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Abstract

Two-dimensional (self-reported) social network data is commonly used in social networks
analysis to investigate the self-reported social relationships between network members.
However, Krackhardt (1987) proposed to use three-dimensional (triadic) data based on
the theory of cognitive social structures. Actors are not only asked to report their own
relations within a social context, but are also asked to report on the relationships between
other actors in the same network. In this thesis we will extend the p, model by using
the triadic data (instead of self-reported data) to estimate dyadic probabilities given the
perception of the third actor in a triad. The ps model is used, because it includes multiple
dependencies found in social networks (e.g., reciprocity, describes a relationship where
both individuals see each other as friends) which makes the model more realistic to other
models (Van Duijn et al, 2004). We build on the application of Bellio and Soriani (2020)
who used Maximum Likelihood Estimation with Laplace approximation to estimate the
parameters of the p, model. They provided the C++ and the R code, which we use as a
basis for our triadic extension of the model.

We programmed the model in C++ and R. We used the triadic high-tech managers
data (Krackhardt, 1987) and an aggregated version (as example for self-reported data) to
show an application of the triadic model and the p, model side-by-side. We encountered
the problem of multicollinearity when adding dyadic characteristics to the parameter p
of the triadic model. It was possible to converge the model when reducing the number of
dyadic-specific comparisons between actors within the density parameter and only include
the comparison between actor ¢ and j.

For reciprocity and the homophily parameters the standard errors were lower in the
triadic model than in the py model, indicating more precision. The characteristics of
the perceiver added to this triadic model give more information about the effect of the
perception of a third actor on the directed ties of other actors. Multiple suggestions for
future research are made for overcoming the problem of multicollinearity, such as looking
into the correlations between variables and the comparisons for homophily that can be
added to our model or not. Besides this, a next step is to perform multiple goodness-of-fit
tests. We conclude that this triadic model is a more realistic way to look at the role of the
perceiver on the dyadic probability in a social network in combination with the effects of

actor characteristics of the sender, receiver and the perceiver.



1 Introduction

In our lives we are part of different social contexts. These can be family, a group of
friends, work, school, even the neighborhood you live in and the sports club. All these
different environments generate social networks. Sociologists are interested in these social
networks, because they initiate influence, dependence, power, trust, opinions and of course
friendships.

The complexity of working with social networks and extracting information from social
networks lies not only in computational and measuring problems, but also in the vast
variety of questions and perspectives one can have (Snijders, 2011). In social networks
the terms actors and ties are used. Actors are the individuals in a social network. Ties
are possible (friendship) relations between these individuals. In this thesis we focus on
social networks with directed ties, ties that can be outgoing/sent or ingoing/received. An
example in Figure 1 of an outgoing or a sent tie is from actor A to actor £, meaning that
actor A indicates F as a friend. Ingoing or received ties occur when actor A receives a
tie from actor C', meaning that actor A receives the status as friend from actor C'. We
will focus on dichotomous dyadic ties in this thesis. A dyad is a pair of actors with two
possible directed ties. Dichotomous ties signify ties which exist (1) or not (0). Reciprocal
ties are commonly found in social networks and means that both actors indicate that the
other actor is a friend, they reciprocate the relationship. An example of reciprocity in
Figure 1 is between actor C' and actor F. A non-reciprocal tie occurs when only one actor
perceives the other as their friend, but not vice versa. A null dyad is a dyad where there
are no ties between two actors. In Figure 1, we see an example of this between actor £

and actor F'.

OO,

@ Reciprocal
v tie
Null @
dyad

Figure 1. Theoretical visualization of a network with ties and actors



It is possible to measure ties and actors in ego- and socio-centered networks (Kadushin,
2012, Chapter 2). In ego-centered networks a specific individual is the center of the
analysis. In socio-centered networks a social network in a specified social group with
a specific number of actors is identified, such as a class in a school or a department
in an organization. These socio-centered networks can answer questions related to the
whole social network and its characteristics. In this thesis we focus on the socio-centered
friendship networks.

When analyzing social networks, it is sometimes hard to measure all the relations
between the N actors and include all the actors in the social network (as it is in regular
data collection). Also in larger social networks the researcher does not want to exhaust
the time of the respondent if they need to answer for every other actor whether they
are connected with them or not (Stark, 2017). The most common way to collect social
network data is asking every actor in the network to list who their friends are in the
predetermined social group. Because of this, the sent and received relations per actor
are self-reported. With this information it is possible to create an adjacency matrix as

in Table 1 indicating the senders (rows) and the receivers (columns).

A B CDEF
A 0 0 1 1 O
BJ]o - 1 1 1 1
cl1 1 - 0 0 1
Djo 1 0 - 1 0
ElJ]0 1 0 1 - 0
FI10 0 1 0 0 -

Table 1. Adjacency matrix for graph visualization of the social network in Figure 1

Social networks are complicated, because of dependencies present between actors and
within dyads and the influence on one another. In social networks the influence of a
third actor on the relationship between two other actors is not overlooked. Concepts and
theories as triadic closure and transitivity (Kadushin, 2012, Chapter 2) assume that the
relationship of actor ¢ and j can be determined by whether they have a relationship with
a third actor k. For example, the probability of a reciprocal relationship between actor i
and j could be partly determined by others in the complete social network.

So a third individual in the network can influence this outcome of the dyadic rela-

tionship between ¢ and j. Instead of only looking at the directed ties between two actors,



we can look at the possible relations between three actors (also called a triad) and the
influence of the perception of the third actor on the directed ties between the other two
actors in the triad. Instead of only looking at the self-reported data, it is also possible to
collect data which focuses on these triads. To collect this data we should not only ask the
individual who they report as their friends, but they also are asked how they perceive the
(non-)existence of relationships of other dyads which they are not a part of. So for each
actor in the social network a complete social network is collected. This is called triadic
data.

Existing models using these data are based on the Social Relation Model (Kenny &
La Voie, 1984; Snijders & Kenny, 1999). Some focus on estimating continuous valued
ties, others on estimating the probability of the dichotomous directed ties in a dyad (e.g.,
Bond et al, 1997; Swartz et al 2015). This research integrate important dependencies in
a social network by adding random effects for sender and receiver effects using all the N
layers without aggregating them and with different ways to approximate the estimation.
However, their model is not realistic enough as it does not include the important element
of reciprocal ties which are common in social networks. A model that includes both
random effects for sender and receiver and a parameter that estimates reciprocity, is the
po model (Van Duijn et al, 2004). However, it does not use the triadic data and the
perception of the third actor. In this thesis, we want to produce a model that not only
includes the influence of a third actor in estimating probabilities of dyadic relationships
in a complete social network but also includes the important dependencies within a social

network. Because of this, we will extend the ps model and its elements.

1.1 Outline thesis

We will model the probability of directed ties (existing or not) in a dyad perceived by a
third actor to take into account the influence of a third actor on the relationships within
a dyad. Including the dependencies that make it more realistic to the elements of a social
network. In the situation of the dyadic data, the p, model is seen as a realistic model,
because it models the dependencies found in social networks by (correlated) random
effects and by the addition of a fixed reciprocity parameter (Van Duijn et al., 2004). It
can also include actor covariates which could have an influence on the outcome.

In Chapter 2, we first expand on the random effects found in social networks to capture
the dependencies commonly found. A more detailed description is given of the p; and py
model and its components as well as a short explanation of their background and similar

existing models to the p; model. In Chapter 3 we expand on the specifics of the triadic



extension based on the ps model and the triadic data that will be used. Subsequently, in
Chapter 4 we elaborate more on the estimation method in this thesis and here we present
the likelihood function of the extension with the adjusted estimation.

In Chapter 5 we present the application of this triadic extension. First of all, we
adjusted the code of Bellio and Soriani (2020) to our triadic extension and triadic data.
An existing triadic dataset is used to show the model in a practical situation. The data
is described and the results of the models are given. We will compare the results of
triadic model with the results of the p, model. In Chapter 6 we discuss the conclusions,

recommendations for future research and possible shortcomings.



2 Background

First it is important to discuss the significance of using random effects in estimation
models of complete social networks. We give a description of how random effects models
work and how this relates to social networks. Then we give an explanation and reasoning

behind the p; model and the py model.
2.1 Random effects model and social networks

2.1.1 Random effects

When describing the real world, observations can be dependent on certain situations and
environments. For example, the performance of children in school can depend on the
class they are in. But this dependence is also common in other fields. For example,
experiments in plant sciences where background noise such as sunlight can disturb the
independence of the different experimental fields with the same crops. Normal regression
analysis assumes that the residuals in the models are independent to make the model
not too complicated and more applicable in more situations. However, in social settings
the assumption of independence is not realistic. It is possible to account for dependence
by adding random effects to the model. We can make a distinction between nested and
crossed random effects. Nested random effects assume hierarchy in observations, such as
students in classes in schools. Crossed random effects indicate a random combination of
different levels of multiple conditions which occur multiple times.

As an example we can investigate the effect of parental support on the exam results of
students in different classes. In this example we can observe a nested structure where the
students’ exam results are at level 1. The students’ exam scores might however also vary
between classes, for example because of differences between teachers. We can observe
the hierarchical structure where the students (level 1) are nested in the classes (level 2).
Instead of calculating one fixed intercept for the model in a regular linear model over
all the students for the effect of parental support on exam results, we expect different
modelled intercepts per class. These different intercepts can be grasped by adding a

random effect for classes to the intercept of the linear model:
Y;j = (b() + U()j) + lelij -+ €ij (1)

Where by is the fixed intercept and uy; is the random effect for classes where j represents



the class and 7 the students. By adding this random effect it is possible to account for
the dependency between the students’ results and the class they are in. This represents
a nested random effect. However, there is also a possibility of the parental support (X)
depending on the class, where maybe the teacher encourages the children to ask the
parents for help in different levels of encouragement. And that we expect the slopes of
the model also to be randomly different for each class. In the example of parental support
it means that the effect of parental support on the results is randomly different for each
class. To achieve this we cross the level 1 students and the level 2 classes by adding a

random effect to the estimate of parental support (also including the random intercepts):

Yi; = (bo + uo;) + (b1 + ugj) X1ij + €55 (2)

Where ug; is the nested random effect that creates the random intercepts and u,; is the
crossed random effect creating the different random slopes for the classes. By adding
these random effects in the normal linear regression model, dependence can be accounted

for that is created by these nested and crossed random effects in the data.

2.1.2 Random effects in social networks

In social networks, we can also identify multiple forms of dependencies which we can
relate to random effects. Relations are dependent on a lot of factors and especially other
actors in the network. Dyads are not independent in a complete social network, because
they can share the same actors. Thereby, relationships influence each other by whether
their sent relationship is reciprocated by the other actor or not. Even ties with other
actors can influence the (non-)existence of ties between different actors. Instead of only

nested structures, social networks also have a crossed structure.

Figure 2. Schematic representation crossed and nested social network structure (taken
from Van Duijn, 2013)
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The actor is placed at the highest level, here level 3. The dyads are on level 2 and the
ties are at level 1. In Figure 2 taken from Van Duijn (2013), we can see the actors
on level 3 where the crossed lines represent the sent and received ties from both actors
forming a dyad on level 2. A crossed random effect is introduced between the actors
and the dyads, because every dyad contains two actors and the actors will be involved in
multiple dyads (Van Duijn, 2013). Random effects are introduced to models that make
use of complete social network data to model the variances. However, the introduction
of random effects makes the estimation of the models more difficult. Solutions for these

estimation problems are available.

