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Abstract 
This thesis explores the application of Deep Learning techniques for automated feature 

detection within GIS maps in the context of digital archaeology. Specifically, it focuses on 

leveraging the YOLOv8s algorithm to automate the detection of prehistoric granaries on 

archaeological excavation maps. Traditional manual analysis methods in archaeological 

research are often time-consuming and labour-intensive, particularly when dealing with large 

spatial datasets. Moreover, the overall convoluted nature of archaeological excavations and the 

diverse range of features they contain present significant challenges for traditional methods. To 

address these challenges, this research investigates the potential of Deep Learning algorithms 

to enhance the efficiency and accuracy of automated feature detection on archaeological GIS 

maps.  

The results of this study demonstrate the effectiveness and potential of Deep Learning 

algorithms to accurately identify prehistoric granaries within archaeological excavation maps. 

The analysis reveals that the algorithm is able to detect and classify prehistoric granaries with a 

relative high degree of precision. Despite these promising results, the study underscores the 

challenges associated with the opacity of DL models, particularly regarding their interpretability 

and biases. The thesis highlights the importance of addressing issues such as data imbalance, 

background noise, and the inclusion of contextual information to improve the accuracy and 

reliability of automated detection models. While the current model demonstrates potential, 

further research is needed to refine these methodologies, ensuring they contribute meaningfully 

to archaeological analysis. This work tries to lay some foundation for future advancements in 

the field, advocating for the development of more comprehensive DL models that can enhance 

the efficiency and depth of archaeological investigations. 
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1. Introduction 
1.1 Archaeology in the digital age 

In recent years, the field of archaeology has undergone a profound methodological 

transformation. As can be seen in the examples below, a quick glance at contemporary 

literature highlights the upcoming importance of terms such as “Big Data”, “quantitative 

data analysis”, and “digital archaeology”. Facilitated by the advancements in both 

hardware and software, these digital methodologies have revolutionised archaeologists’ 

ability to rapidly gather and process vast quantities of data. While traditional methods 

rely heavily on excavation and manual analysis, and are therefore often limited by time, 

resources, and their inherent destructive nature; digital archaeology aims to 

complement these methods through non-invasive data collection and comprehensive 

analysis. As a result, digital archaeology encompasses a wide range of practices, 

including, but not limited to: photogrammetric reconstructions of artefacts and sites (e.g. 

Lercari, 2017; Nikolakopoulos et al., 2017) archaeological virtual reality (e.g. Forte et al., 

2011; François et al., 2021), archaeogaming (e.g. Blakely, 2023; Rassalle, 2021; Reinhard, 

2018; Winter, 2021), LiDAR technology for documenting sites (e.g. Campana, 2017; 

Risbøl, 2013; Smith et al., 2014), the use of detection algorithms that identify sites from 

aerial data (e.g. Papadopoulos et al., 2019; Verschoof-van der Vaart, 2022) network and 

trade analyses (e.g. Isaksen, 2013; Knappett, 2020), and agent-based modelling (e.g. 

Campillo et al., 2012; Davies et al., 2019; Kowarik et al., 2012). 

1.1.1 Archaeology and ‘Big Data’ 

Within this digital landscape, the emergence of Big Data has been a driving factor of these 

new methodologies. A popular concept that is widely employed within many, if not all, 

scientific disciplines. Originally the term was ‘[c]oined in the 1970’s to refer to datasets 

that were too weighty to process with existing computing resources’ (VanValkenburgh & 

Dufton, 2020, p. 1). However, nowadays the concept has evolved to the point where we 

can actually analyse these datasets with increased computational power, making it 

possible to extract insights from this data through algorithmic and statistical analysis. In 

general, “Big Data” refers to the systematic collection, management, and analysis of 

these large and complex datasets. Still, ‘(…) the term lacks any fixed scalar or 
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dimensional definition’ (Ibidem), which makes it difficult to ascertain whether particular 

datasets are “big” or “small”. Some argue that the extent implied by the term can be 

measured through dimensions like volume, velocity, and variety (Gattiglia, 2015, p. 115). 

Adding to this complexity, the threshold for what constitutes Big Data varies across 

disciplines. In archaeology, datasets are often fragmented or incomplete, so the amount 

of data needed to qualify as “big” is significantly smaller compared to fields (Wesson & 

Cottier, 2014; Moscati, 2021). Therefore, this relativity is key: archaeological datasets on 

their own may not fit conventional definitions of Big Data. However, when integrated with 

large-scale datasets—such as geospatial or environmental data—they contribute to Big 

Data analysis within an archaeological context. Nevertheless, the question regarding the 

precise amount of data required has become redundant in contemporary discussions, 

as the term now predominantly conveys the presence of an associated methodological 

and theoretical framework. 

On a methodological level, as illustrated in the examples above, Big Data archaeology 

has opened up new ways of tackling research questions. Especially ‘[t]he recent trends 

in archaeological practice towards datafication and digitalisation (…), the increased 

public availability of archaeological and remotely-sensed data, and the developments 

and decrease in cost of computing power and storage (…)’ (Verschoof-van der Vaart, 

2022, p. 5) have been the driving factor for the rapid adoption of Big Data methodologies 

within archaeology. These approaches allow archaeologists to uncover patterns, 

correlations, and insights that were previously elusive using traditional methods alone. 

One example is the broad-scaled application of Geographic Information Systems (GIS) to 

manage and analyse spatial data; enabling researchers to explore the relationships 

between archaeological sites, environmental factors, and human behaviour. For 

instance, by using a Global Positioning System (GPS) throughout an excavation, features, 

artefacts, and other relevant data can be measured with a high spatial accuracy, and later 

integrated into this GIS system. This integration quickly streamlines the analysis process, 

allowing for the data to be readily examined, adapted, and understood within the broader 

archaeological context. All in all, the use of this has improved the accuracy and ease of 

archaeological site mapping, which is crucial to archaeological research. 
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Theoretically speaking, as pointed out by VanValkenburgh & Dufton (2020), the Big Data 

phenomenon has initiated a transformation in the broader outlook on data and science. 

The framework places greater emphasis on uncovering simple correlations rather than 

causality, leading to a reorientation in our understanding of what data represents and its 

potential applications. Thus, although ‘[t]he centrality of data to archaeological 

knowledge has always been the case, the burden and expectations placed upon data are 

subtly shifted in a Big Data paradigm’ (Huggett, 2020, p. 9). As a result, this new data 

paradigm is both embraced and met with heavy resistance. Some see opportunity for 

groundbreaking innovations, whereas others have concerns regarding the uncertainties 

this paradigm brings (outlined by Zubrow, 2006; Huggett, 2015). The latter predominantly 

substantiated by the accused undertheorised nature of the Big Data approach, as digital 

methodologies are often applied without thorough consideration of their implications, 

biases, and limitations (Cowley et al., 2021). Still, despite these ongoing theoretical 

issues and debates (which will be expanded upon in chapter 4), the reality remains that 

digital archaeology and Big Data are becoming firmly entrenched in contemporary 

archaeological research, necessitating continued engagement and adaptation, all while 

acknowledging the opportunities they can offer to the discipline.   

1.1.2 Artificial intelligence and automated detection 

One prominent methodological framework popularised by the Big Data paradigm is that 

of Artificial Intelligence (AI). AI’s capabilities of processing datasets and recognising 

patterns have influenced the way in which archaeologists can research the past. For 

instance, by leveraging the possibilities of AI, researchers have been able to identify 

archaeological sites on a large-scale, such as Celtic fields systems (Mallick, 2021), burial 

mounds (Verschoof-van der Vaart, 2022), road systems (Li et al., 2016; Verschoof-van der 

Vaart & Landauer, 2021), and other structures that have eluded human eyes or traditional 

archaeological methods. However, similar to the aforementioned Big Data discussion, 

AI’s applications have been met with both support as well as resistance. Even though the 

technique has been around for some time, ‘(…) the acceptance and use of these 

computational approaches were initially limited, since archaeology tends to rely on its 

own domain-specific toolbox’ (de Laet & Lambers, 2009, as cited in Lambers et al, 2019, 

p. 2).  
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Fundamentally, artificial intelligence can be defined as ‘[t]he theory and development of 

computer systems able to perform tasks normally requiring human intelligence, such as 

visual perception, speech recognition, and decision-making’ (Oxford Language 

Dictionary, n.d.). In this thesis, the predominant approach will involve the use of Deep 

Learning techniques applied to problems in the field of Computer Vision. More 

specifically, this research will leverage object detection algorithms suitable for 

archaeological feature recognition. Computer vision based automated detection can be 

categorised in four distinct approaches: (1) template matching-based object detection, 

(2) knowledge based object detection, (3) object based image analysis (OBIA), and (4) 

Machine Learning based object detection (Cheng & Han, 2016, p.12) (figure 1). 

As extensively described by Verschoof-van der Vaart (2022) the first three more 

“traditional” methodologies have shown various restrictions within their implementation 

in the context of archaeological object detection. The challenges include the overfitting 

of these algorithms to specific object categories and data sources, difficulties in defining 

templates for heterogeneous objects affected by various processes, and the expertise 

required for implementing these algorithms (p. 8). In contrast, Machine Learning based 

object detection offers distinct advantages over other approaches because it does not 

rely on explicit predetermined sets of rules or human components that establish said 

rules. Instead, these methods can autonomously learn patterns and relationships from 

Figure 1: Taxonomy of methods for object detection (Cheng & Han, 2016, p. 12). 
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data, making them adaptable to contexts and capable of handling complex and 

heterogenous datasets. By leveraging large datasets and models, Machine Learning-

based approaches excel in capturing subtle patterns that may be challenging to specify 

manually. This flexibility and ability to learn from data make it a valuable tool in tasks like 

object detection, where rule-based systems may struggle to account for variability and 

evolving conditions.  

1.1.3 Deep Learning and automated detection 

Deep Learning (DL) can be considered a subfield of Machine Learning (ML) that is 

predominantly defined due to the usage of neural network architecture (Argyrou & 

Agapiou, 2022, p. 13). The concept was first introduced in the 1940s ‘(….) where the initial 

goal was to replicate the human brain system to address generic learning issues in a 

systematic manner’ (Jamil et al., 2022, pp. 8 – 9). Although it gained a lot of traction in the 

subsequent years, the methodology ‘(…) fell out of favour in [Machine Learning] research 

in the early 2000s, due to overfitting in training, lack of large training datasets, limited 

hardware processing capacity, and insignificant performance improvement compared to 

other machine learning techniques’ (Ibidem). Therefore, due to the improvement of 

computational power and the increased availability of data, the usage of DL techniques 

in archaeological automated object detection have since become more prevalent.  

In general, these neural networks consist of multiple interconnected layers (hence the 

term "Deep") that progressively learn to represent data at increasingly abstract levels. 

‘Although the fields of Machine Learning and Deep learning are very intermingled and 

poorly defined, the main differences lies in the fact that in the case of Machine Learning 

a problem, for instance object detection, has to be divided into different parts’ 

(Verschoof-van der Vaart, 2022, p. 9). For archaeological automated detection, this 

means that traditional ML methods often require manually designed feature extraction 

and multiple stages of processing; DL, on the other hand, combines these many parts 

into a singular algorithmic expression (Ibidem). Ultimately, this means that DL has the 

capability to extract features and patterns directly from data, making it particularly suited 

for complex tasks in areas such as image recognition, natural language processing, and 

much more.   
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This thesis will be using the YOLOv8s algorithm (Redmon & Farhadi, 2023). The acronym 

stands for “You Only Look Once”, which implies the algorithm’s ability ‘(…) to accomplish 

the detection task with a single pass of the network, as opposed to previous approaches 

that used sliding windows followed by a classifier that needed to run hundreds of times 

per image’ (Terven & Cordova-Esparza, 2024, p. 6). Furthermore, ‘(…) the YOLO 

framework is considered a “one-stage” detector, which means that the object 

localisation and classification is united in one process. This is contrary to “two-stage” 

detectors, e.g., Faster R-CNN, where this is split in separate processes’ (Verschoof-van 

der Vaart & Olivier, 2021, p. 279). The algorithm has been designed to not only match the 

accuracy of its predecessors, but also to excel in speed and user-friendliness. The latter 

exemplified by the availability of a relatively easy-to-use python package created by 

Ultralytics1. All in all, the algorithm’s ability to “Only Look Once” enables researchers to 

analyse larger quantities of data with less computational power and time, all while 

maintaining relatively high accuracy and precision. While it may not entirely replace more 

prevalent alternatives, the algorithm offers advantages in efficiency and accessibility. 

Further information can be found in chapter 2.2. 

 

1.2 Archaeological spatial analysis 

1.2.1 Archaeological site mapping 

One example of an archaeological Big Dataset is created through archaeological site 

mapping; a fundamental aspect of archaeological practice. ‘Ever since archaeologists 

have studied the past, the investigation of the location and distribution of archaeological 

remains in their surroundings, i.e., spatial analysis, has been a central endeavour in 

archaeology’ (Verschoof-van der Vaart, 2022, p. 3). This mapping process involves the 

integration of various technologies, such as GIS, photogrammetry, and LiDAR, to capture 

detailed spatial data. With these advanced tools, archaeologists can generate highly 

accurate maps that not only offer a visual representation of the terrain, but also facilitate 

the precise recording and analysis of archaeological features. These spatial elements not 

only aid in understanding the genesis and decline of archaeological sites, but also serve 

 
1 The package can be found here: https://github.com/ultralytics/ultralytics 
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as records of features that will be lost during a destructive excavation. By documenting 

these features during the excavation, archaeologists can ensure that vital information 

about the site's history and cultural significance is preserved. The ability to analyse 

spatial data allows researchers to uncover patterns and relationships within 

archaeological landscapes, shedding light on past human activities and interactions with 

the environment. Furthermore, archaeological site mapping plays a crucial role in 

heritage conservation and management. By creating maps of sites and their 

surroundings, archaeologists can identify areas of significance and develop strategies for 

their protection and preservation.  

Central to this thesis are the excavation maps that delineate archaeological features, 

achieved by the recording of coordinates within a GIS. These coordinates, typically 

acquired through measurements using GPS or Total Stations (TS), are subsequently used 

to construct detailed spatial representations of the archaeological site, and function as 

a permanent digital record of the identified features present within the archaeological 

site. Furthermore, within the Netherlands the method of measuring are somewhat 

standardised due to the national BRL SIKB 4000 protocols (SIKB, n.d.). This has resulted 

in fairly uniform datasets that can be used through open access data repositories curated 

by the government (DANS KNAW, n.d.). As can be seen in the figure 2, each feature is 

individually measured within a GPS coordinate system and later extrapolated to 2D 

vector polygons. This methodology is especially beneficial regarding large-scale 

excavations, as the data collection is relatively easy-to-implement and it requires limited 

data processing steps. 

Although these maps create an overview of the archaeological site and its corresponding 

features, there are various difficulties in interpreting them accurately due to the inherent 

complexity of archaeological landscapes. Archaeological features are often clustered 

together, representing various activities and occupations spanning different time 

periods. This intertwining of features can make it challenging for archaeologists to 

distinguish and accurately attribute them to specific historical contexts. Furthermore, 

despite archaeologists' best efforts, features are not always recognised with ease due to 

preservation issues, such as degradation over time, disturbances, and human error in the 

recording and interpretation process. In other words, ‘(…) the great majority of the items 
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recorded in archaeological mapping are not visible in their own right but appear as one 

kind of reflection or another of buried deposits’ (Campana, 2009, p. 22). Thus, although 

map making seems to be a relatively objective practice, it is important to keep in mind 

that ‘[r]ather than simply recording, mapping “translates” and “mediates” (…) [.] More 

specifically, ‘(…) maps are inherently subject to the subjectivities of their creators’ 

(Flexner, 2009, p. 8). Consequently, the interpretation of archaeological site maps 

requires careful consideration to unravel the layers of features within them. Therefore, 

this debate will be further elaborated within chapter 4.  

1.2.1 Archaeological structures 

During an archaeological excavation, it is often the case that (pre)historic structures are 

uncovered. In the Netherlands, these structures are predominantly encountered “below 

ground”, as not much standing architecture is present from deeper pasts. It is generally 

understood that standing structures are somehow more informative than below ground 

structures; however, as argued by Reynolds (2009), this is a common misconception. 

They state that ‘[w]hile the benefit of standing buildings is clear enough – an appreciation 

of the intended form of a building, its fixtures and fittings and so on – invariably standing 

structures, even those of relatively recent construction, have often undergone such 

transformations as to render any appreciation of the earliest activities that occurred in 

them almost beyond the reach of the archaeologist’ (p. 345). Thus, destroyed 

underground structures can provide better primary archaeological deposits, which can 

be more suitable for the primary reconstructions of past human behaviour.  

Unfortunately, as is the case with practically all archaeological features, the available 

evidence of these structures is incomplete and fragmentary (figure 3). Especially, the 

structures’ ‘(…) form is only fragmentarily accessible, because of the impermanence of 

building materials (particularly timber, clay, and dry-stone walls) and destructive effects 

(erosion, later building activities, etc.)’ (Trebsche, 2009, p. 506). Consequently, the 

remains of these structures can range from the actual physical remains, such as walls, 

floors, wooden posts, and hearths, to more subtle traces in the soil, such as postholes, 

pits, soil discoloration, and soil texture distinctions (figure 4). These features are often 

associated with each other, forming interconnected elements within the archaeological 

landscape. For example, clusters of postholes might indicate the former presence of 
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Figure 2: An example of a GIS output of features measured with a GPS system in the large excavation at Zijderveld, the Netherlands (Jongste & Knippenberg, 2005, p. 30). 
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wooden structures. By analysing the distribution and relationships between these 

features, archaeologists can reconstruct the layout and organisation of (pre)historic 

settlements. Over time, as more features are uncovered and examined, a better picture 

of the overall site emerges, revealing insights into the architectural design, social 

dynamics, and daily practices of past communities. 

However, as can be seen in the figures 3 and 4, there can be a high degree of diversity 

present with how the structures and their corresponding features manifest themselves in 

the archaeological record. Therefore, the 2D illustrations and matching interpretations of 

structures are oftentimes different between archaeological paradigms, periods, and 

people. This is stated by Trebsche (2009): ‘(…) the interpretation of an excavation plan 

also depends on factors additional to the state of preservation: on the density and 

superposition of features, on the archaeologist’s experience, on preconceived ideas of 

building form, and on already established building types’ (p. 508). Although the 

Netherlands, which is the location for the datasets used within this thesis, has a thorough 

compendium on its excavated structures (e.g. Arnoldussen & Fokkens, 2009; Lange et 

al., 2013), there is still much diversity and unknown data that undoubtedly has resulted 

and will result in a high degree of interpretive variability. This also connects to the issue 

of typologies, and with that the often associated culture historical paradigm, which tends 

to generalise, reinforce subjectivity, and perpetuate interpretive biases (Deeben & 

Theunissen, 2013, p. 7). Still, despite the inherent complexities and interpretive 

challenges associated with structures, their identification and investigation is important 

for understanding past human behaviour. Thus, while achieving an overall consensus in 

interpretations and typologies may be elusive, the process of studying granaries still 

yields valuable insights into past human behaviour, societal organisation, and 

architectural practices. 
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Figure 3: Left: state of preservation and legibility of archaeological features; the effects of erosion and 
ploughing on the Iron Age byre-cum-dwelling-house at Grøntoft (Denmark) (Trebsche, 2009, p. 509). 
Right: cross-section of a medieval post hole from Veldhoven, where (1) is the post-pipe and (2) the post 
pit (Archol bv, 2023). 

1 2 

Figure 4: A diagram showing the different variables that can determine the appearance of a post hole 
during and after the demolition of a building (Theuws, 2013, p. 319). 
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1.2.2 Prehistoric granaries 

In the context of this research, the exploration of structures diverges from the more 

traditional archaeological inquiries, as it predominantly centres on a methodological 

development. Here, the primary focus lies in devising and applying a methodology aimed 

at identifying and analysing archaeological structures within 2D excavation maps. 

Instead of delving into the details of individual structures from historical or functional 

perspectives, the emphasis is placed on evaluating the adaptability of a DL approach in 

detecting and delineating these features. Consequently, this thesis will engage with the 

existing literature on granaries in the Netherlands on a basic level, with less emphasis on 

interrogating archaeological contexts and inquiries. Still, in order to make substantiated 

methodological decisions it is important to understand the context of the data. Therefore, 

some general information will be provided about the relevant archaeological and 

historical background.  

This research will be looking at granaries dated to the Bronze and Iron Age in the 

Netherlands (figure 5). This precise period has been selected due to the relatively 

Figure 5: Left: Reconstruction drawing of a six-post granary from the early Iron Age (Hermsen & 
Haveman, 2009, p. 45). Right: Reconstruction of a four-post Iron Age granary near the 
Wekeromse Zand, Gelderland (Wikimedia commons, 2012) 
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standardised nature of the structures in question (Arnoldussen, 2008; Maes, 2009; 

Hermsen & Haveman, 2009) and extensive data availability. Furthermore, the focus on 

the Netherlands is attributed to its uniform data collection and formatting practices, as 

well as the abundance of excavation reports and general research conducted throughout 

the region.  

Granaries are ‘(…) relatively small square or rectangular wooden buildings that were used 

for food storage during the [Bronze and Iron] age in northwestern Europe. They have a 

raised platform, which makes it difficult for pests and moisture to reach the harvest’ 

(Maes, 2009, pp. 79-80). While there undoubtedly were alternative methods for storing 

these food products, identifying them archaeologically presents challenges. In contrast, 

granaries leave distinct evidence of their existence through easily recognisable square or 

rectangular shaped post-hole imprints. These structures typically have either four, five, 

six, eight, or nine posts, which are commonly spaced 2 meters apart (figure 6). Granaries 

are frequently found in close proximity to prehistoric house plans, often in significant 

numbers. Therefore, these structures are generally interpreted as being part of the larger 

homestead. However, as the floor plans are too small for domestic purposes, the 

function has to be interpreted as something different that is suitable for early farming 

communities. As stated by Maes (2009) ‘(…) the thickness of the posts in relation to the 

surface area gives the impression that these had to bear a heavy burden’ (p. 81). 

