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Abstract

Magnetic fields are everywhere in the universe but their origins are still
uncertain. In this research we present a set of stable cosmological box sim-
ulations of the magnetic field using the MHD branch of the SWIFT open-
source SPH simulation code. We have implemented cooling and stellar
feedback into the simulations, as well as run a purely adiabatic simula-
tion. We look into the large-scale structure of the magnetic field and ob-
serve magnetic field amplification beyond adiabatic for the cooling simu-
lations, up to values of 103 µG for cooling only, and 102 µG for cooling and
stellar feedback. We discuss the magnetic field profile in halos which we
find to be a little higher than observed in our universe. We also present
fiducial RM maps of the largest halo in the simulations, with central RM
values of ∼ 10 rad m−2 for the adiabatic halo ∼ 103 rad m−2 for the cool-
ing and cooling plus stellar feedback halo. The hope is that this code can
be very useful in understanding magnetic fields not only in the low den-
sity regimes, but also in the high density clusters, and getting closer to
understanding the magnetic seeding mechanisms.
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Chapter 1
Introduction

Magnetic fields are present everywhere in our universe, from strongly
magnetised neutron stars, to stars and planets, to weakly magnetised ICM.
It is still unclear how these magnetic fields have formed in large scale
structure.

There are currently two main hypotheses on the origin of cosmological
magnetic fields, primordial magnetic fields formed during eg. inflation,
or magnetic fields seeded from galactic outflows (see eg. Subramanian
(2016) for a detailed review on seeding processes). The answer could lie
in the low-density filaments and voids of the universe, where the seeding
signatures would remain untouched. However, research of these regions
is hindered by their low magnetisation. Upper bounds for the magnetic
field are in the order of nG (Pshirkov et al., 2016) while lower bounds are
placed at around 10−7 nG (Neronov and Vovk, 2010). Even for more mas-
sive structure, extensive research of the magnetic field is hard. Current
estimates for the magnetic field in galaxy cluster centres are at µG levels.
(eg. Donnert et al. (2018); Osinga et al. (2022, 2025); Govoni et al. (2017);
Guidetti et al. (2010)) The most promising method is measuring the fara-
day rotation measure, but measurements are limited to rare polarised ra-
dio sources behind or in galaxy clusters and nearby galaxy clusters to max-
imise the cluster angular size. (Rudnick and Owen, 2014) Another method
to deduce the magnetic field in cluster uses the observation of synchrotron
emission. However, this method depends on relatively uncertain mecha-
nisms, and thus results in uncertain magnetic field estimates. (Govoni and
Feretti, 2004)

That is where simulations come into play. Previous simulations have
shown promising results in simulating cosmological magnetic fields. (eg.
Dolag and Stasyszyn (2009); Dubois and Teyssier (2008); Marinacci et al.
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8 Introduction

(2015); Domı́nguez-Fernández et al. (2019); Mtchedlidze et al. (2022)) This
project will investigate large scale cosmological magnetic fields using the
magnetohydrodynamics (MHD) branch of the smoothed particle hydro-
dynamics (SPH) solver SWIFT. (Schaller et al., 2024, 2018) Swift has the
possibility to add various subgrid models to the simulations, which has
not been done before for cosmological smoothed particle magnetohydro-
dynamics (SPMHD) codes.

In chapter 2, the underlying equations of MHD and SPMHD are briefly
described. In chapter 3 the simulation methods and results are discussed.
In chapter 4 some weaknesses of SPH methods are demonstrated. In chap-
ter 5 the research project and its results are discussed, as well as some fu-
ture prospects for research, before concluding in chapter 6

8

Version of March 12, 2025– Created March 12, 2025 - 17:00



Chapter 2
Magnetohydrodynamics

This chapter will be devoted to describing some of the governing equa-
tions in both theoretical magnetohydrodynamics (MHD) and the simula-
tion methods of smoothed particle magnetohydrodynamics (SPMHD). For
detailed derivations of the MHD equations or more background informa-
tion see e.g. Galtier (2016); Kulsrud (2004).

2.1 Equations of MHD

The set of non-ideal MHD equations describe the behaviour of a fluid un-
der influence of a magnetic field, for which the conductivity σ is not ap-
proximated as infinite and thus the magnetic diffusivity η = 1/σ is non-
zero. These equations are given by:

∂ρ

∂t
+∇ · (ρv) = 0 (2.1)

ρ

(
∂v
∂t

+ v · ∇v
)
= −∇P + J × B (2.2)

∂B
∂t

= ∇× (v × B) + η∆B (2.3)

∇ · B = 0 (2.4)

with ρ the fluid density, v the fluid velocity, P the pressure, B the magnetic
field, J = (∇ × B)/µ0 the magnetic current and η = 1/σ the magnetic
diffusivity
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10 Magnetohydrodynamics

2.2 Adiabatic amplification

Now let us derive a relation which will be used often as reference point in
this project, namely the amplification of the magnetic field through adia-
batic collapse for ideal MHD.

First, consider a magnetic tube that is bounded by the magnetic field
lines themselves and surfaces S1 and S2 at either end. In that way the flux
through the sides of the tube is zero since the magnetic field is parallel to
them. The total flux Φ through that tube is zero because ∇ · B = 0. The
total flux is also given by

Φ =
∫∫

S1

B · n1dS +
∫∫

S2

B · n2dS (2.5)

with n1, n2 normal vectors to the surface pointing outwards. When look-
ing at the fluxes through the individual surfaces, thus along B, we get

Φ1 = −
∫∫

S1

B · n1dS (2.6)

Φ2 =
∫∫

S2

B · n2dS (2.7)

Combined, this gives Φ1 = Φ2 or in other words, the flux through a mate-
rial surface along a magnetic field line does not change.

Secondly we need the Kelvin’s theorem, that states that for any divergence-
free vector field C

d
dt

∫∫
S

C · dS =
∫∫

S

(
dC
dt

−∇× (v × C)

)
· dS (2.8)

Where S is a material surface moving with the fluid, composed of the same
particles. In the case of ideal MHD, η = 0, this means that

d
dt

∫∫
S

B · dS = 0 (2.9)

This means that for any material surface moving with the fluid, the
magnetic flux is constant, which is called Alfvén’s theorem. In other words
this means that mass elements move with the magnetic field lines and will
stay on them. The magnetic field lines are frozen into the fluid, which is
why this is also called flux-freezing. Note that this whole derivation only
holds in the limit of ideal MHD.

This result can now be used to derive the amplification of the magnetic
field during isotropic adiabatic collapse. Consider a spherical volume el-
ement of radius R1 with magnetic field B1 that collapses into a sphere of

10
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2.3 Smoothed Particle Magnetohydrodynamics 11

radius R2 with magnetic field B2. The flux through the sphere and the
mass of the element is conserved because of flux-freezing. The conserva-
tion of flux gives us R2

1B1 = R2
2B2, while the conservation of mass gives us

R3
1ρ1 = R3

2ρ2. Combine these two relations gives the following relation for
adiabatic collapse:

B2

B1
=

(
ρ2

ρ1

)2/3

(2.10)

This B ∝ ρ2/3 relation will be used often as reference point in the up-
coming simulations.

2.3 Smoothed Particle Magnetohydrodynamics

Smoothed particle magnetohydrodynamics uses the SPH principles to evolve
the magnetic field alongside all other hydrodynamic properties. As a short
recap, every particle has a kernel W, which is normalised, isotropic, has a
central gradient of zero, and is described as a function of distance r and
smoothing length h. The kernel function is described as

W(r, h) =
1

hnd
w(r/h) (2.11)

where nd the number of dimensions and w(r/h) describes the kernel shape
and is dimensionless. The kernels used have a compact support radius (or
cut-off radius) H = γKh, with γK kernel dependent, beyond which the
kernel is zero.

The number and mass density are then given by:

n̂i = ∑
j

Wij (2.12)

ρ̂i = ∑
j

mjWij (2.13)

with n̂i, ρ̂i denoting the number and mass density at particle i, the sum
running over neighbours j with masses mj and the kernel notation Wij =
W(rij, hi), with rij = |ri − rj|.
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11



12 Magnetohydrodynamics

Generally for a quantity Q, basic SPH estimates are:

Q̂i =
1
ρ̂i

∑
j

mjQjWij (2.14)

(∇ · Q̂)i =
1
ρ̂i

∑
j

mjQj · ∇iWij (2.15)

(∇× Q̂)i =
1
ρ̂i

∑
j

mjQj ×∇iWij (2.16)

Where ∇i denotes the gradient taken at particle i. However, for the mag-
netic field, more accurate estimators are used for the derivative estimators.
These estimators can be divided into a symmetric and an anti-symmetric
operator. These are given by:

(∇ · Q)i = −ρi ∑
j

mj

[
fijQi

ρ2
i

· ∇iWij +
f jiQj

ρ2
j

· ∇iWji

]
(2.17)

(∇ · Q)i = − 1
ρi

∑
j

fijmj(Qi − Qj) · ∇iWij (2.18)

where fij a correction factor for variable smoothing lengths.

