Appendix.

3.6 Findings

An interesting finding of Cooper and Ross involves the parameters q and κ, and their critical
levels within the model. The q, representing the probability of economy-wide pessimism, and it’s
critical point, q∗ ∈ (0, 1), show the best type of contract given a particular economic situation. If
pessimism in the economy is large and runs are probable, then the best runs-preventing contract
dominates the best contract with runs. The opposite is true if there is economic optimism and
q is small enough. Formally, this is written as q > q∗ for the first scenario, and q < q∗ for the
second.
On the other hand, the κ representing a capital requirement by the government also has a critical
value. As seen in proposition 1, this value is

κ ≥ κ∗ ≡ ν(λ− 1)

1− λν
.
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Any κ lower than κ∗ will create an incentive to be exposed to a risky investment. One point of
interest are the effects of a parameter change on this critical level. If one increases λ and decreases
ν in such a way that λν remains the same, the critical level will increase. In other words, if a
risky asset is less likely to succeed, but the expected return is held constant, higher capital will be
required to prevent moral hazard. Additionally, raising only one of the parameters and keeping
the other one constant will also raise the minimum capital requirement. If a risky asset is more
efficient, one needs to impose tighter requirements to once again avoid moral hazard.

Finally, Cooper and Ross make the statement that deposit insurance does not create the moral
hazard problem, as managers would take the same risks for the shareholders with or without the
insurance. Deposit insurance instead reduces the incentive of depositors to monitor banks and
force changes to their portfolios. Thus, in certain situations deposit insurance can create even
more problems than it would solve given the right environment.

3.7 Conclusions from Cooper and Ross

Cooper and Ross make the conclusion that first-best allocation of assets to depositors is possible
using a combination of capital requirements and deposit insurance. However, they make the
point that in reality, there can be limitations to solutions due to the presence of moral hazard.
This can be between bank owners and managers. Additionally, banks and financial institutions
may have difficulties in raising and maintaining sufficient equity capital, thus the critical κ may
not be feasible. Finally, the level of required capital must also be adjusted by the government in
response to changes in the economic environment, which can happen suddenly and frequently.
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4 Probabilistic Improvements by Goldstein and Pauzner

Similarly to Cooper and Ross, Goldstein and Pauzner create a modified version of the original
Diamond and Dybvig model. They not only explore the maturity mismatch between assets and
liabilities leading to bank runs like papers before it, but also seek to address the likelihood of
each equilibrium presented by Diamond and Dybvig. Their point being that in one equilibrium,
the welfare of the agents is increased and in another, the welfare is decreased. Since Diamond
and Dybvig did not give any indication of how likely one equilibrium is to another, the overall
utility gained or lost through demand-deposit contracts could not be determined. Therefore,
Goldstein and Pauzner modify their model to where the fundamentals of the economy direct the
likelihood of a bank run as opposed to agent behavior. In this way, the model has a unique
Bayesian equilibrium, where each agent’s strategy is optimal given their beliefs about the other
agents’ private information. Here, a bank run occurs if and only if the economy fundamentals
are below a critical value.

4.1 Assumptions

They firstly assume that the fundamentals of the economy are stochastic. Additionally, they
assume that agents do not all hold common knowledge of how the economy is doing. They
instead observe noisy private signals. This assumption can even be thought of as more realistic
as most investors do not share the same information and opinions about how the economy is
doing at any given moment. Rather, they obtain their news from separate sources and digest
that information with their own private ideas.

Goldstein and Pauzner stress that even if the economy fundamentals uniquely direct a bank
run, the runs that occur in their model are driven by bad expectations and are thus still panic-
based. The economy does not directly control the agents or their actions, however it serves as
a tool which coordinates how they believe that other agents will react. This is both similar
and different to Cooper and Ross’ q and q∗. It is similar in that they are both variables to
represent the fundamentals of the overall economy and this affects how agents will react. On the
other hand, it is different since q is a publicly observable event that determines the behavior of
agents, but Goldstein and Pauzner utilize private noisy signals which influence agents but does
not control them.

4.2 Basic Framework

4.2.1 The Economy

Goldstein and Pauzner use the same basic framework as both Diamond and Dybvig and Cooper
and Ross. Again, type 1 agents consume in period 1 and obtain utility u(c1) and patient agents
can consume in either period with utility u(c1 + c2). While not explicitely mentioned in Cooper
and Ross, both Diamond and Dybvig and Goldstein and Pauzner define the utility function u
as twice continuously differentiable, increasing, and, for any c ≥ 1, the function has a relative
risk-aversion coefficient −cu′′(c)/u′(c) > 1. Finally, u(0) = 0. Again, as previously seen, each
unit invested in period 0 gives one unit of output in period 1 if withdrawn. However, a key
difference in this model is what happens in period 2. A withdrawal here yields R units of output
with probability p(θ) and 0 units with probability 1 − p(θ). The variable θ is the current state
of the economy drawn from a uniform distribution on [0, 1]. It is also unknown to agents before
period 2. p(θ) is strictly increasing in θ since the better the state of the economy, the greater the
probability that one will receive R. Finally, in order for type 2 agents to obtain greater utility
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by waiting, p(θ) also satisfies Eθ[p(θ)]u(R) > u(1).

4.2.2 Risk Sharing and Utility Gain/Loss

Similar to previous definitions of autarky, type 1 (impatient) agents consume one unit in period
1, and type 2 (patient) agents consume R units with probability p(θ). One detail to note is
the importance of risk aversion. Since agents are assumed to be highly risk averse, they gain
higher utility by having some insurance in case they become type 1. This insurance takes the
form of higher consumption by type 1 agents and lower consumption by type 2 agents, which is
stated in Wallace’s camping analogy and by Diamond and Dybvig to be preferable. Goldstein
and Pauzner also determine this by equating the benefit of type 1 agents to the cost of type 2
agents using the following first-order condition:

u′(cFB
1 ) = Ru′

(
1− λcFB

1

1− λ
R

)
Eθ[p(θ)].