Correspondingly, ethnographical, classical, and archaeobotanical sources generally 

categorise these structures as granaries (Malrain et al., 2002; Hermsen & Haveman, 

2009; Maes, 2009; van der Meer, 2014).  

Furthermore, according to an extensive study of approximately 1500 granaries by Maes 

(2009) four-post granaries are generally most common in the Bronze and Iron Age; as they 

Figure 6: Sketch of the most common types of granaries. From left to right: four-post, six-post, 
five-post, eight-post, and nine-post granary (Maes, 2009, p. 82) 
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comprised more than half of the total number of the identifiable granaries (59.88%). Six-

post make up the second largest share, namely 31%. The nine-post comprise 6.86% of 

the total. The five- and eight-pole represent only a small percentage, 0.62% and 1.64% 

respectively (p. 82). However, it is important to note that the amount of posts does not 

necessarily indicate a difference in function, instead it could relate to an increase in size 

and/or capacity. "However, although this increase in capacity is often used as an 

indicator of agricultural and economic affluence, Hermsen and Haveman (2009) rightly 

argue that conclusions should be drawn with caution, as 'it is impossible to make one-

to-one connections between the number and size of granaries found during 

archaeological observations and the size of grain harvests or the economic importance 

of arable farming in the past' (p. 46, [translated by author]). Alternatively, this variation in 

the number of posts could be attributed to a range of social, cultural, or other factors 

pertinent to human behaviour. Therefore, no clear reason has been ascertained as to why 

granaries show different post-hole patterns throughout different places and prehistoric 

periods. This debate will be further elaborated in chapter 2.1.  

1.3 Research topic 

Given the information discussed in the introduction above, this thesis aims to advance 

the current body of research by applying Deep Learning techniques to automate feature 

detection within GIS maps. While Deep Learning has been widely used for remote 

sensing data (e.g. Bundzel et al., 2020; Orengo et al., 2020; Somrak et al., 2020; Sorouch 

et al., 2020) and, to a lesser extent, for analysing topographic or historic maps (e.g. 

Garcia-Molsosa et al., 2021; Pereira et al., 2024), its application to GIS maps is unusual. 

Although GIS data is frequently utilised in academic research, the methodological focus 

has predominantly been on predictive modelling rather than on automated feature 

detection or similar tasks addressed in this thesis research. Consequently, no other 

relevant publications directly addressing this context were identified during the course of 

this study. Therefore, this thesis seeks to fill this gap by exploring the application of Deep 

Learning techniques specifically within the domain of archaeological GIS data. 

More specifically, the focus of this study is on leveraging the YOLOv8s algorithm to 

automate the detection of archaeological prehistoric granaries on excavation maps. 

While manual analysis remains common in archaeological research, it is oftentimes 
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relatively time-consuming and labour-intensive, particularly when dealing with large 

spatial datasets. Moreover, the convoluted nature of the archaeological record and the 

diverse range of features it contains present significant challenges for traditional 

methods. These challenges underscore the demand for digital tools capable of 

streamlining the process of identifying archaeological features within GIS maps. 

Furthermore, this thesis will investigate the broader implications of automated feature 

detection for archaeological practice. By automating a detection process, archaeologists 

can potentially save significant time and resources, allowing for more efficient data 

analysis and interpretation. Additionally, automated feature detection may lead to 

improved interpretive outcomes by facilitating the identification of subtle patterns and 

relationships within archaeological datasets. However, it is vital to critically assess the 

impact of this automation; considering factors such as overall data quality, algorithmic 

biases, and other relevant research constraints. 

All in all, this thesis aims to contribute to the ongoing evolution of archaeological practice 

by helping to develop and understand digital methodologies that could potentially 

enhance the efficiency and accuracy of data analysis and interpretation. Moreover, by 

addressing the challenges and opportunities associated with automated feature 

detection on GIS archaeological excavation maps, this study seeks to foster a more 

nuanced understanding of the role of technology in everyday archaeological research 

and interpretation. 

1.3.1 Research questions 

As not much research has been done in this particular research context, the overall aim 

of this thesis is to address the general applicability of this methodology within this 

context. In other words, the thesis will predominantly address the methodological 

implementation of such a Deep Learning model, and the further implications of this 

implementation on the manner and quality of archaeological interpretation and 

research. With this in mind, the research question and two sub-questions will be 

formulated as follows: 

"How can the YOLOv8 algorithm be effectively employed to automate the detection and 

analysis of Bronze and Iron age granaries within archaeological excavation maps, and to 
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what extent can this approach potentially enhance the efficiency and accuracy of 

archaeological site documentation and analysis?" 

• How can the Deep Learning YOLOv8 algorithm be adapted and optimised to 

effectively recognise diverse architectural features representative of Bronze and 

Iron age granaries on archaeological GIS excavation maps? 

• What are the limitations, biases, and challenges associated with implementing 

the Deep Learning YOLOv8 algorithm for automated feature detection within 

archaeological contexts, and how can these challenges be addressed to ensure 

the reliability and accuracy of the automated identification process? 

Ideally, these research questions will guide the investigation and analysis conducted 

throughout this thesis, providing a framework for evaluating the effectiveness and 

implications of Deep Learning algorithms in the context of archaeological feature 

detection and analysis. Where the first sub-question mostly relates to the applicability of 

the model, and the second sub-question to the encountered challenges and limitations. 

The conclusion of this thesis will then function as a preliminary recommendation for 

further applications of this methodology in future research.  All in all, through these 

questions, this research aims to give a small contribution to the application of advanced 

digital methodologies in an oftentimes analogue discipline. 

1.3.2 Outline of the next chapters 

A total of six subsequent chapters will be used to delve into various facets of this 

research, providing an exploration of the application Deep Learning in archaeology. Each 

chapter addresses specific components such as the characteristics of prehistoric 

granaries, the basic principles of the YOLO algorithm, and the foundational theoretical 

framework of this thesis: 

• Background information: This chapter establishes a context to everything relevant 

within this thesis. It will explain the basic principles of the YOLOv8 architecture 

and delve deeper into the literature regarding Bronze and Iron age granaries in 

Dutch archaeology. 

• Theoretical framework: This chapter talks about the theoretical foundations of 

digital archaeology, and the potential implications and limitations of Deep 



 M. Penterman       27 

Learning in archaeological research. Additionally, the relevant information 

associated with site mapping will be examined, focusing on data accuracy, critical 

mapping theory, archaeological visibility, and biases.  Ultimately, this chapter will 

underscore the model’s theoretical possibilities and limitations.  

• Methodology: The methodology chapter outlines the approach taken in this 

research, covering data collection and preparation, the YOLOv8 algorithm 

development, training procedure, and testing techniques.  

• Results: This chapter represents the overall performance of the trained models. It 

will give evaluation metrics, graph representations, and compare the different 

results across all detected classes.  

• Discussion: The discussion chapter further interprets the results presented in the 

previous chapter, addressing the accuracy and reliability of the algorithm, 

possible factors influencing detection performance, and implications for 

archaeological interpretation. Furthermore, it looks at several methodological 

considerations, strengths and limitations of the approach. 

• Conclusion: In the final chapter, the study concludes by summarising the key 

findings and insights generated throughout the research. It will answer the 

research questions posited here, give advice for future research, and will reflect 

on the significance of the findings in the context of digital archaeology. 
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2. Background information 

2.1 Granaries in archaeology 

2.1.1 Formation of prehistoric granaries 

Granaries can be found all over the world. They provide a useful insight into the 

agricultural practices, social organisation, and economic strategies of (pre)historic 

societies. These storage facilities represent some of the earliest visible forms of food and 

resource management in the prehistoric period. The oldest interpreted granaries can be 

found the in the Jordan Valley and have been dated to 11,300 – 11,175 cal. BP (Kuijt & 

Finlayson, 2009). The main function of these buildings has however not changed, as they 

were ‘(…) [d]esigned with suspended floors for air circulation and protection from rodents 

(…)’ and are often ‘(…) located between residential structures that contain plant-

processing installations’ (Idem, p. 10966). Here, the structures were circular, and 

predominantly made of mudbricks and stone. Furthermore ‘(…) the roof was probably flat 

and covered with a protective coating of mud to shed rain water’ (Ibidem). The main 

indicator that resulted in the structures being interpreted as granaries was the excessive 

amount of barley and oat remains present, and evidence for food cultivation in its near 

vicinity. Some debate still remains whether these structures can be interpreted as house 

plans instead (Weiss et al., 2006). However, a few millennia later, sufficient evidence of 

the existence of granaries can be found in many corners of the world, such as western 

Anatolia (Maltas, et al., 2021), China (Liu et al., 2017), northern Africa (Morales et al., 

2014) and the Mediterranean (Peña-Chocarro et al., 2015). This evidence indicates a 

significant evolution in storage techniques and the central role of granaries in these 

communities.  

The first granaries in Western Europe, including the Netherlands, date back to the Middle 

Bronze Age. The phenomenon appears somewhat simultaneously in various regions 

across northwestern Europe; however their exact origin is uncertain. Previously, only 

underground pits seemed to be of importance, but it is likely that a large part of the 

harvest was also stored in attics indoors (Maes, 2009, pp. 84-85). Unfortunately, the 

introduction, characteristics, and use of prehistoric granaries in the Netherlands remain 

relatively understudied. While several archaeological reports do touch on this subject, 
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most are descriptive rather than analytical. This means that there is no concise dataset 

detailing the number of granaries discovered, their specific periods, or their locations 

within the Netherlands. Furthermore, the lack of detailed analytical studies has resulted 

in a limited insight into the technological advancements, architectural variations, and 

cultural implications of granary use and development within the region. Nonetheless, 

some research has been conducted in Great Britain, where granaries from corresponding 

periods exhibit relatively similar characteristics. Given the scarcity of resources 

specifically focused on the Netherlands, this research will draw on the British literature 

to gain some understanding of granaries in prehistoric times. Still, it is important to 

emphasise that this thesis acknowledges the limitations of this approach, as the direct 

application of British findings to the Dutch context may not fully account for regional 

differences. Therefore, while British research provides a valuable framework, there is a 

pressing need for region-specific studies to accurately interpret the significance of 

granaries in the prehistoric Netherlands. 

 An elaborate paper by Gent (1983) gives an overview of the density and time frame to 

which these structures within northwestern Europe (figure 7 and 8), however it is 

important to note that this paper is quite outdated, and more data should be added to 

give a better outline. Despite its age, Gent's work indicates that granaries became most 

prevalent from the Middle Bronze Age onward and continued to thrive in these regions 

through all phases of the Iron Age. This observation aligns well with the archaeological 

datasets used in this study, which show that most excavated granaries are commonly 

dated to the Iron Age. Furthermore, all the granaries in the dataset can generally be 

associated with a farmstead in their vicinity, indicating that these structures were used in 

agricultural contexts. Unfortunately, the time-sequence of activity and use of these 

granaries and their corresponding farmsteads is often difficult to ascertain due to 

challenges in accurately dating these structures. Additionally, no clear patterns in 

orientation, distance, or spatial relationships between granaries and farmsteads can be 

established due to the lack of comprehensive research in this area (Maes, 2009). This 

means that any clear connections or inferences about the specific roles or chronologies 

of the granaries  
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Figure 7: Approximate periodisations of four-post granaries in northwestern Europe in 1983 
(Gent, 1983, p. 245).  

Figure 8: Distribution of four-post granaries and similar structures in northwest Europe. Pre-
Roman: circles. Roman Iron Age: diamonds (Gent, 1983, p. 246).  
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and their farmsteads are difficult to draw. However, it is evident that granaries were 

utilised extensively within prehistoric agricultural contexts, serving as storage and 

safeguard for grain supplies.   

This does not mean that no other storage options were considered in prehistoric times. 

Underground pits, (organic) storage vessels, silos, basketry, cashes, raised platforms, 

and many other examples were still being used contemporaneously to granaries 

(Jiménez-Jáimez & Suárez-Padilla, 2019) (figure 9).  

These examples are also present within Dutch archaeology, and are often seen in close 

context with Bronze and Iron age farmsteads. Especially the underground silos are 

prevalent in Dutch contexts (Bakels, 2009; Maes, 2009). However, the archaeological 

visibility of these particular storage methods is often more limited, particularly when it 

comes to organic remains, which are susceptible to degradation compared to more 

durable, deep-entrenched structures. With underground pits it is also often difficult to 

ascertain whether these were in fact used as storage containers, or had perhaps another 

Figure 9: Schematic ideal representation of the types of storage container discussed in the text, 
both section (left) and view from above (right). (A) Simple sealed pit. (B) Elaborate sealed pit. (C) 
Underground silo complex. (D) Aboveground silo. (E) Unsealed pit. (F) Granary (Jiménez-Jáimez 
& Suárez-Padilla, 2019, figure 4).  
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elusive function (see Jiménez-Jáimez & Suárez-Padilla (2019) for a contemporary 

overview of this debate). Still, this preservation bias might have led to a skewed 

understanding of the prevalence of different storage techniques. It is plausible that 

granaries were not as common as other storage methods, but due to the more frequent 

discovery and preservation of granaries, they are often perceived as more prominent in 

the Dutch archaeological record than they may have actually been. Especially regarding 

the fact that granaries can be deemed as quite vulnerable for outside influences, whereas 

underground storage is more secure against theft and many other intrusive activities 

(Jiménez-Jáimez & Suárez-Padilla, 2019, p. 807). Furthermore, the construction of 

granaries, as opposed to other methods, represents a relatively large expenditure of 

energy, and requires more maintenance. In other words, ‘(…) long-term preservation in 

granaries, requires frequent shovelling for improved ventilation, periodic inspection, and 

continuous monitoring to prevent infestation or weather-related damage’ (Idem, p. 808). 

On the other hand, granaries are durable, easy to monitor, and relatively simple to use 

(Ollich et al., 2012, p. 215-216). Granaries have been used for millennia, and due to their 

visibility, they offer interesting opportunities for understanding ancient agricultural 

practices and social structures. 

2.1.1 Architecture and definition of prehistoric granaries 

Granaries in the Netherlands are identified by the number of visible posts during 

archaeological excavations. As previously mentioned, granaries typically consist of 4, 5, 

6, 8, or 9 posts spaced approximately 2 meters apart (figure 6). Typically, granaries require 

consistent spacing between postholes, uniform depth for each posthole, and a final 

reconstruction that is relatively straight and aligned (Maes, 2009, p. 82). With that these 

small structures also often exhibit a square or rectangular shape. Consequently, 

structures with 10 or more posts are often categorised as small sheds. However, 

attributing a different function or definition to a building based solely on the presence of 

an additional post-hole can be somewhat arbitrary. Such distinctions are influenced by 

modern classifications rather than inherent functional differences in the structures 

themselves. Therefore, it is crucial to recognise that the distinction between a large 

granary and a shed is quite tenuous (Brijker et al., 2012, p. 21). This is also illustrated in 

the available literature that regards the granaries of the Netherlands, were six-posters are 
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sometimes referred to as granaries, sheds, or in a more general term, as outhouses. 

Where in some instances, the structures can sufficiently be identified or categorised as 

granaries due to detailed archaeobotanical research, many other excavated structures 

are not studied in such detail. Therefore, function and significance is often inferred on the 

basis of a somewhat arbitrary contemporary categorisation that may not fully capture the 

diverse uses and histories of these prehistoric structures. To be pedantic, what is the 

difference between a granary and a shed? Functionally speaking, both structures serve 

as repositories for goods or tools, albeit tailored to different purposes. A shed typically 

houses implements, equipment, or materials used for tasks ranging from farming to 

household work. Conversely, a granary specialises in storing harvested grains, protecting 

them from pests and weather. Despite these distinct roles, both are designed with 

durability and protection in mind, often featuring elevated floors, ventilation systems, 

and sturdy construction. While raised floors may be more prominent in granaries—

serving to protect stored grain from rodents and moisture—such features are not 

necessarily exclusive to granaries. Sheds could also feature raised floors depending on 

the local environment or construction practices, similarly, protecting valuable tools from 

moisture, dirt, or any other environmental threats. Thus, while their contents may vary, 

their fundamental purpose of safekeeping and preservation renders them similar in 

functional intent.  

Therefore, in archaeological research, the distinction between the two can become more 

of a semantic exercise than a practical one. The term "granary" implies a specific function 

related to grain storage, whereas "shed" is more general and can encompass a wider 

variety of uses. Yet, in practical terms, the architectural features and principles guiding 

their construction often overlap significantly. The function of grain storage is usually not 

proven definitively, even though the structures might resemble traditional granaries. This 

means that while the functional purpose typically associated with a shed is often not 

excluded, archaeologists still routinely categorise it as a granary. This overlap can create 

confusion or unnecessary segmentation in scholarly discussions when the focus should 

be on understanding how such structures were used and adapted over time. Firmly 

adhering to terminology can therefore be limiting and arbitrary within archaeological 

interpretation. Still, within this thesis, this terminology will be adopted as a convention 
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for clarity and consistency in describing and categorising archaeological finds and 

features. All in all, the above discussion aims to highlight that the term “granary” and 

“shed” are often used loosely and interchangeably, without careful consideration of their 

specific archaeological and historical context. 

Setting the semantic discussion aside, the small structures possess characteristics that 

can be used as evidence of their role in storage. This is clearly outlined in the paper by 

Maes (2009), who identifies several relevant characteristics. First, the small square and 

rectangular structures are frequently identified in the obvious vicinity of Bronze and Iron 

age houses, indicating they formed part of the farmstead. Additionally, it can be assumed 

that they were not houses themselves, as their ground plans are too small for that 

particular purpose. Consequently, the substantial thickness of the posts in relation to 

their surface area suggests they were designed to bear a heavy load (p. 82).  

Determining the usable volume of a granary is unfortunately challenging, if not 

impossible, due to the absence of clear indications of the structure's precise height, 

resulting in only rough estimates. The lack of reliable evidence regarding roof 

construction—whether it featured a sloping roof or internal divisions—compounds this 

difficulty (Idem, p. 85). Additionally, specific information about construction materials 

and appearance is lacking. Reconstructions of prehistoric granaries often draw on 

contemporary ethnographic examples and involve a significant degree of conjecture. 

These granaries were likely shaped by the need to support heavy loads, the availability of 

local materials, and the requirement for weather resistance. Thus, it was crucial for the 

supporting posts and platform to be sturdy enough to support considerable weight. 

Walls might have been constructed from clay or wooden planks, with roofs made from 

thatch, straw, or wood. Although concrete evidence for a platform is lacking due to the 

preservation of only ground plans, ethnographic examples of elevated granaries suggest 

that such platforms were common (Ibidem). This hypothesis, while difficult to accept for 

granaries with four or six posts, appears more plausible for those with five or nine posts. 

In these cases, the close placement of the posts indicates limited interior space and 

suggests they were designed to balance a heavy load (Villes, 1985, p. 429). Furthermore, 

ground accumulation between the posts could also indicate the presence of an elevated 

platform (Gent, 1983, p. 247). All in all, due to the lack of clear evidence, it is difficult to 
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ascertain the appearance of prehistoric granaries. Most reconstructions rely on 

conjecture and comparisons with contemporary ethnographic examples. 

2.1.2 Function of prehistoric granaries 

Granaries are a method of storage commonly associated with the prevalence of 

agricultural practices in its vicinity. ‘It is considered one of the mechanisms for coping 

with the risks and uncertainties that characterised prehistoric subsistence, e.g. seasonal 

and annual climatic fluctuations, natural hazards, pests, and all sources of variability 

that will affect food availability’ (Halstead & O’Shea, 1989). Storage is, in addition, a way 

of managing surplus for later use, and therefore a key element in social and economic 

complexity (Peña-Chocarro et al., 2015, p. 379). However, it is important to note that the 

existence of food storage in earlier hunter-gatherer societies is still a subject of debate 

and has not been conclusively dismissed (e.g. Rowley-Conwy & Zvelebil, 1989; Stopp, 

2002; Cunningham, 2011). Nevertheless, seasonal peaks in food production, aimed at 

lasting for extended periods, led to the creation of large-scale storage facilities designed 

for its durability and longevity. In general, Jiménez-Jáimez and Suárez-Padilla (2019) have 

identified three main concerns regarding inter-annual grain storage in prehistoric 

societies. Based on ethnographic, archaeological, and experimental evidence, they 

assert that storage facilities are primarily used to address three critical objectives: 

a) Maintaining grain dormancy and preventing premature germination: Grain 

dormancy is essential to ensure that seeds do not sprout before they are sown in 

the next planting season. This is achieved by controlling environmental factors 

such as temperature, light, and, most importantly, moisture. High temperatures 

and exposure to light can trigger germination, while excessive moisture can 

disrupt dormancy. 

b) Slowing down microbial decay: Microbial decay is a significant threat to stored 

grain, leading to spoilage and loss of food resources. To combat this, storage 

methods need to minimise the conditions that promote microbial growth, such as 

warmth and humidity. This involves creating airtight or well-ventilated storage 

spaces, using materials that absorb excess moisture. Slowing down decay 

ensures that the grain remains edible and nutritious over extended periods. 
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c) Protecting grain from pests and animals: Pests such as insects, rodents, and birds 

pose a consistent threat to stored grain. Therefore, effective storage solutions 

incorporate physical barriers to prevent access by these pests.  

Granaries are designed to do just that. They provide a controlled environment that 

regulates temperature, humidity, and access, effectively shielding stored grain from 

pests such as insects, rodents, and birds. Prehistoric Europe was inhabited by pests like 

Sitophilus zeamais (maize weevil) and Sitophilus granarius (wheat weevil), as evidenced 

by archaeological research (Antolín & Shäfer, 2024). This protection is essential for 

maintaining food security and preventing losses due to contamination or predation. 

