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Preface

In this paper we start off with a very simple question: what are the of homomor-
phism of powers Z to Z itself. This, in theory, seems straightforward enough,
but it turns out that the aforementioned homomorphisms, i.e. for a set I, the
homomorphisms ϕ : ZI → Z, give some fascinating and unexpected results.
This, at the beginning seems like a fundamental abstract algebra problem, but
somehow once we uncover the mysteries behind such homomorphisms we end
up instead in the world of set theory. It turns out that these homomorphisms
depend on the concept of ultrafilters, and, in particular we end up discovering
beneath it all the so-called ’measurable’ cardinal numbers. Once we discover
said measurable cardinal numbers, we will look at their properties. It turns out
that these measurable cardinal numbers are not only interesting in their own
right, but they have very fascinating implications. From proving ZFC’s consis-
tency, to implications in combinatorics, and, we even get a look at how ’big’
these cardinal numbers are if they exist.

As just implied, in this paper we will not only be using Zermelo-Fraenkel
(ZF) set theory, but we will also be using the Axiom of Choice (AC). In other
words, throughout this whole paper, we will be using ZFC set theory. This of
course implies Zorn’s Lemma.

Knowledge of some abstract algebra and set theory is expected from the
reader. Basic definitions such as homomorphisms, cardinals, and more are there-
fore not defined rigorously, but more so informally, in this paper. All relevant
sources will be listed in the appendix, and there one can also find the relevant
background information, if needed.

Last but definitely not least, I would like to give lots of thanks to my super-
visor K.P. Hart for all the helpful feedback and good conversation throughout
the whole process of writing this thesis.
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1 Preliminaries

To start things off, we will be looking at and describing homomorphims from
powers of Z to Z. When we say ’homomorphims’ we mean the all too well known
group homomorphisms from abstract algebra. In other words, we will focus on
homomorphisms ϕ : ZI → Z, where I can be any (infinite) set. In particular,
for x, y ∈ ZI we have that ϕ(x+ y) = ϕ(x) + ϕ(y).

If we consider the trivial case where ϕ is a homomorphism from Z to itself, it
becomes quite clear what the homomorphisms are. These are all maps ϕ : Z→ Z
such that ϕ(x) = yx, for some y ∈ Z; in fact, y = ϕ(1), so ϕ(x) = ϕ(1)x. Clearly
these are all homomorphism since, by distributivity we have y(x+z) = yx+yz,
for x, y, z ∈ Z. Thus, we know how all the homomorphims of Z to Z look like,
but as we will soon see, we are not satisfied with this. The next evolution of our
attempt to find new homomorphims therefore is: let I be a finite set. In other
words we will consider maps ϕ from ZN to Z where N is a natural number. Now,
what does a homomorphism ϕ : ZN → Z look like. One such homomorphism
is clear: the trivial map, the map that maps all elements of ZN to the identity
element; nothing interesting here. But of course we are not satisfied with this,
we would like to think of some more interesting, perhaps even exciting ones.
But now, since in this paper we will be focusing on arbitrary (infinite) powers
of Z we will recall what powers of Z exactly are.

The direct product of Z, denoted as ZI , where I is an arbitrary set, is defined
as the set of all functions x : I → Z such that x(i) ∈ Z for all i ∈ I. The notion
of direct products can naturally be generalized to any set T , so that T I , where I
is an arbitrary set, is analogous to the aforementioned definition. Furthermore,
we say that for any x ∈ ZI the support of x, denoted as supp(x), is defined to
be the set of indices i ∈ I such that x(i) is non-zero. Finally, we recall that the
direct sum of Z, which is denoted as Z(I), is the subset of ZI such that supp(x)
is finite. When I is finite we may simply write Z(I) as ZN , where N ∈ N is the
size of I. This, of course, can also be seen as the Cartesian product.

Now that the structure of ZN is made clear, it is evident what a ’natural’
homomorphism from ZN to Z would look like. The restriction of our homomor-
phism ϕ : ZN → Z to each summand induces a group homomorphism from Z to
Z (which we just discussed), and together these homomorphisms determine ϕ.

Thus, the homomorphisms from ZN to Z are the functions ϕy : x 7→
∑N
i=0 xiyi

with y ∈ ZN .
So far we have been making use of the natural numbers without rigorously

explaining what we mean by them. Let us therefore define them, but, before we
do that, let us recall what an ordinal number is.

Definition 1.1. An ordinal number (or simply, an ordinal) is a set T which is
well-ordered by inclusion ∈, and, it has the property that every element of T is
a subset of T .

It is common practice to use lower case Greek letters to denote ordinals,
starting with α. Furthermore, we will denote the class of all ordinals as Ord. Of
course ordinal numbers have very useful properties, such as α < β if and only
if α ∈ β and α = {β : β < α}.

In particular, we can see every well-ordered set as a unique ordinal number.

Theorem 1.2. Every well-ordered set is isomorphic to a unique ordinal number.
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Since we are using ZFC set theory, in particular, the axiom of choice, we
can state the Theorem above as ”every set has a bijection to some ordinal”. We
define the successor of α as α + 1 = α ∪ {α}. If α = β + 1, then we call α a
successor ordinal. An ordinal α 6= 0 which is not a successor ordinal is called
a limit ordinal. In particular, we can define what we so far have called ”the
natural numbers” with ordinals.

Definition 1.3. We denote the least nonzero limit ordinal as ω. The ordinals
less than ω are called finite ordinals.

We should note that ω is non-other than the set of natural numbers N,
and, furthermore, finite ordinals are simply natural numbers n ∈ N. Of course
ordinal numbers are very interesting in their own right, but in this paper we
have our interests in cardinal numbers. Two sets X and Y are said to have
the same cardinality X ≈ Y if there exists a bijection between X and Y . As
a consequence of the axiom of choice every well-ordered set can be associated
to its cardinal number by means of a bijection. Now that we have defined both
ordinals and cardinal numbers we can see the relationship between them.

Definition 1.4. An ordinal number α is called a cardinal number (or simply,
a cardinal) if α 6≈ β for all β < α.

Of course, if T is a well-ordered set, then there exists an ordinal α such that
the cardinality of T is equal to the cardinality of α. We define |T | to be α, where
α is the least ordinal such that T ≈ α. It goes without saying that |T | is indeed
a cardinal number. In particular, the ordinal ω is the least infinite cardinal.
Without going too much into detail, something that will be very useful for the
upcoming chapters is the notion of limit cardinals, where the definition of limit
cardinals is analogous to that of limit ordinals.

Now, back to our main question. What are all the homomorphism of ZI → Z.
We already explored finite I, where we showed that the homomorphisms are all
in a sense quite straightforward. Clearly the next step is to look at I when it is
a non-finite cardinal number.

To start with, we need to look at the least infinite cardinal, that being ω.
We will therefore for now be interested in the homomorphims ϕ : Zω → Z.
The following Theorem tells us that such ϕ is determined by a finite set of
coordinates.

Theorem 1.5. For every homomorphism ϕ : Zω → Z there is an m ∈ ω such
that ϕ is determined by the coordinates below m, that is, if x, y ∈ Zω are such
that x � m = y � m then ϕ(x) = ϕ(y).

