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Abstract

We present a formalism to calculate matter induced damping of the
quasi-normal modes of perturbed Schwarzschild spacetime. Potential
damping effects might be relevant for high precision models and data

analysis of a black hole ringdown gravitational wave signal. In our

model the surrounding matter is assumed to be relevant only at the
perturbative level. We employ a kinetic approach and consider an initial
distribution of massive particles on circular geodesics. Via the Boltzmann
equation we derive the perturbed distribution function and
energy-momentum tensor, including collisions in the collision time
approximation. A new wave equation, which is especially useful for
circular orbits, is derived for odd (axial) perturbations. Numerically
solving for the quasi-normal mode frequencies is left for future work.



Contents

1 Introduction . . . .. ... ... ... ... ...
1.1 Gravitational wave damping by matter . . . ... ... ...

1.2 Black hole spacetime perturbations: quasi-normal modes . .
1.2.1 Environmental effects . ... .. .. ... .......

2 Quasi-normal modes in dirty Schwarzschild . . . . .. ... ...
2.1 Formalism and model assumptions . . . . . ... ... ....
2.1.1 Comparison with the literature . . . . ... ... ...

2.2 Circular Schwarzschild geodesics . . . . .. ... ... ....
2.3 Energy-momentum tensor perturbation . . ... ... .. ..
2.3.1 Perturbed Boltzmann equation . . . ... ... .. ..

23.2 Do even and odd perturbations mix? . .. ... ...

2.4 Odd parity perturbations . . . . . ... ... ... ... ..
2.5 Discussionand prospects . . .. ... ... ... ... .. ..

3 Conclusion. . . . . . . . .
3.1 Acknowledgements . . . . ... ... ... ... 0L

References . . . . . . . . . . . . . ...
A Derivation solution perturbed Boltzmann equation . ... . ..

B Paritycheck . . ... ... ... ... . ... o L

Version of August 4, 2023— Created August 4, 2023 - 16:35



Chapter

Introduction

The last decades have witnessed spectacular progress in the theory and
detection methods of gravitational waves (GWs).” Worldwide effort has
culminated in the first ever observed GW event by the LIGO collaboration
in 2015 [1]. This momentous milestone and subsequent observations of
other GW events with LIGO and VIRGO are far from the final destination
of GW physics. Rather, they have become an impetus for further improve-
ment of the GW detector sensitivity [2, 3], and modelling the generation
and waveforms of GWs.

Predicting the GW waveform generated by a specific event, e.g. a bi-
nary black hole merger, is essential for the detection of GWs. In interfer-
ometers a typical GW signal is buried under noise orders of magnitudes
larger than the signal itself [4]. The signal can still be extracted, however,
with a matched filtering technique. This technique consists of searching
for a match between the interferometer data and GW waveform templates.
Hence accurate GW waveform predictions are essential for GW detection.

Accurate GW waveform predictions are also crucial to maximize the
scientific knowledge that can be extracted from an observed GW signal.
For instance, parameters such as the black hole (BH) masses, final BH
spin and luminosity distance to a GW event can be inferred by fitting a
waveform to the GW signal of inspiralling and merging binary BHs [5]
(which together with compact neutron star (NS) binaries are the most com-
mon GW sources). For binary BHs with similar masses the leading-order
quadropole moment generally is sufficient to accurately reconstruct these
quantities, but for highly unequal component masses the parameter esti-
mation is biased when only using the leading-order contribution [6]. Be-
yond leading-order waveforms and observations are not only necessary

*For a very brief overview of the history of GW physics, see the introduction of [1].
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6 Introduction

for accurate parameter estimation, but also for tests of general relativity
(GR) in the strong field regime relying on compact merger events [7].

The scientific value of observing higher modes and prospects of im-
proving and new GW detectors™ have stimulated both the modelling of
higher modes and the development of data analysis techniques that can
extract them. It has been proposed that no-hair properties of vacuum BHs
(i.e. all Kerr-type BHs are uniquely described by their spin and mass) can
be tested with coherent stacking, or beyond GR ringdown parametriza-
tions, of multiple GW events to extract overtones and higher modes [9, 10].
Tests of GR can also be performed by identifying overtones in individual
GW events [11-13]. A recently proposed method is to use rational filters
that clean out specific modes from the time domain signal [14]. Appli-
cation to the first GW150914 event has revealed the first overtone [15].
Other studies that model and reanalyze several GW events have shown
that subdominant higher multipoles and precession effects are observable
[6, 16-19]. It is therefore justified to claim that GW physics is entering the
stage at which spectroscopy of BHs becomes possible [13, 20, 21].

There might be a caveat, however. As pointed out by Barausse et al.
in 2014, until then almost all GW waveform models developed for binary
mergers assume an isolated environment, i.e. no matter near the sources
[22]. However, it is well known that in reality BHs are surrounded by ac-
cretion disks and NSs by magnetospheres filled with plasma. To ascertain
whether surrounding matter jeopardizes the accurate modelling of GW
waveforms and the claimed detection of higher multipoles, overtones, etc.
the effect of matter must be quantitatively estimated. The conclusion of
[22] is that precision GW astrophysics typically is not impaired by envi-
ronments such as accretion disks, electromagnetic fields, charges, etc.

The work of [22] and most subsequent related studies (see Sec. 1.2.1
for a discussion) do not incorporate, however, the effect that a matter dis-
tribution perturbed by the passing GWs has on the propagation of the
GWs. This matter backreaction effect! has been shown to cause consider-
able damping of cosmological GWs by neutrinos after decoupling [23]. In
a study by Baym et al. this work on GW damping by matter is extended

In 2019 Baibhav and Berti claim that future space-based interferometer "LISA could
detect so many modes that current numerical relativity simulations do not have enough resolution
(or do not contain enough higher harmonics) to extract all available science from the data.” [8].

fThe term ’backreaction’ in this context indicates the effect of the GW induced per-
turbed matter distribution on the passing GWs, i.e. the coupling of GWs to the per-
turbed matter energy-momentum tensor via the Einstein equations. Here we do not
mean the self-interaction effects of GWs coupling to their own contribution to the energy-
momentum tensor, which is a second order effect (see e.g. Ch. 2 in [4]).

6
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1.1 Gravitational wave damping by matter 7

by adding collisional effects, both in flat space and a cosmological back-
ground [24]. To the best of our knowledge, in the astrophysical context of
a BH the matter backreaction effect has only been (implicitly) taken into
account in [22, 25-27] for specific matter distributions and mainly in the
fluid approximation (further discussion below).

It is the aim of this research to calculate the matter induced damping
of GWs generated near a BH. By means of a relatively simple toy model
calculation we intend to estimate whether GW damping by matter has a
significant effect on these GWs, and therefore if it must be included in
the data analysis of GW events. We will restrict ourselves to GWs from
a single BH. For GWs from a binary merger this means we only consider
GWs from the final merger product in the so-called ringdown phase.

Before proceeding with a calculation in Chapter 2 we must first in-
troduce matter damping of GWs and gravitational perturbations in BH
spacetimes a little further. This we do in the next two sections, where we
also summarize previous and related work on these topics. Unless speci-
fied, all quantities are in G = ¢ = 1 units.

1.1 Gravitational wave damping by matter

The subject of damping of BH ringdown GWs by surrounding matter is
inspired by the works of Weinberg [23] and Baym et al. [24]. These works
consider the damping of GWs by matter in a Minkowski and cosmological
background. We briefly summarize their approach and results.

Weinberg considers the matter backreaction of free streaming neutrinos
on cosmological GWs originating from inflation, which up to his work
has been largely neglected [23]. The evolution equation for cosmological
tensor modes h;;, given by

: 2
]’li]' + 3%]’11] — Z—zhl] = 167TG7T1']' ,

where a the scale factor, indicates that any anisotropic part of the stress
tensor, denoted by 71;;, affects the GW evolution. To zeroth order 7r;; = 0
by assumption of spatial homogeneity and isotropy. A perfect fluid also
has 71;; = 0. Freely streaming neutrinos (being the dominant contribution
to the matter budget at the relevant cosmological times) can, however, de-
velop anisotropic stresses through GW induced perturbations. Weinberg
computes the anisotropic stress perturbation through an explicit compu-
tation of the perturbed phase space density of neutrinos. Hence a kinetic

approach in terms of phase space densities is used, which is more general

7
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8 Introduction

than a macroscale fluid description. To zeroth order the neutrinos are in
thermal equilibrium at a cosmologically redshifting temperature. The first
order perturbation to the phase space density is determined by solving the
perturbed Boltzmann equation for the first order perturbation to the dis-
tribution function. The resulting anisotropic stress perturbation 7;; leads
to an integro-differential equation for the propagating GW h;;, which is
solved numerically. The squared amplitude of %;; is reduced by 35.6% for
wavelengths entering the horizon during radiation domination. At later
horizon entry times the effect is smaller, with a ~ 10% reduction for the
largest wavelengths.

