
Extending the p2 model using triadic social network data: The
estimation of dyadic probabilities using the individuals’ perception on
the social structure
Kamstra, Nelleke

Citation
Kamstra, N. (2025). Extending the p2 model using triadic social network data: The
estimation of dyadic probabilities using the individuals’ perception on the social structure.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master Thesis,
2023

Downloaded from: https://hdl.handle.net/1887/4251447

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/4251447

Extending the p2 model using triadic

social network data

The estimation of dyadic probabilities using the individuals’ perception on the
social structure

Nelleke E. Kamstra

Thesis advisor 1: Saskia Le Cessie, Professor Statistical Methods in Observational

(Clinical) Epidemiological Research

Thesis advisor 2: Marijtje van Duijn, Professor Statistics in Social Network Analysis

Defended on May 28, 2025

MASTER THESIS

STATISTICS AND DATA SCIENCE

UNIVERSITEIT LEIDEN

Acknowledgement

First, I would like to thank Marijtje van Duijn (external supervisor) for the idea of this

project when looking for a thesis that incorporated sociology into statistics. Also for

all the help (especially with understanding the theory and programming the C++ code

when I got stuck), her ideas, all the meetups (online and in Groningen), her enthusiasm in

academics and the good conversations we had. Especially many thanks for her patience

over the years when I was not able to work on my thesis and for every time I made an

attempt to continue my thesis. Fortunately last year I was able to do so again. I really

enjoyed our collaboration and also enjoyed this project.

I also want to thank Henk Kelderman. He started as my supervisor from Leiden.

He always gave me very good feedback and was interested in the field of statistics in

social networks. He was very patient with me over the years when I could not work on

my thesis and when I was focused on personal matters. Saskia Le Cessie took over the

supervisor role for Leiden. I want to thank her for her enthusiasm about social networks

and learning more about them. She helped me a lot (in Leiden and online) and gave me

very good and critical feedback, listened and was patient in the process of me getting

back to study besides working. Our meetings helped with gaining confidence and give

structure to the thesis. Sometimes I was (and can be) stubborn, but all my supervisors

showed respect and I learned a lot from all of them.

Of course, a lot of appreciation for my family (mum, dad and sister) and friends for

their emotional support last years. They stood by me when I needed it the most. Thanks

for all the calls and moments to relax after work and writing my thesis. Because of this

I am now able to finish this thesis and I am in a stronger and healthier place.

1

Contents

1 Introduction 5

1.1 Outline thesis . 7

2 Background 9

2.1 Random e↵ects model and social networks 9

2.1.1 Random e↵ects . 9

2.1.2 Random e↵ects in social networks 10

2.2 p1 and p2 model . 11

2.2.1 p1 model . 12

2.2.2 p2 model . 13

3 Triadic extension 15

3.1 Triadic data . 15

3.2 Triadic model . 16

4 Estimation 20

4.1 Likelihood function . 20

4.2 Laplace approximation . 21

5 Application 22

5.1 Implementation software . 22

5.1.1 C++ code . 22

5.1.2 R code . 23

5.2 Description data . 24

5.3 Results . 29

6 Discussion 33

7 References 36

8 Appendix 39

A: Cholesky decomposition . 39

B: Calculation determinant and inverse . 41

C: C++ code p2 model (Bellio & Soriani, 2019a) 42

D: C++ code complete triadic model . 46

E: C++ code triadic model results . 50

2

F: R code p2 function (Bellio & Soriani, 2019a) 54

G: R code triadic model and p2 model . 57

3

Abstract

Two-dimensional (self-reported) social network data is commonly used in social networks

analysis to investigate the self-reported social relationships between network members.

However, Krackhardt (1987) proposed to use three-dimensional (triadic) data based on

the theory of cognitive social structures. Actors are not only asked to report their own

relations within a social context, but are also asked to report on the relationships between

other actors in the same network. In this thesis we will extend the p2 model by using

the triadic data (instead of self-reported data) to estimate dyadic probabilities given the

perception of the third actor in a triad. The p2 model is used, because it includes multiple

dependencies found in social networks (e.g., reciprocity, describes a relationship where

both individuals see each other as friends) which makes the model more realistic to other

models (Van Duijn et al, 2004). We build on the application of Bellio and Soriani (2020)

who used Maximum Likelihood Estimation with Laplace approximation to estimate the

parameters of the p2 model. They provided the C++ and the R code, which we use as a

basis for our triadic extension of the model.

We programmed the model in C++ and R. We used the triadic high-tech managers

data (Krackhardt, 1987) and an aggregated version (as example for self-reported data) to

show an application of the triadic model and the p2 model side-by-side. We encountered

the problem of multicollinearity when adding dyadic characteristics to the parameter µ

of the triadic model. It was possible to converge the model when reducing the number of

dyadic-specific comparisons between actors within the density parameter and only include

the comparison between actor i and j.

For reciprocity and the homophily parameters the standard errors were lower in the

triadic model than in the p2 model, indicating more precision. The characteristics of

the perceiver added to this triadic model give more information about the e↵ect of the

perception of a third actor on the directed ties of other actors. Multiple suggestions for

future research are made for overcoming the problem of multicollinearity, such as looking

into the correlations between variables and the comparisons for homophily that can be

added to our model or not. Besides this, a next step is to perform multiple goodness-of-fit

tests. We conclude that this triadic model is a more realistic way to look at the role of the

perceiver on the dyadic probability in a social network in combination with the e↵ects of

actor characteristics of the sender, receiver and the perceiver.

4

1 Introduction

In our lives we are part of di↵erent social contexts. These can be family, a group of

friends, work, school, even the neighborhood you live in and the sports club. All these

di↵erent environments generate social networks. Sociologists are interested in these social

networks, because they initiate influence, dependence, power, trust, opinions and of course

friendships.

The complexity of working with social networks and extracting information from social

networks lies not only in computational and measuring problems, but also in the vast

variety of questions and perspectives one can have (Snijders, 2011). In social networks

the terms actors and ties are used. Actors are the individuals in a social network. Ties

are possible (friendship) relations between these individuals. In this thesis we focus on

social networks with directed ties, ties that can be outgoing/sent or ingoing/received. An

example in Figure 1 of an outgoing or a sent tie is from actor A to actor E, meaning that

actor A indicates E as a friend. Ingoing or received ties occur when actor A receives a

tie from actor C, meaning that actor A receives the status as friend from actor C. We

will focus on dichotomous dyadic ties in this thesis. A dyad is a pair of actors with two

possible directed ties. Dichotomous ties signify ties which exist (1) or not (0). Reciprocal

ties are commonly found in social networks and means that both actors indicate that the

other actor is a friend, they reciprocate the relationship. An example of reciprocity in

Figure 1 is between actor C and actor F . A non-reciprocal tie occurs when only one actor

perceives the other as their friend, but not vice versa. A null dyad is a dyad where there

are no ties between two actors. In Figure 1, we see an example of this between actor E

and actor F .

Figure 1. Theoretical visualization of a network with ties and actors

5

It is possible to measure ties and actors in ego- and socio-centered networks (Kadushin,

2012, Chapter 2). In ego-centered networks a specific individual is the center of the

analysis. In socio-centered networks a social network in a specified social group with

a specific number of actors is identified, such as a class in a school or a department

in an organization. These socio-centered networks can answer questions related to the

whole social network and its characteristics. In this thesis we focus on the socio-centered

friendship networks.

When analyzing social networks, it is sometimes hard to measure all the relations

between the N actors and include all the actors in the social network (as it is in regular

data collection). Also in larger social networks the researcher does not want to exhaust

the time of the respondent if they need to answer for every other actor whether they

are connected with them or not (Stark, 2017). The most common way to collect social

network data is asking every actor in the network to list who their friends are in the

predetermined social group. Because of this, the sent and received relations per actor

are self-reported. With this information it is possible to create an adjacency matrix as

in Table 1 indicating the senders (rows) and the receivers (columns).

A B C D E F

A - 0 0 1 1 0

B 0 - 1 1 1 1

C 1 1 - 0 0 1

D 0 1 0 - 1 0

E 0 1 0 1 - 0

F 0 0 1 0 0 -

Table 1. Adjacency matrix for graph visualization of the social network in Figure 1

Social networks are complicated, because of dependencies present between actors and

within dyads and the influence on one another. In social networks the influence of a

third actor on the relationship between two other actors is not overlooked. Concepts and

theories as triadic closure and transitivity (Kadushin, 2012, Chapter 2) assume that the

relationship of actor i and j can be determined by whether they have a relationship with

a third actor k. For example, the probability of a reciprocal relationship between actor i

and j could be partly determined by others in the complete social network.

So a third individual in the network can influence this outcome of the dyadic rela-

tionship between i and j. Instead of only looking at the directed ties between two actors,

6

we can look at the possible relations between three actors (also called a triad) and the

influence of the perception of the third actor on the directed ties between the other two

actors in the triad. Instead of only looking at the self-reported data, it is also possible to

collect data which focuses on these triads. To collect this data we should not only ask the

individual who they report as their friends, but they also are asked how they perceive the

(non-)existence of relationships of other dyads which they are not a part of. So for each

actor in the social network a complete social network is collected. This is called triadic

data.

Existing models using these data are based on the Social Relation Model (Kenny &

La Voie, 1984; Snijders & Kenny, 1999). Some focus on estimating continuous valued

ties, others on estimating the probability of the dichotomous directed ties in a dyad (e.g.,

Bond et al, 1997; Swartz et al 2015). This research integrate important dependencies in

a social network by adding random e↵ects for sender and receiver e↵ects using all the N

layers without aggregating them and with di↵erent ways to approximate the estimation.

However, their model is not realistic enough as it does not include the important element

of reciprocal ties which are common in social networks. A model that includes both

random e↵ects for sender and receiver and a parameter that estimates reciprocity, is the

p2 model (Van Duijn et al, 2004). However, it does not use the triadic data and the

perception of the third actor. In this thesis, we want to produce a model that not only

includes the influence of a third actor in estimating probabilities of dyadic relationships

in a complete social network but also includes the important dependencies within a social

network. Because of this, we will extend the p2 model and its elements.

1.1 Outline thesis

We will model the probability of directed ties (existing or not) in a dyad perceived by a

third actor to take into account the influence of a third actor on the relationships within

a dyad. Including the dependencies that make it more realistic to the elements of a social

network. In the situation of the dyadic data, the p2 model is seen as a realistic model,

because it models the dependencies found in social networks by (correlated) random

e↵ects and by the addition of a fixed reciprocity parameter (Van Duijn et al., 2004). It

can also include actor covariates which could have an influence on the outcome.

In Chapter 2, we first expand on the random e↵ects found in social networks to capture

the dependencies commonly found. A more detailed description is given of the p1 and p2

model and its components as well as a short explanation of their background and similar

existing models to the p2 model. In Chapter 3 we expand on the specifics of the triadic

7

extension based on the p2 model and the triadic data that will be used. Subsequently, in

Chapter 4 we elaborate more on the estimation method in this thesis and here we present

the likelihood function of the extension with the adjusted estimation.

In Chapter 5 we present the application of this triadic extension. First of all, we

adjusted the code of Bellio and Soriani (2020) to our triadic extension and triadic data.

An existing triadic dataset is used to show the model in a practical situation. The data

is described and the results of the models are given. We will compare the results of

triadic model with the results of the p2 model. In Chapter 6 we discuss the conclusions,

recommendations for future research and possible shortcomings.

8

2 Background

First it is important to discuss the significance of using random e↵ects in estimation

models of complete social networks. We give a description of how random e↵ects models

work and how this relates to social networks. Then we give an explanation and reasoning

behind the p1 model and the p2 model.

2.1 Random e↵ects model and social networks

2.1.1 Random e↵ects

When describing the real world, observations can be dependent on certain situations and

environments. For example, the performance of children in school can depend on the

class they are in. But this dependence is also common in other fields. For example,

experiments in plant sciences where background noise such as sunlight can disturb the

independence of the di↵erent experimental fields with the same crops. Normal regression

analysis assumes that the residuals in the models are independent to make the model

not too complicated and more applicable in more situations. However, in social settings

the assumption of independence is not realistic. It is possible to account for dependence

by adding random e↵ects to the model. We can make a distinction between nested and

crossed random e↵ects. Nested random e↵ects assume hierarchy in observations, such as

students in classes in schools. Crossed random e↵ects indicate a random combination of

di↵erent levels of multiple conditions which occur multiple times.

As an example we can investigate the e↵ect of parental support on the exam results of

students in di↵erent classes. In this example we can observe a nested structure where the

students’ exam results are at level 1. The students’ exam scores might however also vary

between classes, for example because of di↵erences between teachers. We can observe

the hierarchical structure where the students (level 1) are nested in the classes (level 2).