Proof. For m ∈ ω we write Um = {x ∈ Zω : x(i) = 0, for all i < m}, the
subgroup of Zω, such that x ∈ Um is zero before the m-th element. Notice, that
the statement in the Theorem is equivalent to the statement that there is an m
such that Um in contained in the kernel of ϕ. It is necessary to find an m ∈ ω,
a ∈ Zω and a nonzero r ∈ Z such that ϕ is constant on a + rUm to prove the
aforementioned statement. In fact, it is not only necessary, but also sufficient.
This follows from the fact that if we take x ∈ Um, then a + rx ∈ a + rUm and
so ϕ(a) = ϕ(a + rx). But ϕ(a + rx) = ϕ(a) + rϕ(x) and so rϕ(x) = 0, which
implies that ϕ(x) = 0.
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For the sake of contradiction, suppose that no such m, a, and r exist. We
construct sequences 〈ak : k < ω〉 in Zω and 〈rk : k < ω〉 in Z \ {0} as follows.
First enumerate Z as 〈zk : k < ω〉.

Start with a0 = 0 and r0 = 1. To find ak+1 and rk+1 we use that ϕ is not
constant on ak + (r0 · · · rkrk+1)Uk+1 and take ak+1 ∈ ak + (r0 · · · rk)Uk+1 such
that ϕ(ak+1) 6= zk. Next take rk+1 so large that zk /∈ ϕ(ak+1) + rk+1Z. It is
clear that

ϕ[ak+1 + (r0 · · · rkrk+1)Uk+2] ⊂ ϕ(ak+1) + rk+1Z

and hence zk /∈ ϕ[ak+1 + (r0 · · · rk)Uk+2].
By construction of the sequence 〈ak : k < ω〉 we see that ak+1(i) = ak(i)

whenever i ≤ k. This implies that the pointwise limit, a, of the sequence exists.
If we fix some k then now we know that a(i) = ak(i) for i ≤ k and that a(i)−ak(i)
is divisible by r0 · · · rk for all i > k. This means that a ∈ ak + (r0 · · · rk)Uk+1

for all k. Thus, for all k we have ϕ(a) ∈ ϕ(ak+1) + rk+1Z and hence ϕ(a) 6= zk.
This is a contradiction because ϕ(a) ∈ Z.

With help of this Theorem we find just what we were looking for, that is,
the classification of all homomorphisms from Zω to Z.

Corollary 1.6. Every homomorphisms ϕ : Zω → Z is determined by a finite
sequence 〈ck : k < m〉 of integers in the sense that ϕ(x) =

∑
k<m ckx(k) for all

x ∈ Zω.

Proof. Let m be as in Theorem 1.5 and notice that for all x ∈ Zω the difference
x−(x � m) belongs to Um, where (x � m)(k) = 0 if k ≥ m and (x � m)(k) = x(k)
if k < m. Furthermore, x � m =

∑
k<m ekx(k), where ek is the k-th ’unit vector’

in Zω, i.e. all coordinates of ek are zero exept the k-th one which is equal to 1.
It follows that ϕ(x) = ϕ(x � m) =

∑
k<m ϕ(ek)xk, and thus ϕ is determined by

the sequence 〈ϕ(ek) : k < m〉.

So much for our ”bigger thinking” then. This characteristical way of defining
such a homomorphism is more general than one might initially think. In fact, it
follows that if κ is an infinite cardinal, F is a finite subset of κ, and 〈cα : α ∈ F 〉 a
finite sequence of integers, then ϕF,c(x) =

∑
α∈F cαxα defines a homomorphism

from Zκ → Z. This will be the basis for the next section.
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2 Homomorphisms from Zκ to Z
From now on we will focus our attention on infinite cardinals κ. Clearly then,
it seems that no matter how ’big’ we make the exponent of the integers, no
matter how much we increase our cardinal κ to bigger and bigger infinities – we
are doomed to have only such characteristically defined homomorphisms such
as above. Right? It turns out the answer to this question is more involved than
originally thought.

This is where the so called ’ultrafilters’ come and miraculously save us from
such simply defined homomorphisms.

Definition 2.1. A filter F on a nonempty set I is a collection of subsets of I
that satisfies the following properties:

(i) ∅ /∈ F , I ∈ F ;

(ii) if X,Y ∈ F , then X ∩ Y ∈ F ;

(iii) if X ∈ F and X ⊂ Y ⊂ I, then Y ∈ F .

An ideal N on a nonempty set I is a collection of subsets of I that satisfies the
following properties:

(i) ∅ ∈ N , I /∈ N ;

(ii) if X,Y ∈ N , then X ∪ Y ∈ N ;

(iii) if X ∈ N and Y ⊂ X ⊂ I, then Y ∈ N .

We can see that filters and ideals are each other’s opposite. Indeed, if F is
a filter on I, then F = {I \X : X ∈ F} is an ideal; we call F the dual ideal of
F . On the other hand, when N is an ideal on I, then N = {I \X : X ∈ N} is
a filter on I; likewise, we call N the dual filter of N .

Filters give a meaning of ”largeness”, in the sense that members of the filters
are considered large (and their compliment small). Conversely, and ideal gives
a meaning for ”smallness”.

Example 2.2. If Y is a subset of I, then the filter

FY := {X ∈ P(I) : Y ⊂ X},

is called the principal filter generated by Y . If F is a filter on I which is not
equal to FY for any Y ⊂ I, then we call F a nonprincipal filter.

One of the (if not the) most important notions in this paper is the following.
An ultrafilter on I is a filter F on I such that for every subset X of I, either
X ∈ F or I \X ∈ F . That is, if we have an ultrafilter F on I, then every subset
X of I gets a tag: X is either ’big’ or ’small’, depending on whether X ∈ F or
I \ X ∈ F , respectively. Note that principal filters that are generated by one
element are in fact ultrafilters; just not very interesting ones.

Definition 2.3. Let κ be an infinite cardinal. We call a filter F on I κ-complete
if for every subset E of F with cardinality strictly less than κ, the intersection
over all E belongs to F .
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In particular, we will be focusing on ’σ-completeness’, that is, a filter F on
I is called σ-complete if for every countable subset E of F the intersection over
all E belongs to F . In addition to this we say that an ideal N is called a σ-ideal
whenever every countable subset S of N the union over all S belongs to N .

An important example of a filter is the following.

Example 2.4. If |I| ≥ κ, then Cκ = {X ⊂ O : |I \X| < κ} is called the co-κ
filter on I. In particular, we call Cω the cofinite filter

Behind all of this talk about ultrafilters, what is going to be surprising, is that
they seem to have a relationship with cardinals. That may not be so surprising
since informally we could say that cardinals (or better still, ordinals) are just
sets, but still, it doesn’t seem very natural. Before that, we need some tools to
help us get where we need to be. We say that a non-empty family of subsets S
of I has the finite intersection property (FIP) whenever the intersection of any
finite subset of S is non-empty.

Lemma 2.5. Let S be a family of subsets of I. Then S is contained in a filter
on I if and only if S has FIP.

Proof. First, it is clear that a filter, and therefore any subset of a filter, has FIP.
Conversely, let S have FIP. Now if F is the set of all subsets of I which contain
the intersection of a finite subset of S, then F is a filter.

In fact, there is a similar result for ultrafilters. First, we say that a filter F
is a maximal filter whenever there is no filter on I which properly contains F .

Lemma 2.6. A filter F on I is an ultrafilter if and only if F is a maximal
filter.