This is very similar in form to equation (2), the second constraint from the original model. On
the left hand side, one can see the marginal utility benefit gained by type 1 agents where cFB

1 is
the optimal or first-best c1. On the right hand side, one can see the marginal utility cost that
type 2 agents must bear where λ is the fraction of type 1 agents (t and π in Diamond and Dybvig
and Cooper and Ross respectively). By first observing c1 = 1, it can be seen that the marginal
utility benefit is greater than the marginal utility cost. Since cu′(c) is a decreasing function of c
due to the coefficient of relative risk aversion being greater than 1, R > 1, and Eθ[p(θ)] ≤ 1, we
have 1 ·u′(1) > R ·u′(R) ·Eθ[p(θ)]. However, we desire the equality, and since the marginal utility
benefit is decreasing in c1 and the marginal utility cost increasing again due to cu′(c) being a
decreasing function, cFB

1 must be greater than 1. Thus, Goldstein and Pauzner also conclude
that risk sharing is optimal.

4.2.3 Banks and Payments

Again in concurrence with Diamond and Dybvig, Goldstein and Pauzner observe demand-deposit
contracts used by banks to enable risk sharing when agents’ types are not observable. At period
1, an agent obtains a fixed payment of r1 > 1, but at period 2, a patient agent receives a stochastic
payoff of r̃2. This is distinct from past models due to the usage of p(θ). r̃2 is the remaining
non-liquidated investments divided by the number of depositors left after the first period. As
usual, the sequential service constraint is assumed. For a simple summary, one can look at the
following table based on the one found in the Goldstein-Pauzner paper:

Withdrawal in Period f < 1/r1 f ≥ 1/r1

1 r1

{
r1 with probability 1

fr1

0 with probability 1− 1
fr1

2

{
(1−fr1)
1−f R with probability p(θ)

0 with probability 1− p(θ)
0

Table 1: Subsequent Payments to Agents

Here, f is equivalent to Diamond and Dybvig’s f , or the fraction of agents wanting to withdraw
early. As one can see, the table has payment values almost the same as the VT payoff equations
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shown above. In fact, the original Diamond-Dybvig model is a speical case of the Goldstein-
Pauzner model with Eθ[p(θ)] = 1. Thus Goldstein and Pauzner have actually generalized the
previous model by the inclusion of a stochastic variable.

One criticism of the Diamond-Dybvig model is their assumption that r1 is the optimal payment
from a bank to impatient agents. They make this assumption that the good equilibrium of
efficient risk sharing is always selected, rather than using any probabilistic argument. Thus they
set cFB

1 equal to r1. Goldstein and Pauzner propose the counter-argument that such a contract is
non-optimal if there is a large enough probability of bank runs. This is also supported by Cooper
and Ross with their runs-preventing contract. Additionally, using such a contract ignores the
possible relation between the amount of liquidity a contract provides and the probability of a
bank run. If a high r1 leads to a higher probability of a bank run due to liquidity issues, the
optimal r1 could fail to be cFB

1 . The Goldstein-Pauzner model resolves these problems using
their largest model extension: private signals received by agents.

4.3 Private Signals

Assume now that at the start of the first period, each agent receives a private signal about the
economic fundamentals. Now, each agent’s action depends on their signal. First, assume that
state θ is fixed at the start of the first period. However, it is not yet publicly revealed. Each
agent i receives a signal of θi = θ + ϵi. Each ϵi is a small error term corresponding to agent i
and the terms are independently and uniformly diestributed over [−ϵ, ϵ]. As stated above, one
can think of each ϵi as private information received about the state of the economy, and θi as
their overall opinion about the economy and the potential for a return from the bank investment
project. Even though agents all have different information and different opinions, the quality of
their signal gives them no added advantage.

Starting from period 1, the payoff of a patient agent is contingent on not only θ, but also the
fraction of f agents seeking early withdrawal as one can see in Table 1. In this way, with
information about θ and f given to an agent through their signal, their choice to wait or to run
depends on their personal signal. Using this model, Goldstein and Pauzner make the assumption
that there exist ranges of extremely positive or extremely negative economy fundamentals. In
these ranges, a type 2 agent’s best course of action is not affected by the actions of other agents;
for example, the economy is doing so terribly that no matter what other agents are doing, a
patient agent should always run.

4.3.1 Lower Dominance Region

In the lower range of θ, the probability of the bank defaulting and type 2 agents receiving a payoff
of 0 is very high. Therefore, the expected utility of choosing to wait is lower than the utility
gained from withdrawing early. This is true even if all other patient agents wait. Goldstein and
Pauzner denote θ(r1) as the value of θ which gives u(r1) = p(θ)u( 1−λr1

1−λ R). The interval [0, θ(r1))
is known as the lower dominance region (LDR). Thus, a type 2 agent will always withdraw early
if they observe a signal θi < θ(r1) − ϵ as the true state of the economy (θ) and their private
signal differs no more than ϵ. Another important assumption here is that there are values of θ
for which all agents obtain signals which assure them that θ is in the LDR. This can be thought
of as the critical point where actions no longer matter and it is always better for an agent to run
than to wait. The critical point that guarantees this for any r1 ≥ 1 is shown to be θ(1) > 2ϵ.
Conclusively, when θ = 0, all type 2 agents receive a signal below ϵ and must run.
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4.3.2 Upper Dominance Region

Symmetrically, Goldstein and Pauzner also assume the existence of an upper dominance region
(UDR) where no matter the actions of others, a patient agent will always wait to withdraw. This
region has a range of (θ̄, 1]. One modification of the investment technology is needed to produce
this region. The investment return, or production, normally produces a return of 1 at period 1.
However, the return for the bank is modified to return 1 in the range [0, θ̄], and R in the range
(θ̄, 1]. One can interpret this modification as an extremely positive economy produces improved
short-term returns when long-term returns are nearly certain. In this way, the return gained by
the bank is higher than the maximal possible value of r1, and there is no point in liquidating
more than a single unit of investment to pay r1 to an early agent. Therefore, the payments to
agents withdrawing in period 2 are guaranteed. Like the LDR, Goldstein and Pauzner assume
θ̄ < 1− 2ϵ.