2.3.1 Equations of SPMHD

The equations that SWIFT solves for the magnetic field are based on those
from Price et al. (2018) and (ignoring terms not used in this research) given
by:

dvi

dt
= −1

ρ

∂Mij

∂xj + αi
visc + αi

self−grav + f i
divB (2.19)

du
dt

= −P
ρ
(∇ · v) +

η

ρ
J2 − Λcool (2.20)

d
dt

(
B
ρ

)
=

1
ρ
[(B · ∇)v + η∆B −∇ψ +Ddiss] (2.21)

d
dt

(
ψ

ch

)
= −ch(∇ · B)− 1

2
ψ

ch
(∇ · v)− ψ

chτc
+ H

ψi

ch,i
(2.22)

where the time derivatives are the Lagrangian derivatives, with the Maxwell
stress tensor given by

Mij =

(
P +

1
2

B2

µ0

)
δij − BiBj

µ0
(2.23)

12
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2.3 Smoothed Particle Magnetohydrodynamics 13

αi
visc, αi

self−grav the viscosity and gravity terms respectively, f i
divB a term

compensating the presence of the numerical magnetic field divergence in
the Maxwell stress tensor (see section 2.3.3). Λcool describes the gas cool-
ing. ψ the Dedner scalar field cleaning numerical divergences (see section
2.3.2) and Ddiss an artificial resistivity term (see section 2.3.4). ch is the fast
magnetosonic sound speed, derived from the sound speed and the Alfvén
wave speed, and H the Hubble parameter.

These equations are discretised as follows:

dvi

dt
=− ∑

j
mj

[
fijMi

ρ2
i

∂Wij

∂xi
+

f jiMj

ρ2
j

∂Wji

∂xi

]
+ αi,visc + αi,self−grav + f i,divB (2.24)

d
dt

(
B
ρ

)
i
=− 1

ρ2
i
∑

j
fijmjvij[Bi · ∇iWij]

− 1
ρi
⟨∇ψ⟩i,SPH

+ 2
η

ρi
∑

j

mj

ρj
(Bi − Bj)

Fij

rij
+

1
ρi
Di,diss (2.25)

d
dt

(
ψ

ch

)
i
=ch,i⟨∇ · B⟩i,SPH

+
ψi

2ch,iρi
∑

j
mjvij · ∇iWij −

ψi

ch,iτc,i
+ H

ψi

ch,i
(2.26)

where Fij is the scalar part of the kernel gradient ∇iWij = r̂ijFij and vij =
vi − vj. The SPH operators for ∇ψ and ∇ · B have been unspecified, since
both the anti-symmetric and the symmetric operators have been used for
them. They do form a conjugate pair, thus when the anti-symmetric oper-
ator for ∇ · B is used, the symmetric operator for ∇ψ has been used and
vice versa.

2.3.2 Divergence Cleaning

A problem that arises in all numerical MHD simulations is the divergence
constraint on the magnetic field. In the MHD equations it enters only as an
initial condition. This can be seen if we start from the induction equation
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14 Magnetohydrodynamics

and take its divergence:

dB
dt

= ∇× (v × B) (2.27)

∇ · dB
dt

=
d
dt

(∇ · B) = 0 (2.28)

However, due to numerical resolution limits, it can not be enforced in-
definitely. It is not only important to keep the divergence low for correct-
ness of the magnetic field, but also to avoid monopole forces which enter
in the SPMHD equations of motions. The reason they enter in the equa-
tions of motions is because the force that conserves momentum is given
by (Price, 2012):

dv
dt

=
∇ · M

ρ
≡ −∇P

ρ
+

(∇× B)× B
µ0ρ

+
B∇ · B

µ0ρ
(2.29)

where the last term is a kind of monopole term of the magnetic field. When
this becomes large, there could be significant unphysical effects in the sim-
ulation. There will be more on this monopole force in section 2.3.3. For
now, we will focus on how to keep the divergence low.

A solution was first found by Dedner et al. (2002) who introduced a
scalar field ψ which enters in the induction equation as:

dB
dt

= ∇× (v × B)−∇ψ (2.30)

and evolves as (Price and Monaghan, 2005):

dψ

dt
= −c2

h(∇ · B)− ψ

τ
(2.31)

Combining these two equations gives gives a damped wave equation for
the divergence of the magnetic field:

∂2(∇ · B)
∂t2 − c2

h∇2(∇ · B) +
1
τ

∂(∇ · B)
∂t

= 0 (2.32)

From this, we see that there is a hyperbolic propagation with speed ch of
the divergence due to the first right-hand side term of equation 2.31, and
parabolic damping at a timescale τ due to the second right-hand side term.
Typically, ch is set to the fast magnetosonic wave speed, and τ ≡ h

σch
. This

formalism was later extended by Tricco and Price (2012) to prevent insta-
bilities at density jumps and free surfaces. They set up a constraint that the

14
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2.3 Smoothed Particle Magnetohydrodynamics 15

hyperbolic divergence transport should be energy conserving, with the re-
sult that including the parabolic damping term could only remove energy
from the system. Their conservative equations read:

dψ

dt
= −c2

h(∇ · B)− ψ

τ
− 1

2
ψ(∇ · v), (2.33)

where the time derivative is the Lagrangian time derivative d/dt ≡ ∂/∂t+
v · ∇. This was derived assuming constant wave cleaning speeds, both in
space and in time. However, in practice this does not hold, which results
in non-conservation of energy. This was solved by Tricco et al. (2016) who
proposed the equation:

d
dt

(
ψ

ch

)
= −ch(∇ · B)− 1

τ

(
ψ

ch

)
− 1

2

(
ψ

ch

)
(∇ · v) (2.34)

The equation that is used in SWIFT is eq. 2.34 with the addition of a
term accounting for an expanding universe:

d
dt

(
ψ

ch

)
Hubble

= H
ψ

ch
(2.35)

2.3.3 Tensile Instability

In the previous section, we showed that the numerically non-zero diver-
gence of the magnetic field shows up in the equation of motion. Because
of this, there is a regime where the equation of motion becomes unstable
because the stress becomes negative. This happens when B2/(2µ0) > P
(Phillips and Monaghan, 1985). To counteract this instability, the unphys-
ical force term is subtracted in the equations of motion as suggested by
Børve et al. (2001) and adapted to variable smoothing lengths by Price
(2012). This correction is the following expression:

f divB,i = −B̂i ∑
j

mj

[
fijBi · ∇iWij

ρ2
i

+
f jiBj · ∇iWji

ρ2
j

]
(2.36)

If B̂i = Bi, this term is equivalent to the monopole term in the equations of
motion (Powell et al., 1999), given the discretisation used for f divB,i is the
same as the one used for the divergence term in the equation of motion
(Price, 2012). However it was shown that B̂i = Bi is not necessary at all
times to avoid instabilities, specifically that B̂i =

1
2 Bi is sufficient. (Børve

et al., 2004) They also proposed a scheme in which the correction term goes
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16 Magnetohydrodynamics

to zero when the ratio between the gas pressure and the magnetic pressure
β ≡ P/PB > 1, i.e. when B2/(2µ0) < P. Even though using B̂i = 1

2 Bi
was also found successful by Barnes et al. (2012), there were problematic
effects in the blast wave simulations by Tricco and Price (2012) when using
B̂i = β̂Bi, with β̂ < 1 (note that β̂ is not related to the pressure ratio β
mentioned before; β̂ was used often in the literature and for comparison’s
sake the same notation is used here). Iwasaki (2015) found that the best
choice of β̂ is different for certain regimes, and that there is not a single
optimal value for all cases. In SWIFT, following Price et al. (2018), the
following value for B̂i is used:

B̂ =


B if β < 2
[(10 − β)B]/8 if 2 < β < 10
0 otherwise

(2.37)

2.3.4 Artificial Resistivity

To accurately capture shocks, an artificial resistivity has been implemented
in SWIFT according to Price et al. (2018):

Ddiss,i =
ρi

2
ηart ∑

j
mjvB

sig

[
fijFij

ρ2
i

+
f jiFji

ρ2
j

]
Bij (2.38)

with adjustable parameter ηart and the signal velocity vB
sig = |vij × r̂ij|. It

can be interpreted as a physical resistivity, but with a coefficient that is
proportional to the resolution. Price et al. (2018)

16

Version of March 12, 2025– Created March 12, 2025 - 17:00



Chapter 3
Cosmological Box Simulations

To simulate the evolution of the magnetic field throughout the universe,
we set up different cosmological box simulations, using the direct induc-
tion scheme in the SWIFT
MHD canvas branch.1 (Schaller et al., 2024, 2018) All cosmological boxes
were initialised with a glass cube at a redshift of z = 63 with sides of 150
cMpc.2 The particles got an initial Beltrami magnetic field given by:

B = B0 [(sin kz + cos ky)x̂ + (sin kx + cos kz)ŷ + (sin ky + cos kx)ẑ] (3.1)

where B0 = 10−6 cµG unless otherwise specified, and k = 2π/λ the
wavenumber, with λ = Lbox/10 the wavelength. Note that this field is
trivially divergence-free. The reason for this field morphology is two-part.
Firstly, Beltrami fields have the property that ∇× A = kA, which means
that we are able to use the same initial field, corrected by a prefactor, for
an initial vector potential field to use in another branch of SWIFT’s MHD
implementation where we evolve the vector potential. Also this type of
configuration means that there are no magnetic forces applied to the par-
ticles initially. The cosmology for all the boxes was a ΛCDM model with
ΩCDM = 0.2574, Ωb = 0.0486, ΩΛ = 0.694, Ωr = 0 and h = 0.681, the
FLAMINGO fiducial cosmology. (Schaye et al., 2023)

At the start of the project, the simulations were executed with an anti-
symmetric operator for the magnetic field divergence in the Dedner scalar
field evolution. Later we switched to a symmetric operator for reasons
explained in section 3.2. A large advancement in SPMHD was that a con-
jugate pair of operators was to be used for the divergence in the Dedner

1The code can be obtained at https://gitlab.cosma.dur.ac.uk/swift/swiftsim
2The initial conditions are available at http://virgodb.cosma.dur.ac.uk/swift-

webstorage/ICs/MHD cosmo box/
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18 Cosmological Box Simulations

field evolution and the gradient of the Dedner field in the induction equa-
tion. (Tricco and Price, 2012) Therefore by switching to the symmetric op-
erator for the divergence of the magnetic field, we also switch to the anti-
symmetric operator for the gradient of the Dedner field. An overview of
the presented simulations and their differences can be found in table 3.1.