Baym et al. have extended the calculation by Weinberg in several re-
spects [24]. They include collisions through a collision term (in the colli-
sion time approximation) in the perturbed Boltzmann equation. Besides,
the GW damping by matter is also considered in a flat background. In
both the flat and expanding cosmological background the calculation is
for both massive and massless particles, in contrast to Weinberg who re-
garded neutrinos as massless. Baym et al. use a kinetic approach because
it includes both the hydrodynamic and nearly collisionless limit. To zeroth
order in both backgrounds the matter is taken to be in thermal equilibrium.

The results lead to the identification of two damping mechanisms: damp-
ing through collisions and Landau damping [24]. The result of Weinberg,
not considering collisions, is interpreted as Landau damping. Landau
damping can occur in a cosmological background where the energy trans-
fer between the GW and matter, propagating at slightly different veloc-
ities, does not completely cancel out because of the expansion. The ex-
pansion in the presence of matter effectively spreads the frequencies of a
GW wavepacket. Collisions might inhibit the Landau damping effect and
suppress the amplitude reduction computed by Weinberg.

In flat space Landau damping is impossible [24]. Collisional effects
in the intergalactic and interstellar medium only significantly damp GWs
for frequencies w < 1/7y ~ 10718 571, where 71 the age of the Universe.
These frequencies are extremely small, and such GWs are not generated by
astrophysical processes. Using the flat space result for GW damping, the
maximum collisional damping in dense astrophysical environments, e.g.
near BHs, is estimated. Collisional damping is maximum when wt ~ 1,
where 7 the collision time. Although realistically wt < 1, even when
assuming wT ~ 1 an unrealistic amount of mildly non-relativistic matter
is required for significant damping. For the unrealistic scenario of wt ~ 1
and extremely relativistic matter the damping might be significant.

Moving beyond the estimates of [24] of damping in dense astrophysi-
cal environments, it is natural to ask whether a more realistic spacetime,

8
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1.2 Black hole spacetime perturbations: quasi-normal modes 9

such as Schwarzschild, allows for Landau damping and whether the effect
is significant. In that case the unfeasible condition wt ~ 1 for the above
estimates could be circumvented. If such Landau damping is possible, we
can use an analogy based hypothesis to estimate that damping might be
significant in Schwarzschild spacetime. Recall that for flat space damping
is significant when w ~ 1/1y ~ H = i/a where H the Hubble constant
(Eq. 42 in [24]). In a homogeneous, isotropic spacetime filled with mat-
ter the intrinsic curvature decoded by the Riemann tensor is O(H?). In
Schwarzschild spacetime the Riemann tensor is O(M/r®). We then hy-
pothesize that by analogy we get w ~ +M/r3 ~ 1/M near the central
source, e.g. a BH. Since GWs from BHs have frequency w = O(M™1), as
discussed in the next section, this is a hint that damping might be signifi-
cant. This motivates our study of damping of GWs from BHs by matter.

1.2 Black hole spacetime perturbations: quasi-
normal modes

Metric perturbations of BH spacetimes (Schwarzschild, Reissner-Nordstrom,
Kerr, depending on whether the BH has spin and/or charge) have been
studied extensively since the seminal work on gravitational perturbations
of Schwarzschild spacetime by Regge and Wheeler in 1957 [28]. They, and
subsequently all other work in this area, exploited the spherical symme-
try of the spacetime to separate the radial from the angular coordinates
and write the perturbation %, as a sum of radial functions multiplied by
spherical harmonics. For each angular quantum number /, m the pertur-
bation hf]}} is further decomposed as the sum of an even (polar) and odd
(axial) component under the spatial parity operation. By defining a clever
combination of the components of hfﬂ] into a master function ¥(© they
rewrote the linearized Einstein equations into a single, Schrodinger-type
wave equation for odd modes in vacuum, of the form

02 0
—ﬂw(o) + ﬁ‘y@ + V%@ =9, (1.1)

where r, the radial (tortoise) coordinate and VZ(O) the potential of odd
perturbations, depending on the radial coordinate and multipole number
0. Zerilli has derived a very similar wave equation for even perturba-

tions, i.e. for ¥© and Vg(e) [29]. In later work BH perturbation theory has

9
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10 Introduction

been extended in multiple directionsS: Kerr spacetimes were also studied
[31, 32], the formalism was made gauge invariant and coordinate indepen-
dent [33, 34], and matter sources were included (leading to Eq. (1.1) with
a source term S© resp. 5 term on the right side) [34, 35].

From the study of numerical and approximate solutions to Eq. (1.1),
and similar evolution equations for other BH spacetimes, it was realized
that perturbations of both non-spinning and spinning BHs are stable, im-
plying that they always decay [36-38]. For this reason they are called quasi-
normal modes (QNMSs) [39]. Quasi-normality implies that the frequencies of
the solutions have both a real part and imaginary part, leading to oscilla-
tion resp. decay. In essence the quasi-normality of BH spacetimes reflects
the breaking of time symmetry by the event horizon [30].

All radiative perturbation modes (¢ > 2) are radiated away as GWs
[40, 41]. The leading interpretation is that the GW perturbations are on
spiral orbits close to the unstable circular orbit (light ring) at » = 3M
(Schwarzschild), and slowly leak out to infinity as observable GW radi-
ation [42, 43]. The GW perturbations are excited when particles cross the
maximum of the potential V;, which is close to the light ring [30, 44].

To find the frequencies of QNMs, and hence of the radiated GWs, Eq.
(1.1) must be solved. In Fourier-space Eq. (1.1) becomes an ordinary dif-
ferential equation. Physical solutions must have only ingoing waves at
the event horizon and only outgoing waves at infinity. Upon imposing
these boundary conditions, the solutions allow for a discrete infinity of
QNM frequencies [30]. In Schwarzschild spacetime these QNM frequen-
cies only depend on the BH mass M, wonm o M1 [45]. This fact is quite
remarkable, implying that irrespective of the source of the perturbation
the QNM spectrum is the same. In vacuum odd and even Schwarzschild
QNMs have the same frequencies, i.e. are isospectral [30]. The lowest
Schwarzschild QNM modes for ¢ = 2,3 can be found in Figure 2 in [46].
Kerr QNMs are more involved, as they dependent on the value of the BH
spin parameter. Extremal Kerr QNM frequencies are computed in [47].

1.2.1 Environmental effects

Although the theory and computation of Schwarzschild QNM frequencies
in vacuum is firmly established, the effect of matter on QNMs is less well
studied. The 2014 study by Barausse et al. mentions that most studies
until that moment have considered compact objects in isolation [22]. As

SIn the introduction of [30] a timeline of important milestones in the study of quasi-
normal modes is given.

10
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1.2 Black hole spacetime perturbations: quasi-normal modes 11

mentioned above, they conclude that for a broad class of scenarios envi-
ronmental effects are not significant. In the wake of their lengthy study
others have also studied the effects of astrophysical environments of com-
pact binaries on GW generation and propagation. Below we summarize
the findings of [22] and subsequent work. Many nonvacuum QNM stud-
ies focus on the observational imprint and detectability of the environment
of compact binaries, and much attention is given to the inspiral phase.
With regards to the aims of this project, however, we limit ourselves to
effects during the ringdown phase of a single BH.T At the end we briefly
point to some findings for the inspiral phase.

Barausse et al. deploy a number of toy models to study environmental
effects on ringdown QNM frequencies. Three simple yet insightful math-
ematical models considered are [22, p. 11-21]:

1. A wave equation of the form of Eq. (1.1) with a potential consisting
of two rectangular or delta function barriers. The two barriers repre-
sent the maximum of the vacuum odd/even potential (near r = 3M)
and the presence of composite matter at a larger distance. For these
potentials the wave equation can be solved analytically in a similar
fashion as potential barrier problems in quantum mechanics.