4.3.3 Analysis of Regions

To summarize the regions and provide some ease to visual learners, we can look at the following
figure:

Figure 2: Dominance Regions and Agents’ Behavior.
Taken from Goldstein and Pauzner (2005) with some modifications

To explain the figure further: the dotted line is a lower bound on f , and is constructed as the
proportion of type 1 agents (λ) plus the type 2 agents who receive a signal of θi < θ(r1)− ϵ (the
threshold level). As in section 4.3.1, θ < θ(r1) − 2ϵ implies that all type 2 agents get signals
below θ(r1)− ϵ and they must all run so f is 1. If θ > θ(r1), then no type 2 agent gets a signal
below θ(r1)−ϵ and none of these agents must run. Note that they can still run depending on the
actions of others, but it is not a given. Therefore, the lower bound is λ, the original proportion
of type 1 agents. Finally, the distribution of the ϵi’s is uniform and thus as θ increases from
θ(r1) − 2ϵ to θ(r1), the fraction of type 2 agents with signals below θ(r1) − ϵ decreases linearly
with a rate of 1−λ

2ϵ .

On the other hand, the solid line is the upper bound of f , and is constructed similarly with type
2 agents waiting if their signal is above θ̄ + ϵ.

Goldstein and Pauzner admit that little direct information about agents’ behavior can be deter-
mined from the LDR and UDR. The intermediate region is far more interesting where the optimal
strategy for an agent depends on their beliefs towards the actions of other agents. Here, agents
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do not know exactly what signals the other agents received; therefore, to choose the optimal
action (or equilibrium action) at a certain signal, an agent takes into account the equilibrium
actions of other agents at nearby signals. These actions depend on equilibrium actions at other,
more distant signals. This process repeats until the equilibrium becomes consistent with the
behavior at the dominance regions, but luckily this behavior is known! Goldstein and Pauzner
are able to use this fact to determine the actions of agents in the intermediate region and with
it, an optimal banking contract.

4.4 Findings

The first finding of Goldstein and Pauzner is that their model has a unique equilibrium in which
type 2 agents run if they receive a signal below a critical threshold θ∗(r1) and do not run if they
receive a signal above. This is a distinct finding from the other models, where there are always
two equilibria. In other words, they find that the behavior of a patient agent is in fact uniquely
determined by their signal, and they will rush on the bank if and only if the signal received is
below some critical value. Goldstein and Pauzner also define a deterministic function f(θ, θ∗(r1))
which specifies the fraction of agents who run when the economic fundamentals are θ with θ∗(r1)
being the threshold level. It is defined as follows:

f(θ, θ∗(r1)) =


1 if θ ≤ θ∗(r1)− ϵ

λ+ (1− λ)
(

θ∗(r1)+ϵ−θ
2ϵ

)
if θ∗(r1)− ϵ ≤ θ ≤ θ∗(r1) + ϵ

λ if θ ≥ θ∗(r1) + ϵ.

Notice that the fraction of agents who run is 1 when θ is below θ∗(r1)− ϵ since there all type 2
agents receive signals below θ∗, and λ when θ is above θ∗(r1) + ϵ since the signals are above θ∗.
Again, the economic fundamentals and the noise added to signals are uniformly distributed as
we originally assumed, so f(θ, θ∗) decreases linearly between θ∗ − ϵ and θ∗ + ϵ.

Using this, Goldstein and Pauzner are able to study how the likelihood of runs is dependent on r1
and arrive at their second finding. Namely that a larger r1 implies that the set of signals which
leads to type 2 agents running are also larger. Therefore, increased risk sharing between agents
allows the banking system to become more vulnerable to bank runs. Intuitively, the utility type 2
agents gain from withdrawing in period 1 is larger since the payment in period 1 is increased and
the payment in period 2 decreased. With this information, Goldstein and Pauzner understand
how r1 affects the actions of agents in period 1. Thus, they are able to compute the optimal
r1 by looking back at period 0. They find that if the LDR at r1 = 1, [0, θ(1)) in mathematical
notation, is not too large, then the optimal r1 is larger than 1 and risk sharing benefits agents
more than hinders them. In other words, a bank is a viable institution if the range where it is
better to withdraw assets earlier is not too large. This of course makes sense in the real world
since if it is likely that withdrawing one’s cash early is better in the long run, there is no reason to
put money in a bank in the first place. Finally, Goldstein and Pauzner are also able to determine
that the optimal r1 is actually lower than cFB

1 . Unlike Diamond and Dybvig, who calculated
cFB
1 to maximize the increased utility from risk sharing without considering the consequences of
a bank run, here bank runs are taken into consideration. Therefore, a bank must trade off the
benefit of risk sharing with the cost of a bank run.

4.5 Conclusions from Goldstein and Pauzner

In contrast to Cooper and Ross, agents’ ability to coordinate their actions from the economic
fundamentals is not just a sunspot like the variable q. Instead, it is a payoff-relevant variable.
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There is a unique outcome where agents must rely on their signals and cannot ignore them. This
is in contrast with how the previous model depends on a critical q∗ to determine the more efficient
contract. The main takeaway from this final model is that there is one unique equilibrium, and
here a run only occurs if the fundamentals are below some critical level. The probability of a
run occurring depends on the banking contract itself, and specifically how small or large the
payment to type 1 agents is. The optimal r1 is found to not have the maximal utility gain
from risk sharing as otherwise bank runs would be too likely. The overall decrease in welfare
from the higher probability of runs outweighs the utility benefit gained by agents through risk
sharing. Goldstein and Pauzner end with questioning how banking policies such as suspension of
convertibility and deposit insurance can affect agent utility given the probability of runs. They
argue that their model is much more suitable for this analysis since expected welfare cannot be
calculated if the likelihood of a run is not known, but the exact details are left for future research.
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5 Silicon Valley Bank

5.1 Background

On March 10, 2023, Silicon Valley Bank (SVB) was struck by, and failed due to, a bank run. This
marked the third-largest bank failure in United States history and the most significant since the
2007–2008 financial crisis [10]. This event was part of a series of three bank failures that occurred
in March 2023 in the United States, additionally involving Silvergate Bank and Signature Bank.