Instead of calculating one fixed intercept for the model in a regular linear model over

all the students for the e↵ect of parental support on exam results, we expect di↵erent

modelled intercepts per class. These di↵erent intercepts can be grasped by adding a

random e↵ect for classes to the intercept of the linear model:

Yij = (b0 + u0j) + b1X1ij + ✏ij (1)

Where b0 is the fixed intercept and u0j is the random e↵ect for classes where j represents

9

the class and i the students. By adding this random e↵ect it is possible to account for

the dependency between the students’ results and the class they are in. This represents

a nested random e↵ect. However, there is also a possibility of the parental support (X1)

depending on the class, where maybe the teacher encourages the children to ask the

parents for help in di↵erent levels of encouragement. And that we expect the slopes of

the model also to be randomly di↵erent for each class. In the example of parental support

it means that the e↵ect of parental support on the results is randomly di↵erent for each

class. To achieve this we cross the level 1 students and the level 2 classes by adding a

random e↵ect to the estimate of parental support (also including the random intercepts):

Yij = (b0 + u0j) + (b1 + u1j)X1ij + ✏ij (2)

Where u0j is the nested random e↵ect that creates the random intercepts and u1j is the

crossed random e↵ect creating the di↵erent random slopes for the classes. By adding

these random e↵ects in the normal linear regression model, dependence can be accounted

for that is created by these nested and crossed random e↵ects in the data.

2.1.2 Random e↵ects in social networks

In social networks, we can also identify multiple forms of dependencies which we can

relate to random e↵ects. Relations are dependent on a lot of factors and especially other

actors in the network. Dyads are not independent in a complete social network, because

they can share the same actors. Thereby, relationships influence each other by whether

their sent relationship is reciprocated by the other actor or not. Even ties with other

actors can influence the (non-)existence of ties between di↵erent actors. Instead of only

nested structures, social networks also have a crossed structure.

Figure 2. Schematic representation crossed and nested social network structure (taken

from Van Duijn, 2013)

10

The actor is placed at the highest level, here level 3. The dyads are on level 2 and the

ties are at level 1. In Figure 2 taken from Van Duijn (2013), we can see the actors

on level 3 where the crossed lines represent the sent and received ties from both actors

forming a dyad on level 2. A crossed random e↵ect is introduced between the actors

and the dyads, because every dyad contains two actors and the actors will be involved in

multiple dyads (Van Duijn, 2013). Random e↵ects are introduced to models that make

use of complete social network data to model the variances. However, the introduction

of random e↵ects makes the estimation of the models more di�cult. Solutions for these

estimation problems are available.

2.2 p1 and p2 model

Complete social networks bring the violation of independency between dyads. There are

multiple di↵erent dependencies present in social networks (Snijders, 2011). For example

within dyad dependencies, where we talk about the probability of reciprocating ties. If

actor i sends a tie to actor j, it is more likely that actor j also sends a tie to actor i. An

actor is also part of multiple dyads which introduces dependencies between dyads. Also

there is a dependency between the actor’s sent ties and received ties. If an actor sends

more ties, it can impact how many ties they will receive.

A solution can be found in the p1 model of Holland and Leinhardt (1981). It introduces

fixed parameters for sender and receiver and it adds a parameter for reciprocity as an

interaction e↵ect. It captures the dependency for reciprocity, which made it more realistic

than previous models as a loglinear model. However, the problem of the p1 model is that

for every actor in the network an estimate for the sender and receiver e↵ect is calculated.

This makes the model complex with unnecessary information, creates overfitting and

generates a model that is more di�cult to interpret.

We can also look at the Social Relation Model (SRM; Kenny & La Voie, 1984) and

especially its extension (Snijders & Kenny, 1999). The SRM models the sender and

receiver e↵ect with an addition of a relationship e↵ect. In the extension of Snijders and

Kenny (1999) they treat the sender and receiver e↵ects as random, which allows for actor

and dyadic characteristics in the model. However, SRM considers a continuous valued

variable as outcome, not a dyadic outcome such as a (non-)existing tie which is especially

common in social network analysis and it also does not include the reciprocity found

commonly in social networks.

Exponential Random Graph Models (ERGMs) (Amati et al, 2018; Robins et al., 2007;

Robins & Lusher, 2013) includes these dependencies through local configurations in the

11

form of certain network structures (e.g. triangles, star structures). In these models the

probability of ties given the rest of the complete social network is calculated with also

possibilities for di↵erent levels of flexibility for dependence in the network. For example

it makes the assumption that if actors do not share any direct friends, they will be

further away from each other and the probability of forming ties will be smaller. It is

a very flexible model that can include multilevel structures of networks and also actor

attributes (Robins & Lusher, 2013, Chapter 2). However, computation is more di�cult

and interpretation is harder for ERGMs.

The p2 model combines the random e↵ects for sender and receiver parameters from

the SRM (Snijders & Kenny, 1999) and the reciprocity parameter and dyadic outcome

from the p1 model (Van Duijn, 2004). By using the p2 model we overcome the problem

of the nested and crossed structure in social networks and the fact that we want to look

at a dyadic outcome with four possible combinations in one dyad (Van Duijn, 2013).

2.2.1 p1 model

Holland and Leinhardt (1981) introduced the p1 model to account for reciprocal ties

commonly found in social networks, as a first step to a more realistic model:

P (Yij = y1, Yji = y2 | Ai, Bi, Aj, Bj) =

1

hij
exp{y1(µ+ ↵i + �j) + y2(µ+ ↵j + �i) + y1y2⇢ij}

(3)

y1, y2 = 0, 1; i, j = 1, ..., n; i 6= j

where

hij = 1 + exp(µij + ↵i + �j) + exp(µji + ↵j + �i)+

exp(2µ+ ↵i + �j + ↵j + �i + ⇢ij)
(4)

The model calculates the probability of a dyad occuring in a social network with actor

i as the sender and actor j as the receiver. Instead of having two outcomes (0 and 1),

a dyad has four possible outcomes. The combination y1 = 1 and y2 = 1 captures a

reciprocal relationship. When y1 = 1 and y2 = 0 or y1 = 0 and y2 = 1 this captures a

one-sided relationship. When y1 = 0 and y2 = 0 there is no relationship between actors

in the dyad (also a null dyad). In this model the reciprocity is accounted for by including

fixed parameters for sender and receiver e↵ects ↵ and � respectively and by including an

explicit reciprocity parameter ⇢. For each actor a value for the ↵ and � e↵ect is estimated.

12

When there is a null dyad, ⇢ will not be taken into account to predict this probability.

The µ parameter can be seen as the overall mean or density of the network and is thus

primarily used as the intercept of the model. This parameter is assumed to be the same

for all dyads.

2.2.2 p2 model

Van Duijn et al. (2004) extended the p1 model to the p2 model by treating the sender (↵)

and receiver (�) e↵ects as random e↵ects instead of as fixed. This makes it also possible

to include actor characteristics X as covariates related to the sender and receiver:

↵i = X1i�1 + Ai, (5)

�i = XT
2i�2 +Bi (6)

With �1 and �2 being the regression parameters, and the parameters A and B being

random sender and receiver e↵ects respectively. In this way, it is possible to take into

account the dependence structure by making the dyads become conditionally indepen-

dent. If ui = (Ai, Bi) the random e↵ects are assumed to be normal distributed random

variables ui = N2(0,⌃) with:

⌃ =

"
�2
A �AB

�AB �2
B

#
(7)

A correlation is added between the sender and receiver e↵ects to account for the crossed

structure in a network. Each actor will be the sender as well as the receiver of directed

ties. Independence is assumed between the random parameters of di↵erent actors:

cov(Ai, Aj) = cov(Bi, Bj) = cov(Ai, Bj) = 0

Another addition of the p2 model is that the parameter µ can contain dyad-specific

covariates which represent characteristics to account for homophily. Homophily implies

that actors with similar characteristics (e.g., sex, age) are more likely to become friends.

It is modelled as this, where �1 is the parameter for homophily:

µij = µ+ Z1ij�1 (8)

13

The parameter ⇢ measures reciprocity in the model, as it does in the p1 model. It can be

modelled as this:

⇢ij = ⇢+ Z2ij�2 (9)

With the possibility to also add dyad-specific characteristics. However, in this thesis we

will not use this and only will model ⇢ without the dyad-specific characteristics. The

addition of the random e↵ects and the reciprocity parameter makes the outcome more

realistic, better interpretable, and also still manageable to estimate.

The p2 model uses two dimensions for the sender and the receiver. To estimate the like-

lihood for the p2 model it is necessary to multiply the two likelihoods together, resulting

in the likelihood function given the random e↵ects A and B (Bellio & Soriani, 2020):

p(y|u; ✓) =
n�1Y

i=1

nY

j=i+1

p(yij, yji|ui, uj) (10)

With p(yij, yji|ui, uj) corresponding to (3). The parameters that are estimated in the p2

model are:

✓ = (�1, �2, µ, �1, ⇢, �
2
A, �

2
B, �AB) (11)

14

3 Triadic extension

3.1 Triadic data

Traditional social network methods are focused mainly on self-reported data and the

actors within the dyad. The researcher works with one two-dimensional adjacency matrix

including the actors sending ties and receiving ties from other actors (as in Table 1).

However, Bond et al. (1997) and Krackhardt (1987) considered the use of triadic data.

Here a third person is involved in judging the social relations in a complete social network.

Instead of asking participants to report (a fixed number of) their relations within a

social context, they have to report every possible relation in the complete network. The

researcher will end up with as many complete social networks as there are actors in the

network. In Figure 3 taken from Card, Rodkin and Garandeau (2010) we can see that

each perceiver has produced an adjacency matrix of the ties between senders (’Actor’)

and receivers (’Partner’).

Figure 3. Visualization of the layers in triadic data (Card, Rodkin & Garandeau, 2010)

Krackhardt (1987) discusses the use of triadic social network data based on cognitive

social structures (CSS) more in theory. The basis of these CSS lies in how an actor

perceives relations with and between their friends, and adjusts their relations according

to these perceptions. According to balance theory (Heider, 1958), if an actor k is friends

with actor i and j, they may believe that i and j are also friends and reciprocate their

ties. It does not matter whether actor i and j are really friends and really reciprocate the

friendship to k. The idea behind these triadic data is also that the precision and consensus

of self-reported relations within a social network can be investigated. Krackhardt (1987)

15

describes three ways of using these triadic data: one could aggregate the di↵erent layers,

take slices from it or use all layers in the data. In this thesis we will make use of all the

layers in the data as visualized in Figure 3. In this way it is possible to take into account

the e↵ect of actor characteristics on the probability of a relationship between two actors.

3.2 Triadic model

A triad consist of three actors in a complete social network with six possible ties in three

dyads. Figure 4 visualizes a triad with actor i, j and k and the six ties between the three

actors. If we look at the dyad between i and j, it consists of the ties Yijk and Yjik with i

and j taking both the role as sender and receiver and k perceiving the ties in this dyad.

When looking at the other two dyads the roles change. The dyad between actor i and

k consists of the ties Yikj and Ykij, but here actor j perceives this dyad; the third dyad

between actor j and k consists of the ties Yjki and Ykji with actor i perceiving those ties.

Corresponding to the p1 and p2 model, the tie variables Yijk and Yjik can take the values

1 (relationship exists) or 0 (relationship does not exist). Just as in the p2 model there

are four possible outcomes for one dyad. So in a triad there are 12 possible outcomes.

Figure 4. Visualization of a triad

Every actor in a complete social network is part of multiple triads and exchanges

the role of perceiver with the role of the sender and receiver depending on the triad

looked at. With every perceiver a layer of the triadic data is selected (see Figure 3).

Each layer is a two-dimensional adjacency matrix of a social network perceived by the

selected actor. In our model we will select and use every layer instead of only using one

two-dimensional layer. Because of this, we can use the p2 model for the extension as it

16

models the probability of all dyads in a two-dimensional social network. Instead of only

using the information of the sender and receiver e↵ects from one layer, we extend the

model with a third random e↵ect for the perceiver. By including this parameter, it will

take into account the possible e↵ect of the perceiver on the probability of ties existing in

a dyad. Because of the addition of this extra e↵ect, our model for one side of the triad is

formulated as this:

P (Yijk = y1, Yjik = y2 | Ai, Bi, Aj, Bj, Ck) =

1

hijk
exp{y1(µijk + ↵i + �j + ⌘k) + y2(µjik + ↵j + �i + ⌘k) + y1y2⇢ijk}

(12)

y1, y2 = 0, 1; i, j, k = 1, ..., n; i 6= j, k; j 6= k

where hijk becomes

hij = 1 + exp(µijk + ↵i + �j + ⌘k) + exp(µjik + ↵j + �i + ⌘k)+

exp(µijk + µjik + ↵i + �j + ↵j + �i + 2⌘k + ⇢ijk)
(13)

This model captures the actor i as sender and actor j as receiver in a dyad, but with

the addition of the third actor k as the perceiver. In comparison with the p2 model, the

addition of the random e↵ect ⌘ for the perceiver e↵ect is the only adjustment to connect

every perceived social network in our model. This can be explained by the following; in

Figure 4 the three di↵erent actors have di↵erent roles of sender, receiver or perceiver,

depending on which dyad is looked at. So each actor will adopt the other roles too.

This ties together the three dyads and also all the perceived layers in the triadic data. It

introduces overlap and similarity as the same three actors in a triad all occur in each of the

three dyads. Conditional on the random e↵ects, the triads in a complete social network

are assumed to be independent. The three dyads within one triad are also assumed to

be independent given the random e↵ects, however they still relate because of each actor

having each role of the sender, receiver and perceiver dependent on which dyad is looked

at. Thereby, the random perceiver e↵ect (⌘) is correlated with the random sender and

receiver e↵ects for the same actor. The sender (↵) and receiver (�) random e↵ects are

equal to the random e↵ects in the p2 model.