2. A wave equation of the form of Eq. (1.1) for the exact metric solution
to the Einstein equations for a nonrotating BH and a discontinuous
thin shell of matter. The metric only depend on the radial coordinate,
and outside the shell is simply given by the Schwarzschild solution
with Mgy — Mpyg + Mghen-

3. A scalar'' wave equation derived from an approximate solution for
the metric in the presence of an extended mass distribution in the
fluid approximation.

IWe remark in passing that the distinction can be subtle. The QNM signal of a single
BH typically is numerically calculated by performing a "scattering experiment’ of an in-
coming (Gaussian) wavepacket by a BH [27, 48]. After all, QNMs must always be excited
by some source. The difference between the GW signal of extreme mass ratio inspirals
and a single BH ringdown is that the former has a continuous, 'ringing’ signal instead
of a rapidly decaying ringdown signal from an incoming, scattered wavepacket. In both
cases, however, the frequencies are determined by the fundamental BH parameters.

''The analysis is restricted to scalar QNMs for the following reason: “Computing the
gravitational perturbations of this spacetime would require an explicit stress-energy tensor for
this matter distribution. In addition, the metric perturbations and the fluid perturbations would
be coupled, rendering the analysis unnecesssarily involved.” It is the coupling between metric
and matter perturbations that will be the subject of our work, see Chapter 2, although we
do not use the fluid approximation. The qualitative behavior of scalar and gravitational
perturbations is expected to be similar since the respective potentials are similar [26, p. 8].

11
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12 Introduction

In all models the matter distribution functions are spherically symmetric.
For this reason explicit source terms for the wave equation in a spheri-
cally symmetric background can be circumvented. For model 2 and 3 the
eigenfrequencies are computed by direct integration.

The results of the three models are in qualitative agreement and lead to
the following conclusions [22]. First, matter-BH QNMs can differ signifi-
cantly from vacuum and are typically located beyond the light ring. The
QNM spectrum is much richer than in vacuum. For each vacuum mode
there is a parametric correction to the vacuum frequency and, additionally,
an infinite set of matter driven modes. The isospectrality of even and odd
modes is broken.

Second, even though the QNM spectrum is different from vacuum, in
the time domain signal the vacuum BH QNMs dominate, especially when
the matter is located far away. This paradox can be understood as fol-
lows. QNM s are excited in dynamical situations, such as a compact binary
mergers, during which the matter-BH modes are only slightly excited and
at later times compared to the vacuum mode. At later times, however, the
matter-BH modes can dominate over the power-law tail of the vacuum
ringdown signal. The matter-BH modes can be more strongly excited by
inspiralling matter, or an extreme mass ratio inspiral.

A very remarkable result supported by all three models is that at large
distances the deviation from vacuum QNM frequencies increases with the
radius rg at which the matter is localized. This conclusion is in agreement
with rare earlier works on dirty BH QNMs [49, 50]. The effect is attributed
to the exponential sensitivity of QNMs, given by ¢/“’*, to small correc-
tions. At smaller radii, ryp < O(10M), the QNM frequencies do not deviate
monotonically from vacuum.

The fourth and observationally most relevant conclusion is that even
for very conservative estimates, i.e. unrealistically ‘dirty” environments,
the imprint on the GW ringdown signal gives a correction to the vacuum
QNM frequencies of less than 0.1%, requiring signal-to-noise ratios of at
least O(10%). The changes to the QNM frequencies for different scenarios
of 'dirt” are summarized in Table 1 in [22] and Table 2 in [51]. Accretion
effects on ringdown frequencies are negligible.

Degollado and Heirdero have studied GWs induced by a massive scalar
field falling into a Schwarzschild BH [52]. The gravitational perturbations
coupled to the Klein-Gordon equation, which is evolved in the zeroth or-
der background metric only, result in usual quasi-normal ringing, but now
followed by a late time tail of small amplitude ‘'wiggles’. The wiggle fre-
quency depends on the BH and scalar field mass. Because of their small
amplitude using late time wiggles to identify environmental effects in ob-

12

Version of August 4, 2023— Created August 4, 2023 - 16:35



1.2 Black hole spacetime perturbations: quasi-normal modes 13

servations is technically challenging.

The backreaction effect of matter perturbations on the perturbing GW
is incorporated in a study by Bishop et al. [25]. They investigate a source
of GWs surrounded by a thin shell of dust. The background metric is de-
termined inside, in and outside the shell. Inside the shell the background
spacetime is Minkowski, outside the shell it is equivalent to Schwarzschild.
Through an elaborate computer-based analytical calculation the coupled
perturbation equations for the matter and GWs on these backgrounds are
solved in the three regions. Only the dominant quadropole (¢ = 2) com-
ponent of GW radiation is taken into account. With the help of constraint
equations and matching conditions at the boundaries of the three regions
the GW strain h + ih is found to be (Eq. 26 in [25])

hy +ih 2Ms  2iMs  iMge 2w MsA M
e el e B Ol e e
Hppe“" 2755 70 rjw 2rjw ry  row

where H) some constant, u the time coordinate, 75 » the spin-weighted
¢ = 2 spherical harmonic, Mg the shell mass, ry the minimum radius at
which the shell is located, and A the radial extent of the shell. The three
largest corrections (the second, third and fourth term on the right side)
have the following interpretation. The first term represents the gravita-
tional redshift of the GW travelling through a gravitational potential. The
second term changes the phase but not the magnitude of the strain. The
third term modifies the magnitude and is interpreted as an incoming GW
generated by the shell, which alters the geometry near the source. This
might lead to a GW echo. It is argued that there is no net energy exchange
between the shell and the GW. Regarding the observational imprint of the
three effects, the magnitude of the three terms depends on the ratio Mg /1y,
which was assumed small to solve the linearized equations. There is no
formal constraint on w.”™ The effect of a thick shell can be obtained by
integrating over many thin concentric shells.

In a follow-up to the work by Bishop et al., the question is addressed
whether potential GW echos observed in LIGO data can be explained by
the above effect of a matter shell [53]. The answer is negative. The ef-
fect of a matter shell on the GW signal from a post-merger product and
a core-collapse supernova is also estimated. In the former scenario the
modification to a GW signal is visible at high signal-to-noise ratios, but

“If we assume that the GW is a Schwarzschild QNM leaking out from the light ring
at r = 3Mgy, then w = (’)(Mgﬁl) for the fundamental ¢ = 2 mode [46, p. 14]. Since
ro 2 Mpyy this means that wrg > O(1). Hence Ms/rjw < 1 for M;/rg < 1. If the shell
is close to the source (BH) the linearization condition is Mg < Mgy.

13
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14 Introduction

the assumption of a static spherical shell forming under these condition is
unlikely. In the latter scenario the shell effect is the largest and the shell
model is most reliable.

A recent study by Cardoso et al. focusses on GW generation and prop-
agation in spacetimes of a BH surrounded by anisotropic fluids [27]. These
spacetimes might be used, for instance, to model galaxies with a cen-
tral supermassive BH (SMBH) and a spherically symmetric mass distri-
bution, or astrophysical BHs with surrounding matter if the fluid approx-
imation is justified. Cardoso et al. explicitly calculate the spacetime met-
ric for the combination of a BH and a spherically symmetric Hernquist-
type mass density distribution (the total mass can be much larger than the
BH mass, so there evidently is a deviation from Schwarzschild). The as-
sumption of a spherically symmetric distribution effectively means that
the particles are taken to be on all possible circular geodesics. The re-
sulting metric evidently also is spherically symmetric. Similar to vacuum
QNM studies linearized perturbations to this metric are considered. A ra-
dial wave equation for odd perturbations is derived where the potential

Vg(o) (Eq. 18 in [27]) is similar albeit not identical to the vacuum poten-
tial for Schwarzschild. The equation is solved by direction integration to
determine the QNM frequencies. For a total external mass M < Mgy ex-
tending over the typical scale ap > Mgy they find to first order that the
fundamental quadropolar mode changes as (Eq. 20 in [27])

(JJZO(M, ao) M ]\/I2
L =1-11—4+0 | — ] .
(Uz()(0,0) ap + 2

Ay

This leading order frequency change is interpreted as a gravitational red-
shift of GWs leaking out from the BH light ring and climbing the gravita-
tional potential of the surrounding matter. It is noticed that this interpre-
tation might not hold when M/ ay is large, i.e. when the matter is localized
close to the BH. Although the calculation is for arbitrary ratio M/ag, for
galaxies it is estimated as M/ag = O(107%) [27, 54].