To decide how we may be able to apply the Diamond-Dybvig model, we must first understand
what exactly went wrong. Firstly, from 2021, SVB had a significant increase in depositors,
mostly resulting from entrepreneurs and their start-up companies. In an attempt to secure higher
investment returns from the growing number of depositors, the bank significantly increased its
holdings of long-term securities, recording them as hold-to-maturity assets. Hold-to-maturity is
exactly what it sounds like: the bank plans to hold these assets until they mature, otherwise they
will take a loss if they attempt to sell them before the maturity date. Therefore, these assets are
rather illiquid and must be held until a future period, which is exactly the main scenario covered
by the Diamond-Dybvig model. However, due to the Federal Reserve hiking interest rates to
address rising inflation, the market value of these bonds depreciated considerably throughout
2022 and into 2023 since new bonds with higher interest rates were worth much more than the
old ones. This resulted in unrealized losses on the portfolio of Silicon Valley Bank. The surge
in interest rates also escalated borrowing costs across the economy, prompting some of SVB’s
clients in Silicon Valley to withdraw funds to meet their liquidity requirements including paying
salaries. These customers would be thought of as Type 1 in the model.

To address the situation and meet withdrawal demands, SVB revealed on March 8th that it had
liquidated over $21 billion USD worth of securities and planned an emergency sale to generate
$2.25 billion from its treasury stock [11]. Unfortunately, this announcement combined with
additional warnings from Silicon Valley investors triggered a panic-based bank run. The very
next day, customers withdrew a total of $42 billion.

The California Department of Financial Protection and Innovation took control of SVB on March
10th and placed it under the control of the Federal Deposit Insurance Corporation (FDIC). An-
other unfortunate fact was that approximately 89 percent of the bank’s $175 billion in depositor
funds exceeded the maximum insured by the FDIC due to most customers being start-ups [12].
This was of course another factor in the bank run as the entrepreneurs did not know if the
government would refund the entire deposit. Luckily, the FDIC quickly ensured full access to
funds for all depositors without utilizing taxpayer money with SVB reopening as Silicon Valley
Bridge Bank and offering its assets for auction.

The result of this bank run had serious consequences for start-ups both within the U.S. and
foreign, with many unable to meet their monetary obligations. Technology, media, and winery
companies, along with venture capital-backed founders, also faced disruptions. With SVB closed,
many start-ups and founders were forced to take their business elsewhere to banks with less
favorable conditions and entrepreneurship as a whole took a massive hit [13].

5.2 Applying the Model

There are several similarities between the crisis and the original Diamond-Dybvig model, though
the main question is, can such a model be applied in this situation? As seen in the previous
section, there are several variables which may have been responsible. The first and most obvious
reason was that there was a large amount of unexpected type 1 consumers due to a sudden panic.
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This was the ultimate reason for the bank’s closing as they did not have the liquidity to pay back
depositors. However, in order to get to such a place, there must be a larger reason why SVB
failed. The second reason was where their investments were concentrated: in Hold-to-Maturity
assets. Therefore, in this section, we will be looking at both the Diamond and Dybvig model
and the Cooper and Ross model to explore how these aspects of bank runs can be simulated in
MATLAB and if these models are a good fit for describing the Silicon Valley Bank run. The
exact code can be found below in the appendix.

5.2.1 Diamond and Dybvig

Using the Diamond and Dybvig model, we first looked at how the amount given to type 1
consumers (r1) would affect the amount of agents who can withdraw from a bank before there is
a bank run. Here, it was assumed that if agent 2 utility gained from withdrawing in period 2 was
less than agent 1 utility gained by withdrawing in period 1, there would be a run since type 2
agents would have no reason to wait as the bank is running out of assets. For the utility function,
we used −1

x as this met the desired conditions given in the model, especially the Inada conditions
of u′(0) = ∞ and u′(∞) = 0 as well as the relative risk aversion coefficient being greater than
1. One issue with the utility assumption is that this is not quite a panic-based run. In the
real world, agents do not compare their “utility” with other agents, but instead make decisions
based on what they hear, which was the case with SVB and social media. Therefore, the model
may have been more realistic with the inclusion of private signals as seen in the Goldstein and
Pauzner model, however due to time constraints these are not included in the code. Nevertheless,
one can imagine that agents would talk to each other or read the news and learn that a large
percentage has already withdrawn. This will of course lead to a run since if the percentage of
running agents is large enough, it’s in everyone’s best interest to also run. Thus, the model can
be assessed in this manner, and either way can still be used to explore how Diamond and Dybvig
would assess the SVB situation.

Below, one can see in Figure 3 the graph created by recording varying values of r1 given a
constant R and simulating how many agents can withdraw early before a run.
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Figure 3

In this first graph, R is 1.3, which reflects the situation where SVB held a large part of its
portfolio in 10-year treasury bonds which had an interest rate of approximately 3% in 2022 [15].
Remember that according to Diamond and Dybvig, R is the amount the bank receives after
the completion of an investment project, and it must be greater than one. Technically, 10-year
treasury bonds will pay an average coupon of 3% per year and the principle at maturity rather
than 30% plus principle at the end of the 10 years. For simplicity and to keep in line with the
original model, we assume that the latter is the case. This implies that SVB would have had
more cash on hand in reality due to the frequent coupon payments (depending on if and where
they invested this cash), and thus the percentage of withdrawing agents required for a run would
be higher than what has been simulated.