Additionally, the architectural design of granaries included features like raised floors or 

elevated platforms to further deter pests and promote ventilation, contributing to the 

longevity of stored grains. 

Stored within these granaries were various types of grains such as emmer wheat and 

naked barley, which was the staple diet of the communities relying on these structures 

(Out, 2009; Bakels, 2009; Maes, 2009; Kirleis et al., 2012). Other crops such as ‘(...) 

einkorn wheat, free-threshing wheat, pea, flax/linseed, and poppy were in the end also 

cultivated in the region (…)’ (Bakels, 2014, p. 95). However, these crops have yet to be 

convincingly linked to granary structures. In some cases, this may be due to the rarity of 

the crops, while in others, evidence is simply lacking.  The direct evidence for the storage 

of food products other than grain is also deficient. However, it cannot be ruled out that 

fruits, vegetables, and even beverages in barrels were also stored within the granaries 

(Maes, 2009, p. 82). Lastly, even though the granary is often associated with the storage 

of subsistence products, it is possible that there were instances of storing tools and other 

non-food related items. 

In addition to their critical roles in storage and protection, granaries may have served 

broader socio-economic functions within prehistoric societies. Beyond their immediate 

practicality, some scholars argue that these structures potentially contributed or were 

the result of the development of social stratification and economic complexity (e.g. 

Childe, 1954; Bogaard et al., 2009; Bogaard, 2017; Hastorf & Fowhall, 2017). According 

to this debate, the accumulation of surplus food facilitated by granaries (and other 

storage facilities) could have enabled specialisation of labour, trade relationships, and 
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the emergence of elites who controlled access to these stored resources. Still, this 

“surplus theory”, although influential, faces challenges in terms of definitive causal 

proof. For instance, although the concept of surplus can be seen as a ‘(...) good proxy for 

studying wealth, and thus of wealth inequalities. The correlation is not perfect. In fact, 

wealth may exist without any storage and ‘[c]onversely, the possibility of storage without 

payments and without any kind of wealth should not be totally ruled out’ (Darmangeat, 

2020, p. 67). Furthermore, attributing surplus as the primary catalyst for social inequality 

oversimplifies the complexities of early human societies. Factors such as political 

organisation, environmental variability, and cultural practices likely played roles 

alongside storage facilities in shaping social structures. Moreover, the archaeological 

evidence linking granaries directly to social stratification is often indirect and subject to 

diverse interpretations. Lastly, determining whether granaries were intended for 

communal use or reserved for individual households or elite groups is challenging, 

adding another layer of complexity to understanding their societal role. In essence, while 

granaries were pivotal in facilitating food storage and management, their broader socio-

economic impact is an intriguing area warranting further research.  

For instance, as outlined by Hermsen and Haveman (2009), it is often assumed that the 

presence of large or numerous granaries on a farmstead indicates grain overproduction 

and surplus stocks. The argument follows that those who owned these stocks likely 

played a role in distributing grain harvests throughout the surrounding area (p. 46). 

However, there are several arguments that can be presented to counter that idea. Firstly, 

the surface area of granaries alone does not reliably indicate their storage capacity, as 

volume is also influenced by the height of the structures. Moreover, accurately assessing 

the total number of granaries associated with a farmstead during archaeological surveys 

can be difficult. Preservation conditions and the extent of excavation areas affect how 

easily granary layouts are identified. When multiple farmsteads were situated together, 

an additional challenge arises in determining which and how many granaries belonged to 

each individual farm. Another challenging aspect of interpreting granaries is determining 

their duration of use and, consequently, their frequency of replacement (Idem, pp. 47-

48). In other words, there is too much ambiguity, data bias, and variability in interpreting 
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granaries as markers for ancient societies’ socio-economic dynamics. Still, they remain 

an interesting proxy for understanding economic affluence. 

Another factor that is often associated within the functional framework of prehistoric 

granaries is that of a ritual, cultural, or religious significance. This idea, mainly based 

upon ethnographic and anthropological studies, suggests that granaries may have 

served ceremonial purposes or held symbolic importance within ancient societies. 

Although this is archaeologically difficult to prove, there have been contemporary studies 

that showcase this cultural significance for agricultural communities. Hermsen and 

Haveman (2009) give a relevant example to this phenomenon, by referring to the village 

of Songo on the Dogon Plateau in Mali. Here families live in compounds consisting of two 

or three houses, depending on the number of wives the household head has. Adjacent to 

these houses are storage sheds that closely resemble granaries reconstructed for 

prehistoric contexts in the Netherlands. The architecture of these sheds reflects the 

gender of the owner and their status. In this instance, the men own the largest sheds, 

primarily used for millet storage, equipped with three doors. On the other hand, women 

manage smaller sheds with only one door, divided into multiple smaller compartments 

for storing personal items like clothing, small food products, and jewellery. The doors of 

the sheds are sometimes adorned with intricate wood carvings, signifying the status of 

their owners. As married sons remain on their father's compound, new houses and grain 

sheds are added over the years, gradually filling the compound (p.48) (figure 10). 

This anthropological example illustrates that the quantity and size of storage sheds near 

houses do not always directly correlate with harvest size, the significance of arable 

farming in the local economy, or the physical lifespan of the building structures. Cultural 

traditions associated with changes in family composition, marriages, and other factors 

could have equally influenced their construction and use. Unfortunately, archaeological 

methods do not provide this information directly, which means that much of the 

information regarding cultural significance of these structures is lost. Therefore, it is 

important to not assume a certain function for these structures based solely on their size 

or quantity, as their roles within ancient societies were possibly multifaceted and 

influenced by various cultural dynamics and practices. 
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However, there are instances in the Dutch archaeological context were certain cultural 

or ritual practices can be associated with granaries. These are most clearly evidenced in 

the form of large quantities of burnt pottery and the presence of substantial parts of one 

or multiple vessels in post-holes of houses and granaries. These depositions are 

commonly interpreted as a ritualised deposition of abandonment. Especially when the 

deposited ceramic vessel is intact, decorated, unaccompanied by typical refuse 

artifacts, and carefully placed, it is often described as "ritualised." While proving this 

conclusively is always challenging, in these cases, ‘(…) there is clearly a process of 

conscious selection. Therefore, it is plausible that there is a deeper significance to the 

deposition of these objects, hinting at a ritual of abandonment’ (Hermsen & Haveman, 

2009, p. 82). Although this concept is most commonly associated with the main buildings 

or farmsteads in these periods, there have been sufficient instances of supposed ritual 

depositions within granary context as well (Benallou, 2021). Brück (1999) even mentions 

that for British Bronze Age settlements, there is often a distinction between the material 

deposited in the main building, and secondary storage structures such as granaries. In 

the main buildings, discoveries are often associated with consumption, production, and 

status, whereas in storage structures, they are often linked to food preparation (p 150). 

The concept of ritual abandonment was introduced by van den Broeke (2002), who 

connected these deposits to the abandonment phases of post-holes, based on 

Figure 10: Example of several Dogon granaries in close proximity to the village (Wikimedia 
commons, 2010).  
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stratigraphy and approximate artifact dating. Where direct causational evidence is 

lacking due to the fragmentary nature of the archaeological record, the interpretation 

relies heavily on contextual clues. In particular, the intactness and careful positioning of 

objects within post-holes suggest a symbolic act rather than mere disposal, hinting at the 

possibility that these depositions were part of a broader ritualistic practice marking the 

transition or closure of a structure's use. However, without more definitive evidence, 

these interpretations remain speculative, underlining the challenges in reconstructing 

the full cultural significance of such practices in prehistoric contexts. 

In conclusion, granaries were essential components of prehistoric societies, serving as 

both practical storage solutions and, potentially, as indicators of socio-economic and 

cultural dynamics. While their primary function was to ensure the preservation of surplus 

food and manage the risks associated with agricultural production, their broader impact 

on social organisation remains a subject of ongoing debate. The possibility that granaries 

also played roles in social stratification, communal versus individual ownership, and 

even ritual practices adds layers of complexity to their interpretation. As the 

archaeological record often lacks direct evidence, caution is necessary when drawing 

definitive conclusions about the socio-economic implications of these structures. 

Future research that combines archaeological, ethnographic, and experimental 

approaches are therefore crucial in deepening our understanding of the multifaceted 

roles granaries played in prehistoric societies. 

2.1.3 Prehistoric granaries in practical archaeology 

While this overview provides a general understanding of granaries in prehistory, it is 

interesting to consider how these structures are actually identified in the practical 

context of archaeological excavations. Identifying a granary often involves a combination 

of factors, including the layout, number, and nature of postholes, as well as the historical 

and environmental context in which the structure is found. However, as mentioned 

before, granaries are notoriously understudied in archaeological research, which means 

that much of the identification process in the field relies on educated guesses. This lack 

of detailed study makes it particularly difficult to definitively distinguish granaries from 

other types of structures, further emphasising the need for more targeted research in this 

area. 
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In Dutch excavations, granaries are typically identified by examining specific structural 

features (outlined by Hermsen & Haveman, 2009; Maes, 2009). Their most noticeable 

distinctions are the layout and characteristics of the postholes. Granaries tend to have 

postholes spaced approximately 2 meters apart, with the structure often supported by 

four, five, six, eight, or nine posts. The relatively small number of posts and the tight 

spacing between them make these structures easier to differentiate from larger 

buildings, such as main houses or side buildings, which are usually much more 

expansive. The posts themselves are often quite deep and of even depth, suggesting that 

they were designed to support considerable weight. Consequently, this means that when 

fewer posts are excavated—either due to disturbances, overlapping features, or other 

practical limitations—the most significant evidence for identifying these structures is 

often compromised. In such cases, the interpretation of the building’s function as a 

granary becomes more difficult and speculative, as the structural features that would 

typically indicate storage purposes may be lacking or unclear.  

Contextually speaking, granaries are commonly found near prehistoric farmhouses, 

located within agricultural contexts. The proximity to residential areas points to a 

functional connection with the storage of harvested crops. In some cases, botanical 

research has helped confirm the agricultural role of these buildings. For example, traces 

of burnt grain found in postholes can provide evidence of the structure’s function. 

However, this type of evidence is far from conclusive, and in many cases, botanical data 

is either sparse or indirect.  

Given the limitations of current research, the identification process remains tentative 

and open to debate. The absence of clear, definitive evidence means that archaeologists 

must rely on broad assumptions and comparisons with other sites, making granaries a 

subject of ongoing uncertainty in the field. This highlights the importance of further 

research into the identification and study of these structures. More focused 

investigations into granaries, including for instance experimental archaeology and 

comparative studies are essential to improve the accuracy of these interpretations. Until 

more data is gathered, the task of distinguishing granaries from other types of buildings 

will remain a challenging and often speculative aspect of practical archaeology.  
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This limitation also highlights an inherent problem with the dataset used to train the Deep 

Learning model. The data itself is largely derived from educated guesses made by 

archaeologists, given the lack of definitive evidence for many of these structures. 

Furthermore, while archaeologists can incorporate a wide range of contextual 

information—such as environmental, historical, and social factors—into their analyses, 

DL models do not have the capacity to interpret these contexts. This inability to account 

for broader contextual data is a fundamental challenge for the model, limiting its ability 

to make accurate and reliable identifications of granaries. However, implementing such 

a model might also reveal and use patterns or relationships within the data that 

archaeologists have not yet considered. DL models can analyse vast amounts of data 

and will factor characteristics in their selection process that might be elusive through 

regular analysis. This capability offers the potential to generate new insights into the 

identification and understanding of granaries, even if the models themselves lack the 

ability to contextualise their findings. This theoretical concept will be further outlined in 

chapter 4.1 regarding the human and algorithmic “black-box” and the “garbage in – 

garbage out” concept. 

 

2.2 YOLOv8 architecture 

As briefly described in the introduction, this thesis will make use of the YOLOv8 Deep 

Learning object detector. YOLO, which stands for "You Only Look Once," is a family of one-

stage object detection algorithms that have been originally designed for real-time 

processing. YOLOv8 represents one of the latest iterations in this series, building on the 

strengths of its predecessors while introducing several enhancements to improve 

performance and accuracy. Although this algorithm is relatively new, its methodology is 

already widely discussed in the academic literature. However, in the context of 

archaeology, the amount of literature still remains somewhat limited. A brief review of the 

available literature reveals that most papers focus on remote sensing imagery and the 

localisation of archaeological sites (e.g. Olivier & Verschoof-van der Vaart, 2021; Canedo 

et al., 2023). Furthermore, several of these papers are evaluating the usefulness of the 

YOLO object detector compared to more traditional two-stage detectors like R-CNN (e.g. 

Marçal et al, 2024; Vokhmintcev et al., 2024). This indicates that the algorithm is still 
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being explored and tested for its practical applications within the archaeological domain. 

Therefore, much more research is still needed in order to fully understand its potential 

and optimise its use in this field. 

2.2.1 Basic principles of YOLO  

In short, YOLOv8 continues the tradition of YOLO models by employing a single neural 

network to process an entire image in one go, predicting bounding boxes and class 

probabilities directly. This approach contrasts with two-stage detectors like Faster R-

CNN, which first generate region proposals and subsequently classify them (Olivier & 

Verschoof-van der Vaart, 2021, p. 279). According to Jiang et al. (2021) there are several 

core principles of YOLO that can be summarised as follows: 

1) Single-stage detection: Unlike two-stage detectors like R-CNN, YOLO performs 

detection in a single stage, directly predicting bounding boxes and class 

probabilities from the entire image in one pass, which greatly enhances speed and 

efficiency. 

2) Real-time processing: The algorithm’s architecture is designed for real-time 

applications, allowing it to process images and videos quickly. Its streamlined 

network structure, which avoids complex pipelines, ensures fast computation.  

3) Regression-based detection: YOLO frames object detection as a single regression 

problem, predicting bounding boxes and class probabilities simultaneously, 

which simplifies the detection process. 

4) Non-maximum suppression: The algorithm predicts multiple bounding boxes per 

grid cell but uses non-maximum suppression to select the bounding box with the 

highest Intersection Over Union (IOU) with the ground truth, improving the 

precision of the final detections. 

5) Network simplification: Improvements in YOLO v2 and subsequent versions focus 

on enhancing accuracy and recall without significantly deepening or broadening 

the network, which helps maintain its speed advantage. Furthermore, the 

architecture is relatively small, which makes it feasible to implement on hardware 

with limited computational resources. 
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In short, where CNNs require the input image to iterate through several convolutional, 

pooling, and fully connected layers, the YOLO methodology processes the entire image 

in one forward pass through its network. Instead of generating region proposals and 

subsequently classifying them, YOLO treats object detection as a single regression 

problem. It directly predicts the bounding boxes and class probabilities, optimising for 

both localisation and classification simultaneously.  

However, in a general sense it can be said that CNN based methods are better suited 

where high accuracy is paramount and computational resources are abundant. 

Therefore, although the loss of accuracy within this research is, of course, unfortunate, it 

can be argued that the benefits of using YOLO in archaeology could outweigh this 

drawback. YOLO’s capabilities might allow for the rapid localisation of archaeological 

features on maps, possibly providing an aiding tool for archaeologists. This speed 

facilitates the analysis of large datasets, making it possible to quickly generate 

comprehensive maps that can then be refined through further investigation. 

Furthermore, a broad initial classification can be iteratively refined, by leveraging expert 

knowledge to enhance accuracy. 

2.2.2 Evaluation metrics 

In order to assess the workings of a DL model, standardised evaluation metrics have been 

developed. These metrics make it possible to compare the results of other developed 

models and methods and essentially see how well the model performs. These metrics 

will also be used within chapter 5, and are therefore outlined below.  

For this thesis the model will be evaluated on the metrics of recall (eq. 2), precision (eq. 

3), and mAP (eq. 4). Each of these evaluation techniques will measure a different 

component of the overall model’s performance. Importantly, these metrics are 

commonly based upon the amount of True Negatives (TN), False Negatives (FN), True 

Positives (TP), and False Positives (FP) present within the algorithmic output. These 

predictions are based upon either the difference or similarity between the model 

prediction and the actual supervised input. However, as this thesis is not dealing with a 

standard binary classification (true/false), but with a bounding box input and bounding 

box prediction these categories are calculated by the means of Intersection over Union 
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(IoU; eq. 1, 1a & 1b). In short, ‘[w]hether a prediction falls in one of these categories is 

determined by the amount of overlap between the generated bounding box and the 

ground truth bounding box’ (Olivier & Verschoof-van der Vaart, 2021, p. 282) (figure 11). 

This means that the IoU can be used as a threshold of what is considered a correct 

detection. This threshold is able to control the trade-off between precision and recall in 

the DL object detection model. For instance, within this thesis it might be beneficial to 

choose a lower IoU threshold if the primary goal is to ensure that potential structures are 

not missed, accepting that some false positives will occur. Conversely, a higher IoU 

threshold might be used if the focus is on precise localisation, ensuring that identified 

features are accurately bounded. However, in a standardised format, ‘[t]he threshold for 

a detection being a TP is normally set to an overlap of 0.5. If the overlap is less, the 

detection is considered a FP. The (average) IoU can not only be used as a measure for loss 

during training, but also gives an indication of the quality of the bounding boxes’ (Olivier 

& Verschoof-van der Vaart, 2021, p. 282).  

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝑈𝑛𝑖𝑜𝑛 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
        (1) 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 = 𝐴𝑟𝑒𝑎(𝑏𝑝𝑟𝑒𝑑 ∩ 𝑏𝑡𝑟𝑢𝑒)     (a) 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛 = 𝐴𝑟𝑒𝑎(𝑏𝑝𝑟𝑒𝑑) + 𝐴𝑟𝑒𝑎(𝑏𝑡𝑟𝑢𝑒) − 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (b)  
 

Furthermore, the metrics of recall and precision are also commonly used to evaluate the 

performance of a DL model. Recall, also known as sensitivity or true positive rate, 

measures the ability of a model to correctly identify positive instances from the entire 

pool of actual positives. It answers the question: out of all the actual positive instances, 

how many did the model correctly identify? Thus, a high recall indicates that the model 

Figure 11: Schematic overview of how the Intersection over Union (IoU) metric is measured 
(Wikimedia commons, 2019). 
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is good at finding all positive examples. In the context of this thesis, high recall means 

that the model will be able to identify most of the actual granaries present in the dataset, 

and with that, minimising the risk of missing these archaeological structures. 

On the other hand, precision focuses on the accuracy of positive predictions. A high 

precision indicates that when the model predicts something as positive, it is likely to be 

correct. For example, in the context of this thesis, a high precision means that when the 

model identifies an area as containing a granary, it is usually correct and not identifying 

unrelated features as granaries. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁)
   (2)  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁)
   (3)  

The last metric within this thesis is that of the Mean Average Precision (mAP) (eq. 5). This 

metric evaluates the overall accuracy of an object detection model by considering both 

the precision and recall across all the detection classes. The Average Precision (AP) is the 

key component of mAP. This measures how well a model detects and localises objects 

across various classes in a dataset. It is calculated by generating a precision-recall curve 

for each class. The area underneath this curve (AUC) represents AP, where higher values 

indicate better model performance. Mean Average Precision (mAP) then averages the AP 

values across all classes in the dataset.  

𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑖

𝑛
𝑖=1      (4) 

The metric of mAP is commonly used in research papers to benchmark and compare the 

performance of models. Different variants of mAP, such as mAP 0.5, 0.75, and 0.95, can 

be specified to evaluate performance at different thresholds of IoU. Therefore, this metric 

can commonly be understood as an overall performance indicator of the DL model. 

Furthermore, this metric is commonly preferred over the F1-score in multiclass object 

detection, because mAP assesses precision and recall across all classes, accounting for 

varying levels of confidence in object detections. F1-score, on the other hand, is more 

suited for binary classification tasks and may not provide an assessment of the model's 

performance across multiple classes. 
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3. Dataset 

The dataset comprised of excavation datasets collected and created by professional 

archaeologists during excavations and trial trenching projects. The datasets were 

selected based upon an approximate similar temporal context of the Iron and Bronze age 

in the Netherlands. The datasets of granaries were sourced from excavation sites across 

the Netherlands. The dataset consists of 19 different excavations, with a total of 477 

corresponding labelled granaries; the precise locations of which can be seen in figure 12. 

As can be seen, most site locations originate in Noord-Brabant, Utrecht, and Gelderland, 

with few exceptions.  

All the data collected is owned by Archol bv, and due to embargo constraints and 

confidentiality requirements, the images in this thesis have been anonymised to protect 

sensitive information. This means that specific details about the excavation sites, as well 

as examples of the raw data, cannot be fully disclosed within this thesis. This decision 

reflects Archol bv’s policy to maintain control over unpublished or proprietary data while 

ensuring the confidentiality of the archaeological information. As a result, while the data 

serves as the foundation for the research conducted in this thesis, its anonymisation 

ensures adherence to their policy. 

Figure 12: Location of all the data 
that has been used within this 
thesis. 
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This thesis is allowed to show the specific excavations or trial trenching projects that the 

data was sourced from, as can be seen in table 1. This table showcases the amount of 

granaries and their corresponding type that were identified in each project. This already 

displays the discrepancy present between the 4-post granaries as opposed to other 

categories, as these are most prevalent in the archaeological record and are possibly 

recognised easier to their standardised format.  

 4-post 6-post 9-post 

Heiloo Zuiderloo 11 0 1 

Tiel 16 2 3 

Veldhoven Huysackers 64 22 4 

Udenhout den Bogerd f3 29 5 2 

Tennet Tilburg-Zuid 26 5 2 

Udenhout den Bogerd f4 5 1 0 

Veldhoven Huysackers f2 10 4 3 

Veldhoven Huysackers f3 27 7 2 

Hattemerbroek 6 5 2 

Udenhout den Bogerd f5 9 0 4 

Oss Gewandeweg 5 1 4 

Tilburg Technopol 7 30 0 0 

Zijderveld_A2 29 1 2 

Zijderveld DO-I 13 2 0 

Tiel Medel 80 0 0 

Oss Horzak 5 1 2 

Weert Laarveld fase 4 7 1 0 

Veldhoven Kransacker 3 2 1 

Geertjesgolf vpl 1 + 3 7 0 4 

Total 382 59 36 

 80,1% 12,4% 7,5% 

Table 1: Toponyms of the 19 excavation datasets used within this thesis, along with the number 
of granaries and their corresponding number of post-holes (Archol bv, n.d.). 
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The data utilised in this thesis was collected using GPS technology. The datasets were 

provided in shapefile format, a widely used geospatial data format that facilitates 

integration with GIS software. Each shapefile was linked to accompanying Microsoft 

Access databases containing metadata, including details on the shape, NAP, colour, 

texture, depth, and associated artifacts of individual archaeological features (figure 13). 