As is emphasized, Cardoso et al. purely study the spacetime effect
and do not consider BH accretion effects. Their approach is particularly
elegant because it allows to circumvent the mathematical challenge of cal-
culating the perturbations to the matter distribution explicitly. All matter

effects are simply captured by the potential VZ(O). Our research, which also
considers the response of matter to a GW perturbation, will use a mathe-
matically more complicated approach. We will not use the fluid approxi-
mation, however.

14
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1.2 Black hole spacetime perturbations: quasi-normal modes 15

Comparable to Cardoso et al. Daghigh and Kunstatter explicitly solve
for the spacetime metric, now for the scenario of a nonrotating BH and
a dark matter spike [26]. The dark matter is approximated as a perfect
fluid. To construct the metric the Tolman-Oppenheimer-Volkoff equations
are solved for a radial power law density distribution. The correspond-
ing Regge-Wheeler equation is derived for scalar perturbations, as it is
expected that these will lead to similar behavior as for gravitational per-
turbations. To estimate the effect of dark matter spikes on the ringdown
waveform, the BHs Sagittarius A* and M87 are taken as concrete exam-
ples and the analysis is restricted to £ = 2 modes. The real (oscillation)
resp. imaginary (damping) part of the QNM frequency decreases resp.
increases with increasing total spike mass. Although the effects expect-
edly are more pronounced for M87, with current techniques a dark mat-
ter spike is observationally indistinguishable from vacuum Schwarzschild
ringdown, taking into account the observational estimates of such a spike
for M87. For heavier BHs the spike might be observable, because the de-
viation increases with BH mass.

The ringing of Schwarzschild BHs surrounded by dark matter is also
studied by Zhang et al. [55]. The perturbations of the dark matter distri-
bution are neglected, however. Complex QNM frequencies are calculated
for different spherically symmetric matter profiles. Deviations from the
vacuum Schwarzschild QNM frequencies increase with the central matter
density and typical (length) scale over which the matter is distributed, and
can in some scenarios give ~ 10% corrections. The isospectrality of the ax-
ial and polar modes is not broken. The analysis has been generalized to
Kerr BHs [56].

Finally, a few comments on environmental effects on the GW signal
from the inspiral phase. Cardoso et al. consider the inspiralling of two
objects with an extreme mass ratio, e.g. a SMBH and a star, in a noniso-
lated environment. They show that conversion between GWs and density
waves occurs [57]. The GW signal is a BH ringdown followed by a long-
lived, fluid mode at later times due to the coupling between the GW and
the matter halo. The GW flux receives corrections compared to vacuum,
which is interpreted as a redshift effect. The flux correction is within the
reach of future GW detectors. A similar analysis of extreme mass ratio
inspirals surrounded by matter also shows that the flux can receive signif-
icant corrections and the GW frequency is redshifted [58]. The imprint of
environmental effects on the GW signal is further studied for intermedi-
ate mass BH binaries with gas (accretion) discs by [59, 60] and with dark
matter by [61], and for extreme mass ratio inspirals by [62-65], mostly fo-
cussing on gaseous accretion disks.

15
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16 Introduction

The significance of environmental effects on inspiral waveforms is con-
tirmed by Zwick et al.,, who state that for low redshifts environmental
effects during the inspiral stage of massive binaries are a bigger model
uncertainty than the current 5 PN (Post-Newtonian) limit to the vacuum
GW waveform templates [66]. Astrophysical environments are especially
important at the mHz frequencies of future detectors, as compared to the
Hz frequencies of current, ground-based detectors [66]. Cole et al. show
that for future GW detectors such as LISA, environmental effects can be
observationally distinguished because of the very long detectability (up to
multiple years) of the inspiral signal [67].

16
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Chapter 2

Quasi-normal modes in dirty
Schwarzschild

The aim of this work and this chapter is to calculate the backreaction effect
of matter ("dirt’) on GWs near a BH. Specifically, we want to know how the
QNM frequencies and GW ringdown signal are affected by matter.

This chapter is structured as follows. In Sec. 2.1 we lay down the for-
malism and model assumptions to attack this problem, and in Sec. 2.2 we
review circular Schwarzschild geodesics. In Sec. 2.3 the perturbed energy-
momentum tensor is computed and in Sec. 2.4 we use this to derive an
evolution equation for odd QNMs. Because of the transient nature of time
solving for the QNM frequencies is deferred to future work. Nevertheless,
we discuss some prospects for the future in Sec. 2.5.

2.1 Formalism and model assumptions

The metric is decomposed as

Suv = Zuv + hyw (2.1)

where ¢, the background metric and h,, a gravitational perturbation.
The evolution equations for small perturbations, |h,,| < |gu|, are de-
rived from the linearized Einstein equations

Guv + Gu[h] =8 (Tyw +6Tyw) (2.2)

where G, the background Einstein tensor, G, [h] the linearized Einstein
tensor for first order perturbations in 1, Ty, the energy-momentum ten-
sor for matter content following background geodesics and 6T),, the first

17
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18 Quasi-normal modes in dirty Schwarzschild

order perturbation of the energy-momentum tensor due to the gravita-
tional perturbation. The matter backreaction on GWs is encoded by the
term 6T),, which is linear in /,,,.

We consider the exterior spacetime of a BH. It is assumed that the BH
is not spinning and the matter content is small compared to the BH mass,
so that to zeroth order G, = 0 and to first order G, [h] = 87 (Tyy + 0Ty).
These two assumptions imply that the background is Schwarzschild space-
time, which is the spacetime of a nonrotating BH in vacuum. In t,7,0, ¢
coordinates the line element is

2
ds? = — (1 — @) > + - frm + r2d6? + r* sin® 0d¢? . (2.3)
r

Employing a kinetic approach we consider a dilute gas of particles [24].
The phase space density distribution function of particles is denoted by

f(r pit) = folr', pit) + SF(r, pit) (2.4)

where fj the zeroth order distribution and Jf the first order perturbation
due to the GW. In the Hamiltonian formalism the coordinates r' = {r,6, ¢}
and covariant momenta p; = {p;, pg, py} are independent. Collisions will
be taken into account, cf. Sec. 2.3.1.

We consider particles that to zeroth order are on circular orbits, which
are Schwarzschild geodesics. Hence there is no radial motion, p, = 0. We
assume that the distribution is spherically symmetric so that it only de-
pends on the radial coordinate r. A circular orbit in a spherically symmet-
ric geometry can be uniquely specified by one of the following parameters
[68]: radius 7, energy €., total angular momentum L or circular frequency
). A convenient choice for our analysis is €., the zeroth order energy of
particles orbiting at radius r. Using this there are multiple ways to write
an expression for f, that satisfies the assumptions, for instance [69]

fo(€eo, €c) = N(€p)d (€9 —€c) = N(ec)d (eg — €c) , (2.5)

where €y the zeroth order energy in the background spacetime. Here
N(ep) encodes the radial profile and the number density. We consider
circular orbits and expressions for €y and €, in the next section.

2.1.1 Comparison with the literature

Before continuing we briefly relate our formalism and model to the rele-
vant literature discussed in the previous chapter.

18
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2.2 Circular Schwarzschild geodesics 19

Although we employ a kinetic approach like Baym et al., we do not
consider the particles to initially be in thermal equilibrium [24]. Instead
we assume circular orbits, i.e. an anisotropic distribution function in mo-
mentum space. This has two reasons. First, it is not obvious that matter
surrounding a BH merger and the final merger product has enough time
to achieve thermal equilibrium during the ringdown GW emission. The
second reason is of a more practical nature. Because Schwarzschild space-
time ’has a central force’, constructing a thermal equilibrium function is
nontrivial as it would include motion in the radial direction. As we will
see in Sec. 2.3, it is the negligence of radial motion that greatly simplifies
the calculations.

Compared to Bishop et al. we extend the analysis to arbitrary ¢ (not
only ¢ = 2) [25]. Bishop et al. consider a GW source and a shell placed at a
large distance from the source, effectively assuming spacetime inside the
shell to be flat. In contrast, we allow for the matter to be close to the GW
source and hence we take the relevant geometry into account.