2.2 p; and p, model

Complete social networks bring the violation of independency between dyads. There are
multiple different dependencies present in social networks (Snijders, 2011). For example
within dyad dependencies, where we talk about the probability of reciprocating ties. If
actor i sends a tie to actor j, it is more likely that actor j also sends a tie to actor i. An
actor is also part of multiple dyads which introduces dependencies between dyads. Also
there is a dependency between the actor’s sent ties and received ties. If an actor sends
more ties, it can impact how many ties they will receive.

A solution can be found in the p; model of Holland and Leinhardt (1981). It introduces
fixed parameters for sender and receiver and it adds a parameter for reciprocity as an
interaction effect. It captures the dependency for reciprocity, which made it more realistic
than previous models as a loglinear model. However, the problem of the p; model is that
for every actor in the network an estimate for the sender and receiver effect is calculated.
This makes the model complex with unnecessary information, creates overfitting and
generates a model that is more difficult to interpret.

We can also look at the Social Relation Model (SRM; Kenny & La Voie, 1984) and
especially its extension (Snijders & Kenny, 1999). The SRM models the sender and
receiver effect with an addition of a relationship effect. In the extension of Snijders and
Kenny (1999) they treat the sender and receiver effects as random, which allows for actor
and dyadic characteristics in the model. However, SRM considers a continuous valued
variable as outcome, not a dyadic outcome such as a (non-)existing tie which is especially
common in social network analysis and it also does not include the reciprocity found
commonly in social networks.

Exponential Random Graph Models (ERGMs) (Amati et al, 2018; Robins et al., 2007;
Robins & Lusher, 2013) includes these dependencies through local configurations in the

11



form of certain network structures (e.g. triangles, star structures). In these models the
probability of ties given the rest of the complete social network is calculated with also
possibilities for different levels of flexibility for dependence in the network. For example
it makes the assumption that if actors do not share any direct friends, they will be
further away from each other and the probability of forming ties will be smaller. It is
a very flexible model that can include multilevel structures of networks and also actor
attributes (Robins & Lusher, 2013, Chapter 2). However, computation is more difficult
and interpretation is harder for ERGMs.

The p, model combines the random effects for sender and receiver parameters from
the SRM (Snijders & Kenny, 1999) and the reciprocity parameter and dyadic outcome
from the p; model (Van Duijn, 2004). By using the p, model we overcome the problem
of the nested and crossed structure in social networks and the fact that we want to look

at a dyadic outcome with four possible combinations in one dyad (Van Duijn, 2013).

2.2.1 p; model

Holland and Leinhardt (1981) introduced the p; model to account for reciprocal ties

commonly found in social networks, as a first step to a more realistic model:

P(Y; =w,Yi =y | Ai, By, Aj, Bj) =
1
" exp{y1(p + i + B;) + y2(p + aj + Bi) + y1y2pi5}
ij
Y1, Y2 = Oa]-)Za] = 1,,TZ7Z 7&]

where

hij = 1+ exp(pij + o + B;) + exp(pji + o + Bi)+

(4)
exp(2u + o, + B + o + Bi + pij)

The model calculates the probability of a dyad occuring in a social network with actor
i as the sender and actor j as the receiver. Instead of having two outcomes (0 and 1),
a dyad has four possible outcomes. The combination y; = 1 and y; = 1 captures a
reciprocal relationship. When y; = 1 and y» = 0 or y; = 0 and y, = 1 this captures a
one-sided relationship. When y; = 0 and y, = 0 there is no relationship between actors
in the dyad (also a null dyad). In this model the reciprocity is accounted for by including
fixed parameters for sender and receiver effects o and (8 respectively and by including an

explicit reciprocity parameter p. For each actor a value for the a and 3 effect is estimated.

12



When there is a null dyad, p will not be taken into account to predict this probability.
The p parameter can be seen as the overall mean or density of the network and is thus
primarily used as the intercept of the model. This parameter is assumed to be the same

for all dyads.

2.2.2 p,; model

Van Duijn et al. (2004) extended the p; model to the ps model by treating the sender ()
and receiver () effects as random effects instead of as fixed. This makes it also possible

to include actor characteristics X as covariates related to the sender and receiver:

a; = Xy + A, (5)

Bi = X§;72 + B; (6)

With v and 7, being the regression parameters, and the parameters A and B being
random sender and receiver effects respectively. In this way, it is possible to take into
account the dependence structure by making the dyads become conditionally indepen-
dent. If u; = (A;, B;) the random effects are assumed to be normal distributed random
variables u; = Ny(0,3) with:

- ["A ""‘f] (7)

A correlation is added between the sender and receiver effects to account for the crossed
structure in a network. Each actor will be the sender as well as the receiver of directed

ties. Independence is assumed between the random parameters of different actors:
cov(A;, A;) = cov(B;, Bj) = cov(A;, Bj) =0

Another addition of the p, model is that the parameter p can contain dyad-specific
covariates which represent characteristics to account for homophily. Homophily implies
that actors with similar characteristics (e.g., sex, age) are more likely to become friends.

It is modelled as this, where §; is the parameter for homophily:

pij = b+ Z14j01 (8)

13



The parameter p measures reciprocity in the model, as it does in the p; model. It can be
modelled as this:

pij = P+ Zaij02 9)

With the possibility to also add dyad-specific characteristics. However, in this thesis we
will not use this and only will model p without the dyad-specific characteristics. The
addition of the random effects and the reciprocity parameter makes the outcome more

realistic, better interpretable, and also still manageable to estimate.

The p, model uses two dimensions for the sender and the receiver. To estimate the like-
lihood for the p, model it is necessary to multiply the two likelihoods together, resulting
in the likelihood function given the random effects A and B (Bellio & Soriani, 2020):

n—1 n
p(ylu;0) = [T T1 pwis, vsilui uj) (10)
i=1 j=i+1

With p(yi;, yji|ui, u;) corresponding to (3). The parameters that are estimated in the p,

model are:

0 = (7177%”751)/)’0-12470’2370'AB> (11)
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3 Triadic extension

3.1 Triadic data

Traditional social network methods are focused mainly on self-reported data and the
actors within the dyad. The researcher works with one two-dimensional adjacency matrix
including the actors sending ties and receiving ties from other actors (as in Table 1).
However, Bond et al. (1997) and Krackhardt (1987) considered the use of triadic data.
Here a third person is involved in judging the social relations in a complete social network.
Instead of asking participants to report (a fixed number of) their relations within a
social context, they have to report every possible relation in the complete network. The
researcher will end up with as many complete social networks as there are actors in the
network. In Figure 3 taken from Card, Rodkin and Garandeau (2010) we can see that
each perceiver has produced an adjacency matrix of the ties between senders ("Actor’)

and receivers ('Partner’).

&
N
\

Actor

[

Partner

Figure 3. Visualization of the layers in triadic data (Card, Rodkin & Garandeau, 2010)

Krackhardt (1987) discusses the use of triadic social network data based on cognitive
social structures (CSS) more in theory. The basis of these CSS lies in how an actor
perceives relations with and between their friends, and adjusts their relations according
to these perceptions. According to balance theory (Heider, 1958), if an actor k is friends
with actor ¢ and j, they may believe that ¢ and j are also friends and reciprocate their
ties. It does not matter whether actor ¢ and j are really friends and really reciprocate the
friendship to k. The idea behind these triadic data is also that the precision and consensus

of self-reported relations within a social network can be investigated. Krackhardt (1987)
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describes three ways of using these triadic data: one could aggregate the different layers,
take slices from it or use all layers in the data. In this thesis we will make use of all the
layers in the data as visualized in Figure 3. In this way it is possible to take into account

the effect of actor characteristics on the probability of a relationship between two actors.

3.2 Triadic model

A triad consist of three actors in a complete social network with six possible ties in three
dyads. Figure 4 visualizes a triad with actor ¢, j and k and the six ties between the three
actors. If we look at the dyad between ¢ and j, it consists of the ties Yj;; and Yj;;, with ¢
and j taking both the role as sender and receiver and k perceiving the ties in this dyad.
When looking at the other two dyads the roles change. The dyad between actor ¢ and
k consists of the ties Yj; and Yj;;, but here actor j perceives this dyad; the third dyad
between actor j and £ consists of the ties Yj;; and Yj;; with actor ¢ perceiving those ties.
Corresponding to the p; and p, model, the tie variables Y;;, and Yj;, can take the values
1 (relationship exists) or 0 (relationship does not exist). Just as in the p, model there

are four possible outcomes for one dyad. So in a triad there are 12 possible outcomes.

Figure 4. Visualization of a triad

Every actor in a complete social network is part of multiple triads and exchanges
the role of perceiver with the role of the sender and receiver depending on the triad
looked at. With every perceiver a layer of the triadic data is selected (see Figure 3).
Each layer is a two-dimensional adjacency matrix of a social network perceived by the
selected actor. In our model we will select and use every layer instead of only using one

two-dimensional layer. Because of this, we can use the p, model for the extension as it

16



models the probability of all dyads in a two-dimensional social network. Instead of only
using the information of the sender and receiver effects from one layer, we extend the
model with a third random effect for the perceiver. By including this parameter, it will
take into account the possible effect of the perceiver on the probability of ties existing in
a dyad. Because of the addition of this extra effect, our model for one side of the triad is

formulated as this:

P(Y;jk = yl,Y}z’k =1Y2 | Ai, BiijaBj)Ck) =

(12)
B exp{yr (e + i + By + nr) + y2(pjie + aj + Bi + Mk) + Y1y2pi1
ij
Y1,Y2 = Oa 17Z7j7k = 17 7”)2 #]7167] ?é k
where h;;, becomes
hij = 14+ exp(piji + o + B + mi) + exp(pjin + o + Bi + 1)+ (13)

exp(fijr + pjix + i + Bj + aj + Bi + 20k + pijr)

This model captures the actor ¢ as sender and actor j as receiver in a dyad, but with
the addition of the third actor k as the perceiver. In comparison with the ps model, the
addition of the random effect n for the perceiver effect is the only adjustment to connect
every perceived social network in our model. This can be explained by the following; in
Figure 4 the three different actors have different roles of sender, receiver or perceiver,
depending on which dyad is looked at. So each actor will adopt the other roles too.
This ties together the three dyads and also all the perceived layers in the triadic data. It
introduces overlap and similarity as the same three actors in a triad all occur in each of the
three dyads. Conditional on the random effects, the triads in a complete social network
are assumed to be independent. The three dyads within one triad are also assumed to
be independent given the random effects, however they still relate because of each actor
having each role of the sender, receiver and perceiver dependent on which dyad is looked
at. Thereby, the random perceiver effect (n) is correlated with the random sender and
receiver effects for the same actor. The sender (a)) and receiver () random effects are

equal to the random effects in the ps model.

We will model the fixed effects p and p and the random effects o, 8 and 7. «, 8 and 7 are
the random effects in the model and represent the sender, receiver and perceiver effect
respectively. The random effects can be regressed on the actor covariates X with A, B

and C' representing the residual variance as in Van Duijn et al (2004) and v representing
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the vector of parameters which needs to be estimated. A, B and C are also assumed to

be normally distributed. Taking the example of the dyad in (12) focusing on actor i:

o = Xu’}q + A; (14)
ni = X33 + C; (16)

The three residual terms (A;, B;, C;) are normally distributed with mean 0 and variance

Y. It results in the covariance matrix in which six variance parameters are estimated:

2
Ox 0AB 0OAC
_ 2
Y= 0AB Op OBC (17)

2
0ac OBC O¢

Independence is assumed between the residuals of different actors:
COV(Ai, AJ) = COV(Bi, B]) = COV(CZ', OJ) = COV(AZ', B]) = COV(Ai, C]) = COV(Bi7 C]) =0

for i # j. In the p, model it is assumed that the random sender and receiver effects are
dependent for the same actor (Van Duijn et al, 2004). In this extension it is also assumed
that the random perceiver effect is dependent on the sender and receiver effects for the
same actor. Consequently, covariance is introduced between these three random effects:
cov(A;, B;) = oap for all i; cov(A;,C;) = oac for all i; and cov(B;, C;) = ope for all
1. This represents an actor being part of multiple dyads and triads, but also an actor

adopting each role in a triad.