Other available metadata linked to the Microsoft Access system are photographs of the 

features, digital drawings, and possible botanical samples that were collected from it.  

As can be observed, certain data points, such as depth, are occasionally missing, which 

is largely a result of the nature of archaeological investigation. For example, during trial 

trenching, not all features are examined in detail, as the purpose of such investigations 

is to conduct a broad survey rather than a full-scale excavation. As a result, some 

features are intentionally left in situ, meaning their full extent, including depth 

measurements, cannot be recorded. Additionally, archaeological features that are 

clearly recent are similarly excluded from detailed documentation, as they are often not 

considered relevant to the focus of the investigation. This is not problematic for the 

purposes of this thesis, as the primary metadata utilised includes the feature number, 

Figure 13: Example of one of the Microsoft Access databases, displaying feature number, 
interpretation, contour, depth, approximate dating, structure number, and comment (Archol 
bv, n.d.). 
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interpretation, and structure number. These data points are sufficient to accurately 

identify granaries and their corresponding post-holes within the shapefile.  

By linking these Access databases to the shapefiles in QGIS software using the feature 

number as the primary key, feature maps can be plotted in the Amersfoort/RD New 

coordinate system (EPSG:28992). This practice is common within commercial 

archaeology, where such maps are often referred to as AllFeatureMaps or, in Dutch, 

AlleSporenKaart (ASK). These ASK maps serve as a foundation for preprocessing the data 

for the deep learning (DL) model, a process that will be detailed in chapter 5 (figure 14). 

The used granaries were identified by professional archaeologists at either three distinct 

stages: during the field excavation, during the subsequent data processing phase, and 

during the reporting phase. In the reporting stage, archaeologists synthesise their 

findings, drawing on relevant literature to contextualise and confirm the identification of 

granaries. Consequently, these structures are explicitly labelled as granary features 

within the metadata, simplifying their classification and making them readily accessible 

for this study. This can be seen in figure 14 where all the associated features are given a 

structure number.  

Figure 14: Example of an ASK from an excavation in the QGIS environment (Archol bv, n.d.). 
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Most of the granary examples used in this thesis have been published within their 

corresponding archaeological reports. This means that there is a somewhat reasonable 

assumption that the granaries are correctly identified based upon the characteristics 

described in chapter 1 and 2. As will discussed in chapter 4, the concept of the human 

"black box" is particularly relevant here, as there remains no universally established or 

clearly defined set of criteria for accurately identifying granaries within archaeological 

research. In some cases, the data or report reflected some interpretative doubt by the 

archaeologist due to missing post holes, atypical feature shape or depth, or other 

inconsistencies with typical granary representations. In these instances the examples 

were carefully considered, and oftentimes removed due to the ambiguity and potential 

for misinterpretation.  

Although every effort has been made to use data with the highest accuracy, there is an 

inherent possibility of misinterpretations, leading to both false positives and false 

negatives. In particular, the dataset might contain mislabelled granaries or overlook 

unlabelled ones due to the complexity of the archaeological record. Yet, despite these 

limitations, the YOLOv8 model is designed to handle such variations. Its ability to 

generalise from diverse examples enables it to detect patterns even when some data 

points are inconsistent. This adaptability ensures that, even with a small margin of error, 

the DL model should still deliver reliable results in practical applications. 
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4. Theoretical framework 

4.1 Digital archaeology and theory 

Digital archaeology is often criticised for lacking a strong theoretical foundation.. Digital 

archaeology has been ‘(…) accused of being technocratic, apolitical and indifferent to 

social and cultural concerns and of relating poorly with theoretical orientations currently 

found in archaeology’ (Dallas, 2015, pp. 177-178). Several reasons are oftentimes given 

to substantiate this accusation. First of all, the rapid pace at which the technological 

advancements are introduced seem to outstrip the development of the necessary 

theoretical frameworks. Secondly, there is often a focus on the immediate practical 

application of digital tools at the expense of theoretical development. The immediate 

benefits of using AI, such as increased efficiency and new insights into archaeological 

data, can overshadow the need for a thorough theoretical examination. Practitioners may 

prioritise the tangible results of these technologies over the slower, more abstract 

process of theory-building. This is stated by Zubrow (2006), who notes that ‘[t]here is a 

tendency to use digital technological solutions simply because one has the “toys” 

available’ (p. 22). The appeal of quick wins and the pressure to produce measurable 

outcomes can divert attention away from the more time-consuming task of developing a 

theoretical foundation. This is also distinctively regarded as the “law of the hammer” 

(Moore & Keene, 1983) ‘(…) in that the appeal of the technology has caused excessive 

application, or pounding, without regard to purpose, appropriateness, or theory’ 

(Drennan, 2001, p. 668). All in all, the discipline ‘(…) has been subject to what is called an 

“anxiety discourse,” wherein the identity, nature and academic legitimacy of 

archaeological computing was questioned and concerns expressed about its theoretical 

core, the rigour and relevance of its methodologies, the value of its outputs, and the 

extent to which its contributions were recognised as having any significance to the 

broader field (Huggett et al., 2018, p. 43) 

However, in recent years, there have been many publications which add relevant 

theoretical underpinnings to the discipline (e.g. Perry et al. 2016; Morgan, 2019; Morgan, 

2022; Huggett, 2024). Digital archaeology ‘(…) has become an interdisciplinary 

perspective in which integration, collaboration, and the introduction and use of 
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methodological and theoretical digital tools are reshaping the broader discipline’ 

(Huggett, 2024, p. 328). These developments reflect a growing recognition of the 

importance of engaging with theoretical frameworks, offering new ways of establishing 

digital methods as a component of the broader archaeological project. Therefore, in line 

with this sentiment, this thesis will examine both the opportunities and the limitations of 

applying these tools in archaeological inquiry, while reflecting on the broader theoretical 

implications for the discipline as a whole. 

4.1.1 Digitalisation of archaeological practice 

The growing prominence of digital archaeology has fundamentally changed the way the 

archaeological discipline operates as a whole. As outlined by Morgen (2019) ‘[t]he digital 

has become pervasive, tedious, and worryingly invisible in archaeological labour, 

embedded in the craft of archaeological knowledge production’ (p. 325). 

Correspondingly, some argue that ‘(…) there is no digital archaeology’ (Huvila, 2018, p. 

1), but instead archaeological research inherently incorporates digital tools and 

techniques into its practices. This perspective suggests that digital archaeology is not a 

standalone subfield, but rather an integral aspect of the broader archaeological process. 

With that in mind Huggett (2020) developed a model to illustrate the increasing role of 

digital tools in archaeological practice (figure 15). Traditionally, archaeology has been a 

hands-on and creative process, however digital technologies are now being integrated to 

standardise and streamline various tasks. This includes the use of consistent methods 

for data recording, which are then organised into systems that enhance efficiency. In 

some cases, tasks can be fully automated, with digital tools performing functions that 

were once carried out by the archaeologist. While these tools may assist the 

archaeologist in certain tasks, they can also take on more control as automation 

increases, shifting the balance of agency between the practitioner and the technology 

(Idem, p. 419).  

This standardisation, systemisation, and automation of archaeological practice can be 

regarded as a significant development. Morgan (2019) even popularised the term “cyborg 

archaeology” which ‘(…) draws from feminist posthumanism to transgress bounded 

constructions of past people as well as our current selves’ by ‘(…) using embodied 

technologies, we can push interpretation in archaeology beyond traditional, 
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skeuomorphic reproductions of previous methods to highlight ruptures in thought and 

practice’ (p. 326). The concept posits that contemporary archaeological practice 

increasingly involves the integration of human expertise and digital technologies, 

creating a hybrid approach to knowledge production. In this framework, archaeologists 

are considered "cyborgs" in the sense that their work is inseparable from the tools and 

technologies they use. An archaeology that ‘(…) integrates posthuman principles to 

create a viable interstitial space where things from the past and from the present can 

commingle in commensurate space’ (Morgan, 2022, p. 216). 

In other words, digital technologies not only offer new insights, but they also challenge 

traditional methodologies, highlighting potential flaws within them. By addressing similar 

research problems through digital tools, archaeologists can test and refine existing 

methods, providing alternative perspectives and solutions. This approach allows for a 

more critical examination of past practices, helping to uncover biases, inaccuracies, or 

limitations that may have previously gone unnoticed.  

4.1.2 Artificial intelligence, transparency, and ethics 

Still, the digitisation of archaeological practice has resulted in some challenges and 

concerns. One of the major issues within archaeological Deep Learning research is that 

of transparency and the so-called “black-box” issue (Huggett, 2017; Huggett, 2021; 

Figure 15: A model of archaeological practice (Huggett, 2020, figure 1). 
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Gattiglia 2022; Tenzer et al., 2024; Vadineanu et al., 2024). ‘A black box generates 

outcomes, but knowledge of how they arrive remains hidden. It is seen as a mysterious, 

inscrutable, powerful entity connected to a “data-driven algorithmic culture”’ (Anichini & 

Gattiglia, 2022, p. 78). AI models are capable of generating predictions or classifications, 

yet the internal mechanisms by which these outcomes are produced often remain 

opaque to researchers and users. This becomes even more difficult with DL 

architectures, as these models ‘(…) essentially reprogram themselves as they learn from 

data, rather than the software being written in its entirety by human programmers’ 

(Huggett, 2022, p. 9). As a result, researchers may struggle to explain why a model makes 

certain predictions or classifications, even though the algorithm itself might be highly 

effective in identifying patterns or solving problems.  

The question one might then consider is whether it is reasonable to trust classifications 

and evaluations made by methods that operate in ways researchers cannot comprehend. 

Carabantes (2019) observes that transparency is a design principle frequently demanded 

of AI systems but less of human beings. Humans, too, are "black boxes" in many 

respects— ‘(…) we do not have access to other human beings’ minds or brains, and we 

do not demand it to trust them. We only have access to their behaviour and their 

explanations, which are not a reliable depiction of the real mental processes’ (p. 316). 

Therefore, it can be said that this challenge is not a new problem caused by AI, but instead 

has been a longstanding issue in the relationship between humans, technology, and 

knowledge production. As stated by Gattiglia (2022) ‘the lack of explainability is merely 

an aspect of the ontological revealing-concealing dimension, not a novel concern in its 

own right, and archaeologists may be more cognizant of their own by paying attention to 

this dimension of technological mediation’ (p. 330). This “human black box” is 

particularly relevant in this thesis, as the identification process of granaries, which this 

thesis relies on heavily, also can be found to be arbitrary and based upon subjective 

interpretations and experiential knowledge of the archaeologists involved. Although this 

thesis has tried to clarify which characteristics are oftentimes used to identify granaries, 

these factors are not codified into a transparent, reproducible framework, leaving much 

of the process reliant on individual expertise and tacit knowledge. This arbitrariness 

mirrors the opacity of AI systems, raising questions about the parallel challenges of 
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explainability in both human and machine contexts. Just as AI models operate as "black 

boxes," archaeologists' decisions in identifying granaries can lack explicit documentation 

making their reasoning similarly opaque to external observers. Consequently, this thesis 

grapples with a dual-layered black-box issue: the inherent complexity of AI systems and 

the implicit subjectivity embedded in human decision-making processes. These 

concerns highlight the challenges of transparency, accessibility, and trust in AI 

applications as well as archaeologists, emphasising that explainability is not merely a 

technical requirement but a foundational element for academic research. 

Still, while human cognition and AI share similarities in their opacity, the lack of 

explainability in AI models, particularly within DL, raises concerns about their reliability 

and the ethical implications of relying on them without a clearer understanding of how 

they reach their conclusions. It has been argued that ‘(...) AI algorithms alienate 

archaeologists from their object of research and create further divisions between those 

who have the knowledge for implementing AI models and those who do not, creating 

inequality in the research. If the technology cannot be explained, archaeologists may 

also feel alienated from their role as knowledge-bearers. (…) When explainability 

threatens to alienate archaeologists from their ability of interpretation, there is an 

opportunity for them to become sceptical towards the use of AI’ (Gattiglia, 2022, p. 330). 

Therefore, explainability has always been high on the list of concerns within 

archaeological AI research, as it directly impacts the trust and ethical acceptance of 

these technologies in archaeological practice. 

Similarly, this ethical side is something that is often raised within AI research in 

archaeology. Simply put, ‘[t]ransparency is necessary for understanding biases in the 

data and the functioning of the algorithms. If the archaeologists cannot trust and verify 

that the AI algorithm has made a correct identification, the result cannot be used in 

research’ (Anichini & Gattiglia, 2022, p. 78). When datasets are incomplete, biased, or 

skewed, the algorithms that rely on them can inadvertently perpetuate these biases in 

their classifications or predictions. If archaeologists cannot verify the integrity of the AI's 

decision-making process or understand the potential biases embedded within the data, 

they risk making conclusions based on flawed or incomplete information. This highlights 

the importance of ensuring that both the data used to train AI models and the algorithms 
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themselves are critically examined, ensuring that the resulting insights are as accurate 

and inclusive as possible. This data problem often referred to as the “garbage in, garbage 

out” concept, where, simply put, bad data will result in a bad model. As outlined by 

Kansteiner (2022): ‘[i]f we think that the stories and images we consume influence our 

memories, identities, and future behaviour, we should be very wary about letting AI craft 

our future entertainment on the basis of our morally and politically deeply flawed cultural 

heritage' (p. 124). In other words, if AI systems are trained on biased or incomplete data 

that reflects morally or politically flawed narratives, they could reinforce and perpetuate 

these issues, influencing not just archaeological research, but also broader cultural 

perceptions and future decision-making. This underscores the ethical responsibility of 

archaeologists and other researchers to ensure that AI tools are used thoughtfully, with 

an awareness of the potential consequences of relying on flawed data to shape our 

understanding of the past and the narratives we build about collective heritage.  

Building onto the “(human) black box” and “garbage in, garbage out” issues, AI 

applications in archaeology often work with fragmentary and flawed datasets. The 

integration of AI into archaeological research has initiated more discussions about the 

nature of archaeological datasets and expertise. As outlined by Lambers (2024) AI 

models, particularly in supervised learning contexts, rely on benchmark datasets created 

by experts to classify archaeological phenomena. However, these benchmarks are often 

understood as a "gold standard." However, AI research has shown that ‘[w]hat has led 

experts to certain classifications in our benchmark datasets is often far from clear, 

transparent, or consistent, and this results in flawed datasets’ (Idem, p. 8). This has 

resulted in archaeologists reconsidering the reliability and objectivity of their own 

classifications, as AI models frequently expose inconsistencies or errors in the very data 

meant to validate them.  

Fortunately, new fields are emerging both within and outside of archaeology to address 

and mitigate these issues. The discipline often calls that the ‘[r]esearchers across the 

discipline of archaeology should work closely with data scientists and social scientists 

to design representative sampling strategies and data gathering methods, and to develop 

protocols for assessing and correcting for bias in datasets’ (Tenzer et al., 2024, p. 4). 

Furthermore, the introduction of Explainable Artificial Intelligence (XAI) is a step in the 
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right direction for improving transparency and accountability in (archaeological) AI 

systems (e.g. Barredo Arrieta et al., 2020; Labba et al., 2023; Li et al., 2023; Matrone et al. 

2023; Tenzer et al., 2024; Vadineanu et al., 2024). XAI aims to make AI models more 

interpretable, allowing researchers to understand and explain how decisions are made. 

Still, although the discipline is starting to understand better how AI systems function 

internally, the explainability of these systems is still far from straightforward. As a result, 

while XAI techniques provide tools for uncovering these processes, they often require 

specialised knowledge and may still offer only partial insight into the inner workings of 

complex systems. Huggett (2021) even states that ‘[w]here a digital device appears 

capable of explaining its reasoning, such as an explainable artificial intelligence 

providing some visibility of its underlying process, is it in reality creating a new black box 

through supplying a gloss that is understandable by the user?’ (p. 425). An AI system 

might still be hiding its deeper complexities under a simplified version of its reasoning, 

thereby not fully addressing the problem of transparency. Therefore, creating a balance 

between transparency and usability remains a challenge in the integration of AI within 

archaeology. While XAI can offer more accessible explanations of how decisions are 

made, it may not always provide a complete or fully understandable picture of the 

underlying processes. Still, as there are many researchers dedicating their efforts to 

addressing these challenges, actively refining AI methodologies and to ensure that AI 

systems in archaeology are both transparent and ethically sound, ultimately contributing 

to more reliable and inclusive interpretations of the past. 

Lastly, it is important to note that this thesis will not directly utilise XAI systems as a 

central focus, as the primary objective is to assess the feasibility of a DL model to detect 

structures on GIS excavation data. While transparency is a critical consideration for 

future applications, this research is grounded in evaluating the capabilities and 

limitations of AI systems for these purposes, without delving into the explainability or 

transparency at this stage. 

4.1.1 Artificial intelligence, agency, and autonomy 

Closely related to the black-box issue is the concept of artificial intelligence and research 

agency. ‘Roles and tasks that were previously thought to be incomputable are beginning 

to be digitalised, and the presumption that computerisation is best suited to well-defined 
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and restricted tasks is starting to break down’ (Huggett, 2021, p. 417). Although the 

question of agency has been raised before in relation to digital tools, AI has brought this 

debate to the forefront once again. As noted by Gattiglia (2022) ‘[a]rchaeologists do not 

directly control AI the way they control a total station; neural networks, once 

programmed, are internally autonomous’ (p. 329). Where the concept of “agency” is a 

term traditionally tethered to human or actor-driven decisions, the introduction of 

autonomous systems, like AI, complicates its theoretical boundaries. This shift prompts 

a theoretical re-examination of the roles both researchers and machines play in the 

generation of knowledge. Huggett (2021) outlines this debate of algorithmic agency 

extensively, where they summarise their argument as follows:  

Ultimately, whether or not agency in the sense of a capacity for intentional and/or cognitive 

action can be legitimately associated with digital devices, agency can certainly be attributed 

to devices by humans, especially given the tendency to anthropomorphize them. (…) On that 

basis, if a device affects subsequent human actions and decisions then it can be said to have 

agency, even if that agency masks the human agency involved in the design and creation of 

that device. (…) Furthermore, human actors can be seen to share agency with devices where 

the task could not be done without the participation of the nonhuman components in what 

may be characterized as a symmetric or asymmetric relationship. (Huggett, 2021, p. 422) 

Huggett chooses to err on the side of caution. Whether algorithms have inherent agency 

cannot be concluded, however their influence on human actions and decision-making is 

undeniable. Huggett's stance emphasises the symbiotic relationship between humans 

and AI, wherein the device's input is essential for completing tasks that would otherwise 

be impossible or impractical for humans to perform alone. This perspective reframes 

agency as a dynamic interaction, where both human and nonhuman elements contribute 

to the outcome, but it is the human designers and users who retain ultimate responsibility 

for directing and interpreting the process. Thus, while AI may exhibit forms of autonomy 

within certain contexts, it remains, at least in Huggett's view, a tool—one that extends 

human capacity, but does not replace the essential role of human agency in the 

production of knowledge and action. This idea is often echoed by other researchers in 

the field, however some go a step further, where Anichini and Gattiglia (2022) even state 

that ‘(…) AI algorithms have autonomy and intentionality; they require cognition and 

create a trace in the world. (…) In the AI age, archaeology’s challenge is to recognise 
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technology as an agent on whom we depend for extracting meaning and, at the same 

time, as something that partially reflects our hermeneutics’ (p. 81). They discuss the 

increasing role of AI in shaping how we interpret and understand the world. AI is not just 

a neutral tool but an active participant with its own (designed) intentions and autonomy, 

influencing how researchers access and interpret information. This idea shifts away from 

seeing humans as the sole interpreters, inherently acknowledging that AI now can play a 

significant role in the interpretation process. 

The role of this debate in this thesis is to simply outline the effect that AI technology has 

on the archaeological discipline. If one where to create DL models that can accurately 

identify structures on archaeological excavation maps, then, one could argue, the 

research agency of this identification procedure is be shared between the human 

researchers who design and train the model and the AI system itself, which performs the 

identification task. In this case, the AI’s ability to recognise patterns and structures could 

be seen as a form of computational agency, where the system contributes a significant 

level of autonomy in executing the task. However, this agency is ultimately shaped and 

constrained by the human input in the form of data, programming, and decision-making 

during the development of the model. The AI does not independently choose what to 

recognise but rather follows the directions embedded within its design, which are 

informed by human knowledge and intent. Therefore, the use of such a system 

underscores that the outcome remains heavily reliant on expert knowledge, as the AI’s 

performance is ultimately shaped by the quality of the data and the guidance provided by 

human researchers. However, Huggett (2021) does raise concerns about the potential for 

digital technologies to disrupt the balance between autonomy and agency within 

archaeology, suggesting that these technologies may ultimately ‘(…) subvert and subdue 

human decisions, to the point where humans themselves may be shaped and used by 

the technology’ (p. 423). Although this concept is clearly not the case in contemporary 

archaeology, they still highlight important aspects of the debate regarding algorithmic 

agency, accountability, responsibility, and ethics.  
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4.2 Archaeological space, place, and site mapping 

Another aspect that has been impacted by digital archaeology and relevant for this thesis 

is archaeological site mapping. Therefore, the following paragraphs will discuss theories 

related to archaeological critical mapping and the conceptualisation of space and place. 