Proof. First let F be an ultrafilter on I. Furthermore, let F ′ be a filter on
I which contains F . Then, if X ∈ F ′ then also X ∈ F . If you suppose the
contrary, then I \X ∈ F , and then we would have that ∅ = X ∩ (I \X) ∈ F ′,
which is a contradiction. Thus, F is maximal filter. Now suppose that F is a
maximal filter on I. For any Y ⊂ I, if {Y } ∪ F has FIP, then {Y } ∪ F is, by
Lemma 2.5, contained in a filter F ′. But then, by the maximality of F we have
that F ′ = F , so Y ∈ F . But for any X ⊂ I either {X} ∪ F or {I \X} ∪ F has
FIP. Thus, F is an ultrafilter.

Here is the (maybe not so) surprising result on the existence of nonprincipal
ultrafilters.

Theorem 2.7. Every filter on I is contained in an ultrafilter. Therefore, if I
is an infinite set, then there exists a nonprincipal ultrafilter.

Proof. If F is a filter on I, then by Zorn’s Lemma there is a maximal filter F ′

which contains F . By Lemma 2.6 F ′ is an ultrafilter. Finally, if I is an infinite
set, then F contains the cofinite filter, and thus D is nonprincipal.

So we shouldn’t concern ourselves too much about the existence of nonprin-
cipal ultrafilters (for now). And now we will finally discuss the fundamental
definition for this particular paper.

Definition 2.8. A cardinal κ is called measurable if there is a nonprincipal
σ-complete ultrafilter on κ (or simply on a set I of size κ).
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Now with all the important background information out of the way, we can
go back to the question at hand: what are all the homomorphisms ϕ : Zκ → Z,
where κ is any infinite cardinal.

If U is a σ-complete ultrafilter on κ, then, for every x ∈ Zκ we have that
κ =

⋃
k∈Z{α : xα = k} and by σ-completeness there is exactly one such kx such

that {α : xα = kx} ∈ U . Now, since

{α : xα = kx} ∩ {α : yα = ky} ⊂ {α : xα + yα = kx + ky},

it follows that kx+y = kx + ky. Therefore, the map ϕU : Zκ → Z given by
x 7→ kx is a well-defined homomorphim. First, we will consider the case when κ
is a non-measurable cardinal. By definition then, every σ-complette ultrafilter,
U , is principal, in other words, U = {U : α ∈ U}, for some α ∈ κ. But then
we have that the homomorphism ϕU is simply the projection x 7→ xα. More
Interestingly, if U is nonprincipal then we have a new type of homomorphism.
Namely, for any finite E ⊂ κ and sequence c = 〈cα : α ∈ E〉 we have that
ϕE,c 6= ϕU as seen at the end of Chapter 1. To see this take x ∈ Zκ such that
xα = 0 if α ∈ E and xα = 1 otherwise. Then ϕE,c(x) = 0 but ϕU (x) = 1. The
question thus becomes: are there any other types of homomorphisms?

Before we answer this question we will need some more material first. First
for any subset Y ⊂ κ we will write ZY = {x ∈ Zκ : supp(x) ⊂ Y }. We define

Iϕ = {Y ⊂ κ : ϕ [ZY ] = {0}},

that is, the set of subsets Y of κ such that the image of ZY under ϕ is equal to
the zero set. For reasons that will become obvious at the end of this chapter we
will always assume that ϕ is not the zero homomorphism.

Lemma 2.9. The family Iϕ is an ideal on κ.

Proof. Since we assumed that ϕ is not the zero homomorphism, we have that
κ /∈ Iϕ. Furthermore, if Y ⊂ X ⊂ κ then ZY ⊂ ZX , so that if X ∈ Iϕ, then
Y ∈ Iϕ. Finally, since ZX∪Y = ZX + ZY , we have that X ∪ Y ∈ Iϕ, whenever
X,Y ∈ Iϕ.

Since we know what the homomorphisms from Zω to Z look like it would
be very handy to be able to use this. Thankfully it is also the case that we will
be using these homomorphisms. Therefore, we need to define homomorphisms
from Zω to Zκ as an ’intermediate’ that will make our later proofs possible.

Lemma 2.10. Let 〈ak : k < ω〉 be a sequence of elements of Zκ with disjoint
supports, i.e. supp(ai) ∩ supp(aj) = ∅ for all i, j < ω unequal to each other.
Then, the map ψ : Zω → Zκ given by x 7→

∑
k<ω xkak is a homomorphism.

Proof. That the sum is well-defined follows from the fact that at every co-
ordinate α all or all but one of the terms xkak(α) are zero. Finally, since
xkak(α) + ykak(α) = (xk + yk)ak(α) for all k < ω, we have that ψ(x) + ψ(y) =
ψ(x+ y).

For the following lemmas we will recall that if a ∈ Zκ and X ⊂ κ, then a � X
is the restriction of a to X.

Lemma 2.11. The family Iϕ is a σ-ideal on κ.
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Proof. Let {Xk : k < ω} be a countable subfamily of Iϕ. We have to show
that X :=

⋃
k<ωXk is in Iϕ. We can assume that the Xk are pairwise disjoint:

replace each Xk by Xk\
⋃
l<kXl, if necessary. Let a ∈ ZX and write ak = a � Xk

for all k. Now let ψ : Zω → Zκ be the homomorphism defined as in Lemma 2.10.
Notice that the composition ϕ ◦ψ is a homomorphism from Zω to Z, therefore,
we may apply Corollary 1.6. We find that ϕ(ψ(x)) =

∑
k<m x(k)ϕ(ψ(ek)) for

some m. But since ψ(ek) = ak and ϕ(ak) = 0 for all k we have that ϕ ◦ ψ
is the zero homomorphism. But a = ψ(1), where 1 ∈ Zω is the point with
all coordinates equal to 1; thus, ϕ(a) = 0. Since a was arbitrary we get that
ϕ[ZX ] = {0}.

Lemma 2.12. Let {Yk : k < ω} be an infinite pairwise disjoint family of subsets
of κ. Then there is an m such that Yk ∈ Iϕ for k ≥ m.

Proof. Assume for the sake of a contradiction that none of the Yk belong to
Iϕ. For all k choose ak ∈ Yk such that ϕ(ak) 6= 0. Now, define ψ : Zω → Zκ
as in Lemma 2.10 and apply Corollary 1.6 to the composition ϕ ◦ ψ, just as
before. Again, we find that ϕ(ψ(x)) =

∑
k<m x(k)ϕ(ψ(ek)) for some m. But

since ψ(ek) = ak we get that ϕ(ak) = ϕ(ψ(ek)) = 0 for all k ≥ m; this is a
contradiction.

In other words, Lemma 2.12 tells us that the ideal Iϕ is quite big. The
remainder of this chapter concerns the filter Fϕ := Iϕ dual to Iϕ.

Lemma 2.13. There are only finitely many ultrafilters that extend Fϕ.

Proof. Let F denote the set of ultrafilters that extend Fϕ and assume it is
infinite. Let E ∈ F and, as Fϕ is not equal to E , we take X ∈ E \Fϕ. The set X
divides F into two pieces, namely, {D ∈ F : X ∈ D} and {D ∈ F : κ \X ∈ D}.
One of the pieces is infinite; let X0 be the one of X (the former set) or κ \X
(the latter) for which F0 := {D ∈ F : X0 ∈ D} is infinite; let Y0 be the (finite)
complement of F0; also take D0 ∈ D with Y0 ∈ D0.