The dyad-specific parameter p is extended in comparison with the ps model. The p
parameter can be seen as the overall mean or density of the network and thus primarily
used as the intercept of the model. We assume that this parameter can contain dyad-
specific covariates which represent characteristics (Z) of the actors as a test for homophily
as it did in the p, model. However, here we compare all three actors (sender, receiver
and perceiver) for homophily. d;, d; and 03 are the parameters for the three possible

comparisons for homophily between actor ¢, j and k.

Pijk = pb+ Z13501 + Zoi02 + Z35103 (18)
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As in the p, model, for this thesis we will only estimate the reciprocity parameter p with-
out dyad-specific characteristics. However, for future research it could be a possibility.

So in this thesis p is estimated as this:

Pijk = P (19)
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4 Estimation

The parameters that need to be estimated for the triadic model are

0= (717 V2,73, My 617 527 537 P, 0'31, UQB? 0%7 OAB, 0 AC, UBC') (20>

Because we are using the ps model as the basis for our model and are extending it with
the perceiver random effect, we can also use the same estimation method. Because this
model is a generalized linear mixed model (GLMM), it is not possible to find a closed-form
solution of the likelihood. With estimation methods and calculation-ability of computers
improving, estimations of parameters become more precise. Originally, iterative general-
ized least squares was used for the ps model (Van Duijn et al, 2004) and later Bayesian
estimation proved to be more accurate (Zijlstra et al, 2009). However, Bellio and So-
riani (2020) estimated the p, model with maximum likelihood estimation (MLE) based
on Laplace approximation and concluded that it performs well. Since the Laplace ap-
proximation performs well and is easier to understand, better interpretable and faster to
execute compared to the other estimation methods, we will use this approximation for

the triadic model.

4.1 Likelihood function

In (10) we formulated the likelihood function for the p, model which uses two dimensions
for only the sender and the receiver. We integrate out the random effects for the p, model
(Bellio & Soriani, 2020):

L(0) = /RQP(?JW;@){H ¢a(ui; 0, 2)} du (21)

With u; = (A;, B;) and ¢, following a bivariate normal density.

Because of the N layers of perceived networks in the triadic model, we need to add
another dimension to estimate the likelihood of the triadic model. To do this we need to
add another multiplication to (10) to capture and estimate the perceiver random effect

and extra variance parameters. The likelihood function that follows is

1 n
H P(Yijk, Yjir| Ai, B, Aj, B, C) (22)
=i+l

With p(Yijk, yjir|Ai, Bi, Aj, Bj, Cy) corresponding to (12)
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Because of the addition of the third multiplication in (20), we need to integrate out more
random effects than in the p, model to obtain ¥ in (17). We can still follow the logic of
the p, model, so it follows that

L(0) = /R3 P(?/|U;9){H ¢3(ui; 0, E)} du (23)

With u; = (4;, B;, C;) and ¢3 following a trivariate normal density.

4.2 Laplace approximation

Laplace approximation is a method that can be used in situations where estimation is
harder because of the complexity of the model and the data. It uses Taylor series to
approximate the integral of a function (Shun & McCullagh, 1995). In this way it is
possible to assume a normal distribution of fixed and random parameters using at least
first order derivatives. Making it possible to use maximum likelihood estimation (MLE)
for this model because of this approximation method and to find convergence for the
parameters estimated. It is a fast method to approximate the estimates, especially in
comparison with an approximation method such as Monte Carlo simulations which can
be computational expensive. The parameter estimation of Laplace approximation is also
accurate in comparison with other methods (Bellio & Soriani, 2020; Azevedo-Filho &
Shachter, 1994).
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5 Application

5.1 Implementation software

To apply the triadic model to real data, the model is programmed in C++ and R. Bellio
and Soriani (2020) shared their code on Github (Bellio & Soriani 2019a) of the application
for the p, model with Laplace approximation. It includes C++ code and code in R (to
create a function to estimate the model and for their R package). Because our model
is an expansion of the p, model with the same estimation method as Bellio and Soriani
(2020), we used this code as a base to program the triadic model.

The R package Template Model Builder (TMB) is used which can implement complex
random effect models using Laplace approximation to estimate the negative log likelihood
(Kristensen et al, 2025). To use this in R, a separate C++ file is programmed where the
exact model is formulated to use for estimation. This includes the declaration of all
parameters, the data, the calculation of the model formula in (12) of the triadic model
as well as the calculation of the covariance matrix ¥ in (17). The C++ is compiled and
used in R within the TMB package and the TMB function MakeAdFun.

Together with an optimization function in R (we used the optimization function
nlminb), the TMB package and the C++ file, the parameters are estimated. This R
code and the C++ code can be found in Appendix D and G.

5.1.1 C++ code

In the C++ code the triadic model is defined. It includes parameters, the data format,
the calculation of the covariance matrix and the calculation of the fixed effects. We
concluded that it is possible to adjust the code of Bellio and Soriani (2019a) to implement
the changes found in the triadic model compared to the ps model.

We made three changes to the data format. First, we include actor characteristics for
the perceiver (a separate dataframe). Secondly, the dimensions for the triadic data were
changed, because it has a dimension more than in the p, model. The last change is that
we added a dimension for reciprocity (see Appendix D). The data format for sender and
receiver characteristics and the density (homophily) effects were not changed from the
p2 model. The actor characteristics are dataframes and the input for density effects is a
three dimensional array.

The parameters that we added to the model found in (20) are also included in the
code (see Appendix D). 73 and ¢ are added for the addition of the perceiver, d, (dyadic

comparison between actor i and actor k) and 05 (dyadic comparison between actor j and
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actor k) are also added for the addition for the calculation of p;;;. Because of this d,
becomes the parameter that is estimated for p. The parameter alpha in the parameter
section contains the variances, and consists of 6 elements that we use to calculate the
covariance matrix.

A vital part of the code that is changed in the C++ file are the calculations of the cor-
rect values for the covariances matrix ¥ for the triadic model, which is a 3 x 3 matrix. For
the estimation, we need ¥~!. Bellio and Soriani (2020) used the Cholesky decomposition
to calculate the inverse of the covariance matrix. We also use the Cholesky decomposition
to calculate 7! of the triadic model. The calculations are found in Appendix A and B.

For the estimation of the fixed parameters, we changed the code to capture the third
dimension of each layer of each perceiver. We also adjusted some indices so the correct
values are taken into account to calculate (12). We added the parameter n (perceiver)
for calculating the estimated negative log likelihood of the model. In Appendix C and
Appendix D we added the C++ code for the p; model and our code for the triadic model

respectively so it is more clear what we changed.

5.1.2 R code

In the R code we also made changes. In this phase we chose to focus on step by step code
and not a function or package. The only package we used for estimation is TMB. The first
step in R after loading this package is compiling the C++ code. After compiling we can
load the compiled file into R.

Before running TMB, we added the random and fixed parameters that will be es-
timated, as well as the input of the function and other changes were made to obtain
the correct output. These are the same parameters added in the C++4 file. We made
a separate dataframe for the actor characteristics of the perceiver and we adjusted the
input of reciprocity to a four dimensional array. For the density (homophily), matrices
were created for the differences in actor characteristics and put in one array with the first
array containing 1’s. For example we can measure differences between actors to create a
binary matrix by comparing all combinations of two actors whether they have the same
sex (1) or not (0).

After creating the correct data input, the compiled C++ file is loaded into R. The
TMB function MakeAdFun will return a list with functions to calculate the objective
function and its gradient (partial derivatives). This objective function and its gradient
are put in the optimization function nlminb to estimate the parameters. The starting

values for the parameters come from the output of this objective function. We set the
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lower bounds at —oo for the fixed parameters and the variances and at 0 for the random
covariances. After estimation of the parameters, the function sdreport calculates the
standard errors of all the parameters with the optimized parameters as input (Kristensen
et al, 2025).

We will compare the triadic model with the ps model. For the results of the ps model the
package p2model made by Bellio and Soriani (2019a) is used with the packages remotes
and NetData.

5.2 Description data

We will use the high-tech managers data of Krackhardt (1987). The data describes
the friendship relations of 21 managers (actors) in an organization. Every manager in
this network was asked to look at each combination of the actors and was asked to
indictate whether they had a friendship or not. Because of this, our data consists of 21
complete social networks for each of the 21 managers. For each manager we also have
information about their characteristics age (in years), department of the manager in the
organization (department), duration of employment in the organization (tenure) and
level of seniority in the organization hierarchy (level) where 1 is the highest level and
3 the lowest level of seniority. The triadic data can be found in the package cssTools
under "highTechManagers’.

We will use all the layers of the triadic data collected by Krackhardt (1987). We will
use the age and tenure as actor characteristics for the sender, receiver and the perceiver.
The mean of the age of the 21 managers is 39.71 with standard deviation 9.56 with a
minimum age of 27 and maximum age of 62. The average duration of employment is 11.74
years with standard deviation 8.04. The correlation between age and tenure is r = .489.
To measure potential homophily in this social network, we will add three matrix variables
to our model which indicate; the absolute differences in age between the sender, receiver
and perceiver; whether each actor in the network works in the same department (1) or
not (0); and whether they have the same level of seniority (1) or not (0). In Figure 5¢ we
visualized the distribution of managers over each department. In Figure 5d we visualized

the distribution of seniority of the 21 actor, which is not evenly distributed.
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Figure 5. Distribution of age, tenure, department and seniority

Bellio and Soriani (2020) also used this high-tech managers data, but they used the
aggregated data of all the layers (two-dimensional dataset) for the p, model. We use
this data as example for self-reported data, so it is possible to compare the ps model
with the triadic model. For the comparison with the p, model we will follow the vignette
made by Bellio and Soriani (2019b). It uses the same actor characteristics for the sender
and receiver and the same homophily variables. The attributes of these data (for both
models) can be found in the package NetData under ’kracknets’. Also the aggregated

data is stored here.
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We want to describe the self-reported social network data and two of the layers from the
triadic data. We randomly selected the perceived social network of actor 2 and actor 19.
First we will take a look at the adjacency matrices. In Table 2 we see the first five rows of
the adjacency matrix of the aggregated data which represents the self-reported data. We
can see for example that actor 1 sends ties to actor 2, 4, 8, 12 and 16. Actor 21 receives
(of the first five rows displayed) ties from actor 2 and 5. And we can also see reciprocal

ties between actor 1 and 2.

123 45 6 78 9 10 11 12 13 14 15 16 17 18 19 20 21
1f- 1010001800 0 1 0 0 0 1 0 0 0 0 O
211 oooo06o0oo000 0 O 0O 0O O OO0 1 0 0 1
3fo 0 - 000O0O0OO0OOTO0O O O 1 0O 0 O0O 0 1 0 0
411 1 - 000100 0 1 0 0 0 1 1 0 0 0 O
510 1 o-0001o0 1 0 0 1 0 0 1 0 1 0 1

Table 2. Adjacency matrix for self-reported data (first five rows)

In Table 3 we see the adjacency matrix perceived by actor 2. Actor 1 still sends a tie
to actor 2, 12 and 16 according to the perceiver. However not to actor 4 and actor 8
compared to the self-reported data. We can still see the reciprocal ties between actor 1
and actor 2. According to the perception of actor 2, actor 21 only receives a tie from

actor 2 of these five rows displayed.