The mapping of archaeological features has been an important component within the 

research of archaeology. Unsurprisingly, as most of the data and remains retrieved by 

archaeologists are spatial in nature or include a spatial component (Wheatley & Gillings, 

2003; Gillings et al., 2020; Verschoof-van der Vaart, 2022). The introduction of Big Data 

and computer vision techniques in archaeology is transforming the perception of 

spatiality both practically and conceptually (Wheatley & Gillings, 2003, Zubrow, 2006; 

Bodenhamer, 2012; Dunn, 2017). This is predominantly due to the enhanced ability to 

create, process, and analyse large datasets, and the way in which maps are easily 

generated and visualised. Furthermore, debates surrounding the meaning and active 

agency of maps within archaeological research has revitalised the way in which maps are 

perceived and utilised. The following subchapters will discuss this alterations in 

perception, and will underscore some shortcomings of the dataset that is used within 

this thesis.  

4.2.1 Digitisation of space and place 

Before delving into the concept of mapping and the use of maps as a data proxy for 

archaeological research, it is essential to engage with the core theoretical debate of 

“space” versus “place”. This debate profoundly influences how spatial data is interpreted 

and its relationship to human experience and cultural significance. In short, the concept 

of “space" can be considered a more abstract, quantitative dimension, often associated 

with measurable and objective features. In contrast, the term "place" encompasses the 

experiential, subjective, and symbolic aspects, imbued with cultural meanings, 

memories, and social significance (Gillings et al., 2020). This distinction is crucial for 

understanding the limitations and possibilities of spatial data in archaeology The 

concept of “space” in archaeology refers to the abstract and geometric framework within 

which physical objects and sites are located. It is fundamentally concerned with 

distances, coordinates, and the measurable aspects of the environment. Space is often 

perceived as a container within which human activities occur, an empty stage that can 
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be mapped and analysed using objective and quantitative methods. This perception 

aligns with a positivist approach, which emphasises the ability to observe, measure, and 

analyse phenomena in a detached and neutral manner.  

Digital archaeology has transformed how archaeologists engage with this concept. GIS 

technology allows for the precise measurement and mapping of spatial relationships, 

creating detailed models of archaeological sites and landscapes. These models can 

reveal patterns and connections that are not immediately visible on the ground, providing 

new insights into how ancient societies organised their space. Traditionally, the handling 

of space in archaeology leaned towards positivist perspectives, emphasising objective 

measurements and quantifiable data. This means that the spatial component was seen 

as a neutral object of study, and therefore could be examined objectively. For example, 

the distribution of artifacts within a site can be mapped to understand the organization 

of activities, or the proximity of sites to natural resources can be analysed to infer 

settlement patterns. Such approaches rely on the assumption that space is an impartial 

framework, within which human behaviour and cultural phenomena can be 

systematically studied and understood. However, as underscored by Wheatley (2004) 

this perspective ‘(...) effectively substitutes a mathematical equation for the meaningful 

bit of human actions’, and that archaeologists nowadays should ‘(…) recognise that the 

behaviour of human beings is not simply produced automatically from environmental 

stimuli’ (p. 7). This means that one cannot study spatial relationships or handle spatial 

data, without considering the cultural, social, and cognitive contexts that influence 

human behaviour. ‘In the case of space, one needs to distinguish clearly between spatial 

reality –that phenomena in which organisms, exist, move, and subsist - and the cultural 

construction of space. Even maps are not the disembodied view rather they are located 

in culture, space and time’ (Zubrow, 2005, p. 2). Accordingly, a common thread in these 

critiques is the concern that maps, and their subsequent inferences, reduce the human 

cultural component to quantifiable variables, potentially oversimplifying the richness of 

human experience and cultural context. This reductionist approach risks interpretations 

that prioritise measurable data over the nuanced and multifaceted nature of human 

societies. 
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Consequently, the concept of "place" has been increasingly incorporated into digital 

archaeology, drawing heavily from its foundational use in landscape archaeology. The 

aforementioned perspectives often fail to capture the complexities of "place," extending 

beyond the mere physical dimensions of "space." Place is not just a location but a lived 

experience, filled with personal and communal significance, reflecting how individuals 

and communities perceive, navigate, and imbue meaning into their surroundings. In other 

words, space is not merely a physical container but as a construct imbued with social 

and cultural meanings; place is seen as the intersection of these meanings with specific 

locations. According to Blake (2007) ‘[a] human element is implicit in the very idea of 

place, of the conscious demarcation of space. World views emerge from, and are 

embedded in, the always-situated practices. This leads to a revalorisation of space, not 

as an inert backdrop, but as an active component of human activities and lifeworld’ (p. 

231). Or differently put, ‘[s]paces may be abstract, geometric and synchronous, but 

places have histories and biographies as well, and it is places that are inhabited by 

meaningful human actors’ (Wheatley, 2004, p. 6). This abstraction of "place" goes hand 

in hand with phenomenological perspectives on the perception of human experience—a 

body of theory that underscores the significance of personal and embodied interactions 

with environments. Such theories emphasise how individuals and communities 

experience and interpret space not merely as a backdrop to events, but as an active, 

meaningful component of their lived experiences and cultural practices. Furthermore, it 

should be emphasised that place is not necessarily spatial, and many aspects cannot be 

mapped. Archaeologists have traditionally focused on the visible rather than the 

invisible, due to the inherent emphasis on tangible and measurable evidence in the 

discipline. However, what is considered visible or invisible extends beyond mere sight 

and into the realm of cultural perception. Something may be physically visible but not 

culturally recognised or understood (Daly & Evans, 2006). 

While this debate does not fundamentally alter the core methodology of this thesis, it 

highlights important considerations for understanding the constraints and opportunities 

within the data. ‘If space is a fluid, emergent, profoundly relational and highly contextual 

phenomenon, then the identification, representation and analysis of spatial patterns 

poses significant challenges that in turn require new methods to address’ (Gillings et al., 
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2020). In other words, is digital archaeology, a culmination of statistical analyses to study 

cultural behaviour, able to address these complexities of "place" and the nuanced nature 

of human experience within spatial contexts? Unfortunately, this thesis does not have the 

time, experience, and resources to fully grasp and solve this debate, as even the concept 

of time itself could be up for discussion. Still, acknowledging the constraints of digital 

approaches does not diminish their significance but rather underscores the importance 

of integrating these methods with a broader consideration of cultural and experiential 

dimensions of "place." The methodology in this thesis will ultimately acknowledge these 

limitations by focusing on the strengths of digital methods while recognising the need for 

future integration of qualitative and holistic analyses. Furthermore, when interpreting the 

results and conclusions that are drawn from this research, it is important to emphasise 

that the findings are rooted in the quantitative framework provided by digital tools and 

should be considered as part of a larger, ongoing discourse. The results offer insights into 

spatial patterns and relationships within archaeological contexts; however, they must be 

understood within the bounds of their methodological limitations. This thesis will present 

its findings with an awareness of these constraints, demonstrating how DL algorithms 

can effectively identify and detect prehistoric granaries. It will highlight the potential of 

these digital analyses to reveal spatial organisation and distribution patterns, while also 

acknowledging that they may not fully encompass the cultural and experiential 

dimensions inherent to the concept of "place." 

In summary, while this thesis leverages the strengths of digital archaeology to analyse 

spatial data, it is mindful of the need for future research to address the complex interplay 

between space and place. The aim is to contribute meaningfully to the field while 

acknowledging that a complete understanding of human experience and cultural 

significance requires a multidimensional approach that extends beyond the capabilities 

of this methodology alone. 

4.2.2 Mapping in archaeology 

Building upon the above paragraph, archaeological mapping is another factor that is 

important to consider within the theoretical framework of this thesis. Researchers, both 

in the past and today, have explored various perspectives on the meaning, objectivity, 

and use of archaeological site maps. In general, there are two contrasting views in how 
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map-making is defined within archaeology, ‘[t]he first (…) rests upon the assumption that 

mapping is an objective data-gathering procedure. Mapping is, in this statement, a taken-

for-granted part of archaeological fieldwork’ (Flexner, 2009, p. 7) The second 

interpretation is more nuanced, ‘(…) rather than simply “recording”, mapping “translates” 

and “mediates”; maps are subject to the subjectivities of their creators’ (Idem, p. 8).  

One of the main critiques of archaeological site maps is that they only record what is 

visible during the archaeological excavation. This limitation is not only problematic on a 

site level, but also on a broader scale. As emphasised by Wheatley (2004) any map ‘(…) 

that is based on the known distribution of archaeological sites is actually an embodiment 

of the visibility, bias, and historical accidents that have formed that record. Such a map 

is therefore predicting the bias in the known record’ (p. 9). Maps, as rigid demarcations of 

archaeological features, suggest that their depiction is definitive and objective.  However, 

in archaeology, this is never the case. The data used to create maps are a translation of 

various factors, including the archaeologists’ interpretation, visibility, methodologies, 

and other contextual influences. This means that, maps should instead commonly be 

regarded as ‘(…) simplifications of reality – powerful simplifications – but simplifications, 

nevertheless, created according to rules of scale and projection. A perfect one-to-one 

map is a second reality and probably cannot exist. Digital maps are not the disembodied 

view from nowhere; rather they are located in culture, space, and time’ (Zubrow, 2006, p. 

18).  

 

4.3 Key concepts in this thesis 

The preceding discussions have provided an overview of theoretical issues pertinent to 

this thesis. The primary aim of this thesis is to address specific challenges related to the 

detection and identification of archaeological structures on GIS maps using DL 

algorithms. To achieve this, it is crucial to shift focus from theoretical discourse to 

practical implementation, exploring how these concepts translate into actionable 

methodologies and tangible results. Therefore, the paragraphs below outline and 

acknowledge direct issues and biases present within this thesis’ methodology and 

dataset. This approach not only provides a clear understanding of the limitations and 
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potential impacts of the current research but also sets the stage for refining and 

enhancing future studies by identifying areas for improvement and potential avenues for 

further investigation. 

4.3.1 Biases in the dataset mapping 

When examining the data used within this thesis closely, it becomes apparent that biases 

permeate its origin and structure, even though it is collected with the intention of 

absolute objectivity and accuracy.  

Firstly, the data is collected with a GPS system during an archaeological excavation. This 

means that it has been assembled by various individuals under different conditions and 

measurement systems, hence the data already fundamentally carries the signature of its 

creators. This is a common critique or footnote that is added to archaeological data in 

general: ‘(…) the data creator articulates their knowledge to identify and categorise 

information, and that information is atomized within a digital environment to create data. 

Data in these terms are therefore theory-laden, process-laden, and purpose-laden, and 

not raw in any sense’ (Huggett, 2022, p. 59). Besides obvious ontological issues with 

making categorisations, such as imposing preconceived notions onto the data, there are 

also practical challenges related to data consistency and reliability. Variations in 

individual interpretation and measurement techniques can lead to inconsistencies 

within the dataset, further complicating the process of data analysis and interpretation. 

Secondly, the data is subject to the limitations of the technology used for its collection. 

The accuracy of GPS systems can vary, and this variation can introduce additional 

uncertainty into the dataset. Furthermore, the GPS offers several methods in how certain 

shapes are measured during the excavation. In the context of the dataset collected from 

Archol bv, experience has shown that it is possible to both measure circular features, 

such as post-holes, with the spline option as well as a perfect circle. Where the first 

option is created through the use of multiple points that form a smooth curve, the latter 

is a geometrically perfect circle defined by a single centre point and radius. The choice 

between these two methods can significantly impact the recorded shape and size of the 

feature. The spline option, while more flexible, is subject to the individual’s judgement in 

placing the points and can result in a less accurate representation if not done carefully. 
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On the other hand, the perfect circle option, while more consistent, may not accurately 

capture the true shape of the feature if it deviates from a perfect circle in reality. 

Furthermore, the circle option results in faster measurements, as the settings only have 

to be set one time, and, with that, multiple features can be measured in a quick and 

consecutive manner. Therefore, when there are multiple features of the same size 

present, as is the case with small structures, it is easy to measure these consecutively, 

resulting in a different outlook of structures on the extrapolated GIS map (figure 16). 

Unfortunately, no clear guidelines are present during commercial excavations in the 

Netherlands, resulting in both methods being used interchangeably. Therefore, it is quite 

difficult to say how often the circular method is used as opposed to the spline function. 

All that can be said that the dataset seemingly had 84 instances where the circular 

method was used during the documenting of granary structures specifically. This 

approximates about 17% of the instances present within the entire dataset. This, in turn, 

might affect the algorithms selection criteria, as the archaeologists that already have 

preconceived notions about the features might unintentionally influence the data 

collection process. This bias could then be propagated through the algorithm, leading it 

Figure 16: This image illustrates the contrast between the spline and circular feature settings of 
the GPS. The granary, located in the lower right corner, exhibits a distinct shape compared to the 
surrounding features measured using the spline method. This discrepancy could potentially bias 
the algorithm, causing it to prioritise this difference over other factors (Archol bv, n.d.). 
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to favour certain shapes or sizes based on the initial input data, instead of looking at the 

structural characteristics itself. This problem goes hand in hand with the “black box” 

issue, as it cannot be said how reliant the model will be on this particular aspect. All in 

all, the impact of these discrepancies on the analysis will likely be minor, but it is 

something that should be discussed prior to the methodology to underline the 

inconsistency in the data collection. 

Thirdly, the presence and exact location of archaeological features are often challenging 

to determine, a common issue with all archaeological data. This difficulty arises from 

various factors that affect visibility, including preservation conditions, the nature and age 

of the remains, the methodologies used during excavation, weather conditions, and the 

experience of the archaeologists involved. While strategies are oftentimes employed to 

mitigate these problems, the inherently fragmentary nature of the archaeological 

material record makes it impossible to completely eliminate these biases. This issue also 

goes hand in hand with the difficulty to recognise granaries in the field as well as later in 

the GIS environment. Although this thesis tries to offer a methodology to aid with this 

problem, there is a vicious circle that by training the model on imperfect data the model 

learns that these possibly unrecognised features are not features at all. This is a 

significant challenge as it can lead to a self-perpetuating cycle of bias in the model’s 

predictions. The model is trained on a dataset that includes only recognised features, and 

as a result, it learns to identify and classify these features as accurately as possible. 

However, if there are unrecognised features present within the dataset, the model may 

learn to classify these as non-features, thereby reinforcing the initial bias in the data. This 

dilemma underscores the importance of continual validation and refinement of the 

model, as well as the need for comprehensive data collection practices in the field. Thus, 

while every effort has been made to ensure the accuracy and comprehensiveness of the 

training data, the possibility of unrecognised features being misclassified cannot be 

entirely ruled out.  

All in all, this shows that the data and methodology used within this thesis is biased by 

its very nature. The benchmark dataset used within this thesis is not a “golden standard”. 

  



 M. Penterman       69 

5. Methodology 

5.1 Data collection and preparation 

In the following paragraphs the methodology will be outlined that has been used for this 

thesis. The data cleaning has been done in a QGIS 3.26 environment. The practical 

implementation of this methodology will be conducted in a Python 3.11 environment. The 

choice is due to Python's extensive support for ML and DL libraries, making it a popular 

language for such tasks. Python 3.11 offers improved performance over previous 

versions, contributing to efficient execution of complex DL models. In this environment, 

key libraries, such as PyTorch for DL and data augmentation techniques, Ultralytics for 

YOLOv8s-specific functionalities, and other essential packages like NumPy, 

(Geo)Pandas, Matplotlib, and OpenCV for basic data manipulation and image processing 

will be used. All the datasets have been anonymised as instructed by the provider. 

For the methodology, a workflow has been created to visualise the procedure developed 

in this thesis for the model (figure 17). This was done to provide a clear and structured 

overview of the process, ensuring that each step is transparent and reproducible. The 

structure of this chapter will therefore follow the steps outlined within this workflow.  

Figure 17: The workflow developed for this thesis. The blue boxes represent the steps carried out 
by archaeologists during the creation and collection of the data. The red borders indicate the 
identification phases of granary structures. The purple boxes illustrate the data preprocessing 
stages, while the green boxes depict the final implementation of the model. 
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5.1.1 Data cleaning and preprocessing  

As the data was sourced from different excavations and shapefiles, ensuring consistency 

and quality across the dataset required comprehensive data cleaning and preprocessing 

procedures. This involved a series of steps to standardise the visual attributes of the 

images and eliminate any inconsistencies that could impact the accuracy of the DL 

model. This process has been annotated in the pink boxes in figure 17. 

One of the primary challenges in working with multi-source data is the variation in colour 

profiles resulting from differences in GIS layout styles. While colour is often an important 

feature in many DL applications in archaeology, particularly those using remote sensing 

data where colour and spectral properties aid in classification, this research focuses on 

shape and spatial arrangement rather than chromatic information. Therefore, colour was 

deemed non-essential in this specific context.  

To standardise the datasets and eliminate any potential variability introduced by differing 

colour schemes, all polygons were converted to black, and the background was set to 

white. This high-contrast approach enhances the visibility of the polygons and aligns with 

the research goal of analysing spatial patterns and geometric features, rather than relying 

on visual attributes such as colour or texture. By reducing the data to black-and-white, 

the preprocessing step simplifies the input for the model, focusing it entirely on the 

spatial and structural aspects of the polygons. This methodological choice is motivated 

by the data format that was used within this project, namely shapefiles, which in this case 

represent vector polygons. Since polygons do not inherently encode spectral or colour 

information beyond what is assigned for visual representation in GIS software, relying on 

colour would not provide meaningful input for the model.  

To further refine the dataset, efforts were made to remove artifacts and noise that could 

interfere with the automated feature detection. This includes the removal of mapped 

irrelevant disturbances (e.g. fallen trees, animal based features, explicit modern 

features) that are clearly not related to the prehistoric granaries. However, features that 

were marked as “possibly natural” or had any other interpretative doubt were kept in the 

dataset, as they might have been unrecognised / degraded post-holes which could be 

relevant to the structure. Furthermore, features that had multiple sequential fillings due 
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to later modifications (as illustrated in figure 18) were analysed, and if secondary fillings 

were deemed irrelevant they were removed from the dataset. For instance, large pits 

which were dug to remove the posts were removed as they cannot be part of the original 

granary (figure 4). Although these fillings are generally important for archaeological 

interpretations, such as establishing the decline and recycling of construction materials, 

they are irrelevant for the purpose of this particular research.  Furthermore, other data 

that was collected during the excavations but are not part of the detected features were 

removed. For instance, the demarcating trench borders, surface height measurements, 

coupe lines, and find locations were subsequently removed. Lastly, measurements that 

can be associated with the underlying stratigraphic horizon were also removed. 

Finally, as the dimensions were sometimes too large within the geospatial datasets, the 

maps were split into sections of 640 by 640 pixels, as this is the default format to which 

the YOLOv8 architecture is compatible. An overlap of 10% was added to the images in 

order to avoid edge effects. All in all, the data cleaning ensures that the amount of noise 

on the maps was reduced, and thus the algorithm will be better capable of looking at the 

relevant aspects of the measurements. This will enhance the algorithm's ability to 

discern meaningful patterns and features within the data, ultimately improving its 

performance in its object detection task 
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  Figure 18: Example of the data cleaning process, showing the removal of irrelevant 
disturbances and secondary fillings. The image above is the original feature map, whereas the 
image below is the same location, but includes the data cleaning. 
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5.1.2 Data augmentation techniques 

After the data cleaning process described above, the resulting maps were subjected to 

various data augmentation techniques to ensure a larger training dataset. In general, data 

augmentation techniques are applied to reduce the chances of overfitting the model to 

the limited training data, and thus to improve its versatility in handling unseen or novel 

inputs during inference.  

There are many data augmentation techniques available which are relevant to all kinds 

of datasets (Haba, 2023). In this particular case, the dataset was subjected to the 

following data augmentation techniques (figure 19): 

1. Cropping: can simulate variations in the scale and position of structures within 

the image. By randomly selecting different regions of the image to retain and 

discarding the rest, cropping can effectively alter the composition and layout of 

the granaries. Cropping focuses the model's attention on specific regions of 

interest within the image, potentially improving its accuracy in detecting granaries 

of varying scales or in cluttered environments.  

2. Rotation: helps the model become invariant to the orientation of structures. By 

rotating the images by various degrees, the model is exposed to the granaries from 

different angles, improving its ability to generalise.  

3. Translation: involves shifting the cleaned image along the x and y axes. This can 

simulate changes in the position of granaries within the image, making the model 

more robust to variations in their location.  

4. Resizing: Scaling alters the size of the structures relative to the image. You can 

randomly resize the images, making the structures appear larger or smaller, which 

helps the model learn to detect structures of different sizes. 

5. Flipping: Horizontal or vertical flipping can provide additional variations in the 

appearance of structures. This helps the model learn to recognise structures 

regardless of their orientation.  

6. Shearing: Shearing involves skewing the image along one of its axes. This can 

simulate perspective distortions and variations in the viewpoint of the structures 
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These techniques were implemented with the popular computer vision OpenCV library2 

which easily applies these transformations to the input data. Leveraging OpenCV's 

functionalities resulted in a diverse set of training images with varying dimensions, 

rotations, and other transformations. The total number of training images generated 

through these augmentation techniques was 1201. All in all, although more is oftentimes 

better, this amount was deemed sufficient enough for accurate training in this context. 

 
2 The library by the OpenCV team can be found here: https://github.com/opencv/opencv 

Figure 19: Example of the data augmentation process, where the upper left shows the original 
image, and the other images display augmented versions. 
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5.1.3 Data labelling 

After the data cleaning and augmentation the data labelling process was carried out 

manually. As mentioned in several discussions above, these labels are based upon the 

publication of the excavation sites. Therefore, it can be assumed that the detected 

granaries are somewhat competently identified, although a completely accurate result 

might always be elusive (a comprehensive debate on this can be found in chapter 4). In 

order to have a relatively efficient data labelling process, the tool “LabelMe” was used to 

streamline this data preparation process3. This open source tool is specifically designed 

for computer vision tasks and compatible with YOLOv8. Furthermore, as opposed to 

other popular labelling tools, this particular software is able to label the examples in a 

polygon format, instead of constricting bounding boxes. This means that the tool is able 

to annotate the image with more accuracy, and is able to deal with the rotation of the 

structures that is present in the dataset (see figure 20).  