Compared to Barausse et al. (toy model 3, see Sec. 1.2.1), Bishop et al.,
Daghigh and Kunstatter, and Cardoso et al. we do not determine the (ap-
proximate) background metric for a BH and a specific matter distribution
[22, 25-27]. Instead we assume the matter content to be smalll compared
to the BH mass. Although for perturbation theory to be self-consistent
this limits the allowed amount of matter, the considerable upshot is that
the radial profile N(r) is much more flexible than the very specific ones
considered by these four works. Besides, in our approach the zeroth or-
der assumption of spherical symmetry can be relaxed. In the other four
works this assumption is essential to obtain a reasonably solveable back-
ground metric. Another difference is that Barausse et al. (toy model 3) and
Daghigh and Kunstatter only consider scalar perturbations [22, 26].

Importantly, the other works have mainly worked in the fluid approx-
imation, except for Bishop et al. who consider dust. In none of these four
works collisions are taken into account. We, on the contrary, use a kinetic
approach and incorporate collisions. Therefore our analysis will not de-
pend on the validity of the fluid approximation of matter near a BH.

2.2 Circular Schwarzschild geodesics

We consider particles subject to no other force than gravity. Hence to
zeroth order the particles follow Schwarzschild geodesics. The geodesic

19
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20 Quasi-normal modes in dirty Schwarzschild

equations p'V,p# = 0 for a (test) particle can be rewritten in the form

dpy _ 198w . 5 dx*

axXT _ o — s
Y L 7 A 26

where A an affine parameter, i.e. A = T/m for massive particles. Since g,
is time independent the covariant energy € = pg is conserved (to zeroth
order). An explicit expression for € = pg can be found from the dispersion
relation

§"pupy = —m?*, 2.7)

where m the particle mass, which we can simply set to zero in the massless
case. To zeroth order

2 2
. _ Po Py 2
€0 = ,|— —3oop? + = + +m? |, 2.8
0 800 ( oopr T 2 T o 7y (2.8)
where goo = —(1 —2M/r).

From Eq. (2.6) it is also obvious that L, = py is a conserved quan-
tity, which is related to the angular momentum in the z-direction. A third

constant of motion is given by

P

L% =p3+ ,
Pe sinZ 6

(2.9)

as can be straightforwardly checked with Eq. (2.6). This quantity is related
to the squared total angular momentum.

It can be shown that circular orbits, p, = 0, are solutions to the geodesic
equations. For massive circular orbits the total angular momentum L? only
depends on the radius 7. The relation between L? and  can be found using
the geodesic equations for p, and demanding both p, = 0 and dp,/dA = 0.
From the latter requirement,

dp, M L2, 5\, 6 L*
= —aremn (r—2+m +=0, (2.10)

follows

LA(r) = -1 - (2.11)

and thus the energy of circular orbits, which only depends on 7, is
2
ec(r) = \/<1 - 2€M> <Lr(;) + m2> : (2.12)
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2.3 Energy-momentum tensor perturbation 21

By positivity of L2 massive circular orbits only exist at radii 7 > 3M. In the
Newtonian limit r > 3M we retrieve the well known Newtonian angular
momentum, Ly = Mgt = my/Mr. Massive circular orbits are stable
when Zz/\p{ < 0. Combining Eq. (2.10) and (2.11) it can be shown that the
stability criterion is met for r > 6 M.

The Schwarzschild geodesic equations for massless particles, such as
photons, only allow for circular orbits at ¥ = 3M. These orbits are un-
stable. Therefore our model assumption of an extended distribution of
particles travelling on circular orbits restricts the applicability to massive
particles.

2.3 Energy-momentum tensor perturbation

The energy-momentum tensor Ty, of a gas of particles described by the
distribution function f(r', p;, t) is [23, 70-72]

1 PuPv
V=8 Jp —p°
where g = det(g,s) and [, = g [ d3p/(27)3 for ¢ the internal degrees
of freedom. The integration is over covariant momenta p;, and the minus

o1 i 0 0 — o0u —
sign in front of p” accounts for the fact that p* = ¢#p, <0ase = pg > 0.
To compute the first order perturbation of the energy-momentum ten-

sor we need Je, 6p°, 5 (1/+/—g) and éf. To calculate the perturbation to
the energy € = py we write

Ty = f(r,pit), (2.13)

€ =€+ o€ (2.14)
and perturb Eq. (2.7) to first order. We find

_ 800
de = Z—%h“ﬁp“pﬁ , (2.15)
using that to first order the inverse metric is g = g" — h*¥. Writing
p? = p° + 6p° the perturbation 5p° can be determined in a similar fashion
to Je, yielding )
e | Wipip,

op° = —
P 2 T 26

(2.16)

Finally, from

K
NS (1 " %ﬂ) 217)

21
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22 Quasi-normal modes in dirty Schwarzschild

we observe

h" g wh
5<L> _ e Swl (2.18)
V=8 2y-&  2V-3§
The perturbation Jf is calculated explicitly in Sec. 2.3.1.
The first order perturbation of the energy-momentum tensor is

0 H

e o h
5T00—\/—/ [(—O——ﬁrg— 2y>fo+(5f
—goo 800, ap _ goo mn R -

60 [( h PaPp h PmPn ngnh >f0 +5f

i 0 h
5T01-_\/_/€°p [(——ﬁ—po— ”>f0+5f

\—/gﬂ K 1,00 gooh()mpm__gmn n) fo+5f} )

8oo
5T = \/_/P:P][( LO_ >f0+5f

—800 plp] gOO mn mn
h mEn mnh 5
[( 22" PP 2g >f0+ f

using p° = §%ey. We can further simplify the expressions for 6T}, by
observing that fy and € are even under parity p — —p. Hence, terms that
have an odd number of p; vanish when integrated over momentum. This
results in

g 1
0Too = % / € [(g‘oohoo ioghm”r)mpn - §g‘mnh’"”> fo+of

5T0i — gOO {gOOhOmpmf +5];|

V=8 p
—300 [ PiPj 300 1 mn -
5T1 __h m n__ mnh 5
=3y e [( 263 PmpPn =358 >f0+ f

(2.19)

2.3.1 Perturbed Boltzmann equation

The perturbation Jf to the distribution function can be determined from
the Boltzmann equation. The general relativistic Boltzmann equation in

22
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2.3 Energy-momentum tensor perturbation 23

terms of of the independent variables r, pi, t is [24]

0 Oe 0 de 0
9,9 9 90, 22
(at + dp; dx  oxi api) f=c. (220)

where C a collision term. As argued before, circular orbits can be uniquely
specified by €9 = €. (up to initial conditions) and therefore the zeroth
order distribution function fj is purely a function of ¢y and €., see Eq.
(2.5) for a possible parametrization. Neglecting collisions, to zeroth order
Eq. (2.20) is then trivially satisfied (since all d/dp, derivatives vanish).

At first order we include collisions in the collision time approximation.
Similar to Baym et al. we write the collision term as

— —% (5f — (56%) , (2.21)

¢ aeo

where T the collision time. The term in the brackets encodes the deviation
of 6f from the first order perturbation of fj through its dependence on e.
Baym et al. consider this collision term as only ¢ > 2 perturbations are
relevant [24].

The first order perturbation of Eq. (2.20) is

d aeoi 8603 aeo 0 860 Jd 860 d 1

o S | o

ot " ap,or " apya0 ' dpyop ordp, 0 dpy T

de  dbedey | edey | e dey _ doedey _ doedey | 3y _ e decd
T  Jrdp, 00 0py 0P dpy Opr Or  Opg 00 | deg  Opy Or dec’

(2.22)

using fo = fo(€o, €c) and €, = €.(r). In perturbation theory all p;’s are in-
dependent and not perturbed, and hence p, remains zero. For this reason
we will neglect all underlined terms, which contain a derivative d/dp;.
Loosely speaking all derivatives d/dp, can be ignored because physically
€0, 0f and de simply do not depend on p, for circular orbits.”