123 45 6 78 9 10 11 12 13 14 15 16 17 18 19 20 21
11- 1 6ooo0oo06o00o0 01 0 0O 0O 1 0 0 0 0 O
211 - oo0oo0oo0o00o0 0O O OTOTO0O OO T1T 0 0 1
3fo 0 - 0000O0OO0OOO0O O O 1 0 0 0O 0 0 0 O
4]0 0 0 - 00010 0O O 1 O O O O O OC O O O
50 r 00 - 00O0OO0OO O O O OO O O O 1 0 O

Table 3. Adjacency matrix perceived by actor 2 (first five rows)

The adjacency matrix in Table 4 is perceived by actor 19. In comparison with Table
2 (the self-reported data) and with the social network perceived by actor 2 in Table 3,
actor 19 perceives actor 1 sending ties to actor 2, 4 and 16. But not to actor 8 and actor
12. According to actor 19 there is no reciprocal relationship between actor 1 and actor 2.

And actor 21 receives only a tie from actor 2 of the five actors displayed in these tables.
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123 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1f-1010000O0OO0CO0OO0O OO0 O 1 0 O 0 0 O
26 - o00010O0O0O0O OO O 1T 0 O 0 0O 0 0 1
3fo 0 - 0000O0OO0OO1 0 O0O 1 0 0 0 0 1 0 0
40 0 0 - 0 OOO0OOO O OO O O O O O O 0 O
510 0 o-0001o0 0 0 0O 1 0 0 0 0 1 0 O

Table 4. Adjacency matrix perceived by actor 19 (first five rows)

The characteristics density (the proportion of existing ties of the potential ties in the social
network) and reciprocity (the proportion of reciprocal dyads of all dyads possible in this
social network) give us another description of the social network data. We calculated the
density and proportion of reciprocal dyads for each perceived network of the triadic data
and the self-reported data. The density of the self-reported data is 24.29%. In Figure 6a
we can see that the distribution of proportion of number of ties perceived is skewed. With
the density being less than 10% for just more than half of the 21 perceived networks. The
proportion of reciprocal dyads for the self-reported data is 10.95%. In Figure 6b we can
see that the proportion of reciprocal ties for a lot of layers is below 6%. With an outlier
towards the 12%.

o
o
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~
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N
o

0.0 I I

5 10 15 6 8
Density Proportion reciprocal ties

(a) Density (b) Reciprocal ties

Figure 6. Distribution of density and proportion of reciprocal ties of 21 layers
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The sociograms of the three social networks can give us more information about the
structure of our social networks (the self-reported data, the layer perceived by actor 2
and by actor 19). They are visualized in Figure 7. We visualized all actors in the social
network. We can see that in Figure 7a all actors are connected. For example, we can see
that actor 3 receives five ties and sends 1 tie to actor 14. Between actor 4 and actor 8
we can see an example of reciprocal ties. In Figure 7b the social network is visualized as
perceived by actor 2. We can see that less ties are perceived and there are a lot of isolated
actors. These are actors without ties. According to perceiver 2 there is a clique of actors
in the network. When looking at the social network perceived by actor 19 (Figure 7c),

only actor 10 is isolated from the rest of the actors. Actor 1 receives ties from actor 2,

12, 16 and 18 according to perceiver 19.

(c) Perceiver 19

Figure 7. Sociograms of the self-reported data and perceived by actor 2 and 19
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5.3 Results

During the process of programming the triadic extension we discovered some problems.
First we programmed the model as defined in Chapter 3. We were able to estimate the
parameter values, however we could not estimate the standard errors of the parameter
values. There could be multiple explanations to this problem. One of them is multi-
collinearity which could be due to the density parameter that measures homophily. We
decided to try to only include the homophily between actor ¢ and actor j, and only es-
timate 0, for s, which also includes the intercept p. After this modification, it was
possible for R to estimate the standard errors. This version of the C++ code can be
found in Appendix E.

We will take this version to show the results and compare where possible to the
results of the py model. This indicates that we will compare self-reported dyads with
dyads perceived by a third actor in the triad. In the discussion we will further explore
possible solutions to estimate the full model described by us in Chapter 3. We tested the
parameters in the model with the Z-score and a two-tailed test. The results can be found
in Table 5. Rstudio version 2024.12.0+467 is used with R version 4.4.2 (R Core Team,
2024).

First we take a look at the individual level effects. These are the sender, receiver and
perceiver effects (Table 5). We found a negative effect of age on sending ties in the
pe model (y; = —.131(.059), p = .027). The older the actor, the less friendship ties
they will send. This effect does not exist in the triadic model (y; = —.001(.019), p =
.954). The effect of duration of employment (tenure) on sending ties is positive in the
pe model (y; = .140(.062), p = .024). Meaning that the longer an actor is employed,
the more ties they send. However, in the triadic model this effect perceived by a third
actor is not present (vy; = .037(.022), p = .095). If we look at the receiver effects, the
effect of age on receiving ties is not significant in the ps model as well as in the triadic
model (pa: 72 = —.002(.035), p = .952; triadic: v, = —.0003(.0369), p = .993). The
effect of duration of employment on receiving ties increases somewhat. A small positive
effect (po: 72 = .045(.041), p = .277; triadic: v, = .076(.044), p = .083) indicates the
longer someone works at the organization, the more ties they receive. For the triadic
model this means that this indication is perceived by other actors. However it is not
significant in both models. The added perceiver effects show some small effects. Age
of the perceiver has a small negative effect (y3 = —.017(.021), p = .437) on perceiving

ties. The effect of duration of employment of the perceiver on perceiving ties is small and
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positive (v3 = .022(.025), p = .375). If the effects were larger, it could indicate that the
older the perceiver is, the less likely they will perceive ties between other actors and the

longer the perceiver is employed at the organization, the more likely they will perceive

ties.
Results p; and Triadic Model
p2 Model Triadic Model
Effect Estimate S.E. Estimate S.E.
Sender Age -.131%* .059 -.001 .019
Tenure 140* .062 .037 .022
Receiver Age -.002 .035 -.0003 .037
Tenure .045 041 .076 .044
Perceiver Age - - -.017 .021
Tenure - - .022 .025
Reciprocity P 2.117** 633 2.783%H* .186
Density 1 .039 1.735 -5.719* 2.271
Department 1.576%+* .348 1.723%%%* A11
(same = 1)
Seniority 1.154%* 405 1.101%%* 17
(same = 1)
Age diff. -.055%* .025 -.035%#* .007
(Co)variances
Sender o? 2.054 950 413 173
Receiver 0%, 998 .565 1.789 .685
Perceiver o2, - - .56 207
Sender-Receiver OAB -1.136 .637 .595 278
Sender-Perceiver oaC - - .149 .129
Receiver-Perceiver ope - - 531 275

Table 5. Estimates and standard errors p, model and triadic model,;
*p = .05, **p < .01, ***p < .001

We will now look at the dyad-specific level effects of p and p. The effect of reciprocity
is high in both the py model (p = 2.117(.633), p = .001) and the triadic model (p =
2.783(.186), p < .001), indicating that there is reciprocity in the social network attributing
to the probability of a tie existing between two actors. However, the standard error in

the triadic model is lower than in the py model. This is interesting, because it makes the
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triadic model more precise. As mentioned in this thesis, a goal of using the perceived
layers in the triadic data is improving the precision of self-reported relations. We have
more data, so a larger "sample” for making it more precise. The parameter p for the
density, is low in the triadic model (¢ = —5.719(2.271), p = .012) and also in the py
model (p = .039(1.735), p = .982). This is a common phenomenon when dealing with
larger networks. Because the triadic data exist of multiple layers of social networks, a
lot more dyadic data is available as in larger networks. It also depends on the number of
dyadic covariates added to .

The first effect for homophily is being part of the same department. The probability
of having a friendship relation increases when both actors are in the same department
in comparison with not being in the same department. This effect is present in the py
model (§; = 1.576(.348), p < .001) and we can see a similar effect in the triadic model
(61 = 1.723(.111), p < .001). So the increase in probability of having friendship relations
in the same department is also perceived by the third actor in the triad. The probability
of a friendship existing is also higher when the two actors have the same level of seniority
in comparison with not having the same level of seniority. This is also present when
perceived by a third actor. The effect in the p, model (6, = 1.154(.405), p = .004) is also
similar to the effect in the triadic model (6; = 1.101(.117), p < .001). Here the standard
error is also lower for the triadic model than in the p, model. When we look at differences
in ages, we can see a small negative effect in both the p, model (§; = —.055(.25), p =
.026) and the triadic model (§; = —.035(.007), p < .001). The probability of a friendship
between two actors decreases when differences in age increases. This effects seems to be
especially perceived by a third actor. It is a small effect and also here the standard error

is lower for the triadic model.

We will now look at the variances in sender (0% ), receiver (0%) and perceiver (o2 activity.

For the sender (variation between actors how many ties they send) the variance is higher
in the p; model (0% = 2.054(.950)) than in the triadic model (0% = .413(.173)). This
can be explained by the fact that in the p, model the sender is also the perceiver of
the self-reported ties. For the receiver (variation between actors how many ties they
receive) the variance is in the triadic model (0% = 1.789(.685)) similar as in the p, model
(0% = .998(.565)). The higher standard error of the triadic model could be explained
by the distance of the perceiver to certain actors in the social network and being more
informed about actors close by such as friends of friends. Maybe perceiving received ties
at more extreme values (having no ties or more ties). For the perceiver (variation between

layers how many ties are perceived) the variation is only calculated in the triadic model
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and is 02 = .556(.207).

We are also interested in the covariances between sender, receiver and perceiver. The
covariance between sender and receiver effect of the same actor (o45) is negative in the
p2 model (045 = —1.136(.637)). Meaning the more an actor sends ties, the less they
receive ties. However, in the triadic model the covariance is positive ((c4p = .595(.278)).
Meaning the more sent ties are perceived, the more received ties for the same actor are
perceived. These two opposite results can be explained by how the data is collected. The
negative effect in the self-reported data could be explained by how every actor only needs
to indicate who they see as their friends and not whether the friendship is reciprocal.
Making it possible that not all those friends will nominate them as friends. In this case
many sent ties makes an actor more sociable (and thus not immediately seen as more
popular), many received ties represents an actor as more popular. The perceiver however
looks at every directed tie in the network. It is possible that the number of received and
sent ties by the same actor become almost equal according to the perceiver. The perceiver
subconsciously does not differ a more social actor from a more popular actor. It could be
possible that the perceiver judges an actor as also sending more ties when receiving more
ties and receiving less ties when sending less ties. This also lies in the basis of CSS where
a perceiver adjusts their own relation on the basis of what they perceive. The covariance
between sender and perceiver (0 4¢) is only estimated in the triadic model and is positive
but small (g4c = .149(.129)). Meaning the more send ties that are perceived by an actor,
the more ties are perceived in general. The covariance between receiver and perceiver
opc is also only estimated in the triadic model and is positive (opc = .531(.275)). The

more received ties perceived by an actor, the more ties are perceived in general.
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6 Discussion

In this thesis we have built a triadic extension of the p, model using Laplace approxi-
mation based on Bellio and Soriani (2020). Instead of using self-reported data we used
triadic data where every actor in the social network perceives every directed tie in the
network. It was possible to program the triadic model, however only the version without
the homophily comparisons between actor ¢ and actor k, and actor j and actor k£ would
converge. This version was evaluated in the results and compared to the ps model. The
results show that the triadic model works. In comparison with the results of the p, model
some results were more precise in the triadic model. Especially for the parameter p and
the homophily effects the standard errors are smaller in the triadic model compared to
the p2 model. This can be explained by the fact we have more information and network
data than the self-reported data. The variance of the sender was higher in the p, model
than in the triadic model. The variance for receiver was similar for both models, but
the standard error was higher for the triadic model. The covariance between sender and
receiver was negative for the p, model and positive for the triadic model. Which could
possibly be explained by how the data is collected.