We will model the fixed e↵ects µ and ⇢ and the random e↵ects ↵, � and ⌘. ↵, � and ⌘ are

the random e↵ects in the model and represent the sender, receiver and perceiver e↵ect

respectively. The random e↵ects can be regressed on the actor covariates X with A, B

and C representing the residual variance as in Van Duijn et al (2004) and � representing

17

the vector of parameters which needs to be estimated. A, B and C are also assumed to

be normally distributed. Taking the example of the dyad in (12) focusing on actor i:

↵i = X1i�1 + Ai (14)

�i = X2i�2 +Bi (15)

⌘i = X3i�3 + Ci (16)

The three residual terms (Ai, Bi, Ci) are normally distributed with mean 0 and variance

⌃. It results in the covariance matrix in which six variance parameters are estimated:

⌃ =

2

664

�2
A �AB �AC

�AB �2
B �BC

�AC �BC �2
C

3

775 (17)

Independence is assumed between the residuals of di↵erent actors:

cov(Ai, Aj) = cov(Bi, Bj) = cov(Ci, Cj) = cov(Ai, Bj) = cov(Ai, Cj) = cov(Bi, Cj) = 0

for i 6= j. In the p2 model it is assumed that the random sender and receiver e↵ects are

dependent for the same actor (Van Duijn et al, 2004). In this extension it is also assumed

that the random perceiver e↵ect is dependent on the sender and receiver e↵ects for the

same actor. Consequently, covariance is introduced between these three random e↵ects:

cov(Ai, Bi) = �AB for all i; cov(Ai, Ci) = �AC for all i; and cov(Bi, Ci) = �BC for all

i. This represents an actor being part of multiple dyads and triads, but also an actor

adopting each role in a triad.

The dyad-specific parameter µ is extended in comparison with the p2 model. The µ

parameter can be seen as the overall mean or density of the network and thus primarily

used as the intercept of the model. We assume that this parameter can contain dyad-

specific covariates which represent characteristics (Z) of the actors as a test for homophily

as it did in the p2 model. However, here we compare all three actors (sender, receiver

and perceiver) for homophily. �1, �2 and �3 are the parameters for the three possible

comparisons for homophily between actor i, j and k.

µijk = µ+ Z1ij�1 + Z2ik�2 + Z3jk�3 (18)

18

As in the p2 model, for this thesis we will only estimate the reciprocity parameter ⇢ with-

out dyad-specific characteristics. However, for future research it could be a possibility.

So in this thesis ⇢ is estimated as this:

⇢ijk = ⇢ (19)

19

4 Estimation

The parameters that need to be estimated for the triadic model are

⇥ = (�1, �2, �3, µ, �1, �2, �3, ⇢, �
2
A, �

2
B, �

2
C , �AB, �AC , �BC) (20)

Because we are using the p2 model as the basis for our model and are extending it with

the perceiver random e↵ect, we can also use the same estimation method. Because this

model is a generalized linear mixed model (GLMM), it is not possible to find a closed-form

solution of the likelihood. With estimation methods and calculation-ability of computers

improving, estimations of parameters become more precise. Originally, iterative general-

ized least squares was used for the p2 model (Van Duijn et al, 2004) and later Bayesian

estimation proved to be more accurate (Zijlstra et al, 2009). However, Bellio and So-

riani (2020) estimated the p2 model with maximum likelihood estimation (MLE) based

on Laplace approximation and concluded that it performs well. Since the Laplace ap-

proximation performs well and is easier to understand, better interpretable and faster to

execute compared to the other estimation methods, we will use this approximation for

the triadic model.

4.1 Likelihood function

In (10) we formulated the likelihood function for the p2 model which uses two dimensions

for only the sender and the receiver. We integrate out the random e↵ects for the p2 model

(Bellio & Soriani, 2020):

L(✓) =

Z

R2

p(y|u; ✓)
(

nY

i=1

�2(ui; 0,⌃)

)
du (21)

With ui = (Ai, Bi) and �2 following a bivariate normal density.

Because of the N layers of perceived networks in the triadic model, we need to add

another dimension to estimate the likelihood of the triadic model. To do this we need to

add another multiplication to (10) to capture and estimate the perceiver random e↵ect

and extra variance parameters. The likelihood function that follows is

p(y|u; ✓) =
nY

k=1

n�1Y

i=1
i 6=k

nY

j=i+1

p(yijk, yjik|Ai, Bi, Aj, Bj, Ck) (22)

With p(yijk, yjik|Ai, Bi, Aj, Bj, Ck) corresponding to (12)

20

Because of the addition of the third multiplication in (20), we need to integrate out more

random e↵ects than in the p2 model to obtain ⌃ in (17). We can still follow the logic of

the p2 model, so it follows that

L(✓) =

Z

R3

p(y|u; ✓)
(

nY

i=1

�3(ui; 0,⌃)

)
du (23)

With ui = (Ai, Bi, Ci) and �3 following a trivariate normal density.

4.2 Laplace approximation

Laplace approximation is a method that can be used in situations where estimation is

harder because of the complexity of the model and the data. It uses Taylor series to

approximate the integral of a function (Shun & McCullagh, 1995). In this way it is

possible to assume a normal distribution of fixed and random parameters using at least

first order derivatives. Making it possible to use maximum likelihood estimation (MLE)

for this model because of this approximation method and to find convergence for the

parameters estimated. It is a fast method to approximate the estimates, especially in

comparison with an approximation method such as Monte Carlo simulations which can

be computational expensive. The parameter estimation of Laplace approximation is also

accurate in comparison with other methods (Bellio & Soriani, 2020; Azevedo-Filho &

Shachter, 1994).

21

5 Application

5.1 Implementation software

To apply the triadic model to real data, the model is programmed in C++ and R. Bellio

and Soriani (2020) shared their code on Github (Bellio & Soriani 2019a) of the application

for the p2 model with Laplace approximation. It includes C++ code and code in R (to

create a function to estimate the model and for their R package). Because our model

is an expansion of the p2 model with the same estimation method as Bellio and Soriani

(2020), we used this code as a base to program the triadic model.

The R package Template Model Builder (TMB) is used which can implement complex

random e↵ect models using Laplace approximation to estimate the negative log likelihood

(Kristensen et al, 2025). To use this in R, a separate C++ file is programmed where the

exact model is formulated to use for estimation. This includes the declaration of all

parameters, the data, the calculation of the model formula in (12) of the triadic model

as well as the calculation of the covariance matrix ⌃ in (17). The C++ is compiled and

used in R within the TMB package and the TMB function MakeAdFun.

Together with an optimization function in R (we used the optimization function

nlminb), the TMB package and the C++ file, the parameters are estimated. This R

code and the C++ code can be found in Appendix D and G.

5.1.1 C++ code

In the C++ code the triadic model is defined. It includes parameters, the data format,

the calculation of the covariance matrix and the calculation of the fixed e↵ects. We

concluded that it is possible to adjust the code of Bellio and Soriani (2019a) to implement

the changes found in the triadic model compared to the p2 model.

We made three changes to the data format. First, we include actor characteristics for

the perceiver (a separate dataframe). Secondly, the dimensions for the triadic data were

changed, because it has a dimension more than in the p2 model. The last change is that

we added a dimension for reciprocity (see Appendix D). The data format for sender and

receiver characteristics and the density (homophily) e↵ects were not changed from the

p2 model. The actor characteristics are dataframes and the input for density e↵ects is a

three dimensional array.

The parameters that we added to the model found in (20) are also included in the

code (see Appendix D). �3 and c are added for the addition of the perceiver, �2 (dyadic

comparison between actor i and actor k) and �3 (dyadic comparison between actor j and

22

actor k) are also added for the addition for the calculation of µijk. Because of this �4

becomes the parameter that is estimated for ⇢. The parameter alpha in the parameter

section contains the variances, and consists of 6 elements that we use to calculate the

covariance matrix.

A vital part of the code that is changed in the C++ file are the calculations of the cor-

rect values for the covariances matrix ⌃ for the triadic model, which is a 3 x 3 matrix. For

the estimation, we need ⌃�1. Bellio and Soriani (2020) used the Cholesky decomposition

to calculate the inverse of the covariance matrix. We also use the Cholesky decomposition

to calculate ⌃�1 of the triadic model. The calculations are found in Appendix A and B.

For the estimation of the fixed parameters, we changed the code to capture the third

dimension of each layer of each perceiver. We also adjusted some indices so the correct

values are taken into account to calculate (12). We added the parameter ⌘ (perceiver)

for calculating the estimated negative log likelihood of the model. In Appendix C and

Appendix D we added the C++ code for the p2 model and our code for the triadic model

respectively so it is more clear what we changed.

5.1.2 R code

In the R code we also made changes. In this phase we chose to focus on step by step code

and not a function or package. The only package we used for estimation is TMB. The first

step in R after loading this package is compiling the C++ code. After compiling we can

load the compiled file into R.

Before running TMB, we added the random and fixed parameters that will be es-

timated, as well as the input of the function and other changes were made to obtain

the correct output. These are the same parameters added in the C++ file. We made

a separate dataframe for the actor characteristics of the perceiver and we adjusted the

input of reciprocity to a four dimensional array. For the density (homophily), matrices

were created for the di↵erences in actor characteristics and put in one array with the first

array containing 1’s. For example we can measure di↵erences between actors to create a

binary matrix by comparing all combinations of two actors whether they have the same

sex (1) or not (0).

After creating the correct data input, the compiled C++ file is loaded into R. The

TMB function MakeAdFun will return a list with functions to calculate the objective

function and its gradient (partial derivatives). This objective function and its gradient

are put in the optimization function nlminb to estimate the parameters. The starting

values for the parameters come from the output of this objective function. We set the

23

lower bounds at �1 for the fixed parameters and the variances and at 0 for the random

covariances. After estimation of the parameters, the function sdreport calculates the

standard errors of all the parameters with the optimized parameters as input (Kristensen

et al, 2025).

We will compare the triadic model with the p2 model. For the results of the p2 model the

package p2model made by Bellio and Soriani (2019a) is used with the packages remotes

and NetData.

5.2 Description data

We will use the high-tech managers data of Krackhardt (1987). The data describes

the friendship relations of 21 managers (actors) in an organization. Every manager in

this network was asked to look at each combination of the actors and was asked to

indictate whether they had a friendship or not. Because of this, our data consists of 21

complete social networks for each of the 21 managers. For each manager we also have

information about their characteristics age (in years), department of the manager in the

organization (department), duration of employment in the organization (tenure) and

level of seniority in the organization hierarchy (level) where 1 is the highest level and

3 the lowest level of seniority. The triadic data can be found in the package cssTools

under ’highTechManagers’.

We will use all the layers of the triadic data collected by Krackhardt (1987). We will

use the age and tenure as actor characteristics for the sender, receiver and the perceiver.

The mean of the age of the 21 managers is 39.71 with standard deviation 9.56 with a

minimum age of 27 and maximum age of 62. The average duration of employment is 11.74

years with standard deviation 8.04. The correlation between age and tenure is r = .489.

To measure potential homophily in this social network, we will add three matrix variables

to our model which indicate; the absolute di↵erences in age between the sender, receiver

and perceiver; whether each actor in the network works in the same department (1) or

not (0); and whether they have the same level of seniority (1) or not (0). In Figure 5c we

visualized the distribution of managers over each department. In Figure 5d we visualized

the distribution of seniority of the 21 actor, which is not evenly distributed.

24

(a) Age (b) Tenure

(c) Department (d) Seniority

Figure 5. Distribution of age, tenure, department and seniority

Bellio and Soriani (2020) also used this high-tech managers data, but they used the

aggregated data of all the layers (two-dimensional dataset) for the p2 model. We use

this data as example for self-reported data, so it is possible to compare the p2 model

with the triadic model. For the comparison with the p2 model we will follow the vignette

made by Bellio and Soriani (2019b). It uses the same actor characteristics for the sender

and receiver and the same homophily variables. The attributes of these data (for both

models) can be found in the package NetData under ’kracknets’. Also the aggregated

data is stored here.

25

We want to describe the self-reported social network data and two of the layers from the

triadic data. We randomly selected the perceived social network of actor 2 and actor 19.

First we will take a look at the adjacency matrices. In Table 2 we see the first five rows of

the adjacency matrix of the aggregated data which represents the self-reported data. We

can see for example that actor 1 sends ties to actor 2, 4, 8, 12 and 16. Actor 21 receives

(of the first five rows displayed) ties from actor 2 and 5. And we can also see reciprocal

ties between actor 1 and 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 - 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0

2 1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

3 0 0 - 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

4 1 1 0 - 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0

5 0 1 0 0 - 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1

Table 2. Adjacency matrix for self-reported data (first five rows)

In Table 3 we see the adjacency matrix perceived by actor 2. Actor 1 still sends a tie

to actor 2, 12 and 16 according to the perceiver. However not to actor 4 and actor 8

compared to the self-reported data. We can still see the reciprocal ties between actor 1

and actor 2. According to the perception of actor 2, actor 21 only receives a tie from

actor 2 of these five rows displayed.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 - 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

2 1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

3 0 0 - 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

4 0 0 0 - 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

5 0 1 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Table 3. Adjacency matrix perceived by actor 2 (first five rows)

The adjacency matrix in Table 4 is perceived by actor 19. In comparison with Table

2 (the self-reported data) and with the social network perceived by actor 2 in Table 3,

actor 19 perceives actor 1 sending ties to actor 2, 4 and 16. But not to actor 8 and actor

12. According to actor 19 there is no reciprocal relationship between actor 1 and actor 2.

And actor 21 receives only a tie from actor 2 of the five actors displayed in these tables.