Repeat this step recursively: given Xk such that Fk = {D ∈ F : Xk ∈ D} is
infinitely; split Xk into Xk+1 and Yk+1 such that Fk+1 = {D ∈ Fk : Xk+1 ∈ D}
is infinite; and there is Dk+1 ∈ Fk with Yk+1 ∈ Dk+1.

The resulting family {Yk : k < ω} is pairwise disjoint, and, since for each k
we have that Yk ∈ Dk and Dk ∈ F , we get that the set Yk is not in Iϕ. This
contradicts our previous Lemma.

This tells us that we can write the family of ultrafilters that extend Fϕ as
{Di : i < m} for some m ∈ ω. Now if x ∈ Zκ is such that supp(x) /∈ Di for all i,
then supp(x) ∈ Iϕ, and so ϕ(x) = 0. Next, observe that if D and E are distinct
ultrafilters, then one can find X ∈ D \ E and Y ∈ E \ D; therefore, X \ Y ∈ D,
and Y \X ∈ E , and lastly (X \ Y ) ∩ (Y \X) = ∅.

Applying this a finite number of times, we obtain pairwise disjoint sets {Yi :
i < m} such that Yi ∈ Di for all i. Note that since F , the set of ultrafilters
that extend Fϕ, is equal to F = {Di : i < m}, we have that the union

⋃
i<m Yi

belongs to Fϕ.
Furthermore, Di is σ-complete. To see this, let 〈Xk : k < ω〉 be a sequence

of elements of Di, where we assume that Xk ⊂ Yi for all k. Then Yi \Xk ∈ Iϕ
for all k, thus

⋃
k<ω(Yi \Xk) ∈ Iϕ. But this means that

⋂
k<ωXk ∈ Di.

Finally, with this, we get the characterization of the homomorphisms from
Zκ to Z.
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Theorem 2.14. Let κ be an infinite cardinal and let ϕ : Zκ → Z be a homo-
morphim. Then, there are finitely many σ-complete ultrafilters {Di : i < n}
such that ϕ(x) = 0, whenever supp(x) /∈ Di, for all i.

In particular, we find that we can write ϕ out explicitly in terms of these
σ-complete ultrafilters.

Corollary 2.15. With the notation as above we can write ϕ =
∑
i<m ciϕDi ,

where ci = ϕ(1 � Yi).

Proof. Let {Yi : i < m} be as above and define W := κ \
⋃
i<m Yi. Now since

{W} ∪ {Yi : i < m} is a partition of Zκ, we can write every x ∈ Zκ as a sum of
restrictions:

x = x �W +
∑
i<m

x � Yi.

We know that ϕ(x � W ) = 0, so we need to show that ϕ(x � Yi) = ciϕDi , for
all i. Now, for each i let ki ∈ Z be such that Zi := {α ∈ Yi : x(α) = ki} ∈ Di.
Then we have that ϕ(x � Yi) = ϕ(x � Zi) because Yi \ Zi ∈ Iϕ. Furthermore,
ϕ(x � Zi) = kiϕ(1 � Zi) and also kiϕ(1 � Zi) = kiϕ(1 � Yi). The latter can be
written as ϕ(1 � Yi)ϕDi(x), that is, ciϕDi(x).

Here we find ourselves in either two different cases. First, the case when all
our σ-complete ultrafilters on κ are principal: we see that the homomorphisms
ϕ : Zκ → Z are in fact the same as the ones in Corollary 1.6. On the other
hand, if there are nonprincipal σ-complete ultrafilter on κ, then as we already
saw right after Definition 2.8, we do in fact get a new type of homomorphism.
Therefore, the only two types of homomorphims from powers of Z to Z are
exactly the ones described above, depending on whether κ is measurable or not.

It should be pointed out that when κ is a non-measurable cardinal, then it
follows from what we have seen so far, that the dual group of Zκ is nothing
else but Z(κ). And since the dual group of the direct sum, Z(κ), is always the
direct product, i.e., our original group Zκ, we can simply state these two facts
as: the direct product and the direct sum of Z are each other dual groups when
raised to a non-measurable cardinal κ. But as we also saw, the dual group of Zκ
cannot be Z(κ) when κ is measurable. In fact, it has to be much larger. Indeed,
we hypothesize that the dual group of Zκ has to have cardinality at least 2κ

when κ is measurable.
All of this is in fact a consequence of a much more general result. The name

of this general result is called the  Loś-Eda Theorem: for further information
on the  Loś-Eda and other related results on should see the book Almost Free
Modules: Set-theoretic Methods by Eklof and Mekler, [8]; the Theorem is stated
in Chapter III.3 of the book.

From this point forward, we will be focusing on such type of question such
as: if such a σ-measurable cardinal exist, then what kind of consequences are
there? It turns out that there are quite a few very interesting, even fascinating
results.
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3 On measurable cardinals

We will begin first by looking at a natural question that arises—well, at least
from a set theoretic point of view—about these measurable cardinals. The
question is: if κ is any measurable cardinal, then, how ’big’ is κ? We will soon
see that measurable cardinals are absolutely not small at all.

First, it should be noted that the name measurable in measurable cardinal
comes from a very natural place. Indeed, originally, measurable cardinals were
directly related to the problem of measures. Stanislaw Ulam was interested in
these cardinals back the 1930’s because he was researching what kind of cardinal
admitted a non-trivial κ-additive two-valued measure. What this exactly means
is out of the scope of this paper, but it should be noted that measurable cardi-
nals originally had nothing to do with the existence of nonprincipal σ-complete
complete ultrafilters, but were completely a measure theoretic question in the
set theoretic world. It wasn’t until the course of time that the definition of mea-
surable cardinal was adapted to the definition used in this paper. Indeed, the
question of a cardinal admitting a non-trivial κ-additive two-valued measure and
of a cardinal that has a σ-complete nonprincipal ultrafilter are equiconsistent.

We shall now consider the least measurable cardinal. What is meant by that
is simply the smallest cardinal number, κ, that has a nonprincipal σ-complete
ultrafilter. Back in Chapter 2 we gave a definition for measurable cardinals,
and, while this definition is correct, it is not the best, since, in fact, it doesn’t
show us the bigger picture. But to get an idea of what I mean, we will need the
following result.

Lemma 3.1. Let κ be the least measurable cardinal, that is, let κ be the least
cardinal such that there exists a nonprincipal σ-complete ultrafilter U on κ.
Then U is κ-complete.

Proof. Let U be a nonprincipal σ-complete ultrafilter on κ. For the sake of a
contradiction assume that U is not κ-complete. But then there exists a partition
{Xα : α < γ} of κ, where γ < κ and Xα /∈ U for all α < γ. Now let f : κ → γ
be the map defined by f(x) = α if and only if x ∈ Xα, for all x ∈ κ.

Furthermore, if we define D ⊂ γ by Y ∈ D if and only if f−1(Y ) ∈ U , then D
is a σ-complete ultrafilter on γ. In particular, it follows that our ultrafilter D is
nonprincipal. To see this, we assume the contrary, that is, assume {α} ∈ D for
some α < γ. But then Xα ∈ U , which contradicts our assumptions on Xα. By
D being a nonprincipal σ-complete ultrafilter on γ, we contradict the fact that
κ is the least cardinal that carries such a nonprincipal σ-complete ultrafilter.
Thus, U is κ-complete.