Alongside all simulations, the Friends-Of-Friends (FoF) algorithm was
run. The FoF algorithm is commonly used to find structure in simulations
and is implemented in SWIFT with the linking length and minimal linking
size set in the parameter file. It only bases the structure finding on particle
coordinates which means the algorithm is a robust but not a very refined
one. For the purpose of most of this project, this is more than enough. In
section 3.3, another structure finder is used. The reasoning behind that
will be left until then.

The FoF algorithm only produces a catalogue of groups with the centre
of mass, total mass, and the amount of particles in the group. The virial
radius R200 is computed by sorting the particles by distance to the FoF
centre of mass, calculating the average density ⟨ρ(≤ ri)⟩ at every parti-
cle distance, and then setting the virial radius as the maximum particle
distance to the centre of mass such that ⟨ρ(≤ ri)⟩ > 200ρcrit. The critical
density is calculated from the cosmology. The virial mass is then set to the
total mass inside this radius. For the remainder of the research, when talk-
ing about the virial radii and masses, these radii and masses are implied,
unless explicitly stated otherwise.

For the remainder of this chapter, all quantities will be reported in
physical units, unless explicitly stated otherwise.

3.1 Simulations with Anti-Symmetric ∇ · B Op-
erator

3.1.1 Adiabatic Simulation

Firstly, the adiabatic simulation was run (aso-128-ad), which just included
gravity and (magneto-)hydrodynamics. The redshift zero slice can be seen
in figure 3.1. The magnetic field follows the density approximately and
there is also a smooth velocity field. The error metric is defined as R0 =
h|∇ · B|/B if the signal-to-noise ratio of the divergence is larger than 10,
and set to zero otherwise. The noise is estimated from the expected SPH
gradient error B · ∇SPH1. The error metric in the slice seem large as they
reach values up to unity, however, most of the large error regions are in

18
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3.1 Simulations with Anti-Symmetric ∇ · B Operator 19

name operator resolution Mg [1010 M⊙ ] subgrid models parameter variations

aso-128-ad anti-symmetric 2 × 1283 1.01 - -
aso-128-ad-ar anti-symmetric 2 × 1283 1.01 - AR

aso-128-ec anti-symmetric 2 × 1283 1.01 EAGLE Cooling -
so-128-ad symmetric 2 × 1283 1.01 - -
so-128-ec symmetric 2 × 1283 1.01 EAGLE Cooling -

so-128-ec-ar symmetric 2 × 1283 1.01 EAGLE Cooling AR
so-128-ec-pr symmetric 2 × 1283 1.01 EAGLE Cooling PR
so-128-ecsf symmetric 2 × 1283 1.01 EAGLE cooling + stellar feedback -
so-256-ad symmetric 2 × 2563 0.126 - -
so-256-ec symmetric 2 × 2563 0.126 EAGLE Cooling -

Table 3.1: An overview of the presented simulations highlighted in this thesis.
More simulations have been run, but their results are not presented, nor used in
any of the conclusions. The columns are (A) the name of the simulation, (B) the
divergence operator used in the Dedner scalar field evolution, (C) the amount of
particles N = Ngas + NDM, (D) the mean gas particle mass, (E) the subgrid models
used, and (F) the variations in the parameters of the simulation, with AR meaning
a non-zero artificial resistivity, PR a non-zero physical resistivity. The resolution
of simulations will often be mentioned without the factor 2 in front.

Figure 3.1: A redshift zero slice of the aso-128-ad simulation. From left to right,
the magnetic field, the density, velocity and error metric R0. For the magnetic and
velocity field, the vector field is overlaid on the intensity plot.

lower density regions. In these regions there are very few particles, so
larger smoothing lengths and the error regions seem very large. However,
another important sign these errors are acceptable, is that we are not see-
ing any unphysical large-scale effects.

In the lower left corner of the slices there is a large void. There the ini-
tial magnetic field configuration is still visible. Note also that this is such a
large void, that there should be almost no magnetisation of this void due
to physical processes (that are not present in this particular simulation) in
the higher density regions of the simulation, such as AGN heating, stellar
feedback or other magnetised jets.

In figure 3.2 the correlation between the magnetic field strength and the
gas density can be seen. The simulation follows the adiabatic collapse line
neatly. Values of 10−2 − 10−1 µG are reached, which are lower than the
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20 Cosmological Box Simulations

values of order µG typically reached in galaxy cluster centres, but in line
with what other adiabatic simulations have found. (Marinacci et al., 2015;
Domı́nguez-Fernández et al., 2019). Note that this simulation corresponds
to the box-512.high done by Marinacci et al. (2015) and that our initial
magnetic field value is 102 lower than the simulation done by Domı́nguez-
Fernández et al. (2019). Also visible is the decrease of the magnetic field
in the low density regions, which is in line with the cosmic expansion B ∝
B0/a2 that is the dominant effect in these regions.

Figure 3.2: The correlation between the magnetic field and the gas density for the
aso-128-ad simulation at redshifts 2, 1, 0.5 and 0. The colour brightness repre-
sents the amount of particles in that regime, with brighter colours meaning more
particles. In white the percentiles of the distribution are plotted (dashed lines are
the 16th and 84th percentile, the solid line the 50th percentile). Also plotted is the
B ∝ ρ2/3 line derived from the flux freezing argument in section 2.2. Note that
the height of this line is not exactly calculated, and that the line should be used
to compare the slope of the distribution to. The height of the line is set constant
throughout this paper

Figure 3.3: Distribution of the magnetic field strength for redshifts 2, 1, 0.5, 0. In
red the magnetic fields of particles not in an FoF group, and in blue the particles
that are in an FoF group. In black, the total distribution is shown.
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3.1 Simulations with Anti-Symmetric ∇ · B Operator 21

The distribution of the magnetic field strength can be seen in figure
3.3. A distinction is made between particles in an FoF group and those not
in an FoF group. Visible in the figure is the distribution of the non-FoF
magnetic fields shifting towards lower magnetic field values, and the dis-
tribution of the FoF magnetic fields shifting towards higher values. This
is due to the cosmic expansion dominating in the lower density regions,
which are mostly not containing FoF groups, and the structure collapse in
FoF groups leading to amplification of the magnetic field. Also visible is
the total size of the FoF group increasing with lower redshift, which is due
to the structure collapse or in other words more particles getting bound.

In figure 3.4 a stacked magnetic field profile is shown of all the FoF
halos in the aso-128-ad simulation. The central magnetic fields are at the
order of 10−2 µG, which is again lower than current observations of galaxy
clusters, but in line with other adiabatic galaxy cluster simulations. The
profile decreases to ∼ 10−3 µG at the outskirts of the cluster. Noticeable is
a spike in magnetic field at the outskirts of the FoF groups. Firstly, this is
an amplified effect of the fact that there are less particles at the outskirts so
jumps are more easily made, and second, this can be due to substructure
forming in some of the halos.

A closer look at the three most massive FoF halos in the simulation is
shown in figure 3.5. This figure shows projections of the clusters instead of
slices to better visualise all possible substructure of the cluster, instead of
only the substructure present in the slice plane. We can see that the mag-
netic field is very tangled and random in the cluster centres, as opposed
to what was seen in the empty region of the simulated box. There is vis-
ible substructure in the density plots, although the density peaks do not
correspond to clear peaks in the magnetic field projections. At this point,
I would also like to expand on an earlier statement made about the diver-
gence errors in the simulation. When looking at the projected error metric
R0 for the clusters, it can be seen that the error is low in the cluster centre,
but increases in the outskirts. This is due to resolution effects, more par-
ticles in the centre as opposed to in the outskirts. Therefore these errors
in low density regions are very hard to avoid and thus accepted for these
simulations.