26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 - 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

2 0 - 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

3 0 0 - 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0

4 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 - 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

Table 4. Adjacency matrix perceived by actor 19 (first five rows)

The characteristics density (the proportion of existing ties of the potential ties in the social

network) and reciprocity (the proportion of reciprocal dyads of all dyads possible in this

social network) give us another description of the social network data. We calculated the

density and proportion of reciprocal dyads for each perceived network of the triadic data

and the self-reported data. The density of the self-reported data is 24.29%. In Figure 6a

we can see that the distribution of proportion of number of ties perceived is skewed. With

the density being less than 10% for just more than half of the 21 perceived networks. The

proportion of reciprocal dyads for the self-reported data is 10.95%. In Figure 6b we can

see that the proportion of reciprocal ties for a lot of layers is below 6%. With an outlier

towards the 12%.

(a) Density (b) Reciprocal ties

Figure 6. Distribution of density and proportion of reciprocal ties of 21 layers

27

The sociograms of the three social networks can give us more information about the

structure of our social networks (the self-reported data, the layer perceived by actor 2

and by actor 19). They are visualized in Figure 7. We visualized all actors in the social

network. We can see that in Figure 7a all actors are connected. For example, we can see

that actor 3 receives five ties and sends 1 tie to actor 14. Between actor 4 and actor 8

we can see an example of reciprocal ties. In Figure 7b the social network is visualized as

perceived by actor 2. We can see that less ties are perceived and there are a lot of isolated

actors. These are actors without ties. According to perceiver 2 there is a clique of actors

in the network. When looking at the social network perceived by actor 19 (Figure 7c),

only actor 10 is isolated from the rest of the actors. Actor 1 receives ties from actor 2,

12, 16 and 18 according to perceiver 19.

(a) Self-reported data (b) Perceiver 2

(c) Perceiver 19

Figure 7. Sociograms of the self-reported data and perceived by actor 2 and 19

28

5.3 Results

During the process of programming the triadic extension we discovered some problems.

First we programmed the model as defined in Chapter 3. We were able to estimate the

parameter values, however we could not estimate the standard errors of the parameter

values. There could be multiple explanations to this problem. One of them is multi-

collinearity which could be due to the density parameter that measures homophily. We

decided to try to only include the homophily between actor i and actor j, and only es-

timate �1 for µijk which also includes the intercept µ. After this modification, it was

possible for R to estimate the standard errors. This version of the C++ code can be

found in Appendix E.

We will take this version to show the results and compare where possible to the

results of the p2 model. This indicates that we will compare self-reported dyads with

dyads perceived by a third actor in the triad. In the discussion we will further explore

possible solutions to estimate the full model described by us in Chapter 3. We tested the

parameters in the model with the Z-score and a two-tailed test. The results can be found

in Table 5. Rstudio version 2024.12.0+467 is used with R version 4.4.2 (R Core Team,

2024).

First we take a look at the individual level e↵ects. These are the sender, receiver and

perceiver e↵ects (Table 5). We found a negative e↵ect of age on sending ties in the

p2 model (�1 = �.131(.059), p = .027). The older the actor, the less friendship ties

they will send. This e↵ect does not exist in the triadic model (�1 = �.001(.019), p =

.954). The e↵ect of duration of employment (tenure) on sending ties is positive in the

p2 model (�1 = .140(.062), p = .024). Meaning that the longer an actor is employed,

the more ties they send. However, in the triadic model this e↵ect perceived by a third

actor is not present (�1 = .037(.022), p = .095). If we look at the receiver e↵ects, the

e↵ect of age on receiving ties is not significant in the p2 model as well as in the triadic

model (p2: �2 = �.002(.035), p = .952; triadic: �2 = �.0003(.0369), p = .993). The

e↵ect of duration of employment on receiving ties increases somewhat. A small positive

e↵ect (p2: �2 = .045(.041), p = .277; triadic: �2 = .076(.044), p = .083) indicates the

longer someone works at the organization, the more ties they receive. For the triadic

model this means that this indication is perceived by other actors. However it is not

significant in both models. The added perceiver e↵ects show some small e↵ects. Age

of the perceiver has a small negative e↵ect (�3 = �.017(.021), p = .437) on perceiving

ties. The e↵ect of duration of employment of the perceiver on perceiving ties is small and

29

positive (�3 = .022(.025), p = .375). If the e↵ects were larger, it could indicate that the

older the perceiver is, the less likely they will perceive ties between other actors and the

longer the perceiver is employed at the organization, the more likely they will perceive

ties.

Results p2 and Triadic Model

p2 Model Triadic Model

E↵ect Estimate S.E. Estimate S.E.

Sender Age -.131* .059 -.001 .019

Tenure .140* .062 .037 .022

Receiver Age -.002 .035 -.0003 .037

Tenure .045 .041 .076 .044

Perceiver Age - - -.017 .021

Tenure - - .022 .025

Reciprocity ⇢ 2.117** .633 2.783*** .186

Density µ .039 1.735 -5.719* 2.271

Department
(same = 1)

1.576*** .348 1.723*** .111

Seniority
(same = 1)

1.154** .405 1.101*** .117

Age di↵. -.055* .025 -.035*** .007

(Co)variances

Sender �2
A 2.054 .950 .413 .173

Receiver �2
B .998 .565 1.789 .685

Perceiver �2
C - - .556 .207

Sender-Receiver �AB -1.136 .637 .595 .278

Sender-Perceiver �AC - - .149 .129

Receiver-Perceiver �BC - - .531 .275

Table 5. Estimates and standard errors p2 model and triadic model;

*p = .05, **p < .01, ***p < .001

We will now look at the dyad-specific level e↵ects of ⇢ and µ. The e↵ect of reciprocity

is high in both the p2 model (⇢ = 2.117(.633), p = .001) and the triadic model (⇢ =

2.783(.186), p < .001), indicating that there is reciprocity in the social network attributing

to the probability of a tie existing between two actors. However, the standard error in

the triadic model is lower than in the p2 model. This is interesting, because it makes the

30

triadic model more precise. As mentioned in this thesis, a goal of using the perceived

layers in the triadic data is improving the precision of self-reported relations. We have

more data, so a larger ”sample” for making it more precise. The parameter µ for the

density, is low in the triadic model (µ = �5.719(2.271), p = .012) and also in the p2

model (µ = .039(1.735), p = .982). This is a common phenomenon when dealing with

larger networks. Because the triadic data exist of multiple layers of social networks, a

lot more dyadic data is available as in larger networks. It also depends on the number of

dyadic covariates added to µ.

The first e↵ect for homophily is being part of the same department. The probability

of having a friendship relation increases when both actors are in the same department

in comparison with not being in the same department. This e↵ect is present in the p2

model (�1 = 1.576(.348), p < .001) and we can see a similar e↵ect in the triadic model

(�1 = 1.723(.111), p < .001). So the increase in probability of having friendship relations

in the same department is also perceived by the third actor in the triad. The probability

of a friendship existing is also higher when the two actors have the same level of seniority

in comparison with not having the same level of seniority. This is also present when

perceived by a third actor. The e↵ect in the p2 model (�1 = 1.154(.405), p = .004) is also

similar to the e↵ect in the triadic model (�1 = 1.101(.117), p < .001). Here the standard

error is also lower for the triadic model than in the p2 model. When we look at di↵erences

in ages, we can see a small negative e↵ect in both the p2 model (�1 = �.055(.25), p =

.026) and the triadic model (�1 = �.035(.007), p < .001). The probability of a friendship

between two actors decreases when di↵erences in age increases. This e↵ects seems to be

especially perceived by a third actor. It is a small e↵ect and also here the standard error

is lower for the triadic model.

We will now look at the variances in sender (�2
A), receiver (�

2
B) and perceiver (�2

C) activity.

For the sender (variation between actors how many ties they send) the variance is higher

in the p2 model (�2
A = 2.054(.950)) than in the triadic model (�2

A = .413(.173)). This

can be explained by the fact that in the p2 model the sender is also the perceiver of

the self-reported ties. For the receiver (variation between actors how many ties they

receive) the variance is in the triadic model (�2
B = 1.789(.685)) similar as in the p2 model

(�2
B = .998(.565)). The higher standard error of the triadic model could be explained

by the distance of the perceiver to certain actors in the social network and being more

informed about actors close by such as friends of friends. Maybe perceiving received ties

at more extreme values (having no ties or more ties). For the perceiver (variation between

layers how many ties are perceived) the variation is only calculated in the triadic model

31

and is �2
C = .556(.207).

We are also interested in the covariances between sender, receiver and perceiver. The

covariance between sender and receiver e↵ect of the same actor (�AB) is negative in the

p2 model (�AB = �1.136(.637)). Meaning the more an actor sends ties, the less they

receive ties. However, in the triadic model the covariance is positive ((�AB = .595(.278)).

Meaning the more sent ties are perceived, the more received ties for the same actor are

perceived. These two opposite results can be explained by how the data is collected. The

negative e↵ect in the self-reported data could be explained by how every actor only needs

to indicate who they see as their friends and not whether the friendship is reciprocal.

Making it possible that not all those friends will nominate them as friends. In this case

many sent ties makes an actor more sociable (and thus not immediately seen as more

popular), many received ties represents an actor as more popular. The perceiver however

looks at every directed tie in the network. It is possible that the number of received and

sent ties by the same actor become almost equal according to the perceiver. The perceiver

subconsciously does not di↵er a more social actor from a more popular actor. It could be

possible that the perceiver judges an actor as also sending more ties when receiving more

ties and receiving less ties when sending less ties. This also lies in the basis of CSS where

a perceiver adjusts their own relation on the basis of what they perceive. The covariance

between sender and perceiver (�AC) is only estimated in the triadic model and is positive

but small (�AC = .149(.129)). Meaning the more send ties that are perceived by an actor,

the more ties are perceived in general. The covariance between receiver and perceiver

�BC is also only estimated in the triadic model and is positive (�BC = .531(.275)). The

more received ties perceived by an actor, the more ties are perceived in general.

32

6 Discussion

In this thesis we have built a triadic extension of the p2 model using Laplace approxi-

mation based on Bellio and Soriani (2020). Instead of using self-reported data we used

triadic data where every actor in the social network perceives every directed tie in the

network. It was possible to program the triadic model, however only the version without

the homophily comparisons between actor i and actor k, and actor j and actor k would

converge. This version was evaluated in the results and compared to the p2 model. The

results show that the triadic model works. In comparison with the results of the p2 model

some results were more precise in the triadic model. Especially for the parameter ⇢ and

the homophily e↵ects the standard errors are smaller in the triadic model compared to

the p2 model. This can be explained by the fact we have more information and network

data than the self-reported data. The variance of the sender was higher in the p2 model

than in the triadic model. The variance for receiver was similar for both models, but

the standard error was higher for the triadic model. The covariance between sender and

receiver was negative for the p2 model and positive for the triadic model. Which could

possibly be explained by how the data is collected.

The addition of the perceiver e↵ect was not significant in our example. However,

it is interesting we can now measure with this e↵ect to what extent an actor perceives

other ties di↵erent from theirs dependent on certain characteristics of the perceiver. The

variance of the perceiver now gives information about the variation between the N layers

how many ties are perceived. The covariance between sender and perceiver is positive

in our example and the covariance between receiver and perceiver is also positive. This

indicates that for the same actor, if they send or receive more ties, they are also more

likely to perceive more ties in their role as perceiver.

We can link these results to our theory. In the cognitive social structures of Krackhardt

(1987) it is described that how an actor perceives the relationships of themselves and their

friends, influences how this perceiving actor is adjusting their relationships accordingly.

Where the balance theory of Heider (1958) can play a role in this perception. It does not

matter whether the perception is correct, the third perceiving actor believes it exist and

acts accordingly. Each actor in the triadic data gives us this judgement about whether

they perceive relationships or not between all the actors. And we are able to measure

certain actor characteristics which can e↵ect the perception of these relations existing or

not. We can observe variance of the number of perceived relations between all the actors

(the N social network layers in the triadic data), which indicates that perception of the

relationships within a social network is di↵erent among actors. Whether it is a correctly

33

identified relationship or not. This model gives us more information about the role of

the third actor k perceiving the relationship between actor i and j and gives us more

information about the e↵ect of the perceiver, the third actor, on the dyadic probability

between the two other actors in the triad.

We also concluded that in our example in some cases the standard errors were lower

in the triadic model compared to the p2 model and the estimated parameter value was

similar to the value in the p2 model. Krackhardt (1987) stated that these triadic data

could be also used to investigate the precision and consensus of self-reported data. The

lower standard errors indicate more precise results. However, we cannot fully conclude

only with the example in this thesis that the triadic model gives more precise results of

these e↵ects. Future research could look into this through for example simulation studies.

The variance of the perceiver can be used to investigate the consensus of self-reported

data.

The biggest problem in this thesis was the multicollinearity found when programming

the homophily parameters �1, �2 and �3. For the comparisons between actor i and j,

actor i and actor k, and actor j and actor k. We were able to include the comparison

between actor i and j and the model was able to converge, but not with the other pairs.