The points on the red line indicate the highest percentage of withdrawals by both agent types in
period 1 that can be serviced before the bank cannot afford to pay type 2 agents enough, given
an r1. By ’enough’, we mean the critical amount paid where agent utility is equal and any less
to type 2 agents will mean that their utility is lower than type 1 agents, triggering a run. For
example, if r1 is 1.05, then approximately 80% of depositors must withdraw before the bank is
in danger of a run. The graph itself has step-like behavior due to some values of r1 having runs
at the same number of agents since we cannot have fractions of agents. In the next simulations
we will also use a smoothing average for readability, though both types of graphs will be shown.

The above model could serve as a type of simplified stress test for determining the soundness of
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a certain amount of deposit interest. If the interest is too high, the bank can easily be in danger
of a run. However, SVB had quite a low deposit interest rate, and faced a run before reaching
the red line. This may be partly due to not only the nature of SVB’s depositor base but also
the costs of asset liquidation. Since their depositors consisted mostly of tech start-ups and large
investors, a single full withdrawal could already reach several million dollars, and because of an
increased cost of borrowing, many start-ups had to start funding their ventures with their own
funds, leading to additional large withdrawals. This most likely led to a much bigger shock than
expected and SVB showed signs of trouble sooner than if withdrawals had been more regular
when compared to other large banks.

To discuss the costs due to asset liquidation, we added our own ”liquidation cost variable” to
the original model. Mathematically, we have:

V2(f, r1) = max

{
L ∗R(1− r1f)

1− f
, 0

}
, where 0 ≤ L ≤ 1.

This L represents the costs of selling a hold-to-maturity asset sooner than it’s maturity. For SVB,
due to rising interest rates, their HTM assets were worth far less than the principle value, and
thus they were forced to take a loss on them when liquidating in order to pay back depositors.

In figures 4 and 5 on the following page, we include the original simulation where R = 1.3 and
liquidation costs are not taken into account, and additional simulations where a bank takes a
16.4% loss when selling their assets early (L = 0.836). 16.4 percent here is taken from the loss
SVB would have incurred had it sold its HTM investments at the end of 2022 to meet depositor
demands [16]. Additional simulations were also made to see how the amount of agents necessary
for a run would be affected by a larger R with the same L.

Figure 4
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Figure 5: Smoothed Averages

With R at 1.3 and L at 0.836, one can see that the number of withdrawals required before a run
is severely impacted and much lower than before. For instance, with the same r1 of 1.05, the
percentage is now below 41%. This model of course assumes that a bank’s portfolio is entirely
made of HTM assets which is rarely, if ever, the case. However, it still demonstrates how severely
HTM assets can affect liquidity and withdrawals if they must be sold early. This is why SVB’s
portfolio, nearly half of which was comprised of HTM assets, worried analysts and led to a panic
once large withdrawals started coming in. The blue line shows a different simulation with R at
1.6 and L at 0.836. A high liquidation cost can be seen to have a similar affect even with a
higher R. Interestingly, a larger R makes it apparent that the results are not linear in nature,
but appear more hyperbolic. This may stem from how the utility function is chosen. Finally,
figure 5 shows the same data as figure 4, but with a weighted moving average to smooth out the
lines for legibility.

5.2.2 Cooper and Ross

Using the Cooper and Ross model, we attempted to reproduce their results and explored how
different combinations of λ and ν affected κ∗, and if these could say anything about the risks
Silicon Valley Bank took.

In appendix section 6.2, one can find the code used to recreate the model described in Cooper
and Ross using MATLAB’s optimization toolbox. Using this, we found the optimal early and
late consumption for agents for a demand deposit contract given a random t and q chosen from
a uniform distribution as well as the optimal amount for a bank to put in the risky investment,
i. Most results were successfully recreated and aligned with what one would expect. With risk
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sharing and −1
x as the utility function, early consumption was slightly higher than 1 and late

consumption was lower than R. However, when including q in the simulation, MATLAB often
gave very similar early and late consumption values. This was not expected as Cooper and Ross
described the optimal consumption as 1 and R when q is high enough. Finally, without a capital
requirement, the optimal i was 1 with various λ and ν tested.

Next, we looked at how various values of λ and ν would change the capital requirement that
Cooper and Ross describe in their paper. These results were graphed as below:

Figure 6

The surface shown in Figure 6 demonstrates all κ which fulfill the capital requirement as per
Cooper and Ross’ Proposition 1. Any values which did not fit the specifications of a “risky”
investment (λ > 1 and νλ ≤ 1) are excluded, which one can more easily see in Figure 7 with
the top-down view of the surface. While most optimal capital requirements are within a fairly
low range, near the edges of the surface lie large values of κ. These points can be interpreted
as investments where the combination of risk and payoff make them particularly attractive to
portfolio managers, and if the government does not wish for managers to invest in these assets,
extra care and high capital equity requirements are needed.
However, the hold-to-maturity assets which Silicon Valley Bank had heavily invested in consisted
largely of treasury bonds, as described above. Treasury bonds are not considered risky assets
as they are in theory backed by the US government, who are extremely unlikely to default.
Therefore, it would be very counter-intuitive for the government to impose any sort of base
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capital requirement on T-bonds. Additionally, Figure 8 shows a red dot where the optimal κ
would approximately lie for these assets. With λ barely above 1 and ν nearly 1, κ∗ skyrockets,
meaning that in order for a bank manager with a risk-neutral outlook to be dissuaded from
investing in this, the minimum capital requirement would be unfeasible.

Figure 7: Aerial view of Figure 6

Figure 8
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5.3 Conclusion and Final Thoughts

The results of MATLAB simulations indicate that the Diamond and Dybvig model and Cooper
and Ross model are not suitable for the Silicon Valley Bank situation, although they do provide
some information on other parts of banking. We can see that the models have a heavy focus on
liquidity risk and the mindsets of both depositors and bank managers. However, SVB’s problems
arose largely due to a disregard of interest rate risk on HTM assets instead of pure liquidity risk,
which played a far smaller role. The models studied were unfortunately not built with interest
rate risk in mind, though they could perhaps be modified to include this type of risk.