So by letting κ be a measurable cardinal as in Definition 2.8 and U being the
respective nonprincipal σ-complete ultrafilter, we automatically get that U is in
fact much more than that, indeed U is κ-complete. Which makes us question
why we didn’t in the first place simply give the definition of measurable cardi-
nals, by saying that their respective ultrafilter have to be κ-complete instead of
σ-complete. And if fact, that’s exactly what we’ll do from this point onwards,
so we redefine ”measurable cardinals” accordingly.

Definition 3.2. We call an uncountable cardinal κ measurable if there exists a
κ-complete nonprincipal ultrafilter on κ.

12



From this point forwards, measurable cardinals are to be defined as in Def-
inition 3.2. Cardinal numbers with σ-complete ultrafilters are now called σ-
measurable. Now, with this in mind, we realize that our measurable cardinals
have to be quite big. Indeed, notice that if U is a κ-complete nonprincipal ultra-
filter on κ, then every element of U has cardinality κ, because of the simple fact
that every set of cardinality less than κ is the union of fewer than κ singletons.

Before we may begin talking about ’bigness’ in a different sense, we will first
need to introduce a few concepts. First, we should recall that in Chapter 1 we
touched a bit upon the notion of limit ordinals/cardinals; this will be expanded
in the current chapter. We call a cardinal κ a strong limit cardinal if 2λ < κ
for all λ < κ. Notice that every strong limit cardinal is automatically a limit
cardinal. We say that a subset X of limit cardinal κ is bounded if supX < κ;
on the other hand, we say that X is unbounded if supX = κ.

Now, if κ > 0 is a limit ordinal and 〈αν : ν < β〉 is an increasing β-sequence,
where β is a limit ordinal, then we call 〈αν : ν < β〉 cofinal in α if limν→β αν = α.
Furthermore, if α is an infinite limit ordinal, then we define the cofinality of α
as

cf(α) := the least limit ordinal β such that there is an increasing β-sequence

〈αν : ν < β〉, with lim
ν→β

αν = α.

In particular, we say that an infinite ordinal is singular if cf(α) = α. If α is
not singular, then it is said to be regular. Now, of course we aren’t working —
strictly speaking — with ordinals, but we are more so interested in cardinals.
Thankfully there are analogous definitions of the aforementioned ones with re-
spect to cardinals. In particular, we say that a cardinal κ is regular if cf(κ) = κ.
Likewise, we say that κ is singular if it is not regular; that is, κ is singular
if cf(κ) < κ. A very interesting thing to note is that (in ZFC) every singular
cardinal is a limit cardinal. Furthermore, notice that if κ is measurable, then,
for the same reasons as when were discussing the cardinality of every set in U ,
we find that κ is regular: indeed, suppose that κ is singular, then κ is the union
of fewer than κ many sets each of cardinality less than κ.

But are there any regular limit cardinals? There’s a very simple answer to
this question, namely ℵ0, since it is indeed a regular limit cardinal. Therefore,
the answer to the question above is a yes. Curiously enough ℵ0 is a count-
able regular limit cardinal, but what about uncountable regular limit cardinals?
The answer to this question will, for now, be left unanswered, but we will briefly
touch upon it again in the last Chapter. Nonetheless, we are still very interested
in these cardinals — i.e., uncountable regular limit cardinal numbers, — and,
in fact, they are going to be the focus of this chapter. Accordingly, we will be
giving these special cardinals a name: we will give the name weakly inaccessible
cardinals to the aforementioned uncountable regular limit cardinals. An inter-
esting fact to note is that if κ is a weakly inaccessible cardinal, then κ = ℵκ;
however, the converse is not generally true. Now, as hinted by the name, we
can actually make this definition a bit stronger.

Definition 3.3. Let κ be an uncountable cardinal. We call κ (strongly) inac-
cessible if it is regular and

∀λ < κ : 2λ < κ.
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Usually, instead of calling them strongly inaccessible cardinals, we just say
inaccessible cardinals. Clearly every inaccessible cardinal is weakly inaccessible;
the converse is not always true. By looking at the definition one can easily
see that if κ is inaccessible then κ is in a sense very big. Indeed, we actually
call inaccessible cardinals large. This is how we rigorously refer to a cardinal
that gives us a sense of largeness or bigness. In this paper I will be using the
words large and big interchangeably in this sense. In the previous chapter we
said that we would be interested in measurable cardinals, we never mentioned
inaccessible cardinals, so what do they have to do with each other?

Theorem 3.4. A measurable cardinal is inaccessible.

Proof. Let κ be a measurable cardinal and let U be a non-principle κ-complete
ultrafilter on κ. First we will show that κ is regular. For the sake of a contra-
diction assume the contrary. That is, cf(κ) < κ and let {κν : ν < cf(κ)} be a
family of cardinals such that

κν < κ, for ν < cf(κ);

κµ < κν , for µ < ν < cf(κ); and∑
ν<cf(κ)

κν = κ.

Now if κ \ κν ∈ U , for ν < cf(κ) then⋂
ν<cf(κ)

κ \ κν = 0 ∈ U,

since cf(κ) < κ and U is κ-complete. Thus, κν ∈ U for some ν < cf(κ). Now,
because U is nonprincipal, we have that κν \ η ∈ U , for η < κν . Therefore,⋂

η<κν

κν \ {η} = 0 ∈ U,

again, since cf(κ) < κ and U is κ-complete. This clearly contradicts the defini-
tion of an ultrafilter. Thus, κ is indeed regular.

For the second part, again, we will argue by contradiction. So suppose that
there exists some λ < κ such that 2λ > κ. Now let S be a set of functions
f : λ → {0, 1} such that |S| = κ; furthermore, let U be a nonprincipal κ-
complete ultrafilter on S. For each α < λ let Xα be either {f ∈ S : f(α) = 0}
or {f ∈ S : f(α) = 1} depending on which one is in U ; let εα be either 0 or
1 according to the choice of Xα. Since U is κ-complete we have that the set
X :=

⋂
α<λXα ∈ U . But notice that X has at most one element, that being

the function f which has the value f(α) = εα; a contradiction. Therefore, we
have as required, namely, for all λ < κ we have that 2λ < κ.

In particular, what we learn from Theorem 3.4 is, just as we previously
suggested, that our measurable cardinals from Chapter 2 are very big indeed. It
goes without saying that, a priori, just by looking at the definition of measurable
cardinals, one could not tell at all that measurable cardinals have to be big.
By going through the whole process of chapter 2 of creating a new type of
homomorphism from Zκ → Z we could get an idea that κ has to be somewhat
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big. So, in a sense, one could only get an intuition of the bigness of measurable
cardinals by having played around with them a bit. The definition is completely
vague about its size. Indeed, since a measurable cardinal is inaccessible we say
that they are large cardinals. But exactly how big are they? A natural question
would be the converse of Theorem 3.4. But it turns out that the least inaccessible
cardinal is not measurable. In particular, the least measurable cardinal is greater
than the least inaccessible cardinal. The proof of this fact is out of the reach of
this paper.

Indeed, measurable cardinals seem to be bigger than inaccessible. But if we
know that the least measurable cardinal is greater than the least inaccessible
cardinal, then what about the second-smallest inaccessible cardinal? Is the
second-smallest inaccessible cardinal as big as the least measurable? It turns
out, that measurable cardinals are in fact way bigger than one might originally
expect, the previous sentences do a disservice to how big measurable cardinals
are in relation to inaccessible cardinals.
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4 On Mahlo cardinals

Before we go further on with this discussion we will need to introduce another
type of big cardinal, namely, Mahlo cardinals. First, we need to define the
notion of limit points. Let X be a set of limit ordinals and let α > 0 be a limit
ordinal. Then, we call α a limit point of X if sup(X ∩ α) = α.