Correlations between variables we added could produce this problem. As we showed, the

correlation between tenure and age was already higher. But we also ran into the overlap

where all the N actors fill in the role of the sender, receiver and perceiver. If we compare

similarities in actor characteristics between actor i and j, there is overlap (or correlation)

when comparing actor i and actor k and after that actor j and actor k. A possible solution

in future research is looking into a restriction on which variables and characteristics can be

added and which characteristics can be compared to measure homophily between actors

especially between the three pairs. In theory, we want to include all three comparisons in

µ, because all three pairings are important and can give us more information. However in

practice, the correlations between variables and the overlap in use of data; every actors

being part of each role; and the sparse network data ask for a thorough investigation

where computational problems lie and which combination of variables can be used. Also

other more common solutions that can solve multicollinearity can be investigated whether

they work for this triadic model.

In this thesis we made the assumption that adding the perceiver parameter ⌘ in

combination with the triadic data is su�cient to argue that we can model triads in a

realistic way. Also because every actor will take the role of sender, receiver and perceiver

and consequently ties together the three dyads in a triad. We showed that we now

34

can model the e↵ect of actor characteristics of the perceiver on the dyadic probability.

However, one can argue that maybe this assumption is too bold. We can now estimate

the probability of each dyad in the social network and separately all three dyads in a

triad. But maybe a further step needs to be taking in future research to tie those three

dyads together. A possible way could be to add a triadic e↵ect to the model besides the

perceiver e↵ect that we added.

For the comparison between the estimates of the p2 model with the triadic model

we used the aggregated data as self-reported data. This is not the same as the usually

self-reported data where the actor is asked who their friends are from the predetermined

social group. Because of this, the density and proportion of reciprocity can be somewhat

higher than normal. However, we used it so we could compare the two models and it still

gives a good inside in what the triadic data and model brings. It brings something to

consider what happens subconsciously when actors self-report their relations or when they

perceive the whole network and the e↵ect of this on evaluating their own relationships.

Other recommendations are adding dyad-specific characteristics to ⇢, calculating the AIC

and the BIC for the triadic model and evaluate their use, and looking at other assumptions

that need to be adhered to for a good model fit.

Next, we also want to measure how well the triadic model fits on the triadic data. This

can be the triadic high-tech managers dataset, but also other datasets providing triadic

social network data where every actor reports every directed tie in the social network.

For this we can use goodness-of-fit tests. As Bellio and Soriani (2020 suppl.) did for

the p2 model with Laplace approximation, we also can simulate networks from the fitted

model and calculate certain descriptive structures from these models. Examples for these

structures are the proportion of triads (triangles), the indegree or outdegree and compare

it to the observed social network. However, it needs to be investigated in further research

which structures can be used for goodness-of-fit tests for the triadic model.

We described in this thesis an extension of the p2 model using triadic data. To model

the dyadic probabilities including the perception of the third actor in a triad on the re-

lationships of others. It was possible to converge a large part of the model, because we

encountered the problem of multicollinearity when programming the whole model. The

results provide more information about the role and characteristics of the perceiver on es-

timating the probability of a dyad. More research needs to be done on the implications of

using certain actor characteristics on convergence of the whole model. Recommendations

for future research were made to ensure that researchers can eventually use this model

to answer research questions concerning cognitive social structures and balance theory.

35

7 References

[1] Amati, V., Lomi, A., & Mira, A. (2018). Social network modeling. Annual Review

of Statistics and Its Application, 5(1), 343-369. https://doi.org/10.1146/annurev-

statistics-031017-100746.

[2] Azevedo-Filho, A., & Shachter, R. D. (1994, January). Laplace’s method approx-

imations for probabilistic inference in belief networks with continuous variables.

Uncertainty in Artificial Intelligence, 28-36. https://doi.org/10.1016/B978-1-55860-

332-5.50009-2.

[3] Bellio, R. & Soriani, N. (2019a). Software for [Maximum likelihood estimation

based on the Laplace approximation for p2 network regression models]. GitHub,

https://github.com/rugbel/p2model.

[4] Bellio, R. & Soriani, N. (2019b). Vignettes for [Maximum likelihood estimation

based on the Laplace approximation for p2 network regression models]. GitHub,

https://github.com/rugbel/p2model/tree/master/vignettes.

[5] Bellio, R. & Soriani, N. (2020). Maximum likelihood estimation based on the Laplace

approximation for p2 network regression models, Statistica Neerlandica, 75(1), 24-41.

https://doi.org/10.1111/stan.12223

[6] Bond Jr, C. F., Horn, E. M., & Kenny, D. A. (1997). A model for triadic relations.

Psychological Methods, 2(1), 79–94. https://doi.org/10.1037/1082-989X.2.1.79

[7] Card, N. A., Rodkin, P. C., & Garandeau, C. F. (2010). A description and

illustration of the Triadic Relations Model: Who perceives whom as bully-

ing whom?. International Journal of Behavioral Development, 34(4), 374-383.

https://doi.org/10.1177/0165025410371418

[8] Heider, F. (1958). The psychology of interpersonal relations. Lawrence Erlbaum

Associates.

[9] Holland, P. W., & Leinhardt, S. (1981). An exponential family of probability distri-

butions for directed graphs. Journal of the American Statistical association, 76(373),

33-50. https://doi.org/10.1080/01621459.1981.10477598

[10] Kadushin, C. (2012). Understanding social networks: Theories, concepts, and find-

ings. Oxford university press.

36

[11] Kenny, D. A. & La Voie, L. (1984). The social relations model. Advances

in Experimental Social Psychology, 18, 141-182. https://doi.org/10.1016/S0065-

2601(08)60144-6

[12] Krackhardt, D. (1987). Cognitive social structures. Social networks, 9(2), 109-134.

https://doi.org/10.1016/0378-8733(87)90009-8

[13] Kristensen, K., Bell, B., Skaug, H., Magnusson, A., Berg, C., Nielsen, A., Maechler,

M., Michelot, T., Brooks, M., Forrence, A., Albertsen, C.M., Monnahan, C. (2025).

TMB: Template Model Builder: A General Random E↵ect Tool Inspired by ’ADMB’,

https://CRAN.R-project.org/package=TMB.

[14] R Core Team (2024). R: A Language and Environment for Statistical Comput-

ing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-

project.org/.

[15] Robins, G., Pattison, P., Kalish, Y., & Lusher, D. (2007). An introduction to ex-

ponential random graph (p*) models for social networks. Social networks, 29(2),

173-191. https://doi.org/10.1016/j.socnet.2006.08.002

[16] Robins, G. & Lusher, D. (2013). What are exponential random graph models. In

Lusher, D., Koskinen, J.,& Robins, G. (Eds.).Exponential random graph models for

social networks: Theory, methods, and applications (9-14). Cambridge University

Press.

[17] Shun, Z., & McCullagh, P. (1995). Laplace approximation of high dimensional in-

tegrals. Journal of the Royal Statistical Society Series B: Statistical Methodology,

57(4), 749-760. https://doi.org/10.1111/j.2517-6161.1995.tb02060.x

[18] Snijders, T. A., & Kenny, D. A. (1999). The social relations model for

family data: A multilevel approach. Personal Relationships, 6(4), 471-486.

https://doi.org/10.1111/j.1475-6811.1999.tb00204.x

[19] Snijders, T. A. (2011). Statistical models for social networks. Annual review of soci-

ology, 37(1), 131-153. https://doi.org/10.1146/annurev.soc.012809.102709

[20] Stark, T. H. (2017). Collecting social network data. The Palgrave handbook of survey

research, 241-254.

37

[21] Swartz, T. B., Gill, P. S., & Muthukumarana, S. (2015). A Bayesian ap-

proach for the analysis of triadic data in cognitive social structures. Jour-

nal of the Royal Statistical Society Series C: Applied Statistics, 64(4), 593-610.

https://doi.org/10.1111/rssc.12096

[22] Van Duijn, M. A., Snijders, T. A., & Zijlstra, B. J. (2004). p2: A random e↵ects

model with covariates for directed graphs. Statistica Neerlandica, 58(2), 234-254.

https://doi.org/10.1046/j.0039-0402.2003.00258.x

[23] Van Duijn, M. A. (2013). Multilevel modeling of social network and relational data.

The SAGE handbook of multilevel modeling, 599-618.

[24] Zijlstra, B. J., Van Duijn, M. A., & Snijders, T. A. (2009). MCMC es-

timation for the p2 network regression model with crossed random e↵ects.

British Journal of Mathematical and Statistical Psychology, 62(1), 143-166.

https://doi.org/10.1348/000711007X255336

38

8 Appendix

A: Cholesky decomposition

We are looking for the Cholesky decomposition of the covariance matrix for the triadic

model. 6 elements (three variances, three covariances) need to be calculated with the use

of ↵ which needs to be estimated.

⌃ =

2

664

�2
A �AB �AC

�AB �2
B �BC

�AC �BC �2
C

3

775

In our C++ code we use the vector S() and alpha() consisting of 6 elements. C++ starts

counting at 0. These are the places in the vectors linked to the (co)variances.

0 = �2
A, 1 = �AB, 2 = �2

B, 3 = �AC , 4 = �BC , 5 = �2
C

2

664

0 �AB �AC

1 2 �BC

3 4 5

3

775

The calculation for the Cholesky decomposition is:

A = LLT

Where L is the lower triangular matrix and LT is its transpose. For the Cholesky decom-

position we assign also letters to these places to make it easier for ourselves in assigning

the correct places for the Cholesky decomposition.

L =

2

664

a 0 0

b c 0

d e f

3

775

And now the Cholesky decomposition:

A =

0

BB@

a 0 0

b c 0

d e f

1

CCA

0

BB@

a b d

0 c e

0 0 f

1

CCA =

0

BB@

a2 ab ad

ab b2 + c2 bd+ ce

ad bd+ ce d2 + e2 + f 2

1

CCA =

0

BB@

�2
A �AB �AC

�AB �2
B �BC

�AC �BC �2
C

1

CCA

39

So it follows that:

�2
A = S(0) = alpha(0) + alpha(0)

�AB = S(1) = alpha(0) + alpha(1)

�2
B = S(2) = alpha(1) ⇤ alpha(1) + alpha(2) ⇤ alpha(2)

�AC = S(3) = alpha(0) ⇤ alpha(3)

�BC = S(4) = alpha(1) ⇤ alpha(3) + alpha(2) ⇤ alpha(4)

�2
C = S(5) = alpha(3) ⇤ alpha(3) + alpha(4) ⇤ alpha(4) + alpha(5) ⇤ alpha(5)

40

B: Calculation determinant and inverse

For our likelihood we need the inverse of the covariance matrix found with the Cholesky

decomposition. For this we need the adjugated matrix and the determinant. For this we

are still using the place numbers for each element in the covariance matrix to program

this correctly in our C++ code. The matrix is symmetrical so transpose is the same.

A =

2

664

0 1 3

1 2 4

3 4 5

3

775

Aadj =

0

BBBBBBBBBB@

�����
2 4

4 5

����� �

�����
1 4

3 5

�����

�����
1 2

3 4

�����

�

�����
1 3

4 5

�����

�����
0 3

3 5

����� �

�����
0 1

3 4

�����
�����
1 3

2 4

����� �

�����
0 3

1 4

�����

�����
0 1

1 2

�����

1

CCCCCCCCCCA

All these elements in the matrix Aadj needs to be divided by the determinant of A. The

numbers again indicated the places in vectors responding to the (co)variance. Which is:

det(A) = 0 +

�����
2 4

4 5

������ 1 ⇤

�����
1 4

3 5

�����+ 3 ⇤

�����
1 2

3 4

�����

41

C: C++ code p2 model (Bellio & Soriani, 2019a)

#define TMB LIB INIT R init mypkg

#include <TMB. hpp>

template<class Type>

Type ob j e c t i v e f un c t i o n<Type> : : operator () ()

{
/∗ data s e c t i on ∗/
DATAMATRIX(XnS) ;

DATAMATRIX(XnR) ;

DATAARRAY(XvD) ;

DATAARRAY(XvC) ;

DATAMATRIX(y) ; //network

DATA INTEGER(pen f l ag) ;

DATAVECTOR(penSigma) ;

/∗ Parameter s e c t i on ∗/
PARAMETERVECTOR(gamma1) ;

PARAMETERVECTOR(gamma2) ;

PARAMETERVECTOR(de l t a1) ;

PARAMETERVECTOR(de l t a2) ;

PARAMETERVECTOR(alpha) ;

PARAMETERVECTOR(a) ;

PARAMETERVECTOR(b) ;

int kd = XvD. c o l s () ;

int kc = XvC. c o l s () ;

int g = y . c o l s () ;

Type n l l =0.0 ; // Negat ive l o g l i k e l i h o o d func t i on

42

vector<Type> S (3) ;

vector<Type> S1 (3) ;

S (0) = alpha (0) ∗ alpha (0) ;

S (1) = alpha (0) ∗ alpha (1) ;

S (2) = alpha (1) ∗ alpha (1) + alpha (2) ∗ alpha (2) ;

Type DS = S (0) ∗ S (2) − S (1) ∗ S (1) ;

S1 (0) = S (2) / DS;

S1 (1) = − S (1) / DS;

S1 (2) = S (0) / DS;

Type quadu = ((a∗a) . sum ()) ∗ S1 (0) +

((a∗b) . sum ()) ∗ S1 (1) ∗ 2 .0 +

((b∗b) . sum ()) ∗ S1 (2) ;

n l l −= −0.5 ∗ quadu − g ∗ 0 .5 ∗ l og (DS) ;