Conclusively, the Diamond and Dybvig model remains a vital piece in understanding the me-
chanics and implications of bank runs. It highlights the importance of liquidity requirements
and other potential risks in the banking industry. Extensions by Cooper and Ross and Goldstein
and Pauzner have improved the framework by adding elements such as moral hazard, capital
requirements, and information asymmetries. The fall of Silicon Valley Bank many months ago
serves as a cautionary tale to larger institutions and shows the relevance of these kinds of mod-
els, even if the ones focused on in this paper did not completely reflect the situation at hand.
This thesis not only validates some of the extensions in the literature, but also describes the
importance of proper risk management and the necessity for more robust and realistic models.
This will hopefully encourage more research into designing a model which can help institutions
manage bank runs in the worst-case scenario of a depositor panic. Such a model will help to add
more stability to the system for both bank managers and customers in the modern world.
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6 Appendix

6.1 Proofs

Proof of Diamond and Dybvig Proposition 1

The following proof has been paraphrased, the original can be found in Diamond and Dybvig
(1983).

Proof. Any run equilibrium does not achieve optimal risk sharing with c1∗1 < c2∗2 , since both
types of agents receive the same consumption in the event of a run. Thus, as it is clear that
uninsured demand deposit contracts are subject to runs, proposition 1 holds for all equilibria of
uninsured bank contracts of the general form V1(fj) and V2(f), where these can be any function.

Now consider the good equilibrium for any feasible contract. We will do this by contradiction.
Recall that the ”place in line” fj is uniformly distributed over [0, t] if only type 1 agents withdraw
at T = 1. Suppose that the payments to those who withdraw at T = 1 is a nonconstant function
of fj over feasible values of t: for two possible values of t̃, t1 and t2, the value of a period 1
withdrawal varies, that is, V1(t1) ̸= V1(t2). Therefore there is a positive probability of different
consumption levels by two type 1 agents who will withdraw at T = 1, which contradicts an
unconstrained optimum where agents should receive the same consumption.

Now suppose that for all possible realizations of t̃ = t, V1(fj) is constant for all fj ∈ [0, t].
This implies that c11(t) is a constant independent of the realization of t̃ since constant payoff
implies constant consumption. On the other hand, c22(t) must vary with t, otherwise the resource
constraint from (3) will not be met. Note that this will not be the case with r1 = 1, but this
is itself incompatible with optimal risk sharing. Constant c11(t) and varying c22(t) contradict (2),
and thus also contradict optimal risk sharing. Therefore, optimal risk sharing is inconsistent
with sequential service.

Proof of Diamond and Dybvig Proposition 2

The following proof has been paraphrased, the original can be found in Diamond and Dybvig
(1983).

Proof. Proposition 2 follows from the ability of tax-financed deposit insurance to duplicate the
optimal consumptions c11(t) = c1∗1 (t), c22(t) = c2∗2 (t), c21(t) = c12(t) = 0 from the optimal risk
sharing constraints characterized in equations 1, 2, and 3. Let the government impose a tax on
all wealth held at the beginning of period T = 1, which is payable either in goods or in deposits.
Let deposits be accepted for taxes at the pre-tax amount of goods which could be obtained if
withdrawn at T = 1. The amount of tax that must be raised at T = 1 depends on the number
of withdrawals then and the asset liquidation policy. Consider the proportionate tax as it is
described in equation 4.
The after-tax proceeds, per unit of initial deposit, of a withdrawal at T = 1 depend on f through
the tax payment and are identical for all fj ≤ f . Denote these after-tax proceeds by V̂1(f), as
given by equation 5.
The net payments to those who withdraw at T = 1 determine the asset liquidation policy and
the after-tax value of a withdrawal at T = 2. Any excess tax collected to pay withdrawals at
T = 1 is moved back into the bank in order to minimize the fraction of assets liquidated. This
implies that the after-tax proceeds, per unit of initial deposit, of a withdrawal at T = 2 is given
by V̂2(f) as in equation 6.
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As discussed in section 2.6, notice that V̂1(f) < V̂2(f) for all f ∈ [0, 1], implying that no type
2 agents will withdraw in the first period no matter what they think the others will do. For
all f ∈ [0, 1], V̂1(f) > 0, which implies that all type 1 agents will withdraw in the first period.
Therefore, the unique dominant strategy equilibrium is f = t, the realization of t̃. Evaluated at
a realization t:

V̂1(f = t) = c1∗1 (t)

and

V̂2(f = t) =
[1− tc1∗1 (t)]R

1− t
= c2∗2 (t)

and the optimum is achieved.

Proof of Cooper and Ross Proposition 1

The following proof has been paraphrased, the original can be found in Cooper and Ross (2002).

Proof. Deposit insurance is complete up to the first-best contract (c∗E , c
∗
L), thus bank runs are

eliminated.

Using the first-best contract, (8) becomes

max
i

[ν(iλR+(κ+1− i−πc∗E)R− (1−π)c∗L)+(1−ν)max((κ+1− i−πc∗E)R− (1−π)c∗L, 0)] (9)

By the resource constraint of (7), R = (1− π)c∗L +Rπc∗E which in turn reduces (9) to:

max
i

[ν(iλR+ (κ− i)R) + (1− ν)max((κ− i)R, 0)]

With this, one can see that i will be set to 0 or to its maximal value of (1 + κ) since any other
choice of i is dominated by one of these extremes. The bank’s profits are higher at i = 0 than at
i = 1 + κ if and only if:

Rκ ≥ ν(1 + κ)λR−Rν

which can be reduced to κ∗ as given in the proposition.
Finally, from the definition of first-best, no other contract will increase the expected utility of
the depositor. Therefore, if capital requirements meet the bound in the proposition, banks will
offer the first-best contract and will not have any reason to invest in the risky fund. Then, there
will be no incentive for the depositors to monitor and no bank runs.