The addition of the perceiver effect was not significant in our example. However,
it is interesting we can now measure with this effect to what extent an actor perceives
other ties different from theirs dependent on certain characteristics of the perceiver. The
variance of the perceiver now gives information about the variation between the N layers
how many ties are perceived. The covariance between sender and perceiver is positive
in our example and the covariance between receiver and perceiver is also positive. This
indicates that for the same actor, if they send or receive more ties, they are also more
likely to perceive more ties in their role as perceiver.

We can link these results to our theory. In the cognitive social structures of Krackhardt
(1987) it is described that how an actor perceives the relationships of themselves and their
friends, influences how this perceiving actor is adjusting their relationships accordingly.
Where the balance theory of Heider (1958) can play a role in this perception. It does not
matter whether the perception is correct, the third perceiving actor believes it exist and
acts accordingly. Each actor in the triadic data gives us this judgement about whether
they perceive relationships or not between all the actors. And we are able to measure
certain actor characteristics which can effect the perception of these relations existing or
not. We can observe variance of the number of perceived relations between all the actors
(the N social network layers in the triadic data), which indicates that perception of the

relationships within a social network is different among actors. Whether it is a correctly
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identified relationship or not. This model gives us more information about the role of
the third actor k£ perceiving the relationship between actor ¢ and j and gives us more
information about the effect of the perceiver, the third actor, on the dyadic probability
between the two other actors in the triad.

We also concluded that in our example in some cases the standard errors were lower
in the triadic model compared to the p, model and the estimated parameter value was
similar to the value in the p; model. Krackhardt (1987) stated that these triadic data
could be also used to investigate the precision and consensus of self-reported data. The
lower standard errors indicate more precise results. However, we cannot fully conclude
only with the example in this thesis that the triadic model gives more precise results of
these effects. Future research could look into this through for example simulation studies.
The variance of the perceiver can be used to investigate the consensus of self-reported

data.

The biggest problem in this thesis was the multicollinearity found when programming
the homophily parameters d;, do and d3. For the comparisons between actor i and j,
actor ¢ and actor k, and actor j and actor k. We were able to include the comparison
between actor ¢ and 7 and the model was able to converge, but not with the other pairs.
Correlations between variables we added could produce this problem. As we showed, the
correlation between tenure and age was already higher. But we also ran into the overlap
where all the N actors fill in the role of the sender, receiver and perceiver. If we compare
similarities in actor characteristics between actor i and j, there is overlap (or correlation)
when comparing actor ¢ and actor k and after that actor 7 and actor k. A possible solution
in future research is looking into a restriction on which variables and characteristics can be
added and which characteristics can be compared to measure homophily between actors
especially between the three pairs. In theory, we want to include all three comparisons in
1, because all three pairings are important and can give us more information. However in
practice, the correlations between variables and the overlap in use of data; every actors
being part of each role; and the sparse network data ask for a thorough investigation
where computational problems lie and which combination of variables can be used. Also
other more common solutions that can solve multicollinearity can be investigated whether
they work for this triadic model.

In this thesis we made the assumption that adding the perceiver parameter 7 in
combination with the triadic data is sufficient to argue that we can model triads in a
realistic way. Also because every actor will take the role of sender, receiver and perceiver

and consequently ties together the three dyads in a triad. We showed that we now
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can model the effect of actor characteristics of the perceiver on the dyadic probability.
However, one can argue that maybe this assumption is too bold. We can now estimate
the probability of each dyad in the social network and separately all three dyads in a
triad. But maybe a further step needs to be taking in future research to tie those three
dyads together. A possible way could be to add a triadic effect to the model besides the
perceiver effect that we added.

For the comparison between the estimates of the p, model with the triadic model
we used the aggregated data as self-reported data. This is not the same as the usually
self-reported data where the actor is asked who their friends are from the predetermined
social group. Because of this, the density and proportion of reciprocity can be somewhat
higher than normal. However, we used it so we could compare the two models and it still
gives a good inside in what the triadic data and model brings. It brings something to
consider what happens subconsciously when actors self-report their relations or when they
perceive the whole network and the effect of this on evaluating their own relationships.
Other recommendations are adding dyad-specific characteristics to p, calculating the AIC
and the BIC for the triadic model and evaluate their use, and looking at other assumptions
that need to be adhered to for a good model fit.

Next, we also want to measure how well the triadic model fits on the triadic data. This
can be the triadic high-tech managers dataset, but also other datasets providing triadic
social network data where every actor reports every directed tie in the social network.
For this we can use goodness-of-fit tests. As Bellio and Soriani (2020 suppl.) did for
the ps model with Laplace approximation, we also can simulate networks from the fitted
model and calculate certain descriptive structures from these models. Examples for these
structures are the proportion of triads (triangles), the indegree or outdegree and compare
it to the observed social network. However, it needs to be investigated in further research

which structures can be used for goodness-of-fit tests for the triadic model.

We described in this thesis an extension of the py model using triadic data. To model
the dyadic probabilities including the perception of the third actor in a triad on the re-
lationships of others. It was possible to converge a large part of the model, because we
encountered the problem of multicollinearity when programming the whole model. The
results provide more information about the role and characteristics of the perceiver on es-
timating the probability of a dyad. More research needs to be done on the implications of
using certain actor characteristics on convergence of the whole model. Recommendations
for future research were made to ensure that researchers can eventually use this model

to answer research questions concerning cognitive social structures and balance theory.
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8 Appendix

A: Cholesky decomposition

We are looking for the Cholesky decomposition of the covariance matrix for the triadic
model. 6 elements (three variances, three covariances) need to be calculated with the use

of o which needs to be estimated.

2
04 0AB 0AC
_ 2
E— OAB O'B OBC

2
0Aac 0OBCc O¢

In our C++ code we use the vector S() and alpha() consisting of 6 elements. C++ starts

counting at 0. These are the places in the vectors linked to the (co)variances.
0=0%1=04p,2=0%,3=0ac,4=0pc,b =05

0 oap 0ac
1 2 oOBC
3 4 5

The calculation for the Cholesky decomposition is:

A=LL"

Where L is the lower triangular matrix and L is its transpose. For the Cholesky decom-
position we assign also letters to these places to make it easier for ourselves in assigning

the correct places for the Cholesky decomposition.

a 0 0
L=1b ¢
d e
And now the Cholesky decomposition
a 0 0 a b d a? ab ad U% OAB OAC
A=1b ¢ 0 c e|l=|ab V*+ bd + ce = |oap 0% oBC
d e 00 f ad bd+ce d®+e*+ f? oic Opc O&
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So it follows that:

o = S(0) = alpha(0) + alpha(0)

oap = S(1) = alpha(0) + alpha(1)

0% = S(2) = alpha(1) * alpha(1) + alpha(2) * alpha(2)

oac = S(3) = alpha(0) * alpha(3)

opc = S(4) = alpha(1) * alpha(3) + alpha(2) * alpha(4)

o2 = S(5) = alpha(3) * alpha(3) + alpha(4) * alpha(4) + alpha(5) * alpha(5)
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B: Calculation determinant and inverse

For our likelihood we need the inverse of the covariance matrix found with the Cholesky
decomposition. For this we need the adjugated matrix and the determinant. For this we
are still using the place numbers for each element in the covariance matrix to program

this correctly in our C++ code. The matrix is symmetrical so transpose is the same.

01 3
A=1{1 2 4
3 4 5
2 4 |14 |l o2
450 |35 |34
|3 o o
450 135 |34
13 o3l o1
2 4 |14 |12

All these elements in the matrix A% needs to be divided by the determinant of A. The

numbers again indicated the places in vectors responding to the (co)variance. Which is:

2 4
4 5

1 4
35

1 2

det(A) = 0 +
3 4

— 1% + 3 %
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C: C+4++ code p; model (Bellio & Soriani, 2019a)

#define TMB_LIB_INIT R_init_mypkg
#include <IMB. hpp>

template<class Type>
Type objective _function <Type>::operator() ()
{
/* data section x/
DATA MATRIX(XnS ) ;
DATA MATRIX(XnR ) ;
DATA ARRAY (XvD) ;
DATA ARRAY (XvC) ;
DATAMATRIX(y ); //network
DATA INTEGER/( penflag );
DATA VECTOR( penSigma ) ;

/+* Parameter section x/
PARAMETER VECTOR(gammal ) ;
PARAMETER VECTOR( gamma?2 ) ;
PARAMETER VECTOR( deltal );
PARAMEIERVECTOR(deItaQ)
PARAMETER VECTOR(
(a
(b

7

PARAMETER VECTOR( a ) ;

);

int kd = XvD. cols ();
int ke¢ = XvC. cols ();
int g = y.cols ();

Type nll=0.0; // Negative log likelihood function
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vector<Type> S(3);
vector<Type> S1(3);

I

)

+ alpha(2)

* alpha (2);

(1) = S(1);

S(0) = alpha(0) x alpha(0);

S(1) = alpha(0) % alpha(1);

S(2) = alpha(1) = alpha(1)

Type DS = S(0) = S(2) — S

S1(0) = S(2) / DS;

S1(1) =— S(1) / DS;

S1(2) = S(0) / DS;

Type quadu = (
((axb).sum()) * S1(1) * 2.0 +
((bxb).sum()) * S1(2);

nll —=

ADREPORT(S ) ;

// nll from y
vector <Type> XSgl

vector <Type> XRg2

for (int i=0;i<(g—1);i++)
for (int j=i+1;j<g;j++)

{

Type yl = y(i,j);

Type y2 = y(j,i);

Type alphai = XSgl(i) +
Type alphaj = XSgl(j) +
Type betai = XRg2(i) +
Type betaj = XRg2(j) +
Type muij = 0.0;

Type muji = 0.0;

b
b

XnS * gammal;
XnR * gamma2;
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(axa).sum()) * S1(0) +

—0.5 * quadu — g * 0.5 % log(DS);

//alpha_i in the
//beta_i

model



for (int k=0;k<kd;k++)

{

muij += XvD(i,j,k) * deltal (k);

muji += XvD(j,i,k) % deltal (k);

}
Type rhoij = 0.0;
for (int k=0;k<kc;k++)

rhoij += XvC(i,j,k) x delta2(k);

Type xil = muij + alphai + betaj;
Type xi2 = muji + alphaj + betai;
Type xi3 = muij + muji + alphai + betaj + alphaj + betai + rhoij;
Type den = 1.0 + exp(xil) + exp(xi2) + exp(xi3);
nll —= yl % xil 4 y2 % xi2 + rhoij % yl % y2 — log(den);

Type pen = 0.0;
Type rho = S(1) / sqrt(S(0) = S(2));

if (penflag==1)
pen = 0.5 * log(DS);

if (penflag==2)

Type rhoinfo = penSigma(1l) / sqrt(penSigma(0) * penSigma(2));
pen = 0.5 * log(DS) + Type(2) * log(S(0)) + Type(2) * log(S(2))

— (Type(2) / sqrt(penSigma(0))) * sqrt(S(0)) — (Type(2) /
sqrt (penSigma(2))) * sqrt(S(2)) — pow(rho—rhoinfo, Type(2))
/ 0.125;
}
nll —= pen;
ADREPORT(rho );
REPORT (pen ) ;
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return nll;
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D: C++ code complete triadic model