Definition 4.1. If κ is a regular uncountable cardinal, then we say that a set
C ⊂ κ is closed unbounded both when C is unbounded in κ and C contains all
its limit points less than κ.

In addition to this, we say that a set S ⊂ κ is stationary if the intersection
of S and C is non-empty for every closed unbounded set C ⊂ κ.

Now, with this in mind, we can define the next big cardinals of interest.

Definition 4.2. If κ is an inaccessible cardinal, then we say that κ is a Mahlo
cardinal if the set of all regular cardinals below κ is stationary.

By definition Mahlo cardinals are large cardinals. In particular, it follows
that if κ is Mahlo, then the set of all inaccessible cardinals below κ is stationary,
and thus, κ is ”the κ-th inaccessible cardinal”. That κ is the κ-th inaccessible
simply means that if you enumerate the inaccessible as 〈µα : α ∈ Ord〉, then
we get that κ = µκ. In the literature, cardinals κ that are the κ-th inaccessi-
ble are usually called hyper-inaccessible. Not only are Mahlo cardinals hyper-
inaccessible, but they are in fact hyper-hyper-inaccessible. What this exactly
means is out of the reach of this paper, but one can already imagine that they
are definitely bigger then the already very big hyper-inaccessible cardinals.

Thus, indeed, Mahlo cardinal are huge, but what do they have to do with
our measurable cardinals? Before answering this question directly, we will need
to take a detour into another type of large cardinal; and for this we will need
some notation.

If 〈Xα : α < κ〉 is a sequence of subsets of κ, then we say that the diagonal
intersection of Xα, for α < κ, is:

4α<κXα := {ξ < κ : ξ ∈
⋂
α<ξ

Xα}.

Furthermore, we call a filter F on a cardinal κ normal if it is closed under the
diagonal intersection, that is: if for every α < κ, we have that Xα is contained
in F, then 4α<κXα is contained in F . We can define the same concept to
ideals, namely, we call an ideal on κ normal whenever the dual filter is normal.

Lemma 4.3. Let κ be a regular uncountable cardinal and let F be a normal
filter on κ which contains the sets {α : α0 < α < κ}, for α0 < κ. Then, F
contains all closed unbounded sets.

Proof. Consider such a cardinal κ and filter F as above, then notice that the set
C0 of all limit ordinals is contained in F . Indeed, C0 is the diagonal intersection
of the sets Xα = {ξ : α+ 1 < ξ < κ}, that is, C0 = 4α<κXα.

Furthermore, if C is a closed unbounded set and C = {aα : α < κ} is its
increasing enumeration, and we let Xa = {ξ : aα < ξ < κ}, then it follows that
C0 ∩4α<κXα ⊂ C.
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To relate the notion of normal filters to measurable cardinals we will call
normal κ-complete nonprincipal ultrafilters normal measures on κ. A result
that follows immediately from Lemma 4.3 is the following.

Lemma 4.4. Let D be a normal measure on κ. Then every set in D is station-
ary.

Thankfully, these normal measures aren’t only hypothetical, indeed, we may
talk about their existence when considering measurable cardinals.

Theorem 4.5. If κ is a measurable cardinal, then κ carries a normal measure.

Proof. First, let U be a nonprincipal κ-complete ultrafilter on κ. We will define
a relation on κκ as follows: we say that f, g ∈ κκ are equivalent, i.e. f ≡ g,
if and only if {α < κ : f(α) = g(α)} ∈ U . Then clearly ≡ is an equivalence
relation on κκ.

Now let f < g be if and only if {α < κ : f(α) < fα)} ∈ U . Then not only is
< a linear ordering on κκ, but < is also a linear ordering on κκ/ ≡. Furthermore,
< is a well-ordering on κ/ ≡. Indeed, if we argue by contradiction, then suppose
that there is an infinite descending sequence f0 > f1 > · · · > fn > . . . . Now
define Xn = {α < κ : fn(α) > fn+1(α)}, and X =

⋂∞
n=0Xn; then, notice that

X is non-empty. Finally, if α ∈ X, then f0(α) > f1(α) > · · · > fn(α) > . . . ;
which is a contradiction.

Now, in this well-ordering, let f be the least function that has the property
that {α < κ : f(α) > γ} ∈ U , for every γ < κ. Let D = {X ⊂ κ : f−1(X) ∈ U};
then, clearly D is a κ-complete ultrafilter, and furthermore, D is nonprincipal.
To see the latter simply see that for γ < κ, the inverse image of {γ} under f is
not in U , therefore {γ} is not in D.

Now, we need to mention the following fact: ”a measure is normal if and
only if every regressive function on a set of measure one is constant on a set of
measure one.” This fact will not be proven, but we will use it to show that D
is a normal measure. Indeed, let X be a subset of D and let h be a function (in
this well-ordering) with the property that f(α) < α for all α ∈ X and α > 0.
Then h is constant on D. To see this define the function g as g(α) = (h ◦ f)(α).
Now, since g(α) < f(α) for every a ∈ f−1(X), we have that g < f . By the
minimality of f we have that g has to be constant on a subset Y of U . Therefore,
h is constant on f(Y ) and f(Y ) ∈ D. Thus, D is a normal measure.

Lemma 4.6. Let κ be a measurable cardinal. Then κ is also Mahlo.

Proof. Let κ be a measurable cardinal. Since κ is a strong limit, the set of all
strong limit cardinals below κ is closed bounded. Therefore, it is enough if we
prove that the set of regular cardinals below κ is stationary. Now, thanks to
Theorem 4.5 we may consider D, a normal measure on κ, so let us do that. Fur-
thermore, by Lemma 4.4 we only need show that the set of all regular cardinals
below κ is in our normal measure D.

For the sake of a contradiction assume the contrary, that is, let {α : cf(α) <
α} ∈ D. Since D is normal there is a λ < κ such that Eλ = {α : cf(α) = λ} ∈ D.
Now for every α ∈ Eε let 〈xα,ξ : ξ < λ〉 be an increasing sequence with limit
α. Furthermore, for every ξ < λ there are yξ and Aξ ∈ D with the property
that xα,ξ = yξ for all α ∈ Aξ. Finally, define A =

⋂
ξ<λXξ, and notice that

A ∈ D. But then it follows that the only element that is contained in A is the
limit limξ→λ yξ; a contradiction.
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Indeed, it turns out that κ is measurable, then not only is κ inaccessible,
but it is also hyper-inaccessible, etc. The next phase of this chapter will show
us that this is not the only increase in largeness that our measurable cardinals
will suffer; they will get larger.
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5 An even larger cardinal

In this chapter we continue with our search for large cardinals. In particular, we
will be introducing a cardinal that is even larger than the previously discussed
Mahlo cardinals. Let A be any set and n a natural number. Then [A]n will
denote the family of all subsets of A that have cardinality equal to n, that is,
[A]n = {X ⊂ A : |X| = n}. Furthermore, if {Xi : i ∈ I} is a partition of
[A]n, then say that a subset H of A is homogeneous (for the partition) if [H]n

is included in Xi for an i ∈ I. In other words, H is homogeneous if all the
n-element subsets of H are in the same piece of the partition.