“More formally this can be seen as follows. The fj for circular orbits effectively con-
tains a delta function (p,) which kills all terms proportional to p, such as deg /dp;. This is
expected to hold on both sides, so the solid underlined terms vanish. The terms 96 f /dp-
and dde/dp, are more subtle, however. The latter (only) vanishes if we set p, = 0 in the
expression for Je. In fact, for consistency with circular orbits the expression for Je, Eq.
(2.15), must have p, = 0 because GW perturbations leave p; invariant (although not P).
This can be incorporated by multiplication of de by é(p,). Then also éf will be propor-
tional to 4(p,) and (upon integration by parts) all the underlined terms vanish. In essence
we consider the Boltzmann equation for 2D momentum space, discarding all p;.

23
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24 Quasi-normal modes in dirty Schwarzschild

To further simplify the above equation we Fourier transform in time,
dt — —iw. Typically the 0, ¢ dependence of QNM perturbations h,,, is
written in terms of scalar, vector and tensor spherical harmonics. All these
spherical harmonics depend on ¢ via ¢?, and thus dy — im. Furthermore

deg _ —Zoope  9€p ~3oopy  deg  S00Pj cos b
= 2 ’ = ) ' Ap T 2 34" (2.23)
dpe r<€p dpy  r2sin“fey 90 r*€p sin’ 0

Combining everything and dividing by dey/dpy, Eq. (2.22) becomes

2 .
d Pppcosh g impg r2eg ( 1)
— + + iw—=1]19
(89 pesin®00ps  pgsin®6  Zoope T /
2 cos 6 j 2
_9f (% L Fe Jd _ _imPy _ o 1) de (2.24)

860 Po sin® 0 9py Po sin?0  Soope T

B i+p¢cos(9 0 impg B 1’2601 [ 8fo}
-\ 00 pesin®00ps  pysin?6  Zoope T a60

where in the last line we used that (g;o aag %690 3P9> % — 0as fo = fo(eo, €c)

and e, = €.(r). For w = 0 the solutionis 6 f = (56%. For nonzero frequen-

cies, solving Eq. (2.24) is a nontrivial task, which we take on in Appendix
A. We find (Eq. (A.12))

2 0 o !
5f = se 9fo zw_r eO%exp(...) de,exp( ..[0'])de , (2.25)
aeo go() 860 o ’ pé
C1  sin2¢
where

1”260 (—iw + %)
= _Pe petan®
exp (...) = exp ( ZooL arctan <Lcot9> 1m arctan < Po ) ’

(2.26)

2 ; 1 2 Po
r°€o <—zw—|—?> T\l — ==
— arctan ;

gooc1 c1cotf

2
tan 6/
+imarctan [ £1{/c? — _pf an ,
sin“ 0" Pp¢
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2.3 Energy-momentum tensor perturbation 25

and inside the integral over 6’ in the expression for de we substitute py and
€ by

2 2
p _ ~ c
pe(0') = +1/ci — sinf 5 €= 8w <—goop% + r—; + m2> . (2.28)

The £ corresponds to the sign of py. The constant 6]22, which corresponds

to the conserved squared total angular momentum L“, and € are constant

w.r.t. 0'. Outside the integral we have resubstituted j:\/ 7 — pé / sin? 6 —

pe, c1 — L and €y as given by Eq. (2.8) in the expression for exp(...), see
Eq. (A.13).

The GW perturbation enters at time t = tp when some particles un-
der consideration are at the angle 8§ = 6y, and ¢ f satisfies the boundary
condition df(6y) = 0. The angle 6y can be related to t — ty by using

4o goo\/ ¢} — L

T4 Ly 2.29

dt r2€g (229)

leading to the implicit equation for 6
Py 2 i
2 _ __Fo
arctan i — arctan VP fo | @(t —to)
Lcotf L cot 6y " r2e 0

(2.30)

The 6-dependence of 6y does not spoil the solution Jf, since by definition
hyy(6) = 0, i.e. the integrand is zero at 6 = 6.

To be consistent with our assumptions about vanishing d/dp, deriva-
tives for circular orbits, we recall that de,  f do not depend on p.

2.3.2 Do even and odd perturbations mix?

The spherical symmetry of Schwarzschild spacetime enables a convenient
separation of variables for f,,. For that reason the perturbations h,, are
commonly written as the sum over angular numbers ¢, m of the product
of a function depending on radius and a scalar, vector or tensor spherical
harmonic encoding the dependence on 6, ¢. Based on the angular behavior
of the spherical harmonics under parity, QNM perturbations are further

25
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26 Quasi-normal modes in dirty Schwarzschild

decomposed into even (polar) and odd (axial) perturbations as

o 14
Mo =3 Y (I + @) (2.31)
{=0m=—/
The decomposition into even and odd functions means that under the spa-
tial parity transformation r — —r, in spherical coordinates (r,6,¢) —
(r, 1 — 6, ¢ + m), the functions transform as

) (<1, R Ly (TR (a3)

where o € {0,1,2} encodes the number of indices y, v thatare 6 (e.g. 0 = 1
for y = 6, v # 0). Because of the spherical symmetry of Schwarzschild
spacetime, at the linear level even and odd perturbations are decoupled,
and the perturbed Einstein equations, Eq. (2.2), separate into even and
odd equations.

It is expected that the perturbed energy-momentum tensor 6T, pre-
serves the parity decoupling, meaning that the evolution equations of even
resp. odd modes only couple to even resp. odd 6T,,. As a sanity check
of our solution 6 f we check and confirm the preservation of parity decou-
pling in Appendix B.

2.4 0Odd parity perturbations

We have derived an explicit expression for §f and hence also 6T, Eq.
(2.19). To compute the effect of 6T}, on h,, an evolution equation is needed,
which we derive in this section. Only odd parity perturbations are consid-
ered, because their evolution equations are less complicated than for even
perturbations. For the parametrization of the odd perturbations we rely
on Martel and Poisson, and Nagar and Rezzolla [34, 45].

The odd perturbations can be parametrized as' [34, 45]

00 14
KO =Y Y @, (2.33)
{=2m=—/
0 0 HXpn
0 0 hémxém hﬂmxﬂm
H©) = T i |- (2.34)

HnXEn WX WXl gl

B R Rl

TFor GWs only the radiative modes ¢ > 2 are of interest. Odd perturbations cannot
have ¢ = 0 [34].

26
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2.4 Odd parity perturbations 27

The functions hf’", hfm, hg’” depend on radius r and time ¢ (from now on
we suppress the ¢m index notation of hy, hy, hy). The angular dependence
is encoded in the angular structure functions, which are defined as

1

"= ————0p Y™ 2.
X sing 7 (235)
Xg" = sin60pY™ (2.36)

1
m (N2 Im
Xy = = (3, — cot6d, ) Y™, (2.37)
1 1
Im __ : 2 2 Im

Xop = 5 (sm 60; —Sineaq, cos 989) Y™, (2.38)
X = sin® (93, — cot 03, ) Y™ (2.39)

Here Y™ (6, ¢) is the well known (scalar) spherical harmonic function.
Martel and Poisson derive that under an odd parity gauge transforma-
tion, S, = (0,0, Sy, S¢), where

Sp = ngmxgm , Sp = ngmxfm , (2.40)

{m {m
the functions hg, hy, h, transform as
ht—>h§:ht—8t§,
/ 2¢
hr _> hr = hr - 876 + 7 7 (2.41)
hZ _>h/2 :hz_zgl

such that the quantities
(2.42)

are gauge invariant [34]. As can be observed from Eq. (2.41) the gauge ¢
can be chosen such that h; = 0, yielding hy = hyand by = hy. Theh, = 0
gauge is called the Regge-Wheeler gauge [28].

The perturbed Einstein equations for the gauge-invariant fields hy, iy
are given in Appendix C of [34]. However, the source terms are given

27
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28 Quasi-normal modes in dirty Schwarzschild

in contravariant form.* To avoid any potential confusion when raising
and lowering the indices when also first order source term perturbations
are incorporated, we have derived the perturbed Einstein equations for a
covariant source term. For convenience we work in the Regge-Wheeler
gauge, hy =0, hy = hy and B, = h,.

The odd perturbed Einstein equations in the Regge-Wheeler gauge are

0° 0° 290 Ar —4M
oo Tl Tyt T T TS (243)
0° 02 29 (A —2)k
ﬁh atarh* + _ath* + r—zhr =5 (2.44)
10 0 2M
— ol ke e+ = =S, (2.45)

where A = {({+1)and k = (1 — 2M/r) = —goo- The functions S, S;, S
are angular integrals over components of the energy-momentum tensor,

167 _ Xg
S:——/dQ T X" + T, ,
! (0 +1)k ( 1020 "V sin2 g

7 im
167tk "y Xy
Sy = —— [dQ| T,eXy" + T, , 2.46
! A / (rG o " sin2 6 (2:40)
Xﬁm Xém
9¢ 99
S= —/dQ Too Xgn' + 2T, + T
AA—2 (9" 0T sin2 g ¢¢sin49>

A bar over the angular functions denotes complex conjugation.