This same adiabatic run was performed with artificial resistivity turned
on, aso-128-ad-ar. The slices can be seen in figure 3.6. Compared to the
simulation without artificial resistivity, the errors look much better. Mostly,
the errors are lower than 1%. However, the problems with the artificial re-
sistivity run, become clear from the correlation between the magnetic field
strength and the density, 3.7. The magnetic field is suppressed by an or-
der of magnitude in the high density regions. Because of this unphysical
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22 Cosmological Box Simulations

Figure 3.4: The stacked magnetic field profile of all FoF haloes in the aso-128-ad
simulation, at z = 0. The distances have been normalized by the virial radii. The
colour brightness represents the amount of particles in that regime, with brighter
colours meaning more particles. In white the percentiles of the distribution have
been plotted, the dashed line representing the 16th and 84th percentiles and the
solid line the 50th percentile. Only FoF halos with a virial radius R200 > 0.1 Mpc
have been taken into account.

22
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3.1 Simulations with Anti-Symmetric ∇ · B Operator 23

Figure 3.5: Projections of the three most massive FoF groups in the aso-128-ad
simulation sorted by mass from top to bottom, at redshift zero. From left to right,
the magnetic field strength with the vector field overlaid, the density, the veloc-
ity with the vector field overlaid, and the error metric R0. The colour scales are
the same for every FoF group for comparison’s sake. The dashed white circle
represents a circle with radius R200 around the centre of mass of the halo. The
illustrated region is 3R200 for all shown FoF halos. Note that for FoF halo 3, the
x coordinates extend to over 150 Mpc, the box size. This is because the halo is
positioned at the edge and the box is periodic, thus this is merely a mechanism to
plot the whole halo.
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behaviour, no further analysis is done on this simulation.

Figure 3.6: A redshift zero slice of the aso-128-ad-ar simulation. The quantities
plotted are the same as figure 3.1.

Figure 3.7: The correlation between the magnetic field and the gas density for the
aso-128-ad simulation at redshifts 2, 1, 0.5 and 0. The figure quantities and labels
are the same as figure 3.2.
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3.1 Simulations with Anti-Symmetric ∇ · B Operator 25

3.1.2 Radiative Cooling

The next step was adding a cooling model to the simulations, aso-128-ec.
We chose to use the EAGLE cooling model and entropy floor, which were
already implemented in SWIFT. (Schaye et al., 2015) The cooling rates are
based on the tables from Wiersma et al. (2009).3

The redshift zero slice of the cooling simulation can be seen in figure
3.8. What immediately stands out, is the fact that there is almost no struc-
ture in the magnetic field. Almost the whole box is magnetised, and the
magnetic field does not follow the density structure anymore. Also the
velocity field is extremely distorted. Also looking at the correlation be-
tween the magnetic field strength and the density, fig 3.9(a), we see that the
bulk of the particles reside in the low density, high magnetic field strength
regime. For some reason, the low density regions got extremely magne-
tised, up to values of 10−1 µG, which is highly unphysical. While for
higher densities, one might expect magnetic amplification beyond adia-
batic amplification due to shearing motions caused by the cooling, this ex-
tra amplification should not be present in the low density regions. (Dubois
and Teyssier, 2008)

Now the question is how the particles in low density regions end up
highly magnetised. There are two possibilities. One, that the particles
in low density regions for some reason ”see” or interact with particles
in high density regions, or two, that particles from high density regions
travel from high density regions to low density regions and magnetise the
low density region. Both answers would be wrong in a numerical or phys-
ical sense, and should be addressed. The first is wrong in the SPH sense
that the particles in low density regions, should not be able to have interac-
tions or neighbours in the high density regions, while the second is wrong
in the physical sense that particles from highly bound regions should not
be able to escape that easily. To answer what is happening, the particles
are tracked throughout the (B, ρ) diagram, see figure 3.9(b). This figure
(in comoving units) shows the mean flow of the particles in this diagram.
While there are certainly some particles that get magnetised without mov-
ing to higher density regions, there is a very clear flow of particles from
high density and high magnetic field strength regions towards low den-
sity and high magnetic field strength regions. This leads us to suspect the
latter of the two hypotheses is the one explaining our problem.

To confirm that there are particles leaving high density regions, we look

3For a more rigorous explanation on the implementation of this model in SWIFT, I re-
fer the reader to the SWIFT documentation https://swift.strw.leidenuniv.nl/docs/

SubgridModels/EAGLE/index.html#gas-cooling-wiersma-2009a
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Figure 3.8: A redshift zero slice of the aso-128-ad-ec simulation. The quantities
plotted are the same for figure 3.1.

(a) (b)

Figure 3.9: 3.9(a) The correlation between the magnetic field and the gas density
for the so-128-ec at redshift zero. The figure quantities and labels are the same
as figure 3.2. 3.9(b) The mean motion of the particles through the (B, ρ) space in
comoving units. The colouring represents the density of tracks
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3.1 Simulations with Anti-Symmetric ∇ · B Operator 27

into earlier snapshots to see if there are some clues as to what is happen-
ing. In figure 3.10 slices of the magnetic field, ratio of magnetic energy
to kinetic energy, ratio of magnetic field strength to the density and the
velocity are presented. There are multiple regions where all these quanti-
ties are high. We identify these regions as explosions that magnetise the
surrounding regions. Over time these explosions seem to fill the whole
box, leading to the image in figure 3.8. Looking at the particles involved
in the explosions, we see that there are quite some particles that get into
FoF groups and also very close to the centre (within 10−1 Mpc), get high
magnetic fields while in the FoF groups, and then leave the groups, while
keeping a highly amplified magnetic field. This further supports the hy-
pothesis that magnetisation is due to particles flowing from high to low
density regions, which in turn is caused by the observed explosions.

3.1.3 Solving Explosions

The question that in turn needs answering, is why these explosions hap-
pen and what there is to be done to prevent them. Something that SPH
generally struggles with, is accurately computing quantities, such as di-
vergences, along large density contrasts.4 Already in an adiabatic simu-
lation there will be large density contrasts between voids, filaments and
clusters, but these contrasts will be further amplified when cooling is im-
plemented. Therefore, we first tried adding EAGLE star formation to the
cooling model. The hope was that, by turning high density regions into
stars, the density contrasts would be less extreme and the SPH operators
would be functioning better. However this was not enough to prevent the
explosions.

Another attempt to solve the explosions was to turn on artificial re-
sistivity (aso-128-ec-ar), which could help by diffusing the magnetic field
from high density regions to prevent a high build-up of magnetic field. Re-
member, that when the magnetic pressure exceeds the thermal pressure,
there is tensile instability, which should be corrected by the Powell term in
the SPMHD equations, but could possibly not be enough. While adding
artificial resistivity had a large effect on the simulation, the resulting ve-
locity fields were very disturbed unrealistic.

When looking at the individual explosions over redshift (another sim-
ulation was done with the same configuration and parameters as aso-128-
ec, but with a lot more snapshots over time), one thing that was noticed
was that there seemed to be monopole forces acting, defined as forces in

4for an analysis on divergence estimation errors at density contrasts, see section 4.1
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28 Cosmological Box Simulations

Figure 3.10: Slices of the aso-128-ec simulation at redshift z = 4 at relative slice
heights of 0, 0.25, 0.5 and 0.75. The slices from left to right show the magnetic
field strength, the ratio of magnetic to kinetic energy, the ratio of the magnetic
field strength (in units of root-mean-square magnetic field strength) to the density
(in units of average density) to the power two-thirds, and the velocity in terms of
root-mean-square velocity. Note that the magnetic field is in comoving units. For
the selection of particles based on this quantity it does not matter whether it is
in physical or comoving units, since the selection threshold will just move along
with the conversion to physical units.
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3.1 Simulations with Anti-Symmetric ∇ · B Operator 29

the direction of B(∇ · B). This lead us to believe that the divergence of the
magnetic field was a key factor in the problem.

First we tried to tweak the Dedner parameters, to see if we could better
clean the divergence. We tried increasing the parabolic Dedner term, to
see if this worked in dampening the divergence better, but that did not
work. Another thought was to set the hyperbolic parameter to zero, so
that divergences were only dampened, but not pushed outwards to other
regions. However, the Dedner scalar field is sourced from the hyperbolic
part, so without that there is no Dedner scalar field.

Turning off monopole subtraction, eg. not correcting for monopole
terms in the equation of motion, seemed to solve the explosions. How-
ever this simulation is now wrong for another reason, namely that there
are unphysical forces at work, that are not corrected for. This gave rise to
the thought that maybe the Powell term is over-correcting the monopole
force. To test that hypothesis, we first had to make sure the divergences
we were computing were correct. An interesting result in these tests is de-
scribed in section 4.2. Then we went on to implement a monopole and see
if the monopole subtraction term correctly cancelled the monopole force.
This was the case, so it was not the monopole subtraction term that was
wrongly implemented.