#define TMB_LIB_INIT R_init_mypkg
#include <IMB. hpp>

template<class Type>
Type objective _function <Type>::operator() ()
{
/* data section x/
DATA MATRIX (XnS ) ;
DATA MATRIX(XnR ) ;
DATA MATRIX (XuP ) ;
DATA ARRAY(XvD); //still will have 3 dimensions, 21,21,N covariates+I
DATA ARRAY (XvC); //will have 4 dimensions, 21,21,21,1
DATA ARRAY(y); //network, 8 dimensions

/* Parameter section x/

PARAMETER VECTOR(gammal ); //sender

PARAMETER VECTOR(gamma2); //receiver

PARAMETER VECTOR/(gamma3); //perceiver
PARAMETER VECTOR( deltal ); //first parameter mu
PARAMETER VECTOR( delta2); //second parameter mu
PARAMETER VECTOR( delta3 ); //third parameter mu
PARAMETER VECTOR( delta4 ); //rho

PARAMETER VECTOR( alpha ); //vector all (co)variances, in R ¢(1,0,1,0,0,1)
PARAMETER VECTOR(a ) ;

PARAMETER VECTOR(b ) ;

PARAMETER VECTOR( ¢ ) ;

int kd = XvD. cols ();
int kc = XvC. cols ();
int g = y.cols();
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Type nll=0.0; // Negative log likelihood function

/* Cholesky decomposition and inverse covariance matriz */
vector<Type> S(6);
vector<Type> S1(6);

S(0) = alpha(0) x alpha(0); //a

S(1) = alpha(0) = alpha(1); //ab

S(2) = alpha(1l) = alpha(l) + alpha(2) = alpha(2); //b

S(3) = alpha(0) x alpha(3); //ac

S(4) = alpha (1) * alpha(3) + alpha(2) = alpha(4); //bc

S(5) = alpha(3) x alpha(3) + alpha(4) % alpha(4) +
alpha(5) * alpha(5); //c

Type DS = S(0) % (S(2) = S(5) — S(4) = S(4)) — S(1) =
(S(1) % S(5) — S(3) * S(4)) + S(3) * (S(1) * S(4) — S(2) * S(3))

S1(0) = (S(2) = S(5) — S(4) = S(4)) / DS;

S1(1) =— (S(1) = S(5) — S(4) * S(3)) / DS;

S1(2) (S(0) %= S(5) — S(3) = S(3)) / DS;

S1(3) (S(1) = S(4) — S(2) = S(3)) / DS;

S1(4) = — (5(0) * S(4) — S(1) = S(3)) / Ds;

S1(5) = (S(0) % S(2) — S(1) = S(1)) / DS;

Type quadu = ((axa).sum()) * S1(0) + ((axb).sum()) = S1(1) * 2.0 +
((bxb).sum()) * S1(2) + ((axc).sum()) * S1(3) % 2.0 + ((b*c).sum()) =*
S1(4) = 2.0 + ((cxc).sum()) = S1(5);

nll —= —0.5 x quadu — g * 0.5 % log(DS);

ADREPORT(S) ;

/+* Defining fized effects triadic model */

// nll from y
vector<Type> XSgl = XnS x gammal; //alpha_i in the model

vector<Type> XRg2 = XnR * gamma2; //beta_i
vector<Type> XRg3 = XnP % gamma3; //eta_k
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for (int k=0; k<g; k++)
for (int i=0; i<(g—1); i++)
for (int j=i+1; j<g; j++)

{

if(i =k [[ ] =k) {

continue;

¥

else {

Type yl = y(i,j,k); //here we make use of the actual data
Type y2 = y(j,i k);

Type alphai = XSgl(i) + a(i);
Type alphaj = XSgl(j) + a(j);
Type betai = XRg2(i) + b(i);
Type betaj = XRg2(j) + b(j);
Type etak = XRg3(k) + c(k);

Type muijk = 0.0;
Type mujik = 0.0;
for (int t=0;t<kd;t++)
muijk += (XvD(i,j,t) * deltal(t) + XvD(i,k,t) % delta2(t));
mujik += (XvD(j,i,t) % deltal(t) + XvD(j,k,t) * delta3(t));
}
Type rhoij = 0.0;
for (int t=0;t<kc;t++)
rhoij 4+= XvC(i,j,k,t) % deltad(t);

Type xil = muijk + alphai + betaj + etak;
Type xi2 = mujik + alphaj + betai + etak;
Type xi3 = muijk + mujik + alphai + betaj + alphaj + betai +

etak + rhoij;
Type den = 1.0 + exp(xil) + exp(xi2) + exp(xi3);
nll —= yl % xil 4 y2 % xi2 + rhoij % yl % y2 — log(den);

1

vector<Type> R(3);
R(0) = S(1) / sqrt(S(0) = S(3));
R(1) = S(2) / sart(S(0) = S(5));

48



}

return nll;
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E: C++ code triadic model results

#define TMB_LIB_INIT R_init_mypkg
#include <IMB. hpp>

template<class Type>
Type objective _function <Type>::operator() ()
{
/* data section x/
DATA MATRIX (XnS ) ;
DATA MATRIX(XnR)) ;
DATA MATRIX (XnP ) ;
DATA ARRAY (XvD); //will have 8 dimensions, 21,21,z alleen i,j similarity
DATA ARRAY (XvC); //will have 4 dimensions, 21,21,21,1 (is rho)
DATA ARRAY(y); //network, 8 dimensions

/+ Parameter section x/

PARAMETER VECTOR(gammal ); //sender

PARAMETER VECTOR(gamma2); //receiver

PARAMETER VECTOR/(gamma3); //perceiver

PARAMETER VECTOR( deltal ); //density

PARAMETER VECTOR( delta2); //rho

PARAMETER VECTOR( alpha ); //vector all (co)variances, in R ¢(1,0,1,0,0,1)
PARAMETER VECTOR( a ) ;

PARAMETER VECTOR(b ) ;

PARAMETER VECTOR( ¢ ) ;

int kd = XvD. cols ();
int kc = XvC. cols ();
int g = y.cols();

Type nll=0.0; // Negative log likelihood function
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/+ Cholesky decomposition and inverse covariance matrixz */
vector<Type> S(6);
vector <Type> S1(6);

S(0) = alpha(0) x alpha(0); //a

S(1) = alpha(0) * alpha(1) //ab

S(2) alpha (1) x alpha(1l) + alpha(2) % alpha(2); //b
S(3) alpha (0) = alpha(3) //ac

S(4) = alpha(1l) = alpha(3) + alpha(2) = alpha(4); //bc
S(5) = alpha(3) % alpha(3) + alpha(4) % alpha(4) +

alpha (5) * alpha(5); //c

Type DS = S(0) % (S(2) = S(b) — S(4) % S(4)) — S(1) =
(S(1) = S(5) — S(3) % S(4)) + S(3) * (S(1) = S(4) — S(2) * S(3))

S1(0) = (S(2) = S(5) — S(4) = S(4)) / DS;

S1(1) =— (S(1) = S(b) — S(4) = S(3)) / DS;

S1(2) = (S(0) = S(5) — S(3) = S(3)) / DS;

S1(3) (S(1) = S(4) — S(2) = S(3)) / DS;

S1(4) =— (S(0) % S(4) — S(1) = S(3)) / DS;

S1(5) = (S(0) = S(2) — S(1) *= S(1)) / DS;

Type quadu = ((axa).sum()) * S1(0) + ((axb).sum()) * S1(1) * 2.0 +
((bxb).sum()) * S1(2) + ((axc).sum()) * SI1(3) x 2.0 +
((bxc).sum()) % S1(4) * 2.0 + ((cxc).sum()) * S1(5)

nll —= —0.5 % quadu — g * 0.5 * log(DS);

ADREPORT(S ) ;

/+ Defining fized effects triadic model */

// nll from y
vector<Type> XSgl = XnS x gammal; //alpha_i in the model

vector<Type> XRg2 = XnR * gamma2; //beta_i
vector<Type> XRg3 = XnP x gamma3; //eta_k

for (int k=0; k<g; k++)
for (int i=0; i<(g—1); i++)

o1



for (int j=i+1; j<g; j++)

{

if(i =%k [| ] =Xk) {

continue;

¥

else {

Type yl = y(i,j.,k); //here we make use of the actual data
Type y2 = y(j,i k);

Type alphai = XSgl(i) + a(i);
Type alphaj = XSgl(j) + a(j);
Type betai = XRg2(i) + b(i);
Type betaj = XRg2(j) + b(j);
Type etak = XRg3(k) + c(k);

Type muijk = 0.0;
Type mujik = 0.0;
for (int t=0;t<kd;t++)
{
muijk += (XvD(i,j,t) * deltal(t));
mujik += (XvD(j,i,t) * deltal(t));
}
Type rhoij = 0.0;
for (int t=0;t<kc;t++)
rhoij += (XvC(i,j,k,t)xdelta2(t));

Type xil = muijk + alphai + betaj + etak;
Type xi2 = mujik + alphaj + betai + etak;
Type xi3 = muijk + mujik + alphai + betaj + alphaj +

betai + 2xetak + rhoij;
Type den = 1.0 + exp(xil) + exp(xi2) + exp(xi3);

nll —= yl % xil 4 y2 % xi2 + rhoij % yl % y2 — log(den);

1

Type pen = 0.0;
vector<Type> R(3);
R(0) = S(1) / sart(S(0) = S(3));
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R(1) = S(2) / sqrt(S(0)

R(2) = S(4) / sqrt(S(5) = S(3

pen = 0.5 * log(DS);
nll —= pen;

REPORT(pen );
ADREPORT(R) ;

return nll;

}
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F: R code p, function (Bellio & Soriani, 2019a)

fit_p2 <- function(y, XnS, XnR, XvD, XvC, M = 0, seed = NULL, trace = FALSE,
init = NULL, penalized = FALSE, penSigma = NULL,
opt = nlminb, singular.ok = TRUE, ...)

# Do some argument checking
if(is.null(y) | is.null(XvD) | is.null(XvC)) stop("y, XvD and XvC must be provided \n")
if(lis.matrix(y))

{

warning("network data should be provided as a matrix\n")

y <- as.matrix(y)

}
if(ncol(y) !'= nrow(y)) stop("y must be a squared matrix\n")
g <- ncol(y)

if ('is.null(XnS) && !is.matrix(XnS)) stop("XnS must be a matrix\n")
if(!is.null(XnR) && !is.matrix(XnR)) stop("XnR must be a matrix\n")
if(lis.array(XvD) | length(dim(XvD))!=3) stop("XvD must be a 3-dim array\n")
if(lis.array(XvC) | length(dim(XvC))!=3) stop("XvC must be a 3-dim array\n")
if(!is.null(XnS) && nrow(XnS)'!=g) stop("Wrong dimension of XnS\n")
if(!is.null(XnR) && nrow(XnR)'!=g) stop("Wrong dimension of XnR\n")
if (dim(XvD) [2] !=g | dim(XvD) [1]!=g) stop("Wrong dimension of XvD\n")
if (dim(XvC) [2] =g | dim(XvC) [1]!=g) stop("Wrong dimension of XvC\n")
if (!is.numeric(M) || M<0) M <- 0
if(!is.matrix(penSigma)) penSigma <- NULL
if (M>0) warning("IS as implemented by TMB is still experimental -->
use the fitIS function instead\n")

# Create starting values
kd <- dim(XvD) [3]
kc <- dim(XvC) [3]
map <- list()
XnS.int <- XnS
XnR.int <- XnR
if(is.null(XnS) & '!'is.null(XnR))