Eq. (2.43), (2.44), and (2.45) are identical to the evolution equations for
h, h, in appendix C of Martel and Poisson, except that we give the source
term in covariant form [34]. The three equations can be combined into a
single ‘master’ wave equation. A common choice in the literature is to
define the Cunningham-Price-Moncrief (CPM) function [34, 45, 73]

‘Y(O) AZ_T' (arljlt — al’i;LT — %flt) , (24:7)

such that the three equations can be combined into the master equation
[34, 45]
(~0+32 — V) ¥ =50, (2.48)

fMartel and Poisson mention that T,y is T* lowered with the background metric [34,
p- 7]. However, inconsistencies might arise when also taking into account the pertur-
bation 8Ty,. At this level terms like gl‘“h”ﬁ TW must also be taken into account to be
consistent for first order source perturbations.

28

Version of August 4, 2023— Created August 4, 2023 - 16:35



2.4 Odd parity perturbations 29

where

J—— r _
r. =r-+2Mln <2M 1) (2.49)
the tortoise coordinate, and the potential and source term are
o . (N 6M
vV, =k (r_2 - r_3) , (2.50)
2rk (1 2M
5 = - (%atsr + k0,S; + r—zsf) . (2.51)

When the source term S©© does not depend on the perturbation hy, the
CPM master function is a convenient choice as it leads to a single, rela-
tively simple wave equation. However, in this work we also consider 6T},
which depends on h;, h,, but clearly not in the combination of Eq. (2.47).
Therefore 6T, cannot be written purely in terms of Y©) defined by Eq.
(2.47). A different master function than the CPM function is required in
order to derive a decoupled, single wave equation. We proceed to derive
a new master equation below.

The assumption of circular orbits simplifies the otherwise daunting
task by the following observation: all dependence of 6Ty, is through con-
tractions h*"p, py, or the trace n" s see Eq. (2.19) and Eq. (2.25). The latter
vanishes in the Regge-Wheeler gauge, cf. Eq. (2.34). Since circular orbits
have p, = 0, the contractions kill the dependence on h,. Therefore 0Ty
and hence Sy, S;, S can only depend on h;, and a convenient master vari-
able simply is /;. An evolution equation for h; in Fourier space can be
arrived at as follows: (1) Solve Eq. (2.45) for —iwd/h, and substitute in
Eq. (2.43); (2) Solve Eq. (2.44) for h, and substitute in the result from the
previous point. After multiplication by k?, the resulting wave equation for
ht is
, 02 . w?(6M —2r)k 9

o, il 2_yh)p, = g© 2.52
k o2t —wl £ (A —2)k arht + (a) Vi ) he=S," 252)
where
2 _
= 53 Ar—apm - 2 (6M - irk) ) (2.53)
r W+ %
(©0) _ . iw(6M — 2r) 554
S, =k <kSt iwS + R (A—Z)ksr . (2.54)
The function #, is related to h; as
1 . 0d .2
h, = o (A—22)k <Sr — zwght—kzw;ht) . (2.55)
T
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30 Quasi-normal modes in dirty Schwarzschild

Hence, once h; is known h, can be computed straightforwardly.

By the assumption of circular orbits S, = S, + S, = 0. To zeroth order
Tw = Ty is spherically symmetric and diagonal, and all angular integrals
in Eq. (2.46) for multipole numbers ¢ > 1 vanish. Hence for radiative
modes, ¢ > 2, only 6 Ty is relevant.

2.5 Discussion and prospects

Because of time limitations, solving Eq. (2.52) is left for future work. We
finish this chapter with a few remarks on our results and indicate some
pathways for future work.

Importantly, since 6f and hence 6T, contains an integral over angle
6’ between (6, 0) it is to be expected that the perturbed source terms mix
modes with different multipole numbers. Although this severely com-
plicates the computation of h{™, difficulties can be evaded when only fo-
cussing on the fundamental / = 2 mode.

In all likelihood Eq. (2.52) is not analytically solveable. Since the source
terms are not zero, semi-analytical techniques developed to solve the ho-
mogeneous CPM equation, Eq. (2.48) with S© = 0, probably are not
directly applicable to Eq. (2.52). A straightforward method is to solve
Eq. (2.52) subject to physics informed boundary conditions by direct in-
tegration with a ‘shooting method’, as discussed in Chandrasekhar and
Detweiler, and Volkel [74, 75].

Although numerical calculations are necessary to precisely estimate
the GW damping effect for a specific radial profile of fy, a rough esti-
mate of the relevant conditions can be made. We observe that the function
hi = hy(t,r) is not affected by the 6" and p; integrals of 6T},,. The angular
integral in 6 f will not change the order of magnitude, as is also assumed
for the angular integrals of the source terms of Eq. (2.46). The momentum
integrals yield (energy) densities and pressures. In essence we therefore
expect the components of 6T}, and hence S;, S to be O(htpo, hiPy) for the
energy density pp and pressure Py of the zeroth order distribution. The
terms in the potential Vgh are O(Mh;/ 3, hy /1?), cf. Eq. (2.53), and the po-
tential is maximum at r ~ O(M). Therefore a significant change to the
vacuum solution is expected if (at least locally) pgp and Py are not much
smaller than 1/ M?2. If these conditions hold the consistency of treating the
matter at the perturbative level must be verified.
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Chapter

Conclusion

In recent times advanced models and data analysis techniques have been
developed to extract overtones and higher multipole modes beyond the
fundamental mode in GW signals from compact merging binaries, cf. Chap-
ter 1. In this era of increasing precision GW science and BH spectroscopy,
environmental effects on GW (ringdown) waveforms must be quantified.

This work has presented a formalism to compute the potential damp-
ing effect of matter on quasi-normal modes from a nonspinning black hole,
cf. Chapter 2. Our toy model has the following ingredients:

* Schwarzschild spacetime as a background. The external matter is
assumed to be relevant only at the perturbative level.

* A kinetic approach in terms of a phase space distribution function
f(#', pi, t). The kinetic approach enables to go beyond fluid approxi-
mations often employed in the literature.

¢ To zeroth order a spherically symmetric distribution of massive par-
ticles on circular orbits (geodesics).

¢ Collisions (at first order) in the collision time approximation.

We have derived the GW induced first order perturbation to the energy-
momentum tensor, §Ty,,. The perturbed distribution function éf is calcu-
lated by solving the perturbed Boltzmann equation, including collisions.
An explicit check has confirmed that the decoupling of even and odd par-
ity modes is preserved by 6T, .

A new master wave equation for odd perturbations is derived, suitable
to incorporate 6Ty, in terms of hy, for circular orbits. In the future we
will solve this equation numerically to quantify the damping effect for a
variety of radial matter distribution profiles.
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Appendix A

Derivation solution perturbed
Boltzmann equation

In this appendix the perturbed Boltzmann equation, Eq. (2.24), is solved.
Eq. (2.24) has two derivative operators, d/90 and 9/9dpy, in the combi-
nation
9 pg, cosf

+2 2
00 pgsin® 6 Ipg

In general a first order PDE can be solved with the method of characteris-
tics, which for a parameter 1 = 1(6, pg) satisfying

d9_1 %_cosep_é

i , = Al
du du  sin®0 p3 Aad)
reduces the PDE to an ODE in terms of u,
2 cos@
9 P 9 , 4 (A.2)

_|_ R
00 " pgsin’ 0 Ipe du

The two equations of Eq. (A.1) have the solution u = 6 + ¢ and py =

:l:\/ 2 — pé/ sin?(u — c3). We can choose our initial curve to be such that

c = 0,ie. u = 6, which fundamentally means that we get an ODE in
terms of 0 when we write every py in terms of 0 as

2
po=+y/a— Tt (A.3)
sin? 0
37

Version of August 4, 2023— Created August 4, 2023 - 16:35



38 Derivation solution perturbed Boltzmann equation

which also implies that

CZ
€ = J —800 <—g_oop% + r—% + m2> . (A.4)

From Eq. (2.9) it is apparent that ¢ = L?, but for now we write ¢; to
indicate that it is a constant along integration, and hence also €.