The solution came from one of the PhD students in the MHD group,
Orestis Karapiperis. He was trying out the symmetric divergence oper-
ator against the anti-symmetric one at density gradients for non-trivially
divergence-free magnetic fields. He found that using the anti-symmetric
operator, resulted in estimates of the divergence that were closer to zero
than when using the symmetric operator. Now the operator that is used
in the Powell correction term is the symmetric operator, which stems from
the fact that the monopole term in the equation of motion is also sym-
metric. Now the anti-symmetric divergence operator is used to source
the Dedner field. His hypothesis was that the more conservative anti-
symmetric divergence operator, was not sourcing the Dedner field enough,
leading to under-cleaning of the magnetic divergences. When using a
more overestimating operator, the Dedner field would be sourced more,
and magnetic divergences could maybe be cleaned better. Trying this ver-
sion, did indeed prevent the explosions, which will be shown in the next
section
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3.2 Simulations with Symmetric ∇ · B Operator

In all simulations presented from this point onwards, the symmetric op-
erator for the magnetic divergence in the Dedner scalar field evolution
has been used (as opposed to the anti-symmetric operator), and the anti-
symmetric operator for the gradient of the Dedner scalar field in the in-
duction equation (as opposed to the symmetric operator). While the first
cosmological tests of this switch were done on the cosmological boxes with
cooling, the results presented will be in order of subgrid complexity, thus
starting off with the adiabatic runs, followed by the runs with cooling in-
cluded, and finishing with the run where stellar feedback is implemented
as well.

3.2.1 Adiabatic Simulation

For the adiabatic simulations, we have run with two different resolutions,
one run with 2 × 1283 particles, so-128-ad, and one with 2 × 2563 parti-
cles, so-256-ad. The same parameters have been used for these runs as
their anti-symmetric operator counterpart. In figure 3.11 a slice of both
simulations can be seen. For both runs, there is clear structure in the mag-
netic field, which follows the density structure, and the velocity field is
smooth. These quantities are not very different from the previous runs.
A large difference from the previous adiabatic simulations is observed in
the R0 slices. While a cautionary note has to be made, namely that these
error metrics are now also computed with another operator and they are
not one to one comparable, it does seem to be an improvement from the
previous runs, since the symmetric divergence operator was mainly over-
estimating the divergence but still gives lower error metrics. Comparing
the two resolutions, there is no big difference except that features in the
high-resolution run are a little sharper than for the lower-resolution run,
which is to be expected.

The correlation between magnetic field strength and density also be-
haves very nicely for both resolution runs, see figure 3.12. The 2563 reso-
lution run has a broader distribution in the diagram, but this is expected
for a run with more particles. The magnetic field strength distribution, see
figure 3.13 also behaves as expected for both runs, with the particles in FoF
groups reaching higher magnetic fields for lower redshifts, and the parti-
cles not in FoF groups extending to lower magnetic field strengths due to
the cosmic expansion.

In figure 3.14 the stacked magnetic field profiles in both simulations
are presented. The profiles are generally decreasing with distance to the
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Figure 3.11: Redshift zero slices of the adiabatic simulations using the symmetric
magnetic divergence operator. The quantities plotted are the same as figure 3.1.

centre, with a central magnetic field strength of ∼ 10−2 µG for both sim-
ulations, although the central magnetic field in the 2563 simulation is a
little higher. Comparing these profiles to the aso-128-ad simulation, there
is not a lot of difference. All profiles show some peaks, which could be
due to some substructure forming in the FoF halos. This substructure is
also visible in the redshift zero projections of the FoF halos, see figure 3.15.
In these projections we also see that the central magnetic field is slightly
higher for the higher resolution run. We also see more visible substructure
in these runs, which is expected from the higher resolution,. The higher
the resolution, the smaller the structure one is able to see.

3.2.2 Radiative Cooling

Next, both a 1283 and a 2563 resolution simulation was run, but now with
the EAGLE Cooling subgrid model implemented in the same way as for
the runs with the anti-symmetric operator, section 3.1.2. Redshift zero
slices of both simulations are presented in figure 3.16. We see, in contrast to
the similar simulations using the anti-symmetric divergence operator, that
the magnetic field now follows the density structure and a smooth veloc-
ity field. For the 2563 run, the structure features are sharper, as compared
to the 1283 simulation, but other than that no large differences. Looking
at the correlation between the magnetic field and the density in figure 3.17
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32 Cosmological Box Simulations

Figure 3.12: The correlation between the magnetic field and the gas density for
the so-128-ad and so-256-ad simulations at redshifts 2, 1, 0.5 and 0. The figure
quantities and labels are the same as figure 3.2.

the stability of using the symmetric divergence operator is shown again.
Generally the magnetic field follows the density, with some amplification
beyond adiabatic in the mid to high density regime. This amplification be-
yond adiabatic amplification is expected due to for example shear flows.
(Dubois and Teyssier, 2008) Notice also the very large densities reached
because of cooling. In runs with other physics implemented, these high
densities will not be reached since they would be star forming, and there
will be other processes that counteract the collapse into such large densi-
ties.

In figure 3.18, the distributions of the magnetic field are presented.
Compared to the adiabatic simulations the magnetic field strength has a
larger range, and especially the particles in an FoF group are amplified to
higher field values. Notice also how the shape of the distribution of par-
ticles in FoF has changed to a broader, multi-modal shape. This smearing
of the distribution of particles in FoF is also observed by Marinacci et al.
(2015). There is a noticeable difference in the shape of the particle distri-
butions in FoF between the two resolution runs. The high magnetic field
peak is larger for the high resolution run. However, we do not think this is
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Figure 3.13: The evolution of the magnetic field strength distribution for the so-
128-ad and so-256-ad simulations at redshifts 2, 1, 0.5 and 0. The figure quantities
and labels are the same as figure 3.3.

worrisome since the location of the peaks is roughly the same, and it could
then be an effect of the larger particle amount.

Figure 3.19 shows the stacked magnetic field profiles of the FoF ha-
los. Compared to the non-cooling runs, the profiles have a larger central
magnetic field, and a steeper decrease in magnetic field strength over dis-
tance. The central magnetic field strengths are higher than observed in
galaxy clusters, which is not surprising since only cooling has been in-
cluded here. Also, it is not clear if the magnetic field has saturated in the
centres of halos, or if a lower seed field, would result in lower central mag-
netic fields. Furthermore in real-life galaxy clusters, there are lots of other
processes besides cooling that happen at the extremely high densities that
are reached in these simulations, which can counteract the density ampli-
fication. A very distinct feature in these profiles are these vertical stripes.
These are due to the amplified structure collapse because of cooling. Look-
ing at the projections of the FoF halos in figure 3.20, there are distinct peaks
in the magnetic field corresponding to peaks in the density projections as
well. At first we worried that these peaks might be due to MHD clump-
ing. Looking at projections of a non-MHD run (the same as so-128-ec only
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Figure 3.14: The stacked magnetic field profile of all FoF haloes in the so-128-ad
and so-256-ad simulations, at z = 0. The plotted quantities are the same as in
figure 3.4.

without magnetic fields), the density peaks were also observed, thus dis-
crediting that worry.
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Figure 3.15: Projections of the two most massive FoF groups in the so-128-ad and
so-256-ad simulations, from top to bottom, alternating between so-128-ad and so-
256-ad, FoF 1 and FoF 2. The quantities plotted are the same as in figure 3.5.
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Figure 3.16: Redshift zero slices of the EAGLE cooling simulations using the sym-
metric magnetic divergence operator. The quantities plotted are the same as fig-
ure 3.1.

Figure 3.17: The correlation between the magnetic field and the gas density for
the so-128-ec and so-256-ec simulations at redshifts 2, 1, 0.5 and 0. The figure
quantities and labels are the same as figure 3.2
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Figure 3.18: The evolution of the magnetic field strength distribution for the so-
128-ec and so-256-ec simulations at redshifts 2, 1, 0.5 and 0. The figure quantities
and labels are the same as figure 3.3.

Figure 3.19: The stacked magnetic field profile of all FoF haloes in the so-128-ec
and so-256-ec simulations, at z = 0. The plotted quantities and thresholds are the
same as in figure 3.4.
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Figure 3.20: Projections of the two most massive FoF groups in the so-128-ec and
so-256-ec simulations, from top to bottom, alternating between so-128-ec and so-
256-ec, FoF 1 and FoF 2. The quantities plotted are the same as in figure 3.5.

3.2.3 Radiative Cooling and Stellar Feedback

Now that we have a stable simulation including cooling, a large ques-
tion was if adding another subgrid model would make for an unstable
simulation. To test that, we included the star formation and stellar feed-
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back model from Schaye et al. (2015), simulation so-128-ecsf.5 We adopt
a metallicity dependent density threshold for the star formation, and a
pressure law for the star formation rate. The stellar feedback model in-
cludes enrichment from AGB stars, SNIa and SNII, and includes energy
feedback form SNIa and SNII. The parameters were set to be the same as
for the EAGLE simulations. This is not optimal, since it is not tuned to our
resolution and particle masses. This means that these simulations would
probably not reproduce observed stellar relations well, such as the stellar
mass function. (Crain et al., 2015) However, for the purpose of this simu-
lation, namely finding out if the code is stable when this subgrid model is
implemented, that is of low priority. Especially since the stellar feedback
includes enrichment, which couples non-linearly with the cooling model,
the effect this model has on the simulation is non-trivial, and should be
tested with the MHD implementation.