ADREPORT(S) ;

// n l l from y

vector<Type> XSg1 = XnS ∗ gamma1 ; // a l p h a i in the model

vector<Type> XRg2 = XnR ∗ gamma2 ; // b e t a i

for (int i =0; i<(g−1); i++)

for (int j=i +1; j<g ; j++)

{
Type y1 = y(i , j) ;

Type y2 = y(j , i) ;

Type a lpha i = XSg1(i) + a (i) ;

Type a lpha j = XSg1(j) + a (j) ;

Type be ta i = XRg2(i) + b(i) ;

Type be ta j = XRg2(j) + b(j) ;

Type muij = 0 . 0 ;

Type muji = 0 . 0 ;

43

for (int k=0;k<kd ; k++)

{
muij += XvD(i , j , k) ∗ de l t a1 (k) ;

muji += XvD(j , i , k) ∗ de l t a1 (k) ;

}
Type r h o i j = 0 . 0 ;

for (int k=0;k<kc ; k++)

r h o i j += XvC(i , j , k) ∗ de l t a2 (k) ;

Type x i1 = muij + a lpha i + beta j ;

Type x i2 = muji + a lpha j + be ta i ;

Type x i3 = muij + muji + a lpha i + be ta j + a lpha j + be ta i + r h o i j ;

Type den = 1 .0 + exp (x i1) + exp (x i2) + exp (x i3) ;

n l l −= y1 ∗ x i1 + y2 ∗ x i2 + r h o i j ∗ y1 ∗ y2 − l og (den) ;

}

Type pen = 0 . 0 ;

Type rho = S (1) / sq r t (S (0) ∗ S (2)) ;

i f (pen f l ag==1)

pen = 0 .5 ∗ l og (DS) ;

i f (pen f l ag==2)

{
Type rho in f o = penSigma (1) / sq r t (penSigma (0) ∗ penSigma (2)) ;

pen = 0 .5 ∗ l og (DS) + Type (2) ∗ l og (S (0)) + Type (2) ∗ l og (S (2))

− (Type (2) / sq r t (penSigma (0))) ∗ s q r t (S (0)) − (Type (2) /

sq r t (penSigma (2))) ∗ s q r t (S (2)) − pow(rho−rho in fo , Type (2))

/ 0 . 1 2 5 ;

}

n l l −= pen ;

ADREPORT(rho) ;

REPORT(pen) ;

44

return n l l ;

}

45

D: C++ code complete triadic model

#define TMB LIB INIT R init mypkg

#include <TMB. hpp>

template<class Type>

Type ob j e c t i v e f un c t i o n<Type> : : operator () ()

{
/∗ data s e c t i on ∗/
DATAMATRIX(XnS) ;

DATAMATRIX(XnR) ;

DATAMATRIX(XnP) ;

DATAARRAY(XvD) ; // s t i l l w i l l have 3 dimensions , 21 ,21 ,N co va r i a t e s+1

DATAARRAY(XvC) ; // w i l l have 4 dimensions , 21 ,21 ,21 ,1

DATAARRAY(y) ; //network , 3 dimensions

/∗ Parameter s e c t i on ∗/
PARAMETERVECTOR(gamma1) ; // sender

PARAMETERVECTOR(gamma2) ; // r e c e i v e r

PARAMETERVECTOR(gamma3) ; // pe r c e i v e r

PARAMETERVECTOR(de l t a1) ; // f i r s t parameter mu

PARAMETERVECTOR(de l t a2) ; // second parameter mu

PARAMETERVECTOR(de l t a3) ; // t h i r d parameter mu

PARAMETERVECTOR(de l t a4) ; // rho

PARAMETERVECTOR(alpha) ; // vec t o r a l l (co) var iances , in R c (1 ,0 ,1 ,0 ,0 ,1)

PARAMETERVECTOR(a) ;

PARAMETERVECTOR(b) ;

PARAMETERVECTOR(c) ;

int kd = XvD. c o l s () ;

int kc = XvC. c o l s () ;

int g = y . c o l s () ;

46

Type n l l =0.0 ; // Negat ive l o g l i k e l i h o o d func t i on

/∗ Cholesky decomposi t ion and inve r s e covar iance matrix ∗/
vector<Type> S (6) ;

vector<Type> S1 (6) ;

S (0) = alpha (0) ∗ alpha (0) ; //a

S (1) = alpha (0) ∗ alpha (1) ; //ab

S (2) = alpha (1) ∗ alpha (1) + alpha (2) ∗ alpha (2) ; //b

S (3) = alpha (0) ∗ alpha (3) ; //ac

S (4) = alpha (1) ∗ alpha (3) + alpha (2) ∗ alpha (4) ; // bc

S (5) = alpha (3) ∗ alpha (3) + alpha (4) ∗ alpha (4) +

alpha (5) ∗ alpha (5) ; //c

Type DS = S (0) ∗ (S (2) ∗ S (5) − S (4) ∗ S (4)) − S (1) ∗
(S (1) ∗ S (5) − S (3) ∗ S (4)) + S (3) ∗ (S (1) ∗ S (4) − S (2) ∗ S (3)) ;

S1 (0) = (S (2) ∗ S (5) − S (4) ∗ S (4)) / DS;

S1 (1) = − (S (1) ∗ S (5) − S (4) ∗ S (3)) / DS;

S1 (2) = (S (0) ∗ S (5) − S (3) ∗ S (3)) / DS;

S1 (3) = (S (1) ∗ S (4) − S (2) ∗ S (3)) / DS;

S1 (4) = − (S (0) ∗ S (4) − S (1) ∗ S (3)) / DS;

S1 (5) = (S (0) ∗ S (2) − S (1) ∗ S (1)) / DS;

Type quadu = ((a∗a) . sum ()) ∗ S1 (0) + ((a∗b) . sum ()) ∗ S1 (1) ∗ 2 .0 +

((b∗b) . sum ()) ∗ S1 (2) + ((a∗c) . sum ()) ∗ S1 (3) ∗ 2 .0 + ((b∗c) . sum ()) ∗
S1 (4) ∗ 2 .0 + ((c∗c) . sum ()) ∗ S1 (5) ;

n l l −= −0.5 ∗ quadu − g ∗ 0 .5 ∗ l og (DS) ;

ADREPORT(S) ;

/∗ Def in ing f i x e d e f f e c t s t r i a d i c model ∗/
// n l l from y

vector<Type> XSg1 = XnS ∗ gamma1 ; // a l p h a i in the model

vector<Type> XRg2 = XnR ∗ gamma2 ; // b e t a i

vector<Type> XRg3 = XnP ∗ gamma3 ; // e t a k

47

for (int k=0; k<g ; k++)

for (int i =0; i<(g−1); i++)

for (int j=i +1; j<g ; j++)

{
i f (i == k | | j == k) {

continue ;

}
else {

Type y1 = y(i , j , k) ; // here we make use o f the a c t ua l data

Type y2 = y(j , i , k) ;

Type a lpha i = XSg1(i) + a (i) ;

Type a lpha j = XSg1(j) + a (j) ;

Type be ta i = XRg2(i) + b(i) ;

Type be ta j = XRg2(j) + b(j) ;

Type etak = XRg3(k) + c (k) ;

Type muijk = 0 . 0 ;

Type mujik = 0 . 0 ;

for (int t=0; t<kd ; t++)

muijk += (XvD(i , j , t) ∗ de l t a1 (t) + XvD(i , k , t) ∗ de l t a2 (t)) ;

mujik += (XvD(j , i , t) ∗ de l t a1 (t) + XvD(j , k , t) ∗ de l t a3 (t)) ;

}
Type r h o i j = 0 . 0 ;

for (int t=0; t<kc ; t++)

r h o i j += XvC(i , j , k , t) ∗ de l t a4 (t) ;

Type x i1 = muijk + a lpha i + be ta j + etak ;

Type x i2 = mujik + a lpha j + be ta i + etak ;

Type x i3 = muijk + mujik + a lpha i + beta j + a lpha j + be ta i +

etak + r h o i j ;

Type den = 1 .0 + exp (x i1) + exp (x i2) + exp (x i3) ;

n l l −= y1 ∗ x i1 + y2 ∗ x i2 + r h o i j ∗ y1 ∗ y2 − l og (den) ;

}}

vector<Type> R(3) ;

R(0) = S (1) / sq r t (S (0) ∗ S (3)) ;

R(1) = S (2) / sq r t (S (0) ∗ S (5)) ;

48

R(2) = S (4) / sq r t (S (5) ∗ S (3)) ;

ADREPORT(R) ;

return n l l ;

}

49

E: C++ code triadic model results

#define TMB LIB INIT R init mypkg

#include <TMB. hpp>

template<class Type>

Type ob j e c t i v e f un c t i o n<Type> : : operator () ()

{
/∗ data s e c t i on ∗/
DATAMATRIX(XnS) ;

DATAMATRIX(XnR) ;

DATAMATRIX(XnP) ;

DATAARRAY(XvD) ; // w i l l have 3 dimensions , 21 ,21 , x a l l e e n i , j s im i l a r i t y

DATAARRAY(XvC) ; // w i l l have 4 dimensions , 21 ,21 ,21 ,1 (i s rho)

DATAARRAY(y) ; //network , 3 dimensions

/∗ Parameter s e c t i on ∗/
PARAMETERVECTOR(gamma1) ; // sender

PARAMETERVECTOR(gamma2) ; // r e c e i v e r

PARAMETERVECTOR(gamma3) ; // pe r c e i v e r

PARAMETERVECTOR(de l t a1) ; // den s i t y

PARAMETERVECTOR(de l t a2) ; // rho

PARAMETERVECTOR(alpha) ; // vec t o r a l l (co) var iances , in R c (1 ,0 ,1 ,0 ,0 ,1)

PARAMETERVECTOR(a) ;

PARAMETERVECTOR(b) ;

PARAMETERVECTOR(c) ;

int kd = XvD. c o l s () ;

int kc = XvC. c o l s () ;

int g = y . c o l s () ;

Type n l l =0.0 ; // Negat ive l o g l i k e l i h o o d func t i on

50

/∗ Cholesky decomposi t ion and inve r s e covar iance matrix ∗/
vector<Type> S (6) ;

vector<Type> S1 (6) ;

S (0) = alpha (0) ∗ alpha (0) ; //a

S (1) = alpha (0) ∗ alpha (1) ; //ab

S (2) = alpha (1) ∗ alpha (1) + alpha (2) ∗ alpha (2) ; //b

S (3) = alpha (0) ∗ alpha (3) ; //ac

S (4) = alpha (1) ∗ alpha (3) + alpha (2) ∗ alpha (4) ; // bc

S (5) = alpha (3) ∗ alpha (3) + alpha (4) ∗ alpha (4) +

alpha (5) ∗ alpha (5) ; //c

Type DS = S (0) ∗ (S (2) ∗ S (5) − S (4) ∗ S (4)) − S (1) ∗
(S (1) ∗ S (5) − S (3) ∗ S (4)) + S (3) ∗ (S (1) ∗ S (4) − S (2) ∗ S (3)) ;

S1 (0) = (S (2) ∗ S (5) − S (4) ∗ S (4)) / DS;

S1 (1) = − (S (1) ∗ S (5) − S (4) ∗ S (3)) / DS;

S1 (2) = (S (0) ∗ S (5) − S (3) ∗ S (3)) / DS;

S1 (3) = (S (1) ∗ S (4) − S (2) ∗ S (3)) / DS;

S1 (4) = − (S (0) ∗ S (4) − S (1) ∗ S (3)) / DS;

S1 (5) = (S (0) ∗ S (2) − S (1) ∗ S (1)) / DS;

Type quadu = ((a∗a) . sum ()) ∗ S1 (0) + ((a∗b) . sum ()) ∗ S1 (1) ∗ 2 .0 +

((b∗b) . sum ()) ∗ S1 (2) + ((a∗c) . sum ()) ∗ S1 (3) ∗ 2 .0 +

((b∗c) . sum ()) ∗ S1 (4) ∗ 2 .0 + ((c∗c) . sum ()) ∗ S1 (5) ;

n l l −= −0.5 ∗ quadu − g ∗ 0 .5 ∗ l og (DS) ;

ADREPORT(S) ;

/∗ Def in ing f i x e d e f f e c t s t r i a d i c model ∗/
// n l l from y

vector<Type> XSg1 = XnS ∗ gamma1 ; // a l p h a i in the model

vector<Type> XRg2 = XnR ∗ gamma2 ; // b e t a i

vector<Type> XRg3 = XnP ∗ gamma3 ; // e t a k

for (int k=0; k<g ; k++)

for (int i =0; i<(g−1); i++)

51

for (int j=i +1; j<g ; j++)

{
i f (i == k | | j == k) {

continue ;

}
else {

Type y1 = y(i , j , k) ; // here we make use o f the a c t ua l data

Type y2 = y(j , i , k) ;

Type a lpha i = XSg1(i) + a (i) ;

Type a lpha j = XSg1(j) + a (j) ;

Type be ta i = XRg2(i) + b(i) ;

Type be ta j = XRg2(j) + b(j) ;

Type etak = XRg3(k) + c (k) ;

Type muijk = 0 . 0 ;

Type mujik = 0 . 0 ;

for (int t=0; t<kd ; t++)

{
muijk += (XvD(i , j , t) ∗ de l t a1 (t)) ;

mujik += (XvD(j , i , t) ∗ de l t a1 (t)) ;

}
Type r h o i j = 0 . 0 ;

for (int t=0; t<kc ; t++)

r h o i j += (XvC(i , j , k , t)∗ de l t a2 (t)) ;

Type x i1 = muijk + a lpha i + be ta j + etak ;

Type x i2 = mujik + a lpha j + be ta i + etak ;

Type x i3 = muijk + mujik + a lpha i + beta j + a lpha j +

be ta i + 2∗ etak + r h o i j ;

Type den = 1 .0 + exp (x i1) + exp (x i2) + exp (x i3) ;

n l l −= y1 ∗ x i1 + y2 ∗ x i2 + r h o i j ∗ y1 ∗ y2 − l og (den) ;

}}

Type pen = 0 . 0 ;

vector<Type> R(3) ;

R(0) = S (1) / sq r t (S (0) ∗ S (3)) ;

52

R(1) = S (2) / sq r t (S (0) ∗ S (5)) ;

R(2) = S (4) / sq r t (S (5) ∗ S (3)) ;

pen = 0 .5 ∗ l og (DS) ;

n l l −= pen ;

REPORT(pen) ;

ADREPORT(R) ;

return n l l ;

}

53

F: R code p2 function (Bellio & Soriani, 2019a)

fit_p2 <- function(y, XnS, XnR, XvD, XvC, M = 0, seed = NULL, trace = FALSE,
init = NULL, penalized = FALSE, penSigma = NULL,
opt = nlminb, singular.ok = TRUE, ...)