{

XnS.int <- matrix(0, nrow = g, ncol = 1)
map <- list(gammal = factor(NA))
}
if('is.null(XnS) & is.null(XnR))
{
XnR.int <- matrix(0, nrow = g, ncol = 1)

map <- list(gamma2 = factor(NA))
}
if(is.null(XnS) & is.null(XnR))
{
XnS.int <- matrix(0, nrow = g, ncol = 1)
XnR.int <- matrix(0, nrow=g, ncol = 1)
map <- list(gammal = factor(NA), gamma2 = factor(NA))
}
kr <- ncol(XnR.int)
ks <- ncol(XnS.int)
model.param <- list(gammal = rep(0, ks) , gamma2 = rep(0, kr), deltal = rep(0, kd),
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delta2 = rep(0, kc), alpha=c(1l, 0, 1), a=rep(0, g), b = rep(0, g))
# Create list of model data for optimization
if (!penalized) flagpen <- 0
else
{
if (is.null(penSigma)) flagpen <- 1 else flagpen <- 2
}
flagSigma <- if(is.null(penSigma)) O else c(penSigmal[l,1], penSigmal[1,2],
penSigma[2,2])
model.data <- list(XnS = XnS.int, XnR = XnR.int, XvD = XvD, XvC = XvC, y =y,
penflag = as.integer(flagpen), penSigma = as.vector(flagSigma))
# Create AD function with data and parameters
myseed <- if(is.null(seed)) sample(1:10°5, 1) else seed
obj <- TMB::MakeADFun(data = model.data, parameters = model.param, random = c("a", "b"),
DLL = "p2model", map = map, silent = !trace,
MCcontrol = list(doMC = M>0, seed = myseed, n = M))
if (trace) cat("\nfitting the model\n")
start <- if(is.null(init)) obj$par else init
lower.vect <- if(singular.ok) c(rep(-Inf, length(obj$par)-3), 0, -Inf, 0) else -Inf
mod <- try(opt(start, obj$fn, obj$gr, lower = lower.vect), silent = TRUE)
if(!is.character(mod))
{
par <- mod$par
if (trace) cat("\ncomputing Hessian\n")
sde <- try(TMB::sdreport(obj, par.fixed=par), silent=TRUE)
if (is.character(sde))
{
warning ("\nNumerical issues in the computation of the Hessian\n")
hess <- try(numDeriv::jacobian(obj$gr, par, method="simple"), silent=TRUE)
if (is.character(hess))
stop("\nNumerical issues in the computation of standard errors are too serious...
Change optimizer, try out a better starting point or
switch to penalized estimation\n")
else sde <- TMB::sdreport(obj, par.fixed=par, hessian.fixed=hess)
}
theta.vcov <- sde$cov.fixed
theta.se <- sqrt(diag(theta.vcov))
Sigma <- matrix(c(sde$value[1l], sde$value[2], sde$value[2], sde$valuel[3]), 2, 2)
Sigma.se <- matrix(c(sde$sd[1], sde$sd[2], sde$sd[2], sde$sd[3]), 2, 2)
rho <- sde$value[4]
rho.se <- sde$sd[4]
random <- sde$par.random
random.se <- sqrt(sde$diag.cov.random)
1nl <- obj$fn(par) + obj$env$report()$pen #### eliminate the penalty
Inl <- 1nl + g * log(pi * 2) #### this constant is introduced by TMB
res <- list(theta = par, loglik = -1nl,
AIC = 2 * 1nl + 2 * length(par), BIC = 2 * 1nl + log(g) * length(par),
XnS.null = is.null(XnS), XnR.null = is.null(XnR), seed = myseed,
theta.vcov = theta.vcov, theta.se = theta.se,
opt = opt, opt.details = mod, ADobj = obj, model.data = model.data,
sdrep = sde, ranef = random, ranef.se = random.se,
Sigma = Sigma, Sigma.se = Sigma.se, rho = rho, rho.se = rho.se, M = M,
penflag = model.data$penflag, penSigma = model.data$penSigma)
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}

else stop("Optimization did not converge. Change optimizer, try out a better
starting point or switch to penalized estimation")

# Assign S3 class wvalues and return

class(res)=c("p2")

return(res)
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G: R code triadic model and p; model

rm(list = 1s())
Loading data and libraries

In this code we are going to set the working directory, loading packages, compiling the .ccp file and loading
the C++ file

#Set working directory
setwd (" /Users/nelleke/Desktop/triadisch model")

#Load packages
packages <- c("TMB", "NetData", "cssTools", "p2model", "igraph", "ggplot2")
sapply(packages, require, character.only = TRUE)

#Compile C++ file
compile("triadictest4.cpp")

Preparation data

Triadic model

In the preparation of the triadic data, we need to load the data. Prepare the input of the data (actor
characteristics, and input for density and reciprocity)

#Here we collect the necessary data.
data("highTechManagers", package = "cssTools") #triadic network data
data(kracknets, package = "NetData") #attributes of actors

#Save data in .RData file
rm(advice_data_frame,
friendship_data_frame,
krack_full_data_frame,
reports_to_data_frame)
save(attributes,highTechManagers, file="triadicdata.RData")

#Load triadic data including actor attributes
load("triadicdata.RData")

#Create design matrices for actor covariates for sender, recetver and percetver
XnS <- model.matrix( ~ AGE + TENURE, attributes)[,-1] #sender

XnR <- model.matrix( ~ AGE + TENURE, attributes)[,-1] #receiver

XnP <- model.matrix( ~ AGE + TENURE, attributes)[,-1] #perceiver
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#Preparing the comparisons between actors % and j for measuring homophily
g <- 21
XvD <- array(l, dim = c(g, g, 4))

for(i in 1:g) {
for(j in 1:g){
XvD[i, j, 2] <- as.numeric(attributes$DEPT[i]==attributes$DEPT[j])
XvD[i, j, 3] <- as.numeric(attributes$LEVEL[i]==attributes$LEVEL[j])
XvD[i, j, 4] <- abs(attributes$AGE[i] - attributes$AGE[j])
}
}

#Preparing the data input of reciprocity.
#In future research here covariates can be added
XvC <- array(l, dim = c(g, g, g, 1))

#Putting data in y so it is easier to use in following code
y <- highTechManagers

p2 Model

#Load aggregated data for use p2 model
data(kracknets, package = "NetData")

#Changing edgelist into adjacency matric
g <- 21
datap2 <- matrix(0, g, g)
ind <- 1
for(i in l:nrow(friendship_data_frame)){
sele <- friendship_data_framel[i,]
datap2[sele$ego, sele$alter] <- sele$friendship_tie
}

#Create design matrices for actor covariates for sender and Teceiver
Xn <- model.matrix( ~ AGE + TENURE, attributes)[,-1]

#Preparing the comparisons between actors % and j for measuring homophily
XvDp2 <- array(l, dim = c(g, g, 4))
for(i in 1:g){
for(j in 1:g){
XvDp2[i, j, 2] <- as.numeric(attributes$DEPT[i]==attributes$DEPT[j])
XvDp2[i, j, 3] <- as.numeric(attributes$LEVEL[i]==attributes$LEVEL[j])
XvDp2[i, j, 4] <- abs(attributes$AGE[i] - attributes$AGE[j])
3}

#Preparing the data input of reciprocity.
XvCp2 <- array(l, dim = c(g, g, 1))

58



Description data triadic and p, model

Here we will plot the actor covariates used, show the network data. Measure density and reciprocity and
plot sociograms of the network data.

triadicnetwerk <- y

#Calculating the mean and standard deviation for every attribute
for (i in 1:4) {

print (colnames(attributes) [i])

print (mean(attributes[,i]))

print(sd(attributes[,i]))
}

## [1] "AGE"

## [1] 39.71429
## [1] 9.555851
## [1] "TENURE"
## [1] 11.74605
## [1] 8.039362
## [1] "LEVEL"
## [1] 2.714286
## [1] 0.5606119
## [1] "DEPT"
## [1] 2.190476
## [1] 1.167007

#Plot distribution of age of 21 actors

ggplot (attributes, aes(AGE)) +
geom_histogram(binwidth=3, fill = "darkgrey", color = "black") +
theme_classic() +
labs(x = "Age in years", y = "Frequency")

IS

Frequency

30 40 50 60
Age in years
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#Plot distribution of tenure of 21 actors

ggplot (attributes, aes(TENURE)) +
geom_histogram(binwidth=3, fill = "darkgrey", color = "black") +
theme_classic() +
labs(x = "Duration of employment", y = "Frequency")

Frequency
N

~

0 10 20 30
Duration of employment

#Plot distribution of 21 actors per department
ggplot(attributes, aes(DEPT)) +
geom_bar(fill = "darkgrey", color = "black")+
theme_classic() +
labs(x = "Department", y = "Frequency")

0 -
0 1 2 3 4

Department

Frequency
IS

#Correlation between age and tenure
cor(attributes$AGE, attributes$TENURE) #./89

## [1] 0.4893735

#Plot distribution of 21 actors per seniority
ggplot(attributes, aes(LEVEL)) +
geom_bar(fill = "darkgrey", color = "black")+
theme_classic() +
labs(x = "Seniority", y = "Frequency")
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Density

#Density p2 model
sum(datap2)/(21%20)*100 #2/.29

## [1] 24.28571

#Density of each layer in the triadic data
dens <- rep(NA, 21)
for (k in 1:21) {
dens[k] <- sum(triadicnetwerkl[, ,k])/(21%20)*100
}

#Plot of the distribution of the 21 density scores
ggplot(data.frame(dens), aes(dens)) +
geom_histogram(binwidth=2, fill = "darkgrey", color = "black") +
theme_classic() +
labs(x = "Density", y = "Frequency")

Frequency
~

Density
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Reciprocity

#Reciprocity p2 model
RECP <- NA
k=0

for (i in 1:21) {
for (j in 1:21) {
if (§j <= 1)
next
else
k=k +1
RECP[k] <- datap2[i,j] && datap2[j,i] ==
}

3

sum(RECP) /1ength(RECP) *100 #10.95

## [1] 10.95238

#Reciprocity triadic data for each layer
REC <- rep(NA, 21)

A <- NA

k=0

for (t in 1:21) {
for (i in 1:21) {
for (j in 1:21) {
if (j <= i)
next
else
k=k +1
A[k] <- triadicnetwerk[i,j,t] && triadicnetwerk[j,i,t] == 1
}

}

REC[t] <- sum(A)/length(A)*100
}
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#Plot of the distribution of the 21 reciprocity scores
ggplot(data.frame(REC), aes(REC)) +
geom_histogram(binwidth=.5, fill = "darkgrey", color = "black") +
theme_classic() +
labs(x = "Proportion reciprocal ties", y = "Frequency")

Frequency
£y

: [] []

8
Proportion reciprocal ties
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Sociograms

#Select two networks of 21 layers
set.seed(042025)
sample(1:21,2) #network 2 and 19

## [11 2 19

#Plotting soctogram of self-reported/aggregated data
g <- graph_from_adjacency_matrix(datap2) #p2
set.seed(042025)
plot(g, edge.arrow.size=0.2,

vertex.color="white",

edge.width = 1.2,

edge.color = "black",

margin=-.07)
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#Plotting sociogram of social network data perceived by actor 2
g2 <- graph_from_adjacency_matrix(triadicnetwerkl[,,2])
set.seed(042025)
plot(g2, edge.arrow.size=0.2,

vertex.color="white",

edge.width = 1.2,

edge.color = "black",

margin=-.07)

#Plotting sociogram of social network data perceived by actor 19
gl9 <- graph_from_adjacency_matrix(triadicnetwerk[,,19])
set.seed(042025)
plot(gl9, edge.arrow.size=0.1,

vertex.color="white",

edge.width = 1.2,

edge.color = "black",

margin=-.07)
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#First 5 rows of network data self-reported data

head(datap2,5)