6.2 MATLAB Code

Figure 3

1 % Parameters

2 num_agents = 100; % Number of depositors

3 R = 1.3; % R gained by bank

4 Steps = 5000;

5 r_1 = linspace(1,R,Steps); % optimal consumption type 1

6

7 % Define utility function

8 utility_function = @(x) -1/(x); % utility function type 1

9

10 % Initialize variables

11 V = zeros(Steps , num_agents);

12 V_2 = zeros(Steps , num_agents);
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13 agent1_utility = zeros(Steps , num_agents);

14 agent2_utility = zeros(Steps , num_agents);

15 f = zeros(1, num_agents);

16 f(1) = 0;

17

18 % Simulate withdrawals for each depositor period 1

19 for i = 1:Steps

20 for j = 1: num_agents

21

22 % payoff type 1

23 if f(j) < 1/r_1(i)

24 V(i,j) = r_1(i);

25 else

26 V(i,j) = 0;

27 end

28

29 f(j+1) = f(j) + 1 / num_agents;

30

31 % payoff type 2

32 V_2(i,j) = max(R*(1-r_1(i)*(j/num_agents))/(1-(j/num_agents)) ,0);

33

34 % Calculate agent utility

35 agent1_utility(i,j) = utility_function(V(i,j));

36 agent2_utility(i,j) = utility_function(V_2(i,j)); % if there have been j

withdrawals with r_1 , then this is type 2 utility

37

38 if agent2_utility(i,j) < agent1_utility(i,j) % if type 2 utility is too low ,

type 2 would be better off withdrawing early and there will be a run

39 if j == num_agents

40 fprintf(’Contract is runs preventing !\n’)

41 break

42 end

43 fprintf(’Bank run occurs at agent %d!\n’, j);

44 break

45 end

46 end

47 A(i) = j/num_agents * 100; % j/num_agents is f in D-D.

48 end

49

50 figure (1)

51 plot(r_1 ,A,’r’)

52 xlabel(’Type 1 Agent Payoff [r_1]’);

53 ylabel(’Percentage of Withdrawing Agents Required for a Run’)

Figure 4
1 % Parameters

2 num_agents = 100; % Number of depositors

3 Steps = 5000;

4

5 % Function for simulation

6 function A = run_simulation(R, r_1 , L)

7

8 % Parameters

9 num_agents = 100; % Number of depositors

10 Steps = 5000;

11

12 % Define utility function

13 utility_function = @(x) -1/(x);

14

15 % Initialize variables

16 V = zeros(Steps , num_agents);
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17 V_2 = zeros(Steps , num_agents);

18 agent1_utility = zeros(Steps , num_agents);

19 agent2_utility = zeros(Steps , num_agents);

20 f = zeros(1, num_agents);

21 f(1) = 0;

22

23 % Simulate withdrawals for each depositor

24 for i = 1:Steps

25 for j = 1: num_agents

26 % payoff type 1

27 if f(j) < 1/r_1(i)

28 V(i,j) = r_1(i);

29 else

30 V(i,j) = 0;

31 end

32 f(j+1) = f(j) + 1 / num_agents;

33 V_2(i,j) = max(L*R*(1-r_1(i)*(j/num_agents))/(1-(j/num_agents)) ,0); %

payoff type 2

34

35 % Calculate agent utility

36 agent1_utility(i,j) = utility_function(V(i,j));

37 agent2_utility(i,j) = utility_function(V_2(i,j)); % if there have been

j withdrawals with r_1 , then this is type 2 utility

38 if agent2_utility(i,j) < agent1_utility(i,j) % if type 2 utility is

too low , type 2 would be better off withdrawing early and there will be a run

39 if j == num_agents

40 fprintf(’Contract is runs preventing !\n’)

41 break

42 end

43 fprintf(’Bank run occurs at agent %d!\n’, j);

44 break

45 end

46 end

47 A(i) = j/num_agents * 100;

48 end

49 end

50

51 % Run simulations

52 R_values = [1.3, 1.3, 1.6 ,1.6];

53 L_values = [1, 0.836, 1, 0.836];

54 colors = [’r’, ’r’, ’b’, ’b’];

55 linestyles = [’-’, ’:’, ’-’, ’:’];

56 legends = ["R=1.3, L=1", "R=1.3, L=0.836" , "R=1.6, L=1", "R=1.6, L=0.836"];

57

58 figure (1)

59 hold on

60 for i = 1:4

61 r_1 = linspace(1,R_values(i),Steps);

62 A = run_simulation(R_values(i), r_1 , L_values(i));

63 plot(r_1 ,A,colors(i),’LineStyle ’,linestyles(i))

64 end

65

66 xlabel(’Type 1 Agent Payoff [r_1]’);

67 ylabel(’Percentage of Withdrawing Agents Required for a Run’);

68 legend(legends , ’Location ’, ’best’);

Figure 5
1 % Parameters

2 num_agents = 100; % Number of depositors

3 Steps = 5000;

4
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5 % Function to compute weighted moving average

6 function smoothed_data = weighted_moving_average(data , window_size)

7 smoothed_data = zeros(size(data));

8 for i = 1: length(data)

9 if i < window_size

10 smoothed_data(i) = mean(data (1:i));

11 else

12 smoothed_data(i) = mean(data(i-window_size +1:i));

13 end

14 end

15 end

16

17 % Function for simulation

18 function A = run_simulation(R, r_1 , L)

19

20 % Parameters

21 num_agents = 100; % Number of depositors

22 Steps = 5000;

23

24 % Define utility function

25 utility_function = @(x) -1/(x); % utility function type 1

26

27 % Initialize variables

28 V = zeros(Steps , num_agents);

29 V_2 = zeros(Steps , num_agents);

30 agent1_utility = zeros(Steps , num_agents);

31 agent2_utility = zeros(Steps , num_agents);

32 f = zeros(1, num_agents);

33 f(1) = 0;

34

35 % Simulate withdrawals for each depositor

36 for i = 1:Steps

37 for j = 1: num_agents

38 % payoff type 1

39 if f(j) < 1 / r_1(i)

40 V(i, j) = r_1(i);

41 else

42 V(i, j) = 0;

43 end

44 f(j + 1) = f(j) + 1 / num_agents;