 
3 This tool, maintained and created by Russel can be found here: https://github.com/labelmeai/labelme  

Figure 20: Example of the LabelMe interface incorporated into the integrated development 
environment of Visual Studio Code (Russel, 2024).  



Seeking Structures    76 

A total of three different categories were labelled within the dataset: Granary (4), Granary 

(6), and Granary (9). Five-post and eight-post granaries were not considered due to their 

absence in the dataset. Ultimately, the total number of instances can be seen in table 2: 

Labelling category Number of instances Percentage of the dataset 

Granary (4) 382 80.1% 

Granary (6) 59 12.3% 

Granary (9) 36 3.6% 

Total 477 100% 

In practical terms, the labelling process involved creating polygons around the post-

holes of the granary. These post-holes were identified using the metadata in the dataset, 

where each post-hole in the shapefile was assigned a structure number corresponding 

to a specific granary (Figure 14). This process required comparing the GIS map with the 

corresponding images, and then labelling the post-holes based on their alignment and 

identification in both sources. The labelling entailed precisely positioning points around 

each post-hole to delineate its boundaries within the polygon. Typically, three or four 

points were placed for each post, ensuring the circular shape of the hole was 

represented. To maintain consistency this process was kept similar to the greatest extent 

possible (figure 21). 

Granaries that were incomplete due to the data augmentation methods (which was the 

case in 581 images) were not labelled, as these partial representations could potentially 

mislead the model during training. This decision aimed to maintain the integrity and 

reliability of the labelled dataset, ensuring that only representative instances were 

included for training the model. However, even though this seems unfortunate, many of 

these images were used as negative examples within the training dataset. The 

determination of whether these images were considered negative examples primarily 

depended on the visibility and extent of the features captured. If the granary structure 

was sufficiently obscured or fragmented to the point where it could not be confidently 

classified as a complete instance, those images were included as negative samples. For 

example, if the image only displayed one post-hole out of the original four, it would be 

Table 2: Number of labelled instances for each granary label within the resulting training 
dataset. Where it is clear that some labels are more prevalent than others.  
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labelled as a negative sample due to the incomplete representation of the granary 

structure. This ensures that the model is exposed to a diverse range of scenarios where 

the target objects are absent, helping it to learn to distinguish between the presence of 

granaries and irrelevant background features. 

Similarly, granaries identified by archaeologists during excavation, yet displaying missing 

features due to disturbances or other various factors, underwent a different labelling 

strategy. In these instances, if a missing post happened to be one of the corner posts of 

the granary, the instance was excluded from labelling. This decision was primarily 

influenced by the significant alteration it would cause to the structure's shape. 

Conversely, if the missing post occurred along the longitudinal side, the image was 

labelled, as the fundamental shape of the structure remained intact within the polygon. 

While this strategy of excluding instances where corner posts are missing from granary 

labelling is deemed necessary to maintain structural integrity and facilitate model 

training, it presents a significant limitation. Unfortunately, this approach is less than ideal 

due to the prevalence of granaries with missing posts in the archaeological record. 

Granaries exhibiting degrees of deterioration, disturbances, or structural alterations are 

abundant, making it challenging to ignore such instances during labelling. Consequently, 

the exclusion of granaries with missing corner posts may result in a dataset that 

inadequately reflects the full spectrum of archaeological realities. This limitation 

underscores the complexity inherent in archaeological data annotation and highlights 

Figure 21: Example of the labelling of a four-post granary. The points of the polygon are carefully 
placed around the post-holes to ensure that the entire feature is within the polygon.  
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the need for nuanced approaches to accommodate the diverse range of structural 

conditions observed in the archaeological record. Still, for this research the 

consideration of structural completeness during labelling was deemed necessary to 

ensure the reliability of the dataset for training archaeological models. 

Overlapping structures were carefully addressed during the labelling process to ensure 

accurate representation within the dataset. When multiple structures overlapped in an 

image, each structure was still individually annotated to delineate its boundaries, even if 

partially obscured by other features. This approach would ensure that the model could 

possibly distinguish and understand the spatial relationships between overlapping 

structures, thereby improving its ability to accurately identify them. Ignoring overlapping 

structures would be problematic, as the archaeological record often presents complex 

scenarios where structures intersect or overlap spatially. Failing to account for these 

overlapping features could lead to incomplete or inaccurate interpretations of the 

archaeological context.  

All in all, the labelling of the dataset is never as straightforward as it sounds, and 

strategies have to be employed to maintain a relative standardised workflow throughout 

the process. As is the case with all archaeological models, despite the cautious efforts 

during the data labelling, achieving complete accuracy in identifying and categorising 

archaeological features will remain impossible due data incompleteness, ambiguity, and 

subjectivity. Furthermore, the choices and strategies implemented during the labelling 

process inevitably introduce biases, whether implicitly or explicitly. However, with this 

strategy in mind, the final amount of images that were created with the labelling as well 

as the augmentation step can be seen in table 3 below: 

 Number of images Percentage of the dataset 

Successfully labelled  620 51.6% 

Negative examples 450 37.5% 

Excluded images 131 10.9% 

Total 1201 100% 

   

   

Table 3: The amount of images created during the image augmentation and data labelling steps, 
detailing the total number of images included in the final dataset. This table outlines the various 
categories of images, including those that were successfully labelled, those excluded due to 
incompleteness, and those utilised as negative examples. 
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5.2 YOLOv8 algorithm development 

5.2.1 Used model architecture  

The specific architecture used for this thesis is the YOLOv8s detection model4. This 

model has been selected because it can be considered the best balance between speed 

and accuracy within the context of this particular learning problem (table 4).  This is ideal 

as this project does not include too many training examples as opposed to other case 

studies. Larger models, such as YOLOv8m, YOLOv8l, and YOLOv8x, require quite a lot of 

computational power, which will drastically increase the training time. These models are 

therefore often used in applications that require high accuracy and where computational 

resources are not a constraint. Therefore, these larger models are more suitable for 

instances with convoluted datasets and scenarios where there are numerous object 

classes, complex backgrounds, or a high density of objects in each image. Although the 

research problem appears to have some of these characteristics, the overall level of 

complexity and the number of training examples are relatively moderate compared to 

other case studies. Consequently, the dataset and problem scope do not justify the 

resource demands of larger models. Given these factors, YOLOv8s is more suitable, 

providing a balance between performance and efficiency without overburdening the 

computational resources or extending the training time excessively. Therefore, while 

YOLOv8x or YOLOv8l might be required for more demanding tasks, YOLOv8s is adequate 

for this thesis's objectives, delivering efficient object detection without compromising on 

speed or requiring high-end computational hardware. 

On the other hand YOLOv8n, is designed for scenarios where low computational power 

and fast inference times are paramount. However, this model has been excluded from 

this thesis due to its lower accuracy compared to YOLOv8s. Although YOLOv8n is 

optimised for speed and minimal resource usage, it often sacrifices some detection 

performance, making it less suitable for tasks that require a higher degree of precision or 

involve a moderate number of training examples. Given the research objectives of this 

thesis, which prioritise a balanced approach to speed, accuracy, and computational 

efficiency, YOLOv8s emerges as a more appropriate choice. Its enhanced accuracy over 

 
4 The model and more detailed information can be found here: https://docs.ultralytics.com/tasks/detect/ 
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YOLOv8n ensures that the detection outcomes are reliable, while its computational 

requirements remain manageable. This balance aligns better with the dataset's size and 

the need for dependable object detection. 

5.2.2 Transfer-learning 

The YOLOv8s algorithm is commonly pretrained on the COCO dataset. The COCO 

(Common Objects in Context) dataset is a large-scale object detection dataset widely 

used in the field of computer vision. It contains over 330,000 images, including more than 

200,000 labelled images with over 1.5 million object instances across 80 object 

categories. COCO is designed to enable the development and evaluation of algorithms 

capable of detecting objects in complex scenes. The dataset is characterised by its 

diversity, containing objects in various contexts and backgrounds, which helps models 

trained on COCO generalise well to real-world scenarios. This diversity has established 

COCO as the standard dataset for transfer learning in computer vision research. 

Although this might seemingly no be relevant to this particular context, as the data and 

subsequent labelling categories are highly dissimilar to the goal of this thesis, it is still 

Model Size 
(pixels) 

mAPval Speed 
ONNX 

Speed 
TensorRT 

Params 
(M) 

FLOPs 
(B) 

YOLOv8n 640 37.3 80.4 0.99 3.2 8.7 

YOLOv8s 640 44.9 128.4 1.20 11.2 28.6 

YOLOv8m 640 50.2 234.7 1.83 25.9 78.9 

YOLOv8l 640 52.9 375.2 2.39 43.7 165.2 

YOLOv8x 640 53.9 479.1 3.53 68.2 257.8 

Table 4: Different model architecture of the YOLOv8 detection model (Ultralytics, 2024). 
These detection models are all pretrained on the COCO dataset.  
1. Size: the input image resolution, consistent at 640 pixels for all models. 
2. mAPval: Mean Average Precision on the validation set, measuring detection accuracy; 

higher values indicate better performance.  
3. Speed ONNX / TensorRT: Inference speed in frames per second when using the ONNX or 

TensorRT format; higher values indicate faster processing.  
4. Params: number of parameters in the model, reflecting its complexity; larger models 

typically offer better accuracy.  
5. FLOPs: Floating Point Operations per second, indicating the computational demand  
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commonly understood to be a helpful foundation for any computer vision algorithm. The 

pretraining on COCO helps the model develop a general understanding of object 

features, patterns, and relationships, which can then be fine-tuned to the specific 

requirements of a new task. This approach significantly reduces the amount of task-

specific data needed for training and accelerates the convergence of the model, leading 

to improved performance even in specialised applications like this thesis. Therefore, the 

models that can be employed through the Ultralytics packages are already pretrained on 

this dataset. 

Furthermore, training the model on other instances of archaeological data might also be 

beneficial for this case study, as it could further refine the model's ability to work with 

archaeological datasets. However, unfortunately, this is currently outside the scope of 

this thesis. For now, there are no readily available models specifically tailored to this 

niche application, which necessitates the use of more general pretrained models like 

YOLOv8s. Future research could explore the development of specialised datasets and 

models for this purpose, potentially improving detection accuracy in archaeological 

contexts.   

5.2.1 Optimising recall instead of precision 

Archaeology uses deep learning somewhat differently compared to other major 

disciplines. When creating deep learning models, the designer must always choose their 

parameters based on the specific context and objectives of the task. As a result, in many 

fields, precision is oftentimes prioritised over recall to minimise the risk of false positives 

and ensure that only highly probable instances are identified. For instance, in medical 

diagnostics, reducing false positives is critical to avoid unnecessary treatments or 

interventions. However, in archaeology, the priorities seemingly shift. 

In automated object detection within the discipline of archaeology this conventional 

preference for precision is somewhat inverted. Here, the cost of missing a relevant 

finding—such as a prehistoric granary—can have a greater impact on the overall 

understanding of a site or landscape than incorrectly identifying a non-granary feature as 

one. Archaeologists tend to place greater value on ensuring that all possible features are 

flagged for further investigation, even at the risk of false positives. In the case of this 
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thesis, this concept is echoed, as the objective is to ensure that all potential granaries 

are identified for further analysis, allowing expert interpretation to guide the final 

conclusions. 

To prioritise recall in these models, several measures were implemented to ensure the 

identification of as many potential granaries as possible, even at the cost of some false 

positives. First, the confidence threshold was set relatively low across the models. By 

decreasing this threshold, the model becomes more sensitive to detecting objects, 

allowing it to flag a larger number of potential granaries, even if they are less certain. This 

reduces the likelihood of missing a relevant finding. Additionally, the IoU threshold was 

set at a moderate level to balance detection accuracy and recall. A lower IoU threshold 

means the model can classify overlapping or near-miss objects as potential granaries, 

which is important in archaeological contexts where features might not always be 

perfectly delineated. Finally, weight decay values were adjusted to prevent overfitting, 

ensuring that the model generalises well across various data inputs, further supporting 

recall by not overly favouring false negatives. The combination of these adjustments 

reflects a deliberate strategy to maximise the number of features detected for further 

investigation. 

5.2.2 Training procedure 

During the training of the model, several choices were made to ensure optimised 

performance and an effective learning process. First of all, a train-test split was 

performed on the dataset to accurately assess the model’s ability. This split was done 

according to the common 80-20 split (856 x 214 images). This was done with the random 

sampling technique that, simply put, shuffles the dataset and randomly arranges each 

image in their respective category. The training set was used to teach the model, allowing 

it to learn patterns and relationships within the data, while the test set provided a 

definitive evaluation of the model's performance. 

Ultimately, a total of three models were trained in order to assess whether certain 

parameters were more suitable to this particular research context (table 5). The following 

parameters were altered over the course of the training procedures to analyse the 

effectiveness of each respective model: 
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A. Epochs: The number of times the entire training dataset passes through the 

model. More epochs can improve performance but also risk overfitting. 

B. Batch Size: The number of training samples processed before the model's weights 

are updated. Larger batch sizes can lead to more stable training, while smaller 

batch sizes can make the model more responsive to changes in the data. 

C. IoU Threshold: The threshold for deciding whether predicted bounding boxes 

overlap sufficiently with ground truth boxes. Adjusting this can affect precision 

and recall. 

D. Confidence Threshold: The minimum confidence score required for a detection to 

be considered valid. Tuning this helps balance between false positives and false 

negatives. 

E. Weight Decay: A regularisation technique that adds a penalty for larger weights to 

prevent overfitting and improve generalisation. 

This list is not intended as an exhaustive overview of all the parameters that can be 

altered within a DL model, instead these specific settings were chosen as they are the 

most relevant to this particular case study. Furthermore, to keep the model’s training 

procedure within the limited scope of this research, some parameters were not 

introduced due to constraints in time and computational resources.  

All in all, as there is no clear baseline or set of rules to which a model must conform to 

function appropriately, the best approach to developing a DL model is through trial and 

error. Therefore, this thesis developed three trained models that are designed to address 

different levels of caution and thoroughness in detection. As outlined in the chapters 

above, the model will aim to optimise recall while balancing precision, as it is preferable 

in archaeological research to find more potential detections, even at the cost of 

introducing some false positives. The nature of archaeological work often involves the 

identification of subtle and infrequent features, where the risk of overlooking structures 

can have considerable implications for research outcomes. Therefore, a model that errs 

on the side of caution is essential. This also complements the idea that this model is 

intended to serve as a valuable tool alongside human expertise rather than as a definitive 

ground truth. 
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The parameters for each respective model can be seen in table 5 below. Furthermore, the 

specific code that was used in the python environment can be seen in appendix 1.  

5.2.3 Testing procedure 

After the training procedure, it is important to assess the models’ overall performance. 

This is done during the testing phase. The testing is an important aspect of the 

development process, as it serves as a final checkpoint to thoroughly understand the 

models performance. By critically monitoring the models’ behaviour on the testing set, it 

can be ensured that the model is not only learning effectively but also generalising well 

to unseen data. Additionally, the test set simulates the real-world scenario where the 

model encounters data it has never seen before. As mentioned in the training procedure, 

the dataset was split into training and test sets using an 80-20 ratio, with 856 images for 

training and 214 for testing. The testing was selected using random sampling to ensure a 

diverse and representative subset of the dataset. This random sampling was deemed 

appropriate to prevent bias in the testing process and to ensure that the test set 

accurately reflected the distribution of the full dataset.  

As discussed in chapter 2.2.2, the evaluation metrics used to assess the models’ 

performance include precision, recall, and mAP50. These metrics were calculated to 

quantify the models’ strengths and areas for improvement. Precision and recall provide 

insight into the models’ performance in terms of false positives and false negatives, 

respectively, while mAP50 offers a summary metric that balances precision and recall 

across different threshold levels. These metrics together form an overall evaluation 

framework, enabling a thorough assessment of the model's performance. 

Parameter Model_1 Model_2 Model_3 

Epochs 100 100 150 

Batch size 16 32 32 

IoU threshold 0.4 0.5 0.5 

Confidence threshold 0.2 0.3 0.4 

Weight decay 0.0001 0.0005 0.001 

Table 5: The outline of the different settings per parameter for the three models developed in this 
thesis. Each model is configured with varying values for epochs, batch size, learning rate, IoU 
threshold, confidence threshold, dropout rate, and weight decay.  



 M. Penterman       85 

6. Results 

This chapter presents the testing results obtained from the three models trained to detect 

and classify instances of granaries. The performance of each model was evaluated using 

precision, recall, and mean Average Precision at 50% Intersection over Union (mAP50) 

across different classes of granaries, labelled as Granary (4), Granary (6), and Granary 

(9). For examples of the model's actual predictions, please refer to appendix 2, where a 

selection of predicted images from model_3 are presented to provide an overview of its 

practical performance. Additionally, a more detailed analysis of specific cases and 

observations will be discussed in chapter 7. 

6.1 Evaluation model_1 

Model_1 was trained for 100 epochs and tested on a set of 214 images (20% of the entire 

dataset) containing 213 instances of granaries across all classes and 78 negative 

examples. The overall performance metrics for this model are in table 5 below. The model 

completed the 100 epochs in 0.485 hours, with an average processing time per image of 

0.9ms for preprocessing, 6.9ms for inference, and 1.5ms for post-processing. The overall 

evaluation metrics can be seen in table 6. 

In figure 22 the precision-recall (PR) curve was plotted. The pr-curve is a plot that 

visualizes the trade-off between precision and recall for different threshold settings of a 

classification model. It is particularly useful for evaluating models on imbalanced 

datasets, as it highlights how well the model identifies positive instances while balancing 

false positives and false negatives. With model_1 the curve reveals that the model 

exhibits high precision at lower recall levels. Furthermore, the model performs best with 

 Images Instances Precision Recall mAP50 

Granary (4) 214 157 0.909 0.624 0.804 

Granary (6) 214 50 0.862 0.62 0.793 

Granary (9) 214 6 1 0.99 0.995 

All classes 214 213 0.924 0.745 0.864 

Table 6: The overall performance metrics calculated during the testing of model_1. Here each 
labelled class is represented, and the overall summarised metrics for all classes combined. 
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the Granary (4) class and has poorer performances with the other two. More specifically, 

a lower area under the curve (AUC) suggests that the model has lower precision and 

recall compared to the curve with a higher AUC-PR, meaning it is less effective at 

identifying positive instances accurately across various threshold settings with these 

particular categories. 

Furthermore, the Granary (9) class seems to be invisible due to the line being plotted on 

perfect precision and recall inference, meaning that the precision and recall have been 

nothing other than 1.0. This indicates that, theoretically speaking, the Granary (9) 

category performs in a perfect manner, however, as will be discussed in chapter 7, these 

metrics are not indicative of a perfect performance, but are probably the result of a low 

instance amount and overfitting of the training model.  

Another aspect that can be seen from the AUC-PR is the apparent decline in precision 

when stepping around the 0.8 recall. It seems to be the case that all the classes, as well 

as the average, decline downwards. This indicates that the model struggles to maintain 

high precision as it attempts to capture more true positives, suggesting that the instances 

it identifies beyond this recall threshold are increasingly likely to be false positives. The 

steep decline in precision at this point highlights a trade-off where improving recall 

Figure 22: The precision-recall curve plotted for model_1. As can be seen, the model performs 
better with the class Granary (4) as opposed to other categories. 

PR-curve Model_1 
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comes at the cost of accuracy in identifying true positives. This could imply that the 

model's performance is better at lower recall levels but starts to falter as it tries to 

generalise further. This trend can inform decisions about where to set the threshold 

depending on whether precision or recall is more critical for the task at hand. Therefore, 

in simpler terms: as the model becomes more aggressive in identifying positive cases, it 

also starts getting more unreliable, and more of its positive predictions turn out to be 

wrong.  

A raw and row-wise normalised confusion matrix for model_1 were generated based on 

the testing procedure (figure 23 and 24). This raw matrix provides an overview of the 

predicted versus actual classifications for all instances in the testing set. The results 

show that 119 instances were correctly identified as four-posted granaries (TPs). 

However, the remaining instances were misclassified, either as Granary (6) or, more 

frequently, as negative examples (background) (FNs). Furthermore, the model correctly 

identified 6 instances of nine-posted granaries (TPs), and 1 as a Granary (4) and 6 as 

negative examples (FNs). For the Granary (6) class, 38 instances were accurately 

detected (TPs). Among the misclassifications, 7 were incorrectly labelled as Granary (4), 

Figure 23: The raw confusion matrix plotted for model_1.  
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and 16 were mistaken for negative examples (FNs). Additionally, the model incorrectly 

classified 30 background instances as Granary (4) and 6 background instances as 

Granary (6) (FPs). In total, 36 instances were falsely predicted as granaries when they 

were actually background. Lastly, as can be seen, the [background, background] cell 

shows 0. However, this does not reflect a failure of the model to recognise background 

regions. Instead, it is due to the fact that the confusion matrix does not track true 

negatives (TN) for the background class.  

The normalised matrix presents similar results, but with percentages rather than raw 

numbers. This allows for clearer insights into the model's performance. The percentages 

highlight that the model generally achieves a high rate of positive predictions for each 

class. However, it also reveals a significant issue: a relatively high percentage (0.67) 

within the predictions, which are background are incorrectly predicted as Granary (4). 

Perhaps, the same can also be said with the Granary (6) class being misinterpreted due 

Figure 24: The row-wise normalised confusion matrix for model_1. It shows the overall 
proportion of each true class that was classified as each predicted class 
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to background noise (0.3). Generally, this suggests that the model struggles with 

background noise, leading to frequent misclassifications in this category and thus FPs. 