Redshift zero slices of the simulation are presented in figure 3.21. The
magnetic field follows the density structure, and the velocity field is smooth.
Qualitatively, the slices are not much different from the simulation with-
out stellar feedback, also in the error metric. Where the difference from
the cooling simulations becomes clear is in the (B, ρ) correlation, see figure
3.22. The gas extends to much lower densities as opposed to the cooling-
only simulations, 10 cm−3 as opposed to 103 cm−3, which is a direct effect
of the star formation, which turns high density gas into stars. Also the
magnetic field now extends to a little lower values, which goes hand in
hand with lower gas densities. The range of magnetic fields presented,
also corresponds to earlier findings of Marinacci et al. (2015). The effect
of the star formation and feedback model can also be seen in figure 3.23.
In that figure we also see the absence of very high density particles in the
so-128-ecsf simulation, and see the effect that stellar heating has on star
forming regions. Looking at the distribution of the magnetic field, there
are almost no differences from the so-128-ec simulation. The difference
can be seen in the high-end tail of the FoF-particles, which extends to a
little lower values.

The stacked FoF profile is presented in figure 3.25. The vertical peaks
all over the profile that were seen for the cooling only simulations are
much less visible now. This is expected since the density peaks are con-
verted to star particles. The central magnetic field is about an order of
magnitude lower than for its cooling only counterpart, and is now more

5For a more rigorous explanation on the implementation of this
model in SWIFT, I refer the reader to the SWIFT documentation
https://swift.strw.leidenuniv.nl/docs/SubgridModels/EAGLE/index.html#star-
formation-schaye-2008-modified-for-eagle
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Figure 3.21: Redshift zero slices of the so-128-ecsf simulation. The quantities plot-
ted are the same as figure 3.1.

Figure 3.22: The correlation between the magnetic field and the gas density for
the so-128-ecsf simulation at redshifts 2, 1, 0.5 and 0. The figure quantities and
labels are the same as figure 3.2.

Figure 3.23: The (T, ρ) diagram of the so-128-ad, so-128-ec and so-128-ecsf simu-
lations. Also plotted are the entropy floors implemented. The ”SWIFT” entropy
floor is generally used in SWIFT. The ”Cool” and ”Jeans” entropy floor are floors
from the EAGLE entropy floor subgrid model.

40

Version of March 12, 2025– Created March 12, 2025 - 17:00



3.2 Simulations with Symmetric ∇ · B Operator 41

Figure 3.24: The evolution of the magnetic field strength distribution of the so-
128-ecsf simulation at redshifts 2, 1, 0.5 and 0. The figure quantities and labels are
the same as figure 3.3.

Figure 3.25: The stacked magnetic field profile of all FoF haloes in the so-128-ecsf
simulation, at z = 0. The plotted quantities and thresholds are the same as in
figure 3.4.
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in line with (but still on the high end of) observations of cluster centres.
The profile extends to lower values of ∼ 10−3 − 10−2 µG at the outskirts
of the halo, similar to its cooling only counterpart, and a little higher than
its adiabatic counterpart.

3.3 Faraday Rotation Measure maps

One tool researchers use to probe the magnetic field in galaxy clusters, is
looking at the polarization of radio sources in the background of clusters.
Due to the magnetic fields, the initial polarisation angle Ψi will be shifted
to the observed polarisation angle Ψo according to the relation

Ψo = Ψi + λ2RM (3.2)

where λ is the wavelength of the radio source, and RM is the faraday ro-
tation measure given by
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with ne the electron density, B∥ the line of sight magnetic field, and the in-
tegration goes over the line of sight.(Govoni and Feretti, 2004) Typically
the polarisation angle must be observed at a minimum of three wave-
lengths to lift the Ψo = Ψo ± nπ degeneracy and determine RM accurately.

We have constructed RM maps of the largest halo in the simulations
so-128-ad, so-128-ec and so-128-ecsf. Firstly we ran the VELOCIraptor6

structure finder on all three simulations to get more accurate estimates
of the cluster centres, than the robust centre of mass of spatially linked
particles that the FoF algorithm gives. (Elahi et al., 2019, 2011) The reason
for now using the VELOCIraptor algorithm is that the rotation measure
profiles, are very sensitive to the choice of cluster centre, and will not be
decreasing over distance if the centre is not at a potential minimum.

To create the RM maps, we take a region of R200, defined with the criti-
cal density, around the centre of the most massive halo. The electron den-
sity and the magnetic field (line of sight is taken to be in the ẑ-direction),
are projected onto a grid. The integration is performed as a summation in
the line-of-sight direction, resulting in the RM maps.

6Code is available at https://github.com/pelahi/VELOCIraptor-STF
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3.4 Varying Initial Magnetic Field 43

The naive assumption is made that ne = nH = ρ/mH. For diffuse
media, this assumption holds reasonably well, but for dense regions it
will not. This is because the gas will not be fully ionized or not ionized at
all, at very high densities. The electron densities could be computed after
completion of the simulations, using the cooling tables, however due to
time constraints this was not done.

The rotation measure maps and profiles are presented in figure 3.26.
The RM maps are tangled, as expected. We see the values of RM in-
crease with the inclusion of cooling, which leads to higher densities and
magnetic fields. The profile of the adiabatic halo has a central value of
|RM| ∼ 20 − 30 rad m−2. For the halos that include cooling, there was a
problem concerning spurious high values of |RM|. These are probably due
to the incorrect assumption of electron density, which especially breaks
down for high densities in the cluster centre. These spurious values also
show up in the average values in the profiles, which is why the median is
also included to take care of these spurious outliers. The spurious values
are lower when including stellar feedback, which can be explained by the
lower gas densities and thus lower discrepancy with the density assump-
tion. Looking at the median profiles of both the so-128-ec and so-128-ecsf
simulation, they have a central value of |RM| ∼ 103 rad m−2. The results
of the adiabatic cluster and the cooling clusters correspond with other sim-
ulations (Dubois and Teyssier, 2008) and roughly with observations, eg.
Guidetti et al. (2008); Govoni et al. (2017) for the adiabatic simulations,
and Taylor et al. (2002) for the cooling simulations. The cooling simula-
tions also correspond to the high-end RMs reported in Osinga et al. (2025)
The discrepancy between the different observations could be explained by
different processes, such as cooling flows, dominating the observed cluster
region. One note that also should be made when comparing our presented
RM maps to the literature, is that here the most massive halo has been pre-
sented with its associated high magnetic field. Thus some bias towards
higher RM values is expected. To thoroughly analyse the RM maps, one
should also look into the other halos in the simulation.

3.4 Varying Initial Magnetic Field

As a small preview into what studies are possible with the previously pre-
sented simulations, we have run a cooling simulation where we started
with a different magnetic field configuration. This time, instead of a Bel-
trami field, the particles get a constant magnetic field of B0 = B0x̂ with
B0 = 10−6 cµG.

Version of March 12, 2025– Created March 12, 2025 - 17:00

43



44 Cosmological Box Simulations

Figure 3.26: Faraday rotation maps (left) and profiles (right) of the most massive
halo in the (top to bottom) so-128-ad, so-128-ec and so-128-ecsf simulations. The
profiles are plotted as a function of projected distance from the center, for both
the mean and the median. The dashed circle represents the virial radius.
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3.4 Varying Initial Magnetic Field 45

Figure 3.27: Redshift zero slices of the so-128-ec-constB simulation. The quanti-
ties plotted are the same as figure 3.1.

The redshift zero slices are presented in figure 3.27. We see that in the
low density regions the initial magnetic field morphology is still present,
as expected. The question that then might be asked, is how much of the
initial field morphology is still present in different regions, such as clus-
ters, filaments and voids. Also the effect of the magnetic field on these
regions could be investigated. While this research will not go into more
depth on this subject, it is a very interesting and promising area of re-
search.
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Chapter 4
SPH Operator Tests

4.1 Density Contrasts

A common obstacle in SPH is density contrasts. In this section, the effect
of density contrasts on divergence operators will be tested. Two types of
density contrasts are constructed. The principle for both of them is a box
which is divided into two by different densities over the x direction. For
the first type, the constant smoothing length density contrast, the particle
masses on the right side are adjusted, and for the second type, the con-
stant mass density contrasts, the inter-particle distance on the right side
is adjusted. For both types, there will be a constant magnetic field, re-
sulting in a theoretically zero divergence. Then, the symmetric and the
anti-symmetric divergence operators will be tested at these density con-
trasts.