45 V_2(i, j) = max(L * R * (1 - r_1(i) * (j / num_agents)) / (1 - (j /

num_agents)), 0); % payoff type 2

46

47 % Calculate agent utility

48 agent1_utility(i, j) = utility_function(V(i, j));

49 agent2_utility(i, j) = utility_function(V_2(i, j)); % if there have

been j withdrawals with r_1 , then this is type 2 utility

50 if agent2_utility(i, j) < agent1_utility(i, j) % if type 2 utility is

too low , type 2 would be better off withdrawing early and there will be a run

51 if j == num_agents

52 fprintf(’Contract is runs preventing !\n’)

53 break

54 end

55 fprintf(’Bank run occurs at agent %d!\n’, j);

56 break

57 end

58 end

59 A(i) = j / num_agents * 100; % j/num_agents is f in D-D.

60 end

61 end

62

63 % Run simulations
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64 R_values = [1.3, 1.3, 1.6, 1.6];

65 L_values = [1, 0.836, 1, 0.836];

66 colors = [’r’, ’r’, ’b’, ’b’];

67 linestyles = [’-’, ’:’, ’-’, ’:’];

68 legends = ["R=1.3, L=1", "R=1.3, L=0.836" , "R=1.6, L=1", "R=1.6, L=0.836"];

69

70 figure (1)

71 hold on

72 window_size = 100; % Size of the moving average window

73 for i = 1:4

74 r_1 = linspace(1, R_values(i), Steps);

75 A = run_simulation(R_values(i), r_1 , L_values(i));

76 A_smoothed = weighted_moving_average(A, window_size); % Apply weighted moving

average

77 plot(r_1 , A_smoothed , colors(i), ’LineStyle ’, linestyles(i))

78 end

79 xlabel(’Type 1 Agent Payoff [r_1]’);

80 ylabel(’Percentage of Withdrawing Agents Required for a Run’);

81 legend(legends , ’Location ’, ’best’);

Cooper & Ross Basic Contract Model
1 % Define Variables

2 t = rand(); % type 1 vs type 2 ratio

3 utility_function = @(x) -1/(x); % utility function

4 R = 1.3;

5 q = rand(); % prob of economy wide pessimism

6

7 c_e = optimvar(’c_e’);

8 c_l = optimvar(’c_l’);

9 prob = optimproblem ();

10 prob.ObjectiveSense = ’max’;

11 prob.Objective = t*utility_function(c_e)+(1-t)*utility_function(c_l);

12 prob.Constraints.cons1 = t*c_e + (1-t)*c_l/R == 1;

13 prob.Constraints.cons2 = utility_function(c_l) >= utility_function(c_e);

14 prob.Constraints.cons3 = c_l <= R;

15

16 x0.c_e = 1.1;

17 x0.c_l = R;

18 sol = solve(prob ,x0) % solve for optimal early and late consumption

19

20 % Define Variables

21

22 prob2 = optimproblem ();

23 prob2.ObjectiveSense = ’max’;

24 prob2.Objective = (1-q)*(t*utility_function(c_e)+(1-t)*utility_function(c_l))+q*

utility_function(c_e)*(1/ c_e);

25 prob2.Constraints.cons1 = t*c_e + (1-t)*c_l/R == 1;

26 prob2.Constraints.cons2 = utility_function(c_l) >= utility_function(c_e);

27 prob2.Constraints.con3 = c_l <= R;

28

29 x0.c_e = 1.1;

30 x0.c_l = R;

31 sol2 = solve(prob2 ,x0) % solve for optimum early and late consumption with q

32

33 % Define Variables

34 lambda = 4; % risky investment

35 nu = 0.2; % probability of risky investment paying off

36 c_e = sol.c_e;

37 c_l = sol.c_l;

38

39 i = optimvar(’i’,’LowerBound ’, 0, ’UpperBound ’, 1);
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40 fun = @(i)nu*(i*lambda*R+(1-i-t*c_e)*R-(1-t)*c_l)+(1-nu)*max((1-i-t*c_e)*R-(1-t)*

c_l ,0);

41 obj = fcn2optimexpr(fun ,i);

42 prob3 = optimproblem(’Objective ’,obj);

43 prob3.ObjectiveSense = ’max’;

44

45 x1.i = 0.5;

46 sol3 = solve(prob3 ,x1) % Solve for optimal i

Figures 6-8

1 % Define range for nu and lambda

2 nu_values = linspace(0, 0.99, 100);

3 lambda_values = linspace (1.02 , 5, 100);

4

5 % Initialize matrix to store optimal k values

6 optimal_k = NaN(length(nu_values), length(lambda_values)); % NaN to mark invalid

combinations

7

8 % Loop over values of nu and lambda

9 for i = 1: length(nu_values)

10 for j = 1: length(lambda_values)

11 nu = nu_values(i);

12 lambda = lambda_values(j);

13

14 % Constraints

15 if lambda > 1 && nu * lambda <= 1

16 % Compute k_star

17 k_star = nu * (lambda - 1) / (1 - nu * lambda);

18

19 % Store the optimal k value

20 optimal_k(i, j) = k_star;

21 end

22 end

23 end

24

25 % Plot

26 [X, Y] = meshgrid(lambda_values , nu_values);

27 surf(X, Y, optimal_k);

28 xlabel(’\lambda ’);

29 ylabel(’\nu’);

30 zlabel(’Optimal k’);

31 title(’Optimal k as a function of \nu and \lambda ’);

32

33 zlim([0, 50]);

34 % Specified point (lambda = 1.02, nu = 0.98)

35 hold on;

36 lambda_dot = 1.02;

37 nu_dot = 0.98;

38

39 k_star_dot = nu_dot * (lambda_dot - 1) / (1 - nu_dot * lambda_dot);

40

41 plot3(lambda_dot , nu_dot , k_star_dot , ’ro’, ’MarkerSize ’, 10, ’MarkerFaceColor ’, ’

r’);
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