{
Do some argument checking
if(is.null(y) | is.null(XvD) | is.null(XvC)) stop("y, XvD and XvC must be provided \n")
if(!is.matrix(y))

{
warning("network data should be provided as a matrix\n")
y <- as.matrix(y)

}
if(ncol(y) != nrow(y)) stop("y must be a squared matrix\n")
g <- ncol(y)
if(!is.null(XnS) && !is.matrix(XnS)) stop("XnS must be a matrix\n")
if(!is.null(XnR) && !is.matrix(XnR)) stop("XnR must be a matrix\n")
if(!is.array(XvD) | length(dim(XvD))!=3) stop("XvD must be a 3-dim array\n")
if(!is.array(XvC) | length(dim(XvC))!=3) stop("XvC must be a 3-dim array\n")
if(!is.null(XnS) && nrow(XnS)!=g) stop("Wrong dimension of XnS\n")
if(!is.null(XnR) && nrow(XnR)!=g) stop("Wrong dimension of XnR\n")
if(dim(XvD)[2]!=g | dim(XvD)[1]!=g) stop("Wrong dimension of XvD\n")
if(dim(XvC)[2]!=g | dim(XvC)[1]!=g) stop("Wrong dimension of XvC\n")
if(!is.numeric(M) || M<0) M <- 0
if(!is.matrix(penSigma)) penSigma <- NULL
if(M>0) warning("IS as implemented by TMB is still experimental -->

use the fitIS function instead\n")
Create starting values
kd <- dim(XvD)[3]
kc <- dim(XvC)[3]
map <- list()
XnS.int <- XnS
XnR.int <- XnR
if(is.null(XnS) & !is.null(XnR))

{
XnS.int <- matrix(0, nrow = g, ncol = 1)
map <- list(gamma1 = factor(NA))

}
if(!is.null(XnS) & is.null(XnR))

{
XnR.int <- matrix(0, nrow = g, ncol = 1)
map <- list(gamma2 = factor(NA))

}
if(is.null(XnS) & is.null(XnR))

{
XnS.int <- matrix(0, nrow = g, ncol = 1)
XnR.int <- matrix(0, nrow=g, ncol = 1)
map <- list(gamma1 = factor(NA), gamma2 = factor(NA))

}
kr <- ncol(XnR.int)
ks <- ncol(XnS.int)
model.param <- list(gamma1 = rep(0, ks) , gamma2 = rep(0, kr), delta1 = rep(0, kd),

54

delta2 = rep(0, kc), alpha=c(1, 0, 1), a=rep(0, g), b = rep(0, g))
Create list of model data for optimization
if(!penalized) flagpen <- 0
else
{

if(is.null(penSigma)) flagpen <- 1 else flagpen <- 2
}
flagSigma <- if(is.null(penSigma)) 0 else c(penSigma[1,1], penSigma[1,2],

penSigma[2,2])
model.data <- list(XnS = XnS.int, XnR = XnR.int, XvD = XvD, XvC = XvC, y = y,

penflag = as.integer(flagpen), penSigma = as.vector(flagSigma))
Create AD function with data and parameters
myseed <- if(is.null(seed)) sample(1:10ˆ5, 1) else seed
obj <- TMB::MakeADFun(data = model.data, parameters = model.param, random = c("a", "b"),

DLL = "p2model", map = map, silent = !trace,
MCcontrol = list(doMC = M>0, seed = myseed, n = M))

if(trace) cat("\nfitting the model\n")
start <- if(is.null(init)) obj$par else init
lower.vect <- if(singular.ok) c(rep(-Inf, length(obj$par)-3), 0, -Inf, 0) else -Inf
mod <- try(opt(start, objfn, objgr, lower = lower.vect), silent = TRUE)
if(!is.character(mod))
{

par <- mod$par
if(trace) cat("\ncomputing Hessian\n")
sde <- try(TMB::sdreport(obj, par.fixed=par), silent=TRUE)
if(is.character(sde))

{
warning("\nNumerical issues in the computation of the Hessian\n")
hess <- try(numDeriv::jacobian(obj$gr, par, method="simple"), silent=TRUE)
if(is.character(hess))
stop("\nNumerical issues in the computation of standard errors are too serious...

Change optimizer, try out a better starting point or
switch to penalized estimation\n")

else sde <- TMB::sdreport(obj, par.fixed=par, hessian.fixed=hess)
}

theta.vcov <- sde$cov.fixed
theta.se <- sqrt(diag(theta.vcov))
Sigma <- matrix(c(sde$value[1], sde$value[2], sde$value[2], sde$value[3]), 2, 2)
Sigma.se <- matrix(c(sde$sd[1], sde$sd[2], sde$sd[2], sde$sd[3]), 2, 2)
rho <- sde$value[4]
rho.se <- sde$sd[4]
random <- sde$par.random
random.se <- sqrt(sde$diag.cov.random)
lnl <- obj$fn(par) + obj$env$report()$pen #### eliminate the penalty
lnl <- lnl + g * log(pi * 2) #### this constant is introduced by TMB
res <- list(theta = par, loglik = -lnl,

AIC = 2 * lnl + 2 * length(par), BIC = 2 * lnl + log(g) * length(par),
XnS.null = is.null(XnS), XnR.null = is.null(XnR), seed = myseed,
theta.vcov = theta.vcov, theta.se = theta.se,
opt = opt, opt.details = mod, ADobj = obj, model.data = model.data,
sdrep = sde, ranef = random, ranef.se = random.se,
Sigma = Sigma, Sigma.se = Sigma.se, rho = rho, rho.se = rho.se, M = M,
penflag = model.data$penflag, penSigma = model.data$penSigma)

55

}
else stop("Optimization did not converge. Change optimizer, try out a better
starting point or switch to penalized estimation")

Assign S3 class values and return
class(res)=c("p2")
return(res)

}

56

G: R code triadic model and p2 model

rm(list = ls())

Loading data and libraries

In this code we are going to set the working directory, loading packages, compiling the .ccp file and loading

the C++ file

#Set working directory
setwd("/Users/nelleke/Desktop/triadisch model")

#Load packages
packages <- c("TMB", "NetData", "cssTools", "p2model", "igraph", "ggplot2")
sapply(packages, require, character.only = TRUE)

#Compile C++ file
compile("triadictest4.cpp")

Preparation data

Triadic model

In the preparation of the triadic data, we need to load the data. Prepare the input of the data (actor

characteristics, and input for density and reciprocity)

#Here we collect the necessary data.
data("highTechManagers", package = "cssTools") #triadic network data
data(kracknets, package = "NetData") #attributes of actors

#Save data in .RData file
rm(advice_data_frame,

friendship_data_frame,
krack_full_data_frame,
reports_to_data_frame)

save(attributes,highTechManagers, file="triadicdata.RData")

#Load triadic data including actor attributes
load("triadicdata.RData")

#Create design matrices for actor covariates for sender, receiver and perceiver
XnS <- model.matrix(~ AGE + TENURE, attributes)[,-1] #sender
XnR <- model.matrix(~ AGE + TENURE, attributes)[,-1] #receiver
XnP <- model.matrix(~ AGE + TENURE, attributes)[,-1] #perceiver

57

#Preparing the comparisons between actors i and j for measuring homophily
g <- 21
XvD <- array(1, dim = c(g, g, 4))

for(i in 1:g) {
for(j in 1:g){

XvD[i, j, 2] <- as.numeric(attributes$DEPT[i]==attributes$DEPT[j])
XvD[i, j, 3] <- as.numeric(attributes$LEVEL[i]==attributes$LEVEL[j])
XvD[i, j, 4] <- abs(attributes$AGE[i] - attributes$AGE[j])

}
}

#Preparing the data input of reciprocity.
#In future research here covariates can be added
XvC <- array(1, dim = c(g, g, g, 1))

#Putting data in y so it is easier to use in following code
y <- highTechManagers

p2 Model

#Load aggregated data for use p2 model
data(kracknets, package = "NetData")

#Changing edgelist into adjacency matrix
g <- 21
datap2 <- matrix(0, g, g)
ind <- 1
for(i in 1:nrow(friendship_data_frame)){

sele <- friendship_data_frame[i,]
datap2[sele$ego, sele$alter] <- sele$friendship_tie

}

#Create design matrices for actor covariates for sender and receiver
Xn <- model.matrix(~ AGE + TENURE, attributes)[,-1]

#Preparing the comparisons between actors i and j for measuring homophily
XvDp2 <- array(1, dim = c(g, g, 4))
for(i in 1:g){

for(j in 1:g){
XvDp2[i, j, 2] <- as.numeric(attributes$DEPT[i]==attributes$DEPT[j])
XvDp2[i, j, 3] <- as.numeric(attributes$LEVEL[i]==attributes$LEVEL[j])
XvDp2[i, j, 4] <- abs(attributes$AGE[i] - attributes$AGE[j])

}}

#Preparing the data input of reciprocity.
XvCp2 <- array(1, dim = c(g, g, 1))

58

Description data triadic and p2 model

Here we will plot the actor covariates used, show the network data. Measure density and reciprocity and

plot sociograms of the network data.

triadicnetwerk <- y

#Calculating the mean and standard deviation for every attribute
for (i in 1:4) {

print(colnames(attributes)[i])
print(mean(attributes[,i]))
print(sd(attributes[,i]))

}

[1] "AGE"
[1] 39.71429
[1] 9.555851
[1] "TENURE"
[1] 11.74605
[1] 8.039362
[1] "LEVEL"
[1] 2.714286
[1] 0.5606119
[1] "DEPT"
[1] 2.190476
[1] 1.167007

#Plot distribution of age of 21 actors
ggplot(attributes, aes(AGE)) +

geom_histogram(binwidth=3, fill = "darkgrey", color = "black") +
theme_classic() +
labs(x = "Age in years", y = "Frequency")

0

2

4

6

30 40 50 60
Age in years

Fr
eq

ue
nc

y

59

#Plot distribution of tenure of 21 actors
ggplot(attributes, aes(TENURE)) +

geom_histogram(binwidth=3, fill = "darkgrey", color = "black") +
theme_classic() +
labs(x = "Duration of employment", y = "Frequency")

0

2

4

6

0 10 20 30
Duration of employment

Fr
eq

ue
nc

y

#Plot distribution of 21 actors per department
ggplot(attributes, aes(DEPT)) +

geom_bar(fill = "darkgrey", color = "black")+
theme_classic() +
labs(x = "Department", y = "Frequency")

0

2

4

6

8

0 1 2 3 4
Department

Fr
eq
ue
nc
y

#Correlation between age and tenure
cor(attributes$AGE, attributes$TENURE) #.489

[1] 0.4893735

#Plot distribution of 21 actors per seniority
ggplot(attributes, aes(LEVEL)) +

geom_bar(fill = "darkgrey", color = "black")+
theme_classic() +
labs(x = "Seniority", y = "Frequency")

60

0

5

10

15

1 2 3
Seniority

Fr
eq
ue
nc
y

61

Density

#Density p2 model
sum(datap2)/(21*20)*100 #24.29

[1] 24.28571

#Density of each layer in the triadic data
dens <- rep(NA, 21)
for (k in 1:21) {

dens[k] <- sum(triadicnetwerk[,,k])/(21*20)*100
}

#Plot of the distribution of the 21 density scores
ggplot(data.frame(dens), aes(dens)) +

geom_histogram(binwidth=2, fill = "darkgrey", color = "black") +
theme_classic() +
labs(x = "Density", y = "Frequency")