Definition 5.1. Let κ, λ be infinite cardinal number, where λ ≤ κ. Further-
more, let n ∈ ω, and let m be a cardinal number smaller than κ. The symbol

κ→ (λ)nm

denotes what is called the partition property ; that is, every partition of [κ]n into
m pieces has a homogeneous set of size λ.

For the sake of simplicity, when m = 2 we will just leave the subscript
empty, that is, κ → (λ)nm denotes the same thing as κ → (λ)n. As is well
known in the literature, Ramsey’s Theorem, as seen in Theorem 9.1 of [7],
states that if n, k ∈ ω, then every partition {X1, X2, ..., Xk} of [ω]n into k
pieces has an infinite homogeneous set. In arrow notation this can be simply
stated as ℵ0 → (ℵ0)nk , for n and κ natural numbers. Furthermore, the Erdős-
Rado Theorem, as seen in Theorem 9.6 of [7], and its consequences show that
the size of the homogeneous set is generally smaller than the size of the set that
is being partitioned.

But now a natural question arises, that is, does the partition property κ→
(κ)2 hold for any κ other than κ = ω, as in Ramsey’s Theorem. It turns out
that this question cannot be answered in simple terms, and, in fact, a cardinal
that satisfies such a condition has its own special name.

Definition 5.2. We call an uncountable cardinal number κ weakly compact if
it satisfies the partition property κ→ (κ)2.

Even though the definition of weakly compact cardinals given here is purely
combinatorial, it turns out that originally weak compactness comes from a less
combinatorial question, namely, it comes from a question in logic, that is, for
which cardinal does a certain Compactness Theorem hold: namely, weakly com-
pact cardinals. What exactly this particular Compactness Theorem is, is com-
pletely out of the reach of this paper. One can find more information on this
matter in [7]. In particular for us though, it turns out that these weakly com-
pact cardinals have some interesting combinatorial properties which we will
cover briefly. As stated previously, Ramsey’s Theorem states that the partition
property ℵ0 → (ℵ0)nk holds for any natural numbers n and k. A natural question
arises, namely, does this also hold for ℵ1?

Lemma 5.3. For all cardinals κ, the partition property 2κ → (κ+)2 does not
hold. That is,

2κ 6→ (κ+)2.

Before we prove this we will need to give another short Lemma.
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Lemma 5.4. The lexicographically ordered set {0, 1}κ has neither an increasing
nor decreasing κ+-sequence.

Proof. We will only consider the increasing case, since the decreasing case is very
similar to the increasing case. Assume that the set X = {fα : α < κ+} ⊂ {0, 1}κ
has the property that fα < fβ if α < β. Let λ ≤ κ be the least cardinal such that
the cardinality of the set {fα � λ : α < κ+} is equal to κ+. Furthermore, let Y
be a subset of X such that the cardinality of Y is equal to κ+ and f � λ 6= g � λ
for all f, g ∈ Y . Without loss of generality we may assume that X = Y .

Now for every α < κ+, let ξα be such that: fα � ξα = fα+1 � ξα, fα(ξα) = 0,
and fα+1(ξα) = 1. Then, it follows that ξα < λ for all α < κ+. Thus, there is
a ξ < λ such that ξ = ξα for κ+ elements fα ∈ X. But if both ξ = ξα = ξβ
and fα � ξ = fβ �, then it follows that fβ < fα+1 and fα < fβ+1. Therefore,
fα = fβ for all α, β < κ+. Thus, the cardinality of the set {fα � ξ : α < κ+} is
equal to κ+; but this a contradiction by the minimality assumption on λ.

Proof of Lemma 5.3. First define {fα : α < 2κ} to be an enumeration of {0, 1}κ.
Furthermore, let ≺ be a linear ordering of 2κ induced by the lexicographic
ordering of {0, 1}κ, that is, for α, β ∈ {0, 1}κ and the respective fα, fβ ∈ {fγ :
γ < 2κ} we have that α ≺ β whenever fα < fβ . Now we define a partition
F : [2κ]2 → {0, 1} as follows:

F ({α, β}) =

{
1, if the ordering ≺ of {α, β} agrees with the natural ordering;

0, otherwise.

But ifH ⊂ 2κ is a homogeneous set of order κ+, then it follows that {fα : α ∈ H}
is either an increasing or decreasing κ+-sequence in ({0, 1}κ, <); this contradicts
Lemma 5.4.

In particular, this tells us that our previous attempt at generalizing Ramsey’s
Theorem fails. Indeed, whenever κ ≤ 2ℵ0 we have that κ 6→ (ℵ1)2, and thus
also ℵ1 6→ (ℵ1)2. On the other hand, if k > 2ℵ0 , then as we know from the
Erdős-Rado Theorem, the partition property κ→ (ℵ1)2 does hold.

We took this detour, of course, because we wanted to show the link between
the aforementioned Mahlo and Measurable cardinals. Indeed, it turns out that
thanks to weakly compact cardinals we can actually show the link between all
of these.

Lemma 5.5. If κ is a weakly compact cardinal, then κ is inaccessible.

Proof. Let κ be a weakly compact cardinal. We need to show that κ is both
regular and a strong limit cardinal. To show the former, assume that κ is not
regular, that is, let κ be the disjoint union

⋃
{Aγ : γ < λ} where both λ < κ

and |Aγ | < κ for all γ < κ. Now, define a partition F : [κ]2 → {0, 1} as follows:

F ({α, β}) =

{
0, if α, β ∈ Aγ , for some γ < κ;

1, otherwise.

Clearly, this partition does not have a homogeneous set of cardinality κ; a
contradiction.

Now to show that κ is a strong limit cardinal assume the contrary, that is,
let κ ≤ 2λ for some λ < κ. By Lemma 5.3 we have that 2λ 6→ (λ+)2, therefore
it follows that κ 6→ (λ+)2, and thus κ 6→ (κ)2; again, a contradiction.
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The converse of this Lemma doesn’t hold in general: an inaccessible cardinal
is in general not weakly compact. But this isn’t the only link between these large
cardinals. In fact, just as measurable cardinals, weakly compact cardinals are
also related to the previously discussed Mahlo cardinals.

Lemma 5.6. If κ is a weakly compact cardinal, then κ is Mahlo.

Unfortunately the proof of this Lemma is out of the reach of this paper.
Nonetheless, this shows that weakly compact aren’t only inaccessible, but they’re
in fact (hyper-)hyper-inaccessible. One should note however that the converse of
this Lemma does not hold: not every Mahlo cardinal is weakly compact. Thus,
it turns out that if one originally thought that inaccessible cardinals where big,
then weakly compact cardinals blow this bigness out of the water. But now we
have two cardinals—measurable and weakly compact cardinals—that are larger
than Mahlo and inaccessible cardinals. Naturally, a natural question is which
one is larger than the other (if that’s even possible). The following result will
tell us a bit about the relationship between measurable and weakly compact
cardinals. To keep things in line with the focus of this paper we will only be
giving a sketch of the proof which uses a notion we are already familiar with:
that of nonprincipal κ-complete ultrafilters.

Lemma 5.7. If k is a measurable cardinal, then κ is also weakly compact.