4.1.1 Varying particle mass

For the first type, we can estimate the resulting divergence at the boundary
when using the symmetric divergence operator. This operator is given by:

(∇ · B)i = −ρi ∑
j

mj

[
fijBi · ∇iWij

ρ2
i

+
f jiBj · ∇iWji

ρ2
j

]
(4.1)

For the test problem, Bi = Bj = B, hi = hj = h since the particles are
on a grid, and thus also fij = f ji = 1. Note this also means that ∇iWij =
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∇iWji. This gives:

(∇ · B)i = −ρiB · ∑
j

mj

[
1
ρ2

i
+

1
ρ2

j

]
∇iWij (4.2)

= −B
ρi

· ∑
j

mj

[
1 +

ρ2
i

ρ2
j

]
∇iWij (4.3)

At this point, let us look at a particle exactly at the boundary. The
neighbours can be divided into neighbours on the left side of the bound-
ary, jL, and neighbours on the right side of the boundary, jR. The density
at the boundary might be ill-defined, but it will be somewhere in between
the two densities, and for the derivation it does not matter what the den-
sity actually is. This results in the following equation:

(∇ · B)i = −B
ρi
·
(

∑
jL

mjL

[
1 +

ρ2
i

ρ2
jL

]
∇iWijL+

∑
jR

mjR

[
1 +

ρ2
i

ρ2
jR

]
∇iWijR

)
(4.4)

Now we make some simplifications. First of all, mjL = mL and mjR =
mR, following the setup. Second, we make the assumption that the that
the step in density at the boundary is direct, thus ρjL = ρL and ρjR = ρR.
This is not exactly true, since with SPH this region will be smoothened a
little bit. However, experiments have shown that this almost holds. The
last assumption, is that all neighbours can be divided into pairs for which
∇WijL = −∇WijR . This is valid because the particles are placed at a grid
and the kernel is anti-symmetric in r/h. With these three assumptions we
can modify the equations as follows:

(∇ · B)i = −B
ρi

· ∑
jL

(
mL

[
1 +

ρ2
i

ρ2
L

]
∇iWijL − mR

[
1 +

ρ2
i

ρ2
R

]
∇iWijL

)
(4.5)

= −B
ρi

(
mL

[
1 +

ρ2
i

ρ2
L

]
− mR

[
1 +

ρ2
i

ρ2
R

])
· ∑

jL

∇iWijL (4.6)

= −mL

ρi
B

(
1 − mR

mL
+

ρ2
i

ρ2
L

[
1 − mL

mR

])
· ∑

jL

∇iWijL (4.7)

This shows that the symmetric divergence operator is not necessarily
zero at the boundary for the grid based set-up. Note that it still reduces
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Figure 4.1: The divergence errors for a grid based density contrast. ρL denotes the
density on the left side of the box, ρR that on the right side. The left figure shows
the divergence error as a function of the density ratio, the right the contrast as a
function of the relative density difference. The dashed lines represent predictions
of the divergence error for different assumptions of ρi.

to zero when there is no density contrast, i.e. mL = mR, although for real
simulations it will be zero to machine precision and not exactly zero.

For the test, a box was set up, filled with 128 particles a side on a grid
and a constant magnetic field. The particles in the right half got a lower
mass, to create a density contrast. For the divergence error, the mean was
taken of the relative divergence error in a thin region around the density
jump. This was done for multiple density contrasts. The results can be
seen in figure 4.1. This shows that the error in the divergence estimate
can become non-negligible at low density contrasts, ie. when the density
difference is at the level of 1%. Note that when the density contrast is
removed (ie. ρL = ρR), the divergence error is zero to machine precision.

When comparing the results against the derived expected divergence,
there is the complication that the density at the boundary is ill-defined.
Therefore, we compare it against several assumptions of the density at
the boundary: ρi = γρi (with the special case of γ = 1 separate, ρi =
(ρL + ρR)/2, ρi = ρL and ρi = ρR. We see that a reasonable fit is when
ρi = γρi with γ ≈ 0.24, which mostly underestimates the small bump in
the divergence error at high contrasts.
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50 SPH Operator Tests

Figure 4.2: The divergence errors for a varying inter-particle distance based den-
sity contrast. ρL denotes the density on the left side of the box, ρR that on the right
side. The left figure shows the divergence error as a function of the density ratio,
the right figure the contrast as a function of the relative density difference.

4.1.2 Varying inter-particle separation

When constructing density contrasts with a varying inter-particle separa-
tion, a semi-analytical derivation of the divergence error such as above is
much harder, because the f-factors will be non-trivial and the neighbours
can not be divided such that they have kernel gradients of equal magni-
tude, but opposite signs.

The box is set up similar to the test with varying masses, only now NL
particles are placed on the left side of the box, and NR ̸= NL particles on
the right. All particles have the same mass.

In figure 4.2 the divergence error for this set-up is presented. Note that
a lot of particles are needed for low density contrasts, and thus the relative
contrasts extend less towards lower values than for the previous test. Also
here we see that divergence errors pop up for small density contrasts. The
errors seem roughly the same, although varying the particle separation
seems to saturate at higher contrasts. This saturation is likely due to the
fact that the particles at the boundary, will only ”see” particles on the left
side, and that configuration will not change when removing particles from
the right side. Thus the errors should stabilise at high contrasts. Also
note, as a consistency check, that the divergence error disappears when
the density contrast is removed.
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4.2 Operator Inaccuracies 51

4.2 Operator Inaccuracies

At one point, the question arose whether the monopole correction term
was behaving as it should, or whether it was overcompensating and thus
causing explosions. To investigate that, the first question one should ask is
if the operators are giving the correct divergence. A small box was set up,
filled with particles on a grid with a fiducial magnetic field with a known
divergence. The set up used an electric-field-like monopole which was
constructed as follows:

B = Bm + Bb (4.8)

Bm =

{
Bm

[( rs
r
)2 − 1

]
r̂ if r ≤ rs

0 if r > rs
(4.9)

Bb = Bbẑ (4.10)

where B, Bm and Bb are the total, monopole and background magnetic
fields respectively. r is the distance of the particle to the centre of the
monopole, and rs is the monopole size, i.e. where the monopole field is
used. This was implemented to have a region where there should be di-
vergence and a region where the field should be divergence-less. The 1/r2

dependence was chosen to resemble an electric field monopole, while the
−1 term in the monopole field was used to force a continuous (not differ-
entiable at the boundary) magnetic field. Do note, that this is a very large
monopole and a monopole like this should not occur in normal simula-
tions, but for testing the operators themselves it is not of importance.

The divergence of this field can be analytically derived (except at the
boundary where the derivative is not continuous) and is given by:

∇ · B = ∇ · Bm (4.11)

=
1
r2

∂(r2Bm,r)

∂r
(4.12)

=

{
−Bm

2
r if r < rs

0 if r > rs
(4.13)

The resulting fields are presented for both the anti-symmetric and the
symmetric operator in figure 4.3. There is a clear region in the centre of the
monopole where SWIFT has computed a wrong divergence.

Version of March 12, 2025– Created March 12, 2025 - 17:00

51



52 SPH Operator Tests

(a) anti-symmetric ∇ · B operator (b) symmetric ∇ · B operator

Figure 4.3: The monopole field as computed by SWIFT for both the anti-
symmetric (left) and the symmetric(right) divergence operator. For both figures
the theoretical (left) and the SWIFT (right) fields have been plotted. The dashed
circle in the SWIFT divergence field represents a circle with a radius of the com-
pact support radius H around the monopole centre.

4.2.1 Explanation SPH divergence operator erros

The question now is whether this is a bug in the code or if this is an effect
of SPH operators. To answer that question, take a spherically symmetric
vector field A that has a monotonically non-increasing magnitude over
r. Examples are the monopole field from the section above, the electric
monopole field E ∝ (1/r2)r̂, or a field A = (1− (r/rs))r̂ with r < rs. Then,
take the line y = z = 0 and look at the x-component of the field. Because
of spherical symmetry it doesn’t matter which line through the origin is
taken. In the following derivation we will assume that A > 0 for x > 0,
but if the sign is reversed, the same will hold, the divergence error will
also just switch sign.

The kernel can be chosen but their general properties are the same. The
kernel gradient is evaluated as

∇iWij =
xi − xj

|xi − xj|
∂r,iWij (4.14)

Now the exact values of the kernel gradients are not important for this
derivation, but the sign of it is. Since ∂rWij ≤ 0, sgn(∇iWij) = −sgn(xi −
xj). Or in our simplified case, sgn(∇iWij) = −sgn(xi − xj).
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Anti-Symmetric Operator

Let us first look at the Anti-Symmetric divergence operator:

(∇ · A)i = −
fij

ρi
∑

j
mj(Ai − Aj) · ∇iWij (4.15)

In the rest of the derivation, the notation (∇ · A)ij will be used to denote
the contributions of neighbour j to the divergence at particle i.

Now take particle a at x = xa > 0 such that it has neighbours j at
positions xj > 0 ∀ j. Consequently Aa > 0 and Aj > 0. The neighbours
can be divided into two groups: xj1 < xa and xj2 > xa.

• xj1 < xa:
Aj1 > Aa and sgn(∇aWaj1) = −sgn(xi − xj1) = −1
Thus (∇ · A)aj1 < 0

• xj2 > xa:
Aj2 < Aa and sgn(∇aWaj2) = −sgn(xi − xj2) = +1
Thus (∇ · A)aj2 < 0

Since all the contributions of the neighbours are negative, the resulting
divergence (∇ · A)i < 0 as expected.

Next, take particle b at x = xb > 0, such that it has neighbours j for
which xj < 0. Its neighbours can be divided into three groups: the two
groups described above (xj1 < xb for xj1 > 0 and xj2 > xb for xj2 > 0) and
a third group xj3 < xb for xj3 < 0. For the third group:

• xj3 < 0 < xb:
Aj3 < 0 such that sgn(Ai − Aj3) = +1
sgn(∇aWaj3) = −sgn(xi − xj3) = −1
Thus (∇ · A)bj3 > 0

Since this contribution is positive, this could lead to the total sum over the
neighbours to end up positive, in contrast to the theoretical divergence.