## [,11 (,21 [,31 [,4]1 [,81 C,61 [,71 [,8]1 [,91 [,10] [,11] [,12]1 [,13] [,14]
# [1,] 0 1 0 1 0 0 0 1 0 0 0 1 0 0
# [2,] 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## [3,] 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## [4,] 1 1 0 0 0 0 0 1 0 0 0 1 0 0
## [5,] 0 1 0 0 0 0 0 0 1 0 1 0 0 1
## [,15] [,16] [,171 [,18] [,19]1 [,20] [,21]

## [1,] 0 1 0 0 0 0 0

# [2,] 0 0 0 1 0 0 1

## [3,] 0 0 0 0 1 0 0

## [4,] 0 1 1 0 0 0 0

## [5,] 0 0 1 0 1 0 1

#First 5 rows of social network data perceived by actor 2
head(triadicnetwerkl[,,2],5)

## (,11 [,21 [,31 [,4]1 (,5]1 C[,61 [,71 [,81 [,91 [,10] [,111 [,12]1 [,13] [,14]
## [1,] 0 1 0 0 0 0 0 0 0 0 0 1 0 0
## [2,] 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## [3,] 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## [4,] 0 0 0 0 0 0 0 1 0 0 0 1 0 0
## [5,] 0 1 0 0 0 0 0 0 0 0 0 0 0 0
# (,15] [,16] [,17]1 [,18] [,19] [,20] [,21]

## [1,] 0 1 0 0 0 0 0

# [2,] 0 0 0 1 0 0 1

## [3,] 0 0 0 0 0 0 0

## [4,] 0 0 0 0 0 0 0

## [5,] 0 0 0 0 1 0 0

#First 5 rows of social network data perceived by actor 19
head(triadicnetwerk[,,19],5)

## (.11 [,21 (.31 [,4] [,5] [,6] C,71 [,8] [,9] [,10] [,11] [,12] [,13] [,14]
## [1,] 0 1 0 1 0 0 0 0 0 0 0 0 0 0
## [2,] 0 0 0 0 0 0 1 0 0 0 0 0 0 1
## [3,] 0 0 0 0 0 0 0 0 0 0 1 0 0 1
## [4,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [5,] 0 0 0 0 0 0 0 0 1 0 0 0 0 1
## (,15] [,16] [,17] [,18] [,19] [,20] [,21]

# [1,] 0 1 0 0 0 0 0

## [2,] 0 0 0 0 0 0 1

## [3,] 0 0 0 0 1 0 0

## [4,] 0 0 0 0 0 0 0

## [5,] 0 0 0 0 1 0 0
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Analyses

Triadic model

#Load the compiled file of the C++ code in R
dyn.load(dynlib("triadictest4"))

#Set certain values necessary for our model

M = 0 #is needed for using multiple imputation in TMB or not
trace = FALSE #needed for TMB

opt = nlminb #using nlminb as optimization

#Determinen number of actors
g <- ncol(y)

#Determine value of number of dyad-specific covariates for mu and Tho
kd <- dim(XvD) [3]
kc <- dim(XvC) [4]

#Needed for the TMB function where output TMB is stored
map <- list()

#Determine wvalue of number of actor-spectific covariates
ks <- ncol(XnS) #sender

kr <- ncol(XnR) #receiver

kp <- ncol(XnP) #perceiver

#List of parameters which need to be estimated

model.param <- list(gammal = rep(0, ks) , gamma2 = rep(0, kr),
gamma3 = rep(0,kp), deltal = rep(0, kd),
delta2 = rep(0, kc), alpha=c(1, 0, 1, 0, 0, 1),
a=rep(0, g), b = rep(0, g), ¢ = rep(0,g))

#List of data input we are using
model.data <- list(XnS = XnS, XnR
XvD XvD, XvC

XnR, XnP = XnP,
XvC, v = y)

#Set seed
myseed <- 042025

#Determine the objective and gradient function from TMB

obj <- TMB::MakeADFun(data = model.data, parameters = model.param,
random = c("a", "b", "c"),DLL "triadictest4",
map = map, silent = !trace,
MCcontrol = list(doMC = M>0, seed = myseed, n = M))
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#Determine starting parameters from TMB function
start <- obj$par

#Determine lower bounds for optimization
lower.vect <- c(rep(-Inf, length(obj$par)-6),0,-Inf,0,-Inf,-Inf,0)

#Optimization of parameter estimates
mod <- try(opt(start, obj$fn, obj$gr, lower = lower.vect), silent = TRUE)

#Estimated parameter values in vector
par <- mod$par

#Estimation of standard errors with parameter estimates as input
sde <- try(TMB::sdreport(obj, par.fixed=par), silent=TRUE)

#Estimated standard errors of the parameter estimates in wvector
theta.vcov <- sde$cov.fixed

theta.se <- sqrt(diag(theta.vcov))

#Covariance matriz with standard errors

Sigma <- matrix(c(sde$value[1], sde$value[2], sde$value[4],
sde$value[2] ,sde$value[3], sde$value[5], sde$valuel[4],
sde$value[5], sde$valuel[6]), 3, 3)

Sigma.se <- matrix(c(sde$sd[1], sde$sd[2], sde$sd[4],
sde$sd[2], sde$sd[3], sde$sd[5], sde$sd[4],
sde$sd[5], sde$sd[6]), 3, 3)

#Correlations and standard errors
rho <- c(sde$value[7],sde$valuel8],sde$value[9])

rho.se <- c(sde$sd[7],sde$sd[8],sde$sd[9])

#Used for calculation of AIC and BIC
1nl <- obj$fn(par) + obj$envéreport()$pen
Inl <- 1nl + g * log(pi * 2)

#List with all the estimated results

res <- list(theta = par, loglik = -1nl,
AIC = 2 * 1nl + 2 * length(par), BIC = 2 * 1nl + log(g) * length(par),
XnS.null = is.null(XnS), XnR.null = is.null(XnR), seed = myseed,
theta.vcov = theta.vcov, theta.se = theta.se,
opt = opt, opt.details = mod, ADobj = obj, model.data = model.data,
sdrep = sde,
Sigma = Sigma, Sigma.se = Sigma.se, rho = rho, rho.se = rho.se, M = M,
penflag = model.data$penflag, penSigma = model.data$penSigma)

#Report results to prevent scientific notation
options(scipen = 999)
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#Zscore and probability two-sided triadic model

Zscore <- res$theta/res$theta.se #zscore
Prob <- 2+#pnorm(abs(Zscore),lower.tail = F) #p-value

#Bind results (parameter estimates and standard errors with zscore and puvalue)
Results <- cbind(effect=res$theta,

SE=res$theta.se,

Zscore,

prob=round (Prob,3))

rownames (Results) <- c("Sender Age", "Sender Tenure", "Receiver Age",
"Receiver Tenure","Perceiver Age", "Perceiver Tenure",
"mu", "Department","Seniority", "Age diff", "rho",

" alpha" , "alpha“ s "alpha" s “alpha“ , "alpha" s " alpha")

Results

## effect SE Zscore prob
## Sender Age -0.001090961 0.018721504 -0.058273139 0.954
## Sender Tenure 0.037228460 0.022307610 1.668868170 0.095
## Receiver Age -0.000336743 0.036919642 -0.009120972 0.993
## Receiver Tenure 0.075949570 0.043753331 1.735858007 0.083
## Perceiver Age -0.016665405 0.021418305 -0.778091659 0.437
## Perceiver Tenure 0.022132117 0.024926238 0.887904406 0.375
## mu -5.718917519 2.271476715 -2.517709066 0.012
## Department 1.722566888 0.110631286 15.570341423 0.000
## Seniority 1.101040575 0.117003797 9.410297842 0.000
## Age diff -0.034678002 0.007241154 -4.789015655 0.000
## rho 2.783224269 0.186491180 14.924160325 0.000
## alpha 0.642998563 0.134253272 4.789444260 0.000
## alpha 0.924899289 0.319692378 2.893091457 0.004
## alpha 0.966634995 0.209939244 4.604355903 0.000
## alpha 0.231804847 0.189637968 1.222354621 0.222
## alpha 0.328031129 0.186729769 1.756715765 0.079
## alpha 0.628561828 0.126132948 4.983327832 0.000

#Covartance matriz with standard errors
res$3igma

#Hit [,1] [,2] [,3]
#it .4134472 0.5947089 0.1490502
#it .5947089 1.7898219 0.5314825
#it .1490502 0.5314825 0.5564279
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res$Sigma.se

## [,1] [,2] [,3]
## [1,] 0.1726493 0.2784966 0.1292736
## [2,] 0.2784966 0.6845010 0.2749033
## [3,]1 0.1292736 0.2749033 0.2067371
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p2 model

#Fit the p2 model and summary of results
fit <- fit_p2(datap2, Xn, Xn, XvDp2, XvCp2)
summary (fit)

## Approximate maximum likelihood estimation of p2 model
## Log-likelihood at maximum -169.4082

## Model selection criteria

## AIC = 362.8164 BIC = 375.3507

-
## Density coefficients
#i# Estimate Std. error

## deltal 0.03885399 1.73521103
## deltal 1.57645521 0.34814083
## deltal 1.15354386 0.40545038
## deltal -0.05488179 0.02458207

## ———
## Reciprocity coefficients

## Estimate Std. error

## delta2 2.117182 0.6329099

# -
## Sender coefficients

## Estimate Std. error

## gammal -0.1309324 0.05911481
## gammal 0.1403820 0.06213760

## -
## Receiver coefficients
## Estimate Std. error

## gamma2 -0.002099014 0.03503430
## gamma2 0.045075545 0.04146455

## -
## Variance matrix of random effects
#it [,1] [,2]

## [1,] 2.054007 -1.1362520
## [2,] -1.136252 0.9976877

#Covariance matriz with standard error
fit$Sigma

## [,1] [,2]
## [1,] 2.054007 -1.1362520
## [2,] -1.136252 0.9976877

fit$Sigma.se

## [,1] [,2]
## [1,] 0.9504914 0.6369785
## [2,] 0.6369785 0.5646846
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#Zscore and probability two-sided p2 model

Zscorep2 <- fit$theta/fit$theta.se #zscore
Probp2 <- 2*pnorm(abs(Zscorep2),lower.tail = F) #p2 model

#Bind results (parameter estimates and standard errors with zscore and pvalue)
Resultsp2 <- cbind(effect=fit$theta,

SE=fit$theta.se,

Zscore=Zscorep2,

Prob = round(Probp2,3))

rownames (Resultsp2) <- c("Sender Age", "Sender Tenure", "Receiver Age",
"Receiver Tenure", "mu", "Department","Seniority",
"Age diff", "rho", "alpha", "alpha", "alpha")

Resultsp2

## effect SE Zscore Prob
## Sender Age -0.130932378 0.05911481 -2.21488278 0.027
## Sender Tenure 0.140382010 0.06213760 2.25921209 0.024
## Receiver Age -0.002099014 0.03503430 -0.05991312 0.952
## Receiver Tenure 0.045075545 0.04146455 1.08708628 0.277
## mu 0.038853993 1.73521103 0.02239151 0.982
## Department 1.576455206 0.34814083 4.52821114 0.000
## Seniority 1.153543857 0.40545038 2.84509259 0.004
## Age diff -0.054881787 0.02458207 -2.23259377 0.026
## rho 2.117182055 0.63290987 3.34515571 0.001
## alpha 1.433180559 0.33160213 4.32198843 0.000
## alpha -0.792818437 0.32068537 -2.47226260 0.013
## alpha 0.607557946 0.28245028 2.15102614 0.031
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