(sketch). First partition [κ]2 into two sets, namely, sets where every paired edge
has the same colour. So let [κ]2 = A ∪ B, where, say, every paired edges in A
has the colour red, and, likewise every paired edges in B has the colour blue.
Now let U be a nonprincipal κ-complete ultrafilter on κ. For all α < κ define
Aα = {β > α : {α, β} ∈ A} and Bα = {β > α : {α, β} ∈ B}; and let

Uα =

{
Aα, if Aα ∈ U ;

Bα, if Bα ∈ U.

Now we define a sequence, x = {xα : α < κ}, where the first element is x0 =
0 ∈ U0, and for 0 < α < κ we let

xα = min
⋂
γ<α

Uxγ ∈ U.

For each α < κ we identify every xα with a respective εα. Namely,

εα =

{
A, if Axα = Uxα ;

B, if Bxα = Uxα .

And thus for α < β < κ, we have {xα, xβ} ∈ A if εα = A. Repeating this
infinitely many times |A|, we get a set of indices I = {α : εα = A}; this gives
us the required homogeneous set of cardinality κ, namely H = {xα : α ∈ I},
where {xα, xβ} ∈ I for α, β ∈ I.

That is, measurable cardinals—even though one could a-priori not tell at
all that they should be large—are very big cardinals. The converse of this
Theorem as one could probably predict already does not hold in general. In
fact, it turns out that, again, measurable cardinals are way larger than weakly
compact cardinals.
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Lemma 5.8. If κ is a measurable cardinal, then κ is the κ-th weakly compact
cardinal.

Therefore, even though we have seen that inaccessible, Mahlo, and weakly
compact cardinals are huge, measurable cardinals simply are unthinkably huge.
To put their largeness into words would be an impossible task.
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6 On the bizarreness of measurable cardinals

Back in Chapter 3 we briefly touched upon the existence of (weakly) inaccessible
cardinals. We can finally give an answer to this question.

Theorem 6.1. It cannot be shown that the existence of inaccessible cardinals is
consistent with ZFC. Furthermore, the existence of inaccessible cardinals cannot
be proven in ZFC.

Moreover, the existence of weakly inaccessible cardinals cannot be proven in
ZFC, but since we are more interested in (strongly) inaccessible cardinals, we
will only be focusing on them. Interestingly enough, the first statement of the
Theorem above follows from the second part of Gödel’s incompleteness Theo-
rem. Even though neither the existence nor the consistency of said existence
is provable in ZFC, that doesn’t mean that we should stop here and simply
negate their existence. On the contrary, as stated previously (albeit indirectly)
it is highly believed that in ZFC it isn’t possible to prove the non-existence of
either of the aforementioned claims. If we were to stop here on our search for
knowledge of these big cardinals, then, we would lose the ability to learn of so
many interesting details and consequences of said cardinals.

A very surprising and exciting consequence of inaccessible cardinals is that
their existence proves the consistency of ZFC.

Lemma 6.2. Let κ be an inaccessible cardinal. Then Vκ is a model of ZFC.

In other words, what this tells us is the simple fact that if we were to take
ZFC as we know it and add to it the axiom ”there exist an inaccessible cardinal”,
then with these two sets of axioms we would be able to prove the consistency of
ZFC. We should not get confused by this statement however, since this doesn’t
mean that we have proved the consistency of ’everything’. No, since we are
now working in the ’universe’/set of axioms ZFC + ”there exist an inaccessible
cardinal” we still need to prove the consistency of this universe itself. Unfortu-
nately, anyone who has heard of Gödel’s Second Incompleteness Theorem knows
very well that a universe can never prove its own consistency. In particular, this
means that even though we may be able to prove the consistency of ZFC by
being in this bigger universe ZFC + ”there exist an inaccessible cardinal”, we
cannot prove the consistency of this universe by means of its own set of axioms.
Meaning that even though we may be able to prove that ZFC is consistent us-
ing ZFC + ”there exist an inaccessible cardinal”, there could very well be the
chance that this bigger universe itself is inconsistent, basically making our previ-
ous statement of ”ZFC is consistent” irrelevant, a sentence of nothingness. This
isn’t as far at it goes fortunately (or unfortunately as will soon be made clear).
Adding more large cardinals to our set of axioms creates bigger universes which
can prove the consistency of the smaller universes. For example, the universe
with ZFC and two inaccessibles can prove the consistency of the universe with
ZFC with one inaccessible which in turn can prove the consistency of ZFC. One
can imagine a ridiculously infinitely large tower of these universes of axioms
where after adding so many inaccessible cardinals we reach the realm of the
Mahlo cardinals, and, after adding so many of these Mahlo cardinals we end up
even further into the realm of the weakly compact, and, as you can expect, after
adding so many weakly compact cardinals where we end up in the realm of the
measurable cardinals, and, of course, it doesn’t have to stop here, so one could
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simply never stop; continue ad infinitum... But, and it goes without saying,
that we end up were we began since obviously we can’t prove the consistency
of the biggest universe (with its own set of axioms, of course). We have taken
such a big step that we ended up going around the whole world just to end up
at the same spot.

With this though we can give a proof of the first statement of Theorem ??.

Proof of Theorem 6.1 (first statement). For simplicity’s sake we will let T iden-
tify the statement ”there exist an inaccessible cardinal”. Now, assume that it
can be shown that the existence of inaccessible cardinals is consistent with ZFC.
Furthermore, we assume that ZFC itself is consistent.

Now, since T is consistent with ZFC, it follows that ZFC + T is consistent.
By Lemma 6.2. we have that in ZFC + T there is a model of ZFC. In particular,
the sentence “ZFC is consistent” is therefore provable in ZFC + T. Notice that
we assumed that the sentence “T is consistent with ZFC” is provable. But then
it follows that the sentence “ZFC + T is consistent” is provable in ZFC + T,
which contradicts non-other than Gödel’s Second Incompleteness Theorem.

A very bizarre consequence of the existence of inaccessible cardinals is the
following. If κ is an inaccessible cardinal, then in Vκ it is consistent that there
is no inaccessible cardinal. The details of this weird but fascinating paradox are
sadly left out since they are out of the reach of this paper.

Notice however that the second statement of Theorem 6.1 can be proven
with the aforementioned information since if it can be proven that if an inac-
cessible cardinal, κ, exists, then we would also be immediately showing that a
measurable cardinal does not exist (in a smaller universe of Vκ); but this is a
glaring contradiction. Hence, the existence of inaccessible cardinals cannot be
proven in ZFC.

Even though that it goes without saying that the same holds for larger
cardinals, we still haven’t shown anything specific on the existence of measurable
cardinals. And there is good reason for this. Measurable cardinals are quite
fascinating things, but unfortunately they require quite advanced knowledge of
set theory that is sadly out of the reach of this paper. Nonetheless, we will show
(without proof) a quite interesting consequence of (the existence of) measurable
cardinals. In basic terms we say that a set is constructable if it can be defined
entirely in terms of ’simpler’ sets.

Lemma 6.3. If there exists a measurable cardinal then V 6= L, that is, not all
sets are constructable.

The reason for giving this last Lemma is that I would like to impress upon
the reader that these measurable cardinals are, quite informally if I’m allowed
to say, simply amazing. From the simple question of asking for which sets
there exists non-trivial κ-additive two-valued measures to the (albeit not fully
realized) consistency of ZFC to finally the constructability of sets in ZFC. This
shows how bizarre and fascinating measurable cardinals can be. It goes without
saying that this is but the tip of the iceberg when it comes to measurable
cardinals and their consequences, there is still so much more left to uncover.
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