Symmetric Operator

Let us now look at the symmetric divergence operator, and make the sim-
plification that there are no large gradients in the smoothing lengths and
density. Then fij ∼ 1, ρi ∼ ρj ∼ ρ, ∇iWij = ∇iWji and the operator is
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given by:

(∇ · A)i = −ρi ∑
j

mj

[
fijAi · ∇iWij

ρ2
i

+
f jiAj · ∇iWji

ρ2
j

]
(4.16)

≈ −1
ρ ∑

j
mj
[
Ai + Aj

]
· ∇iWij (4.17)

We will take the same approach as for the anti-symmetric operator, so let
us start by taking a particle a at x = xa > 0 such that it has neighbours j
at positions xj > 0 ∀ j. Consequently Aa > 0 and Aj > 0. The neighbours
can be divided into two groups: xj1 < xa and xj2 > xa.

• xj1 < xa:
sgn(∇aWaj1) = sgn(∇aWj1a) = −sgn(xi − xj1) = −1
Thus (∇ · A)aj1 < 0

• xj2 > xa:
sgn(∇aWaj2) = sgn(∇aWj2a) = −sgn(xi − xj2) = +1
Thus (∇ · A)aj2 > 0

Now it is not immediately obvious that the result will be negative, but
given that the field values for the first group are larger than for the second,
Ai + Aj1 > Ai + Aj2 , the negative contributions will be larger than the
positive ones and the divergence will result in a negative number.

Next, take particle b at x = xb > 0, such that it has neighbours j for
which xj < 0. Its neighbours can be divided into four groups: the two
groups described above (xj1 < xb for xj1 > 0 and xj2 > xb for xj2 > 0),
a third group xj3 < 0 < xb and |xj3 | < xb and a fourth group xj4 < 0 <
xb and |xj4 | > xb. For the last two groups:

• xj3 < 0 < xb and |xj3 | < xb:
|Aj3 | < 0 and |Aj3 | > Ab, therefore Ai + Aj3 < 0
sgn(∇aWaj) = −sgn(xi − xj) = −1
Thus (∇ · A)bj3 > 0

• xj4 < 0 < xb and |xj4 | > xb:
|Aj4 | < 0 and |Aj4 | < Ab, therefore Ai + Aj4 > 0
sgn(∇aWaj) = −sgn(xi − xj) = −1
Thus (∇ · A)bj4 < 0

There is now an extra group of neighbours having positive contribu-
tions towards the total divergence. Since these neighbours would have
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been in group j1 for particle a (having negative contributions), the positive
contributions can now outweigh the negative contributions. There is an
extra group j4 also having negative contributions, but since |Aj4 | < |Aj3 |
these might not be enough.

Region of Error

The region where this divergence could be positive, is the region where a
particle ’sees’ neighbours at the opposite side of the monopole. In other
words the distance of the particle to the monopole centre, should be smaller
than the compact support radius H = γKh. The region where this holds is
indicated in the figure 4.3 and it corresponds approximately to the region
where the divergence is positive.

Remarks

This whole derivation was simplified by only looking at the x component
of the divergence. However, the derivation is exactly the same for the y,
and z components. And is therefore sufficient to conclude that there are
positive contributions in the sum over neighbours that could ’erase’ the
correct negative contributions, leading to an incorrect positive divergence.

Also note that, while this derivation came from observations of errors
in the magnetic field divergence, it holds for general fields with the con-
ditions described above. This derivation should be seen more as a general
explanation of why SPH divergences can be expected to diverge from the
actual divergence.

While this derivation only shows, that the symmetric and anti-symmetric
divergence operators could be wrong for these fields, it does not touch on
the questions under what conditions they do so. That would require a
more in depth analysis of the operators, including possibly particle ar-
rangements, actual values of the kernel gradients and the vector field it-
self.

Lastly, it is up the the user of the operators to determine whether errors
in the divergence estimate will lead to problems in their simulations or
errors in their interpretations of them. The monopole from the example is
unlikely to happen in real MHD simulations, however for other quantities
they could be possible when including source terms of that quantity.
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Chapter 5
Discussion

As we have seen in chapter 3, we have constructed a set of stable cos-
mological SPMHD simulations including subgrid models. With the inclu-
sion of subgrid models, the SWIFT MHD branch is a first of a kind. All
current SPMHD simulations have only included adiabatic physics. The
mass resolutions of the simulations correspond to the low (our 1283) and
the intermediate (our 2563) resolution FLAMINGO runs, but note that
FLAMINGO’s box size is much larger. (Schaye et al., 2023) Our 2563 runs
compare to the 256-runs of Marinacci et al. (2015) in terms of mass resolu-
tion, and our box sizes are comparable.

Next steps would be refining the stellar feedback model and including
the last major subgrid model, black holes and AGN feedback. Also a res-
olution study could be done to see if we are resolving essential processes
well.

One of the main problems that need addressing, is the instability when
introducing resistivity, both physical and artificial. When introduced, they
both caused large distortions of the velocity field and the (B, ρ) space.
Nonetheless, these ”ideal” MHD simulations are a good benchmark. Note
that numerical simulations are seldom truly ideal, but always suffer from
numerical diffusion due to the discretisation of your volume.

Another question is how the magnetic fields of gas particles should be
treated when they are turned into stars, and the same will go when includ-
ing black holes. The current implementation removes the gas particle and
its magnetic field. This leads to a divergence, which is small enough to
be cleaned by the Dedner cleaning. The reason it is done like this, is that
it is not certain what exactly happens to the magnetic field when a star is
formed and how it evolves after formation. However, it does not simply
disappear. Thus it is certainly worth a thought how magnetic fields can be
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incorporated into stars and black holes.
Even without the inclusion of resistivity, there is a large amount of

questions that can be investigated. A set of possible correlations is pre-
sented in Marinacci et al. (2015), such as a relation between magnetic field
and central temperature, or the relation between central magnetic field
and halo mass. Also the effect of the subgrid models on the different re-
gions (clusters, filaments, voids) could be investigated. We have also very
briefly discussed the effects of changing the initial magnetic field, but that
investigation can be expanded by for example examining the effect on
different regions of the universe, or investigating the resulting magnetic
power spectrum for different initial conditions.

Investigating the evolution of the magnetic field in voids of the uni-
verse would also be very interesting. Since the magnetic field there is be-
low the current observation limit, the SWIFT code could provide meaning-
ful predictions. One could investigate the magnetisation due to outflows
or jets from high density regions and the effect different seeding mecha-
nisms would have on the magnetic field. One note should be made that
for a correct formulation of jets, resistivity should be included, which is as
of now not stable.

We have briefly touched on the construction of simulated RM maps.
Besides the already mentioned shortcomings of the assumed electron den-
sity and low amount of cluster samples, the study can also be extended
to a deeper analysis of the RM distribution, its scatter profiles and overall
deeper analysis of the profile shapes.

58

Version of March 12, 2025– Created March 12, 2025 - 17:00



Chapter 6
Conclusion

In this research we have set up various cosmological box simulations us-
ing the MHD branch of the SWIFT SPH solver. We have varied subgrid
models and operators for these simulations and studied the properties of
the structure within. The presented simulations will be made publicly
available. Our main results are as follows.

1. We have observed that using an anti-symmetric operator for the mag-
netic field divergence in the Dedner scalar field evolution leads to
explosions in the simulations that include cooling, probably due to
the high density contrasts caused by this process.

2. Using the symmetric operator however resulted in a set of stable cos-
mological SPMHD simulations, with only adiabatic physics, includ-
ing cooling, or including cooling and stellar feedback. They were not
stable when any kind of resistivity, was included.

3. The adiabatic simulations followed the theoretical adiabatic ampli-
fication relation nicely. The cooling and cooling+stellar feedback
showed amplification to magnetic field values beyond adiabatic,
∼ 103 µG and ∼ 102 µG respectively.

4. While the two simulations including cooling extended to higher than
observed magnetic fields, the one also including stellar feedback roughly
corresponds to earlier simulations.

5. We have investigated the magnetic field profiles of the FoF groups
and observed the formation of substructure in the halo profiles in
the cooling simulation. We have observed central magnetic fields of
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∼ 10−2 µG, ∼ 102 µG and ∼ 10 µG for the adiabatic, cooling only
and cooling+stellar feedback simulations respectively.

6. We have constructed simulated RM maps of the largest halo in the
adiabatic, cooling, and cooling+stellar feedback simulations. While
naively constructed, they roughly correspond to the literature, with
|RM| reaching values of ∼ 10 rad m−2 for the adiabatic simulation
and ∼ 103 rad m−2 for the cooling and cooling+stellar feedback sim-
ulations.

7. We have touched upon the possibilities of investigating effects of dif-
ferent initial magnetic field configurations.

8. We have discussed the shortcomings of SPH at density contrasts, and
for large monopoles.
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ical evolution of magnetic fields in the intracluster medium. MNRAS,
486(1):623–638, June 2019. doi: 10.1093/mnras/stz877.
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