0

1

2

3

4

5 10 15
Density

Fr
eq
ue
nc
y

62

Reciprocity

#Reciprocity p2 model
RECP <- NA
k = 0

for (i in 1:21) {
for (j in 1:21) {

if (j <= i)
next

else
k = k + 1
RECP[k] <- datap2[i,j] && datap2[j,i] == 1

}

}

sum(RECP)/length(RECP)*100 #10.95

[1] 10.95238

#Reciprocity triadic data for each layer
REC <- rep(NA, 21)
A <- NA
k = 0

for (t in 1:21) {
for (i in 1:21) {

for (j in 1:21) {
if (j <= i)

next
else

k = k + 1
A[k] <- triadicnetwerk[i,j,t] && triadicnetwerk[j,i,t] == 1

}

}
REC[t] <- sum(A)/length(A)*100

}

63

#Plot of the distribution of the 21 reciprocity scores
ggplot(data.frame(REC), aes(REC)) +

geom_histogram(binwidth=.5, fill = "darkgrey", color = "black") +
theme_classic() +
labs(x = "Proportion reciprocal ties", y = "Frequency")

0

3

6

9

6 8 10 12
Proportion reciprocal ties

Fr
eq

ue
nc

y

64

Sociograms

#Select two networks of 21 layers
set.seed(042025)
sample(1:21,2) #network 2 and 19

[1] 2 19

#Plotting sociogram of self-reported/aggregated data
g <- graph_from_adjacency_matrix(datap2) #p2
set.seed(042025)
plot(g, edge.arrow.size=0.2,

vertex.color="white",
edge.width = 1.2,
edge.color = "black",
margin=-.07)

1
2

3

4

5

6

7

8

9

10
11 1213

14

15

16

17

18

19

20

21

65

#Plotting sociogram of social network data perceived by actor 2
g2 <- graph_from_adjacency_matrix(triadicnetwerk[,,2])
set.seed(042025)
plot(g2, edge.arrow.size=0.2,

vertex.color="white",
edge.width = 1.2,
edge.color = "black",
margin=-.07)

1

2

3

4

56

7

8

9

10

11

12

13

14

15

16

17

18
19

20

21

#Plotting sociogram of social network data perceived by actor 19
g19 <- graph_from_adjacency_matrix(triadicnetwerk[,,19])
set.seed(042025)
plot(g19, edge.arrow.size=0.1,

vertex.color="white",
edge.width = 1.2,
edge.color = "black",
margin=-.07)

1
2

3

4

5

6

7

8

9

10

11

12

13

1415
16

17

18

19

20

21

66

#First 5 rows of network data self-reported data
head(datap2,5)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
[1,] 0 1 0 1 0 0 0 1 0 0 0 1 0 0
[2,] 1 0 0 0 0 0 0 0 0 0 0 0 0 0
[3,] 0 0 0 0 0 0 0 0 0 0 0 0 0 1
[4,] 1 1 0 0 0 0 0 1 0 0 0 1 0 0
[5,] 0 1 0 0 0 0 0 0 1 0 1 0 0 1
[,15] [,16] [,17] [,18] [,19] [,20] [,21]
[1,] 0 1 0 0 0 0 0
[2,] 0 0 0 1 0 0 1
[3,] 0 0 0 0 1 0 0
[4,] 0 1 1 0 0 0 0
[5,] 0 0 1 0 1 0 1

#First 5 rows of social network data perceived by actor 2
head(triadicnetwerk[,,2],5)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
[1,] 0 1 0 0 0 0 0 0 0 0 0 1 0 0
[2,] 1 0 0 0 0 0 0 0 0 0 0 0 0 0
[3,] 0 0 0 0 0 0 0 0 0 0 0 0 0 1
[4,] 0 0 0 0 0 0 0 1 0 0 0 1 0 0
[5,] 0 1 0 0 0 0 0 0 0 0 0 0 0 0
[,15] [,16] [,17] [,18] [,19] [,20] [,21]
[1,] 0 1 0 0 0 0 0
[2,] 0 0 0 1 0 0 1
[3,] 0 0 0 0 0 0 0
[4,] 0 0 0 0 0 0 0
[5,] 0 0 0 0 1 0 0

#First 5 rows of social network data perceived by actor 19
head(triadicnetwerk[,,19],5)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
[1,] 0 1 0 1 0 0 0 0 0 0 0 0 0 0
[2,] 0 0 0 0 0 0 1 0 0 0 0 0 0 1
[3,] 0 0 0 0 0 0 0 0 0 0 1 0 0 1
[4,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[5,] 0 0 0 0 0 0 0 0 1 0 0 0 0 1
[,15] [,16] [,17] [,18] [,19] [,20] [,21]
[1,] 0 1 0 0 0 0 0
[2,] 0 0 0 0 0 0 1
[3,] 0 0 0 0 1 0 0
[4,] 0 0 0 0 0 0 0
[5,] 0 0 0 0 1 0 0

67

Analyses

Triadic model

#Load the compiled file of the C++ code in R
dyn.load(dynlib("triadictest4"))

#Set certain values necessary for our model
M = 0 #is needed for using multiple imputation in TMB or not
trace = FALSE #needed for TMB
opt = nlminb #using nlminb as optimization

#Determinen number of actors
g <- ncol(y)

#Determine value of number of dyad-specific covariates for mu and rho
kd <- dim(XvD)[3]
kc <- dim(XvC)[4]

#Needed for the TMB function where output TMB is stored
map <- list()

#Determine value of number of actor-specific covariates
ks <- ncol(XnS) #sender
kr <- ncol(XnR) #receiver
kp <- ncol(XnP) #perceiver

#List of parameters which need to be estimated
model.param <- list(gamma1 = rep(0, ks) , gamma2 = rep(0, kr),

gamma3 = rep(0,kp), delta1 = rep(0, kd),
delta2 = rep(0, kc), alpha=c(1, 0, 1, 0, 0, 1),
a=rep(0, g), b = rep(0, g), c = rep(0,g))

#List of data input we are using
model.data <- list(XnS = XnS, XnR = XnR, XnP = XnP,

XvD = XvD, XvC = XvC, y = y)

#Set seed
myseed <- 042025

#Determine the objective and gradient function from TMB
obj <- TMB::MakeADFun(data = model.data, parameters = model.param,

random = c("a", "b", "c"),DLL = "triadictest4",
map = map, silent = !trace,
MCcontrol = list(doMC = M>0, seed = myseed, n = M))

68

#Determine starting parameters from TMB function
start <- obj$par

#Determine lower bounds for optimization
lower.vect <- c(rep(-Inf, length(obj$par)-6),0,-Inf,0,-Inf,-Inf,0)

#Optimization of parameter estimates
mod <- try(opt(start, objfn, objgr, lower = lower.vect), silent = TRUE)

#Estimated parameter values in vector
par <- mod$par

#Estimation of standard errors with parameter estimates as input
sde <- try(TMB::sdreport(obj, par.fixed=par), silent=TRUE)

#Estimated standard errors of the parameter estimates in vector
theta.vcov <- sde$cov.fixed

theta.se <- sqrt(diag(theta.vcov))

#Covariance matrix with standard errors
Sigma <- matrix(c(sde$value[1], sde$value[2], sde$value[4],

sde$value[2],sde$value[3], sde$value[5], sde$value[4],
sde$value[5], sde$value[6]), 3, 3)

Sigma.se <- matrix(c(sde$sd[1], sde$sd[2], sde$sd[4],
sde$sd[2], sde$sd[3], sde$sd[5], sde$sd[4],
sde$sd[5], sde$sd[6]), 3, 3)

#Correlations and standard errors
rho <- c(sde$value[7],sde$value[8],sde$value[9])

rho.se <- c(sde$sd[7],sde$sd[8],sde$sd[9])

#Used for calculation of AIC and BIC
lnl <- obj$fn(par) + obj$env$report()$pen
lnl <- lnl + g * log(pi * 2)

#List with all the estimated results
res <- list(theta = par, loglik = -lnl,

AIC = 2 * lnl + 2 * length(par), BIC = 2 * lnl + log(g) * length(par),
XnS.null = is.null(XnS), XnR.null = is.null(XnR), seed = myseed,
theta.vcov = theta.vcov, theta.se = theta.se,
opt = opt, opt.details = mod, ADobj = obj, model.data = model.data,
sdrep = sde,
Sigma = Sigma, Sigma.se = Sigma.se, rho = rho, rho.se = rho.se, M = M,
penflag = model.data$penflag, penSigma = model.data$penSigma)

#Report results to prevent scientific notation
options(scipen = 999)

69

#Zscore and probability two-sided triadic model

Zscore <- res$theta/res$theta.se #zscore
Prob <- 2*pnorm(abs(Zscore),lower.tail = F) #p-value

#Bind results (parameter estimates and standard errors with zscore and pvalue)
Results <- cbind(effect=res$theta,

SE=res$theta.se,
Zscore,
prob=round(Prob,3))

rownames(Results) <- c("Sender Age", "Sender Tenure", "Receiver Age",
"Receiver Tenure","Perceiver Age", "Perceiver Tenure",
"mu", "Department","Seniority", "Age diff", "rho",
"alpha", "alpha", "alpha", "alpha", "alpha", "alpha")

Results

effect SE Zscore prob
Sender Age -0.001090961 0.018721504 -0.058273139 0.954
Sender Tenure 0.037228460 0.022307610 1.668868170 0.095
Receiver Age -0.000336743 0.036919642 -0.009120972 0.993
Receiver Tenure 0.075949570 0.043753331 1.735858007 0.083
Perceiver Age -0.016665405 0.021418305 -0.778091659 0.437
Perceiver Tenure 0.022132117 0.024926238 0.887904406 0.375
mu -5.718917519 2.271476715 -2.517709066 0.012
Department 1.722566888 0.110631286 15.570341423 0.000
Seniority 1.101040575 0.117003797 9.410297842 0.000
Age diff -0.034678002 0.007241154 -4.789015655 0.000
rho 2.783224269 0.186491180 14.924160325 0.000
alpha 0.642998563 0.134253272 4.789444260 0.000
alpha 0.924899289 0.319692378 2.893091457 0.004
alpha 0.966634995 0.209939244 4.604355903 0.000
alpha 0.231804847 0.189637968 1.222354621 0.222
alpha 0.328031129 0.186729769 1.756715765 0.079
alpha 0.628561828 0.126132948 4.983327832 0.000

#Covariance matrix with standard errors
res$Sigma

[,1] [,2] [,3]
[1,] 0.4134472 0.5947089 0.1490502
[2,] 0.5947089 1.7898219 0.5314825
[3,] 0.1490502 0.5314825 0.5564279

res$Sigma.se

[,1] [,2] [,3]
[1,] 0.1726493 0.2784966 0.1292736
[2,] 0.2784966 0.6845010 0.2749033
[3,] 0.1292736 0.2749033 0.2067371

70

p2 model

#Fit the p2 model and summary of results
fit <- fit_p2(datap2, Xn, Xn, XvDp2, XvCp2)
summary(fit)

--
Approximate maximum likelihood estimation of p2 model
Log-likelihood at maximum -169.4082
Model selection criteria
AIC = 362.8164 BIC = 375.3507
--
Density coefficients
Estimate Std. error
delta1 0.03885399 1.73521103
delta1 1.57645521 0.34814083
delta1 1.15354386 0.40545038
delta1 -0.05488179 0.02458207
--
Reciprocity coefficients
Estimate Std. error
delta2 2.117182 0.6329099
--
Sender coefficients
Estimate Std. error
gamma1 -0.1309324 0.05911481
gamma1 0.1403820 0.06213760
--
Receiver coefficients
Estimate Std. error
gamma2 -0.002099014 0.03503430
gamma2 0.045075545 0.04146455
--
Variance matrix of random effects
[,1] [,2]
[1,] 2.054007 -1.1362520
[2,] -1.136252 0.9976877
--

#Covariance matrix with standard error
fit$Sigma

[,1] [,2]
[1,] 2.054007 -1.1362520
[2,] -1.136252 0.9976877

fit$Sigma.se

[,1] [,2]
[1,] 0.9504914 0.6369785
[2,] 0.6369785 0.5646846

71

#Zscore and probability two-sided p2 model

Zscorep2 <- fit$theta/fit$theta.se #zscore
Probp2 <- 2*pnorm(abs(Zscorep2),lower.tail = F) #p2 model

#Bind results (parameter estimates and standard errors with zscore and pvalue)
Resultsp2 <- cbind(effect=fit$theta,

SE=fit$theta.se,
Zscore=Zscorep2,
Prob = round(Probp2,3))

rownames(Resultsp2) <- c("Sender Age", "Sender Tenure", "Receiver Age",
"Receiver Tenure", "mu", "Department","Seniority",
"Age diff", "rho", "alpha", "alpha", "alpha")

Resultsp2

effect SE Zscore Prob
Sender Age -0.130932378 0.05911481 -2.21488278 0.027
Sender Tenure 0.140382010 0.06213760 2.25921209 0.024
Receiver Age -0.002099014 0.03503430 -0.05991312 0.952
Receiver Tenure 0.045075545 0.04146455 1.08708628 0.277
mu 0.038853993 1.73521103 0.02239151 0.982
Department 1.576455206 0.34814083 4.52821114 0.000
Seniority 1.153543857 0.40545038 2.84509259 0.004
Age diff -0.054881787 0.02458207 -2.23259377 0.026
rho 2.117182055 0.63290987 3.34515571 0.001
alpha 1.433180559 0.33160213 4.32198843 0.000
alpha -0.792818437 0.32068537 -2.47226260 0.013
alpha 0.607557946 0.28245028 2.15102614 0.031

72