All in all, model_1 shows a good overall performance. However, challenges with 

background noise led to frequent misclassifications, impacting the accuracy for other 

granary classes. The precision-recall analysis revealed that while the model maintains 

high precision at lower recall levels, it struggles to sustain accuracy as it tries to identify 

more positive instances. These findings highlight the model’s effectiveness but also point 

to areas needing improvement, particularly in managing background noise and balancing 

precision with recall. 

6.2 Evaluation model_2 

Model_2 had several different metrics parameters as opposed to model_1, with a slight 

increase in the batch size, IoU threshold, confidence threshold, and weight decay. The 

model trained over 100 epochs in 0.534 hours. Furthermore, model_2 had an average 

processing times of 0.9ms for preprocessing, 6.9ms for inference, and 1.5ms for post-

processing. The outcome of the evaluation metrics can be found in table 7 below: 

All in all, model_2 exhibits distinct differences from model_1 in terms of performance 

metrics across various classes. While model_2 has a slightly lower precision and mAP50 

for Granary (4) and Granary (6) compared to model_1, it shows an improved recall for 

these classes, indicating better overall sensitivity in detecting granaries. In contrast to 

model_1, which achieved perfect precision for Granary (9), model_2 has lower precision 

for this class but maintains a high recall, suggesting that it identifies nearly all instances 

of Granary (9) while being less accurate in its predictions. Aggregately, model_2 has a 

lower precision but higher recall than model_1, which reflects a shift in focus from 

 Images Instances Precision Recall mAP50 

Granary (4) 214 157 0.835 0.656 0.787 

Granary (6) 214 50 0.862 0.749 0.84 

Granary (9) 214 6 0.644 1 0.942 

All classes 214 213 0.78 0.802 0.856 
Table 7: The overall performance metrics calculated during the testing of model_2. Here each 
labelled class is represented, and the overall summarised metrics for all classes combined. 
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precision to a more balanced detection capability, evidenced by its comparable mAP50 

score. 

When examining the AUC-PR for model_2 (figure 25), the curve is quite similar compared 

to model_1. Notably, the performance for the Granary (6) class has improved. However, 

the Granary (9) category remains positioned on the outer axis of the graph, apart from one 

sudden drop the 0.8 recall threshold. Although hardly distinguishable, the Granary (4) 

class seems to have a slight decrease in performance. Additionally, the graph reveals a 

similar decline in precision around the 0.8 recall threshold. Overall, while the distribution 

of the PR-curves for model_2 is relatively similar to that of model_1, there is a slight 

increase in performance for the Granary (6) class, a similar unstable result for the Granary 

(9) class, and a slight decrease in performance for the Granary (4) class.  

Once again, a raw and normalised confusion matrix for model_2 were plotted (figure 26 

and 27). Overall, while model_2 demonstrates improvements in some areas, particularly 

for Granary (6), the persistent issues with Granary (9) and the increased misclassification 

of Background instances as Granary (4) or (6) highlight areas where further 

enhancements are needed. In other words, the incremental changes in model_2, while 

beneficial in some respects, have not yet fully addressed these persistent issues.  

PR-curve Model_2 

Figure 25: The precision-recall curve plotted for model_2. A slightly better performance of 
Granary (6) can be observed. 
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Figure 26: The raw confusion matrix plotted for model_2.  

Figure 27: The row-wise normalised confusion matrix plotted for model_2.  
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6.3 Evaluation model_3 

Model_3 had, once again, several different metrics parameters as opposed to model_1 

and model_2, with a slight increase in the confidence threshold, amount of epochs, and 

weight decay. The model trained in a total of 150 epochs in 0.195 hours. Correspondingly, 

model_3 had an average processing times of 0.5ms for preprocessing, 6.9ms for 

inference, and 1.5ms for post-processing. The outcome of the subsequent evaluation 

metrics can be found in table 8: 

 Images Instances Precision Recall mAP50 

Granary (4) 214 157 0.891 0.643 0.808 

Granary (6) 214 50 0.897 0.698 0.825 

Granary (9) 214 6 0.723 1 0.955 

All classes 214 213 0.837 0.781 0.863 

All in all, model_3 demonstrates improvements compared to model_2 and shows varied 

performance in relation to model_1. Compared to model_2, model_3 exhibits higher 

precision for Granary (4) and Granary (6), reflecting more accurate predictions for these 

classes. Additionally, model_3 achieves a higher recall for Granary (6) than model_2, 

indicating better detection capabilities for this category. However, while model_3 shows 

improved performance over model_2 in several metrics, its precision for Granary (9) is 

lower than that of model_1 but is balanced by a high recall, suggesting that it is more 

sensitive in detecting Granary (9) but with slightly lower precision. 

Overall, model_3 shows the best results in recall and precision. Especially when ignoring 

the Granary (9) class, as these evaluation metrics seem to be highly influenced by 

limitations in the dataset. Model_3 achieves the highest precision and recall for both 

Granary (4) and Granary (6), along with the best mAP50 scores for these classes. This 

suggests that Model_3 provides a strong balance of accuracy and sensitivity for the 

remaining granary categories. 

Table 8: The overall performance metrics calculated during the testing of model_3. Here each 
labelled class is represented, and the overall summarised metrics for all classes combined. 



 M. Penterman       93 

The AUC-PR showcases a similar shape as the curve for model_2 (figure 28). However, 

the curves for all classes have an overall higher bend which indicates an overall better 

performance than the other models. Therefore, based upon the curve as well as the 

overall metrics, it can cautiously be said that model_3 has the best performance 

compared to the previously trained models. Similar to the other examples, the Granary 

(9) class is on the “perfect” 1.0 to 1.0 ratio indicating a flawless performance on all the 

precision and recall thresholds. Once more, although this ratio is the ideal metric, this 

outcome is the result of clear overfitting of the Granary (9) class within the entire dataset. 

The drop in precision at higher recall thresholds can also be observed in this particular 

graph. Lastly, and perhaps the most notable difference can be seen when looking at the 

difference between the Granary (4) and Granary (6) class. Whereas within the other 

models the Granary (4) class or Granary (6) class outperform one another, here it seems 

that they are relatively similar. The Granary (6) class has a higher curve and seems to be 

performing better across the varying precision and recall thresholds as opposed 

model_1, and similar things can be said for Granary (4) in model_2. This can be attributed 

to several factors. The last raw and normalised confusion matrices were plotted (figure 

29 and 30).   

PR-curve Model_3 

Figure 28: The precision-recall curve plotted for model_3.  
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Figure 29: The raw confusion matrix plotted for model_3.  

Figure 30: The row-wise normalised confusion matrix plotted for model_3.  
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6.4 Comparison of models 

To facilitate a side-by-side comparison of the models, bar plots were generated, allowing 

for a clear visualisation of their overall performances. 

6.4.1 Precision 

All the models can be deemed reliable when evaluating precision, as each shows strong 

performance in different contexts and with varying parameter settings. The overall 

precision scores for all models are notably high, reflecting the effectiveness and 

robustness of these DL models in distinguishing relevant instances from irrelevant ones. 

This level of precision indicates that, despite their individual variations, all models exhibit 

a commendable ability to accurately predict positive instances, demonstrating their 

potential for practical applications in diverse scenarios. 

Figure 31: Bar graph of precision score for each model and their respective classes  
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6.4.2 Recall 

The recall values across all models are moderate. The values observed across the board 

indicate that all models struggle to detect a substantial portion of relevant instances. 

This challenge is particularly evident when examining the confusion matrices for each 

model, where it becomes clear that background noise, and hence the difficulty in 

distinguishing between instances and the background are factors contributing to the 

recall scores.  

6.4.3 mAP50 

While the mAP50 values across all models reveal varying degrees of performance in 

balancing precision and recall, they collectively demonstrate that the models are quite 

effective. Model_3 stands out with the highest mAP50 scores, reflecting its ability to 

maintain a good balance between precision and recall across different datasets. 

Figure 32: Bar graph of recall score for each model and their respective classes  
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Model_1 and model_2 also show solid performance, with moderate to high mAP50 values 

indicating that they handle precision and recall effectively. Despite the challenges posed 

by the small sample size of Granary (9) and the moderate recall values, the overall results 

suggest that the models are performing well and have the potential for further refinement 

to enhance their accuracy and reliability. 

 

  

Figure 33: Bar graph of mAP50 score for each model and their respective classes  
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7. Discussion 

The chapter will delve into the key results, evaluating the performance of the YOLOv8 

algorithm and identifying the factors that influenced its recognition capabilities. This will 

be followed by a discussion on the potential implications of these findings for 

archaeological interpretation, considering how the algorithm’s performance may impact 

the analysis and understanding of archaeological data. Next, the general methodology of 

this study will be scrutinised, highlighting both the strengths and limitations encountered 

during the research process.  

7.1 Interpretation of results 

As reflected in the chapter 6, all the models trained within this thesis perform quite well 

in identifying prehistoric granary structures on archaeological excavation maps (figure 

34). With an average mAP50 of 0.861 for every model across all categories, it can be said 

that the models demonstrate a moderately high level of accuracy in their overall 

predictions. However, it is important to note that these evaluation metrics are not 

Figure 34: Some examples of identifications by the model_3 on the test data set. For more 
examples consult appendix 2.  
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exhaustive indicators of the models' true effectiveness. Several critical factors must be 

considered to fully understand, interpret, and apply these metrics.  

7.1.1 Nine-post granary 

The category of “Granary (9)” frequently achieves a perfect precision and recall in its 

performance metrics, indicating that the models are able to identify all the nine-post 

granaries relatively flawlessly on the unseen testing data. While these results may seem 

ideal at first glance, they raise questions about the models’ overall performances. Several 

factors could be the reason behind this outcome. First of all, the overall uniformity and 

distinctiveness of the Granary (9) category might contribute to these metrics. In general, 

the nine-post granaries have relatively consistent features that are easily distinguishable 

from other categories. All the instances used within the dataset include all the posts, 

have a low amount of background noise, and are not intersected by other granaries (figure 

35). Which means that all the images that are used are “perfect” examples of nine-post 

granaries, which is not representative of a realistic archaeological dataset. This could 

mean that the models are not necessarily generalising well, but are instead learning to 

identify a category that is less complex or more homogeneous compared to the others.  

Secondly, there is most probably an issue of overfitting where the models have 

memorised the training data rather than learning to generalise from it. This overfitting 

could be particularly prevalent as the granary category is represented disproportionately 

in the training and test set, with only 36 instances which comprise approximately 4% of 

the entire dataset. This small size of instances immediately raises concerns about the 

reliability of these metrics, as the test data may not adequately represent the broader 

variability of granaries, which could skew the performance evaluation.  

Therefore, given the current results, it is challenging to definitively assess whether the 

model is overfitting or if it is genuinely performing well. It is clear that the evaluation 

metrics are unrealistic and unreliable to provide a complete picture of the models’ 

capabilities. To gain a clearer understanding of the models’ true generalisation 

capabilities, it is crucial to expand the dataset by incorporating more diverse examples. 

Increasing the number of instances will provide a better evaluation and help determine 

whether the models’ performance are effective or if any further adjustments are needed. 
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7.1.2 4-post and 6-post granaries 

When taking a broader view of the performance metrics by also looking at the Granary (4) 

and Granary (6) categories, the models can be considered reliable. Where the average 

metrics without the Granary (9) category are the following:  precision of 0.876, recall of 

0.665, and mAP50 of 0.810. The precision metric, in particular, is noteworthy. A precision 

of 0.876 indicates that a significant majority of the predicted granaries are true positives, 

highlighting the models’ effectiveness in minimising false positives. The recall of 0.665 

demonstrates the models' ability to identify a substantial portion of the actual granary 

instances. While this is somewhat lower than the precision, it still shows that the models 

are reasonably good at detecting most of the relevant granaries. The mAP50 of 0.810 

provides a balanced view of both precision and recall, indicating overall strong 

Figure 35: Example of a nine-post granary instance in the dataset. As can be seen, the image 
is relatively clean, and the granary is easily distinguishable.  
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performance in both identifying and localising granaries. This metric suggests that the 

models achieve a good compromise between correctly identifying granaries and 

minimising missed detections. 

All in all, the model can be summarised as having a high precision, but a lower recall. This 

means that the models are effective at correctly identifying granaries among the 

instances it detects, with a high proportion of true positives. However, the lower recall 

indicates that the model may miss up to 35% of the actual granaries. Although the original 

intention was to prioritise recall to ensure that as many granaries as possible are 

identified, the outcome has inadvertently favoured higher precision. Even with ensuring 

a low confidence and IoU threshold, the models’ recall remains lower than desired. The 

possible reasons for this will be addressed in the subchapter 7.1.2, however the lower 

recall has implications for the models’ usefulness in practical archaeological research. 

While high precision is beneficial because it means that the instances detected by the 

model are mostly true positives, thus reducing need for excessive validation, a lower 

recall can be less advantageous.  

In short, while high precision reduces the burden of false positives, in archaeological 

contexts where discovering and reviewing as many potential examples as possible is 

important, a model with lower precision but higher recall could be more beneficial. This 

approach would ensure that fewer granaries are missed, even if it means dealing with a 

higher volume of potential false positives for expert validation. 

7.1.3 False positives 

As discussed in chapter 6, model_3, the best-performing model, identified a total of 40 

instances of granaries within the background class. According to the confusion matrix 

(figure 23), the model recognised 35 four-post granaries and 5 six-post granaries among 

previously unlabelled instances in the dataset. This observation raises two possible 

explanations: either the model made incorrect predictions, or it successfully uncovered 

previously undetected granaries within the dataset. 

To evaluate these possibilities, a closer analysis of these specific instances was 

conducted. First of all, some of the instances are clear misclassifications, caused by 

background noise. A total of 14 FP classifications were made on prehistoric house plans 
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present within the dataset (figure 36). Three house plans were partially visible within the 

images, which led to confusion in the models’ classification process. The house plans, 

which exhibit a rectangular patterns, created strong visual similarities with the granaries. 

This similarity caused the models to struggle in distinguishing between granaries and 

house plans, resulting in these erroneous identifications. Although this issue clearly 

skews the results of the models’ performance, it is also an interesting reference for future 

research, as it demonstrates the models’ potential to identify a wider range of categories. 

In future, expanding the classification categories to include more categories, such as 

house plans, could be an interesting avenue of research. Furthermore, by adding 

additional categories, the model could learn to distinguish between granaries and other 

structures more effectively, leading to better classification. 

Approximately 20 of the FP’s made by the model seem to be simple mistakes. When 

looking at the output, there are no clear indications that these could be actual granaries 

(figure 37). This is mostly based upon the fact that there is no structural resemblance at 

first glance, and when looking at the metadata of these particular post-holes they seem 

to be too dissimilar to be flagged as granaries. Either the post-hole depth, colour, or 

approximate dating of the archaeological features does not sufficiently correspond.  

Figure 36: Misclassification of a house plan as multiple granaries. This example illustrates how 
similar visual features between house plans and granaries can lead to false positives. 
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The remaining 6 FP’s, however, are more interesting to consider (figure 38). Although it is 

difficult to definitively identify something as a granary as outlined by the “human black-

box” issue outline in chapter 4. These FP’s might actually give examples of newly 

identified granaries. 

 Where in image (A) the initial labelling was empty as this was a negative example, it is 

clear that a six post granary could be identified here. Although the bounding box 

predicted by the model is slightly off-centre, the outermost vertically aligned post-holes 

exhibit consistent characteristics in feature depth, colour, and approximate dating.  

Image (B) reveals another interesting example of a potential new four-post granary. While 

the original dataset annotation acknowledged the presence of the six-post granary, the 

model's prediction suggests an additional, intersecting four-post granary. Closer 

examination of the excavation data supports this hypothesis, revealing that the northern 

two post-holes of the earlier four-post granary were later repurposed for the six-post 

granary constructed in a subsequent phase. This overlap indicates a chronological 

Figure 37: False positives that seem to be clear misclassifications, based upon the structural 
dissimilarity and the metadata of the corresponding post-holes. 
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sequence of use, with the four-post granary representing an earlier phase of activity at 

the site. Despite this, the dataset annotations only recorded the six-post granary, 

overlooking the earlier structure.   

Image (C) reveals two potential four-post granaries that were not included in the original 

dataset annotations. The uppermost structure appears consistent with a typical granary, 

but could also be considered a five-post variant due to the presence of an additional 

post-hole near the centre. The post-holes in this structure exhibit similar dimensions, 

depth, approximate dating, and spatial distribution, lending strong support to its 

identification. In contrast, the lower structure, while sharing comparable post-hole 

characteristics, presents a less conventional alignment, with the posts spaced 

approximately three meters apart—wider than the standard configuration for four-post 

granaries. This atypical spacing introduces some ambiguity, making the classification 

less certain. While it is plausible that the lower structure represents a variation of a 

granary, further analysis is required to confirm this interpretation.  

Image (D) presents two additional potential granaries, though both exhibit features that 

make them somewhat atypical. The left granary shows a slight misalignment in its post-

hole arrangement, which deviates from the more precise configurations typically 

associated with granary structures. Meanwhile, the rightmost structure is characterised 

by significant variations in post-hole depth. While these inconsistencies might suggest a 

different function or partial degradation over time, the overall spatial arrangement and 

other characteristics still align with known granary features.  

All in all, the findings highlight both the strengths and limitations of the models in. While 

a significant portion of the false positives can be attributed to background noise and 

misclassifications the model's ability to recognise potential structures is noteworthy. 
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7.2 Factors influencing recognition performance 

To gain an understanding of the model and its potential applications in practical 

archaeological contexts, it is crucial to examine the other factors that may impact 

recognition performance.  

7.2.1 Background 

Overall, the models seem to be working well on the Granary (4) and Granary (6) 

categories. Although the direct recognition criteria are not explicitly outlined, often 

referred to as the “black-box issue,” the model demonstrates effective performance in 

A B 

C D 
Figure 38: False positives identified by model_3 that could be previously unseen granaries. 
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distinguishing these categories. Logically speaking, the models are recognising these 

categories on the basis of the amount of post markers and the distance between them. 

However, there are also instances within the dataset, particularly with the six-post 

granaries, where one of the posts is obscured or missing. Even though that is the case, 

the model seems to recognise these instances as well, suggesting that it can 

accommodate variations in post visibility and still correctly classify the granaries. This 

indicates that the models are somewhat flexible in handling incomplete or partially 

obscured data. While this is a positive aspect of the models’ performance, it may also 

contribute to a challenge: as indicated in the former paragraph, there is a common issue 

where the background class or negative examples are frequently misclassified as granary 

instances.  

Figure 39: Model_3, when applied to the excavation of Schipluiden, which is known for its high 
levels of post-hole noise, demonstrates limitations in handling such extensive background 
noise. As observed, the model struggles to manage the overwhelming amount of noise, 
resulting in diminished performance.  
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This issue is not particularly surprising, as the background in the excavation maps 

showcase similar properties as the instances that the models are supposed to find black 

circular features on a white background. This similarity in appearance between the 

background and the target granaries likely contributes to the models’ difficulty in 

distinguishing between them. The presence of visually similar elements presents a 

challenge for the models, complicating the task of distinguishing granaries from the 

background. Additionally, the significant amount of background noise in some images 

exacerbates this issue. The difficulty becomes even more pronounced when the model 

is applied to excavation maps with substantial background noise, as illustrated in figure 

39.  

In other words, while the models perform well on relatively clean imagery, their 

performance declines significantly when confronted with increased background noise. 

Clearly, this is not ideal for the models’ intended purpose of helping archaeologists 

disentangle complex datasets. The models’ inability to effectively handle noisy or 

cluttered data undermines its utility in distinguishing and categorising archaeological 

structures accurately. To be truly valuable, the model needs to be capable of managing 

and interpreting challenging datasets, which is crucial for providing meaningful insights 

and supporting archaeological research. Therefore, this represents a significant 

shortcoming in the models’ capabilities and is a critical factor that must be addressed. 

The main possible reason for this shortcoming is discussed in chapter 7.3. 

7.2.1 Overlapping granaries 

The output of the models also indicates that they struggle with disentangling and 

accurately classifying overlapping or incomplete features, as well as differentiating 

between categories that appear visually similar. There are several misclassifications that 

seem to occur throughout all the models. While the primary distinction between a four-

post, six-post, and nine-post granary lies in the number of posts, the visual similarities 

between these structures often lead to confusion. The models often fail to recognise that 

a feature classified as a six-post granary cannot simultaneously be a four-post granary. In 

other words, components of larger categories, such as six-post and nine-post granaries, 

are frequently misclassified as smaller individual categories, leading to significant 

confusion and inaccuracies in classification (figure 40). Although the confidence levels 
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are often lower in these specific cases, the models still frequently misclassify features, 

indicating a persistent problem in accurately distinguishing between visually similar or 

overlapping categories. While this issue presents challenges, it is not entirely detrimental 

to the overall functionality of the model. Despite the inaccuracies, the model still 

successfully identifies and classifies granaries, which is the primary objective. However, 

the problem primarily affects performance metrics, leading to potential discrepancies in 

accuracy, precision, and recall. Furthermore, the output can become skewed as the 

model may identify more granaries than actually present in a single instance, which 

complicates the interpretation of results. This skewed output makes it more difficult for 

archaeologists to accurately interpret the data, as the models’ overidentification of 

granaries can obscure the true distribution and characteristics of the features. Thus, 

while the model meets its core objective, the challenges in performance metrics and 

data interpretation highlight the need for further refinement to ensure clearer insights for 

archaeological analysis. 

A related issue is the problem of missing post-holes within the Granary (6) category. The 

confusion matrices reveal that several six-post granaries were incorrectly classified as 

four-post granaries. An examination of the model outputs indicates that this 

misclassification primarily stems from the absence of posts in some six-post granaries. 