To solve Eq. (2.24) with py written in terms of 6 we employ a Green'’s
function approach. Instead of § f we consider G(6, 6’) and replace the right
side of Eq. (2.24) by 6(6 — €’), yielding

Fle impy r2e (iw — %)

%_F 2 2 P ' 5 2 P
4 sin“ 6 1~ 579 £300 1~ 579

where €y independent of 0, cf. Eq. (A.4). Using the anti-derivatives

5(0—0), (A5)

2

P2 -1/2 , 2 — .p‘zb
dolc2_ ¢ — — arct Vo sin7d C,
/ (Cl sin? 0) €1 arean c1cotd o
2\ /2 2
de 1 tan 6
/ —— |- 'p(g = —arctan | {/c} — .Pq; D7) 16,
sin“ 0 sin“ 6 Po sin“ 0 P¢

(A.6)
the solution to Eq. (A.5) is

G = C5(0") exp (...[0]) + exp (...[0]) /09 dxexp (—..[x])6(x—0"), (A7)

where C3(0) an integration constant and
p2
e, (—iw + %) +4/c2— 4

)
sin“ 0
- arctan
Zooc1 c1cotd

2
. tan 6
—imarctan | /¢ — .P(,Z) an
sin“0 Pp¢

*Fundamentally, ¢ = L? is a constant w.r.t. the integration because L? is conserved

exp (...[0]) = exp
(A.8)

Pga cos 9
pg sin® 0 9Py

along geodesics, i.e. {aae + } L? = 0. The same applies for €.
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When G(6,8’) satisfies a boundary condition, this condition is also satis-
fied by its convolution with a source term. Therefore we can impose the
relevant boundary condition of 5f(6) on G(6,6’). The appropriate bound-
ary condition is that at the time ¢t = t( at which the GW reaches the (radial)
position under consideration the perturbation to the zeroth order distri-
bution fy is zero, because the distribution is only perturbed by the GW. At
t = to we indicate the position of a particle by (7o, 6y, ¢o). Thus we impose
5f(6p) = 0and G(6y,6") = 0. Therefore

G(6,6) = exp (..[8]) /6: dxexp (—..[x]) 6(x —0) . (A.9)

The expression for G(6,60') can be further simplified by using the delta
function to perform the integral, yielding

(A.10)

qam:{Gw—w®W—%hWUWNgtﬁ?)9>%,

]
Q0" — 0)O (8 — 0) exp(...[0]) exp(—...[0']) 6 < 6y

where the step functions ensure that 6’ is in the integration domain. The
above G(0,6") solves eq. (A.5) with 6(0 — 6')®(+(0" — 6y)) on the right
side, the sign corresponding to 6 > 6 resp. 8 < 6. The boundary condi-
tion has therefore led us to only consider an impulse response when 6’ in
the integration domain (6, 6) resp. (6, 6p).

The full solution to Eq. (2.24) is obtained by convoluting G(6,6") with
the right side of Eq. (2.24) (recall Eq. (A.2), (A.3), (A.4))

of = / d6'G(6,0") 20 | 40¢ impyoe __ rlegzde
deg | do’ in200, ] A2 Pé 5 ¢
+sin” 0 €1~ sin? ¢’ igOO €1~ sin? ¢’
_ o [* g opladt) [ doe inpyle wwe
deg Jo,  exp(...[0]) | 4o’ . ) P¢
£sin” 6’4/ c7 — woT £300 e

_ [exp(...[@]) afo] iwrzeo afo d@l exp( 6])
exp(...[0]) “aeo Soo 0o Jo,  exp(...| ’)

sin 9’

(A.11)

where in the last line we integrated by parts the term dée/df’. Since at
t = tp and the corresponding angular coordinate 6 = 6y the GW enters,
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40 Derivation solution perturbed Boltzmann equation

h*"(6y) = 0 and de(6p) = 0. We therefore end up with

2
5f — de afo zw_r eoafo (.[6]) / de,exp( .[0'])ée ’ (A12)
ae‘o go() aeo p4>
- C1 sin? ¢’

where in the expression for Je inside the integral the relations Eq. (A.3)
and (A.4) must be taken into account. Outside the integral, however, the
substitutions can be undone, and the function exp(...[]) can be written as

r2eg (—iw + %)
o Pe . potan @
exp (...) = exp ( ool arctan (—L ot 9) im arctan <—P<p ) :

(A.13)

Eq. (A.12) can be checked by restoring c; — L and + \/ L% — pé/ sin® 0 —

pe (only outside the integral over #’) and plugging it into Eq. (2.24). To do
this explicitly we rewrite Eq. (2.24) to

<—iw+%+ﬁ)5f— (%—f-i) {(563—2] =0,

G 9 000 B D

where

Observing that

(—iw + % + I:) exp(...) =0,

a0 00 ][00 0],
dpg 00 90 dpy opgdd 90 dpg| '

one can check that (see also Eq. (2.23))

(—iw+1+i) 5f — (1+L) { gﬁg]

dfo
——zwéeaeo
zwr iwr<ey Bfo deg 9 , , de
ex d@ exp(—...|0
P 5 [ e exp(—.[0']) §
+4/cf — —&
sin“ 0
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Appendix B

Parity check

The perturbed Einstein equations for even resp. odd perturbations hﬁ’ﬁ
single out energy-momentum terms Ty, = Ty, + 6T}, which gain a factor

(—1)* resp. (—1)"*1+7 under parity (o the number of indices that are

0). In this appendix we check whether the parts of 6T, that gain a factor
lm,(e)

(—=1)+ resp. (—1)**1+7 under parity are only due to /1, resp. hf;’ff’(o).
Spatial parity is defined by
(r,0,¢) = (r,m—6,p+ ). (B.1)
The behavior of the following quantities under spatial parity is:
1. sin(0) — sin(6), cos(0) — — cos(f), tan(0) — — tan(h).
2. (pr,Po,Pp) — (Pr, —Peo, Py)- This can be understood from p; o dp'/d<;
only dfl /dt changes sign. Hence also + \/ L2 — pé /sin?f — F \/ L2 — pé / sin? 6.
Clearly €p and fy are invariant under parity.

3. Combining 1 and 2: exp(...) — exp(...), see Eq. (2.26).

4. Combining 1 and 2: de o« hiF papp and hiip;p; gain a factor (—1)°

m
resp. (—1)‘*! for even resp. odd modes.

5. Similar to 8 — 7 — 0, 0p — 7 — 6. Therefore, the parity operation
on the integral boundaries of §f can be moved inside the integral

fgi a0'.. — [T ap... by redefining §” = 7 — 6’. Combined with

7[—90
the above observations

/9 dg,exp(—...[ﬂ’])ée
0o p2
A~ Gte
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gains a factor (—1)¢ resp. (—1)“*! for even resp. odd modes. Similar
to exp(...), exp(—...[0"]) is invariant under parity inside the integral.

Based on the above we now consider each term of the expressions for 6T},
given by Eq. (2.19), individually. It is straightforward to verify that

= 400 8004 1_ i 800,0
Sooh™ , Eh”z?ipj : 58ifh” 'e_oh "pm ., Of

all transform as (—1)¢ resp. (—1)‘*! for even resp. odd modes. To deter-
mine the total transformation property of 6T, also the transformation of
pupy must be taken into account. For (only) one of the indices p, v equal to
0 this yields an additional minus sign.

The resulting behavior of 6T}, under parity for even resp. odd hf]}} is
summarized in Table B.1. Recalling that the even resp. odd perturbed
Einstein equations filter out the (—1)“7 resp. (—1)""1*7 part of 6Ty,
we conclude that parity decoupling is preserved: hfgf’(e) resp. hfﬁf’(o) only

couple to 6 TﬁT’(e) resp. & Tﬁvm’(o). This confirms our expectations.

Perturbation type | 0T 0To; 0T;;
h§f3 (_1)€ (_1)€+a (_1)Z+a
h;ﬂ,) (_1)£+1 (_1)€+1+0 (_1)£+1+a

Table B.1: Behavior of 6T, Eq. (2.19), under the spatial parity transformation.
o € {0,1,2} is the number of indices i, j that are 6.
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