During the development of the labelling strategy, granaries were labelled as six-post even 

Figure 40: Left: Model_2 erroneously classifies the nine-post granary as a six-post granary as 
well. Right: Misclassification made by model_3 where the bottom-left six-post granary is also 
identified as a four-post granary. 
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if the middle post along the longitudinal axis was missing, based on the assumption that 

the main shape of the granary remained intact. However, this approach has possibly led 

to several six-post granaries being erroneously classified as four-post granaries (figure 

41). This issue is likely due to the low number of examples that include this particular 

abnormality, resulting in the models being unable to learn from such cases.  

 

  

In conclusion, it is clear there are several biases and implications present within the 

dataset that impact the performance of the models. The dataset's inherent biases, such 

as the visual similarities between several different labelling categories, likely contribute 

to the models’ misclassifications.  

 

Figure 41: Misclassification of a six-post granary with a missing post. The missing post causes the 
granary to visually resemble a four-post structure, which confuses the model and results in a 
misclassification.  
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7.3  Methodological mistakes 

Many of the previously highlighted issues related to the challenges in the models’ 

performance can be attributed to the overarching methodology employed in this thesis. 

A combination of inexperience with DL model creation and the limited availability of 

similar models within this specific context has introduced notable flaws into the 

methodological framework. These shortcomings became evident only after the models 

were developed and their results analysed, leaving limited opportunity to refine the 

methodology or test potential improvements within the scope of this research. 

Consequently, the following section aims to evaluate the methodological framework.  

7.3.1 Manual intervention 

First of all, something that is echoed throughout the entirety of this thesis is the amount 

of manual intervention done during the creation of the models. While these interventions 

were implemented with the intention of optimising conditions to enable the DL model to 

perform at its best, they inadvertently introduced significant levels of modification that 

undermined this very objective. By excessively tailoring the environment and inputs, the 

approach probably compromised the models’ generalisability and scalability, limiting its 

ability to perform well in less controlled, real-world scenarios.  

Most of the concerns lie within the data preprocessing methods employed in this thesis. 

While the dataset was meticulously cleaned to remove noise from the background 

imagery, this process likely introduced unintended consequences. Specifically, the 

model trained on such pristine data struggles to handle background noise effectively, as 

most of the images used during training were unrealistically clean. This presents a 

limitation when applying the model to real-life archaeological data, which rarely, if ever, 

conforms to such ideal conditions. In practical scenarios, archaeological data is 

inherently noisy, often containing clutter, environmental disturbances, and variations in 

lighting or composition. Consequently, the models’ applicability in real-world settings is 

compromised, as it lacks the robustness needed to perform reliably on unprocessed, 

authentic datasets. 
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Correspondingly, the removal of granary instances where posts were missing, although 

initially deemed necessary to maintain dataset consistency and ensure model accuracy, 

introduced additional limitations. This decision excluded valuable variations that might 

have helped the model develop a broader understanding of granary structures. By 

eliminating these imperfect examples, the model was deprived of the opportunity to 

learn from incomplete or atypical instances that are often encountered in real-life 

archaeological contexts. As a result, the models’ performance in recognising or 

interpreting granaries with missing posts in authentic datasets may be significantly 

hindered, further reducing its practical applicability. 

 Figure 42: Example of a “perfect” image in which the model could easily identify the granaries. 
This image is not representative of a regular archaeological dataset. 
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7.3.2 Labelling categories 

Another significant factor that compromised the performance of the DL models was the 

introduction of the labelling categories. Initially, these categories were considered 

advantageous, as they were designed to represent distinct structures with varying 

characteristics and perspectives. The intent was to provide the model with well-defined 

distinctions to enhance its learning and predictive capabilities. However, upon further 

reflection, it became evident that these categories introduced unintended complexities. 

Instead of simplifying the models’ learning process, the categories may have fragmented 

the data in ways that hindered their ability to generalise effectively. This over-

compartmentalisation likely resulted in decreased model adaptability and performance, 

particularly as the granaries are, in hindsight, quite similar in outlook and could therefore 

have been clustered together in a single category. 

When introducing a single “granary” category some of the issues highlighted before 

would probably have become less problematic. For instance, the double identification 

of the Granary (9) class into multiple smaller Granary (4) identifications might not have 

occurred. Therefore, the labelling strategy within this thesis is something that would 

possibly have great benefits for the results of the model. 

7.3.3 Transfer learning  

Another issue within the methodology is related to the transfer learning process 

employed with the pretrained YOLOv8 model. As outlined in the methodology, this model 

was pretrained on the widely used COCO dataset, which is a common practice in deep 

learning applications. However, after further reflection and review of recent research, it 

appears that transfer learning in this context may have been counterproductive (Pires de 

Lima & Marfurt, 2019; Verschoof-van der Vaart, 2022).  

Verschoof-van der Vaart (2022) summarises the issue: ‘[b]ecause the image 

characteristics of both types of imagery, grayscale LiDAR versus RGB-coloured 

photographs, are quite different, it has been suggested that the effectiveness of transfer-

learning declines as primary data, i.e., the images used for pre-training, and secondary 

data, i.e., the images used for fine-tuning, become less similar’ (p. 128). While this thesis 
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deals with different data sources, the principle remains relevant. Black-and-white 

images from GIS datasets are fundamentally different from the RGB images used in the 

COCO dataset, both in terms of colour characteristics and the overall image structure. 

This discrepancy between grayscale and colour imagery may have hindered the 

performance of the pretrained YOLOv8 model.  

Furthermore, the COCO dataset, includes traditional or “normal” objects which are often 

large, prominent, and reliably orientated (Verschoof-van der Vaart, 2022). Whereas 

archaeological DL models, including this thesis, are oftentimes looking for small and 

scarcely distributed objects, where ‘(…) one class is over-represented (Idem, 2022, p. 

125). Therefore, aside from the colour difference, the COCO dataset is fundamentally 

distinct from the archaeological datasets used here, both in terms of the object 

characteristics and their distribution. Thus questioning that the applicability of this 

transfer-learning method for this particular context. Unfortunately, as previously 

discussed, no large GIS datasets with labelled archaeological structures exist (Opitz & 

Herrmann, 2018), which further complicates the issue.  

Still, whether or not this pretraining approach would benefit the models’ performance is 

uncertain, and remains a point of contention in the general DL discipline (Trier et al., 

2019; Zoph et al., 2020; Verschoof-van der Vaart, 2022).  

7.3.4 Evaluation metrics 

Lastly, during the final phases of this thesis, a new evaluation metric came to light that 

could have provided a more insightful analysis of the models' performance. This metric, 

the centroid-based measure was introduced by Fiorucci et al. (2022). In essence, this 

measure was created because ‘(…) standard evaluation measures are ill-fitted for 

[archaeological] tasks due to inherent differences between archaeological objects and 

more common objects and their disregard of geospatial information’ (p. 15). The centroid-

based methodology assesses whether the centroid of a predicted object falls within the 

closest ground truth bounding box, reflecting the importance of detecting objects within 

their expected locations. As they explain ‘(…) a prediction is considered as a TP if the 

predicted object’s centroid falls inside the area of (at least) one ground truth’s bounding 

box; otherwise, the prediction is considered as an FP. The association between a ground 
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truth object and its eventual prediction is exclusive: whenever a TP prediction is 

associated with a ground truth, the latter cannot be associated with any further 

predictions’ (p. 6).  

This evaluation measure emphasises the importance of precise locations, as ‘(…) this 

crucial aspect is not grasped by the IoU that computes the extension of the overlap 

between the predicted and the ground truth bounding boxes’ (Ibidem). This metric would 

have been beneficial for this thesis, as it places a higher priority on the spatial accuracy 

of object detection, an aspect that is crucial in archaeological contexts where the exact 

positioning of structures is often as important as identifying them. By focusing on 

centroids rather than just the overlap of bounding boxes, this approach could have been 

a better evaluation metric within this thesis. 

 

 

 

Figure 43: Algorithm of the centroid-based evaluation metric (Fiorucci et al., 2022, figure 1). 
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8. Conclusion 

This thesis research has demonstrated the potential of automated detection techniques 

in archaeological research, specifically through the application of Deep Learning 

algorithms. By focusing on the YOLOv8s model for identifying Bronze and Iron Age 

granaries on archaeological GIS excavation maps, this research has illustrated both the 

strengths and limitations of using advanced AI technologies in this context. Utilising an 

image-based dataset, the models was trained to identify three primary categories of 

granaries in the Netherlands: four-post, six-post, and nine-post structures. With an 

average mean Average Precision at IoU 0.5 of 0.861 across all classes, this performance 

highlights the models’ effectiveness in distinguishing these granary types. Although 

these research findings suggest that the YOLOv8 model shows considerable promise, in 

its current form, it is not yet adequate and usable for practical archaeological 

applications. The models’ limitations and methodological problems, as highlighted in 

the discussion, emphasise the need for further refinement. Adequacy in this context 

requires not only high technical performance but also the ability to generalise across 

diverse archaeological contexts, handle incomplete datasets, and produce interpretable 

results that fit within broader archaeological narratives. Therefore, there is still a 

necessity for the solving of methodological issues, integration of contextual data, and 

the need for further recall refinement to enhance the model's accuracy and reliability in 

real-world applications. 

8.1 Answer to the research questions 

The research questions designed in chapter 2 relate to the evaluation of the effectiveness 

and implications of DL algorithms in the context of archaeological feature detection and 

analysis. These can be answered as follows. 

8.1.1 Main question 

How can the YOLOv8 algorithm be effectively employed to automate the detection and 

analysis of Bronze and Iron age granaries within archaeological excavation maps, and to 

what extent can this approach potentially enhance the efficiency and accuracy of 

archaeological site documentation and analysis? 
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Based on the preceding paragraphs, it can be carefully concluded that the use of a DL 

model for predicting the location of prehistoric granaries holds significant potential. The 

performance metrics are good, and with the added methodological improvements, a 

hypothetical future model might be considered adequate enough to be implemented on 

a practical level within archaeological research. However, the question remains whether, 

even with a theoretically functional model, DL can be deemed sufficiently adequate for 

this complex task. 

Therefore the concept of model adequacy should be addressed. Determining when a 

model is adequate enough to be considered a practical tool for archaeological research 

is a complex issue (Huggett, 2020; Argyrou & Agapiou, 2022; Huggett, 2022; Kadhim & 

Abed, 2023). Adequacy in this context involves more than just achieving high precision 

and recall metrics during the training phase; it also encompasses the model's ability to 

generalise across different sites, its versatility in handling diverse and incomplete 

datasets, and its capacity to produce results that are not only accurate but also 

meaningful in the context of archaeological interpretation. Furthermore, an adequate 

model must consistently perform well under varying conditions, including different types 

of excavation maps, varying preservation states of archaeological features, and different 

temporal contexts. Most importantly, adequacy also relates to the interpretability of the 

model’s outputs. Archaeologists need to understand the basis of the model’s predictions 

to trust its results and to integrate them into broader archaeological narratives (Barredo 

Arrieta et al., 2020; Labba et al., 2023; Li et al., 2023; Matrone et al. 2023; Tenzer et al., 

2024; Vadineanu et al., 2024). A model that performs well on a technical level but lacks 

transparency in its decision-making process may be inadequate for practical use, as it 

could lead to misinterpretations or overlooked contextual factors (Gattiglia, 2022). 

Ultimately, deciding when a model is "adequate" requires a balance between technical 

performance and practical usability. It involves a continuous dialogue between the 

model creators and archaeologists, where the model's capabilities are aligned with the 

specific goals and challenges of archaeological research (Huggett, 2022). Only when a 

model meets these criteria can it be considered truly adequate for practical application 

in the field. 
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The model developed for this thesis currently falls short of several essential criteria, and, 

as such, cannot be regarded as a practical methodology for use. It is encumbered by 

numerous implications and biases introduced through the dataset and the methodology, 

and its lack of transparency regarding prediction weights hinders the ability to 

understand the decision-making mechanisms employed by the model. This means that 

the model, in its current form, is too opaque and unreliable to use for practical 

archaeological inferences.  

However, it is important to note that the primary goal of this thesis was not to develop a 

fully functional model, but to evaluate whether this methodology has potential for future 

effective use. In response to that question, the conclusion of this thesis is a cautious yes. 

Even at its basic level, these models have demonstrated that the results are promising 

and suggest promising pathways for further development and refinement. Implementing 

more representative data, incorporating feedback loops, appropriate transfer-learning 

(Verschoof-van der Vaart, 2022), and exploring different labelling strategies are all factors 

that would potentially enhance the model's performance and utility in future 

applications. 

If such a model were developed for this specific purpose, it would undoubtedly be 

advantageous for archaeological research. It could significantly reduce the time, energy, 

and resources required for detecting and analysing archaeological structures, thereby 

streamlining the research process and enhancing the efficiency of fieldwork and data 

analysis (Huggett, 2020). However, in this situation, it still important to heavily emphasise 

the agency such a model should have. The integration of cultural and historical context, 

and the accompanying subjective interpretations, into AI currently remains a distant 

goal. Therefore, while the model could greatly assist in identifying potential locations, it 

should be used in conjunction with expert knowledge and not as a replacement for the 

nuanced understanding that human researchers bring to archaeological analysis 

(Ibidem).  
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8.1.1 Subquestion 1  

How can the Deep Learning YOLOv8 algorithm be adapted and optimised to effectively 

recognise diverse architectural features representative of Bronze and Iron age granaries 

on archaeological GIS excavation maps? 

First, enhancing the quality and quantity of the training data is crucial. YOLOv8's 

performance is significantly influenced by the diversity of the data it is trained on. 

Therefore, expanding the dataset to include a broader range of granary examples, 

preservation states, and archaeological contexts is essential. This expansion will enable 

the model to learn to identify various granary features more accurately and improve its 

ability to generalise across different contexts. Additionally, addressing data imbalances 

by increasing the number of labelled examples for less common granary types, such as 

the nine-post granary, will help improve the model’s recall and accuracy. Ensuring that 

the dataset includes diverse examples of obscured and overlapping granaries will also 

aid in reducing misclassifications and improving the model's performance in complex 

scenarios. Ultimately, reducing the amount of manual intervention introduced within this 

methodology. Instead of trying to make the “perfect” dataset, a model should work with 

the data that is out there. 

Next, as outlined in the discussion, leveraging appropriate transfer learning by using pre-

trained weights and adjusting them based on the granary dataset can also optimise the 

model's performance for this specialised task (Pires de Lima & Marfurt, 2019; Verschoof-

van der Vaart, 2022). 

Lastly, integrating expert knowledge and archaeological context is crucial for ensuring the 

predictions are contextually relevant. Collaborating with archaeologists provides 

valuable insights into the significance of various granary features and their historical 

context. Additionally, using contextual information as another data source, such as post-

hole depth, texture, colour, shape, and stratigraphy, would offer the model a more holistic 

understanding of the granaries (e.g. Verschoof-van der Vaart et al., 2020). This multi-

faceted approach would enrich the model's capacity to differentiate between various 

features and nuances, moving beyond a purely pixel-based analysis to a more 

contextually informed methodology.  
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8.1.1 Subquestion 2 

What are the limitations, biases, and challenges associated with implementing the Deep 

Learning YOLOv8 algorithm for automated feature detection within archaeological 

contexts, and how can these challenges be addressed to ensure the reliability and 

accuracy of the automated identification process?  

One notable limitation of the model’s performance is its inconsistency across different 

granary categories. For instance, the Granary (9) category, which frequently achieves 

perfect precision and recall metrics, highlights a potential issue with the model's 

capabilities. The disproportionate representation of Granary (9) in the training and test 

sets, combined with potential similarities introduced by data augmentation, raises 

concerns about the reliability of the performance metrics. To address this, it is crucial to 

expand the dataset with more diverse examples, including various granary types and 

conditions, to better assess the model’s true generalization capabilities. Furthermore, 

adjusting the labelling strategy to include just one overarching “granary” category would 

simplify and improve the model’s overall performance. 

Further, while the models show high precision in detecting granaries, the recall is lower, 

indicating that a significant portion of actual granaries is missed. This trade-off between 

precision and recall is particularly impactful in archaeological research, where 

identifying as many potential granaries as possible is crucial. A model with higher recall 

but lower precision might be more beneficial, as it would generate a larger number of 

potential candidates for expert validation. To improve recall, strategies such as 

increasing the diversity of training data, enhancing data augmentation techniques, and 

adjusting detection thresholds should be considered.  

Challenges also arise from the models’ difficulty in handling background noise and 

distinguishing granaries from cluttered backgrounds. The performance of the model 

deteriorates with increased background noise, affecting its ability to accurately identify 

granaries in more complex datasets. This sensitivity to background noise underscores 

the need for the model to manage and interpret noisy data effectively to be useful in 

archaeological research. Therefore, less manual intervention and more realistic cluttered 

data would enhance the model’s overall performance. 
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The models also struggle with classifying overlapping or incomplete features and 

differentiating between visually similar categories. Misclassifications between granary 

categories, such as confusing six-post granaries with missing posts for four-post 

granaries, highlight the need for a more all-encompassing training dataset. Including 

more examples of incomplete or atypical features can help the model better understand 

and classify such variations. Additionally, the presence of other structures, such as 

prehistoric house plans, within the dataset has led to confusion due to visual similarities 

with granaries. This issue suggests, once again, the potential for reducing the 

classification categories to include one overarching class. 

Lastly, the concept of DL bias in general is something both the user and the creator of 

such a methodology should be highly aware of. It is essential to recognise that biases in 

training data or model design can significantly impact the accuracy and fairness of 

predictions. Therefore, the dataset should be thoroughly assessed for characteristics 

that could introduce bias, and measures should be taken to mitigate these issues. By 

ensuring the data and model are as unbiased and representative as possible, the 

reliability and equity of the automated identification process can be substantially 

improved. 

All in all, there are several important considerations to keep in mind when designing and 

using a DL model in archaeological research. Being aware of these components and 

trying actively to mitigate them in the future will ensure that such methodologies are used 

responsibly and contribute meaningfully to the field. 

 

8.2 Future research 

Looking to the future of integrating DL methodologies in archaeological research, there is 

significant potential to enhance the understanding and analysis of archaeological 

structures. Ideally, this research has created a foundation for further exploration into 

refining and expanding DL models on archaeological GIS maps. This subchapter will 

therefore include suggestions for future research and adaptation to the methodology and 

its corresponding DL models. Besides the model improvements that have already been 

mentioned several times before. 
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One of the major issues within AI research is the “black-box issue,” which refers to the 

lack of transparency in how deep learning models arrive at their predictions. 

Consequently, a major upcoming area of research is XAI (Barredo Arrieta et al., 2020; 

Labba et al., 2023; Li et al., 2023; Matrone et al. 2023; Tenzer et al., 2024; Vadineanu et 

al., 2024). This specific field focuses on developing methods and tools that make the 

decision-making processes of AI models more transparent and interpretable. For 

archaeological research, implementing XAI techniques can help bridge the gap between 

complex algorithms and human expertise, ensuring that model outputs are not only 

accurate but also understandable and justifiable within the context of archaeological 

inquiry. Practical examples of XAI for the YOLO model include heatmaps, saliency maps, 

and feature maps (Doran et al., 2018; Dwivedi et al., 2023; Moradi et al., 2024). Heatmaps 

illustrate the regions of an image that the YOLO model deems most significant for its 

predictions. By highlighting areas with varying intensities of attention, heatmaps clarify 

which parts of the image influence the model’s detection results. Saliency maps, 

highlight the specific pixels that most affect the model’s decision-making. They show 

how changes in pixel values might impact the prediction, thus revealing the key features 

that drive object detection (Moradi et al. 2024). Feature maps display the activations of 

different layers within the YOLO network, providing insights into the features extracted at 

various processing stages (e.g. Vadineanu et al, 2024). By visualising these activations, 

feature maps help understand how the model interprets different aspects of the image 

and contributes to object detection (Moradi, 2024, p. 19). Together, these types of XAI 

tools help disentangle YOLO’s prediction process, offering a clearer view of how input 

data is processed, and which components are pivotal in generating results. Although 

these methods are not completely all-encompassing, and sometimes difficult to 

interpret, they might aid in the understanding of the predictions the YOLO algorithm 

makes during the identification of granary structures. 

Another potential future direction is the integration of this (working) DL algorithm into a 

GIS environment, such as through an installable plugin. This approach would offer 

significant advantages to users by facilitating the identification of granaries directly 

within their GIS platforms. It would also enhance accessibility by making the tool 

available to a broader range of software users, thereby fostering greater collaboration and 
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application across the archaeological research community (Batist & Roe, 2024). Openly 

available research tools and science are essential for advancing DL knowledge and 

fostering collaboration within the academic community (Schmidt & Marwick, 2020). By 

making such resources accessible to a wider audience, researchers can more easily 

build upon each other's work, validate findings, and contribute to collective progress. 

This open approach not only democratises access to technologies but also accelerates 

innovation and ensures that advancements in fields like archaeology benefit from diverse 

insights and applications. 

Lastly, as previously discussed, incorporating multiple categories within the detection 

algorithm would be a significant enhancement. Expanding the model to recognise a 

broader range of features and classifications could greatly improve its utility in 

archaeological research by providing more holistic insights. Including house plans, grave 

structures, barrows, or any other category with a relatively standardised typology would 

enrich the methodological analytical capabilities and broaden its applicability. Although 

this would entail substantial amounts of annotated archaeological data and extensive 

training time (Opitz & Herrmann, 2018; Verschoof-van der Vaart, 2022), this addition is 

not insurmountable. Ultimately, because the addition of extra classes would eventually 

‘(…) enhance the generalisation capabilities of Deep Learning approaches’ (Verschoof-

van der Vaart, 2022, p. 149). With advancements in computational resources and data 

management techniques, such challenges could potentially be addressed. The effort 

required to incorporate a wider range of categories is justified by the potential for 

significantly improving the model's accuracy and versatility, ultimately leading to more 

insightful and comprehensive archaeological analyses. 
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Appendices 
Appendix 1: the specific code for the parameters of the three models 
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Appendix 2: Example predictions from model_3 on the test set 
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